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ABSTRACT 
A change-point (piecewise linear regression) model fitted to the pre-retrofit data as the 
counterfactual for the savings calculation, is considered to be the best approach to evaluating 
the energy savings of building retrofits ( ASHRAE Guideline 14). However, when applied to a 
large portfolio savings analysis with substantial multi-year data, the change-point model does 
not fit the data well in some cases. The study thus aims to improve the accuracy of the change-
point model by: 1) using more advanced non-linear models, 2) incorporating additional input 
features, and 3) increasing the time resolution of input variables. We found that random forest 
regression (RF) models with an array of climate (humidity, wind, solar radiation, etc.), time 
(day of the week, season, holiday), and energy consumption of the immediate past 1-4 hours 
(energy lag terms) outperformed the change-point model, shallow neural networks, and support 
vector machine regression (SVR). Our result implies that high resolution smart meter data 
should be used in place of monthly utility bills to more accurately evaluate retrofit savings. We 
further explored the relative contribution of the input variables to the random forest regression 
model using Shapley Value, a game theoretic variable importance metric. We found that the 
most important input feature is the energy consumption of the immediate past (or energy lag 
terms). We also found that solar radiation and weekend day indicators are more important than 
outdoor temperature. The improved model could provide better insights to portfolio managers 
in planning future energy retrofits. Policy makers could also use such models to evaluate the 
average energy saving potential for energy policy changes, such as the requirement of minimum 
insulation level, and lighting equipment efficiency. 
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INTRODUCTION 
In the U.S., buildings account for 40% of the nation’s energy consumption (EIA 2018). 
Reducing the energy consumption of the building sector is critical to mitigating the global 
climate change. Energy efficiency upgrades could save 5% to 50% of energy consumption in 
buildings (DOE 2018). However, in order to accurately evaluate the impact of these upgrades, 
differences in weather, operating schedules and modes, occupant behavior, and other un-
observed factors between pre and post retrofit needs to be accounted for. This will require a 
counterfactual energy model that accurately describes the potential energy consumption had the 
upgrade not have happened, or the counterfactual.  

In ASHRAE guideline 14, the counterfactual is estimated with a change-point regression model 
(ASHRAE 2014). The saving is calculated as the difference between the model estimated 
consumption and the measured post-retrofit consumption. We, and many studies aimed to 
compare and improve the prediction accuracy of such counterfactual energy models (Zhang et 
al. 2015; Brown et al. 2012). Unlike most existing studies with only a handful of case studies, 
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this study evaluates models on a larger sample size of 65 buildings. We tested hypothesis about 
whether the following three strategies improve on model accuracy: 1) advanced models using 
only the temperature input, 2) adding more input features, and 3) increasing the time resolution 
from monthly to hourly.  

METHODOLOGY 
The input energy data consists of 2014 to 2016 15-min interval electricity consumption data of 
65 commercial buildings (24 office, 14 courthouses, 11 courthouse/office, 11 unknown) in the 
General Service Administration (GSA) portfolio. The climate data is retrieved from the national 
solar radiation database (NRSDB) Physical Solar Model (PSM). 

Model evaluation procedure and metric 
For each building, the input features are aligned by their timestamps. The aligned data set is 
then randomly split into a training set and a test set using year-month index, the first 70% of the 
year-months is the training data, and the rest is the validation data. The error is evaluated in 
Coefficient of Root-Mean-Square Error (CV-RMSE). CV-RMSE is root-mean-square error 
divided by mean electricity consumption (Equation 1, 𝑦̅ is the sample mean of the energy data, 
n is the number of data points, 𝑦𝑖  is the ith observed electricity consumption, 𝑦𝑖̂  is the
corresponding predicted electricity consumption, (𝑛 − 𝑝) is the degree of freedom).  However, 
the degree of freedom may not be well defined for models other than linear regression, for 
example, the effective degree of freedom for Neural Network models is changing through the 
training process (Anzai 2012). We believe the degree of freedom could be left out as we 
evaluated the model on a held-out test set. Thus, we used the adjusted CV-RMSE (Equation 2) 
in the evaluation.  

CV − RMSE = √∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑛 − 𝑝
𝑖

/𝑦̅ (1)

CV − RMSEadj√∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑛
𝑖

 /𝑦̅ (2)

Models 
We compared the prediction accuracy of the following five models: 3-parameter change-point 
model (baseline algorithm), neural network with one hidden layer, neural network with two 
hidden layers, kernelized support vector machine regression (SVR), and random forest 
regression. The Change-point model is implemented using Python scipy optimize package, and 
the other models are implemented using Python scikit-learn package (Pedregosa et al. 2011). 

Change-point model splits the range of temperature into 2 to 3 different segments and fits a 
separate linear regression model in each segment, with continuity requirement at the boundaries 
of segments. The method is adopted by ASHRAE Guideline 14 (ASHRAE 2014) and IPMVP 
(Efficiency Valuation Organisation 2012). In this study the change-point model is implemented 
with a grid search over the temperature range from 40F to 80F according to (Kissock et al. 
2003).  

Neural network is a popular predictive method applied in a variety of fields. A neural network 
consists of inter-connected neurons and non-linear activation functions. Most commonly, 
neurons form a layered directed acyclic graph (DAG) structure with one input layer, some 
hidden layers, and one output layer. Directed links are formed between layers, and 
assigned 
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weights using the backpropagation algorithm. Two shallow network structures are tested in this 
study: one with one hidden layer, and one with two hidden layers. We used the tanh activation, 
following the choice of (MacKay 1996; Dodier and Henze 2004). A grid-search method is 
applied to find the optimal number of hidden units per layer. 

The support vector machine algorithm is developed by Vapnik and Chervonenkis in 1963, as a 
“nonlinear generalization of the Generalized Portrait algorithm” (Sewell n.d.). It can be applied 
to both classification and regression tasks. Support vector machine regression (SVR) tries to 
find a function as flat as possible that is at most 𝜖 from training data (Smola and Schölkopf 
2004). C and 𝜖 are two hyper-parameters to be optimized. A grid search of the optimal C is 
performed in the range of 1 to 1000 with step size 100. 𝜖 is left as default. 

Random Forest Regression is an ensemble method which constructs many regression trees at 
the training time, and forms predictions by taking a weighted average of the output of individual 
trees. In the study, the tuning parameter, maximum tree depth, is set as default 30.  

RESULTS 
Hypothesis 1: advanced models have better accuracy using only temperature input.  
We tested whether applying more advanced nonlinear models could directly reduce the 
prediction error by using just temperature as the input. Our result suggests that advanced models 
(NN, SVM, RF) perform similarly to simple change-point model using only temperature input. 

Figure 1. Violin plot, showing distribution of CV-RMSE (the prediction error) across buildings, 
for each method. All methods appear to have similar error distributions. 

Hypothesis 2: Additional input features improves model performance.  
By adding the following input variables (Table 1), in addition to temperature, we saw substantial 
reduction in CV-RMSE (prediction error) using random forest regression (Figure 2). 

Table 1. Additional input variables. 
Climate Humidity Dew Point 

Relative Humidity 
Solar Radiation Diffuse Horizontal Irradiance (DHI) 

Direct Normal Irradiance (DNI) 
Global Horizontal Radiation (GHI) 
Solar Zenith Angle (Z) 

Pressure 
Precipitable Water 
Wind Wind Direction 

Wind Speed 
Time Season 
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Day of the Week 
If a Day Is Federal Holiday 

Energy Energy lag term (Energy Consumption in 
Previous 4 Steps) 

Figure 2. Violin plot, showing distribution of CV-RMSE (prediction error) across buildings, for 
each method: light grey uses only temperature input, dark grey is using all features in Table 1. 

To compare the relative importance of these variables for prediction accuracy in random 
forest regression, we applied a game-theory metric, the Shapley Value imputation (Lipovetsky 
and Conklin 2001). The Shapley Value for the ith variable is shown in Equation 3. 𝑛 is the 
number of input features. 𝑣 is a function from feature subsets to real numbers. 𝑣(𝑆) represents 
the “expected sum of payoffs” (“Shapley Value” 2018) using the feature set 𝑆. In our case, 
𝑣(𝑆) is CV-RMSE. 𝑅 is a permutation, 𝑃𝑖

𝑅 is the list of features before the ith one. Computing
the exact Shapley Value is #p complete (Fatima et al. 2008), i.e. intractable, so we computed 
an estimated Shapley Value using a random sample of permutations. The estimated Shapley 
Value is shown in Figure 4. The variables with lower Shapley Value are more important. The 
energy lag terms are the most important. A series of solar radiation related factors (GHI, DHI, 
etc.) ranked second, and the indicators for weekends ranked third. 

𝜙𝑖(𝑣) =
1

𝑛!
∑ 𝑣(𝑃𝑖

𝑅 ∪ {𝑖}) − 𝑣(𝑃𝑖
𝑅)

𝑅
(3)

Figure 4. Shapley Value estimates for all input features 

Hypothesis 3: Higher resolution input improves model performance 
For each modelling method, we compared the following two approaches: 1) use monthly 
average of the input features in hypothesis 2 to predict monthly electricity consumption; 2) use 
hourly input to predict hourly electricity and aggregate the result to monthly. With higher 
resolution hourly input, Random Forest Regression achieved significantly better performance 
than using monthly average inputs (Figure 3). 
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Figure 3. Violin plot, showing distribution of CV-RMSE across buildings, for each method: 
dark grey is using monthly average input to predict monthly electricity, light grey is using 
hourly input to predict hourly output then aggregate to monthly. 

DISCUSSIONS 
Findings 
All models perform similarly when only using temperature as the input variable. Random 
forest regression model with an array of climate and time variables outperformed our 
implementation of shallow neural networks, SVR, and change-point models in terms of lowest 
CV-RMSE. For the random forest regression model, the most effective predictors for the 
hourly energy consumption are the energy lag terms, followed by solar radiation, then 
indicator variables for weekends.

Limitations and next stage work 
We observed outliers in the 15-min electricity data that are: negative records, a large positive 
immediately followed a large negative record, and extremely large values followed by a data 
gap. A simple outlier removal rule is applied for the analysis: 1) remove negative entries 2) 
remove data points greater than 1.5 times the 97th percentile of the positive records. Further 
research into the reasons for the outliers, and more advanced outlier detection routine might 
help improve the model accuracy. In the Shapley Value computation, we used a sample of 100 
random permutations to construct an initial estimate. The number of permutations here is chosen 
arbitrarily. Analyzing the convergence rate of the Shapley Value estimate, i.e. how many 
samples are needed to achieve certain approximation accuracy, would be a next step of the 
study. All the counterfactual models in this paper and many other papers under the ASHRAE 
Guideline 14 framework are based on the assumption of no un-measured confounding factors. 
In this sense, adding more covariates to the models, other than just temperature, could make the 
model prediction more accurate, and make it more viable to draw causal conclusions. 

CONCLUSIONS 
The paper compared the prediction accuracy of five data-driven energy counterfactual models 
under three conditions: 1) using only temperature input 2) using an array of climate and energy 
inputs, and 3) using higher resolution hourly inputs to predict monthly energy. We found that 
random forest regression model ensures the best performance when supplied with additional 
inputs with higher temporal resolution. The most important input features for Random Forest 
Regression are energy lag terms and solar radiation. 

The predictive power of the energy counterfactual model determines the accuracy of the ECM 
savings evaluation. The result could assist ESCO companies to better predict the potential 
savings for implementing certain retrofit. In addition, our improvement of such energy 
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counterfactual models could also be useful in system fault detection, and development of new 
control strategies (Zhang et al. 2015). 
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