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ABSTRACT
Identifying building envelope thermal properties from the calibration of a lumped model 
raises identifiability issues. Not only needs the simplified model to be structurally identifiable, 
i.e. deliver unique estimates after calibration, but also the data used might not be informative 
enough to result in either or both accurate estimates and physically interpretable values. This 
could particularly be the case when data is extracted from non intrusive in situ measurements, 
in the sense not disturbing potential occupancy. In this frame, this paper develops a method to 
investigate the physical interpretation of the parameters of lumped models through a 
numerical tests procedure. Each test runs a simulation of a comprehensive thermal model of a 
building, with variations in  thermal resistance properties of the envelope. Each simulation 
delivers data used to calibrate a lumped model. The parameters of the lumped model are then 
physically interpretable if their value vary according to the variations of the comprehensive 
model. The overall test procedure is applied to the study of a 2R2C model. Results show that 
the calibration of this model delivers robust calibration results for all parameters but one and 
also shows satisfactory robustness of the estimation of the overall thermal resistance. This 
paper concludes that the numerical test procedure does allow to evaluate practical 
identifiability of lumped models, and will in future work be used to examine more complex 
lumped models.
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INTRODUCTION
A major lever for decreasing energy consumption in both newly built and existing buildings 
would be to accurately estimate, in situ, the building envelope thermal performance. 
Delivering valuable information on that performance relies then on an accurate, detailed  and 
robust analysis of the building’s envelope. Methods such as the coheating test, QUB or 
ISABELE methods  (Sonderegger 1978; Mangematin et al 2012; Schetelat and Bouchié 2014) 
deliver a satisfyingly accurate Heat Loss Coefficient of the envelope, but cannot identify 
weaker parts of the building’s envelope on which concentrate retrofit efforts. Furthermore, 
these methods are hardly applicable for in-use buildings as they rely on a lot of measurement 
equipment and require inoccupancy for a period from a few days to a few weeks. Recent 
literature (Reynders, Diriken, and Saelens 2014; Deconinck and Roels 2017; Menberg, Heo, 
and Choudhary 2017) has focused on calibrating dynamic simplified thermal models in the 
hope of physically interpreting calibrated parameters. It showed that the overall Heat Loss 
Coefficients may be robustly estimated, but that in the particular settings studied, thermal 
properties of each layer of the envelope could not. This paper presents a method that assesses 
how each parameter of a lumped model truly represents the building envelope. The method is 
first described and then applied to a 2R2C lumped model.
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METHODS 
Overview of the numerical test procedure
To test different envelope settings, the method is based on an entirely numerical study. Given
known weather boundary conditions, a comprehensive model defined in EnergyPlus (Figure 1
:  I)  is  written  in  N versions  representing  as  many envelope settings  to  test.  Each setting
generates  a  thermal  dynamic  simulation.  Each  simulation  returns  an  indoor  temperature
profile (Figure 1 : II) from which 5 days data in January are extracted. Noise from a normal
distribution  N(0,0.2)  is  then  added to  the data.  The third step  is  to  calibrate  the  selected
lumped  model  ,  i.e.  fit  it  to  the  noisy data  (Figure  1  :  III).  The  objective  of  the  overall
procedure is then to study the variability of the calibrated parameters (Figure 1 : IV) : do the
estimations of the parameters vary according to the changes made in the original complete
thermal  model?  In  other  words,  to  what  extent  are  the  parameters  of  an  RC  model
representative of the physical thermal properties of the original comprehensive model?

Figure 1: Numerical test procedure

Specific settings of this case study
The comprehensive model used in this  work is based on a Bestest 600 case  (Judkoff and
Neymark  1995) equipped  with  a  convective  electric  heater  and  no  air  infiltration  nor
ventilation. Window area is 3 m2 to avoid the overheating from the original Bestest scenario.
Indoor temperature setpoint schedules are set to reach 17°C at night and 20°C during the day.

Table 1: Design of experiments used in this study. From left to right, the envelope is poorly to
highly insulated
Experiment number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Wall insulation (cm) 5 5 5 5 5 5 5 5 20 20 20 20 20 20 20 20
Roof insulation (cm) 5 5 5 5 20 20 20 20 5 5 5 5 20 20 20 20
Window air gap (mm) 4 4 20 20 4 4 20 20 4 4 20 20 4 4 20 20
Floor insulation (K/W) 10 25 10 25 10 25 10 25 10 25 10 25 10 25 10 25

We  choose  for  a  design  of  experiments,  as  suggested  in  (Iooss  2011).  The  thermal 
comprehensive model therefore undergoes four different changes in insulation thicknesses, 
ground floor thermal resistance and double pane glazing air gap thickness. This design of 
experiment is therefore intended to only assess the influence of thermal resistance properties. 
Each parameter takes two possible values as shown in Table 1 and a full factorial design is 
run, i.e. 16 different configurations.
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In the present paper,  we apply the method to the calibration and study of a 2R2C model
(Figure 2). As for any model calibration, the structural identifiability of the 2R2C model has
to be checked and it has been found structurally identifiable (Bellu et al. 2007). This means
that, in theory, there exists only one set of parameter values towards which the calibration
algorithm will converge.

Figure  2: Model 2R2C. In  blue the model output, in orange the model inputs, in black the
unknown parameters and state variables

Each model is calibrated by bayesian inference (Figure 1 III), where the parameters and the 
unknowns are considered to be probability distributions. Calibrating the model then means 
determining the parameters probability distributions given the available data, also known as 
posterior distributions. The literal expressions of the posterior distributions cannot be known 
and  are  therefore  sampled  by  an  adaptive  Metropolis  algorithm  (Haario,  Saksman,  and 
Tamminen 2001). Each parameter distributions can then be plotted with a boxplot as in Figure 
1  IV,  showing  the  most  probable  value,  its  standard  deviation  and  its  95%  confidence 
intervals.

RESULTS
Contribution of envelope properties to the calibrated parameters
Estimations of all five parameters of the 2R2C model for each experiment setting are shown 
in Figure 3.

Resistance parameters Rext and Rint in  Figure 3 (a) vary differently. Rext shows a significant 
correlation  with the  thermal  properties  variations  in  the  experiment,  whereas  Rint is  quite 
steady  and  takes  values  between  4.10-4 and  9.10-4  K/W.  From  this  experiment  could  be 
inferred that Rext actually represents the thermal resistance of the envelope itself. Rint might 
rather represent the resistive air layer at the indoor surface, which is theoretically in the range 
[8.10-4 K/W , 13.10-4 K/W].

The solar  coefficient  Asol estimation  in  Figure 3 (b)  is  also significantly  correlated  to  the 
thermal resistance properties of the building envelope. The better the insulation, the lower the 
parameter estimation. Ground floor insulation or window air gap show however no significant 
influence on the value taken by the solar coefficient Asol. This result is not coherent with the 
expectation that this parameter should not vary with thermal properties. We indeed expect it to 
be physically related to window orientation and size, that are not changed in this design of 
experiments. We explain this unexpected result first by the fact that the 2R2C lumped model 
is quite simplistic and might not be entirely interpretable when fitted to data. Also, the solar 
irradiation and the indoor-outdoor temperature differences are probably partially correlated to 
begin with. A different indoor temperature setpoint schedule and/or adding a shading schedule 
might give better interpretability of the Asol parameter.

Figure 3 (c) shows that the thermal capacity parameter Cext is not significantly varying with 
the different  experiment  settings,  which is  the expected  result.  Indeed,  the comprehensive 
model is one of the Bestest low thermal inertia scenarii  and has indoor insulation.  As the
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experiments  only varied thermal  resistance properties,  the thermal  capacity  is  expected to
remain steady. Compared to the values taken by the thermal capacity Cint in Figure 3 (d), Cext

seems to represent the thermal capacity of the envelope itself. Noteworthy is that C int takes
values indicating that it could represent the indoor air thermal capacity, but with extremely
large confidence intervals. This shows that this parameter is poorly identifiable, meaning that
its exact value cannot be inferred from these results. Data with more frequent measurements,
every 1 to 5 min instead of 10 min, might enhance its identifiability though.

Robustness of overall thermal resistance of the envelope
An equivalent resistance Req can be calculated from the estimation of both resistances of the 
2R2C model : Req = Rext + Rint. The equivalent resistance Req may then be compared to a 
theoretical overall thermal resistance Rth of the comprehensive model envelope.
From Figure 4 can be seen that fitting the 2R2C model gives a satisfactory estimation of Req 

(mean error up to 6,5 %). In the case of a highly insulated envelope (experiments 9 to 16), the 
error to the theoretical value is higher than with poorly insulated envelopes (experiments 1 to 
8), especially when the ground floor is poorly insulated, for example in the experiments 13 or

Figure 3: Variation of all 5 parameters of the lumped model with the experiments settings
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15. The 2R2C model  does not  include any term representing the  losses  to the  ground to
differentiate  them from the losses to the ambient  air.  So as soon as losses to the ground
become significant compared to losses to the ambient air, the resistances of the model take the
losses to the ground into account. This needs to be considered when comparing the estimated
equivalent resistance of the building to a target value from a norm or a regulation, as in theory
losses to the ground are not taken into account in the theoretical calculations.

DISCUSSION
First of all, the methodology applied to a 2R2C model showed that the parameter estimation 
converged towards unique estimates, except for parameter Cint. This stresses out that 
theoretical identifiability is necessary but not sufficient. The data here is not informative 
enough for  the parameter Cint. It is however sufficient to uniquely estimate values for the 
other parameters, which is promising for future work where data from occupied buildings are 
used. Indeed, this shows that major temperature differences, as seen in Schetelat and Bouchié 
(2014) or in Mangematin et al (2012) are not necessary to identify thermal properties of a 
building envelope. Additionnaly, it would be interesting to study the robustness of the results 
with fewer days data. In particular, one could study the influence of outdoor conditions which 
might particularly affect the results when the model is fitted on fewer days. We refer here to 
(Juricic et al. 2018).

Secondly, the study showed that the estimates could be, to a certain extent, identified with true 
thermal properties of the envelope. Rext and Cext have been found representing the envelope 
thermal properties itself, whereas Rint and Cint were found rather related to properties of the 
indoor air.  It seems though that this model cannot identify thermal properties of layers inside 
the envelope. It would be interesting to study how parameters of more complex models can be 
identified  to  different  envelope  layers,  starting  with  3R3C  models.  At  the  same  time, 
estimating the overall thermal resistance in these conditions shows satisfactory robustness, 
unless ground floor insulation is much poorer than envelope insulation, which would rarely 
happen  in  existing  buildings  though.  This  result  is  promising  when  considering  testing 
existing buildings for regulatory purposes. Compared to Deconinck and Roels (2017) who 
found poor identifiability in all of the tested RC models for a cavity wall in winter, this case 
study studies the whole envelope has quite different boundary conditions which is probably 
why the parameters here were found to be identifiable even in winter. The work of Deconinck 
& Roels however suggests, by extrapolation, that estimations from the 3R3C model should be 
more trustworthy.

Figure 4: Estimation of the overall thermal resistance : agreement to the theoretical value
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Finally, if a design of experiments approach was coherent with the goal of this study, further
work should focus on variations of many more envelope properties of the reference building.
A  preferable  approach  will  be  to  use  sensitivity  analysis  tools,  namely  the  RBD-FAST
variance  decomposition  approach,  allowing at  the same time an efficient  parameter  space
exploration and a more detailed study of the parameters interactions.

CONCLUSIONS
This  paper  shows  how  the  numerical  tests  procedure  allows  to  evaluate  practical
identifiability, i.e. interpretability of model parameters. Future work will focus on different
comprehensive models, starting with scenarii with heavier thermal mass, on more complex
lumped models in the hope of distinguishing contributions of separate parts of the envelope
and  finally  on  combining  this  methodology  with  a  study  of  the  influence  of  boundary
conditions on identifiability.
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