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Abstract 
 
 
 
 Noninvasive in vivo blood glucose determination in the skin of volar 
side of human fingertips by near-infrared (NIR) Raman spectroscopy relies 
on fluorescence to quantify blood volume. Fluorescence does not only 
come from blood, which is composed of plasma and red blood cells; in 
fact, most fluorescence produced by human fingertips originates in the 
static tissues, e.g. skin, interstitial fluid, etc.. It will soon be possible to 
quantify the precise contributions of red blood cells, plasma, and static 
tissue to the overall fluorescence emission. Observations reveal a 
systematic decay in fluorescence, which, if not caused by blood 
movement, challenges our ability to accurately determine blood glucose. 
In this work, it was found that the fluorescence decay was, in fact, not a 
result of a blood movement, but instead a chemical change of the static 
tissues decreasing their fluorescent properties. To identify possible 
photobleachable material, a series of in vitro experiments were performed 
on various antioxidants and the skin pigment melanin. While none of the 
antioxidants were found to fluoresce, it was observed that melanin 
fluoresces, photobleaches, and does not significantly recover its 
photobleaching. This allows for a deeper understanding as to the 
chemistry underlying the effect of photobleaching and how it may be 
accounted for in regards to this technique for glucose measurement. 
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Introduction 

 
Diabetes mellitus is a disease, characterized by an inability to 

maintain a healthy glucose concentration because the body either does 

not produce the hormone insulin (type I) or becomes resistant to it (type 

II), that affects millions of Americans. Both type I and type II diabetes can 

cause cardiovascular disease neuropathy, retinopathy (resulting in 

blindness), end-stage renal disease, foot ulcerations requiring amputation, 

and death, among other complications. In addition to managing insulin 

levels, maintaining healthy blood glucose concentration is an essential 

and often difficult task for every diabetic. The hemoglobin A1C test is 

performed by physicians to to measure patients’ glucose level over long 

periods of time, but it is also necessary for these patients to self-monitor 

their glucose concentration, often over a dozen times each day[1].  

Most blood glucose meters produce an automatic reading by 

obtaining a sample of blood, applying it to a reagent strip which is inserted 

into a reflectance photometer. There are well over twenty meters 

commercially available, varying in size, weight, and volume of blood 

drawn; some even allow for blood to be obtained from different parts of the 

body, such as a finger or forearm[2]. Nevertheless, all of these products 

require the invasive procedure of piercing the skin to obtain a sample of 

blood. Given the frequency at which these patients must undergo this 

painful process to measure their blood glucose concentration, diabetics 

suffer from scarred and sore fingers, making this chronic disease 



2 
 

extremely unpleasant. 

Our system to achieve noninvasive in vivo blood and tissue 

analysis is a key development that has a chance to free diabetics from the 

pain of managing their disease, as well as to revolutionize many other 

facets of medicine. A variety of spectroscopic techniques have been 

investigated including fluorescence spectroscopy, optical rotation, and 

those using the ultraviolet (UV), near-infrared (NIR) and mid-infrared 

regions of the spectrum[3]. We rely on the use of near-infrared Raman 

vibrational spectroscopy to reveal various characteristics of blood, 

including glucose concentration and hematocrit[4]. The concentration, an 

amount-per-unit volume of a particular substance, such as glucose, can be 

readily determined by the analysis of key features of the spectra, namely 

elastic scattering, inelastic scattering, and fluorescence. While the Raman 

features (inelastic scattering), which are narrow, are used to determine the 

relative presence of glucose, and elastic scattering used to monitor red 

blood cell content, fluorescence, which is relatively broad band, is used to 

quantify blood volume[5]. 

We have previously observed that the laser-induced fluorescence of 

fingertips is associated with blood, and so it is this signal that we used to 

determine blood volume (BV)[5]. However, in vivo experiments revealed a 

systematic decay of the BV measurement due to the laser itself. This 

effect was observed to be even stronger for diabetic patients[4]. Since 

blood volume is calculated by the integration of the fluorescence, this 
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observation indicates that, over a period of tens of seconds, there was a 

significant decrease in fluorescence produced by the exposed tissue. It is 

believed that this is a result of a light-induced chemical change, a process 

referred to as “photobleaching.”  

Through further experimentation, it was discovered that static 

tissue, as opposed to blood, is the main photobleachable material. The 

purpose of this work is to identify, from the thousands of substances in 

static tissue, potential candidates which could be responsible for this 

“autofluorescence” (fluorescence by substances other than the one of 

interest, in this case, blood). We seek to observe their photobleaching 

properties that they may be appropriately accounted for to improve the 

accuracy of the blood volume reading and, concurrently, the blood glucose 

concentration determination. 

Identifying a series of endogenous and exogenous substances is a 

difficult task. Given the nearly countless number of carbohydrates, 

proteins and smaller polypeptides, lipids, vitamins, antioxidants, and other 

biological molecules, it would require a massive effort to describe the 

photodynamic properties regarding the NIR and Raman spectroscopy of 

each of these substances to comprehensively isolate those which account 

for the autofluorescence and photobleaching events that have been 

observed. It is important to note that historically, due to technological 

limitations, spectroscopic investigations of such substances were 

performed using the ultraviolet-visible (UV-Vis) region of the spectrum, of 
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which there is already wealth of knowledge. However, since UV light in 

particular can damage and burn an exposed individual, UV-Vis 

spectroscopy cannot be utilized for in vivo experiments. Instead, near-

infrared light is safe for vibrational Raman spectroscopy in vivo, and so is 

ideal for this technology. Due to the fact that there is far less literature 

pertaining to NIR spectroscopy than that of the UV-Vis range regarding 

specific substances of interest, the need for such investigation became 

apparent. 

Therefore, based on structure and functionality, a series of vitamins, 

antioxidants, and the major skin pigment, melanin, were selected to 

ascertain their spectroscopic properties to identify potential fluorophores in 

vivo as well as to narrow down the list of skin-borne candidates. 

Antioxidants serve to protect essential cellular molecules from rapid 

oxidation by reactive oxygen species by themselves undergoing 

oxidation[6]. Since antioxidants contain loosely held electrons, which are 

essential to their function as reducing agents of reactive oxygen species, it 

was hypothesized that these molecules, as a class, might have excited 

electronic states low enough in energy such that long wavelengths, such 

as those in the NIR, could electronically excite them and cause 

subsequent fluorescence. Melanin has high absorptive properties, 

rendering it ideal as a skin pigment. With such high absorptivity, melanin 

became a candidate of interest as to its fluorescent and photobleaching 

properties[7]. Given its intricate macromolecular structure, which is yet to 
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be elucidated and under active investigation by other groups, melanin 

remains a compound which could provide great insight into the chemistry 

of photobleaching. 

The literature demonstrates that advanced glycation end products 

(AGEs), namely pentosidine (the glycation product between ribose and the 

amino acids lysine and arginine), are highly fluorescent in the UV-visible[8]. 

The relatively high concentration of these ubiquitous substances in 

humans, the various biochemical pathways for their formation, and their 

association with diabetes patients who experience regular hyperglycemia 

attracted an interest into their NIR fluorescent and photobleaching 

properties. Since the present study began, we learned that pentosidine, 

AGEs in general, and hemoglobin do fluoresce and photobleach in the 

NIR. Since we now know at least three skin-borne substances that 

produce NIR fluorescence, this thesis is limited to all substances other 

than pentosidine and hemoglobin. 

 

Literature Review 

Raman spectroscopy theory 

 
The theory of Raman spectroscopy derives from specific 

interactions between molecules and photons. When photons from nearly 

monochromatic light, such as from a laser, interact with matter, one of 

three events can occur. The light may pass through the molecule 

unaffected, it can be scattered, or it can be absorbed. Under in vivo 
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conditions, all molecules may exist in the ground electronic and vibrational 

states, which are of the lowest energy for a molecule. In the presence of 

light and other forms of excitation, the molecules can exist in various types 

of virtual states and vibrational states. During a molecule-photon 

scattering event, an incident photon of a given energy briefly distorts the 

electron distribution of a molecule, promoting the molecule from the 

ground state to a higher energy virtual state, and is then reflected in a 

different direction. If no energy is absorbed by the molecule, the molecule 

returns to its original energy level, and the photon is emitted at the same 

energy as prior to incidence, a process known as Raleigh or elastic 

scattering. If there is a transfer of energy between the light and the 

molecule, the photon is emitted at a different energy (and wavelength), 

leaving the molecule in a different vibrational state, a process known as 

Raman or inelastic scattering. The difference in energy between the 

incident and scattered light is equal to the energy of the vibrational 

transition[9,10]. 

Spontaneous Raman scattering is a fairly weak phenomenon, 

affecting only one in 106 to 108 photon/molecule interactions, and involves 

two types of processes: Stokes scattering and anti-Stokes scattering. 

Stokes scattering occurs when a molecule in the ground state absorbs 

some energy of the photon and is promoted to a higher energy vibrational 

state, while the photon emitted is of a lower energy and longer 

wavelength. Anti-Stokes scattering occurs when a molecule, already in an 
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excited state due to thermal energy, returns to the ground state and 

transfers energy to the photon, which is emitted at a higher energy and 

shorter wavelength. Stokes scattering is most commonly used for 

spectroscopic analysis; however, there are applications for anti-Stokes 

scattering. These shifts in wavelength are indicative of the structural 

features of the molecule, and therefore, the structures of compounds can 

be revealed by the investigation of their Raman spectra[9,10]. 

 
 

Figure 1: Graphical representation of Raleigh and Raman scattering 
processes. Source: Modern Raman spectroscopy: a practical approach by 

Ewen Smith, Geoffrey Dent[10].  
 

Molecules may exist in different real quantum electronic states, 

either in the ground state or in more highly excited energy states. A 

molecule may be promoted from the ground state to the first excited state 

(or from one excited state to the next) if it absorbs an incident photon of an 

energy greater or equal to the energy difference between the electronic 

states. The excited molecule then will spontaneously relax from its excited 

electronic state to its ground state along with the emission of a photon 

through a process known as fluorescence. Beyond promotion to an 



8 
 

excited electronic quantum state, a molecule can be excited to higher 

energy vibrational states within the excited electronic energy level. Then, 

in a nonradiative process known as internal conversion, the molecule 

returns to a lower electronic state, but now containing substantial energy 

in the form of heat, i.e. vibrations[11]. 

As seen above, there are two distinct types of emission from such 

interactions: elastic and inelastic. The difference between them always 

pertains to the degree to which energy is transferred during the 

interaction[9]. Elastic emission results from no energy transfer, in which the 

reflected photon has the same wavelength and energy as the incident 

photon (Raleigh scattering). Inelastic emission involves energy transfer by 

inelastic scattering (Stokes and anti-Stokes) and fluorescence, in which 

the reflected photon has a different wavelength and energy from the 

incident photon. 

Noninvasive in vivo Raman spectroscopy of human tissues 

 
There is substantial evidence to link fluorescence with blood 

volume. Previous studies have shown that fluorescence fluctuates in 

coordination with cold-induced vasodilation, indicating an associated with 

blood volume[12]. Results of additional experiments on fluorescence 

changes and blood movement involving mechanical and thermal tissue 

modulation strongly imply the same conclusion[13]. Hemoglobin, the major 

oxygen-binding protein in blood, has been found be highly fluorescent in 

the NIR, and has also been proven to be a major component of blood 
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fluorescence[14]. For these reasons, the integration of overall fluorescence 

over time is used to monitor blood volume (BV). Through similar 

experiments, it has been found that elastic (Raleigh) scattering is strongly 

related to the volume fraction of red blood cells (RBCs). Likewise, the 

integration of the Raleigh line is used to monitor RBC volume; however, it 

has been observed that the elastic emission decreases as the RBC 

concentration increases, due to the dominant scattering coefficient in the 

tissues of the RBCs[15]. 

 
 

Figure 2: Intensity vs. frequency of a 20 ms CCD frame of a LighTouch® 
device using 830 nm excitation at 200 mW. Regions used to quantify 

inelastic scattering (500 cm-1 – 1750 cm-1) and elastic scattering (-30 cm-1 
– 10 cm-1) are shown. 

 
Displayed in Figure 2 is a typical emission spectrum of the volar 

side of a fingertip containing Raleigh, Raman, and fluorescence emission 
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during a 20 ms frame obtained using a LighTouch® device. The Raleigh 

line accounts for the elastic scattering that extends to above 50,000 

counts. The sharp, variable Raman features due to inelastic scattering 

span the entire region of interest of the spectrum, and three particularly 

prevalent signals, the amide I, CH2 deformation, and amide III, are visible 

at ≈ 1660 cm-1, ≈ 1450 cm-1, and ≈ 1270 cm-1, respectively. Fluorescence 

is marked by the large broadband feature extending from ≈ 500 cm-1 -1750 

cm-1. 

Fluorescence can be integrated and plotted as a function of time, 

the region of which is marked in Figure 2. Blood volume for a particular 

frame is calculated as the integration of the fluorescence band, which can 

be plotted as a single point on a BV vs. time curve. For a 200-second 

experiment, 10,000 such frames were recorded, yielding a graph such as 

that displayed in Figure 3. This curve represents tissue modulation used to 

obtain a spectrum of blood to determinate glucose concentration. During a 

mechanical tissue modulation event, there is an “unpressed” phase and a 

“pressed” phase. When tissue becomes pressed from a previously 

unpressed state, an external force presses against the dorsal side of the 

finger, modulating the skin of the volar side and forcing some interstitial 

fluids (i.e. blood) out of the region while static tissue and some fluids 

remain. If the difference between the spectra of the pressed and 

unpressed states is due to an efflux of blood as a result of applied 

pressure, the pressed phase can be subtracted from the unpressed phase 



11 
 

to yield a spectrum of blood (excluding static tissues). It is by this 

technique that blood glucose concentration is commonly determined[5]. 

 

 
 

Figure 3: Typical BV vs. time curve of an experiment employing tissue 
modulation. The inset displays the same data between frames 2000-2200 
to 9000-9200, from which pulses can be identified. A slight distortion due 
perhaps to movement of finger or additional pressure upon the aperture 
resulting in increased blood flow is noted at approximately 4200 cm-1. 

 
It is evident from Figure 3 that over time, excluding the transition 

between unpressed and pressed states, there is a significant decay 

through frame 4000 to approximately frame 8000, where it appears to 

level off. This decline has been evident in nearly every experiment that 

has taken place at LighTouch®. There is a significant change in 

fluorescence which is suspected to not be accompanied by a proportional 

change in blood volume. This regularly occurring phenomenon has 

recently been the target of inquiry, and the experimentation to identify the 
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cause of this decay is the purpose of the current study. 

Problem of photobleaching 

 
While it is certain that fluorescence is associated with blood 

volume, the relative contribution of blood to overall fluorescence is still yet 

to be determined. In fact, it is believed that most of the total fluorescence 

derives from substances other than blood, which are present in the 

surrounding static tissues. In order to see how one might approach this 

question quantitatively, we note that in these types of experiments, light 

penetrates the finger hundreds of microns below the surface of the skin, 

and engages in interactions within a defined volume of tissue. Of this 

defined volume of the volar side of a fingertip prior to systole, 97% is 

composed of static tissue, and 3% is composed of blood residing in blood 

vessels such as capillaries. It has also been reported that within these 

vessels, the hematocrit (the volume fraction of blood occupied by red 

blood cells) is approximately 0.10, so in the resting state, 2.7% of the total 

volume is composed of plasma, while 0.3% is composed of red blood 

cells. Therefore, given that each component has a different fluorescence 

per unit volume, the contribution of each component to the total 

fluorescence can be described by the following equation, where a, b, and 

c are the fluorescence per unit volume coefficients of static tissue, plasma, 

and red blood cells, respectively: 

0.97(a) + 0.27(b) + 0.03(c) = Total Fluorescence = BV(diastole). 
 

 During a pulse, there is an influx of blood in the blood vessels, and, 
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assuming there are no voids, this additional blood volume displaces the 

same amount of static tissue volume from the irradiated region. Also, 

assuming that the hematocrit remains constant, the peak of systole, during 

which blood volume is doubled and the static tissue volume decreased by 

the same amount, can be described by the following equation: 

0.94(a) + 0.54(b) + 0.06(c) = Total Fluorescence = BV(systole). 
 
While the precise amount of increase in blood volume during a pulse is 

uncertain, this situation, with its assumptions, provides a useful model to 

account for the contribution of the different components to the observed 

fluorescence over time. Since we routinely collect 103–104 BV vs. time 

measurements and an equal number of RBC vs. time measurements, we 

have a large, overdetermined system of two equations, two unknowns, 

which can be used to obtain relative tissue volume fractions in the NIR-

probed volume. The model indicates that when the volume fraction of one 

component increases, that of at least one other must decrease, because 

the sum of all volume fractions must equal unity, so long as there are no 

voids. 

However, one of the most important assumptions about blood 

volume and fluorescence is challenged by the phenomenon of 

photobleaching. If it is assumed that the fluorescence per unit volume for 

each component remains constant, then changes in fluorescence can be 

only caused by the movement of these components, namely blood. The 

fact that during experiments there is regularly a decay of 15-20% in 
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fluorescence can be explained only by one of two possibilities. If the 

assumption is true, the decline in fluorescence results from a substantial 

efflux of fluorescent material out of the irradiated zone. Studies of 

hydrostatic blood movement due to gravity decreases make such blood 

movement seem unlikely[20]. The more plausible explanation is that there 

is a chemical change in one of the components, most likely in the static 

tissue, where certain substances are transformed into less fluorescent 

products (i.e. they are photobleached). Therefore, the phenomenon of 

photobleaching poses a significant obstacle to accurately determining 

blood glucose concentration. Further understanding of the substances that 

undergo this process and the products that are formed is essential to 

improving upon in vivo noninvasive analysis by Raman spectroscopy[4]. 

Pentosidine 

 
High levels of pentosidine in diabetics can be explained by the fact 

that pentoses can be formed from hexoses by means of a series of 

metabolic reactions known as the pentose phosphate pathway (also called 

the hexose monophosphate shunt). Glucose-6-phosphate undergoes a 

dehydrogenation step to form a lactone, followed by hydrolysis, and then 

oxidative decarboxylation to form ribulose-5-phosphate, while two 

equivalents of NADP+ are reduced to NADPH and carbon dioxide 

released to drive the reaction forward. Ribulose-5-phosphate and other 

pentose phosphates such as ribose-5-phosphate and xylulose-5-

phosphate can be interconverted by action of isomerase and epimerase 
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enzymes[16].  

It is this pentose pool, of which its biological intention is to 

synthesize macromolecules that incorporate pentoses such as RNA and 

DNA or to continue through the non-oxidative stage of pentose phosphate 

pathway to form glycolytic intermediates, which provides the basis for the 

formation of the highly fluorescent pentosidine[16]. Formed by Maillard 

chemistry, pentosidine is used to indicate the relative presence of 

advanced glycation end products (AGEs) which can result from oxidative 

stress and, notably, hyperglycemia by means of the described pentose 

phosphate pathway[17]. If an individual has a high level of glucose leading 

to high levels of pentose and therefore pentosidine, it can be suggested 

that this mechanism explains why the tissue of diabetics seems to 

fluoresce much more than those who have not experienced regular long-

term hyperglycemia. Due to the fact that its potential as a photobleachable 

material was only realized after these experiments were performed, the 

study of pentosidine is not included in this text. However, the investigation 

as to the chemistry underlying the photobleaching of pentosidine is 

currently taking place. 

In vivo investigation 

Experimental 

In vivo Raman instrument 

 
While a complete description of the instrument known as a 

LighTouch® device, used for in vivo experiments, is beyond the scope of 
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this thesis, a diagram of the system utilizing Raman spectroscopy to 

obtain information from human tissue, such as blood glucose 

concentration and hematocrit, is displayed in Figure 4. A CW external 

cavity diode laser is used to produce a 45 mW excitation of 805 nm, 

though other lasers can be substituted to perform experiments using 785 

nm or 830 nm light. The light passes through a Semrock clean-up filter 

and then through a focusing lens, so that the light focuses precisely at the 

aperture, at which a fingertip is placed[4]. The 2 mm aperture is in a spring 

steel plate providing the surface against which an individual presses his 

finger. The laser spot at the finger is approximately 100 x 230 µm, and is 

elliptical in shape. The angle of incidence of the light to the finger is about 

53°. The emission is collimated as it passes through a pair of lenses to 

reorient the light parallel and through a “Razor Edge” filter to reduce the 

signal due to Raleigh scattering, and is then refocused onto a 60 fiber x 

100µm bundle of fused silica fibers[14]. The fibers introduce a line image to 

the Process Instruments f/2.1 spectrograph that is detected by a Critical 

Link CCD camera, cooled to -80 °C. Not shown are two electronic shutters 

between the clean-up filter and the coupling lens that allow for pulse 

sequences of the laser to the fingertip. The entire optical apparatus is 

enclosed within a black casing to prevent outside light from entering the 

system[4]. 
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Figure 4: Schematic diagram of in vivo LighTouch® device optical layout. 
 
A variety of “human error” can influence the data. Pushing one’s 

finger against the aperture can cause the tissue to excessively extrude 

through the hole, an effect called “doming”, changing the path length of the 

laser through the tissue, which alters the scattering processes necessary 

for an accurate measurement. Moving one’s finger during the 

measurement process can change the types and amounts of tissues 

interacting with the light and producing emission. In order to establish a 

protocol that can be replicated by non-experts to reliably reproduce data 

and minimize errors, a force measurement and placement system has 

been added to the apparatus containing the aperture to control pressure 

and position[18].  

The position detector-pressure monitor (PDPM) involves a series of 

small gold-plated dots built into a circuit board, above, below, and to the 

left and right of the hole. The resistance is lower when tissue is in contact 
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with the gold dot than when there is no contact. If a finger is or is not in 

contact with a gold dot, the appropriate electronic signal is transmitted by 

the circuit board to the computer. Therefore, position and contact area can 

be monitored at all times prior to and during the experiment. A force 

transducer, coupled with a lever system, is used to detect the force 

applied by one’s fingertip at the aperture. Force and pressure can, 

therefore, also be monitored throughout the experiment. These features 

are coordinated with a graphical user interface (GUI) which allows 

individuals to easily center their finger on the aperture and to recognize if 

they are pushing too hard against the aperture[18]. 

An automated force actuator is used to achieve tissue modulation. 

This servo-driven device applies a uniform pressure by applying force 

according to the contact area detected by the PDPM. This pressure 

causes skin and underlying tissues to extrude through the aperture, and 

also causes some movement of fluids, such as blood, out of the irradiated 

area[18]. The pressure can be adjusted by the experimenter, and to collect 

data using tissue modulation involving a “pressed” state and an 

“unpressed” state, an experiment is set up such that, during the first half, a 

relatively low pressure is applied, and is then raised during the second 

half. Pulse modulation is another technique used to obtain a spectrum of 

blood that does not utilize differences in pressure[19]. For the purposes of 

studying fluorescence and the photobleaching of static tissues, neither 

technique was applied. However, the force actuator was necessary to 
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maintain consistency in all experiments. 

For a typical experiment, the test subjects were asked to insert their 

right-hand middle finger into the apparatus and, using the GUI as a guide 

displaying the gold dots on the circuit board, center it over the aperture. 

During the set-up phase, the test subjects press gently on the aperture 

and are given time to ensure both that the finger is properly placed and 

that they are comfortable enough to remain in position for the duration of 

the experiment. The subjects are asked to remain passive while the 

actuator is brought in contact with the dorsal side of the finger and brings 

the finger to ≈ 15 g/cm2 pressure against the aperture. Once the collection 

is started, the actuator increases the pressure to, for example, ≈ 60 g/cm2, 

and the shutters open to allow exposure of the finger to the laser. The 

pressure is held constant for each experiment and is designed to be 

approximately halfway between diastole and systole. This device can do 

this with much greater accuracy and measure than the human hand[18]. 

In vivo experiment protocol 

 
Two major experiments were performed to establish the contribution 

of blood and static tissue to the commonly observed decay in 

fluorescence. The first was aimed at determining the effect of inducing 

hydrostatic relaxation. Hydrostatics is an integral part of understanding the 

circulatory system and is complicated by a number of factors. Hydrostatic 

pressure is the force exerted by a fluid as a result of gravity, and it has 

been found that the hydrostatic pressure in blood can be affected by body 
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position as well as muscle contraction. The process of performing 

exercises involving these factors to achieve a state of equilibrium is known 

as hydrostatic relaxation[20]. For each of three different trials, data were 

collected following a protocol associated with the LighTouch® device, and 

the integrals of the elastic emission and the inelastic emission were 

recorded over time. Since RBC volume is associated with elastic 

emission, and blood volume with fluorescence, the integrals of the EE and 

IE of frames recorded by the CCD as a function of time are used to 

monitor RBCs and BV, respectively.  

Each test subject was first asked to equilibrate the blood in his or 

her hand (flexion of muscles as well as stretching and overall body 

movement) and then insert a middle finger into the apparatus for set up, 

while a pressure of ≈ 15 g/cm2 was applied. The pressure was increased 

to ≈ 60 g/cm2, and a 100 second measurement (A) was then recorded with 

laser exposure. Immediately after, the finger was left motionless while the 

pressure was reduced to ≈ 15 g/cm2 for about 10 seconds. The pressure 

was again raised to ≈ 60 g/cm2 and another 100-second measurement (B) 

was recorded without cessation of laser exposure. Upon completion, each 

subject was asked to re-equilibrate his or her arm and hand and the finger 

was inserted at a slightly different position. The pressure was applied and 

then raised while the finger was left motionless, as if for the previous 

measurement, except that no laser exposure occurred during this period. 

Then, as in B, the finger was set up with the appropriate pressure 
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changes, laser exposure was resumed, and another 100-second 

measurement (C) was recorded. 

The second experiment focused on the effect of the laser on 

fluorescence recovery. First, the fingertip was set up in registration with 

the aperture, and the pressure was brought to ≈ 60 g/cm2 with the laser 

blocked, marking t=0 s. At t=2 seconds the laser was unblocked, exposing 

the finger. The measurement was allowed to continue, and at t=27 s, the 

laser was once again blocked for 8 seconds, until t=35 s, to allow over a 

dozen cardiac pulses to displace the previously exposed blood with 

unexposed blood in the irradiated volume. At this point, the laser was 

again unblocked, and the experiment was allowed to proceed until t= 41 s, 

when again the laser was blocked and remained so until the end of the 50-

second period. The BV vs. time plot from the collected CCD frames was 

then analyzed. 

Results 

 
 Figure 5 shows the RBC vs. time and BV vs. time plots acquired 

from the hydrostatic relaxation experiment. The BV curve of A exhibits the 

decay in fluorescence, with a sharp drop off in the first 3 seconds, a 

continuing steep decline through 20 seconds, and a steady decline until 

t=80 seconds, when it appears to have leveled off at just about 80,000 

integrated counts. The BV curve for B, a result of the trial about 10 

seconds after A to allow fresh blood to circulate into the region, does not 

undergo the decline that is evident for A; there is a steep drop off in the 
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first 2 seconds, but the fluorescence appears to be stable between 

76,000-78,000 counts throughout the duration of the measurement. It is 

noted that the fluorescence recorded throughout B is approximately the 

same as that which was observed at the end of A, when it seemed to 

stabilize after undergoing the decay. Also, the RBC curves representing 

the integrated elastic emission for A and B appear nearly identical and 

remain stable throughout the course of each measurement. The BV data 

of measurement C following hydrostatic relaxation reveals a pattern similar 

to that observed for A.  

 
Figure 5: BV vs. time and RBC vs. time curves of the hydrostatic 

relaxation experiment. Condition A) initial 100 s with exposure and 
hydrostatic relaxation; condition B) second 100 s with exposure and 

hydrostatic relaxation after remaining motionless 10 s after A; condition C) 
100 s with exposure remaining motionless following 100 s with hydrostatic 

relaxation, but not exposure. 
 

Fluorescence decayed in a homologous fashion and then seemed to 
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reach a stable level at t=80 s. It was observed, however, that overall 

fluorescence and decay in trial C was greater than in A, and that the RBC 

count was lower than in trials A and B. It was shown that the changes in 

fluorescence were not a result of blood movement. 

The results of the experiment focusing on the effect of the laser on 

fluorescence recovery are displayed in Figure 6. The integrated 

fluorescence BV curve shown represents data obtained using the typical 

isobaric experimental procedure, and the only variable modified at 

different points in the experiment was whether or not the laser was 

blocked, allowing or preventing exposure. It is obvious that, because the 

experiment began with the laser blocked, fluorescence was at zero until it 

spikes at t=2 s, when the laser was unblocked. From this point until t=27 s, 

the fluorescence decays in the manner that has been previously 

described. There is a sharp decrease in the first 7 s of exposure, and then 

the decay becomes slightly more moderate from t=10 s to t=20 s, at which 

point it appears to level off until t=27 s. Note that the apparent 

fluorescence never falls completely to zero because of the dark current 

detected by the CCD camera, regardless of whether or not the laser is 

blocked. 
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Figure 6: Integrated fluorescence BV vs. time curve from the study to 

observe fluorescence recovery. Laser exposure of finger was allowed by 
unblocking the laser from t=2 s to t=27 s and from t=35 s to t=41 s. The 

fluorescence decayed 33.7% over the course of the experiment. 
 

At this point, when the laser was blocked, the fluorescence dropped 

to its minimum and remained so until the laser was unblocked at t=35 s, 

permitting exposure to the finger. At this time, the fluorescence recovered 

to a point nearly identical to that immediately before t=27 s when the laser 

was turned off; no significant increase was observed. The fluorescence 

then decayed in a rather slow fashion until t=41 s, when the laser was 

again blocked until the end of the 50 s period. Because the initial 

fluorescence at t=2 s is roughly 47,500 counts and the fluorescence 

seems to equilibrate at around 31,500 counts, the overall decay in 

fluorescence is 33.7% of the original value. 
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In vitro investigation 

Experimental 

In vitro Raman instrument 

 
The device used to collect Raman spectra of samples in vitro 

(schematic shown in Figure 7) employs a gallium arsenide external cavity 

diode laser to produce an excitation of 785 nm at 450 mV. The laser 

primarily produces a wavelength of 785 nm, but because the Raman 

signal is so weak, a filter is used to ensure that no additional light even 

near 785 nm reaches the detector[4]. The light then passes through a lens 

used to narrow the diameter of the laser spot to 200 µm, and is reflected 

by a mirror angled at 45º to normal. After passing through a small hole in 

the mirror, the light reaches the sample at normal incidence. Solid and 

liquid samples can both be accommodated using the apparatus. Solid 

samples such as powders were placed in wells within the plate, which 

were then placed under the laser, whereas liquid samples were placed in 

a 2 mL glass cuvette, which was then positioned under the laser by use of 

a customized holder. Occasionally, small bubbles arose to the top of the 

cuvette, and in this event, the cuvette was tapped to let the bubbles 

escape, to ensure that the spectrum was not affected. 
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Figure 7: Schematic diagram of in vitro Raman spectroscopy device 
optical layout. 

 
Any light from scattering or fluorescence emitted upward is 

reflected by a mirror facing downward in the direction of the spectrograph. 

A focusing lens is used to reorient the direction of the broad emission, 

such that the light beams parallel. The light then passes through a notch 

filter, which blocks the higher energy component of the signal including the 

Raleigh line, so that it does not affect the Raman features[4]. A refocusing 

lens then narrows the broad parallel signal into a small spot, so it can pass 

through a small slit to reach the Kaiser f/1.4 Holospec spectrograph. The 

spectrograph disperses the light to the Roper Scientific/PAR CCD camera, 

where it is quantified and converted into a data form that is sent to a 

computer for processing[21]. The CCD camera is cooled using liquid 

nitrogen to maintain a temperature of -196 ºC to improve the signal-to-

noise ratio. 

WinSpec32 is the software used to operate the Raman device, set 

up experiments, and visualize the raw spectra that are produced. Various 
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aspects of each experiment can be controlled, including the number of 

spectra collected, the number of exposures, and the length of exposure. 

Typically, longer experiments yield a higher signal-to-noise ratio[18]. While 

generally it would be ideal to perform long experiments on all samples, 

because some substances have been observed to photobleach and 

recover, in many experiments several successive spectra, each obtained 

over a short period of time, were collected. The changes in fluorescence 

between short intervals can be observed over a long period of time as a 

result of exposure, rather than collecting one spectrum providing 

information regarding the length of time as a whole, revealing nothing 

about incremental changes. Further data analysis was performing using 

the software OriginPro 8. 

In vitro experiment protocol 

 
Experiments were performed to ascertain the spectroscopic 

properties of L-glutathione, uric acid, β-carotene (the precursor to vitamin 

A), cholecalciferol (a form of vitamin D), L-ascorbic acid (vitamin C), and ±-

α-tocopherol (a form of vitamin E). To understand the contribution of these 

substances to the emission from human tissue resulting from NIR 

exposure, these experiments were designed to simulate physiological 

conditions by studying the Raman and fluorescence features of these 

compounds at different concentrations, relative to their respective normal 

concentrations in blood, interstitial fluid, or skin. 

Different concentrations of each sample were made by creating a 
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stock solution, either saturated or of a high enough concentration that the 

solution itself could be accurately made, followed by a series of dilutions. It 

was important to obtain spectra at different concentrations, because not 

only is it essential to determine whether or not a sample fluoresces, but 

also, if a particular substance does fluoresce, to establish a means to 

quantify its contribution to the overall fluorescence. Moreover, many other 

variables (such as turbidity) must be taken into account, which are best 

identified by obtaining spectra of compounds at different concentrations. 

The cuvette in which the solutions are held also fluoresces, and there are 

often losses of emission due to self-absorption, as well as scattering, 

which can lead to ambiguous spectroscopic observations. 

While an attempt was made to include data on all compounds at 

their physiological concentration, it was believed that some concentrations 

were too low to be detected by the CCD, so greater concentrations were 

used. At each concentration for each compound, ten-minute experiments 

to produce a single spectrum were performed. From the spectra, the 

features of different substances were compared, along with differences 

due to concentration of a single compound. The concentrations of the 

antioxidants and vitamins used are displayed in Table 1. 
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Table 1: Experimental concentrations and physiological concentrations (in 
blood, interstitial fluid, or skin) of antioxidants studied.  

Name Solvent 
Physiological 

Concentration[2

2] 

Experimental 
Concentrations (mM) 

L-Ascorbic Acid Deionized 
water 

50-60 µM 187.5, 7.5, 0.3, 0.06 

Reduced 
Glutathione 

Deionized 
water 

≈1.09 mM 81.25, 3.25, 0.65 

Uric Acid Deionized 
water* 

234-456 µM Saturated, 0.8, 0.4 

Cholecalciferol Cyclohexane 40-80 nM 6.25, 0.25, 1.0×10-2, 
4×10-4, 8×10-5 

β-carotene Cyclohexane 1.23-1.75 µM 3.13, 1.56, 0.78, 0.13 
±-α-tocopherol Cyclohexane ≈24 µM 1.25, 0.16, 0.05 
Due to solubility difficulties encountered, only a close approximation of the 
concentrations of β-carotene solutions were made. A saturated solution of 

uric acid of unknown concentration was analyzed. *Uric acid was 
dissolved in NaOH in deionized water solution at pH≈ 8. 

 
Solubility was a recurring obstacle throughout these experiments. 

Vitamins are generally divided into two categories: water-soluble and fat-

soluble. Therefore, as expected, only two substances analyzed (ascorbic 

acid and reduced glutathione) were soluble in deionized water at room 

temperature. The organic solvent cyclohexane (ACS spectrophotometric 

grade, ≥99%, Sigma-Aldrich) was chosen for the experiments for the fat-

soluble vitamins. While ±-α-tocopherol and cholecalciferol did successfully 

dissolve in cyclohexane, β-carotene and uric acid presented solubility 

issues. Therefore, saturated solutions of these compounds were prepared 

(β-carotene in cyclohexane and uric acid in NaOH in water solution pH≈8), 

of which the concentrations could only be estimated, as some solid 

particles were still visible. A saturated solution of β-carotene was decanted 

from the insoluble particles, and dilutions were then subsequently 
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performed. For uric acid, a saturated solution was first prepared in addition 

to 0.8 mM and 0.4 mM solutions. 

Similar experiments were performed with the pigment melanin, 

which presented an even more complex solubility dilemma. Melanin is 

reported to be slightly soluble in water, but this varies due to its complex 

structure[4]. Therefore, various dissolution and filtration steps were taken. 

Synthesized eumelanin, a dark brown powder (Sigma-Aldrich), was added 

to water to form a very dark, opaque, grey-brown solution, with solid 

particles resting at the bottom of the beaker; these were broken into 

smaller particles using a glass rod. Using a 100 nm Whatman syringe-

filter, the solution was filtered to yield a clear solution. However, after this 

mixture was allowed to rest in the refrigerator for four months, a great deal 

of what appeared to be solid insoluble melanin had settled to the bottom of 

the beaker, while a clear yellow solution remained as the supernatant. This 

supernatant was extracted from the insoluble particles. When this solution 

was filtered, some of the color was lost, but the solution retained its yellow 

tint. It was believed that, over time, some of the melanin had broken down 

into smaller, soluble units that would not present any loss of signal due to 

elastic scattering, i.e. turbidity (the cloudiness caused by large insoluble 

particles). This final melanin solution, labeled the “stock” solution, was 

then diluted to various concentrations (10%, 20%, 50%, 60%, and 80% of 

stock solution) and each solution was then analyzed. Because of the initial 

filtration of melanin, neither the molar concentration nor the concentration 
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by mass could be estimated. For each concentration sample, thirty-minute 

measurements were performed to obtain Raman spectra. 

By studying the spectra of various substances in vitro, several key 

determinants of interest were measured. Whether or not a substance 

fluoresces as a result of NIR excitation was identified by a spectrally broad 

emission apparent on its spectrum. Should the species not fluoresce, it is 

important to note that, while they may have distinctive Raman features, 

these substances likely do not contribute to fluorescence and 

photobleaching in human fingertips. Based on the fluorescence results, 

melanin was the only substance which was studied in terms of the 

dependence of fluorescence on concentration, as well as on the 

processes of photobleaching and recovery. 

The dependence of fluorescence on the concentration of melanin 

was determined by plotting the integral of the fluorescence as a function of 

concentration. This can be useful for quantifying the contribution of a 

particular substance to the total fluorescence in vivo. The integrated 

fluorescence of the four different concentrations of melanin was plotted 

The next goal was to determine whether or not melanin 

photobleached, and if it did, to gain an idea of the kinetics of the process. 

If a substance photobleaches, the total fluorescence of the sample 

decreases over time as a result of prolonged laser exposure. Using the 

filtered saturated solution of melanin, over the course of an hour, thirty 

two-minute spectra were collected. The integral of the fluorescence of 
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each measurement was then included as a single point on an integrated 

fluorescence vs. time plot, and any decay in fluorescence was apparent.  

Finally, once melanin was found to fluoresce and photobleach, the 

next task was to find if the substance recovers its fluorescent properties 

following photobleaching. This was ascertained by first performing an 

experiment identical to the one previously described above to monitor the 

photobleaching of a substance over a period of time. Then, while leaving 

the sample in place and keeping the room lights off, the laser was blocked, 

and the sample was left in the dark for varying amounts of time, two hours 

or twelve hours. The experiment of collecting thirty two-minute spectra 

over short intervals was then repeated. By comparing the two 

experiments, it was apparent if the substance had recovered after it had 

been photobleached, and by how much after a given length of time. 

It is important to note that any solvent, including water and 

cyclohexane, can produce emission[10]. The spectra of pure cyclohexane 

and deionized water are displayed in Figure 8. While water has a fairly 

weak emission (allowing Raman spectroscopy to be ideal for in vivo 

studies) the signal for cyclohexane is quite strong, the baseline being over 

double the overall signal of water, with several strong features, due to C–C 

and C–H vibrational modes[9]. There is also signal that is detected by the 

camera even there is no laser excitation, known as dark current, which 

affects the spectra in a similar way, though dark current was not 

subtracted from the spectra in Figure 8. Water, cyclohexane, and the 
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cuvette all have not been observed to photobleach. 

200 400 600 800 1000 1200 1400 1600 1800

0.0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

P
h

o
to

n
 C

o
u

n
ts

Raman shift (cm-1)

 Water

 Cyclohexane

 
Figure 8: Emission spectra of pure cyclohexane and deionized water. 

 
Due to the fact that each of the species of interest are present in 

relatively low concentrations, the emission due to water can cause the 

data to be misleading, since prominent features can be the result of the 

solvent instead of the solutes, which can also mask their key features. For 

this reason, when possible, the raw data are paired with those from which 

the corresponding solvent spectrum has been subtracted, a technique 

called “baseline subtraction”, so that signal due to the solute can be 

isolated and characterized. However, when a clean subtraction was not 

possible (commonly encountered with cyclohexane as the solvent) only 

the raw data are shown. 
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Results 

 

Antioxidants 

 
 The emission spectra of L-ascorbic acid depicted in Figure 9 show 

a pattern that was often observed during these experiments. From the raw 

spectrum, it appears that each emission follows the general trend set by 

the background combined emission of the cuvette and water solvent, 

involving a greater signal sloping downwards from 300 to 1000 cm-1, with 

broad gentle peaks at 430, 605, 790 and 1640 cm-1. However, it is clear, 

most evidently from the baseline subtracted spectra, that L-ascorbic acid 

produces emission in addition to that of water. The L-ascorbic acid 

spectrum at a concentration of 187.50 mM displays many sharp vibrational 

modes of the molecule, but no fluorescence. However, if the concentration 

is decreased by a factor of 25 or more, most of these features all but 

disappear. While they do all produce a steady emission that is greater 

than water, it appears that solutions of the three lower concentrations do 

not exhibit strong Raman features. Given that overall emission from the 

data increases in the order, by sample, of 0.06 mM, 7.50 mM, and 0.03 

mM, it is believed that L-ascorbic acid does not produce significant signal 

at such low concentrations, and any differences in the spectra could be a 

result of differences in the placement of the cuvette. It is concluded that, at 

its physiological concentration, L-ascorbic acid is not a significant 

contributor to the fluorescence of human tissue. 
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Figure 9: Subtracted (top) and raw non-subtracted (bottom) spectra of L-
ascorbic acid at varying concentrations from 300-1800 cm-1. It is noted 

that while the spectra at the highest concentration exhibit many noticeable 
vibrational features, at concentrations of 7.50 mM and less, most are 

hardly distinguishable. 
 
 It has been previously documented that β-carotene has a strong 

resonance Raman spectrum, and is also known to be highly absorptive in 

the visible spectrum, hence its function as a pigment[23]. However, it 

appears, from these experiments performed, that β-carotene does not 

fluoresce as a result of NIR excitation. The spectra displayed in Figure 10 

reveal that β-carotene produces very strong Raman emission centered at 

1010, 1155, and 1520 cm-1, smaller peaks at 950 and 1180 cm-1, and 

weak emission underlying from 800 to 1620 cm-1. As shown in Appendix A, 

the integral of the peak centered at 1520 cm-1 was plotted as a function of 
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concentration, and it was found that there does appear to be a linear 

dependence (slope = 1.234×108, R2 = 0.935, and standard error = 

1.853×107). This pattern holds true for the additional Raman signals. While 

it is shown that the Raman emission of the substance increases linearly 

with concentration, it is apparent that β-carotene does not fluoresce as a 

result of NIR excitation, and therefore must also not be a contributor to 

human tissue fluorescence. 
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Figure 10: Subtracted (top) and raw non-subtracted (bottom) spectra of β-
carotene in cyclohexane at varying concentrations. The peak at 1040 cm-1 

extends to nearly 1×108 counts, while the peak at 800 cm-1 extends to 
nearly 1.6×108 counts. 

 
 The remaining spectra of antioxidants are included in the 

appendices. Reduced glutathione (spectra shown in Appendix B) follows a 
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trend similar to that of L-ascorbic acid, but to a lesser extent. Most of the 

Raman emission from the glutathione solutions follows the water baseline, 

but it is apparent that there is additional emission due to the solute. There 

appears to be no fluorescence emission. At the highest concentration 

(81.25 mM), there is a steady Raman emission throughout the 300-1500 

cm-1 range, with several peaks. The spectra of the two lowest 

concentration solutions show very little difference both from water and 

from each other. However, it can be noted on the subtracted spectrum of 

the 3.25 mM solution that there are some peaks (500, 610, 800, 1040, and 

1430 cm-1) corresponding to those on the spectrum of the 81.25 mM 

solution; these have been significantly broadened as a result of the low 

concentration. As expected, it appears that the signal increases as the 

glutathione concentration increases, but the signal is so weak at 

physiological concentration that it is nearly impossible to distinguish it from 

water. Glutathione, despite being at the highest physiological 

concentration of all the antioxidants studied, is also not a likely contributor 

to tissue fluorescence. 

 Uric acid produces only minimal emission in addition to the 

background signal and does not seem to fluoresce, but the spectra 

produced (displayed in Appendix C) present a somewhat interesting 

pattern. The overall signal appears to decrease rather than increase as 

the concentration of uric acid increases. This phenomenon indicates that 

there must have been a signal loss whose effect strengthened as the 
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concentration of uric acid particles increased. While loss of signal is often 

a result of absorption, it appears that this scattering loss may have been 

caused by the turbidity of the solution.  

Turbidity involves the suspension of undissolved particles, and 

because uric acid is relatively insoluble in water, which was somewhat 

resolved by increasing the pH of the solution, it is possible that the uric 

acid solid did not fully dissolve. These relatively large particles scatter light 

more effectively than the small dissolved particles, and resulting in a 

decrease in emitted light. Because there were likely more of these large 

particles at the higher concentrations, because the solution was not 

filtered, it is believed that the increased turbidity at high concentrations 

reduced the signal. Different placements of the cuvette may have also 

affected the spectra of uric acid at low concentrations. Nonetheless, the 

signal at physiological concentration is so weak that it is not likely that uric 

acid contributes to NIR tissue fluorescence. 

 Just as for uric acid, it was observed from the spectra of ±-α-

tocopherol (a viscous yellow oil), which is displayed in Appendix D, that 

the overall signal increased as the concentration decreased. While it is 

possible that turbidity and a loss by scattering could have affected the 

signal, this is believed to be unlikely, because ±-α-tocopherol did not seem 

to present any solubility difficulties. The trend may have been the result of 

a loss by absorption; or, because the difference appears to be so minute, 

a difference in the placement of the cuvette, which also fluoresces 
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significantly, could have affected the spectra. There appears to be very 

little Raman signal beyond the cyclohexane emission, and there is no 

apparent fluorescence. 

 The spectra of cholecalciferol, displayed in Appendix E, reveal 

Raman emission characteristic of the molecule. While the signals of the 

four lowest concentrations appear to overlap, the spectrum of the highest 

concentration (6.250 mM) of cholecalciferol solution throughout the region 

of interest shows a constant 1×105 counts higher than the others. This is 

possibly due to a difference in the position of the cuvette. Independent of 

this, there do appear to be regions in which cholecalciferol produced 

Raman emission, such as near 333 and 1100 cm-1, but most notably at 

1650 cm-1. Cholecalciferol clearly possesses vibrational modes that 

produce Raman emission, but, once again, no fluorescence is apparent. 

Melanin 

 
 Melanin was found to be the first of the selected samples to exert 

significant fluorescence as a result of NIR excitation. The spectra of 

melanin at various concentrations relative to the stock solution are 

depicted in Figure 11. From the raw data, it can be seen that each melanin 

sample follows the general trend and shape of the signal produced by 

water, much as was observed for the other water-soluble antioxidants. 

However, unlike the water soluble antioxidants, there is significant signal 

in addition to that of water, which is most apparent in the baseline 

subtracted spectra. Rather than displaying peaks of energies of limited 
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range, which is the case for emission by Raman scattering, this emission 

is across the entire 300-1900 cm-1 region of the spectrum. The strongest 

fluorescence emission is located in the middle of the region (600-1000  

cm-1) and slopes downward towards both higher and lower energies. This 

broad feature, consistently produced, can be a result only of melanin 

fluorescence. 
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Figure 11: Raw non-subtracted (top) and subtracted (bottom) spectra of 

melanin in deionized water at varying concentrations. Because significant 
mass did not dissolve, absolute concentrations could not be determined, 
and relative concentrations are instead shown. Strong fluorescence that 
increases with concentration is evident across nearly the entire region. 

 
 Not only is it evident from these spectra that melanin fluoresces, but 

also it is apparent that there is a direct relationship between the overall 

fluorescence and the concentration of melanin, with striking linearity. The 
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integral of the region across which the melanin fluoresces was set as a 

function of concentration, yielding the plot displayed in Figure 12. The 

linear regression (R2=0.998) serves as an effective model for the 

relationship between fluorescence and the concentration of melanin. 
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Figure 12: Integral of fluorescence as a function of relative concentration. 
Integration of melanin spectra was performed across the region 220-1928 

cm-1, the region displayed in Figure 11. Linear fit was applied, and 
statistics on fit are displayed. 

 
 Once it was identified that melanin does in fact fluoresce (the 

magnitude of which depends on its concentration in solution), the 

subsequent experiments assessing photobleaching and recovery were 

performed yielding the plot shown in Figure 13. From the fluorescence vs. 

time curve labeled “bleaching process,” it is clear that the fluorescence of 

melanin decreases over time. There was a sharp decrease in fluorescence 
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over the first ten minutes and then the slope evened out, as the 

fluorescence decayed at a relatively constant rate for the remainder of the 

experiment. The fact that the fluorescence decreased from 6.45×106 to 

4.7×106 integrated counts represents a 27.1% decrease in signal over 60 

minutes.  
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Figure 13: Graphs for integrated fluorescence as a function of time for two 
separate experiments: the first representing a typical experiment 

measuring changes in fluorescence over time (labeled bleaching process), 
and the second representing an identical experiment following a 2-hour 

delay, during which the sample was left motionless, in the dark, and 
unexposed to the laser. An experiment allowing 12-hour delay produced a 

similar result. 
 

Following the 2 hours allowing the melanin to recover its 

fluorescence, the fluorescence vs. time curve labeled “recovery process” 

in Figure 13 revealed that melanin might recover fluorescence to a very 
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small degree. It appears there might have been a slight recovery, as the 

fluorescence of the point at t=2 min was approximately 4.85×106 

integrated counts, an increase of 3.2% from the final value of 4.7×106 

integrated counts from the bleaching process curve. This short, sharp 

decrease in fluorescence was followed by a steady decay that continued 

for the duration of the experiment. Also, from this curve it is clear that 

using the laser excitation of 785 nm at 450 mW, a fresh melanin solution 

does not fully photobleach after 60 minutes, for there is an additional 

decrease of 13.9% in fluorescence from the original fluorescence of 

6.45×106 counts. With two hours of laser exposure, combined with no 

significant recovery during the 2 hour gap, it is possible that melanin may 

continue to decrease in fluorescence beyond this time span. 

Discussion 
 

All tissues in an organism are under oncotic pressure, a type of 

osmotic pressure that exists across physiological compartments as a 

result of electrostatic gradients, the pressure exerted within the circulatory 

system, and hydrostatic pressure as a result of gravity[20]. Given these 

conditions, this study sought to determine the timescale of possible fluid 

equilibration due to changing body posture, defined as hydrostatic 

relaxation, while in contact with the LighTouch® device. 

Using the red blood cell data plotted by an integration of the 

Raleigh line, it is clear that the volume fraction of RBCs remained 

relatively constant during each of the three trials. Also, it appears that the 
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RBC volume fraction was nearly identical for trials A and B, but was 

significantly higher for trial C. Given that the overall integrated 

fluorescence (BV) of C is higher than that of both A and B, this would 

corroborate with the notion that elastic emission decreases as RBC 

concentration increases. Therefore, it appears likely that there was more 

blood present in the irradiated volume for measurement C than for 

measurements A and B, which likely was a result of the hydrostatic 

relaxation exercises which were intended to re-equilibrate and redistribute 

fluids. 

According to Figure 5, while the volume fraction of RBCs remained 

were nearly the same and remained constant throughout A and B, the 

same blood did not remain in the irradiated area throughout the course of 

the two trials. Blood circulates, and oxygenated blood replaces 

deoxygenated blood to maintain the oxygen supply to all cells. Therefore, 

over the course of A and B, there was no net change in blood volume. 

Both the RBC and BV data show evidence of pulsing throughout each of 

trials A, B and C. It appears that, since B immediately succeeded A, any 

photobleaching of tissue occurred over the course of A, for any decrease 

in fluorescence during B was insignificant compared to the decay 

observed in A. 

This evidence is complemented by the results obtained from the BV 

data from the fluorescence recovery experiment, depicted in Figure 6. 

Once it became clear that the laser had an effect on the tissue within the 
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irradiated volume, this experiment was designed to probe how long and to 

what degree the tissue could recover its fluorescent properties after being 

exposed to NIR light for a period of time. It became evident that, because 

fresh blood had certainly been circulated through the irradiated volume, 

the chemical changes induced by the laser are not appreciably reversed 

when laser exposure is terminated over the period of time that blood is 

replenished. 

If blood were the species that was being photobleached, the 

photobleached blood would be replaced by fresh non-photobleached 

blood, and the overall fluorescence would have remained high over the 

course of any typical experiment, instead of exhibiting a continuous 

decrease. Given the time to fully ensure the blood had circulated for 

measurement B, the lack of significant recovery of fluorescence, after 

blocking the laser, supports the idea that a substance other than blood 

must photobleach. It is clear that the presence of the laser upon the 

exposed tissue is solely responsible for the photobleaching effect, and 

differences in hydrostatic pressure seem to have little impact. Since the 

decay is still quite evident even when fresh blood is always being 

circulated, it is apparent that the species responsible for the 

photobleaching effect is not contained within blood, but within the static 

tissues. 

From these experiments, it has been shown that a substantial 

fraction of the decay in fluorescence is not a result of blood movement, but 
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instead is the result of a change in the fluorescent properties of the static 

tissues. Fluorescence regularly decays from 15-20%, and even up to 33%, 

depending on the individual. This change in fluorescence, which is not a 

result of blood movement, severely challenges the accuracy of the 

noninvasive in vivo determination of blood glucose concentration, because 

the model for achieving this depends on the assumption that a change in 

fluorescence represents a change in blood volume. These data suggest 

that a “pre-bleaching” phase is advisable, in which time is allowed for the 

finger to be exposed to the laser so that any photobleaching of the static 

tissues may occur. This seems to be a relatively effective technique that 

has been experimentally shown to reduce the effect of photobleaching and 

to improve blood glucose measurements. These results also prompted the 

in vitro experiments to ascertain which substances in static tissue undergo 

a chemical change into products that are less fluorescent. 

While it was originally hypothesized that several of the most 

common antioxidants might fluoresce as a result of NIR excitation, it 

became clear that this is not the case. In summary, not one of the six 

antioxidants studied fluoresce as a result of near-infrared excitation. 

Antioxidants do possess loosely held electrons that are essential to their 

function to sequester reactive oxygen species[6], but it appears that an 

excitation by a photon in the NIR region does not provide enough energy 

to promote them to an excited quantum state such that the molecule could 

exhibit subsequent fluorescence. While it does seem that each of these 
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substances do undergo Raman scattering, producing emission 

characteristic of their structures, the emission of these compounds at their 

physiological concentrations both individually and collectively is far too 

weak to be responsible for the photobleaching that causes a decay of up 

to 33.7% of the original fluorescence signal. 

Since there is very little literature regarding Raman spectroscopy 

and these substances, these findings serve an important purpose. There 

are innumerable substances in blood and in static tissue, so it is extremely 

difficult to isolate those which contribute to the fluorescence observed from 

the tissue of the volar side of fingertips. As previously stated, it is vital to 

the use of Raman spectroscopy to determine blood glucose concentration 

that the assumption that fluorescence is associated with blood volume, 

and specifically that any changes in fluorescence are a result of 

movement of blood, remains true. Since the photobleaching of static 

tissue weakens the merit of this premise, it is clearly necessary to 

determine which substances do, in fact, contribute to the regular decay of 

at least 15-20% of the total fluorescence signal. It is also useful, however, 

to identify the substances that do not fluoresce nor photobleach. 

Narrowing down the list of potential candidates, and learning more about 

specific Raman characteristics of certain compounds, are important to the 

overall effort to recognize the contribution of substances to tissue 

fluorescence. 

 The in vitro studies of melanin reveal that it fluoresces as a result of 
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NIR excitation and does so linearly as a function of concentration. The fact 

that the fluorescence of melanin decreases as exposure is prolonged 

strongly suggests that it undergoes a laser-induced chemical change to a 

less fluorescent form. It has been observed that the oxidation state of 

melanin affects its UV-Vis emission[24]. While it is believed that these are 

the first reports of NIR-excited emission spectra of melanin, the oxidation 

state may also be a factor in its fluorescence as a result of NIR excitation. 

The relatively small recovery by melanin, which is similar to what is 

observed in vivo, means that melanin, as it exists in skin, could possibly 

contribute to the photobleaching of tissues and interfere with the ability to 

accurately determine blood glucose concentration. 

 It must be noted that the synthesized eumelanin studied using 

spectroscopy in vitro is very different from melanin in vivo. Melanin, which 

functions as a skin pigment, is located throughout cells called 

melanocytes. In these cells, the structure of melanin is of a very complex 

nature, and can vary among individuals. These differences in structure are 

compounded by mechanisms that ultimately result in varying skin tones. 

There are many proposed models that predict a possible structure of 

melanin as it exists in vivo, but these are yet to be verified[7]. To reproduce 

melanin as it exists in the tissue of the volar side of human fingertips is a 

very difficult task. It was originally found that melanin was virtually 

insoluble in water, but in this study, as time progressed, observations of 

the solution one week, one month, and four months after the creation of 
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the solution revealed that melanin was slowly becoming increasingly 

soluble in water. What started as a dark, brownish-black suspension 

eventually yielded a yellowish-brown supernatant.  

It is believed that over time, the melanin polymer was degraded, 

and the large water-insoluble particles were divided into much smaller 

ones, likely by hydrolysis, which were in fact soluble. These did not cause 

any loss of signal by scattering as a result of the turbidity of the solution. 

Due to the fact that this color was the darkest, and remained visible after 

even a four-month period, and to the fact that skin color can be much 

darker, it is inferred that in vitro melanin may not be a complete 

representation of melanin in vivo. Given that melanin’s structure is 

complex, and that the skin of the volar side of fingertips contain far fewer 

melanocytes than skin of the dorsal side, it remains difficult to quantify 

melanin’s contribution to the photobleaching of static tissue. Therefore, it 

is believed that the photobleaching of melanin must be only a relatively 

small contribution to the decay in fluorescence observed in static tissue. 

Conclusion 

 

 It has been shown by various in vivo experiments that 

photobleaching of the static tissues occurs as a result of NIR laser 

exposure. Recovery by hydrostatic relaxation and the lack of recovery of 

fluorescence during an appropriate timescale indicate that the decay of 

fluorescence by the volar side of fingertips commonly originates not from 

the blood, but from the static tissues. While none of the antioxidants 
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studied were observed to fluoresce and photobleach as a result of NIR 

excitation, melanin was shown to exhibit these effects, indicating it could 

be a possible contributor to the overall photobleaching, and providing 

insight into the light-induced chemistry that occurs as a substance is 

photobleached. 
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Appendices 
 

Appendix A: Plot of integrated signal from 1475-1650 cm-1 of beta 
carotene, and linear fit applied indicating dependence of signal strength on 

concentration. 
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Appendix B: Subtracted (top) and raw non-subtracted (bottom) spectra of 
reduced glutathione in cyclohexane at varying concentrations. 
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Appendix C: Subtracted (top) and raw non-subtracted (bottom) spectra of 
uric acid in cyclohexane at varying concentrations. 
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Appendix D: Raw non-subtracted (bottom) spectra of ±-α-tocopherol at 
varying concentrations. Cyclohexane baseline subtraction did not occur 

cleanly, and therefore, only raw data is shown. 
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Appendix E: Raw non-subtracted (bottom) spectra of cholecalciferol at 
varying concentrations. Cyclohexane baseline subtraction did not occur 
cleanly, and therefore only raw data are shown. The tops of the major 

peaks (due to cyclohexane) extend to nearly 4×107 counts. 

200 400 600 800 1000 1200 1400 1600 1800

1.5x10
6

2.0x10
6

2.5x10
6

3.0x10
6

3.5x10
6

4.0x10
6

P
h

o
to

n
 c

o
u
n

ts

Raman shift (cm-1)

 6.250 mM

 0.250 mM
 1×10-2 mM
 4×10-4 mM
 8×10-5 mM

 Cyclohexane

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



58 
 

Capstone Summary 

Diabetes mellitus affects millions of Americans and is one of the 

most difficult conditions to manage. Characterized an inability maintain a 

healthy blood glucose concentration, diabetes, if not properly handled, can 

be potentially be fatal, as well as cause blindness, cardiovascular disease, 

and foot ulceration. To ensure their blood sugar is at a healthy balance, 

diabetes patients must monitor their blood glucose concentration several 

times each day. The current commercial technology requires the invasive 

procedure of extracting a sample of blood to determine their blood sugar 

level, and diabetics must suffer from scarred and tender fingers. Our 

technology at LighTouch Medical implementing Raman spectroscopy to 

noninvasively determine blood glucose concentration in vivo may 

someday relieve the pain of diabetes management, as well as provide 

additional information about blood such as hematocrit. 

The concentration of a particular substance is defined as an amount 

per unit volume of that substance. Blood volume and the relative glucose 

content of that blood volume can both be associated with certain features 

of an emission spectrum of the volar (palmar) side of human fingertips, 

allowing for the determination of blood glucose. When a monochromatic 

laser in the near-infrared region of the spectrum 785 nm is shined onto a 

sample, molecule-light interactions occur. The photons of different 

wavelengths are quantified by a detector and processed by a computer to 

yield an emission spectrum. There are two devices that are available for 
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experimentation consisting of virtually the same optical layout, involving a 

laser, a detector, and various filters and lenses. The first allows for the 

study of solid and liquid samples, and the second, the LighTouch® device, 

is customized for the analysis of human fingertips. 

The emission produced reflects upon specific interactions between 

molecules and photons. Light can be scattered, in which a photon briefly 

perturbs the electron cloud surrounding the molecule and is then reflected 

into a different direction. In most cases, the photon is reflected at the same 

energy upon incidence, called Raleigh scattering, but based on structural 

features and vibrational modes of the molecule, the photon may be 

reflected at a different energy (higher or lower) than then the incident 

photon, a weaker process known as Raman scattering. Light can also be 

absorbed by molecules, promoting the molecule to an excited electronic 

state, if so, upon relaxation to the ground state, there will be an emission 

of a photon, a process called fluorescence. Raman scattering is typified on 

an emission spectrum by sharp narrow peaks, while fluorescence is 

observed as a broad feature spanning over a wide range of energies. It 

has been previously discovered that red blood cell volume can be 

associated with Raleigh scattering, presence of glucose with a specific 

Raman feature, and blood volume with fluorescence. 

The integration of fluorescence is used to monitor blood volume 

(BV) over the course of experiments, and the integration of the Raleigh 

line for red blood cell content (RBC). For virtually all experiments, a 
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decline has been observed over the course of experiments until a steady 

state is reached. One of the most important assumptions in our theory 

behind the association of blood volume with fluorescence is that changes 

in fluorescence are the result of blood movement. It was hypothesized that 

blood volume was not the cause of the decay in fluorescence. To 

investigate further, a series of experiments were performed. 

First, because circulation of blood is so complex and depends on a 

number of factors, three scans, measuring BV and RBCs, were performed 

to ascertain the effect of hydrostatic relaxation (the process of achieving 

fluid equilibration by stretching, muscle contraction/relaxation, etc.) on the 

effect of fluorescence. The first scan was taken place after hydrostatic 

relaxation exercises (A), the second was taken ten seconds after the first 

experiment while the hand remained motionless to allow fresh blood to 

circulate (B), and the third was taken following additional hydrostatic 

relaxation and the finger placed in a slightly different position (C).  

The BV curve for A demonstrated the decay in fluorescence until 

the steady state was reached. The BV curve for B maintained 

approximately the same steady state that was reached in A, and the curve 

for C resembled that of A. The RBC measure of A and B were nearly 

identical. Due to the fact that the BV curve of B was at the same level 

reached at the end of A, even though blood had circulated, it is determined 

that the decay in fluorescence must not be a result of movement of or 

change in fluorescent properties of blood. An additional experiment which 
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demonstrated that there is little recovery of fluorescence over a dozen 

cardiac pulses after photobleaching corroborated these results. It was 

ultimately concluded that the source of the decay in fluorescence was 

laser-induced chemistry, a process known as photobleaching, within static 

tissue. 

 Antioxidants serve to protect essential cellular molecules from rapid 

oxidation by reactive oxygen species by themselves undergoing 

oxidation[6]. Since antioxidants contain loosely held electrons, which are 

essential to their function as reducing agents of reactive oxygen species, it 

was hypothesized might fluoresce and photobleach. Melanin has high 

absorptive properties, rendering it ideal as a skin pigment. With such high 

absorptivity, melanin became a candidate of interest as to its fluorescent 

and photobleaching properties as well. 

 Solutions were made at different concentrations of melanin and the 

following six antioxidants: L-glutathione, uric acid, β-carotene, 

cholecalciferol, L-ascorbic acid and ±-α-tocopherol. To overcome 

differences in solubility, some antioxidants were dissolved in cyclohexane, 

and the others in deionized water. Melanin was allowed to rest in 

deionized water for four months so that the polymer would break down 

into smaller soluble particles. These solutions were scanned using the in 

vitro Raman instrument. Ultimately, it was determined that none of the 

antioxidants exhibited any fluorescence. Melanin, however, did fluoresce 

in a manner than increased directly and linearly with concentration. 
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 Given that melanin appeared to fluoresce, additional experiments 

were performed to determine whether or not it photobleaches, and if so, 

recovers its fluorescent properties over time. While melanin was exposed 

to the laser, overall fluorescence was measured over short intervals. It 

was observed that melanin did photobleach, and after leaving the melanin 

motionless in the dark for two hours, by the same process, it was 

determined that it did not substantially recover its fluorescent properties. 

 While the hypothesis that these antioxidants might fluoresce was 

disproven, there was much learned by ruling out the possibility that 

several substances are involved in the photobleaching of skin tissue. 

There are innumerable substances in blood and in static tissue, and since 

there is very little literature regarding the NIR Raman emission of these 

substances, it is extremely difficult to isolate those which contribute to the 

fluorescence observed from the tissue of the volar side of fingertips. It was 

an essential first step towards sorting out which compounds do and do not 

fluoresce, so that the problem of photobleaching can be properly 

addressed. 

 The revelation of melanin’s fluorescence and photobleaching 

provides an insight into the processes that account for photobleaching of 

static tissue. Since melanin (contained in specialized pigment cells called 

melanocytes) is relatively scarce on the volar side of fingertips, it is not 

likely the prominent source of fluorescence and photobleaching. These 

results, however, along with its complex structure which has yet to be 
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elucidated, arise many interesting questions.  

Many factors, including the macromolecular structure, the oxidation 

state, and its interaction with other biological molecules, are likely involved 

with the fluorescence and photobleaching processes. These results 

prompt further investigation as to the chemistry of melanin’s 

photobleaching. Should this become clear, a greater understanding as to 

the photobleaching of more prominent substances in the volar side of 

human fingertips may be achieved, so that they may be appropriately 

accounted for (such as by a pre-bleaching phase) to improve the accuracy 

of the noninvasive in vivo blood glucose monitor. 


	Investigation of near-infrared fluorescence and photobleaching of human volar side fingertips in vivo: antioxidants and melanin
	Recommended Citation

	Microsoft Word - 397859-convertdoc.input.385975.ldO_0.doc

