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We report on the effects of radiation on the light output of lead tungstate crystals. The
crystals were irradiated by pure, intense high energy electron and hadron beams as well
as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in
Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out
at the 70-GeV proton accelerator in Protvino.

I. INTRODUCTION

The BTeV [1] experiment is being readied to study beauty and charm physics at the Fermilab Tevatron
collider. The goals are to make an exhaustive search for physics beyond the Standard Model (SM) and make
precise measurements of the SM parameters. The important measurements to make involve CP violation,
mixing, and rare decays of hadrons containing b or c quarks. Since detection of photons, mostly from πo or η

decays is essential to accomplish our physics objectives, we have decided to use an electromagneticcalorimeter
(EMCAL) made of lead tungstate PbWO4 (PWO) crystals. These crystals produce light proportional to the
incident electromagnetic energy; this light will be sensed by photomultiplier tubes. This system is ideal for a
heavy quark experiment at a hadron collider because of excellent energy and position resolution, a compact
shower size that minimizes overlapping showers (due to the small Moliere radius), fast signals that minimize
shower overlaps in time and expected excellent radiation hardness.

Pioneering work on PWO crystals performance was done at Protvino [2]. These results showed the promise
of such crystals. However, the technology of mass producing such crystals with high purity was not yet known.
The CMS group worked with companies both in Russia and China to perfect these techniques [3].

In high luminosity collider experiments, PWO crystals will be irradiated by high energy particles and
accumulate significant absorbed doses, up to a few Mrad. The radiation hardness of PWO crystals has
been studied by the CMS group using radioactive sources and electron beams [4]. The general conclusion is
that lead tungstate crystals were radiation hard, and that the damage in crystals depends only on the dose
rate [5]. It is, however, important to measure radiation damages of PWO crystals in high energy particle
environments which are more similar to that which these crystals will be exposed to.

It is important to emphasize [6,7] that in a hadron collider experiment radiation effects from hadronic
interactions and neutrons could be much more serious than seen with photons or electrons of the same doses.
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Compared to photons or electrons, high-energy hadrons will be able to induce inelastic nuclear reactions
which will locally destroy the crystal lattice. In particular, they can create nuclear fragments with very
high energy transfer and lead to extended clusters of crystal lattice distortion. A simple calculation suggests
that such interaction may produce significant number of additional crystal defects over the life of BTeV.
Therefore it is crucial to study the radiation hardness of PWO-crystals using a hadron environment which
is similar to the BTeV EMCAL expectations. Such radiation studies with lead tungstate crystals have been
carried out for the first time. The results of this study are presented in this paper.

The general goal of our test beam studies was to evaluate the performance of lead tungstate crystals
produced by two manufacturers in Russia, Bogoroditsk and Northern Crystal in Apatity, and one in China,
Shanghai Institute of Ceramics. More specific goals were to understand how to set specifications for pur-
chasing crystals, confirm energy and position resolution predictions, measure the radiation rate dependence
of light output, and measure the correlation between light output and the LED calibration system at varying
radiation loads. The 2B beam channel at the Protvino accelerator U70 has been specifically developed to
provide these measurements [8]. Results on energy and position resolutions of the PWO crystals which were
obtained in these runs have been published elsewhere [9].

This paper is organized as follows. A general picture of radiation damage of PWO crystals as well as the
results of simulations on dose rate profiles in the PWO crystals with the use of the MARS program [10]
are described in Sec. II. These calculations are made for the BTeV experiment and for the two types of
radiation studies of PWO crystals which have been carried out in Protvino for BTeV. In these studies we
irradiated crystals with (a) moderate dose rates (1-60 rad/h) of high-intensity high-energy electron and pion
beams in the secondary particle channel 2B and (b) super-intensive dose rates of mixed beam at a dedicated
facility that was several meters away from the main ring of the U70. The test beam facility for approach (a),
including phototube monitoring as well as the results of the moderate dose rates irradiation are discussed in
Sec. III. Three accelerator runs, each up to a month long were devoted to these studies. The results from
approach (b) are given in Sec. IV. The conclusions of the entire radiation studies are presented in Sec. V.

II. RADIATION DAMAGE AND ABSORBED DOSE PROFILES IN THE CRYSTALS

Radiation hardness studies of detectors and electronics are an important concern in EMCAL design [3,4]
All crystal scintillators suffer from radiation damage. The most common radiation damage is due to color
center formation, which results from trapping of electrons in crystal defects such as vacancies, displacements
and impurities [11]. These electrons are often in metastable states and can be excited by visible photons
to higher energies. Color centers reduce light transparency of crystals, resulting in reduced light output.
Additional damage may be caused by hadrons when they create crystal defects by displacing nuclei or
changing nuclei to different nuclei. This kind of damage can not only reduce light transparency, but, in
principle, also reduce primary scintillation light itself. It would be more difficult to monitor the latter effect.
Since the trapped electrons are in metastable states of varying lifetimes and “potential barriers”, some of
them may disappear very quickly, whereas others may be almost permanent.

When a PWO crystal no longer receives radiation, its color centers (semi-stable excited states) disap-
pear, and it recovers from transmission degradation by natural room-temperature annealing. In fact, this
annealing goes on even during radiation exposure. In general the rate of radiation damage decreases with
the amount of damage. Therefore, when crystals are exposed to a constant radiation level, they lose light
only up to the point when the rates of radiation damage and natural recovery balance. Raised temperatures
accelerate the recovery process and so may ultra violet irradiation. Because the damage may recover at room
temperature, it leads to a dose rate dependence of the light output.

The CMS experimental data, mainly from photon and electron irradiation, indicate that the light transmis-
sion of crystals deteriorates due to formation of color centers by radiation, while the scintillation mechanism
itself seems unaffected. Besides dependence on the dose rate, the radiation damage of PWO crystals could
also be sensitive to the type of radiation. In particular, the properties of crystals could be significantly
degraded in hadron beams by displacement damage effects, i.e. distortions of the crystal structure. In these
studies it is very useful to know the hadron fluence, the hadron spectra and the absorbed dose rate.
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The BTeV EMCAL extends radially outward from the beam line. The crystals near the beam pipe receive
the maximum dose. In order to ascertain the level of radiation in the crystals we performed calculations
using the MARS code. Results are given in Table I.

TABLE I. Fraction of BTeV crystals with given absorbed doses and dose rates estimated at the maximum of the
dose profiles inside the crystals (100 rad = 1 Gy)

Fraction Absorbed dose Dose rate
(%) (krad/year) (rad/h)

11 0.3 - 1 0.11 - 0.36

22 1 - 2 0.36 - 0.72

27 2 - 5 0.72 - 1.8

12 5 - 10 1.8 - 3.6

16 10 - 50 3.6 - 18

6 50 - 100 18 - 36

3 100 - 200 36 - 72

2 200 - 500 72 - 180

0.4 500 - 1000 180 - 360

0.2 1000 - 2000 360 - 720

We tried to emulate the BTeV conditions as much as possible. A 27 GeV electron beam and a 40 GeV π−

beam have been used to irradiate the crystals with moderate dose rates. The beams were directed into the
secondary beam channel from the accelerator, where primary 70-GeV protons interacted with an internal
target. The MARS calculations of the absorbed dose rates in the crystals from the secondary beam channel
are compared with the absorbed dose rates expected in BTeV in Fig. 1. The η (pseudo-rapidity) shown here
reflects the coverage of the BTeV EMCAL, where η of 4.45 is at the extreme inside near the beam and η

of 2.27 is on the extreme outside. Electron and pion dose profiles in the crystals are different. The crystals
receive damage from pions almost uniformly along their length starting from a distance of 5-7 cm from the
front. For electrons an absorbed dose rate at shower maximum is two orders of magnitude higher than near
the crystal ends. Because the BTeV dipole magnet sweeps particles vertically, the radiation profile at the
calorimeter is different in the horizontal and vertical planes. Thus in BTeV the mix of charged hadrons and
photons changes and the ratio between shower maximum and the crystal ends is only a few times in the
vertical plane and an order of magnitude in the horizontal plane. That is why both electron and pion beams
are used to study radiation damage of the crystals.

Two crystals, one manufactured in Bogoroditsk and the other in Shanghai were placed near the vacuum
pipe of the Protvino U-70 accelerator in the first dedicated super-intensive dose rate study. These crystals
were irradiated by secondary particles coming out the internal target of the accelerator. The energy spectra
of neutrons, gamma-quanta and charged hadrons at the place where the crystals were irradiated are shown in
Fig. 2(b). For comparison the expected particle spectra at the front face of the BTeV EMCAL are presented
at the top part of the same Figure. We can see that the spectra look similar, although the dose rate in
the IHEP irradiation zone is about three orders of magnitude higher than expected in BTeV. In the second
dedicated intensive study, four more crystals from Bogoroditsk and Shanghai were exposed to radiation at
the same facility. The intensity of the second run was reduced by two orders of magnitude. Absorbed dose
rates as a function of longitudinal position for these two exposures are presented in Fig.3.

III. MODERATE DOSE RATE IRRADIATION

In this Section, we describe the testbeam facility for moderate dose rate irradiation studies, discuss pho-
totube gain monitoring, and present the results of irradiating crystals with electrons and pions. In our
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FIG. 1. Longitudinal profiles of the absorbed dose rate at the vertical (a) and horisontal (b) planes of the BTeV
EMCAL at different rapidities, and at IHEP testbeam with 40 GeV pions (c) and 27 GeV electrons (d). The length
of the crystal is 22 cm. The electron profile is normalized by 104 e−/sec, and the pion profile by 105π/sec.
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FIG. 2. (a) Particle spectra at the BTeV EMCAL. (b) Particle spectra in the dedicated superintensive dose zone
near the vacuum ring of the U-70 accelerator. These spectrum shapes are very similar although (b) is about three
orders of magnitude higher.
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FIG. 3. Absorbed dose rates as a function of longitudinal position at the dedicated facility near the internal target
27 of the U-70 accelerator for two crystals in the exposure (a) and four other crystals in the exposure (b). The
intensity of primary 70-GeV protons at the internal target in the second exposure was three orders of magnitude less
than in the first one.

radiation studies we wanted to use radiation conditions as close to the BTeV conditions for the crystals
as possible. Absorbed dose rates as a function of longitudinal profile at the BTeV EMCAL and at IHEP
testbeam have been already discussed in Section II and presented in Fig. 1. We used 27-GeV electrons and
40-GeV pions to irradiate crystals in the three accelerator runs.

A. Test beam facility

The test beam setup consisted of 5x5 PWO crystal array situated inside a temperature controlled light-tight
box (ECAL), a beam with a momentum tagging system and a scintillation counter trigger system [8], [9].

All the crystals we used were rectangular in shape. The Bogoroditsk and Shanghai crystals were 27 × 27
mm2 in cross section and 220 mm in length. The Apatity crystals were 22 × 22 mm2 in cross section and
180 mm in length. Light from each crystal was collected by a 10-stage 1-inch diameter Hamamatsu R5800
photomultiplier tube (PMT). All the crystals were wrapped by a 170 µm thick tyvek. A radioactive source
study at University of Minnesota showed that tyvek is radiation hard up to at least a few Mrad. This study
as well as the Belarussian State University(Minsk) one also showed that a borosilicate glass did not lose any
light at least up to 10 krad, a quartz glass up to 1 Mrad, both with an accuracy of 1%. Six quartz PMT’s
were used for a part of our test beam study, the rest were the borosilicate PMT’s.

We accumulated absorbed doses in our crystals up to a few krad. No changes inside the box or PMT
HV values were made during the irradiation period. The PWO light yield strongly depends on crystal
temperature [3]. The 25 crystals were surrounded by a set of four copper plates that were water cooled,
which enabled a temperature control using a Lauda cryothermostat. The temperature for the study described
in this paper was fixed at 200C ± 0.10C. To measure the temperature of the crystals, 24 temperature sensors
were mounted on the front and rear faces of the crystals.

For the most of the results presented in this paper, the crystal array was monitored with the four different
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wave length light emitting diodes (LED). The LEDs had the following wavelengths : 660 nm (red), 580
nm (yellow), 530 nm (green), and 470 nm (blue). Transmission of red light in the crystals is not affected
much by radiation damage [12], so the red LED monitors the PMT gain change. One LED generator with
a multiplexer was placed into the light-tight box with the crystals and used for the all the LEDs. The LED
temperature dependence is on average 1%/1◦C, and thus limited to 0.1% because of our careful temperature
control inside the box. We had one bunch of fibers between the LED generator and the crystals. In each
accelerator cycle 10 pulses data for one LED color were collected. Four cycles were needed to collect all the
LED signals.

An α-source (YAP-light pulser [13]) was mounted on the photocathode of a separate PMT in addition to
the fiber to monitor LEDs themselves. It had 20 decays/sec with about 5,000 photons/pulse. Forty pulses
were collected each spill. A signal from last dynode of this PMT was used to form an α-trigger. The size of
the YAP crystal was 3×3 mm2 with thickness of 0.1 mm. Its emission spectrum has the maximum at 360
nm. The YAP crystal temperature dependence of the light output was 0.4%/1◦C. The α-spectrum as well
as α-stability is presented in Fig. 4. One can see that this stability over 85 hours is better than 0.2%. A
Hamamatsu PIN diode S6468-05 with integrated amplifiers was also used to monitor the LEDs because it
has a good sensitivity in the red region as well as a gain stability. It’s temperature dependence is much less
than 0.4%/1◦C.

FIG. 4. (a) α-spectrum accumulated over 1.5 hours. Sigma/mean = 2.3% when it is fitted by a Gaussian. (b)
Normalized α-signal in time to show α-stability over 85 hours. Each point corresponds to a 15-minute measurement.

We did not use an optical grease coupling between the crystals and the PMT’s in order to avoid a con-
tribution of a possible radiation damage of the grease. The PMT’s were attached to the crystals without
any optical material between them. High voltage to the tubes was supplied by a LeCroy 1440 HV system.
Signals were sent to the control room patch-panel without any connection to ground inside the crystal box to
avoid ground loops. A LeCroy 2285 15-bit integrating ADC was used to measure charge over 150 ns without
pedestal subtraction. The ADC sensitivity was 30 fC per count. At HV values around 1000 V in the tubes
we had about 2 MeV/ADC count.

B. Phototube gain change monitoring

We used high-intensity high-energy electron beam to irradiate the crystals and at the same time monitor
the light output. The beam particles travel along the length of the crystals toward the PMT. We needed to
take into account the possibile phototubes gain changes, for example, from varying in the beam intensity.
Thus, we carried out two types of PMT gain change studies to separate the effect of PMT gain change from
crystal radiation damage. We investigated the possible changes in PMT gains at a dedicated stand at IHEP
after the accelerator runs. We also monitored the PMT’s continuously during one of the runs using the red
LED.

6



Fig. 5 shows a schematics of the dedicated stand setup to study the PMT behavior, where the average
anode current was adjustable by changing the intensity of DC light shining on the PMT. The setup consisted
of a high quality referenced PMT(Hamamatsu R5900), a blue LED light pulser, a DC LED. Both pulsed
and DC LED lights were injected into the test PMT through optical fibers. The stability of the pulsed LED
itself was monitored by a Pu radioactive source implanted in a crystal and mounted at the photocathode
of the reference PMT. The read-out and control electronics were placed in a CAMAC crate which had an
interface with a PC. The average anode current was chosen for each test PMT to be the same as what we
had at the test beam. The anode current was measured directly by an ammeter. Fig. 6 shows a timing
diagram of various measurements. Each set of measurements took 2 minutes. At the beginning of each set,
we measured the pulse heights of two groups of 2000 light pulses. It took 20 sec to collect 2000 pulse data
and there was a 10-sec interval between the two groups. The data from a radioactive source in a self trigger
mode were collected during the remaining 70 seconds. This 2-minute set was then continuously repeated.
The intensity of the DC LED to induce a finite average anode current in the tested PMT was allowed to
change, if needed, in the 10 second time intervals. This system allowed us to make PMT long-term stability
measurements with a precision of 0.2%.

FIG. 5. Sketch of a dedicated stand setup to study a PMT gain variation.

10 s

20 s 2 min

current step of DC LED

LED signal
measurement

Pu source
measurement data taking of 2000 events

with f=100 Hz

t

FIG. 6. A timing diagram of our test stand to measure PMT gain variations.

We used positive HV for PMT’s with grounded photocathodes for the first accelerator run and negative
HV for the second and the third runs. The red LED response of PMT number 743 using negative HV during
irradiation study is presented in Fig. 7. The behavior of the same PMT at the dedicated stand is shown in
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FIG. 7. (a) The response of PMT number 743 using a red LED for a central crystal in the array as a function of
time. (b) Beam intensity in this counter as a function of time.

Fig. 8. We see that short-term loss of the signal is 3-5 % when the test beam intensity is at the level of 104

e−/sec averaged over the entire accelerator cycle.
A similar signal loss was seen (Fig. 8) when the additional green LED was turned on to produce the anode

current of 5 µA. Another similarity is that when the “beam” or green LED was turned off, the PMT gain
rose by a few percent. We compared the behavior of each PMT at the stand and during the beam test and
found a satisfactory agreement between these results.

Six phototubes with the quartz glasses (Hamamatsu R5800Q) of the same size were used to avoid the
possible radiation damage to phototube windows. These PMT’s had a gain change of 5-6% and one of them
even 10%. The gain variation of one of these quartz phototubes is presented in Fig. 7. For the PMT’s with
borosilicate glasses the signal loss has been measured not to exceed 3% for both positive and negative HV.

The blue LED signal amplitude over 85 hours is presented in Fig. 9. Fig. 9(a) shows the electron beam
intensity over this time period in a sample crystal. Fig 9(b) shows the raw blue LED signal for the same
crystal. We see that the blue LED signal fell by 5-6% when the beam was off. The time diagram of the blue
LED corrected by the red LED is shown in Fig. 9(c). Note that most of our PMT’s lost gain when the beam
was on. In our plot we selected this PMT with the opposite behaviour to show that we could correct for this
big gain change even though the sign of the change was atypical.

All of our analyses included corrections using the red LED data. We corrected the signals from electrons
and blue LED on the signal from red LED to subtract a PMT gain variation effect from the total signal for
each PMT. When the green or yellow LED signals were used in the analysis, they also were corrected using
the signal from red LED.

To check and correct the stability of the red LED, we used the α-source. The instability of blue, green
and yellow LEDs was corrected using the PIN diode. The ratio of the PIN to α signals was stable to an
accuracy of 0.1 %. To decrease any possible remaining LED instability left after these corrections, we kept
for further analysis only accelerator spills with similar beam intensity. We conservatively estimate that the
error for the blue LED signal is 0.2%.

8



C. Irradiation by high-energy electrons

The crystal array was irradiated by 27 GeV electrons for one week with an accelerator efficiency of 85%.
The beam intensity at the crystal array was 6×105 particles/spill most of the time during this period. The
80% of the beam entered in one of the six central crystals. About a half of the time, the beam was centered
on one crystal in the array and during the rest of the time it was centered on another crystal. Coordinates
of the electrons entering the crystal array were measured by the drift chambers. The events with electrons
near the center of the crystals were selected for data analysis.

We now describe the analysis of the electron beam data. All the information which was accumulated
during 85 beam hours (one position of the beam at the array, see above) was divided into pieces of two
hours long each. This choice was made to have enough statistics to measure the average energy deposit in a
crystal with an accuracy of 0.3%, and thus we could continuously monitor the crystal signal loss. Prior to the
irradiation study, the PMT gain of the each crystal in the array was adjusted to 10,000 ADC counts when
27 GeV electron hit the center of the crystal. Since this corresponds to 76% of the full electron energy [9],
one ADC count corresponded to 2 MeV. The size of the beam spot was chosen 4x4 mm2 for most irradiated
crystals and 6x6 mm2 for crystals with lower doses in order to equalize the statistics. The true coordinates
of a particle at the array was calculated with the information from the last drift chamber which was close to
the array. The accumulated energy peaks were fitted by a Gaussian. Then the mean values were corrected
using the red LED.

For each crystal a dose rate was defined as an effective number N of electrons per second hitting this
crystal multiplied by 25.9 · 10−4 (see Fig. 1(d) ). The number N was calculated as energy deposit in this
crystal in GeV/sec divided by 20.5 GeV (it corresponds to 76% of 27 GeV energy deposit when electron hits
the center of the crystal [9] in accordance with the MARS simulation).

A typical result for an irradiated crystal is presented in Fig. 10. In Fig. 10(b) we see an intensity of the
electron beam which is shown in dose rate units at the shower maximum according to the MARS simulation
results presented in Fig. 1. The absorbed dose is given in Fig. 10(c). The main result is shown in Fig. 10(a)
which is the normalized electron signal. We see that finally the crystal lost 12% of the signal under an
electron beam irradiation mostly with 15 rad/h dose rate after it accumulated 1.2 krad absorbed dose. It
also appears that the radiation damage is saturating. For dose rates of 10-25 rad/h under 27 GeV electron
beam irradiation, eight crystals lost an average of 8% after a total accumulated dose of 1-2 krad.

In order to use the light monitoring system to track the effects of radiation damage, it is necessary
to determine the relation between the change observed by the monitoring system and the change in the
signal from beam electrons. Because of the different optical paths taken by the injected monitoring light as
compared to the scintillation light this constant is not expected to be unity. Furthermore the LED system
monitors the transparency of the crystal at a specific wavelengths and thus does not sample the entire
spectrum of scintillation light.

The blue LED emits at 470 nm and the scintillation peak is at 430 nm. The typical blue LED and electron
signal behavior under irradiation for one of the crystals is shown in Fig. 11(a). The blue LED (as well as the
electron signal) is corrected by the red LED, and the red LED by the α-source. The same was provided for
the green and yellow LEDs. For the green LED a signal loss was smaller than for the blue LED, and for the
yellow LED the signal loss was smaller still (not shown). In Fig. 11(b) we see a strong correlation between
the change in the blue LED light level and the beam signal. We fit such distributions by the straight lines,
ignoring some deviations from linearity. The results for a few crystals are presented in Fig. 11(c). We did
not observe a significant difference in the crystals from different manufacturers. Constants of proportionality
vary from 0.3 to 0.6 for these crystals. The dependence of a relative electron signal on the absorbed dose is
presented in Fig. 12.

A simple model is used to describe signal loss. The signal loss dy is proportional to the signal value y and
the number of the produced color centers, which are proportional to the absorbed dose dR. Crystal recovery
is proportional to a difference between the asymptotic value y0(after recovery) and the current signal value.
Also it is proportional to the recovery time dt:

9



dy = −P1 · ydR + P2(y0 − y)dt = (−(P1
dR

dt
+ P2)y + P2 · y0)dt (1)

In our case the dose rate(dR
dt ) was almost the same during the 85 hours of irradiation. Integration of this

equation gives us the expression:

y = P0 · exp−(P1 dR

dt
+P2)·t +

P2 · y0

P1 dR
dt + P2

(2)

We can present the signal loss behaviour function as

f(t) = a · exp−t/τ +(1 − a), (3)

The results of the fit for Fig. 11(a) are listed in Table II.

TABLE II. Results of fits to f(t) = a · exp−t/τ +(1 − a)

Signal Source a τ, hour

Electron beam 0.104±0.002 30±2
Blue LED 0.054±0.002 34±5

The parameter a defines the saturated light loss value that is reached as t goes to infinity at a constant
dose rate. Close to the asymptotic value, the crystal lost 10% in the electron signal and 5% in the blue LED
signal. The τ parameter defines the saturation time constant, which is 30 hours for our crystal and our dose
rate.

The time constants for the ten studied crystals are between 20 and 30 hours. There is no significant
difference in τ for the LED and electron signals.

We should make a note at the end of this section. When a crystal is irradiated, the red LED light is
slightly absorbed. Herewith, the blue LED light is absorbed more, in 3-6 times more [12] compare to the red
LED light in the crystals. We can estimate that the electron signal is absorbed in about two times more than
the blue LED signal (see Fig. 11(c)). We assumed that red light was unchanged under crystal irradiation,
and assigned the PMT gain change to the red LED change. It means that the absolute electron signal loss
values might be in about 1.1 times higher than the presented ones.

D. Irradiation by high-energy pions

After the electron irradiation program was finished, we irradiated the same crystals with pions for a four
day period. We used a 40 GeV π− beam. The size of the 40 GeV pion beam was 8 cm horizontally and 6 cm
vertically, i.e. 90% of the beam was contained within these dimensions. The beam intensity was 6 ×106/sec.
Six crystals were irradiated with a dose rate ranging from 10 to 30 rad/h. Five cycles of irradiation (15-20
hours each) were alternated by low intensity electron beam exposures to measure the scintillation signals in
the crystals.

The radiation damage region in the crystals is different for an electron and a pion irradiation (see Fig. 1).
Thus, if a crystal was irradiated first by electrons until saturation in radiation damage was reached for a given
dose rate, then we expect to get an additional signal loss with pion irradiation even at the same dose rate.
Fig. 13 shows the additional loss of signal for one of the crystals (from Apatity). This crystal was irradiated
by 27 GeV electrons and then by 40 GeV pions. During the 85 hours of e− irradiation the dose rate was 12
rad/h. Then in the next 85 hours the dose rate was an order of magnitude less, and the crystal recovered.
As a result, the first filled square point for pion irradiation data is above many open points for electrons.
After that the crystal was irradiated by pions with the dose rate 12 rad/h for 100 hours. We see that the
crystal lost 8% of the signal during the electron irradiation period and 14% of the signal during the pion
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irradiation period with the same dose rate. The constant of proportionality between the blue LED and the
electron signal is 0.3 for electron irradiation (if one fits by a straight line). This is about the same for pions
at the beginning of the pion irradiation, but then increases up to 1 during the further pion irradiation. The
crystals (manufactured in Bogoroditsk and Apatity) lost about 14% on pion irradiation. The surrounding
crystals which were irradiated with a dose rate of about 1 rad/h lost less than 1 % of their light output.

The dependence of a signal loss on dose rate was studied in a separate run using 40 GeV pion irradiation.
Each beam exposure lasted for 6 continuous hours. The beam intensity started from 2×105/sec and was
increased in a few steps up to 8×106/sec by the end of the study. The beam was present in 1 sec of the
full accelerator cycle of 9 sec. After each 6 hour irradiation exposure we lowered intensity by a few orders
of magnitude, down to 3×104/sec, so that we could avoid pile-up and see a minimum ionizing peak (MIP)
for pions traversing the crystals without interacting. The crystals light output signals were monitored using
the MIP peak; this procedure took 2 hours at low intensity. After that we took again high intensity beam
exposure for the next 6 hours to continue irradiating the crystals. Then again switched to the low intensity
MIP exposure.

To check our procedure for obtaining the change in scintillation light from time to time, we used pure muon
beams and 27 GeV electrons to measure the light output changes due to pion irradiation. We continued this
procedure of alternating high intensity and low intensity beams for 10 days in a row. The dependence of the
normalized MIP signal on an absorbed dose for the two crystals in the array is shown in Figs. 14(a) and (b).
(The normalized MIP signal is defined as the ratio of the MIP signal after some absorbed dose to the one
before the pion irradiation).

We have observed the dependence of light output loss on the dose rate. Like electron radiation, the light
loss exhibits saturation effect when the dose was kept at a constant level. The correlation between a change
in the LED signal and a change in the MIP signal under irradiation was also measured (see Fig. 14(c) as an
example). The constant of proportionality, if one fits by a straight line is different for different crystals and
is on average 0.7 (the LED signal decreases less than the MIP one). In Fig. 15(a) we show the decrease in
the LED signal for moderate dose rates. Different crystals received different absorbed doses during 10-day
irradiation period. The open circles stand for Bogoroditsk crystals and the filled circles stand for Shanghai
crystals. Six points in Fig. 15(a) represent the six crystals described above which accumulated absorbed doses
of more than 1 krad each. Fifteen other crystals were irradiated by the beam halo and received absorbed
doses less than 500 rad each. They are shown on the left side of Fig. 15(a) . Three Bogoroditsk crystals
are close to each other in their radiation hardness, however the twelve Shanghai crystals differ among each
other by an order of magnitude.

Irradiation of lead tungstate crystals creates color centers which reduce the light attenuation length. One
expects that the change of attenuation length will affect the longitudinal uniformity. This can degrade the
energy resolution. On the other hand, if the loss of light collected in the crystal after irradiation is relatively
small, the energy resolution itself might not be degraded so that the radiation damage can be regarded as
only a calibration issue. The non-uniformity of the light yield (LY) along the crystal contributes to the
energy resolution. To measure changes in the LY non-uniformity the crystal array was rotated by 90 0 with
respect to the beam direction, before the irradiation by pions and just after the 10 days of irradiation. The
crystals were scanned with the muon beam. The position of the muon track going through the crystal was
reconstructed with the drift chambers. The data were binned along the crystal lengths in 1 cm intervals.
The energy deposit distribution was fitted in each bin by a convolution of Gaussian and Landau function.
The non-uniformity of the light yield in the front part of crystal (3-10 radiation lengths) was about 0.5
%/cm. The non-uniformity did not change significantly after a dose up to 4 krad at a dose rate of up to 60
rad/h, which caused the signal loss of up to 30%. As a result, the energy resolution of the crystals did not
change. The relation between the change in transparency seen by the LED light and the change seen by the
scintillation light varies from crystal to crystal. A plot of such constants of proportionality for seven crystals
is shown in the Fig. 15(b). The first four points show the Shanghai crystals, and the next three points show
the Bogoroditsk crystals. Points 4 and 5 represent the super-intensive dose rates obtained by the Shanghai
crystal S25 and the Bogoroditsk crystal B21 (details will be given in the next Section). We can see that
the constants of proportionality for 40 GeV pion irradiation (Fig. 15(b) ) are larger than the constants of
proportionality for 27 GeV electron irradiation (Fig. 11(c) ).
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After the irradiation by electrons and then pions was finished, we kept the PMT HV on and studied
crystal recovery for 15 days using the LED pulser. The results for the Apatity 1434 crystal are presented
in Fig. 16. We fitted the dependences of recovery on time for the six crystals with an exponential function.
The average recovery time is (200±40) hours, and the LED damage recovery for 400 hours is (87±5)% for
these six crystals.

IV. SUPER-INTENSIVE BEAM IRRADIATION

Six crystals from Bogoroditsk and Shanghai were irradiated by secondary particles coming out the internal
target of the 27-th magnet block of the Protvino U-70 accelerator(see Fig.17). Two of them were irradiated
at a dose rate of 100 krad/h, and the other four at 1 krad/h. For the latter case the intensity of the primary
proton beam was lowered by two orders of magnitude. To measure the absorbed dose, thermo-luminescence
dosimeters (TLD) were attached to the front face of the crystals. They were of LiF type doped by Mg, Cu
and P, 5 mm in diameter and 200 µm in thickness. In addition, an ionization chamber(IC) filled by Xenon
was installed behind the crystals. The sensitive volume of the chamber was as 18.5 mm in diameter and 36
mm in length. Both TLDs and the IC were calibrated using a Cs-137 gamma source. The accuracy of the
absorbed dose measurements by TLDs and IC in this mixed radiation field was estimated to be 30% each.
These measurements were in general agreement with the results of the MARS calculations; the worst case
difference was a factor of 1.5. The dominant systematic error of the calculations was due to the accuracy
of the irradiation facility geometry. The IC was used to monitor the number of protons produced at the
internal target for each run of the crystal irradiation. Al activation detector in Fig.17 was used to measure
a fluence of the hadrons (number of hadrons per cm2) with energy greater than 20 MeV.

Two crystals, Bogoroditsk B21 and Shanghai S25, were irradiated in the first exposure at about 100 krad/h
dose rate. The longitudinal profiles of the absorbed dose rates are shown in Fig. 3(a). The maximal values
of the absorbed doses accumulated in crystals during the five exposures are given in Table III. Four crystals,
Bogoroditsk B17, B9 and Shanghai S22, S18, were irradiated in the second exposure at 1 krad/h dose rate.
The longitudinal profiles of the absorbed dose rates are shown in Fig. 3(b). The absorbed doses accumulated
in the crystals during the five exposures are given in Table IV.

TABLE III. The maximal values of the absorbed doses accumulated in Bogoroditsk B21 and Shanghai S25 crystals
during the five exposures at the IHEP irradiation facility

Exposure Bogoroditsk B21 Shanghai S25
(minutes) (krad) (krad)

0.83 3.4 1.8

9.67 40 21

66 270 140

475 1970 1020

747 3100 1610

The results of the irradiation of the two crystals in the first exposure are presented in Fig. 18. The proce-
dure was to irradiate the crystals and then measure their light output immediately thereafter using the 27
GeV electron beam. In some cases, we measured the light output again after letting the crystals sit without
any radiation. The Bogoroditsk crystal (see Fig. 18(a) ) lost 33% of the initial signal after first 3.4 krad dose.
After the second irradiation, the absorbed dose increased up to 43 krad and the signal loss was increased
up to 46%. After 47 hours of recovery time, the signal rose up to 70%. After the third irradiation, the
Bogoroditsk crystal accumulated 313 krad and the signal was at the level of 49%. 32 hours of recovery time
returned it to a level of 57%. After the fourth dose the total radiation was 2300 krad and the signal level
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TABLE IV. The maximal values of the absorbed doses accumulated in Bogoroditsk B17, B9 and Shanghai S22,
S18 crystals during the four exposures at the IHEP irradiation facility

Exposure Bogor. B17 Bogor. B9 Shanghai S22 Shanghai S18
(minutes) (krad) (krad) (krad) (krad)

25 0.7 0.7 0.35 0.35

72 2 2 1 1

60 1.7 1.7 0.8 0.8

60 1.7 1.7 0.8 0.8

was at 37%. After 15 hours recovery time, the signal recovered slightly to 39%.

The Shanghai crystal (see Fig. 18(b) ) lost 18% of the signal after first 1.8 krad dose. After the second
irradiation, the integrated dose increased up to 23 krad and the signal loss increased up to 33% relative to
the signal before the irradiation. After 47 hours of recovery time, the signal rised up to 69%. After the third
irradiation, the Shanghai crystal accumulated 163 krad and the signal was at the level of 66%. One should
mention that the signal was pretty stable between the second and the third irradiations including recovery
time and was at the level 66-69% for the absorbed doses of 23-163 krad. After getting 2800 krad, the signal
dropped down to 33%.

One of the most important conclusions of this work is that even after an integrated dose about 2.5 Mrad
obtained with a super-intensive dose rate 100 krad/h both crystals remained usable, although they lost 2/3
of their light. In BTeV we expect that only 0.1% of the crystals will receive this much dose in a year. As was
expected, the constants of proportionality in the MIP-Electron correlations for both the crystals are about 1.
The LED-Electron correlations for both the crystals are shown in Fig. 19. The constants of proportionality
for the two crystals are 0.5 and 0.66. The degradation of single crystal energy resolution for 27 GeV electrons
was only 20% for Bogoroditsk crystal and 50% for the Shanghai crystal.

The four crystals irradiated in the second exposure with a dose rate of 0.5-1 krad/h, and a total dose
of 350-700 rad, lost up to 10% of their light output for Shanghai crystals and up to 25% for Bogoroditsk
crystals. After each of the next three runs no signal loss was seen, within the 3% accuracy (the systematic
error due to a PMT gain change effect).

V. SUMMARY AND CONCLUSIONS

Radiation hardness of lead tungstate crystals is an important issue for the BTeV experiment at Fermilab.
Simulation of absorbed dose profiles in the crystals with the use of the MARS program has shown that
the dose rates for the crystals range from 0.1 up to 700 rad/h. About 95% of the crystals in the BTeV
electromagnetic calorimeter will get the absorbed doses from 0.1 to 30 rad/h assuming that the Tevatron
luminosity is 2 × 1032cm−2sec−1. Almost 5% of the crystals will get from 30 rad/h up to 200 rad/h, and
only 0.5% more than 200 rad/h.

A study of radiation damage in lead tungstate crystals has been carried out in Protvino in 2001-2002 for
BTeV. The crystals were manufactured in Bogoroditsk (Russia) and Shanghai (China) at the very end of
2000, and in Apatity (Russia) in early 2002. There were two approaches in the study. First, crystals were
irradiated by high-intensity high-energy electron and hadron beams at radiation doses ranging from 0.1 to
60 rad/h. Secondly, crystals were irradiated by charged hadrons, γ-quanta and neutrons from the internal
target of the U70 in a wide energy spectrum from 10 eV up to 70 GeV at dose rates between 0.5 and 100
krad/h.
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The dependence of light output loss on a dose rate has been measured. The light loss exhibited saturation
when the dose rate was kept constant. At larger dose rates, the light output loss still saturates but at lower
light output levels. Each crystal had a different percentage of light loss when it saturated. More quantita-
tively: no light output loss was observed for dose rates less than 1 rad/h. For dose rates of 10-25 rad/h with
27-GeV electron irradiation, eight crystals lost on the average 8%. For 40 GeV pions this average was 12% at
comparable irradiation dose rates. The difference between the damage due to electron and pion irradiation
can be attributed entirely to their difference in the radiation profile along the length of the crystal. Much of
electron energy is deposited near the shower maximum, from 4 to 10 cm from the front of the crystal. For
pion beams, the radiation dose profile reaches its maximum around 5-7 cm and stretches all the way to the
rear-end of the crystal. However, a possible effect due to the difference between the physical processes by
which electrons and pions interact with crystals cannot be ruled out.

For dose rates of 30-60 rad/h using 40-GeV pion irradiation, five crystals lost on the average 20%. For a
dose rate of 500 rad/h using irradiation by charged hadrons, γ-quanta and neutrons with the average energy
of 10 GeV, two crystals lost 10%, and two other crystals lost 25% when they were exposed to 1 krad/h
of radiation. Two crystals got extremely high dose rate of 100 krad/h and accumulated about 2.5 Mrad
absorbed dose (maximum annual dose of any BTeV crystals!) also with the same mixed particle spectra
irradiation. They remained useable. Their light output loss was a factor of 3. This is far from the BTeV
environment, where 700 rad/h will be the highest 0.1% crystals.

There is a correlation between a change in the LED signal and a change in the beam (electron or MIP)
signal under irradiation. The constant of proportionality is different for different crystals and varies from
0.3 to 0.6 for electron irradiation and from 0.5 to 0.9 for pion irradiation.

The non-uniformity (maximum 0.5% per cm at one third of the crystal length) of the light yield does not
change significantly when the dose rate is up to 60 rad/h. After 2.5 Mrad absorbed dose with a dose rate of
100 krad/h the uniformity became 1.5 times poorer, at least for one of our crystals.

When irradiation decreases or stops, crystals recover. The average recovery time for six crystals which lost
from 7 to 20% of the LED signal, is (200±40) hours, and the damage recovery after 400 hours was (87±5)%.

To summarize, lead tungstate crystals lose light from irradiation by high-intensity high-energy beams.
This loss level depends on dose rate. If dose rate does not change, the light loss saturates. If the dose rate is
reduced, the light output recovers. Crystals have to be calibrated continuously during the BTeV experiment.
We did not see a significant difference in radiation hardness of the crystals from the three manufacturers.
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FIG. 8. The behavior of PMT number 743 at the dedicated stand for PMT gain variation measurements. (See
text for details.)
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FIG. 9. (a) Electron beam intensity in the Shanghai crystal S22 over time. Blue LED time behavior in this crystal
(b) before and (c) after correction using red LED data.
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crystal B14. (b) Electron beam intensity in dose rate units. (c) Absorbed dose.

Time, hours

B
lu

e 
L

E
D

 a
nd

 e
- 

si
gn

al

Electron signal

LED signal

0.9

0.95

1

0 25 50 75

Relative electron energy

R
el

at
iv

e 
L

E
D

 s
ig

n
al

0.96

0.98

1

0.9 0.95 1
Counter number

L
E

D
 L

os
s/

E
n

er
gy

 L
os

s

0.2

0.4

0.6

1 2 3 4 5 6 7

FIG. 11. (a) Blue LED and electron signals for the Shanghai crystal S22, which was irradiated by 27 GeV electrons
with a dose rate of 16 rad/h. (b) Blue LED-electron correlation for the same crystal. (c) LED-electron correlation
coefficients for the seven crystals. Irradiation was by 27 GeV electrons. Square points stand for the Bogoroditsk
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FIG. 17. Superintensive dose irradiation facility
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