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ABSTRACT 
Mathematical models are essential in Model-Predictive Control (MPC) for building automation 
and control (BAC) application, which must be precise and computationally efficient for real-
time optimization and control. However, building models are of high complexity because of the 
nonlinearities of heat and mass transfer processes in buildings and their air-conditioning and 
mechanical ventilation (ACMV) systems. This paper proposes a method to develop an 
integrated linear model for indoor air temperature, humidity and Predicted Mean Vote (PMV) 
index suitable for fast real-time multiple objectives optimization. A linear dynamic model is 
developed using SIMSCAPE language based on the BCA SkyLab test bed facility in Singapore 
as a case study. Experimental data is used to calibrate the model using trust-region-reflective 
least squares optimization method. The results show that the mean absolute percentage errors 
(MAPE) of predicted room temperature and humidity ratio are 1.25% and 4.98%, compared to 
measurement, respectively.  
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INTRODUCTION 

Developing an appropriate building mathematical model has been a major challenge of MPC 
implementation for building automation and control (BAC) application (Cigler et al., 2013). 
Henze (2013) pointed out that about 70% of project costs were consumed by model 
development and calibration for MPC in buildings. Cigler et al. (2013) also found more than 
55% of project time spent on modeling work for implementing MPC in different two buildings. 
The mathematical model of the building must be sufficiently accurate in predicting building 
dynamics and computationally efficient for real-time control and optimization in MPC. A viable 
solution is to develop linear models of buildings that are of medium to high fidelity and is 
computationally more efficient (Cigler et al., 2013). Currently, two modeling methods, thermal 
resistance-capacitance (RC) model (Sturzenegger et al., 2012) and system identification (Cole 
et al., 2014) have been adopted to develop linear building models for control purpose. However, 
most of the previous studies focus on the prediction of indoor temperature whereas the indoor 
humidity and human thermal comfort are seldom covered (Kramer et al., 2012). To improve 
indoor thermal comfort and building energy performance with MPC further, it is necessary to 
include humidity and thermal comfort index in the prediction model of MPC. 

This work aims to develop a general methodology for constructing a linear model for indoor 
thermal comfort and energy optimization with MPC. A building model is developed based on 
the BCA SkyLab test bed facility in Singapore, as a case study, to predict indoor temperature, 
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humidity, and thermal comfort. The thermal and humidity dynamic models are created using 
the RC network. A linear approximation method is proposed to linearize the nonlinearities in 
the ACMV cooling coil model and PMV calculation model. A model calibration procedure is 
also adopted to refine the proposed linear model. 

METHODS  
Room space model 
For air-conditioned room spaces, the heat and moisture balance could be modeled by equations 
(1) and (2),

𝑚𝑎𝑖𝑟,𝑧
𝑑𝜓𝑧

𝑑𝑡
= �̇�𝑜𝑐𝑐 + �̇�𝐴𝐶𝑀𝑉, (1) 

𝑚𝑎𝑖𝑟,𝑧𝐶𝑎𝑖𝑟
𝑑𝑇𝑍

𝑑𝑡
= 𝑄𝑖𝑛𝑡𝑒 + 𝑄𝑒𝑛𝑣 + 𝑄𝐴𝐶𝑀𝑉, (2) 

where Q is heat flow rate (W), �̇� is mass flow rate (kg/s), m is mass (kg), T is temperature (K) 
and  is humidity ratio (kg/kg). The subscript inte refers to internal, z refers to thermal zone, 
and env refers to envelope.  

RC models of walls, ceiling and floor 
Figure 1 shows the lumped parameter and RC representations of a building wall model. The 
wall is virtually split into two aggregates and only heat conduction in the normal direction is 
considered. The RC model is a 5R2C model, which includes two thermal capacitances of the 
two aggregates, three thermal conduction resistances of aggregates and two surface thermal 
resistances between surface and air (outer and inner surfaces). 

a)                                                                     b) 
Figure 1 a) lumped parameter and b) RC representations of a building wall model 

In Figure 1, the symbols R, C, and q refer to thermal resistance (K-m/W), thermal capacity (J/K) 
and heat flux (W/m2), respectively. Subscripts sur, o, 1, the, sol, z, tra, and int refer to surface, 
outside, aggregate number, thermal, solar radiation, thermal zone, transmission, and interior 
respectively. The same model treatment is applied to the roof and the floor.  

Linearized cooling coil model 
When the ACMV system is in operation, the supply air relative humidity (RH) is assumed 100% 
and the heat/mass transfer between the mixed air and the cooling coil can be described by, 

𝑄𝑐𝑐 = �̇�𝑚𝑎(𝐶𝑎𝑖𝑟 + 𝐶𝑣𝑎𝑝𝜓𝑚𝑎)(𝑇𝑚𝑎 − 𝑇𝑠𝑎) + �̇�𝑚𝑎𝐿𝑣𝑎𝑝(𝜓𝑚𝑎 − 𝜓𝑠𝑎), (3) 
𝜓𝑠𝑎 = 0.62198𝑝𝑣𝑎𝑝,𝑠𝑎𝑡/(𝑝𝑧 − 𝑝𝑣𝑎𝑝,𝑠𝑎𝑡), (4) 
𝑝𝑣𝑎𝑝,𝑠𝑎𝑡 = 𝑒(77.345+0.0057𝑇𝑧−7235 𝑇𝑧⁄ ) 𝑇𝑧

8.2⁄ , (5) 
where the subscripts ma, vap, sat and cc refer to the mixed air in FCU, water vapor, saturation 
and cooling coil, respectively. L refers to the specific latent heat (J/kg) of water condensation. 

For temperature between 283.15K – 293.15K (covering the typical range of supply air 
temperatures), nonlinear equations (4) and (5) can be approximated by the linear equation, 

𝜓𝑠𝑎 = 7.014 × 10−4𝑇𝑠𝑎 − 0.1913 . (6) 
With this assumption, the indoor moisture and sensible heat load removed by AMCV system 
can be calculated by,  
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�̇�𝐴𝐶𝑀𝑉 = 2.58 × 10−4�̇�𝑓𝑎𝑇𝑓𝑎 + 2.58 × 10−4�̇�𝑟𝑎𝑇𝑟𝑎 − 2.57 × 107𝑄𝑐𝑐 +

 0.633�̇�𝑓𝑎𝜓𝑓𝑎 − (�̇�𝑓𝑎 + 0.368�̇�𝑟𝑎)𝜓𝑟𝑎 − 0.0703�̇�𝑓𝑎 − 0.0703�̇�𝑟𝑎, (7) 

𝑄𝐴𝐶𝑀𝑉 = 369.4�̇�𝑓𝑎𝑇𝑓𝑎 − (1005�̇�𝑓𝑎 + 635.6𝑟𝑎)𝑇𝑟𝑎 − 0.368𝑄𝑐𝑐 + 9.062 ×

105(�̇�𝑓𝑎𝜓𝑓𝑎 + �̇�𝑟𝑎𝜓𝑟𝑎) +   1.734 × 105�̇�𝑓𝑎 + 1.734 × 105�̇�𝑟𝑎,
(8) 

where the subscripts fa and ra refer to fresh air and return air. When the supply air flow rate 
and fresh air flow rate are constant, the equations become linear. The equations are valid under 
the conditions of RHsa = 100%, 283.15K < Tsa < 293.15K according to the assumptions in the 
modeling procedure. 

Linearized PMV calculation model 
Predicted Mean Vote index (Fanger, 1970) is calculated according to the equation, 

𝑃𝑀𝑉 = (0.303𝑒−0.036𝑀 + 0.028)𝑄𝑑𝑖𝑓𝑓. (9)
The difference between the internal heat production and loss, 𝑄𝑑𝑖𝑓𝑓, that occurs in a human 
body is calculated by, 

𝑄𝑑𝑖𝑓𝑓 = 𝑀 − 𝑄𝑤𝑜𝑟𝑘 − 𝑄𝑟𝑒𝑠 − 𝑄𝑠𝑒𝑛𝑠 − 𝑄𝑒𝑣𝑎𝑝, (10) 
𝑄𝑟𝑒𝑠 = 0.0014𝑀(307.15 − 𝑇𝑎𝑖𝑟) + 1.72 ∗ 10−5𝑀(5867 − 𝑝𝑣𝑎𝑝), (11) 
𝑄𝑠𝑒𝑛𝑠 = 39.6 ∗ 10−9𝑓𝑐𝑙𝑜(𝑇𝑐𝑙𝑜

4 − 𝑇𝑚𝑟
4 ) + 𝑓𝑐𝑙𝑜ℎ𝑐𝑜𝑛𝑣(𝑇𝑐𝑙𝑜 − 𝑇𝑎𝑖𝑟), (12) 

𝑄𝑒𝑣𝑎𝑝 = 0.42(𝑀 − 𝑄𝑤𝑜𝑟𝑘 − 58.15) + 3 ∗ 10−3[5733 − 6.99(𝑀 − 𝑄𝑤𝑜𝑟𝑘) − 𝑝𝑣𝑎𝑝] (13)
𝑇𝑐𝑙𝑜 = 𝑇𝑠𝑘𝑖𝑛 − 𝑅𝑐𝑙𝑜[𝑓𝑐𝑙𝑜ℎ𝑐𝑜𝑛𝑣(𝑇𝑐𝑙𝑜 − 𝑇𝑎𝑖𝑟)] − 𝐼𝑛𝑠𝑐𝑙𝑜[39.6 ∗ 10−9𝑓𝑐𝑙𝑜(𝑇𝑐𝑙𝑜

4 − 𝑇𝑚𝑟
4 )] (14)

In the equation (9) – (14), M is the metabolic rate of a human being (W), p is air pressure (Pa), 
fclo is clothing factor, and Insclo is clothing insulation (1 clo = 0.155 m2-K/W). The subscripts 
clo, mr, vap, conv, sens, evap, res, skin and work refer to clothing, mean radiant, water vapor, 
convection, sensible, evaporation from occupant skin, respiration of occupant, skin surface, and 
external work. 

There are two nonlinear items, radiative heat transfer 39.6 ∗ 10−9𝑓𝑐𝑙𝑜(𝑇𝑐𝑙𝑜
4 − 𝑇𝑚𝑟

4 ) and water
vapour pressure, 𝑝𝑣𝑎𝑝, in the PMV model. The radiative heat transfer term can be linearized by 
(Park, 2013), 

𝑄𝑟𝑎𝑑 = 39.6 ∗ 10−9𝑓𝑐𝑙𝑜(𝑇𝑐𝑙𝑜 + 𝑇𝑚𝑟)(𝑇𝑐𝑙𝑜
2 + 𝑇𝑚𝑟

2 )(𝑇𝑐𝑙𝑜 − 𝑇𝑚𝑟)
 = ℎ𝑟𝑎𝑑𝑓𝑐𝑙𝑜(𝑇𝑐𝑙𝑜 − 𝑇𝑚𝑟). (15) 

The water vapor pressure can also be calculated by the following equation, for air temperatures 
within 293.15 - 303.15 K covering the range of typical room temperatures, 

𝑝𝑣𝑎𝑝 = 𝜓𝑧𝑝𝑧 (𝜓𝑧 + 0.622)⁄ ≅ 1.598 × 105𝜓𝑧. (16)
In a scenario that the cloth factor, metabolic rate of the occupants, external work of the 
occupants and room pressure can be assumed constant, likely so in a typical office environment, 
the PMV equation can be reduced to one linear equation, 

𝑃𝑀𝑉 = [
(0.68ℎ𝑐𝑜𝑛𝑣 + 0.0051ℎ𝑟𝑎𝑑 + 0.06)𝑇𝑎𝑖𝑟 + 0.68ℎ𝑟𝑎𝑑𝑇𝑚𝑟 +

(35.7ℎ𝑐𝑜𝑛𝑣 + 35.7ℎ𝑟𝑎𝑑 + 419)𝜓𝑧 + 7.3 − 208ℎ𝑟𝑎𝑑 − 208ℎ𝑐𝑜𝑛𝑣
] /

       (ℎ𝑐𝑜𝑛𝑣 + ℎ𝑟𝑎𝑑 + 11.73).  
(17)

The equation is valid for a common office environment with air conditioning where room 
temperature is within 293.15 - 303.15 K. 

MPC formulation 
A MPC controller for future study of building energy and indoor thermal comfort optimization 
with MPC could be modeled as 

𝐽 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(∑ ∑ 𝑄𝑖,𝑡+𝑘|𝑡
2𝑁

𝑘=0
𝑀
𝑖=0 + ∑ (𝑊𝑃𝑀𝑉𝑃𝑀𝑉𝑡+𝑘|𝑡)2𝑁

𝑘=0 + ∑ 𝑊𝜖(𝜖𝑡+𝑘|𝑡)2𝑁
𝑘=0 ), (18) 
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where Q, PMV, W and 𝜖  refer to normalized cooling power, normalized thermal comfort, 
weighting factor and slack variable. M and N refer to the number of cooling system and 
prediction horizon.  

The objective function subjects to the building dynamics modelled in this section, limits of 
cooling power and acceptable indoor thermal comfort zone (-0.5<PMV<0.5). In this study, the 
building dynamic model is linearized. This results into a convex optimization problem, which 
can be more efficiently solved compared to a nonlinear optimization problem with a nonlinear 
building model, for finding the optimal control strategies for building control (Cigler et al., 
2013). 

CASE STUDY AND RESULTS DISCUSSION 
The physical building studied in this work is the BCA SkyLab located in the BCA Academy in 
Singapore. SkyLab has two side-by-side identical experimental cells with full-height window 
façade on one side, as shown in Figure 2. The properties of the building envelope are described 
by Lamano et al., (2018), and Yang et al., (2018). 

a)              b) 
Figure 2 a) exterior view of BCA SkyLab, b) Schematic drawing of BCA SkyLab 

An ACMV system that consists of one fan coil unit (FCU) and six active chilled beam (ACB) 
units was installed in the Test Cell of SkyLab, as shown in Error! Reference source not 
found.. The chilled water valve in FCU was controlled by a thermostat according to pre-cooled 
air set point temperature. The pre-cooled air from FCU was supplied into the ACB units, 
meanwhile, induced some room air into the ACB units. The sensible load in the induced air was 
removed by the cooling coils in ACB. The conditioned induced air mixed with pre-cooled air 
and was distributed into the room space. A heat exchanger was installed to regulate the supplied 
chilled water temperature of ACB higher than dew point in the room space to avoid 
condensation. Thus, FCU is capable of dealing with all the latent load and partial sensible load 
and the rest sensible is removed by the ACB. 

The Test Cell operates at a design condition during office hours (9 am – 6 pm of weekday). The 
design occupancy density, internal plug load and internal lighting load are 0.092 person/m2, 16 
W/m2 and 8.22 W/m2 floor area, respectively. The ACMV system supplies constant 33 l/s fresh 
air and 147 l/s supply air into the room space.   

Based on the modeling methods described earlier, an integrated linear model the Test Cell is 
developed in the MATLAB/Simulink environment. The RC models and heat/mass balance of 
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room air model are developed using SIMSCAPE language, which is an object-oriented physical 
modeling method (Miller & Wendlandt, 2010). The thermal comfort in SkyLab Test Cell is 
modeled with Equation (17) and measured three-day average velocity (0.09 m/s) in the occupied 
zone during office hours. The FCU in the AMCV system is modeled with Equations (7) and (8) 
under design conditions. The cooling coils in ACB system are treated as negative heat sources. 
The developed model is calibrated and refined using measurement data obtained in SkyLab. 
Fourteen days (8th to 21st January 2018) of experiment was conducted to measure the room 
temperature and humidity responses to different conditions. 

Figure 3 Schematic drawing of the ACMV system in SkyLab Test Cell 

In the Test Cell, there are some thermal masses (such as ducts, furniture and steel beams) inside 
the ceiling space, raised floor space and room space that are not included in the RC model. 
Thus, the R and C parameters of roof, floor and internal thermal mass are tuned in the calibration 
procedure. The thermal mass in room space is represented by a 1R1C node, separately, which 
is only connected to room air temperature node. The Trust-Region-Reflective Least Squares 
optimization method (Coleman & Li, 1996) is then employed to tune the RC model parameters 
in MATLAB environment to minimize the sum-squared error of room temperature as. After 
calibration, the parameter values of the SkyLab Test Cell are listed in Table 1.  

Table 1 Tuned parameter values of liner model of SkyLab Test Cell 
Envelope Initial U value 

(W/m2K) 
Initial C value 

(kJ/m2K) 
Tuned U value 

(W/m2K) 
Tuned C value 

(kJ/m2K) 
Internal thermal mass 1.6 100 32 485 
Roof  0.25 308.4 0.67 391.67 
Floor 0.25 77.6 0.43 85.7 

a)              b) 
Figure 4 Comparison of simulated a) temperature and b) humidity ratio with measured data 
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Figure shows that there is good agreement between the simulated and measured results after the 
model calibration. The mean absolute percentage error (MAPE) of room temperature is 1.25% 
for the entire fourteen-day period. The MAPE of room humidity is 4.98% during office hours. 
The deviation of the humidity ration prediction in non-office hours is because the model does 
not consider the moisture penetration from the ambient into room space. 

CONCLUSIONS 
Methods to build a linear building model, which can be used to predict indoor temperature, 
humidity and thermal comfort for indoor environment control with linear MPC, are proposed. 
The RC model is adopted to represent the heat and moisture dynamic in the building. The heat 
transfer and dehumidification process in the ACMV system and PMV index calculation models 
are linearized by linear approximation of the nonlinear items in the theoretical models. A case 
study is conducted based on the BCA SkyLab in Singapore. After calibration, the developed 
linear model has high accuracy and the MAPE of predicted room temperature and humidity 
ratio are 1.25% and 4.98% compared to measured data, respectively. 
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