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Abstract:  

Quantum dots have recently been awarded attention due to their tunable 

optical and spectroscopic properties. The optical and spectroscopic behavior of 

quantum dots was investigated as a function of mean particle size. Manipulation 

of the reaction conditions and constituents impact the controllability of size and 

surface conditions. Therefore, synthesis of CdSe and CdS semiconductor 

nanoparticles with tunable particle size were created using temperature, time, 

and composition as variables. Analytical techniques used to characterize the 

nanoparticles included fluorescence and electronic absorption. The effect of 

temperature, aside from changing the size of the particle, also eliminated defects 

on the surface and caused thermal annealing.  

Introduction:  

On August 9th, 2009 the small village of Silver Creek, NY experienced 

intense flashfloods that caused millions of dollars in damage and decimated 

much of the area with layers of mud and silt. Silver Creek, NY is prone to 

flooding, but this particular event denotes one of the most significant flash floods 

to hit the region in memory. In 2005, Hurricane Katrina was the costliest and 

deadliest hurricane in U.S. history in the second most active hurricane season in 

recorded history. The 2008 hurricane season is the most active. Floods and 

hurricanes are a natural occurrence and would occur even without human 

interference. However, the number and intensity of floods and hurricanes in 

recent history are happening more frequently than they statistically should.1,2,3,4,5   
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The cause seems to be a highly disputed topic called global warming. The 

term, global warming, was first inadvertently coined by Wallace Broecker in 1975 

in a paper he published entitled Climate Change: Are we on the Brink of a 

Pronounced Global Warming? Since then the topic has been highly debated and 

as of 2009, just 51% of Americas believe in its existence. Whether or not global 

warming does exist is beyond the scope of this paper, but there is substantial 

proof that the average annual temperature on Earth increased over the last 

century causing severe environmental changes, such as floods and hurricanes. 

An enhanced greenhouse effect may be responsible for global 

environmental change and global warming. Solar radiation passes through the 

atmosphere as ultra violet and visible light. The Earth absorbs this energy and 

reradiates it as infrared light, or heat. Gases in the atmosphere, such as water 

vapor (H2O) and carbon dioxide (CO2), absorb the outgoing energy and reradiate 

it back towards Earth causing the Earth’s atmosphere to warm. This process is 

called the greenhouse effect and without it the average annual temperature on 

Earth would be approximately 15°C cooler and below freezing. Life as we know it 

would not be possible without the greenhouse effect.  
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Figure 1: Average global temperature and global warming trends from 1880 to 2005.  

Image modified from http://www.sigthedmoon.com/?page_id=53 

 

Since pre-industrial times, however, there has been an influx of 

greenhouse gases being emitted into the atmosphere including carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (NOx) which have increased 

approximately 30%, 145%, and 15% respectively. The excess gases in the 

atmosphere are believed to enhance the greenhouse effect by preventing 

radiation from escaping into space leading to warmer surface temperatures. The 

global mean surface temperature has already increased about 0.3 to 0.6°C over 

the past decade (Fig. 1). Climate models project an increase in temperature 

between 1 and 3.5°C.6 This change may seem small, but it can have a profound 

impact on Earth’s systems. As Wallace Broecker once said, “We have clear 

evidence that different parts of the earth's climate system are linked in very 

subtle yet dramatic ways.” A small change in one area will have rippling effects 

across the globe.  
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The effects of global warming have already been observed. Globally, the 

1990s were the warmest decade of the past millennium and nine of out the ten 

warmest years on record occurred between 1995 and 2004.4 Rising 

temperatures have caused melting glaciers, rise in sea level, coral bleaching and 

negative effects on agriculture. If global warming continues, the consequences 

lead to the loss of biodiversity, a severe strain on many agricultural areas, the 

spread of disease, and an increase in severe weather events (e.g. tornadoes, 

hurricanes, floods, etc), drought, water scarcity, and much more. These 

environmental changes have the ability to lead to political security issues, 

including war, over resources that are becoming increasingly scarce due to 

global warming.   

The increased production of greenhouse gases that lead to environmental 

change is primarily the result of anthropogenic activities, in particular, the 

combustion of fossil fuels, such as coal and gasoline, for energy consumption. 

The combustion of fossil fuels, for energy related purposes (e.g. electricity, 

gasoline for cars, etc), is the major sources of increased levels of CO2 by more 

than 30% in the last few centuries. Global CO2 emissions are expected to 

increase by 1.8% annually between 2004 and 2030 according to the Energy 

Information Administration (2008). The demand for energy consumption will 

increase but the sources of fossil fuels are dwindling. Carbon free energy 

sources are needed not only to stabilize the amount of greenhouse gases in the 

atmosphere and keep them within tolerable levels with respect to their impact on 

global climate change, but also to meet energy demands for the future.  
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Alternative energy has become an increasingly popular topic since the 

1973 Oil Crisis when members of the Organization of Arab Petroleum Exporting 

Countries (OAPEC) proclaimed an oil embargo on the United States forcing oil 

prices to skyrocket. Since then technology has attempted to exploit natural, 

renewable resources as sources of energy, such as wind, geothermal, 

hydroelectric, biomass, etc. Green technology has primarily been successful in 

the generation of electricity. There are seven fundamental methods of generating 

electricity: static, electromagnetic, chemical, photoelectric, nuclear, piezoelectric 

and thermoelectric. However there are only two ways to produce electricity 

commercially: electromagnetically, and via the photoelectric process.   

The use of wind energy as a pollution-free means of generating electricity 

on a significant scale is attracting a plethora of interest and correspondingly wind 

power is one of the fastest growing renewable energy technologies worldwide. 

Wind energy produces electricity electromagnetically with a wind turbine using 

the same principles used for coal fired power plants, a theory based on the 

principles discovered by Michael Farady, an English chemist and physicist in the 

19th century. Farady discovered that if a magnet is moved past a conductor, it 

causes electricity to flow. In a large generator, electromagnets are made by 

circulating direct current through loops of wire wound around stacks of magnetic 

steel laminations. Wind turbines work by the inflow of wind rotating the blades of 

the turbine converting wind energy to mechanical energy (Fig 2). The rotating 

blades cause spinning of a low speed shaft that in then turns the gears on a high 

speed shaft that runs through a generator. Inside the generator, an electrical 
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current is generated when a magnetic rotor on the high speed shaft spins inside 

loops of copper wire that are wound around a copper core causing 

electromagnetic induction through the coils. Though wind energy is becoming 

increasingly popular, there are consequences to using wind energy. It cannot be 

transferred long distance, wind energy is harmful and fatal to many species of 

birds, and many people complain that wind turbines are an eye sore. It is also 

more expensive than coal fired power plants due to the fact that the technology is 

still new and is not massed produced which raises costs.  

 

 
Figure 2: Generic Wind Turbine. Image modified from http://renewable-sources-of-

energy.com/ 

 

Hydroelectric energy has been a source of energy for centuries and it is 

generated in a similar manner to wind energy. In order to harness hydroelectric 

energy a dam must first be built on a river. Water is then stored behind the dam 

and channeled through an intake near the bottom of the well. The moving water 

rotates a turbine that generates electricity in the same manner as a wind turbine. 



 9

The consequences of hydroelectricity are far more damaging than wind. The 

process of building a dam and the water that is trapped behind it, destroy large 

tracts of land and can displace or destroy entire ecosystems. The dam also stops 

the movement of fish species to spawning pools. While it is economically feasible 

to build hydroelectric plants, they are expensive to maintain and facilities do not 

last forever and must undergo repairs or be dismantled.  

The most promising source of green energy, however, is solar energy. 

Solar energy is the most abundant renewable form of energy on Earth and the 

current amount of solar energy incident on the planet is enough to meet global 

energy demands. Solar energy is not produced electromagnetically, rather it 

employs the principles of the photoelectric effect, or the second way to viably 

produce energy for commercial use. The photoelectric effect occurs when 

electrons are emitted from matter as a result of absorption of electromagnetic 

radiation, or light energy, creating a current (Fig 3). In 1887, Heinrich Hertz was 

the first person to observe the photoelectric effect, but he declined to attempt to 

describe a theory that would explain his experiment. In 1905, Albert Einstein 

proposed a simple theory to explain the phenomena. Light, he realized, was 

quantized and transferred all of its energy to an electron during a collision 

causing the electron to be emitted from matter (Fig 3). Robert Millikan worked for 

ten years to disprove Einstein’s theory only to provide experimental proof in favor 

of Einstein in 1916. The photoelectric effect is the driving force behind 

photovoltaics (PV).  
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Figure 3: Visual representation of the Photoelectric effect. Image modified from 

http://physweb.bgu.ac.il/COURSES/PHYSICS3_ChemMatr/index_files/ 
 

Solar energy is harvested using photovoltaics. The photovoltaic effect was 

discovered in the late 19th century, but it was not until the 1950s that the 

breakthrough occurred that set in motion the development of modern, high-

efficiency solar cells. The breakthrough occurred in Bell Telephone Laboratories 

in New Jersey and came in the form of semiconductors. Semiconductors are a 

non-metallic material whose properties lie between metals that offer little 

resistance to the flow of electric current and insulators which block the flow of 

current. Semiconductors are separated from metals or insulators by the size of 

their bandgap which will be explained later in further detail.  

The basic and most common PV consists of a junction between p-type 

and n-type semiconductors and are usually made of silicon (Si). An n-type, or 

negative, semiconductor is made from crystalline Si that has been doped with 

small amounts of impurities, such as phosphorous, that cause a relative surplus 

of free electrons. A p-type, or positive, semiconductor, on the other hand is 

usually made from crystalline Si that has been doped with small amounts of 

impurities, usually boron, so that there is a relative deficit of free electrons, or 
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‘holes.’ The joining of these two types of semiconductors creates a p-n junction 

that sets up an electrical field.  

When light falls on the p-n junction, the photons transfer their energy to 

some of the electrons and promote them to a higher energy level. The 

photovoltaic effect, however, generates electricity. The excited electrons become 

‘free’ to conduct electric current by moving through the material leaving a hole 

behind, which can also move. Holes, in the p-type, and electrons, in the n-type, 

are attracted to combine with one other. The net effect is to set up a junction with 

a layer on the n-type more positively charged than usual, and a layer on the p-

type that is more negatively charged than usual forming a reverse electric field. 

When an electron in the junction is stimulated by a photon, the excited electron 

goes to the conduction band leaving a hole in the valence band creating an 

electron-hole pair. The electrons are attracted to the n-region due to the reverse 

electric field. The flow of electrons to the n-region is an electrical current 

generating a potential difference or electromotive force. This force drives the 

electrons through a load in an external circuit to do electrical work.  

Solar energy is relatively abundant depending on the time of year and 

latitude and the generation of electricity does not produce CO2 or any other 

greenhouse gases. Despite its advantages, there are three major reasons that 

PVs are not more widely used for the production of electricity: cost, inability to 

store it, and inefficiency.  The major component, Si, of the most common type of 

PV is expensive and there is a worldwide effort to minimize Si usage.7Not only is 

Si expensive, but so are the materials for the infrastructure and the production. 
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Solar cells, like wind turbines, are not massed produced which raises costs as 

well. Photovoltaics are obviously dependent on the sun in order to generate 

electricity and the sun is not available at all latitudes 24 hours a day. The 

technology to store solar energy is severely lacking. This deficiency may be 

directly tied to the inefficiency of solar cells. The most efficient crystalline Si solar 

cell can only hope to be 24.7% efficient, but the cheaper and more widely used 

amorphous Si solar cells are a measly 10.1% efficient.7  

The Shockley–Queisser approximation was first calculated by William 

Shockley and Hans Queisser at Shockley Semiconductor in 1961. Shockley and 

Queisser assumed that an electron-hole pair must annihilate at some point and 

that during this annihilation light would be emitted. However, that is the ideal 

case and does not always happen. Generally the extra energy of the excited 

electron is wasted as heat. They also postulated that only electrons of a certain 

energy would be able to produce power. As such a vast amount of energy is 

wasted. The Shockley-Queisser limit is then calculated by examining the amount 

of electrical energy that is extracted per photon of incoming sunlight. Shockley 

and Queisser calculated a limit of only 31%. This limit is fundamental to solar 

energy production and has promoted research of Quantum Dots.  

Quantum Dots are colloidal crystalline molecular sized semiconductor 

nanocrystals that are confined in three dimensions.8,9  Semiconductor 

nanocrystals are tiny light-emitting particles on the nanometer scale.10 The QD 

core is made up of semiconductor elements from the II-IV (e.g. CdSe, CdTe, CdS, 

ZnSe), III-V (e.g. InP, InAsO), or IV-VI (e.g. PbSe) group. Research into 
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Quantum Dots (QDs) has recently gained momentum because they posses 

unique optical properties due to quantum confinement effects.11  

At a molecular level, atomic orbitals interact constructively or destructively 

to create distinct energy levels (Fig 4). As opposed to the case of atoms and 

molecules, the energy structure of a solid no longer consists of discrete energy 

levels, but rather broad energy bands because molecular orbitals become 

indistinguishable from one another in a bulk material (Fig 4). Semiconductor 

nanocrystals, however, despite containing multiple molecules, have optical and 

electronic properties that deviate substantially from those of a bulk material. 

Quantum dots bridge the gap between molecules and large crystals and display 

discrete electronic transitions that are similar to those of molecules or atoms (Fig 

4).10  

Figure 4: Energy levels of a molecule, semiconductor, and bulk material. 

These discrete energy levels can be explained by the particle in the box 

theory. A particle in a box is a quantum mechanical system that describes a 

particle that is confined within a region. The particle is free to move anywhere 
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within that region, but is trapped inside of a certain space. For the particle to be 

trapped it is surrounded by impenetrable walls and it is assumed that the 

potential energy is zero inside the box, but the potential energy at the borders is 

assumed to be infinite. In a Quantum Dot the theoretical particle is confined in 

three dimensions resulting in a quantization of energy that leads to the discrete 

energy levels indicated in Figure 4. Only discrete energy levels are allowed for 

quantum dots. Quantum confinement, therefore, is the three dimensional 

confinement of particles that results in discrete energy levels.  

As a result of quantum confinement, QDs have bandgap energies that are 

size dependent. 9 The general rule is, the smaller the size of the quantum dot, the 

larger the band gap is (Fig 5).9 The bandgap energy (Eg) corresponds to the 

minimum energy that must be provided to move an electron from the valence to 

the conduction band.9 During photoexcitation the absorption of a photon of 

energy greater than Eg, induces excitation of an electron causing it to leave a 

hole in the valence band. The hole is a positively charged, vacant orbital that in 

its lowest energy state is electrostatically attracted to the electron because of 

quantum confinement.9 This electron-hole pair, is known as an exciton and can 

move anywhere within the confined three dimensional space of a quantum dot. 

Relaxation of the excited electron back to the valence band annihilates the 

exciton and may be accompanied by the emission of a photon, a process known 

as radiative recombination.10 The confinement of this process is what leads to 

high efficiency in fluorescence. However, more likely than not trap states within 

the material trap either the hole or electron and prevent it from annihilating. Trap 
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states can be caused by structural defects, atomic vacancies, local lattice 

mismatches, or dangling bonds.9 Trap states decrease the efficiency in 

fluorescence because it makes radiative recombination less likely to occur. In 

order to create high crystalline Quantum Dots with efficient fluorescence, it is 

then necessary to eliminate these trap states.  

Figure 5: Relation between size, color and spectral properties of Quantum Dots.  Image 

modified from Reference 9 and 10.  

 

Because the bandgap of Quantum Dots is size dependent, tuning of its 

optical gap by particle size is a possibility. 12 The tunability from the visible to 

near-infrared region is possible by varying the size, or composition, of QDs. This 

can be achieved multiple ways including using different types of semiconductors, 

changing reaction conditions such as composition, temperature, and time, 

varying type of ligand, adding shells, etc.10,11 However, relatively little is known 

about the precise manipulation of the reaction conditions and constituents and its 

impact on the controllability of the size, composition and interfacial reactivity of 

nanomaterials.13 Knowledge of the surface chemistry of QDs is needed to 
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understand their optical properties and to manipulate them to achieve a desired 

application.9  

The optical and spectroscopic properties of QDs are also a function of size 

and therefore, the variation of size is observed by the shift in wavelength of 

maximum absorption and fluorescence emission with a change in diameter (Fig 

5). The higher in energy of the maximum wavelength, the larger the bandgap is 

and therefore the smaller the particle is. The lower in energy of the wavelength of 

maximum absorption and fluorescence emission, the larger the particle is and the 

smaller the bandgap energy. 

QDs exhibit a wide range of unique size-dependent optical and electronic 

properties including broad excitation and narrow size-tunable emission spectra, 

negligible photobleaching and high photochemical stability.9 Therefore, it is 

thought that QDs can be used in a wide range of applications. Because of their 

fluorescent properties and size-dependent emission, the most common possible 

application for QDs is the use as chemical and bio-sensors.14 In regards to 

bioimaging, some of the important applications of quantum dots are: labeling of 

microoganisms, detection of biofilms, drug delivery, and tumor targeting and 

imaging among others.9,8 QDs have the advantage over traditional methods of 

cellular imaging because they are not hindered by photo-bleaching and their 

emission colors are tunable from the visible to the near-infrared region. The 

application of Quantum Dots is not limited to bioimaging and biosensors, but they 

can be used in light emitting diodes and lasers and have the potential to be used 

for single electron devices and for quantum computing and information.8 QDs 
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can also be used in PVs and could be a potential solution the limitations of cost 

and inefficiency mentioned earlier.15  

 

 
Figure 6: Typical copper indium gallium (di) selenide solar cell. 

Image modified from Reference 7.   

 

Though Si is the most widely used material in PVs, the use of QDs has 

recently become popular because it is less expensive and could potentially be 

more efficient.  Numerous ventures are currently engaged worldwide in the 

development of CIGS-based photovoltaic products. CIGS, short for copper 

indium gallium (di) selenide, are part of a complicated solar cell (Fig 6).16 CIGS 

photovoltaic products has the advantage over Si PVs in that the use of direct 

energy gap materials result in a large optical absorption coefficient which permits 

the use of thin layers (1-2 µm) of active material and so it is more cost efficient.16 

A more interesting property, however, is the unique ability of quantum dots to 

create multiple electron – hole pairs, also known as impact ionization.15 Electrons 

excited to energies greater than the band gap release energy through lattice 

vibration. However, the excited electron can transfer its energy to a second 
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electron promoting the formation of a second exciton in what is known as impact 

ionzation.15 Impact ionization has the ability to enhance the photocurrent in solar 

photon conversion devices and thus increases the efficiency.  

In light of this information, the hypothesis is to change the size of quantum 

dots and therefore the optical properties in order to tune the emission from the 

visible to near-infrared and to make them more uniform with less trap states for 

use in a wide variety of applications. The aim is to vary reaction conditions, 

particularly temperature and concentration, to tune the size of the nanoparticles. 

Temperature can also be used as a method for thermal annealing and the 

creation of uniform particles with limited trap states. The specific goal was to 

create cadmium selenide (CdSe) and cadmium sulfide (CdS) with tunable size, 

uniformity of size, and restricted trap states. Due to the fact that absorption and 

fluorescence emission is a function of size, characterization of the QDs was 

carried out using electronic absorption and photoluminescence.  

Experimental 

Materials  

Cadmium Perchlorate was used in conjunction with selenourea or 

thioacetamide to make cadmium selenide (CdSe) and cadmium sulfide (CdS) 

quantum dots respectively. Citrate was used as a capping ligand for all of the 

experiments detailed below. Zinc chloride was used to make a CdSe core 

quantum dot with a zinc shell. All syntheses were performed hydrothermally 

using Microwave Assisted Processing Synthesis or MAPS (Fig 7). Using water as 
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a solvent is important because particles need to be water soluble for biological 

applications and it can be used for biofunctionality.8 

Methods 

Method 1: Synthesis of CdSe: Temperature Dependence 

  Colloidal CdSe quantum dots were produced by the following procedure: 

mixed 0.5 mL of Cadmium Perchlorate (0.249 g, 40 mM) with 250 µL of 

selenourea (11.90 mg, 20 mM), 2.5 mL of sodium citrate (58.82 mg, 10mM), 0.5 

mL of dionized water and 20 µL of sodium hydroxide for a 8:2:6 ration of [Cd]: 

[Se]: [Cit]. The mixture was heated mixture 5 min at 100°C with the microwave. 

The resulting product was a deep red color. This procedure produces a colloidal 

solution of CdSe QDs that are capped with citrate. The procedure was repeated 

with solutions of the same concentration, but synthesized at 110°C, 120°C, 

135°C, and 150°C.  

Method 2: Synthesis of CdS: Temperature Dependence 

Colloidal CdS nanoparticles were synthesized by the following procedure: 

mixed 0.5 mL of cadmium perchlorate solution(0.249 g, 40 mM) with 200 µL of 

thioacetamide soultion  (37.56 mg, 25 mM), 2 mL of sodium citrate solution 

(58.82 mg, 10mM), 0.5 mL of dionized water, and 20 µL of sodium hydroxide for 

a 4:1:4 ratio of [Cd]: [S]: [Cit]. The resulting mixture was heated for 5 min at 

120°C with the microwave. The resulting product was a bright yellow in what is 

assumed to be CdS nanoparticles capped with citrate. The process was repeated 

with solutions of the same concentration, but temperatures at 150°C and 180°C.  

Method 3: Synthesis of CdS: Composition Study 
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Nanoparticles with a ratio of [Cd]: [S]: [Cit] of 4:1:4 mM were made using 

the above procedure. Composition was varied by changing the concentration of 

thioacetamide solution. For an 8:1:8 ratio, 100 µL of sulfur solution (37.56 mg, 25 

mM) was used and for an 8: 2.5: 8 ratio, 250 µL of thioacetamide solution (37.56 

mg, 25 mM) was used. Each mixture was heated for 5 minutes using the 

microwave at 180°C. 

Method 4: Synthesis of CdS/CdSe core-shell dot; temperature study 

 CdS quantum dots with a CdSe shell were created by the following 

procedure: a solution [Cd]: [S]: [Cit] with a ratio of 4: 1: 4 was created using the 

procedure for Method 2 at 180°C.  For CdSe shell growth, 20 µL of selenourea 

(11.90 mg, 20mM) was added. Three separate mixtures were heated at 100°C, 

130°C, and 160° for 3 minutes respectively.  

Method 5: Synthesis of CdSe:Zn nanoparticle 

CdSe nanoparticles with a possible ZnSe shell were synthesized by 

mixing 1mL of cadmium perchlorate solution (0.26g, 41.63mM) with 1mL of 

sodium citrate solution (13.93mg, 10.8mM) , 1mL selenourea (6.9mg, 10 mM), 

20µL sodium hydroxide (1.01M), and 1mL of zinc chloride (0.11 g, 40mM) in that 

order. The solution was heated for 2 min at 120°C. The resulting product was 

reheated at 100°C, 150°C and 180°C and fluorescence was also monitored over 

the next two weeks.   

Instrumental  

Microwave Assisted Processing Synthesis or MAPS (Fig 7) allows for 

easy control of time, temperature and power during the synthesis of QDs. The 
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sample is placed in the microwave and the reaction conditions can then be 

chosen from the machine. Maximum temperature, power, time, and pressure can 

be specified for each reaction. For example, for the temperature dependence 

studies, if the designated temperature for synthesis was 110°C, then the settings 

on the microwave could be set to 110°C for a specific, predetermined time. 

These settings can be altered for time, pressure and power as well.  

 

 

Figure 7: Diagram of a Microwave Assisted Processing Synthesis Throughput.  

For all five methods, characterization was done using photoluminescence 

on a Steady State Fluorescence Spectrometry, Horiba Yvon Jobin, Fluoromax 4.  

The specifications include excitation at 400 nm, emission from 425 to 755 nm, 

and an integration of 0.25s. The intensity of fluorescence is the function of 

radiative recombination,10 or a photon emission from molecules in an excited 

electronic state. Photon emission is detected using a spectrofluorometer. In its 

simplest form a spectrofluorometer is comprised of a light source, slits or grating, 

an excitation monochromator, a sample cell, a diode array sensor and a detector 
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and associated electronics. A sample cell intercepts radiation from a light source 

that excites molecules with a wavelength corresponding to an absorbance band 

of the molecules to be excited. Excited molecules in the sample fluoresce in 

random directions. The intensity of the resulting light is measured with the 

detector and converted with the associated electronics to a spectrum. The 

spectrum produced charts sample emission as a function of wavelength. 

Electronic absorption was also utilized to characterize the quantum dots 

using a Varian, Cary-100 UV-Visible Spectrometer. For electronic absorption 

spectroscopy, a spectrometer scans a sample through the electronic region 

wavelengths (350 - 900nm), and a spectrum is produced, charting sample 

absorbance as a function of wavelength.   

Results and Discussion:  

1: CdSe: Temperature Dependence Experiment 

One of the very first experiments attempted was the synthesis of CdSe 

and how changing the reaction conditions would alter the properties of the 

quantum dots. This was done in an attempt to find the right recipe for CdSe 

quantum dots that would create ‘high quality’ nanoparticles. A ‘high quality’ 

quantum dot simple means that the nanoparticles were uniform in size, spherical 

with limited surface defects, and that they had high crystallinity with more defined 

quantum levels. Whether or not the quantum dots were of ‘high quality’ can be 

determined from the fluorescence.  
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Figure 8: Photoluminescence of cadmium selenide quantum dots synthesized at different 

reaction temperatures.  

 

Fluorescence is the result of radiative recombination.10 Radiative 

recombination occurs when relaxation of the excited electron back to the valence 

band annihilates the exciton and is accompanied by the emission of a photon.10 

Nonradiative relaxation events that do not result in fluorescence are associated 

with crystalline defects and charge carrier traps on crystal surfaces. Therefore 

radiative recombination is more likely to occur if there are less trap states.  

Figure 8 shows a simple temperature modulation and its effects on a 

CdSe core nanoparticle through fluorescence. The result was a massive increase 

in the photoluminescence with an increase in temperature during synthesis at 

560 nm (Fig 8). An emission at 560 nm suggests an average particle size 

between 4 and 20nm. The spectrum obtained showed that as the temperature 

increased from 100°C to 150°C, the photoluminescence also increased 

correspondingly (Fig 8). This is most likely the result of the increased 
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temperature eliminating surface defects. Defects at the surface can trap charge 

carriers at the surface and reduce the probability of an electron and hole 

annihilation, thus making nonradiative decay events more likely. The intensity of 

the photoluminescence and the absence of a red shift indicates that the particles 

were uniform in size and of ‘high quality.’ Therefore the experiment was 

successful in that quantum dots of good caliber were synthesized under different 

reaction conditions and it satisfied one of the goals of creating uniform quantum 

dots in water with limited surface defects that are viable for use in various 

applications. However, despite this success, there was no real shift in the 

maximum wavelength of emission suggesting that there was no real change in 

size of the QD with temperature modulation and thus not entirely tunable as 

desired.  

2: CdS: Temperature Dependence 

 A similar temperature variation study was attempted on CdS nanoparticles 

in an attempt to make CdS nanoparticles of good quality with tunable properties 

under hydrothermal conditions. CdS was used because CdS has been previously 

studied in the literature and it exhibits a different band gap than CdSe. The 

results were quite different as is shown in Figure 9. Synthesis at 120°C indicated 

that there was a wide distribution of sizes thus there was non existent 

fluorescence around 460 nm. However,  there was a huge red tail. Traditionally 

this red shift was thought of as the result of surface defects, but recent models 

done by Micic et al. suggest that it is actually caused by the core structure of the 
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QD and not just the surface and that it is a function of size.17 This ‘red tail,’ then, 

suggests that there is a large distribution of sizes and poor quantum confinement.  

 As the temperature of the synthesis increased to 150°C, the intensity of 

the red tail decreased and shifted to longer wavelengths and a peak at 440 nm 

appeared. At 180°C the intensity of the red tail decreased even further and again 

shifted to longer wavelengths while at the peak shifted from 440 nm to 460 nm 

and increased in intensity. The shift in maximum wavelength could mean only 

one thing, the size of the particles was becoming larger and as they become 

larger there was less of a distribution of sizes which in turn decreased the red 

shift. Increasing the temperature of the reaction, therefore, increased the size of 

the nanoparticles synthesized. This may also account for the lack of fluorescence 

at 120°C. The particles may have been too small and the distribution to large to 

have photoluminescence, or the fluorescence may have fallen below 420 nm, 

which is beyond the scope of the spectrum. 

Photoluminescence at 440 – 460 nm places the quantum dots at 

approximately 2 – 4 nm, which is much smaller than the CdSe synthesized in the 

previous experiment. This means that CdS has a larger bandgap than CdSe. The 

shift in maximum wavelength, though not enough to cause a change in visible 

color of the quantum dots, was significant in that it did show that changing the 

reaction conditions changes the size of the quantum dot. With future work, CdS 

quantum dots could be tuned by changing the temperature during synthesis. The 

experiment was then successful in showing that CdS dots could potentially be 
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synthesized with tunable sizes, but the synthesized nanoparticles were not 

uniform in size.  

 

Figure 9: Photoluminescence of cadmium sulfide quantum dots synthesized at different 

reaction temperatures.  

 

However, though water has its advantages as a solvent, in the case of 

CdS, it was a major limiting factor. The proposed temperature is well above the 

boiling point of water and it would be dangerous to attempt higher temperatures. 

Though the red shift is indicative of a large distribution of sizes, it may also be the 

result of surface defects. Citrate may not be strong enough of a capping ligand 

for CdS and the presence of surface traps may be attributed to the use of water, 

or to the use of thioacetamide since this same pattern was not observed for 

CdSe particles under similar conditions. CdS particles were also not very soluble 

in water and the resulting nanoparticles tended to crash out of solution fairly 

quickly, though this may have been due to cadmium oxidizing due to atmospheric 

oxygen.  
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3: CdS: Compositional Modulation  

 Colloidal CdS quantum dots in a water solution were further studied by 

modulating the concentration of thioacetamide for particles synthesized at 180°C. 

The results are shown in Figure 10. The modulation of concentration was a 

double-edge sword. For an 8:2.5 ration of Cd:S, photoluminescence (PL) was 

very low at 485 nm. For an 8:2 and 8:1 ratio, the PL increased and the 

wavelength of maximum emission shifted to 465 nm and 455 nm respectively. A 

shift to higher wavelengths with a decrease in thioacetamide concentrations 

indicates that the mean particle size decreased with a decrease in thioacetamide. 

There was also, however, an increase in the red tail which, in this case, is 

indicative of a larger distribution of sizes and a shift towards smaller sizes, rather 

than the result of surface defects or enhanced electron-hole exchange. Though 

these results may be due to the fact that the higher the sulfur concentration, the 

less soluble the final product was in water. Water, therefore, may not be the best 

solvent for CdS particles considering the poor solubility and the short lifetime of 

the particles in solution. The CdS particles also did not have the same 

fluorescent intensity as the CdSe QDs.  
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Figure 10: Photoluminescence of cadmium sulfide quantum dots synthesized at varying 

concentrations of thioacetamide.  

 

The experiment did, however, show that it is possible to change the size of 

CdS QDs by varying the amount of sulfide introduced into the system during 

synthesis. Decreasing the average particle size, though, while it does improve 

the fluorescence of the CdS quantum dots, it also results in a larger distribution 

of sizes as seen by the increase of the redshift with a decrease of sulfide 

concentration.  The large distribution of sizes means that the particles are not 

uniform in size, though, and thus are not of high quality enough to be used for 

any application. With more time, however, and further tweaking of the reaction 

variables, it is possible to create CdS quantum dots of a better caliber in water.  

 

 

485 nm 

465 nm 

455 nm 

Red Shift 



 29

4: CdS/CdSe shell and temperature dependence 

 After determining viable reaction conditions for CdS and CdSe core 

quantum dots, adding a CdSe shell to a CdS core was attempted. The addition of 

a shell to a QD core has been known to improve fluorescence and quantum yield 

by eliminating the significance of surface defects and trap states on the 

nanoparticles.10 Shell passivation also buries the core semiconductor in a 

potential energy well, concentration charge carriers in the core away from the 

surface and trap states.10 Therefore a CdSe shell was added to a CdS core in an 

attempt to increase fluorescence and quantum yield. Figure 11 shows the 

electronic absorption spectra of CdS/CdSe with an increase of temperatures 

during synthesis. Increasing absorbance generally means an increase in size, 

while a blue shift in absorbance means a decrease in size. It therefore makes 

sense that the absorption would increase by adding a shell to the CdS core. This 

is not enough proof, but the absorption spectrum is indicative of a successful 

addition of a CdSe shell to the CdS. The absorption spectrum also suggests that 

there was an initial increase in size, but at higher temperatures, the size begins 

to decrease again or the particles became more uniform in size.   
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Figure 11: Electronic absorption of cadmium sulfide core quantum dot with a cadmium 

selenide shell synthesized at varying temperatures. 

 

The data from the fluorescence did not show nearly as nice data as that of 

the absorption spectrum. Though it is not certain, the fluorescence spectrum (Fig 

12) may be trying to say that initially after the addition of CdSe, there is a huge 

distribution of sizes, hence the giant red tail, but intensity starts to decrease with 

temperature, not only the red tail, but intensity on a whole of the CdS dot 

decreased by the addition of the CdSe shell. The shell is supposed to neutralize 

surface defects and increase PL, but this does not appear to be happening here, 

in fact the opposite seems to be happening.  
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F

igure 12: Photoluminescence of cadmium sulfide core quantum dots with a cadmium 

selenide shell synthesized at varying temperatures.  

 

Heat treatment may have lengthened the lifetime of the electron-hole pair, 

leading to eventual recombination that is mainly nonradiative. In general, the 

successful addition of a shell and subsequent intensity increases result from 

adding a shell with a bandgap larger than the core. This is not the case here. The 

bandgap for CdSe is smaller than that of CdS. There is also no shift in maximum 

wavelength of emission that would suggest a change in size after the addition of 

a CdSe shell. Therefore the experiment did not appear to be successful, nor did it 

satisfy any of the goals.  

Experiment 5: CdSe:Zn 

The results from the addition of a CdSe shell to a CdS core are debatable, 

but the addition of a Zn shell to a CdSe QD showed promising results. A 

temperature modulation study was again attempted.  The original product of Cd, 

Se and Zn showed a broad fluorescence peak, but as the temperature of 

synthesis was increased, after an initial decrease in fluorescence, the 
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photoluminescence eventually increased. The peaks also become narrower as 

the temperature increased. The nanoparticles experienced thermal annealing, in 

other words self-organized crystal growth. The data suggests that CdSe/Zn 

crystals began forming under successive heat treatments. The heat treatment 

altered the nanostructure of the particle and caused changes in its properties. 

Thermal annealing is indicated by the enhancement of the integrated 

photoluminescence emission and narrowing of the full width half-maxima occur 

together in Figure 13.18 The dots, on average, are becoming larger in size as 

crystals form with the annealing process which is also suggested by the shift 

towards a higher maximum wavelength (Fig 13). The maximum wavelength at 

approximately 595 nm, is higher than 560 nm for a typical CdSe dot which also 

suggested growth in average particle size.  

Figure 13: Photoluminescence of cadmium selenide core quantum dots with a Zinc shell 

undergoing successive heat treatments.  
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The nanoparticle was monitored over time and it was shown that while the 

mixture does not continue to anneal, the fluorescence does increase with time 

(Fig 14). This indicates that crystals get better with time, they become more 

uniform. Thermal annealing is particularly interesting because they are self 

assembled dots. However, the problem with annealing is that is it unclear 

whether or not the nanoparticles are still dots and a ZnSe shell was formed or it if 

was simply a Zn coated CdSe dot. Despite this, the experiment was a success. 

Not only was a Zn shell successfully added to a CdSe core, the quantum dots 

showed good photoluminescence and with successive heat treatment the 

particles became more uniform in size. For future work, it would be beneficial to 

possibly monitor crystal growth before and after thermal annealing.  

 

Figure 14: Photoluminescence of cadmium selenide core quantum dots with a Zinc shell 

monitored over time.  
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Conclusions 

The specific goal was to create CdSe and CdS with tunable size, 

uniformity of size, and restricted trap states. High quality CdSe nanoparticles 

were successfully synthesized, but they did not express tunable emissions. CdS 

quantum dots, on the other hand, showed a shift in sizes under various reaction 

conditions, but the particles were not ‘high quality’ in that they were not uniform in 

size and did show high crystallinity. It was also shown that it is possible to 

thermally anneal CdSe/Zn nanoparticles using heat treatment, but without further 

data is it unsure whether or not the resulting product is still a quantum dot.   

Future Work:  

 Future work could include a continuation in trying to find the right ‘recipe’ 

for CdS quantum dots in a water solution that would produce high quality dots 

with tunable emission. In conjunction with that, solubility and stability would need 

to be monitored overtime, due to the low solubility and stability of the synthesized 

quantum dots under hydrothermal conditions. A compositional modulation study 

would be beneficial in the future in regards to varying the capping ligand which 

may increase solubility and stability. Using varying semiconductors could 

possibly be done as well, because cadmium is a very toxic chemical and will one 

day no longer be used for these applications.  

 During annealing, monitoring the crystal growth, will determine first of all if 

there is crystal growth and whether or not the resulting product is indeed a 

quantum dot. Attempting annealing with different types of quantum dots for 
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reproducible results would be interesting to accomplish as well as energy transfer 

studies.  
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