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Abstract 

Simple sugars (Aldohexoses/pentoses), (Ketohexoses/pentose) when subjected to a dehydration 

reaction, produce various compounds. An example of one such compound is 5-hydroxymethyl 

furfural. Such chemical products may be used in subsequent processing steps (hydrolysis, aldol 

condensation, hydrogenation and dehydration) to produce similarly structured condensed 

compounds that form the basis of complex molecules used in various industries such as 

production of fuels, chemical reagents and fertilizers. Most studies focus on heterogeneous 

packed beds and batch reactors to carry out dehydration reactions. This study illustrates use of a 

Continuous Stirred-Tank reactor to carry out such dehydration reactions. In order to maintain the 

homogenous nature of the reaction, the catalyst chosen was sulfuric acid. Use of a CSTR would 

allow study of kinetics and yields for varying residence times. This data could be used to design 

large scale operations in biomass processing. This study is aimed at investigating variables such 

as changing physical properties of the fluid reactant during reaction, variation in pH and 

consequent change in proton concentrations. By understanding the impact of these variables, 

more accurate rate measurements can be made. In the process of developing the right method for 

data acquisition, several substantial changes were made to the reactor and methods. These 

changes were instrumental in development of a cyclic process of data collection and changing 

methods and design, thus highlighting the chemical engineering heuristics approach and 

refinement in processes. The sequence of corrected results give us better insight into the process 

and help develop accurate models for the reactions in the scope of this thesis and also future 

studies. The presented results of rates and yields may be used to develop processes based on 

requirement and feasibility. 
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Chapter I 

Introduction 

 

               Crude oil has been the main feedstock for most of the chemical industry since the early 

19th century. “Building block chemicals” in most chemical processing industries can be traced 

back to crude oil. An examination of products manufactured by way of petrochemical processing 

reveal our dependence on crude oil. Plastics and polymers, paints, fuels, reagents and chemical 

solvents are all petrochemical products. Although energy supplies may be supplemented through 

the use of solar power, wind turbines and geothermal sources, it is established that our only 

renewable source of carbon for chemical manufacture is biomass.  Several sources and studies 

find that society can depend on the reserves of crude oil for several decades to come, however, 

the environmental repercussions of such dependence and the increasing demands of 

technological advances and population growth make current consumption patterns unsustainable 

[1-5]. New techniques of sourcing crude oil from “fracking” and subsequent processes have taken 

their toll on the environment. Several studies indicate that the use of biomass-derived fuels 

directly lessen emission impacts. Also, their large scale manufacture has a relatively smaller 

impact [6-9]. Although short term fuel price fluctuations may not indicate a long term shortage, 

depletion of crude oil reserves is inevitable (projected cost in the year 2025, $54 per barrel)10. 

           The petrochemical industry was established in the early 20th century and has evolved to 

become very efficient and economical with regards to overall yields and conversions. We can 

make use of existing chemical engineering technologies (separation, hydrolysis, dehydration and 

pyrolysis, among others) to modify the existing refinery setup to operate on a different feedstock 

(Biomass Refinery) 10. 

             Selected biomass feeds may be used in the manufacture of specialty chemicals, 

pharmaceuticals, natural polymers and other higher value products. When we consider fuel 
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manufacture from biomass, an important constraint that needs to be managed is the heat content. 

Increasing the energy density is the primary focus in fuel technology. This requires the removal 

of oxygen as carbon dioxide and water. Some of the oxygen may be left behind in the interest of 

better combustion properties. Dehydration and hydrogenolysis are effective strategies used to 

reduce oxygen content of biomass12. In general, biomass is found to have approximately 45 wt% 

oxygen.  

              An important factor in changing manufacturing processes is maintaining economic 

feasibility of the process. Biomass may be sourced as a virgin biomass or waste biomass. Waste 

biomass consists of remnants of harvesting food crops, wastes from paper industry and wastes 

from sugar manufacture. Virgin biomass consists of crops or plants grown specifically for use in 

biomass processing. Virgin biomass brings into question the food versus fuels argument and so, 

efforts have been made to maximize waste biomass use in processing. Bioengineering can help 

to manipulate the growth patterns/requirements of these crops. Waste biomass in the form of 

landfill/industrial residues, paper pulp black liquor, cornstover may be used as a cheap feedstock, 

in some cases negative-cost. Waste energy content in the US amounts to a 15.1 EJ/year which is 

significant considering annual energy consumption of 41 EJ/year3. 

            Experts in the field predict that by the year 2030, 20% of transportation fuels and 25% of 

chemicals will come from biomass10.Most of the major petrochemical oil companies have 

identified this trend and have begun to develop technologies for biofuel and biochemical 

production14-17. So, how does biomass figure into the scheme of processing steps? To understand 

this we need to take a closer look first at the specific components of biomass. 
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Chapter II 

Literature Review 

2.1 Biomass  

 

Figure 1: Composition of Biomass 
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           All types of biomass originate from plant sources. Fixed carbon, light and water are 

converted to sugar in the photosynthesis reaction. Plant sugars are stored within plant cells in the 

form of sugar polymers. The nature and distribution of these polymers within the plant cell is a 

function of plant type. Bio engineering has been instrumental in manipulating this distribution to 

suit our requirements. Through gene manipulation, scientists have successfully increased 

cellulose distribution by reducing lignin in plant species while maintaining plant growth 

advantages45. 

 

           Figure 1 illustrates the distribution of different chemical species present in biomass. 

Biomass is primarily composed of 75-90% sugar polymers, 25-10% non-sugar polymers and 

approximately 1% triglycerides, sterols, pigments, alkaloids and other compounds. Biomass 

processing begins at the sugar polymers. Broadly speaking, sugar polymers may be present in the 

form of starch, cellulose or as hemicellulose. Cellulose is the most abundant biopolymer. It is a 

polymer of glucose with β- 1, 4 glycoside linkages5. The molecular weight of cellulose can range 

from 300,000 to 500,000 g/mol. This type of linkage renders cellulose crystalline. Glucose 

oligomers (dimers, trimers, tetramers etc.) are formed during partial hydrolysis of cellulose46. 

Glucose monomers are produced through complete hydrolysis of cellulose.47 Hydrolysis of 

cellulose is relatively difficult owing to its crystallinity. 
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Cellulose
 

Figure 2: Structure of Cellulose 

              Hemicellulose is another branched sugar polymer. Depending on species, it consists of a 

branched glucose or xylose substituted with arabinose, xylose, galactose, fucose, mannose, 

glucose or gluconic acid. Side chains may also contain acetyl groups or ferulate61. Sugars in 

hemicellulose may contain either 5 carbon atoms or 6 carbon atoms. Xylose and arabinose are 

examples of the 5 carbon sugars while glucose, galactose and maltose are some 6-carbon sugars. 

In general, hemicelluloses, are easier to hydrolyze owing to amorphous nature. 

Hemicellulose

 

Figure 3: Components of Hemicellulose 

            Starch is made up of Amylose (10-20%) and Amylopectin (80-90%). Amylose and 

amylopectin are polymers of glucose. Amylose is water soluble due to its α-1, 4 glycoside 

linkages while Amylopectin is insoluble due to its combination of α-1, 4 glycoside linkage and 

α-1, 6 glycoside linkage18. 
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Figure 4: Components of Starch (Amylose and Amylopectin) 

              The monomers that form the fundamental building blocks of the sugar polymers may be 

classified into pentoses (5 carbon sugar monomer) or hexoses (6 carbon sugar monomers). Also, 

they may be functionally different (keto or aldehyde groups). Dehydration of these monomers 

produce the chemical molecules of interest to us. The reactions and products that these molecules 

generate are different. Pentose sugars produce furfural upon dehydration, while hexose sugars 

produce 5-hydroxymethyl furfural. 
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HMF

 

Figure 5: Structure of Furanic Aldehydes (Furfural and HMF) 

 

             The cellulose and hemicellulose found in plant cells are bound by lignin, they are 

collectively referred to as lignocellulose. ∼ 2 × 1011 Metric tons of lignocellulose are available 

for processing19. Although lignocellulose does contain sugar polymers such as cellulose and 

hemicellulose, separating these polymers from the lignin is an energy intensive process and 

requires preprocessing steps20. Difficulty in processing lignocellulose arises on account of the 

crystalline nature of cellulose and protection by lignin. However, preprocessing of lignocellulose 

to cellulose and hemicellulose solves the age old “food vs fuel” argument51. Most remnants of 

food processing, such as cornstover may pass through preprocessing steps to yield useable 

products. Cornstover has a distribution of 27-48% cellulose, 13-17% hemicellulose 18-25% 

lignin20. In this case, the question of cultivating crops solely for fuel doesn’t arise. At the same 

time, the uniform quality and desirable properties of feedstocks are maintained.  

           The non-sugar polymers are comprised of lignin. Lignin is a cross-linked phenolic 

polymer, which on de-polymerization yields aromatics. These compounds have a high heating 

value and are of a great economic significance. Research into effective lignin processing steps is 

underway [22-25]. 
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Figure 6: Structure of monolignol units 

            Dumesic found that a solvent derived from lignin could replace the organic phase 

solvents used in biphasic biomass reaction systems. Furanics (5-HMF, furfural) and lactones 

(GVL) could be extracted into the lignin derived phenolic solvent to make the process more 

sustainable.26 

            Three main routes may be taken to manufacture fuel compounds from biomass. This can 

be illustrated through the use of the following diagram. 
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Figure 7: Biomass Processing/Upgrading routes 

 

              Gasification of biomass yields light fractions mostly with larger vapor pressures such as 

carbon monoxide, carbon dioxide, hydrogen, methane, trace amounts of higher hydrocarbons 

Upgrading to platform 

chemicals 
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such as ethane and ethene, water, nitrogen along with a few impurities depending upon the 

gasification methods. This stream may be used to produce methanol or in Fischer-Tropsch 

reactions to generate longer chain compounds that are of greater economic value. Pyrolysis and 

hydrolysis of biomass yield liquid fractions. Of these, pyrolysis yields heavier oils (bio-oil, 

pyrolysis oil), tars, acids and aromatics. These are then upgraded or processed to fuels. 

Hydrolysis is used to convert the sugar polymers into monomers of sugar. Hydrolysis may be 

carried out through the use of either microbial fermentation or acid reaction steps. After 

complete hydrolysis, we are left with monomers such as glucose, among the 6 carbon molecules 

and xylose, among the 5 carbon molecules.  

                                  

    

Figure 8: Sugar monomers Glucose, Fructose and Xylose 
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Figure 9: Fischer projections of open chain and closed chain forms of glucose. 

               Polyols exist in two forms, open chain form as shown on the left of Figure 9 and closed 

chain forms as illustrated on the right. When dissolved in water, there exists a temperature 

equilibrium dependent ratio of these two forms of the compound. Glucose, fructose and xylose 

exist in similar anomeric forms. Glucose and fructose solutions retain < 1% open chain or acyclic 
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form. Glucose solutions are found to contain a smaller ratio of acyclic to cyclic chain ratios than 

fructose 67. 

 

 

2.2 Upgrading Technologies               

               Once the simple sugars are produced, several conversion technologies may be used for 

further processing (upgrading). Some of these conversion technologies used are biological, 

thermal, chemical/catalytic upgrading or a combination of these technologies. Fermentation has 

been employed to convert coal and petroleum gas streams into ethanol13. Also, use of 

fermentation in processing biomass is an important application of microbial enzymatic 

technology. Sugarcane and other virgin biomass species are being used widely to produce 

ethanol from starches. Studies are being conducted on the use of lignocellulosic agricultural 

wastes as a feed in the fermentative process. For this reason, strains of bacteria that are adept at 

fermenting both glucose and xylose need to be studied [55, 56].  Also, since fermentation steps 

generally begin at simple sugar monomers, it is imperative to research combining enzymatic 

techniques of hydrolysis of starches (cellulose) and enzymatic fermentation. Fermentation quite 

often requires preprocessing steps to free the fermentable sugars. These preprocessing steps 

include ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flow through, 

and lime58. Glucose fermentation can be used to produce a range of products through 

recombinant or non-recombinant DNA technologies and through different pathways. Some of 

these products are mixed acids (acetic acid, succinic acid, propionic acid, butyric acid, lactic 

acid), alcohols (ethanol, butanol, isopropanol) and glycols with carbon dioxide. Each of these 

products can be used to manufacture useful products. Succinic acid for example can be used to 
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manufacture pharmaceuticals and biodegradable polymers. Succinic acid is a precursor to many 

industrially important chemicals such as adipic acid, 1, 4-butanediol, tetrahydrofuran (THF), N-

methyl pyrrolidinone, 2-pyrrolidinone, gamma butyrolactone and succinate salts.  Fermentation 

of waste biomass can be used to produce other products such as methane gas (biogas 

plants/waste sludge treatment) and hydrogen gas. Hydrogen gas can be used as a prospective 

green fuel through the use of fuel cells thereby producing water as a byproduct. Although these 

technologies of fermentation to produce hydrogen are only in the fledgling stages of 

development, certain anaerobic photosynthetic fermentative strains of bacteria have shown 

promise for their H2 producing capability from glucose57. Fermentation does come with its share 

of limitations. In most cases, the fermentation microbes are mixed into the feed. Separation of 

the suspended microbes and the products of fermentation can be energy intensive. Use of 

immobilized growing species on substrates becomes extremely challenging. Dilute feed streams 

are required in most cases. Auxiliary batch operations are needed in some cases for 

yeast/bacteria cultivation. Once the hydrolysis step is achieved either enzymatically or through 

the use of acids, simple sugars are produced and made ready for the next step of the process. 

Assuming complete hydrolysis, simple sugars produced may be upgraded to platform chemicals. 

               Renewable energy research has been focused on ways of breaking down organic wastes 

into fundamental molecules and taking advantage of the functional properties to create raw 

material chemicals. This is the concept of platform chemicals. Several platform chemicals have 

been identified as useful building blocks for chemicals. These resulting compounds may be used 

as is, or in subsequent platform chemical manufacture. 5-HMF and furfural have been identified 

as platform chemicals. Dehydration of glucose, fructose and xylose to produce platform 

chemicals will be studied in the proceeding part of the study. 



 

14 
 

2.3 Acid Catalyzed Dehydration 

              Hexose sugars on triple dehydration yield HMF. The exact mechanism varies with 

regard to type of solvent used [32-35]. No definitive conclusion has been made on mechanism of 

hexose dehydration. Isomerization of glucose to fructose and vice-versa is a common factor 

between most studies. Side reactions form humins and organic acids like levulinic acid [36, 37]. 

Acids formed as a result of side reactions have been known to self-catalyze the reaction. Side 

reactions are affected by the solvent type, temperature and catalyst. Dehydration products are 

one of the four reaction products formed during decomposition of polyols. Isomerization, 

fragmentation and condensation also take place at elevated temperatures. Two mechanism 

schemes were proposed to explain dehydration of fructose and glucose.  The first scheme 

suggests a series of reactions commencing with and retaining the fructofuranose ring or cyclic 

form of fructose. The second scheme postulates a succession of reactions proceeding mainly via 

open-chain or linear intermediates. Literature is in favor of the first scheme.  Higher yields of 

HMF have been reported in dehydration studies of fructose [62-64]. Rates of HMF production and 

also selectivity was higher for fructose dehydration when compared to dehydration of glucose. 

Glucose is much cheaper and more widely available when compared to fructose. The catalytic 

pathway of glucose and fructose dehydration is shown in Figure 10. Glucose isomerizes to 

fructose or to form HMF.  
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Figure 10: Postulated mechanism for the production of hydroxymethylfurfural (HMF) 68. 

 

              

             Biomass derived feed-stocks have low thermal stabilities and their functional groups are 

hydrophilic compared to their petrochemical counterparts. This makes aqueous phase processing 

a requirement in most of the reactions involving biomass. Early research into sugar chemistry 
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involved detailed models for kinetic studies of hydrolysis of starch29. These studies revealed that 

hydrolysis was accompanied by an undesired decomposition reaction. The product was HMF. 

Levulinic acid was formed as a result of acid catalyzed degradation of starch. It was only later 

realized that these products could be used in processing steps further to yield useful products. 

These reactions form an essential step in biomass processing. Dehydration may also be coupled 

with hydrogenation to carry out a set of reactions. These reactions form the basis of the biomass 

refinery. Aqueous phase dehydrations using mineral acids have been well documented and 

studied [3, 27, 28, 30]. Furanic aldehydes (HMF and furfural) may be upgraded to higher alkanes 

through a series of condensation reactions and hydrogenation/dehydration reactions31. 
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2.4 Platform Chemicals 

2.4.1 HMF 
  

 
 

 

 

 

Figure 11: HMF as a platform chemical 

 

              HMF can be processed through different chemical processing steps to manufacture 

useful chemicals. The oxidation route produces dicarboxylic acid groups such as furan 

dicarboxylic acid FDCA which can be used to make products similar to the petrochemical 

product PET (poly ethylene terephthalate). Reduction of HMF produces dihydroxymethyl 

tetrahydrofuran DHMTHF which can be used to produce polymers as well as in the fuel industry 

as already explained in biomass refinery setup 38. Hydrogenolysis of HMF also helps in fuel 

manufacture. Molecules such as dimethylfuran (DMF) are useful as fuel additives [39, 40]. 

Etherification of HMF yields ethers such as 5–alkoxymethylfurfuralether a useful intermediate in 

fuel industries [41, 42, 43]. The heterocyclic structure of furans is useful in manufacture of 

POLYMERS 

Diols/DHMTH

F 

FUELS 
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biologically active compounds is an important intermediate for pharmaceutical industry. A series 

of hydrogenation, condensation and dehydration reactions may be employed to convert HMF 

into linear chain alkanes. Hydrogenation reactions help to saturate all the bonds in the 

compound. Aldol condensations increase the overall chain length and the final step in alkane 

production is a hydrogenation accompanied by the removal of water molecules to finally produce 

the required linear alkane. These series or reactions are manipulated depending upon the desired 

chain length of final alkane. It is possible to produce 7-15 carbon alkanes through combined use 

of HMF and furfural31. 
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2.4.2 Furfural 

 

 
Figure 12: Furfural as a platform chemical 11. 

Furfural is being researched for a range of specialized chemical applications. Bisphenol-A-

furfural a furfural based polymer resin has shown advantages over phenol-formaldehyde resins 

as regards thermal, chemical, physio-mechanical, and electrical properties59. Furfural may be 

used to manufacture solvents (methylfuran), furfuryl alcohol and furoic acid. Furfural and 
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hydrogen when fed through Ni or Ni-Fe SiO2 bed, form furfuryl alcohol and furans. 

Hydrogenation reactions result in the formation of furfuryl alcohol which then may be 

hydrogenolyzed to yield 2-methyl furan. The furans produced in the Ni-Fe catalyzed bed may be 

used to produce 4 carbon compounds such as butanal, butanol and butane60. Hydrogenation steps 

to upgrade furfural into fuel compounds is still considered to be the more important conversions. 

Similar sequence steps used to convert HMF to linear alkanes may be used to convert furfural 

into desired alkanes. Special types of reactors are used for these reactions.  These reactors consist 

of four phases. The aqueous inlet stream with water soluble organic content, the hexadecane 

solvent stream, a gas inlet H2 and the solid catalyst (Pt/SiO2-Al2O3). Since dehydration 

hydrogenation reactions take place in this four phase setup. This setup is referred to as a 4-PD/H 

reactor system31. Aldol coupling of furfural with levulinic acid can be seen in the top right of 

Figure 12. 
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2.5 Reaction Orders and Rate Law 

  

            In the experiments carried out, sugars were consumed (disappearing reactant). Rate 

depends on temperature and composition. “Rate r, is expressed as the product of rate constant, k, 

and concentrations of the reactant,  

 The rate constant, k, is a function of temperature, catalyst, ionic strength and solvent. For 

reacting species A and B 

−𝑟 = 𝑘𝐶𝐴
𝛼𝐶𝐵

𝛽
      Equation 1 

The rate law involves the product of rate constant and reacting species concentrations with their 

respective exponents. In the case of our reactions of sugar and protons, we have, 

−𝑟 = 𝑘𝐶𝑠𝑢𝑔𝑎𝑟
𝛼 𝐶

[𝐻+]

𝛽        Equation 2 

Rate data collected can be used to determine the activation energy and pre-exponential factors 

for the reaction. To be able to do so, we use the Arrhenius Equation. 

𝑘(𝑇) = 𝐴𝑒−𝐸𝑎/𝑅𝑇             Equation 3 

The Arrhenius plot is a great way to extrapolate rate coefficient data for temperatures that have 

not been investigated. 𝐴 in the above equation represents the pre-exponential factor, 𝐸𝐴 is the 

activation energy, R is the gas constant (8.314 J/mol) and Temperature “T” is measured in 

degree Kelvin. 

 

            This study aims to calculate the rates, activation energy and pre-exponential factors for 

reactions with different sugars. By doing this, it is also possible to compare different catalysts for 

similar dehydration reactions. Just as increasing temperatures increase rate constants, changing 

catalysts may alter the nature and number of molecular collisions and increase rates. Reactions 

carried out at different temperatures yield different values of rate constant k. Plotting ln k as a 
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function of (1/T) yields a slope of –Ea/R. The Arrhenius equation may also be written in semi-

log form as,   

ln 𝑘 = 𝑙𝑛𝐴 −
𝐸𝑎

𝑅𝑇
      {i.e. y= b + mx }  Equation 4 
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Chapter III 

Layout of the CSTR and Design 

 

Figure 13: Layout and Experimental Setup 

 

               The setup comprised of (upstream to downstream) the feed reservoir, an HPLC pump, a 

relief valve rated at 1000 psi (well above operating values and below operating limits of 

equipment), a back pressure regulator (BPR) rated at 500 psi, the insulated CSTR, a condenser, 

and another 500 psi rated back pressure regulator. The pressure gauge positioned above the 

CSTR was used to monitor pressure during the experimental runs. The CSTR was placed 

between the two BPR’s in the interest of maintaining reaction pressures. Two thermocouples 

were used to monitor temperatures, one thermocouple was located in the stainless steel shell 

closest to the rod heating elements of the CSTR to measure highest attainable temperatures of the 

system while the other thermocouple was positioned at the top of the reactor and used to measure 

actual reacting fluid temperatures. Two thermocouples were used in the interest of maintaining 

an acceptable temperature gradient without exceeding the temperature tolerance of the liner 

material. The temperature set point for the controller was based on the temperature readings from 
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the reactor shell thermocouple. A BPR malfunction could cause a spiraling effect and disrupt all 

readings. A blocked BPR resulting from polymerized humin formation could cause pressure 

buildup in the CSTR. The reduction in flow and consequent reduction of the heat sink would 

result in a temperature increase. This situation would imply waiting through another temperature 

transient. An acetone wash, sonication and pumping acetone through the BPR for 10 minutes 

solved flow issues by dissolving the humins blocking flow. Temperature was also found to alter 

the mechanical properties of the BPR. Operating at higher temperatures resulted in a pressure 

spike. The ice-bath condenser served to solve this problem and allow for uniformity in readings. 

The condenser served to stop the reaction and volatilization of reacting solution in the tubing 

downstream to the CSTR. The CSTR used was constructed out of stainless steel 316 owing to its 

mechanical properties and ease of fabrication. Despite its resistance to corrosion due to the 

nature of experiments to be run (low pH and high temperature) it was decided to use a lining 

material Polyether ether ketone (PEEK) on the inside of the working reactor so as to eliminate all 

contact of the reacting fluid with any metallic surface. Leaching of metal shell contaminants 

could be minimized by eliminating all metal contact with the fluid stream. The choice of solvent 

was water (discussed in previous sections). The inside pressure was to be regulated above the 

vapor pressure of water. All these efforts were taken to ensure homogeneous operation in the 

liquid phase. The insulated reactor was positioned on the magnetic pad such that the rod stirrer 

could attain desired mixing. The newly fabricated CSTR was seal tested using nitrogen gas at 

pressures above rated operating values. A feed inlet dip-tube was used to prevent back-mixing. 

Before beginning dehydration experiments it was necessary to make sure the mixing in the 

CSTR was near ideal. Several methods can be used to study and understand mixing 

characteristics, these will be highlighted further. 
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Chapter IV 

Mixing 

 

          For the purpose of good mixing, several agitators were tested. The mixing characteristics 

were studied from tracer experiments to understand the limitations of mixing and corrective 

measures were employed by trying out different agitation speeds ranging from 700 rpm to 1200 

rpm. When mixing tends to diverge from ideal conditions, well mixed models are inadequate. 

During the development of the reactor, mixing conditions were unknown. We make use of 

changing concentrations to understand the nature of mixing in the reactor. By using tracer 

experiments, either pulse inputs or step inputs, it is possible to compare data to ideal tracer 

curves and diagnose mixing problems. Specific tracer tests are needed to run mixing diagnostics. 

In all cases, the output of tracers are measured as a function of time and input concentrations.  

 

4.1 Experimental Methods (Mixing) 

            For the purposes of this experiment we choose a step input for convenience. For the 

tracer test, we require an inert molecule which is easily detectable and inexpensive. The tracer 

must also possess similar properties as the reacting fluid to be tested. Inert tracers such as salt 

solutions are easy to work with. Also, it is inexpensive and easily detected by an in line total 

dissolved solids (TDS) meter. This allowed for an immediate output response to flowing feed 

stream.  

               The inline TDS meter was operated using two probes, one for measuring feed 

concentrations and the other for the CSTR output. Several tracer tests were performed, many of 

the charts comprise data that are of no consequence to the final reactor since several 
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modifications were applied. However we can get a good idea of what prompted some of these 

changes, and the identification of mixing problems. 

              First, different flow rates were tried out to visualize what information could be extracted 

from the mixing curves. The plots are concentration versus time and the curves are called “C” 

curves. Concentrations are normalized against the feed concentration since it is the maximum 

concentration attainable. We intend to see how much time it takes for the concentration of the 

exit stream to reach the desired “1” on the y-axis. Also, the extent of deviation between ideal and 

theoretical curve may be analyzed. From the data collected, it was realized that a few minutes 

elapsed before the output stream began to show any signs of the input tracer fluid. All readings 

were normalized with respect to the input concentration. For all analyses, output response was fit 

to the response to step input equation for CSTR                         

𝐶𝑡 = 𝐶𝑡0
(1 − 𝑒−

𝑡

𝜏)           Equation 5 

For the condition of 1 ml/min in Figure 14, first, the reactor was readied by setting an agitator 

speed of 700 rpm. The tracer input was then started and the output readings were noted in minute 

increments. Since the concentrations were normalized, i.e. C/C0. The ideal curve based on 

Equation 6 was compared to experimental data: 

𝐶𝑡

𝐶𝑡0

= 1 − 𝑒−
𝑡

𝜏   Where t is in minutes.      Equation 6 

Nominal residence time τ was calculated for a measured volume of 13.66ml. Nominal residence 

time τ = 13.66 min for the first condition. (Since τ =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
) 

 

For the second condition, the only change made was the flow rate. Flow was increased to 2 

ml/min and the residence times changed to 6.5min. For the third condition, 3ml/min, τ=4.5 min. 
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For the HPLC analysis, a solution was prepared with a known amount of glucose, levulinic acid 

and HMF. The stock solution response area obtained from the HPLC was noted as C0. Samples 

were collected after 5 minute intervals and analyzed in the HPLC. The response area was taken 

as C. The HPLC confirmed that the data collected using the inline TDS meter was accurate and 

sufficient for the mixing experiments.  

 

4.2 Mixing Results and Discussion:  

        In the first mixing analysis, ideal and experimental mixing curves were plotted side by side 

with the intention of comparing flowrate effects. Through Figure 14 it was made clear that for a 

given agitation speed, flowrates impact time taken to reach maximum output concentrations. 

Since residence times are lowered with increased flowrates, maximum concentrations were 

reached sooner. Curves representing 3 ml/min flowrates attained maximum concentration around 

the 20 minute mark followed by the 2 ml/min which attained maximum concentrations around 

the 35 minute mark. Curves representing 1 ml/min could not reach maximum concentrations 

within 45 minutes of operation. 
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Figure 14: Mixing Curves comparing different flowrates at 700 rpm agitation. 

 

Since preliminary analysis showed that maximum exit concentrations could be attained soonest 

for higher flow rates. It was decided to run the next test of a 3 ml/min flow rate keeping all other 

factors constant. 

The bar type agitator was used in all the experiments and was observed to be unstable at higher 

agitation speeds. A bar type stirrer was tested between 700 and 1200 rpm. The occurrences of 

instability and vibration of the magnetic stirrer increased above 1000 rpm.  
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Figure 15: Effect of agitation on concentration curves. All curves above are for 3 ml/min flow rates. 

 

In the second mixing analysis shown in Figure 15, effect of agitation speeds was studied. The 

flow rate was kept constant at 3 ml/min and two tracer tests were performed, one at 700 rpm and 

the other at 900 rpm using the same feed solution. Ideal curves were fit to the experimental data. 

The influence of simply changing agitation is illustrated in Figure 15. There was a qualitative 

increase in mixing without any instability at 900 rpm agitation speeds. The final output 

concentrations obtained for the 700 rpm experiment were lower than final output concentrations 

seen in the 900 rpm agitation experiments within the 40 minute mark. This comparison 

confirmed increased mixing efficiency for higher agitation speeds. 
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Figure 16: Calculation of effective residence time from tracer data. Experimental data collected at 900 

rpm agitation and 1ml/min flow rate. 

 

Nominal residence times would be insufficient to accurately calculate rates owing to possible 

dead volume. The measured volume of the CSTR was 13.66 ml. Experimental data collected for 

the final curve are shown in Figure 16. The curve used to fit the experimental data represents a 

residence time of 14.60 min. This is our effective residence time for a flow rate of 1 ml/min and 

agitation of 900 rpm. A larger effective residence time calculated would normally indicate that 

the measured volume of the reactor failed to account for the dead volume relative to flow rate. In 

the case of our experimental setup, pump flowrates were found to deviate from 1 ml/min. This 

could explain higher effective residence times as confirmed in Figure 16.   

Although higher flow-rates were desirable for reaching maximum concentrations sooner, 

1ml/min was chosen as the set operating volumetric flow-rate. Larger flow rates would translate 
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to a larger heat sink. Maintaining high temperatures with higher flow rates could result in large 

thermal gradients sometimes exceeding the operating temperature specifications of the liner 

material.  
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Chapter V 

Dehydration Experiments 

 

5.1 Analytical Equipment and Chemicals  

            All dehydrations were carried out in the CSTR setup described above using sulfuric acid 

as the catalyst. The chemicals obtained from all sources were used as is without any additional 

purification. Alpha-D-(+)-glucose, 99+% and sulfuric acid 95% were purchased from ACROS 

Organics, D-Fructose lab grade from Fischer Scientific, D-(+)-xylose used in experiments was 

sourced from Sigma Aldrich. K type thermocouples (OMEGA) were used for the temperature 

measurements. Cartridge heaters were used to heat the reactor system. Analysis was carried out 

in an HPLC (Hi-Plex H+ column Agilent Technologies) using the sugars PLEX column. Sugars 

were analyzed using the refractive index peaks and dehydration products were measured using 

ultra violet (210 nm) peaks. A sulfuric acid solution with a pH of 2 was used as the mobile 

phase. 

 

5.2 Selection of Reactor  

              A preliminary study was conducted to understand the nature of reaction and chemistry, 

industrial applications, text book methods and formulae. Several types of reactors may be used 

for a dehydration reaction. Some research is focused on batch reactors for dehydrations in a 

biphasic setting. The Biofine process (an industrial scale setup for production of HMF, levulinic 

Acid and furfural) combines hydrolysis and dehydration in a plug reactor and a CSTR. The 

choice of reactor type is based on specific goals of the study, economy, practicality and basic 

functioning. Our need was based on running liquid phase reactions. The decision of using a 
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CSTR over other reactor types was based on several factors. A CSTR can be used for uniform 

products and continuous production. The temperature could be controlled and distributed 

uniformly due to the well mixed nature of a CSTR. Near isothermal conditions were needed in 

the CSTR to be able to precisely maintain and report reaction temperatures. Many aspects of the 

CSTR were planned, designed and controlled to make this possible. Calculations used to 

determine rate constants and other parameters in the proceeding part of the text rely on accurate 

recorded measurements of temperature. Specific rate data could be collected at several points for 

a given set of conditions, thereby increasing the accuracy of data. Mixing transients could be 

well documented through tracer tests and accurate steady state data could be collected for a given 

reaction. Data acquired at steady state was a crucial factor in the kinetic study. Steady states were 

important because data for rate constants needed to be calculated for a fixed temperature 

(temperature steady state). Steady state in concentrations also needed to be maintained to 

understand the influence of specific concentrations of protons and sugars in feed.   

                  We choose homogeneous liquid phase reactions due to the added advantages. There 

are no transport limitations experienced as are with heterogeneous catalysts. Surface anomalies 

do not need to be considered. Other concerns that need to be addressed when using solid 

catalysts are catalyst site characterization, poisoning and deactivation. The choice of acid was 

based on ease of measurement of acid strength. Sulfuric acid has been studied extensively for use 

in dehydration experiments (HMF and furfural production) and its selection as a catalyst would 

simplify most experimental techniques [37, 64]. 
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5.3 Experimental Procedure 

              The decision of running the reactor over a range of reactor temperatures (130-150℃) 

was based on the literature study and temperature limitations of the CSTR. Carefully prepared 

feed solutions at ambient temperatures were checked using a calibrated pH probe (buffers pH 

values were 4.01 and 7.01) to ensure that proton concentrations matched calculations based on 

measured acid loading. Although acid loading was measured in molar units, an equivalent proton 

concentration based on dissociation was developed and used. A feed solution sample was 

analyzed against the calibrated HPLC chromatogram data to confirm that the sugar loadings 

were within boundaries. The pump was set to 1ml/min. De-ionized water was pumped through 

the reactor while the temperature reached the set point. Feed solution was pumped through the 

CSTR only after all temperature transients were overcome. End of loading feed solution was 

taken as t = 0. The mixing-flow transient for this residence time amounts to approximately 68 

minutes Figure 17. 

 

Figure 17: Visualization of space time for steady state. Approximately 5 space times needed for steady 

state. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

N
o

rm
al

iz
ed

 C
o

n
ce

n
tr

at
io

n

Space Time (t/τ) 



 

35 
 

 A total of 5 residence times are needed to ensure steady state with regard to flow. Once steady 

state was achieved, 4 samples were collected for every experiment to ensure uniformity. The first 

sample was collected at t = 80 min. A single sample was collected every 3 minutes to be able to 

ensure uniformity and reproducibility in data. 

 

5.4 Analytical Methods 

              Densities of output solutions after experiment were compared to feed solutions before 

experiment. The change in density after completion of experiment were negligible. However, 

due to temperature dependence of densities during reaction, feed densities needed to be measured 

and recorded. Feed densities were measured manually by weighing out 100 ml of the unused 

feed solution. Concentrations of the feed input of an experiment and also output concentrations 

were measured from calibrated HPLC chromatogram areas. Concentration data was recorded in 

moles per sample volume. Carbon moles were calculated for both input and output. One mole of 

a hexose sugar corresponds to 6 moles of carbon. Similarly one mole of a pentose corresponds to 

5 moles of carbon. Carbon moles were calculated for all inputs and corresponding outputs. The 

difference in measured inputs and outputs helped maintain a carbon balance. The carbon balance 

was maintained within a range of 5% error. Large deviations in the carbon balance would be 

indicative of a system leak or unaccounted reactant or product. Conversions were calculated 

based on the amount of product produced per unit reactant (sugar) fed to the reactor i.e. moles 

product per mole reactant fed. Rates of reaction were calculated based on the product.  

 

r =
moles produced per volume

residence time
              Equation 7 
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            Rate estimations are affected by changing densities. As temperature increases, fluid in the 

reactor expands and its volume increases.  This causes a perturbation in residence time relative to 

that measured at room temperature.  Since residence times are used to estimate rates of reaction 

(Equation 7), it is important to correct for temperature-dependent changes in density under 

reaction conditions. The volume increase is a function of initial density and depends on 

Volumetric Expansion Coefficient (β) with units /℃ and Bulk Modulus (E) with units N/m2. The 

combined effect of heat and pressure can be calculated as: 

  

ϱ =
ϱ0

(1 + β (𝑡1 – 𝑡0))×(1 –(𝑝1 – 𝑝0)/E)
           Equation 8 

 

ϱ: Density at operating temperature 

ϱ0: Density of feed at room temperature 

β: Volumetric expansion coefficient taken as 0.0002 (m3/m3 ℃) (water) 

𝑡1 – 𝑡0: Difference in final temperature and room temperature (℃) 

𝑝1 – 𝑝0: Difference between ambient pressure and reactor pressure at operating 

temperature (Pa) fixed for all reactions at 33.5 × 105 Pa 

E: Bulk Modulus taken as 2.2 × 109 N/m2 

 

Proton concentrations of reacting solutions were calculated by solving equilibrium equations.  

𝐻2𝑆𝑂4 ↔ 𝐻+ + 𝐻𝑆𝑂4
−          Equation 9 

𝐻𝑆𝑂4
− ↔ 𝐻+ + 𝑆𝑂4

−            Equation 10 

𝐻2𝑂 ↔ 𝐻+ + 𝑂𝐻−              Equation11 
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𝑘𝑎1 =
[𝐻+][𝐻𝑆𝑂4

−]

[𝐻2𝑆𝑂4]
              Equation 12 

𝑘𝑎2 =
[𝐻+][𝑆𝑂4

−]

[𝐻𝑆𝑂4
−]

                 Equation 13 

𝑘𝑤 =
[𝐻+][𝑂𝐻−]

[𝐻2𝑂]
               Equation 14 

Calculation of dissociation constant of water kw is as under 

ln(𝑘𝑤) = 2.70291 − 2.6105 × 103𝑇  (Temperature T in degree Celsius)        Equation 15 

Sulfuric acid is a diprotic acid, i.e. It contains two protons. Sulfuric acid may dissociate to donate 

one proton or it may donate the second proton as well. The first dissociation is a strong acid 

dissociation. The dissociation constant ka1 for the first dissociation is large of the order of 

2.4×106. We may assume complete dissociation of the first proton due to the high value of ka1. 

Dissociation of sulfuric acid in water is exothermic. We know that the proton concentration of 

the solution will decrease with an increase in temperature. We need to quantify this decreased 

proton concentration by solving equilibrium reactions and considering all of the temperature 

dependent terms. The second dissociation constant ka2 (temperature dependent) is a weak acid 

dissociation and is known for the range of operating conditions. It may be calculated using the 

Debye-Huckle equations for ionic strength. 

log 𝐾2 = 56.889 − 19.8858 𝑙𝑜𝑔 𝑇 −
2307.9

𝑇
− 0.006473𝑇 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 𝑇 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛) 

Equation 15 
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5.5 Kinetic Results and Discussion 

5.5.1 Glucose 

             Before rate data were collected, corrections were applied to account for the change in 

density and the change in proton concentration of reacting solution. The effect of temperature on 

density was studied and illustrated in Table 1 by evaluating the percentage change in density for 

the highest and lowest temperatures within operating temperature range. Residence times were 

affected as a result of this change in effective volumetric flow-rate. Rates were found to vary by 

up to 4.27% for higher temperatures as can be seen in Table 2. Change in densities of reacting 

solutions after exiting the CSTR were negligible and not considered owing to small conversions. 

 

 

TABLE 1: EFFECT OF TEMPERATURE ON DENSITY. 

Operating 
Temperature ℃ 

Initial density at 25℃  
(kg/l) 

Final density at operating temp 
(kg/l) 

% Change 

150 

1040 1016 2.3 

1014 990 2.3 

1004 981 2.3 

1001 978 2.3 

120 

1040 1022 1.7 

1014 996 1.7 

1004 986 1.7 

1001 983 1.7 

 

 

TABLE 2: MAXIMUM DIFFERENCE IN RATES CALCULATED BY ACCOUNTING FOR CHANGE IN EFFECTIVE RESIDENCE TIME. 

Temp 
℃ 

Glucose 
wt % 

pH 
measured 

with 
probe 

Rate HMF 
(mol/l.min) 

Volumetric 
flow rate 
(ml/min) 

Residence 
time at 

25℃ 

Rate not 
accounting 
for temp. 

Density 
at 

141℃ 

Effective 
flow-
rate 

Residence 
time at 
141℃ 

Rate at 
141℃ 

Difference in 
calculated 

rates 

141 1 2.01 1.678E-07 0.959 14.23 1.609E-07 979.79 0.979 13.64 1.7E-07 4.27% 
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            Most mechanistic studies neglect the effect of proton concentrations. They instead rely on 

rate measurements for specific pH values 52.  The activation energies and pre-exponential factors 

calculated in these studies lump the effects of proton concentrations. This is possible through the 

use of the modified Saeman equation which is similar to the Arrhenius equation. This equation 

can be expressed as; 

𝑘 = 𝐴0. [𝐻]𝑚𝑒
−𝐸𝑎
𝑅𝑇               Equation 16 

Where, 𝐴0 is the Saeman pre-exponential factor, H is the proton concentration and m indicates 

temperature dependence of H.  

                In this project, we focus on calculating proton concentrations at reaction temperatures 

through the use of measured proton concentrations at room temperature. Dissociation is 

temperature dependent and changes for every temperature. Molar concentrations of protons 

could not be measured during the reaction and therefore called for calculated values. The 

inclusion of proton concentrations at reaction temperature are needed for calculation of rate 

constants. Our plot of the Arrhenius equation in Figure 20 includes the effect of proton 

concentrations separately and does not require normalizing the pre-exponential factor with 

proton concentrations. We avoid the use of lumped pre-exponential factors and hence are able to 

express partial orders in both sugars and protons. 

                  Table 3 illustrates recorded values of pH and H+ at room temperature with 

corresponding pH and H+ values at reaction temperatures. The temperature column represents 

experimental reaction temperatures. The difference in the proton concentrations at room 

temperature and at reaction temperatures may be represented as a percentage as shown in the last 

column of Table 3. 
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Largest changes in proton concentration could be observed for higher temperatures and higher 

pH values. Proton concentrations were found to vary with temperature by up to 45.9% for higher 

temperatures of 141℃ and pH 2. 

 

TABLE 3: EFFECT OF TEMPERATURE ON PROTON CONCENTRATION. 

Temperature 
℃ 

pH 
@25

℃ 

H+ @ 
25℃ 

(mol/l) 

pH @ Final 
Temperature 

H+ @ Final 
Temperature 

(mol/l) 

% difference in H+ due to 
heating 

123.00 1.00 0.099 1.037 0.091 8.57 

131.80 1.50 0.031 1.592 0.025 22.36 
132.00 2.00 0.008 2.234 0.005 43.45 
132.50 1.00 0.099 1.038 0.091 8.77 

141.00 2.01 0.008 2.241 0.005 45.90 

141.00 1.50 0.031 1.594 0.025 22.95 

141.00 1.00 0.099 1.038 0.091 8.92 

103.60 2.00 0.008 2.201 0.006 33.05 

122.00 2.00 0.008 2.226 0.005 40.59 

123.00 2.07 0.008 2.243 0.005 40.93 

123.00 1.50 0.031 1.590 0.025 21.65 

 

 

Rates of dehydration of glucose were calculated based on moles of HMF produced per unit 

volume per unit time. The corrected residence times contributed to reliable rate measurements 

illustrated in Table.4. 

 

 

 

 

 

 

 



 

41 
 

TABLE 4: HMF FORMATION RATES FROM GLUCOSE FEED SOLUTION. (HMF YIELDS RANGING FROM 0.26 ΜMOL/L FOR PH 

2, 1 WT % GLUCOSE TO 226.02 ΜMOL/L FOR PH 1, 10 WT % GLUCOSE) 

 

 

Rate data were collected at constant temperature. From the rate law, we have; 

𝑟 = 𝑘𝐶𝑔
𝑎𝐶𝐻+

𝑏
                    Equation 17 

             Rate data were calculated at several known concentrations of sugar and protons. We are 

able to extract information from the specific groups of data points. By grouping the rates 

measured at fixed pH (proton concentrations) and fixed sugar concentrations it is possible to 

determine partial orders using kinetic analysis. 

              Rate data collected for a constant pH by varying sugar concentrations helps express the 

effect of sugar concentrations at that temperature. In the case of this experiment, proton 

concentrations are fairly unchanged during reaction since protons play the role of a catalyst. For 

constant pH, the rate law may be represented as; 

123℃ 132℃ 141℃ 

Glucose 
(wt %) 

pH Rate 
(mol/l.min) 

Glucose 
(wt %) 

pH Rate 
(mol/l.min) 

Glucose 
(wt %) 

pH Rate 
(mol/l.min) 

1 

2 1.87E-08 

1 

2 5.83E-08 

1 

2 1.67E-07 

1.5 6.29E-08 1.5 1.88E-07 1.5 5.52E-07 

1 2.28E-07 1 7.98E-07 1 1.77E-06 

 
   

 
   

 
   

2 

2 3.76E-08 

2 

2 1.21E-07 

2 

2 3.46E-07 

1.5 1.25E-07 1.5 3.89E-07 1.5 1.12E-06 

1 4.80E-07 1 1.44E-06 1 3.42E-06 

 
   

 
   

 
   

5 

2 9.42E-08 

5 

2 2.81E-07 

5 

2 8.39E-07 

1.5 2.95E-07 1.5 9.52E-07 1.5 2.62E-06 

1 1.22E-06 1 3.62E-06 1 8.38E-06 

 
   

 
   

 
   

10 

2 2.05E-07 

10 

2 5.64E-07 
10  ` 

  

2 1.61E-06 

1.5 5.36E-07 1.5 1.77E-06 1.5 4.82E-06 

1 2.04E-06 1 6.69E-06 1 1.53E-05 
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 𝑙𝑛𝑟 = 𝑙𝑛𝑘′ + 𝑎𝑙𝑛𝐶𝑔                Equation 18 

Lumped rate constant k’ as illustrated in Table 5 may be obtained from the regression plot of 

multiple data points.  

 

 

 

Figure 18: ln Rate vs ln Cg for constant pH 
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TABLE 5: LUMPED RATE CONSTANTS FOR GLUCOSE EXPERIMENTS (CONSTANT H+ CONC.) 

pH Lumped Rate Constant k' (1/min) Temperature ℃ 

2 3.41E-07 

123 1.5 1.08E-06 

1 4.55E-06 

2 1.02E-06 

132 1.5 3.51E-06 

1 1.35E-05 

2 3.11E-06 

141 1.5 9.75E-06 

1 3.14E-05 

 

 

TABLE 6: REACTION ORDERS FOR CONSTANT PH DATA (GLUCOSE EXPERIMENTS) 

Temperature ℃  pH Reaction Order 

123 

1.0 0.945 

1.5 1.008 

2.0 1.044 

132 

1.0 0.986 

1.5 0.990 

2.0 0.997 

141 

1.0 0.973 

1.5 0.957 

2.0 0.963 

 

 

            Data in Figure 18 allows us to observe the cumulative set of experimental points for 

constant pH. Each line in the graph represents four reactions carried out at a single pH and fixed 

temperature by varying glucose concentration alone. It can be determined from Table 6 that 

partial order is approximately “1” with respect to glucose.  
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A similar analysis for constant glucose loading may be performed. For constant glucose 

concentrations, the rate law may be represented as;  

ln 𝑟 = 𝑙𝑛𝑘" + 𝑏𝑙𝑛𝐶𝐻+           Equation 19 

Here, k” illustrated in Table 7 are the lumped rate constants.  

 

 

Figure 19: ln Rate vs ln H+ for constant Glucose loading 
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TABLE 7: LUMPED RATE CONSTANT K” FOR CONSTANT GLUCOSE LOADING 

Temperature ℃  Glucose (g/l) 
Lumped Rate Constant k" 

(1/min) 

123 

 

 

 

10 2.45E-06 

20 4.90E-06 

50 1.15E-05 

100 2.09E-05 

132 

 

 

 

10 7.39E-06 

20 1.53E-05 

50 3.73E-05 

100 6.95E-05 

141 

 

 

 

10 2.17E-05 

20 4.43E-05 

50 0.000103 

100 0.00019 

 

            Data in Figure 19 allows us to observe the cumulative set of experimental points for 

constant glucose concentration. Each trend line represents data collected at a fixed temperature 

and glucose concentration for three different pH values. It can be determined that partial order is 

approximately one with respect to protons.     

 

First order reactions (partial) in glucose and protons individually are observed in the preceding 

sections. Once we have our partial orders, overall order of the reaction may be calculated as  

n= a + b           Equation 20 

From our data it is clear that overall order of reaction is “2”. Since units of k are  

                                                            𝑚𝑖𝑛−1(
𝑚𝑜𝑙

𝑙
)[1−(𝑎+𝑏)]      Equation 21 

We get units of the overall rate constant as 𝑙/(mol.min). We may now use the rate law with 

known orders to ascertain the overall rate constant k at each temperature. 
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TABLE 8: SECOND ORDER RATE CONSTANTS FOR GLUCOSE CALCULATED FROM EXPERIMENTAL RATES 

Temperature ℃ Rate constant [l/mol.min] 

123 4.38E-05 

132 0.0001 

141 0.0003 

 

Rates measured for all concentrations of glucose and protons are used in all proceeding analyses. 

Rate constants were calculated for second order reaction in protons and sugar at every reaction 

temperature. The least squares numerical method was used to calculate k. 

 

Calculation of Rate Constant, Activation Energy and Pre-Exponential factor. 

          The Arrhenius plot or Ln k versus (1/T) graph was used to explore the temperature 

dependence of the dehydration reaction. 

 

 
 

Figure 20: Arrhenius plot (Glucose) 
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           The slope of this plot corresponds to Ea/R (shown in literature survey). Ea is calculated as 

154.5 ± 11.75 kJ/mol. Activation energy value from literature studies found to be 118±37.5 

kJ/mol.49 Pre-exponential factor A corresponds to the exponent of the intercept. A is calculated 

as 1.115E+16 l/(mol.min).  

Similar experiments and analyses were carried out with fructose and xylose. 
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5.5.2 Fructose  

            Fructose dehydration rates as experimentally determined are illustrated in Table 8. 

Fructose dehydration is found to have higher rates than glucose dehydration and are in agreement 

with literature. Rate constants were used to compare rates of dehydration of glucose and fructose 

and are presented in Table 10. Rates of fructose dehydration were found to be 99% faster than 

glucose dehydration. This is in accordance with the cyclic intermediate scheme presented in our 

study of mechanism. The alternative theory of reactions proceeding via open chain intermediates 

is unable to explain a difference in rates of glucose and fructose dehydrations. The elimination of 

the 3-hydroxyl group to form the enol that is thought to take place through the liner chain 

mechanism should commence at the same rate for both glucose as well as fructose. However, 

this is not the case. Both dehydration reaction schemes lead to the formation of HMF through the 

fructofuranosyl intermediate. Cyclic/Ring mechanisms leading to the intermediate formation 

through 𝛽-elimination can explain differential rates between glucose and fructose. Anomeric 

equilibria and the effects of temperature on tautomerism were not explored in this study. 
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TABLE 9: HMF FORMATION RATES FROM FRUCTOSE FEED SOLUTION (EXPERIMENTAL). 

Temp ℃ pH Fructose (mol/l) 
Rate (mol/l.min) 

  

103.6 2 

0.055 1.91E-07 

0.110 4.52E-07 

0.274 1.13E-06 

112.5 1 

0.053 1.19E-05 

0.257 5.78E-05 

 

  

122.4 1 

0.049 3.01E-05 

0.241 0.0001 

 

  

104.1 0.5 

0.052 1.64E-05 

0.251 8.03E-05 

 
  

 

Fructose rates were measured for a number of conditions. The constant pH data are plotted as 

under. 

 

Figure 21: ln Rate vs ln Cf 

y = 1.0064x - 8.0406

-16

-15

-14

-13

-12

-11

-10

-9

-8

-3.2-3-2.8-2.6-2.4-2.2-2-1.8-1.6-1.4-1.2

Ln
 R

at
e

Ln Cf

pH 2 103.6 degC

ph 0.5 104.1 degC



 

50 
 

 

 
 

Figure 22: ln Rate vs ln H+ (Fructose) 

 

Figure 21 and Figure 22 establish that fructose dehydration rates are first order in both protons 

and fructose. Since orders have been established, we may proceed to calculate rate constants and 

consequently barriers and other kinetic constants for fructose dehydration. 

 

TABLE 10: SECOND ORDER RATE CONSTANTS FOR FRUCTOSE CALCULATED FROM EXPERIMENTAL DATA. 

Temperature ℃ Rate constant [l/mol.min] 

103.6 0.0006 

112.5 0.002 

122.4 0.006 

104.1 0.001 

 

 The Arrhenius plot better represents temperature effects on rate. The Arrhenius plot for fructose 

shown in Figure 23. 
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Figure 23: Arrhenius plot (Fructose) 
 

The activation energy obtained from this data is 140.45 ± 16.306 kJ/mol. Literature data for 

fructose dehydrations with sulfuric acid indicate an Ea of approximately 136 kJ/mol.  
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5.5.3 Xylose 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: ln Rate vs Ln Cx 

 

Xylose data were collected for only one pH value and two temperatures. The rate increase 

facilitated by an increase in temperature from 123 to 132 ℃ is clear in Figure 24. Both sets of 

data were obtained for a pH of 2. Xylose dehydration is also found to be first order in sugar and 

protons. Xylose rates used in the analysis are shown in Table 9. 
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TABLE 11: RATES OF FURFURAL FORMATION FROM XYLOSE FEED SOLUTION. 

Temperature ℃ Xylose (wt %) pH Rate (mol/l.min) 

123 
1 2 9.577E-07 

5 2 4.863E-06 

132 
1 2 3.632E-06 

5 2 1.444E-05 

 

TABLE 12: SECOND ORDER RATE CONSTANTS FOR XYLOSE CALCULATED FROM EXPERIMENTAL RATE DATA 

Temperature ℃ Rate constant [l/mol.min] 

123 2.48E-05 

132 6.87E-05 

 

 

The Arrhenius plot for xylose is shown in Figure 24. 

 

 

Figure 25: Arrhenius Plot (Xylose). 
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Due to limited experimental data, confidence intervals cannot be calculated for xylose. Ea was 

found to be 164.092 J/mol and A was found to be 1.119E+19 ml/(mol.min). 

 

TABLE 13: 2ND ORDER RATE CONSTANTS FOR SUGAR DEHYDRATION AT FIXED TEMPERATURES.  

Temperature℃ 
Rate Constant k [l/(mol.min)] 

Glucose Fructose Xylose 

123 4.581E-05 0.007 0.002 

132 0.0001 0.018 0.007 

144 0.0003 0.045 0.022 

 

 

We can compare rates of sugar dehydration over the temperature range being studied by 

observing rate constants. Rate information collected over different temperatures were used to 

obtain rate constants. From rate constants for each sugar, we are able to generate Arrhenius plots. 

Since rates need to be compared at a fixed temperature to be of any significance to the 

comparison, we use the Arrhenius plots to calculate values of k for that temperature. Although 

limited data were collected at temperatures 123,132 and 141℃  for all sugars, it was possible to 

calculate rate constants at these temperatures graphically and present them in Table 10. From this 

table it is clear that lowest rates were seen for glucose dehydration. Fructose dehydration rates 

were significantly higher. 
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Figure 26: Comparison of sugar dehydration rates based on rate constant. Rate constants taken from 

Table 10. 
 

Rates of dehydration are found to be greatest for fructose. The large relative rate difference 
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of xylose to the other sugars is difficult owing to the larger confidence intervals in data. Rates of 

dehydration of xylose are, however greater than glucose as seen in Figure 26. Literature studies 

that detail xylose dehydration show that the steps leading to anhydride (intermediate) and 

consequently to furans through the cyclic route are faster than rates seen with open-chain xylose 

since a very large fraction of open-chains would have to be formed for the reaction at 

experimental temperatures. Glucose dehydration rates are lowest and rely on isomerization to 

fructose before forming HMF. Rates as observed (fructose > xylose > glucose) were explained 

and confirmed in the literature. 
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Chapter VI 

Conclusion and Perspectives 

 

            The goal of this project was to develop a method and use it to generate reliable kinetic 

data for use in industrial applications in the processing of HMF and furfural that have potential 

as platform chemicals. Reliable data were generated using the reactor built through the 

systematic heuristics based approach. Special considerations were made to account for changing 

variables, such as density and its effect on rates. Catalyst loading was quantified based on proton 

concentration (dissociation dependent on temperature and solvent) and the difference in proton 

concentration was evaluated. The first part of the work involved designing a system based on 

literature, assigning convenient and required process/mixing parameters and collecting 

experimental data. Experimental data were collected between 123 and 141℃ . Despite low 

conversions, rate data were measured for all three sugars. The second part of the study compared 

the sugars based on the measured and calculated kinetic constants. Higher rates of fructose 

dehydration as reported in other literature studies were confirmed through the analysis. 

 

           Assisting the renewables sector is an important objective of catalysis research. This study 

explored the use of the homogeneous catalyst sulfuric acid in the dehydration reaction. Similar 

setups may be used to study alternative catalysts (homogeneous or heterogeneous) and reactions 

(multiphase). Only research into different catalysts can reveal novel catalysts that are selective, 

inexpensive to operate and efficient at larger yields. 
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