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Abstract
Using 586 pb−1 of e+e− collision data acquired at

√
s = 4.170 GeV with the CLEO-c detector

at the Cornell Electron Storage Ring, we report the first observation of D∗+
s → D+

s e
+e− with

a significance of 5.3σ. The ratio of branching fractions B(D∗+
s → D+

s e
+e−)/B(D∗+

s → D+
s γ) is

measured to be [0.72+0.15
−0.13(stat)± 0.10(syst)]%, which is consistent with theoretical expectations.
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Dalitz decays [1], in which a virtual photon is internally converted to an e+e− pair,
have been observed in several vector-to-pseudoscalar decays of light mesons (e.g., ω →
π0e+e−, φ→ π0e+e−, and φ→ ηe+e−) [2]. However, such decays have not been reported in
electromagnetic decays of mesons containing charm or bottom quarks. This Letter reports
the first observation of such a decay, D∗+

s → D+
s e

+e−, and a measurement of its branching
fraction. Only two decay modes of the D∗+

s have been previously observed, the dominant
D∗+

s → D+
s γ mode and the isospin-violating D∗+

s → D+
s π

0 [3] decay. Their branching
fractions have been determined by the PDG [2] from measurements of the ratio B(D∗+

s →
D+

s π
0)/B(D∗+

s → D+
s γ) and the assumption that they are the only D∗+

s decay modes.
The expected D∗+

s Dalitz decay rate may be calculated by treating the photon from
D∗+

s → D+
s γ as virtual and coupling it to an e+e− pair. The q2-derivative of the ratio

Ree ≡
B(D∗+

s → D+
s e

+e−)

B(D∗+
s → D+

s γ)
(1)

can be written as [4]

dRee

dq2
=

α

3πq2
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2

, (2)

where q is the four-momentum of the virtual photon, mx represents the mass of particle
x, A ≡ m2

D∗

s

− m2
Ds

, and f(q2) is the transition form factor for D∗+
s to D+

s . Motivated

by vector-meson dominance, we use f(q2)/f(0) = (1 − q2/m2
φ)

−1. Integrating Eq. (2), we
predict Ree = 0.65%.

We use ≈ 5.6×105 e+e− → D±
s D

∗∓
s events obtained from 586 pb−1 of e+e− collision data

with
√
s near 4.170 GeV acquired by the CLEO-c detector at the Cornell Electron Storage

Ring (CESR). The CLEO-c detector is equipped with a CsI(Tl) calorimeter [5] to detect
photons and determine their directions and energies, and two concentric cylindrical wire drift
chambers [6] to track the trajectory of charged particles. The tracking chambers operate
in an axial 1 T magnetic field to provide momentum measurements. The beam pipe and
the drift chambers present under 2% of a radiation length of material, minimizing multiple
scattering of charged particles and photon conversions. Charged hadron identification is
achieved using energy loss (dE/dx) in the drift chambers and Cherenkov radiation in the
RICH detector [7, 8].

The default Kalman filter track reconstruction used to process CLEO data includes cor-
rections for dE/dx and multiple scattering in the beam pipe and detector material, assuming
each track has the mass of a pion, kaon, and proton. The e± tracks in this analysis are rather
soft, with energies below 150 MeV, where dE/dx is very different from that of any of those
three mass hypotheses. Therefore, to improve sensitivity, we reprocess events containing at
least one exclusively reconstructed D+

s candidate, adding an e± mass hypothesis for each
charged particle. Details of this analysis appear in Ref. [9]. CLEO has previously observed
two other Dalitz decays, η → e+e−γ [10] and η′ → e+e−ρ0 [11], in both of which the e± were
substantially more energetic and did not need reprocessing.

We reconstruct D∗+
s → D+

s e
+e− candidates using the nine distinct hadronic decay modes

of the D+
s listed in Table I. Charge conjugate modes are also included. Candidates for K0

S
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and η are reconstructed through their decays to π+π− and γγ, respectively. Measurement
of Ree instead of the absolute branching fraction B(D∗+

s → D+
s e

+e−) bypasses any need
for estimating the total number of D∗+

s produced and minimizes systematic uncertainties
stemming from reconstruction of the D+

s .

We follow a blind analysis procedure to avoid bias. Selection criteria are optimized indi-
vidually in each of the D+

s decay modes for maximum signal significance using Monte Carlo
simulated samples of signal and background processes. The decay chain of signal events
e+e− → D∗+

s D−
s ;D

∗+
s → D+

s e
+e− are simulated with full angular correlations. Simulated

samples of all e+e− → qq̄ processes at 4.170 GeV where q = u, d, s, or c are used for back-
ground. The reconstructed e+e− tracks are required to pass within 5 cm of the interaction
point in the direction parallel to the beam-axis and within 5 mm of the beam-axis in the
transverse directions. The dE/dx of each e± candidate is required to be within 3σ of that
expected for electrons. All charged pions and kaons in the D+

s decay chain are identified
as such using a combination of dE/dx and RICH information as described in Ref. [12]. We
require the reconstructed D+

s mass MDs
to be within a mode-dependent region around the

known D+
s mass [2] consistent with the resolution of the detector. We define the beam-

constrained mass of the D∗+
s by MBC ≡

√

E2
D∗

s

− p2
D∗

s

, where ED∗

s

is the energy of the D∗+
s

calculated from the beam energy and pD∗

s

is the three-momentum of the D∗+
s inferred from

its decay daughters’ measured momenta. We select events with MBC and δM ≡MD∗

s

−MDs

consistent with the known D∗+
s and D+

s masses [2].

A significant background to the observation of D∗+
s → D+

s e
+e− arises from D∗+

s → D+
s γ

events where the γ converts into an e+e− pair in the material of the beam-pipe or drift
chambers. We reject much of this background using the following criteria for the e± tracks.
We define the d0 of a track as the distance of closest approach of the track to the beam
axis. Its sign depends on the charge of the track and whether the origin of the x− y plane
falls within the circle of the track in that plane. We require the difference between the d0
of the e+ and e− tracks, ∆d0 = d−0 − d+0 , to exceed −5 mm. Denoting each electron track’s
azimuthal angle measured at the point of closest approach to the beam axis by φ0, we also
require ∆φ0 = φ−

0 − φ+
0 < 0.12.

These selection criteria are applied on simulated samples of our signal to obtain the
selection efficiencies for signal events ǫiee, where i stands for one of the nine decay modes of
the D+

s used in this analysis. These criteria are applied to data in order to obtain the yields
of events ni

ee. These numbers are presented in Table I for each decay mode of the D+
s .

Having established selection criteria using simulations, the background biee in the signal
region for each mode i is estimated from the fit of an MBC background function to the
data in the MBC sidebands for that mode. The shape of the MBC function is fixed and is
common to all modes. The function incorporates the kinematic limit and its parameters are
determined from simulations. This shape is illustrated in Fig. 1(a). A similar estimate of biee
obtained from the δM distribution and the difference between this estimate and the MBC

estimate is taken as the systematic uncertainty inherent in the procedure. The estimated
background for each mode is presented in Table I as biee.

We calculate the signal significance, expressed in number of Gaussian standard deviations,
from the Poisson probability for the estimated background to fluctuate up to the observed
signal yield or higher. The uncertainties in the background, both statistical and systematic,
are modeled as Gaussian distributions. The combined signal significance for all modes is
5.3σ. The most significant individual mode is K+K−π+ at 5.0σ.

The distribution of the e+e− invariant mass Mee for the 51 observed events in the signal

4



FIG. 1. Distributions of (a) MBC and (b) δM in data and simulated samples summed over all nine

D+
s decay modes used in this analysis. In each figure, the points with error bars are data, and

the unshaded histogram is the simulated D∗+
s → D+

s e
+e− signal. Background events in the upper

shaded histogram (yellow online) are from simulated D∗+
s → D+

s γ decays. Background events

in the lower shaded histogram (green online) are from simulated qq̄ events that do not include

D∗+
s → D+

s γ or D∗+
s → D+

s e
+e−. The curves are the fits of data to background shapes described

in the text. The regions 2.100 to 2.124 GeV in (a), and 0.1298 to 0.1578 GeV in (b) are avoided

in the shape fits to prevent contamination of the background estimates with signal events.

region is compared to that expected in our simulations and presented in Fig. 2. The distri-
butions are found to be in good agreement, with a Kolmogorov-Smirnov probability of 0.86
for the events to share the same parent distribution.

The criteria for selecting D∗+
s → D+

s γ events follow those for D∗+
s → D+

s e
+e− as closely

as possible. Instead of an e+e− pair, a photon candidate in the kinematically allowed energy
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TABLE I. The yields ni
ee, estimated backgrounds biee, background-subtracted yields yiγ , ratios of

detection efficiencies ξi, and values Ri
ee of Ree for each D+

s decay mode i. The uncertainties given

for ξi ≡ ǫiγ/ǫ
i
ee are statistical only. The values of ni

ee and biee are summed over all modes, while the

ratio of branching fractions Ree is computed using Eq. (3).

i ni
ee biee yiγ ξi Ri

ee(%)

K+K−π+ 14 1.05+0.42
−0.33 ± 0.79 9114 ± 110± 201 4.65 ± 0.12 0.66+0.21

−0.18

K+K−π+π0 6 1.70+0.52
−0.43 ± 0.56 3592 ± 118± 72 4.80 ± 0.21 0.58+0.38

−0.29

K0
SK

+ 1 0.85+0.50
−0.36 ± 0.74 1902 ± 57 ± 45 4.31 ± 0.13 0.03+0.33

−0.18

K0
SK

−π+π+ 4 1.58+0.59
−0.47 ± 0.40 1570 ± 74 ± 13 5.38 ± 0.20 0.83+0.83

−0.60

π+π−π+ 7 1.57+0.50
−0.41 ± 0.59 2745 ± 93± 52 4.62 ± 0.10 0.91+0.51

−0.40

ηπ+ 4 1.40+0.82
−0.59 ± 0.49 1037 ± 46± 37 3.87 ± 0.10 0.97+0.93

−0.67

ηρ+ 7 2.62+0.63
−0.54 ± 0.23 3170 ± 161± 313 5.82 ± 0.24 0.80+0.56

−0.44

η′π+; η′ → π+π−η 4 0.00+0.72
−0.00 ± 0.00 691 ± 34± 40 3.96 ± 0.12 2.30+1.50

−0.97

η′π+; η′ → ρ0γ 4 1.84+0.54
−0.45 ± 0.25 1531 ± 80± 122 4.97 ± 0.14 0.70+0.78

−0.57

All Modes 51 12.61+1.78
−1.29 ± 4.05 0.72+0.15

−0.13

range is required and its electromagnetic shower in required to have a lateral spread narrower
than 99% of true photons. The allowed window for δM is broadened to account for worse
resolution in calorimetric photon energy as compared to tracking-based e+e− measurements.
For similar reasons, the mass window restriction on MBC is removed and the signal yield
is extracted from a fit using background and signal shapes determined from simulations, as
depicted in Fig. 3 for the K+K−π+ mode. Application of these criteria to simulated samples
of D∗+

s → D+
s γ gives us the efficiencies ǫiγ. Application to data gives us the background-

subtracted signal yields yiγ as listed in Table I.

The ratio ξi ≡ ǫiγ/ǫ
i
ee of efficiencies for D∗+

s → D+
s γ to D∗+

s → D+
s e

+e−, given in Table I,
cluster around 4.8. The K+K−π+ mode stands out due to its large D+

s branching fraction,
presence of two charged kaons and the absence of photons in the final state. No other
mode or combination of modes is predicted to have more significance for an observation
of D∗+

s → D+
s e

+e−. For D+
s → K+K−π+ (all other modes combined), we expect a yield

of ∼15 (36) events, about 1 (13) of which are background. After unblinding the data as
shown in Table I, we find yields ni

ee quite close to those expected from our predicted Ree

and Monte Carlo simulations. Yields from individual non-K+K−π+ modes range from 1 to
7, consistent with expectations.

For each of the D+
s decay modes i, we calculate the value of Ri

ee = (ni
ee − biee)/(y

i
γ/ξ

i) as

listed in Table I. Note that the values of ξi are all equal (≈ 4.8) to within ±20% because the
dominant difference in efficiency is due to the photon versus e+e− selection criteria, which
are identical for all modes. The ξi vary somewhat with i due to the broadened δM windows
and signal shape MBC fit (instead of a fixed window) for the radiative D∗+

s modes relative
to those of the Dalitz decays. Hence most systematic uncertainties in ξi due to D+

s selection
cancel; e.g. those due to track-finding, particle identification, and selection of photons, π0,
K0

S decays, etc. In order to avoid a bias due to Poisson fluctuations when ni
ee is small and to

preserve the cancellation of systematic uncertainties inherent in the use of ξi, we calculate

6



FIG. 2. Distribution of Mee in simulated events within the signal region overlaid with the 51 events

observed in data. The interpretations of the various simulation histograms are identical to those

in Fig. 1.

Ree by weighting each Ri
ee by the expected number of Dalitz decays, which is proportional

to yiγ/ξ
i. This gives

Ree =

∑

i(y
i
γ/ξ

i)Ri
ee

∑

i yiγ/ξ
i

=

∑

i n
i
ee − biee

∑

i yiγ/ξ
i
. (3)

We consider systematic uncertainties of the signal yields and efficiency ratios in our
measurement of Ree. The systematic uncertainty in biee contributes a fractional uncertainty
of 10.6%. Systematic uncertainties in yiγ and statistical uncertainties in ξi contribute a
total fractional systematic uncertainty of 2.0%. Two systematic uncertainties remain; first,
an uncertainty due to the different selection criteria on MBC and δM , as described above,
which is estimated to be 4.1%; second, the uncertainty in the ratio of reconstructing an
e+e− pair to that of a γ. The uncertainty in this ratio is estimated by studying the decay
ψ(2S) → J/ψ π0π0. The ratio between the number of events where one of the π0 decays
to γe+e− and the number of events where both π0 decay to γγ must be equal to twice the
ratio of branching fractions Rπ0

ee ≡ B(π0 → γe+e−)/B(π0 → γγ). Using this relationship, we
measure Rπ0

ee = (1.235± 0.051)% in a manner similar to Ree by reconstructing the J/ψ π0π0

through these two decay modes of the π0. We restrict the energies of the e± to the range 20 to
144 MeV (the mass difference mD∗

s

−mDs
). Compared to the PDG value of (1.188±0.035)%

[2], we estimate the fractional systematic uncertainty on the ratio of efficiencies to be 6.5%.
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FIG. 3. Distribution of MBC of D∗+
s → D+

s γ events where D+
s → K+K−π+. The points with

error bars are data, the unshaded region is the D∗+
s → D+

s γ signal. Background events in the

highest shaded region (yellow online) are events with a direct D−
s paired with a photon from the

D∗+
s → D+

s γ decay. Background events in the middle shaded region (green online) are events with

a direct D−
s paired with a photon that did not come from D∗+

s → D+
s γ. Background events in the

lowest shaded region (blue online) are from all other sources.

These fractional systematic uncertainties are combined in quadrature to yield the final result
for the ratio Ree:

Ree = [0.72+0.15
−0.13(stat)± 0.10(syst)]%. (4)

We use this result to re-evaluate the absolute branching fractions of the D∗+
s meson as

presented in Table II.
In summary, we report the first observation of a third decay mode of the D∗+

s , the
D∗+

s → D+
s e

+e−. We observe 51 candidate events in our signal region with an expected
background of 12.6 events. The signal significance is 5.3σ. The ratio of branching fractions
Ree is measured as presented in Eq. (4) and found to be consistent with our theoretical
prediction. This implies that existing estimates ofD∗+

s branching fractions should be revised.
We gratefully acknowledge the effort of the CESR staff in providing us with excellent

luminosity and running conditions. This work was supported by the A.P. Sloan Foundation,
the National Science Foundation, the U.S. Department of Energy, the Natural Sciences and
Engineering Research Council of Canada, and the U.K. Science and Technology Facilities
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TABLE II. Branching fractions in percent for the known decays of the D∗+
s meson from PDG

2010 [2], which assumed B(D∗+
s → D+

s e
+e−) = 0, and our re-evaluation using the value of Ree

reported in this Letter.

Decay Mode PDG 2010 This Analysis

D∗+
s → D+

s γ 94.2±0.7 93.5±0.5±0.5

D∗+
s → D+

s π
0 5.8±0.7 5.8±0.4±0.5

D∗+
s → D+

s e
+e− 0 0.67+0.14

−0.12 ± 0.09

Council.
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