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 Abstract    

  This study examined the hypothesis that environmental enrichment (EE) would 

reduce autistic-like symptoms on three behavioral tasks in BTBR mice, an inbred strain 

used as a genetic model for autism. Based on our previous work with adversity induced 

symptoms of mental disorder in an outbred mouse strain, we predicted that EE would 1) 

increase preference for social stimuli in the 3-chamber apparatus, 2) enhance preference 

for home nest odors versus clean familiar shavings on the odor preference test, and 3) 

reduce anxiety-like behavior on the elevated plus maze. We found that EE 1) increased 

BTBR preference for a stranger mouse enclosure versus an empty enclosure, 2) did not 

influence BTBR scores on the odor preference test, and 3) did not influence anxiety 

scores for BTBR mice on the elevated plus maze. However, BTBR mice spent less time 

than CD-1 outbred controls on the open arm of the elevated plus maze, a finding that is 

consistent with evidence that anxiety is frequently comorbid with autism in humans. 

These results imply that different neural mechanisms underlie different autistic 

symptoms, since environmental intervention does not influence all symptoms equally. 
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Introduction 

 

Autism Spectrum Disorder: Symptoms and Causes  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects 1 in 59  

(1.7%) individuals in the US (Baio, 2014). A diagnosis of autism is based upon behavioral  

abnormalities that include deficits in social behavior and communication as well as restricted, 

repetitive or inflexible interests or activities (American Psychiatric Association, 2013). The 

financial cost ASD is estimated to be $35 billion annually, and $3 million per case for a lifetime 

of care, with most of the cost resulting from adult care and lost productivity (Ganz, 2007). 

Treatment for cases of autism that can improve prosocial behaviors and communication could 

reduce the high costs of living with ASD by bolstering autonomy and productivity. However, the 

development of a comprehensive treatment has not yet been achieved largely due to the 

heterogeneity of behavioral symptoms in ASD diagnoses, as well the lack of identified 

biomarkers (Worley & Matson, 2012).  

Research suggests that there are a variety of both genetic and environmental mechanisms  

underlying ASD pathology (Homberg et al., 2016). For instance, Sonuga-Barke et al. (2017) 

found that of the orphans that had been sent to the UK for adoption after experiencing extreme 

social and physical deprivation as infants while in the care of Romanian institutions for over six 

months, 20% met the diagnostic threshold for ASD later in childhood, compared to 2-11% of UK 

adoptee controls, raised under adequate physical conditions. Berg et al. (2016) found that in non-

institutional settings, individuals with ASD were more likely to experience “1-3” and “4+” 

adverse childhood experiences (ACEs) – which includes traumatic maltreatment or familial 

stressors early in development – and less likely to have never experienced an ACE than a control 

group without any reported condition. In the same study, the authors found an association 
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between a greater severity of ASD symptoms (i.e., mild vs. moderate/severe) and an elevated risk 

of experiencing an ACE. The concept of environmental influence on mammalian development is 

receiving institutional support, in a technical report by the American Academy of Pediatrics, 

Shonkoff and Garner (2012) propose an “ecobiolodevelopmental framework” for academic and 

medical professionals that emphasizes the impact of early environmental experiences on 

epigenetic modification and down-stream effects on brain structure; as well as an emphasis on the 

impact of toxic stress on the development of learning and behavior impairments and disorders. 

 In terms of genetic underpinnings, Rosenberg et al. (2009) found a concordance rate of 

autism diagnoses in 81% of monozygotic twins and 31% of dizygotic twins; and Sandin et al. 

(2014) found elevated rates of concordance for both maternal and paternal half-sibling’s, as well 

as cousins, versus a non-related control. There are also several dozen rare gene mutations that are 

concordant in 10-20% of ASD diagnoses (Geschwind, 2011). While there is no universal 

biomarker that has been discovered for ASD, there is evidence for them in the form of salivary 

micro-ribonucleic acid (miRNA); an epigenetic regulatory mechanism (Galiana-Simal et al., 

2018). A team at SUNY Upstate tested saliva samples from individuals with and without a 

diagnosis of ASD and found 14 miRNA’s (among hundreds) that significantly correlated with 

ASD diagnoses, and that when the target miRNA were used as a screening measure, the salivary 

measure performed with nearly twice the specificity of the current gold-standard questionnaire 

(Hicks et al., 2016). While these results are preliminary, the team is currently in the process of 

collecting more data and refining the salivary test itself (UpstateOnline). 

Usefulness of Animal Models  

Because the manipulation of the genome and environment of a human crosses 

ethical/legal boundaries, lines of inquiry are often pursued using non-human animal models.   
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Mice (mus musculus), are suited for this role due to comparable neurobiological organization 

(Vandamme, 2014). In addition to biological similarities, mice display complex social behavior, 

and psychological studies utilizing mice have investigated phenomena such as stress (Wang & 

Wu, 2005), anxiety (Peng, Hsieh, Lee, Lin, & Liao, 2000), neurodevelopmental disorders (Peça 

et al., 2011; Sigurdsson, Stark, Karayiorgou, Gogos, & Gordon, 2010), and neurodegenerative 

disorders (Jackson-Lewis & Przedborski, 2007).  

The present experiments examined whether physical, sensorimotor enrichment of BTBR 

T+ tf/J (BTBR) strain mice, a genetic mouse model for autism, would influence autistic-relevant 

behaviors in that strain, namely responses to stimuli and to anxiety-producing situations, using 

wild-type CD-1 mice as a control strain. This design builds on previous work from our lab in 

which early-life adversity was produced by three hours of daily separation from the mother for 

the first two weeks of life in CD1 mice (Cornwell et al., 2018). Furthermore, two weeks of 

postweaning environmental enrichment (EE) prevented the deficits. However, the separation 

procedure did not increase anxious behavior, although enrichment reduced it (Diamond & 

Cornwell, 2019). We reasoned that even though the underlying mechanisms that produced the 

symptoms differed in the adversity versus genetically manipulated situations, environmental 

enrichment might prove to be an effective remedy for the genetically-related social deficits, 

because that had been the result for the adversity-induced procedure. In contrast, we predicted 

that strain and housing effects on anxious behavior might follow a different pattern, since 

adversity had not influenced this type of behavior in our previous work with CD-1 mice.  

There have been only two studies of environmental intervention to remedy symptoms of 

autism in genetic animal models, both have used the BTBR strain. Reynolds, Urruela, and Devine 

(2013), found that 30 days of physical enrichment for adult BTBR mice significantly reduced the 
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time spent self-grooming versus a BTBR control group. The second study by Yang, Perry, 

Weber, Katz, and Crawley (2011), found that BTBR mice who were placed in home cages at 

weaning with same-sex C57BL/6J (or B6) mice and tested during adolescence demonstrated a 

significant preference for stimuli produced by novel conspecifics on the 3-chamber apparatus for 

both male and female mice. This preference was not observed in standard reared BTBR control 

groups. This social enrichment is distinct from physical enrichment since it includes more 

animals per cage as well as cross-weaning with more sociable strains. The current study focused 

solely on physical enrichment. This type of environmental intervention has not been used 

previously to examine responses to social stimuli in animal models for ASD.  

The present study used the same tasks as our previous early-life deprivation experiments  

i.e., the 3-chamber apparatus to test sociability, a two-choice situation to test social odor 

preferences, and the elevated-plus task to test anxiety-like behaviors. In our previous work, CD-1 

mice that received maternal separation (MS) did not show a preference for a potentially helpful 

stranger mouse on the 3-chamber apparatus, similar to the BTBR strain (Moy et al., 2007). 

Environmental enrichment following maternal separation resulted in scores similar to CD-1 

control mice on this task (Cornwell et al., 2018). We therefore predicted that enriched, but not 

normally reared BTBR animals would display a preference for the stranger’s enclosure.  

In mice and other rodents, social communication is in part accomplished though odor 

discrimination (Crawley, 2007). In our previous experiments, CD-1 mice that were subject to 

maternal separation did not show a preference for nest odors versus clean hardwood shavings on 

the two-choice odor preference test; while mice exposed to maternal separation and subsequent 

enrichment demonstrated a preference for nest odors, similar to CD-1 control mice (Cornwell et 

al., 2018). These results seem similar to data from a study in which BTBR mice were unable to 
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discriminate between own nest and other nest shavings (Yang et al., 2012). On the basis of these 

previous findings, we predicted that BTBR mice reared under standard conditions would not 

demonstrate a preference for nest odors over clean hardwood shavings, but that enriched BTBR 

mice and CD-1 controls would demonstrate a preference for nest odors.  

Anxiety symptoms and disorders are not diagnostic of ASD, but are comorbid in 40-84%  

of ASD cases (Muris, Steerneman, Merckelbach, Holdrinet, & Meesters, 1998; van Steensel,  

Bögels, & Perrin, 2011). In previous work from our lab (Diamond & Cornwell, 2019), maternal 

separation did not influence open arm time scores on the elevated plus maze for CD-1  mice that 

had received maternal separation versus standard-reared controls. Therefore maternal  separation 

resulted in deficits specific to sociability and communication, and not a broader  anxiety 

phenotype. An unpredicted result was that enrichment of both maternally separated and standard 

control groups significantly decreased anxiety-like behavior (Diamond & Cornwell, 2019). We 

therefore predicted that BTBR animals will react similarly to CD-1 mice on the elevated plus 

maze, and that enrichment would reduce anxiety scores for both strains.  

Genetic Approaches to Animal Models of Disease  

  

In general, genetic models of pathology are advantageous in experimental paradigms  

because genetic variability can be constrained, and are derived from either inbred or transgenic  

paradigms. The BTBR strain is a result of inbreeding via the forward genetics approach, by  

which mice are selectively bred and behaviorally tested until a target abnormality is observed  

and can then be investigated to a greater extent (Takahashi, Pinto, & Vitaterna, 1994).  

Transgenic strains are obtained via the opposite mechanism using reverse genetics, where the  
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genome is manipulated directly with the goal that there will be a development of particular  

abnormality (Takahashi et al.,1994).  

There are limitations to the reverse genetics approach, as well as certain advantages in  

implementing an inbred strain in research. For example, to start a colony of BTBR mice costs  

roughly $600 (Jackson Laboratory, 2018); furthermore, to maintain said colony requires that  

offspring are subsequently able to be inbred from three-to-six months of age, and so on.  

Conversely, creating a transgenic colony requires not only complex equipment and training to  

generate a genome of interest, but also costly genotyping procedures to effectively sort the  

offspring by their genetic makeup. An alternative solution could include requesting the creation  

of a particular transgenic strain through the University of Pennsylvania’s Perlman School of  

Medicine (specifically, the Transgenic and Chimeric Mouse Facility), which prices "standard 

transgenic services" at upwards of $6,000 per strain (Charge for Services, n.d.). This is in  

addition to the risks observed in developing mice, which have been noted to include sickly  

animals and animals that begin to die before or during adolescence (Han et al., 2012), making it  

difficult to track pathological symptoms and treatments into adulthood and old age. One could  

also make the argument that mouse models for autism that are sickly and/or have a severely  

attenuated lifespan do not meet the first type of validity needed for an appropriate animal model  

(i.e., face validity) as described by Chadman and Guariglia (2012); because while a diagnosis of  

autism is associated with a reduced lifespan (roughly 62 years for males, and 61 years for  

females), said individuals are expected to live well into adulthood (International Economic,  

2015; Shavelle, Strauss, & Pickett, 2001).  

  

BTBR as a Model for Autism  
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The BTBR is an inbred mouse strain that has gained popularity as a model for autism  

over the last 20 years. BTBR mice were first utilized in studies of obesity due to an increased 

likelihood of rapid weight gain during a specific developmental period (Chadman & Guariglia, 

2012). Despite an increased susceptibility to obesity in cases of ASD, the BTBR strain was not 

considered as a potential model for autism until it was included in a study by Moy et al. (2007), 

who tested 10 inbred strains on assays of sociability, preference for social novelty, and rigidity of 

spatial learning abilities. Moy and colleagues selectively found deficits in sociability, a core 

feature of ASD, in BTBR mice; concluding that it was most appropriate candidate for an inbred 

model for autism of the 10 strains included in the study. On the basis of these tests and later 

studies, Chadman and Guariglia (2012) note that BTBR mice match the three major types of 

validity that are necessary for an animal model; 1) face validity - or similar diagnostic and 

comorbid behaviors, 2) construct validity - or similar pathological backgrounds, and 3) predictive 

validity - or the ability for treatment effects to be reproduced across species. BTBR behavioral 

abnormalities that support these conclusions are described below.  

BTBR: behavioral features  

1. Social Behavior   

Impairments in sociability behaviors is a diagnostic feature of ASD and analogous 

impairment is seen in BTBR behavior. Moy et al. (2007) found that BTBR mice did not show a 

preference for a stranger mouse enclosure on the 3-chamber apparatus. When compared to B6 

mice, McFarlane et al. (2008) noted that juvenile BTBR mice display fewer social behaviors such 

as "social grooming, nose-to-nose sniffing, and push over/crawl under". Similarly, when 

Defensor et al. (2011) (as cited in Chadman and Guariglia, 2012) tested adult B6 and BTBR 

mice, pairs of BTBR mice demonstrated interactive behaviors to a lesser extent than pairs of B6 
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mice. Based on previous work, we predicted that environmental enrichment would increase 

sociability behavior on the 3-chamber apparatus for BTBR mice.  

2. Communication  

Olfactory deficits have been identified in some cases of ASD, as well as with the BTBR 

strain. However, olfaction is an essential aspect of social communication in rodents and therefore 

disruption of the olfactory system of a mouse model is disproportionately more consequential to 

features of social communication than is the case with humans (Bennetto, Kuschner, & Hyman, 

2007; Chadman & Guariglia, 2012). the BTBR stain does not display general anosmia, Moy et al. 

(2007) found that BTBR mice were able to find buried food pellets with similar efficacy as other 

inbred strains. However, on the olfactory habituation-dishabituation test Yang et al. (2012) found 

that while habitation to non-social odors was similar to a B6 control, BTBR mice were not able to 

discern odors from different mouse cages. The delayed onset of social communication is 

diagnostic of ASD (American Psychiatric Association, 2013). Mice aurally communicate using 

ultrasonic vocalizations, there is evidence that BTBR mice, both juvenile and adult, exhibit a 

narrowed frequency range or less frequent utterances compared to B6 mice (Scattoni,Gandhy, 

Ricceri, & Crawley, 2008; Scattoni et al., 2011). Based on our maternal separation work with 

CD-1 mice, we predicted that BTBR mice would show deficits in social odor preferences that 

environmental enrichment would prevent.  

3. Repetitive Behaviors   

Restricted, repetitive or inflexible cognition and behavior is a diagnostic criterion of ASD 

(American Psychiatric Association, 2013). In mouse models this autistic criterion is met by 

excessive repetitive self-grooming (Reynolds et al., 2013). Reynolds et al. (2013) found that 
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BTBR mice preformed more self-grooming behavior than B6 control and that post-weaning 

environmental enrichment significantly reduced this behavior. The current hypothesis of this 

paper was that would reduce the other two core diagnostic symptoms of this genetic model for 

ASD.   

4. Anxious Behavior   

Anxiety symptoms and/or disorders are not a diagnostic of ASD but are comorbid in 40% 

cases (Van Steensel, F. J., Bögels, S. M., & Perrin, S., 2011). BTBR animals have shown 

inconsistent results in that they display hypo-anxious behavior on the elevated plus maze and the  

‘light-dark box test’ but evidence of an increased reaction to predator stress (Chadman, 2011;  

Chadman & Guariglia, 2012). The overall inconsistency in defining anxiety behavior of the 

BTBR mouse could potentially be due to the control strain it is compared to, which is discussed 

below.  

5. Cognitive Abilities  

Intellectual disability (ID) is comorbid in 50-70% of autism cases, and consists of  

impairments to learning and memory systems (American Psychiatric Association, 2013; Matson  

& Shoemaker, 2009). In general, BTBR mice tend not to display learning impairments on simple  

tasks compared a B6 control, although there is evidence that BTBR do preform worse on  

complex tasks involving higher-order executive function (Chadman & Guariglia, 2012).   

However, a comprehensive characterization of BTBR learning and memory features has not been   

reached and should receive further investigation.  
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6. Sensory/Motor Abilities   

BTBR mice show sensory impairment such as reduced sensitivity to a hot surface, leading 

to altered performances on tasks that require cued or contextual fear conditioning (Chadman & 

Guariglia, 2012; Silverman, Tolu, et al., 2010). This sensory abnormality will not create a 

confound for any of our behavioral tests. It is also a noteworthy analog to symptoms experienced 

by individuals with ASD, such that cases are highly comorbid with sensory integration issues 

(Myles et al., 2004).   

Compared to several inbred controls, BTBR strain mice were observed to show 

to reduced latency to falling on the rotarod task which is postulated to be due to 

uncoordinated motor movements. Additionally, the BTBR strain did demonstrate 

heightened locomotion in open field task, indicative of hyper-activity. Regardless of 

these motor deficits, BTBR mice are generally thought to be capable of adequate 

performance on behavioral tests involving physical exploration (Chadman & Guariglia,  

2012). Furthermore, these motor characteristics represent a feature of face validity for the BTBR 

model. The prevalence of comorbidities involving hyperactivity are seen in roughly one- third of 

ASD diagnoses (Simonoff et al., 2008). Also, uncoordinated motor movements due to  atypical 

gait has been noted in ASD (Rinehart et al., 2006).  

  

BTBR: neruo-anatomical and -physiological features  

The BTBR strain is noted for a complete absence of the corpus collosum as well as 

a greatly reduced hippocampal commissure (Wahlsten, Metten, & Crabbe, 2003).  

These morphological distinctions are a result from an X-linked dominant inheritance, a 

commonality to other known X-linked disorders in humans that result in an autistic phenotype, 
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such as Rett and Fragile-X syndromes (Amir et al., 1999; Chadman & Guariglia, 2012; Verkerk 

et al., 1991). Although these BTBR-specific abnormalities are not consistently observed in 

individuals diagnosed with ASD (namely the complete absence of the collosum), there is 

considerable evidence that human cases of the disorder present a corpus collosum that are smaller 

in size and malformed at sublocations (Casanova et al., 2011; Egaas, Courchesne, & Saitoh, 

1995).  

In rodent and human brains alike, neurogenesis is observed in the sub granular zone of  

the hippocampus throughout the lifespan (Kempermann, Song, & Gage, 2015; Song et al., 2016).  

Reduced hippocampal neurogenesis is noted in BTBR mice (Stephenson et al., 2011). In  

humans, low rates of hippocampal neurogenesis have been shown to impact cognitive function as  

well as exacerbate depressive and anxiety symptoms, all of which are comorbid symptoms of  

ASD (Sahay & Hen, 2007; Trejo, Llorens-Martin, & Torres-Alemán, 2008). there is also  

evidence that neurogenesis deregulation occurs in the hippocampus as well as other localities in  

the brains of individuals diagnosed with ASD, although more research is needed in this area 

(Wegiel et al., 2010).  

  

BTBR: neuroendocrinological features  

Counterintuitive to their reported hypo-anxious affect, the BTBR mouse produces 

elevated concentrations of the primary stress hormone, corticosterone (or CORT) (Silverman, 

Tolu, et al., 2010). Chadman and Guariglia (2012) offer that the high CORT levels but low 

anxiety behaviors could be due to a disruption in the information feedback loop of the 

hypothalamic-pituitary-adrenal (HPA) axis which regulates the physical response to perceptual 

stress, but it is only speculative. Within ASD research, there are mixed findings in regard to 



    12    

cortisol (the human equivalent of corticosterone) production. Levine et al. (2012) found that 

cortisol levels of children with autism were near baseline after a socially stressful task, but had 

significantly increased for a typically developing control group. Although the case is opposite for 

BTBR mice, Levine et al. (2012) does concur that the effect could nonetheless be due to 

dysregulation of the HPA-axis.  

BTBR: psychoneuroimmunological features  

Elevated CORT (which often have an anti-inflammatory effect) in BTBR mice 

upregulate the production of typically pro-inflammatory cytokines of the immune system,  

resulting in severe inflammation of brain tissue (Careaga, Schwartzer, & Ashwood, 2015;  

Sorrells & Sapolsky, 2007). Chadman and Guariglia (2012) argue that this may in-part be  

responsible for atypical behavior of BTBR mice. In ASD, "widespread changes" are observed in 

the immune system, and inflammation is observed in the brain as well as the periphery; there is 

also evidence that cytokine presence (and therefore inflammation) positively and consistently 

correlates with the severity of behavioral impairment in subjects with ASD, as well as existing in 

significantly higher concentrations than control subjects (Ashwood et al., 2008, 2011; Careaga et 

al., 2015).  

Environmental Enrichment: background & rationale  

  

Environmental enrichment has been studied using rodents since the mid-twentieth  

century and observed to influence an array of behavioral and biological modalities. Beginning  

with an experiment by Donald Hebb in 1947 (of Hebbian plasticity notoriety) and utilizing  

learning tasks (via maze learning) on lab-reared vs. home-reared rats, Hebb found that early life  

enrichment, in this case home-rearing of rats, resulted in improved scores on maze learning tasks  
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in adult mice (Brown & Milner, 2003). Brown and Milner (2003) conclude that, regarding  

enrichment:  

“[Hebb’s] ideas formed the basis of one of the most powerful concepts in 

developmental psychology, leading to the establishment of ‘early start’ [programs] to 

enrich the experiences of underprivileged children in reading, writing and 

mathematical abilities, and in music, sports and art... [Hebb’s ideas] still influence 

research today.”  

From there, Marian Diamond and a team from UC Berkeley spent some decades detailing  

behavioral effects of enrichment on rat models (Diamond, Johnson, & Ingham, 1975;   

Diamond, Krech, & Rosenzweig, 1964; Globus, Rosenzweig, Bennett, & Diamond, 1973).  

Contemporary research efforts involving physical enrichment are broad and abundant in  

terms of the species being examined. For example, enrichment effects have been observed in 

species such as rats, mice, and array of captive (ex., chimpanzees, gorillas, leopards) and 

domestic (ex., cows, cats, chickens) animals. (Benaroya-Milshtein et al., 2004; Lazarov et al., 

2005; Leggio et al., 2005; Newberry, 1995; Wells, 2009). There is also literature detailing clinical 

enrichment efforts specific to ASD. Woo et al., (2015) found that a treatment of sensorimotor 

enrichment for children with a diagnosis of ASD led to improved scores on cognitive and sensory 

integration tasks. The paradigm used by Woo et al. (2015) was directly inspired by enrichment 

effects on BTBR mice from Reynolds et al. (2013), involving the effect of physical enrichment 

on repetitive behaviors in BTBR mice. While initial results from ASD enrichment protocols 

appear promising, translational research is still in its infancy. Examining enrichment effects on 

sociability, social communication and anxiety behaviors using the BTBR model for autism may 

provide evidence for further clinical investigation.  
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Environmental enrichment is the topic of an ongoing discussion regarding its role in  

research protocols that is outlined in the Science Magazine article, "The Happiness Project"  

(2018). While one camp of researchers including Joseph Garner, a behavioral scientist at  the 

Stanford Medical Center, believes that animals are being controlled to the point where they  are 

"no longer useful", and argues that, “If we want animals to tell us about stuff that’s going to  

happen in people, we need to treat them more like people” (Grimm, 2018). The view from the  

other camp can be encapsulated by statements made by John Crabbe, a behavioral geneticist at  

the Oregon Health & Science University who does not think that environmental enrichment  

should not be the new standard environment for mice because its benefits cannot yet be  

generalized for all pathologies: “If you show it works in tumor studies, I have no trouble with it  

being the guideline for tumor studies ... but don’t generalize it to psychiatric disease” says 

Crabbe (Grimm, 2018). Evidence to support our experimental hypothesis would help to broaden  

the psychiatric applicability of environmental enrichment.  

  

Environmental Enrichment: behavior  

In addition to enrichment effects on sociability observed previously in our lab,  

Pietropaolo et al. (2004) found that physically enriching wild-type CD-1 mice resulted in  

reduced aggressive social interaction behavior versus both a control condition and a social  

enrichment condition. Furthermore, in a study by Morley-Fletcher, Rea, Maccari, and Laviola  

(2003), prenatal stress of wild-type rats resulted in lowered social play behavior and that early  

life environmental enrichment following prenatal stress was able to rescue social play deficits.  

Hendershott, Cronin, Langella, McGuinness, and Basu (2016) investigated anxiety-like 

behaviors in response to enriched vs. standard housing using a B6 mouse. They found that mice 
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who had received environmental enrichment demonstrated lower anxiety scores on the elevated 

plus maze, in terms of a reduced latency to enter the open arm well as more frequent entries into 

the open arm. Using wild-type rats, Francis, Diorio, Plotsky, and Meaney (2002) found that 

maternal separation resulted in heightened anxiety scores on the open field test, and that 

subsequent enrichment was able to lower anxious behavior to that of controls.  

  

Environmental Enrichment: neurobiology  

As noted earlier, BTBR mice display reduced hippocampal neurogenesis. Kempermann,  

Kuhn, and Gage (1997) found that female B6 mice that received enrichment demonstrated  

hippocampal neurogenesis at nearly twice the rate as a control condition that was housed in  

standard conditions. In the same study, the group found that the volume of the hippocampi of  

enriched mice were significantly greater than those of the control group. Olson, Eadie, Ernst, and  

Christie (2006) conclude that, in adult humans, environmental enrichment has "consistently been  

shown to increase adult hippocampal neurogenesis and improve spatial learning ability".  

In addition, The BTBR strain displays a hippocampus that is both displaced and 

malformed as a result of agenesis of the corpus collosum, which may impact their ASD- like 

phenotype (Stephenson et al., 2011). Furthermore, a diagnosis of ASD been associated with a 

reduction in hippocampus size (Raymond, Bauman, & Kemper, 1995; Saitoh,  Karns, & 

Courchesne, 2001). Research has shown that environmental enrichment using B6 strain mice 

resulted in hippocampi that were significantly more dense and larger by volume compared to 

control mice reared in standard caging (Faherty, Kerley, & Smeyne, 2003).  

N-methyl-D-asparate receptors (NMDAR) are heavily implicated in tasks of learning and  
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memory, and one study found that creating a transgenic NMDAR-knockout mouse model  

produced an ASD-like phenotype (Saunders et al., 2013). Another study utilizing a similar  

NMDAR-knockout model found that mice who had undergone environmental enrichment  

displayed a higher density of dendritic spines in the pyramidal cells of the hippocampus than  

knockout mice raised in standard conditions (Rampon et al., 2000).  

  

Environmental Enrichment: neuroendocrinology & immunology  

Aspects of autistic behavior, both in model organisms as well as human diagnoses, is  

thought to be impacted by the neuroendocrine and immune systems. As noted in the rationale,  

both ASD and autism models have been observed to display abnormal CORT levels, as well as 

increased inflammation due to CORT-cytokine feedback. Furthermore, said inflammation is 

greater in individuals with ASD vs. non-ASD controls, and correlates with degree of behavioral 

impairment (Ashwood et al., 2011; Careaga et al., 2015; Chadman & Guariglia, 2012). This is in 

addition to the observation that chronic elevation of CORT itself can be toxic, typically damaging 

cells in the hippocampus due to metabolic dysregulation (Sapolsky, 1986). Both elevated levels 

of CORT and inflammation are noted in the BTBR strain, which is thought to mediate some of 

their abnormal behaviors (Chadman & Guariglia, 2012). Environmental enrichment has been 

shown to reduce levels of CORT to normative levels in wild-type rats after early life maternal 

separation, concomitant with a reduction in anxiety-like behaviors on the elevated plus maze 

(Francis et al., 2002). This also suggests that inflammation may have also been reduced after 

enrichment, although only speculatively. Shilpa, Bhagya, Harish, Bharath, and Rao (2017) 

demonstrated that wild-type male rats that were subject to chronic immobilizing stress (CIS) 

resulted in reduction of glucocorticoid receptors (i.e., CORT receptors) in the hippocampus, 

therefore dysregulation of the HPA-axis and increased anxiety-like behavior on the elevated plus 
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maze and open field tests; and that subsequent enrichment was able to significantly reduce 

anxiety scores on both assays as well as restore glucocorticoid receptor concentrations to that of 

the control conditions. Although our experiments do not include measurements of CORT or 

cytokine levels directly, one could speculate that a reduction in anxiety-like behavior as a 

function of environmental enrichment would lend evidence to CORT and/or inflammation being 

influenced in a protective way.  

  

Use of CD-1 as a control.  

The CD-1 strain is an outbred, wild-type strain with a greater degree of genetic and  

behavioral variability than inbred strains, making it useful in the representation of phenotypic  

diversity that is typical of human populations. Despite the ecological validity of outbred strains 

as controls, studies involving BTBR mice use inbred B6 mice as controls (McFarlane et al., 

2008; Scattoni, Ricceri, & Crawley, 2011; Silverman, Tolu, Barkan, & Crawley, 2010). B6 mice 

are popular in part due to their status as an inbred strain while retaining relatively stable 

similarities to wild-type strain behaviors; meaning a greater constraint of variability on 

behavioral tasks, leading to a reduction of the necessary sample size needed to observe some 

treatment effect. Hsieh and colleagues (2017) did find this to be the case when comparing CD-1 

and B6 on sociability tasks. While the study found that B6 scores resulted in a greater Cohen’s D 

value than those of CD-1 scores, as well as greater statistical power, both constituted large effect 

sizes (d>1) and the authors concluded that CD-1 mice are just a suitable as B6 for control 

purposes on tests with a social context. The expected differences in behavioral variation between 

the strains on each task is addressed in the "Results" section.  
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While B6 mice have been observed to preform normally on tests of sociability, the strain  

does not completely match the characteristics of a wild-type strain. As previously noted, B6 mice  

average 10% of elevated plus time in the open arm, while the time outbred mice strains in  

general is 25% (File & Baldwin, 1989). The B6 strain mice also demonstrates increased levels of  

anxiety versus the DBA/2 mouse, another inbred strain that is often used as a control (Podhorna  

& Brown, 2002). In fact, the B6 genome is often used as springboard to develop strains  

specifically with the purpose of altered anxiety behavior (Belzung & Griebel, 2001). Such a  

characteristic could compromise data from both our anxiety measure, and less obviously our  

sociability measure; which itself can induce stress due to the novelty of the environment and  

therefore represents an extraneous variable. For these reasons, the present study used CD1 mice  

as controls, a strain whose behavior on the plus maze is species-typical (Holmes, 2000)  

Methods  

Twenty-nine (n=16 female) BTBR mice from four litters, and 32 (n=16 female) CD-1  

mice from four litters were tested on either the elevated plus maze or the 3-chamber apparatus  

and odor preference tests. CD-1 stock was acquired from Charles River Laboratories   

(www.criver.com), and BTBR stock was acquired from Jackson Laboratoies (www.jax.org).  

All animals were housed at the 621 Skytop research facility throughout the experiments,  

in a vivarium room at a constant temperature of 22.5±2°C, humidity of 42%, food and water  

available ad libitum, and kept on a 12-hour light cycle (lights off at 6am). Breeding was done  

according to a split litter design (appendix a) to account for genetic variability of CD-1 mice.  

Prospective dams were housed in cages with two-to-three similar strain males for seven days,  

after which males were removed from breeding cages and females were left for another seven  

days, then finally isolated to birthing cages. On the day of birth (or PND-0), each litter was  

http://www.criver.com/
http://www.criver.com/
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culled by a lab member to include four male and four female neonates. On PND-21 litters were  

weaned into either enriched or standard caging until the time of testing. All behavioral testing  

was performed during wakeful hours (6am-6pm).  

Animals that were not utilized for anatomical purposes were otherwise euthanized after  

behavioral testing by Laboratory Animal Resources (LAR) personnel. Because there are no  

chemical treatments involved in our experiments, all euthanized CD-1 mice were eligible for  

donation to wildlife rehabilitation centers for animal feed.  

Risk to researchers and technicians was mitigated by the use of gloves, lab coats, and  

ventilation masks that were incorporated during all interactions with the animals. All procedures  

were approved by the University’s Institutional Animal Care and Use Committee (IACUC),  

though the Office of Research Integrity and Protections (ORIP). Funding was attained through  

allocations from the Psychology Department, the Dean’s Office (via First-Year Forum), and the  

Ronald E. McNair Program.  

 

  

Figure 1. A flow diagram of our experimental paradigm  
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Beginning on PND-21 and extending until the time of behavioral testing (PND 36-40), 

both CD-1 and BTBR mice were assigned to either enriched or standard housing  conditions. 

Standard cages consisted of a Plexiglass cage (45 X 24 X 15cm), holding  approximately 2.2L of 

nest bedding as well as a 5.05cm2 Nestlet. Enriched housing conditions  included a cage that was 

25% larger-by-volume (45 X 24 X 20cm) compared to the standard  caging and was equipped 

with a set of five stimuli (i.e., a running wheel, plastic tube, ball, cup,  and ring) in addition to 

nest bedding and a Nestlet. The stimuli varied in shape, size, and  function, and were replaced 

and rearranged every other day during the enrichment period. On the  day of testing, two males 

and one female from each litter were tested on either the 3-chamber  apparatus and odor 

preference tests, or the elevated plus maze.  

  

  

Figure 2. An example of a post-weaning enriched caging environment (left) with 

assorted enrichment stimuli and Nestlet, and standard caging environment (right) with 

a Nestlet.  
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Behavioral Tests  

All behavioral trials were video recorded and data collection sheets were coded by the   

author, such that there was a blind control measure in the reporting of the raw data by research 

assistants before being analyzed by the author. Specifically what was encoded was the post- 

weaning condition of each mouse. The limitation to this method involves coding for strain due to  

the easily discernible differences in appearance between CD-1 and BTBR mice (see appendix b).  

3-Chamber Apparatus: 16 (n=9 female) BTBR mice from four litters and 14 (n=7 female) 

CD-1 mice from four litters were tested. The 3-chamber apparatus (fig.3.a) is a test of  sociability 

for mice consisting of a Plexiglas box (62 X 40cm), partitioned into three chambers  (each 20 X 

40cm) with a door on each partition that allow access to the entirety of box, and in  each side 

chamber is an enclosure (Cornwell, 2017).  

  

Figure 3. Images of the (a.) 3-chamber apparatus, (b.) odor preference test, and (c.) 

elevated plus maze, which assay sociability behavior, social odor preference, and 

anxiety-like behavior, respectively (Cornwell, 2017).  

  

The trial begins with a 10-minute habituation period, where the test mouse is placed in  

the apparatus and left to explore the empty chambers. The time of exploration is recorded for  
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each chamber with the expectation that there is no preference for either side. The test mouse is  

then removed, and a novel same-sex conspecific mouse is placed randomly in one of the side  

enclosures. The test mouse is reintroduced to the center chamber and left to explore for another 

10-minute period. The amount of time spent exploring either the empty-enclosure chamber or the 

enclosure containing the conspecific, or "stranger" mouse is recorded. What is typically observed  

during a trial using a wild-type strain is a significant preference for the enclosure holding the  

stranger mouse versus the empty side chamber (Kaidanovich-Beilin, Lipina, Vukobradovic,   

Roder, & Woodgett, 2011).  

Odor preference test: 16 (n=9 female) BTBR mice from four litters and 16 (n=8 female) 

CD-1 mice from four litters were tested. The odor preference test (fig.3.b) consists of a  6X8 

gridded platform (22 x 29cm) with a "V" shape that breaks the grid into three sections.  Placed 

to one side of the "V" is soiled bedding from the home cage of the animal being tested, to  the 

other side is placed clean hardwood bedding, and the middle section is left empty. A sturdy  

mesh-wire screen is placed directly over the grid, and a test mouse is placed on the screen and  

left to explore for 180-seconds. Raw data is collected regarding the amount of time spent over  

each type of bedding as well as tracing the locomotion of the test mouse throughout the  

apparatus (Cornwell, 2017). Normally-reared rodents spend more time above a familiar odor, as  

opposed to an unfamiliar one (Cornwell-Jones, Stephens, & Dunston, 1982), while infant  

maternally separated mice show development deficits on this task. The assumption is that a  

normative mouse will prefer to spend time above a familiar odor, as opposed to an unfamiliar  

one (Thomas, Fonken, LeBlanc, & Cornwell, 2010).  

Elevated plus maze: 13 (n=7 female) BTBR mice from four litters and 16 (n=8 female)  

CD-1 mice from four litters were tested. The elevated plus maze (fig.3.c) is used to assay the  
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unconditioned response to a potentially dangerous environment, by inducing anxiety via the fear  

of falling juxtaposed with a rodent’s natural tendency to explore a novel environment (File &   

Baldwin, 1989). It is composed of four alternating open and closed arms (each arm 50 X 10cm;  

enclosed walls 40cm tall) and elevated above a flat surface. Animals are brought to a dimly lit 

and sound attenuated testing room and left to habituate for 30-minutes. Once habituated a test  

animal is place on the central square of the plus, facing towards an open arm, and left to explore  

for300-seconds. Raw data is collected reflecting the amount of time spent on the open arm and  

the number of open arm entries during the trial. As mentioned, a normal rodent will spend  

approximately 25% of the trial exploring the open arm (File & Baldwin,1989). Enrichment  

increased time on the open arm for both maternally separated and normally reared CD-1 mice  

(Diamond & Cornwell, 2019).  

  

Statistical Analysis   

Both R-Studio and JASP software were used to analyze data and construct figures for  

these experiments. (JASP Team, 2018; RStudio Team, 2016). Omnibus significance testing was  

accomplished using ANOVAs, and all planned or post-hoc comparisons we set to an alpha  

threshold accounting for Bonferroni corrections for multiple comparisons. Due to strain  

differences, Levene’s test of equal variance was used to compare between-condition data for  

each task. For any task data that met the threshold for significant differences in variance,  

statistical models were adjusted so that the output would not reflect an assumption of equal  

variance.  
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Results  

Sociability  

Data from the 3-chamber apparatus (Fig.4) were analyzed using 2 (sides) x 2 (strains) x 2 

(rearing conditions) repeated measures ANOVA. On the habituation trial, a Levene’s test found 

evidence to reject equal variance for both the left (F=4.31, p=0.01) and right (F=3.63, p=0.03) 

side chambers. There was a within subjects effect of time spent in the side chambers 

[F(1,26)=5.06, p=0.03], as well as a between subjects effect of strain on chamber time 

[F(1,26,)=4.31, p=0.01]. Post-hoc paired sample t-tests found that CD-1 standard, BTBR 

standard, and BTBR enriched mice spent more time in the right chamber versus the left, 

t(5)=3.90, t(6)=3.56, t(8)=2.87, p<0.025, respectively (Appendix C).  

On the sociability trial, a Levene’s test did not find evidence to reject the assumption of 

equal variance for either the stranger side (F=0.30, p=0.82) or empty side (F=2.18, p=0.11) 

within-subject metrics. We found no significant difference in time spent in either enclosure side 

[F(1,26)=0.46, p=0.51], nor did we find an effect of treatment on enclosure time [F(1,26)=0.49, 

p=0.49]. However, we did observe a significant effect of strain on enclosure time [F(1,26)=5.83, 

p=0.02]. Planned 1-tail paired samplest-tests found that BTBR animals reared in standard 

housing did not show a preference for the stranger enclosure, t(6)=1.72, p>0.025, but BTBR 

animals that had been enriched displayed a significant preference for exploring the stranger side, 

t(8)=2.35, p<0.025.  
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Figure 4. Results from the 3-chamber apparatus test of sociability. Typically sociable 

mice prefer exploring the chamber housing a potentially helpful same-sex conspecific 

versus an empty enclosure. As expected, the BTBR-Standard condition did not show a  

significant preference for the stranger mouse. However, BTBR mice that had been  

enriched significantly preferred exploring the stranger enclosure. Asterisks represent a  

significant side preference after a planned 1-tail paired sampled t-test with an alpha level  

of 0.025 for multiple comparisons.  
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Figure 5. Results from the social odor preference test. Typically sociable mice prefer to 

spend time over familiar odors when placed in the novel environment. Enrichment  

increased time over nest odors for CD-1 but not BTBR mice. Dark asterisk represents a  

main effect of strain on nest preference (p=0.02); double asterisks represent a  

significant difference between histograms (p<0.025); light asterisks represent a  

significant difference from zero (no preference), after a Bonferroni correction for four  

comparisons (p<.01).   

  

Data from the odor preference test (Fig.5) were analyzed by performing a 2 (strains) x 2  

(rearing conditions) ANOVA, for mean time over nest minus hardwood. An effect of strain 

[F(1,28)=6.10, p=0.02] indicated that CD-1 mice spent significantly more time over nest odors 

compared to BTBR mice. Although there was no main effect of treatment [F(1,28)=1.64, 
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p=0.21], a significant interaction effect was obtained[F(1,28)=4.68, p=0.04]. A Leven’s test did 

detect evidence for unequal variance in our nest preference data (F=4.62, p=0.01), therefore 

statistical models for analyzing nest preference data did not assume equal variance. post-hoc 1tail 

independent samples t-tests found that CD-1 mice that were enriched displayed significantly 

greater preference than standard reared controls for nest odors t(15)=2.21, p<0.025, but this 

treatment effect was not observed for BTBR mice, t(15)=0.69, p=0.5.  

Additionally, planned 1-tail independent sample t-tests were used to compare the mean of  

each condition to no a score of zero (no preference for either odor). We found that both BTBR- 

Standard and BTBR-Enriched mice showed a significant preference for nest odors, t(6)=3.50,  

and t(8)=3.54, p<.01, respectively. CD-1 mice who had received post-weaning enrichment did  

significantly prefer nest odors to fresh hardwood shavings, t(7)=14.26, p<0.025, although this  

was not the case for CD-1 standard animals, t(7)=2.64, p>0.025.  

  Anxiety  

To analyze anxiety results from the elevated plus maze (Fig.6), data was subjected to a 2 

(strains) x 2 (rearing condition) ANOVA, comparing mean scores of percent open arm time by 

strain and treatment. There was a significant effect of strain on percent open arm time  

[F(1,25)=4.69, p=0.04], but not for treatment [F(1,25)=0.18, p=0.70]. The strain effect indicated 

that BTBR mice spent a lower percentage of time on the open arm than CD-1 mice regardless of 

housing condition (Figure 5). We did not observe significant evidence to reject percent open arm 

scores as having equal variance (F=2.92, p=0.06). Planned 1-tail independent samples t-tests 

were used to compare the mean of each condition to a score of 25% (typically stress reactive). 

We found that both CD-1 standard and enriched mice were found to perform within the typical 

range, t(7)=1.79 and t(7)=0.68, p>0.01, respectively. BTBR animals that received enrichment 
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also scored within the typical range, t(5)=0.65, p>0.01, but BTBR animals reared in standard 

conditions performed significantly below the typical score, t(6)=-4.01, p<0.01.  

 
   

  

Figure 6. Results from the elevated plus. Typically stress reactive mice prefer to spend 

around 25% of the trial on the open arm. Our results indicate enrichment did not reduce 

anxiety scores for either strain. However, CD-1 mice were typically responsive while 

BTBR mice appeared to display heightened anxiety-like behavior. Dark asterisk 

represents a main effect of strain on open arm time; light asterisk represents a significant 

difference from 25% open arm time after a Bonferroni correction for four comparisons.  
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Limitations 

Due to an unforeseen issue with animal care facilities there was a backup of live CD-1 

mice due to a freezer malfunction. We surmise that the mixing of odors from different cages 

resulted in odors from separate cages becoming familiar instead of novel. This abnormality could 

have led to the atypical behavior we observed from CD-1 control conditions on the 3-chamber 

apparatus. This situation would not have influenced the distinction between familiar nest 

shavings and clean hardwood shavings on the odor preference test, not the ability to perceive 

distance cues on the elevated plus maze. 

 

Discussion  

On the test 3-chamber apparatus BTBR-strain mice housed in standard conditions did not 

show a preference for an enclosure housing a stranger mouse versus an empty enclosure, but 

following postweaning environmental enrichment BTBR mice displayed a significant preference 

for exploring an enclosure holding a stranger mouse. This is evidence that early developmental 

intervention in the form of physical, sensorimotor enrichment can bolster responsiveness to social 

stimuli in a strain that is characterized by abnormal social patterns. This finding is consistent with 

work by Reynolds et al. (2013), indicating that environmental enrichment reduces another core 

symptom of ASD in the same strain. It is also consistent with enrichment effects on CD-1 mice 

after prenatal exposure to the antiepileptic drug Valproic acid (VPA), an environmental model for 

ASD through the mechanism of a teratogen. Yamaguchi et al. (2017) found that VPA exposure 

resulted in significantly less sniffing behavior on the social interaction test versus a saline control, 

and that VPA exposed CD-1 mice that had received enrichment demonstrated sniffing behavior 

similar to a CD-1 control group. 



    30    

The present work compliments evidence that environmental enrichment can decrease 

autistic-like behaviors in an adversity-induced mouse model for ASD (Cornwell et al., 2008). 

Additionally, environmental enrichment was shown to reduce hyperactivity and enhance 

cognitive function in a rat model for ADHD (on the open field test and y-maze, respectively) as 

well as a medley of effects relating to the reduction of addiction-related behaviors in mouse and 

rat models (Botanas et al., 2016; Solinas et al., 2010). In relation to the “Happiness Project” 

article featured in a 2018 article of Science Magazine, this is further support for the role of 

enrichment for models of psychiatric disorders addition to physical diseases such as tumors. 

This finding on sociability behavior may also be relevant to attempts to translate 

sensorimotor enrichment results from mice into a protocol to treat symptoms for individuals with 

ASD. As mentioned earlier in the paper, Woo et al. (2015) were partially inspired to conduct 

research on humans by physical enrichment’s reduction of repetitive behaviors in BTBR mice 

(Reynolds, Urruela, & Devine, 2013). Woo and colleagues found that sensorimotor enrichment of 

children ages 3-12 with a diagnosis of ASD (consisting of olfactory, tactile, and auditory stimuli, 

as well as exercise and balance training), in addition to standard care, resulted in statistically 

higher scores on a nonverbal IQ test, improved sensory responses, language performance, and 

reduced severity of ASD symptoms compared to an age- and condition-matched group that 

received standard care only (2013;2015). In light of the findings from this experiment there may 

evidence to investigate potential pro-social benefits of sensorimotor enrichment for those 

diagnosed with ASD. 

On the odor preference test, enrichment increased attraction to nest odors for CD-1, but  

not BTBR mice. This stands in contrast to our previous results using an adversity model,  

whereby environmental enrichment served to improve home nest preference for maternally  
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separated CD-1 mice. We propose that differences in strain responses to enrichment on this task 

were due to differing neural mechanisms; meaning that the limbic system of CD-1 mice may 

have been disrupted by the maternal separation procedure and rescued by enrichment, the BTBR 

animals may display different or more extensive extensive impairments to the network due to 

their genetic inheritance, making enrichment alone an inadequate treatment. However, BTBR 

mice of both treatment conditions displayed a significant preference for familiar nest odors, 

suggesting that their performance was not due to an ability to respond selectively. While Yang et 

al. (2011) found that BTBR mice did not display a preference between own nest odors and other 

nest odors, our data indicate that the strain can successfully discriminate between odors in a two-

choice situation.  

 Environmental enrichment did not influence behavior for either strain on the elevated  

plus maze. These findings are in contrast with our previous data (Diamond & Cornwell, 2019), in  

which enrichment reduced anxious behavior in the adversity-induced model for ASD, as well 

findings from Yamaguchi et al. (2017), who found that mice exposed to VPA demonstrated 

increased anxiety behavior on the elevated plus maze, and this deficit was rescued by enrichment. 

However, Hulbert, Bey, and Jiang (2018) recently found that environmental enrichment of the 

Shank3 transgenic model for ASD increased anxiety behavior in this testing situation; suggesting 

that this treatment may work differently between environmental and genetic models for ASD. 

Strain influenced open arm time, with CD-1 mice spending a greater percentage of time  

in the open arm than BTBR mice. Both groups of CD-1 animals scored with the normal range for  

typically behaving Mice. In contrast, BTBR animals reared in standard conditions scored  

significantly lower than the typical range. These results dispute the claim that the BTBR may 
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display reduced anxiety behavior on the elevated plus maze (Chadman & Guariglia, 2012), and 

highlights the importance of employing an outbred control strain on tests of anxiety. 

It is possible that the enrichment housing situation induces social patterns in BTBR 

groups that differ from those seen in CD-1 mice given enrichment tools. Informal observations of 

living groups suggest that BTBR animals didn’t utilize the running wheel with the same 

frequency as the CD-1 mice. One way to investigate this would be by combining the social 

enrichment paradigm used by Yang et al. (2011), housing BTBR with same-sex outbred mice (in 

our case CD-1 mice) together at weaning in a physically enriched environment. The outbred CD-

1 mice might “teach” their BTBR cage mates to take advantage of enrichment, resulting in 

broader effects on BTBR ASD-like symptoms than those achieved in the present study. We could 

also extend the length of enrichment for BTBR mice to examine whether additional exposure 

would have more of an effect on their behavior.   
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Appendix A  

  

Figure A1. Schematic of split-litter breeding paradigm.  
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Appendix B  

  

Figure B1. Stock images of an adult (a.) CD-1 and (b.) BTBR strain mice (Charles River  

Laboratories, 2018; Jackson Laboratory, 2018)  
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Appendix C  

  

Figure C1. Results from the 3-chamber apparatus sociability trial. Top asterisks represent  a 

significant within subject effect of time spent in either enclosure after a Bonferroni  

correction. Bottom asterisk represents a significant between subject effect of strain on  time 

spent in either enclosure.  
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