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Analyzing Fractals 

 

Fractals are pictures that are made up of smaller copies of the large picture.  

That is, the larger image is contracted into infinitely many smaller, self-

similar images of the large picture and moved to different places using 

different types of transformations making up the large image.  For example, 

the large triangle above is made up of many smaller images of itself.  To 

understand how to produce fractals, one must first learn about spaces, 

sequences, and properties of functions in general.  Then we apply those 

things to fractal geometry.  We learn different theorems and how they apply 

to creating fractals, and finally we see an example of a classic fractal and 

make a fractal of our own.  

 

I. Spaces 

We begin with the concept of a space.  A space is simply a collection of points. 

They can have infinitely many points, or elements, a finite number of 

elements, or no elements. 
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Definition I.1. A space X is a set.  The points of the space are the elements of 

the set. 

 

II. Metric Spaces 

In this section we learn about metric spaces and certain properties they hold.  

When producing fractals, metric spaces are used.  A metric space is a special 

type of space, in that, within the space, there is an equation called a metric to 

measure the distance between points.  The metric is commonly notated as 

d(x, y), which means the distance between point x and point y. This 

measurement equation obeys certain axioms or rules.  This section covers 

common metrics as well as certain properties of functions.  We also discuss 

different types of sequences. 

 

When dealing with fractals, we are only concerned with spaces in R2.  To 

understand the space R2, we need the concept of an ordered pair.  Think of 

the normal x, y plane first introduced when learning how to graph equations 

in basic algebra; the horizontal line consists of x values, and the vertical line 

consists of y values.  An ordered pair of numbers, for example (3,4), is the 

point in R2 located three units to the right and 4 units up from the origin.  

The collection of all such ordered pairs is the space R2. 
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Definition II.1 A metric space (X, d) is a space X together with a real- valued 

function d: X × X ���� R2
, which measures the distance between pairs of point x 

and y in X such that d obeys certain axioms listed below. 

 

(1) For all x, y ∈ X, 

d(x, y) = d(y, x).  

 

(2) For all x, y ∈ X, x ≠ y,  

0 < d(x,y) < ∞. 

 

(3) For all x ∈ X 

d(x, x) = 0. 

 

(4) For all x, y, z ∈ X 

d(x, y) ≤ d(x, z) + d(z, y). 

 

Axiom 1 states that if the distance between two points, x and y, in the space is 

computed, the distance from x to y must equal the distance from y to x.  

Axiom 2 states that the distance between any two points in the space must be 

greater than zero and less than infinity.  Axiom 3 states that the distance 

between any point and itself is zero.  Axiom 4 states when measuring the 

distance between two points, the distance between two points, x and z, is less 

than or equal to the distance from x to y plus the distance from y to z.  
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Two common metrics used in R2 are the Euclidean metric and the Manhattan 

metric.  

 

The Euclidean metric measures the usual straight line distance between two 

points, utilizing the Pythagorean theorem (a2 + b2 = c2) for a= (x1, y1) and b= 

(x2, y2), 

d(a, b) = (x2 − x1)
2 + (y2 − y1)

2 , where c = d(x, y), a = x2 – x1, b = y2 – y1. 

 

Example:  Let a = (1, 3) and b = (2, 0).  The distance between these two 

points using the Euclidean metric is: 

 

d(a, b)= (2 −1)
2 + (0 − 3)

2 = 10 . 

 

The Manhattan metric is a different metric.  This metric measures the 

distance only moving horizontally and vertically between the two points as if 

you are moving in city blocks without backtracking.  That is if a= (x1, y1) and 

b= (x2, y2), 

 d(a, b) = x2 − x1 + y2 − y1 . 

 

Example:  Suppose we are in Manhattan on 14th Street and 3rd Avenue, which 

we will call point a, and we are trying to walk to 20th Street and 5th Avenue, 

which we will call point b.  What is the distance from point x to point y? 
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 d(a, b) = 20 −14 + 5 − 3  = 6+ 2= 8. 

This means the distance between 14th Street and 3rd Avenue and 20th Street 

and 5th Avenue is 8 blocks. 

 

An important property of functions involved with fractals is continuity.  The 

easiest way to understand the definition of a continuous function is by 

looking at the graph of a function from R1 to R1.  The graph of a continuous 

function is unbroken.  This means that the graph can be drawn without ever 

having to lift the pencil off the paper.  

 

Definition II.2 A function f : X1 � X2 from a metric space (X1, d1) into a metric 

space (X2, d2) is continuous if, for each ε > 0 and x, y ∈ X1, there is  a δ > 0 so 

that 

 d1 (x, y) < δ ⇒ d2 (f (x), f (y)) < ε 

 

To understand this more easily, let’s say we drew a circle around the original 

point and the point that the function is being graphed onto.  The original 

point has a radius δ and the second point has a radius ε.  In a continuous 

function, if you start with a point anywhere within the circle of radius δ, your 

point will be graphed into the circle of radius ε because the size of the circle 

of radius ε grows and shrinks based on the size of the circle of radius δ. 
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Fractals depend upon sequences in a metric space.  A sequence is an ordered 

set of points.  A sequence, for example, of the positive squared numbers is 

denoted n
2{ }

n=1

∞
.  This means that for each term n= 1, 2, 3,… and continuing 

until infinity, each term is squared:  

12, 22, 32,…. 

So n
2{ }

n=1

∞
= 1, 4, 9, 16, …. 

This sequence is known as an infinite sequence because it continues 

indefinitely as opposed to having a finite number of terms.  Sequences can 

have sequences within them, which are known as subsequences.  One 

subsequence of the previous example is the list of positive odd squares:  

1, 9, 25, 49,… 

When dealing with metric spaces, we are only interested in infinite 

sequences. 

 

III. Cauchy Sequences, Limit Points, Closed Sets, and Complete 

Metric Spaces 

In this section, we learn more about metric spaces, more specifically, the 

types of sequences in them, and certain properties about them.  We learn 

about Cauchy sequences, which are very important to fractals.  Also we go 

over limits and convergence and how these two concepts relate to Cauchy 

sequences.  We also learn about what it means for a metric space to be 

complete and what it means for it to be closed. 
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Cauchy sequences are important in the analysis of fractals.  In a Cauchy 

sequence, the elements become arbitrarily close together as the sequence 

progresses.   This means that as the sequence progresses, the distance 

between any two elements becomes smaller. 

 

Definition III.1 A sequence xn{ }
n=1

∞
 of points in a metric space (X, d) is called a 

Cauchy sequence if, for any given number ε > 0, there is an integer N > 0 so 

that, for all n, m > N 

 d(xn, xm) < ε.  

 

This means that for any number greater than zero chosen, which we denote 

ε, you can find an integer N, also greater than zero such that the distance 

between any two elements further along in the sequence than N is less than ε.  

 

Example Show 
1

n

 
 
 

 
 
 

n=1

∞

 is Cauchy. 

 

In light of Definition III.1, given any ε > 0, we must find an integer N > 0 such 

that for all n, m > N, d(xn,xm ) < ε .  Let’s take N >
2

ε
 so m,n >

2

ε
.  Using axiom 

(4) from Definition II.1, for all x, y, z ∈ X, d(x,y) ≤ d(x,z) + d(z,y).  So plugging 

it into our equation, d(xn,xm ) ≤ d(xn,0) + d(0,xm ).  So 
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d(xn ,xm ) ≤ xn − 0 + xm − 0 .  So xn + xm .  Because n,m >
2

ε
, it is implied that 

1

n
,

1

m
<

ε
2

.  So 
1

n
+

1

m
<

ε
2

+
ε
2

< ε .  Therefore, 
1

n

 
 
 

 
 
 

n=1

∞

is Cauchy.   

 

Convergence is another important term used in the analysis of sequences.  A 

convergent sequence is one in which all of the terms are heading towards a 

certain point. 

 

Definition III.2 A sequence {xn}n=1

∞  of points in a metric space (X, d) is said to 

converge to a point x ∈ X if, for any given number ε > 0, there is an integer N > 

0 such that for all n > N, 

 d(xn, x) < ε. 

In this case the point x ∈ X, to which the sequence converges, is called the limit 

of the sequence, and we use the notation 

 x = lim
n→∞

xn . 

 

Suppose a sequence converges to a specific point x.  Then for any positive 

number ε that you choose, no matter how small, you can find an integer N 

(probably large) such that the distance between any term n in the sequence 

(which is greater than the N chosen) and point x is less than ε.  The point of 

convergence is also known as the limit of the sequence. 
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Example One convergent sequence is
1

n

 
 
 

 
 
 

n=1

∞

.  This sequence converges to 

zero.  As n increases towards infinity, the terms in the sequence continuously 

decrease, approaching, but never equaling zero.  

 

Theorem III.1 If a sequence of points xn{ }
n=1

∞
in a metric space (X, d) converges 

to a point x ∈ X, then xn{ }
n=1

∞
 is a Cauchy sequence. 

 

Proof: To show that a sequence is Cauchy we must show that points in the 

sequence get closer and closer together as the sequence progresses.  Let  

ε > 0.  Now must find a large N such that for n, m > N, d(xn, xm) < ε.  We know 

the distance between xn or xm (for a large n, m) and x is small since x is the 

limit of the sequence.  So let’s take n, m big enough so that d(xn, x) <
ε
2

 and 

d(xm, x) <
ε
2

.  By Definition II.1 axiom (4) d(x, y) ≤ d(x, z) + d(z, y).  So d(xn, xm) 

< d(xm, x) + d(xn, x).  Then d(xn, xm) < 
ε
2

 + 
ε
2

 = ε for n,m > N.  Therefore the 

sequence is Cauchy.  This completes the proof. 

 

Definition III.3 A metric space (X, d) is complete if every Cauchy sequence 

xn{ }
n=1

∞
 in X has a limit x ∈ X. 

 

Every Cauchy sequence in a complete metric space converges or has a limit.   
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Definition III.4 Let S ⊂  X be a subset of a metric space (X, d).  A point x ∈  X is 

called a limit point of S if there is a sequence xn{ }
n=1

∞
 of points xn ∈  S  such that  

 x = lim
n →∞

xn . 

 

In this definition, S is any subset of the metric space, meaning that everything 

in S is also in the metric space.  If there is a sequence of points in S that 

approaches a specific point x, that point x is called a limit point of S. 

 

Definition III.5 Let S ⊂  X be a subset of a metric space (X, d).  The closure of S 

is defined to be everything in space S ∪ {limit points of S}.  S is closed if it 

contains all of its limit points. 

 

Once again let’s say that S is a subset of the metric space.  Then S is defined as 

closed if all of its limit points are contained within the space S. 

 

IV. Compact Sets, Bounded Sets, and Boundaries 

In this section we learn about different properties of metric spaces.  We 

cover the two different ways of defining a metric space as compact.  We also 

go over what it means for a metric space to be bounded and how to define 

interior and boundary points of metric spaces. 
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Definition IV.1 Let S ⊂  X be a subset of a metric space (X, d).  S is bounded if 

there is a point a ∈  X and a number R > 0 so that  

 d(a, x) < R for all x ∈ X. 

 

 

To put it more simply, a space is bounded if a circle can be drawn around the 

space containing all of the points in the space.  In the picture above, we have 

a metric space X in which a is the only element.  This space is bounded 

because a circle can be drawn around the space containing point a. 

 

A boundary point of a metric space is defined as a point that has the property 

that when even the smallest possible circle is drawn around it, at least one 

point in the circle is in the space and one point in the circle is outside of the 

space. 
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The notation B(x, ε) is used to denote a ball centered at x and with a radius of 

ε. 

 

Definition IV.2 Let S ⊂ X be a subset of a metric space (X, d).  A point x ∈  X is a 

boundary point of S if for every number ε > 0, B(x, ε) contains a point in X not 

in S and a point in S.  The set of all boundary points of S is called the boundary 

of S and is denoted as ∂S. 

 

Interior points of metric spaces are points within the metric space that are 

not boundary points.  For a point to be interior, there must exist at least one 

circle that can be drawn around the point such that the circle is contained 

within the space. 

 

Definition IV.3 Let S ⊂ X be a subset of a metric space (X, d).  A point x ∈ S is 

called an interior point of S if there is a number ε > 0 such that B(x, ε) ⊂ S.  The 

set of interior points of S is called the interior of S and is denoted S0. 

 

When producing fractals, we are interested in metric spaces where the 

elements in the space are only compact sets.  In a compact set, every infinite 

sequence in the space must have a subsequence that has a limit in the space.   
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Definition IV.4 Let S ⊂  X be a subset of a metric space (X, d).  S is compact if 

every infinite sequence xn{ }
n=1

∞
 in S contains a subsequence having a limit in S. 

Also, all compact sets are closed and bounded. 

 

Theorem IV.1 Let (X, d) be a complete metric space. Let S ⊂ X.  Then S is 

compact if and only if it is closed and bounded. 

 

Proof ( ⇐): Suppose S is closed and bounded.  Because S is bounded, we can 

draw a ball around S enclosing all of its points.  Because S is closed, we can 

assume that all of the points and limit points are enclosed in that ball.  We 

can also assume that every Cauchy sequence in S converges to a point in S.  

Suppose we drew a square around the ball with a side length equal to L (the 

radius of the ball).  Recall that to show that S is compact, we must show that 

every sequence xn{ }, where xn  ∈ S, has a convergent subsequence xn i
 with 

limit xn i
 in S.  Let xn{ } be a sequence of points in S.  Now we must find a 

convergent subsequence.  Divide the square into 4 sub-squares: D1, D2, D3, 

and D4.  Suppose D2 contains the most points of the sequence.  In this case, 

lets suppose it contains infinitely many points.  Choose one point from D2: x i1
.  

Now divide D2 into 4 sub-squares: D21, D22, D23, and D24.  Suppose D23 has the 

most points out of D21, D22, D23, and D24.  Because D2 contained an infinite 

number of points, the sub-square with the largest number of points (in this 

case D23) also has an infinite number of points.  Choose one point from D23: 
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x i2
.   As we continue dividing the square with infinite points into four sub-

squares and choosing one point, we end up with a subsequence of points x in
.   

We now must prove that x in{ } is Cauchy.  Let ε > 0.  Find some large N such 

that for in, im ≥ N, d(x in
, x im

) < ε  where x in
 and x im

 are elements in D.  The 

furthest distance that two points can be from each other is the distance of the 

diagonal of the box.  The original square has a width of L.  Using the 

Pythagorean theorem, a2 + b2 = c2, the diagonal of the square is 2L .  Each of 

the four initial sub-squares, D1, D2, D3, and D4, has a width of 
L

2
.  Every 

subsequent set of 4 sub-squares therefore has a width of 
L

2
N

.  This means 

that the length of every subsequent diagonal is 
2L

2
N

.  Now pick N such that 

ε >
2L

2
N

.  We are able to do this because as N gets larger, the size of the 

diagonal gets smaller approaching 0.  Because the largest distance between 

any two points in the subsequence is 
2L

2
N

 and ε > 
2L

2
N

, d(x in
, x im

) < ε .  Since 

S is closed the limit of x in
 must be in S.  Therefore S is compact.  This 

completes the proof. 

 

V. The Metric Space (HHHH  (X), h): The Space Where Fractals Live 

In this section, we learn about the metric space used for producing fractals 

(H  (X), h).  In the space (H  (X), h), each element is a compact set of points.  
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We also go over the distance function used in H  (X) for making fractals, the 

Hausdorff distance. 

Definition V.1 Let (X, d) be a complete metric space.  Then H  (X) denotes the 

space whose points are the compact, non- empty subsets of X. 

Suppose compact set A and compact set B are both in H  (X).  The distance 

from compact set A to compact set B is found by measuring the distance from 

the furthest point in A from B to the closest point in B from A.   

Definition V.2 Let (X, d) be a complete metric space.  Let A, B ∈ H  (X).  Define 

 d(A, B) = max {d(x, B) : x ∈ A}. 

d(A, B) is called the distance from the set A ∈ H  (X) to the set B ∈ H  (X). 

Example: Let’s say we have a space where the maps of the United States and 

Africa are two compact sets in the space.  We will call the map of the United 

States A and the map of Africa B.   
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To find the distance from the United States to Africa, we measure from the 

furthest point in A from B to the closest point in B from A.  We would likely be 

measuring from some point in California to some point in Liberia.   

The Hausdorff distance is the maximum distance between compact set A and 

compact set B.  In the above example, to find this distance we would need to 

also measure the distance from Africa to the United States.  To do this we 

would find the furthest point in B from A and measure it to the closest point 

in A from B.  The maximum of the two measurements taken is the Hausdorff 

distance. 

Definition V.3 Let (X, d) be a complete metric space.  Then the Hausdorff 

distance between two points A and B in H  (X) is defined by 

 h(A, B) = max{d(A, B) and d(B, A)}. 

VI. The Completeness of the Space of Fractals 

This section is rather short, but very important.  Here we learn a theorem 

explaining the relationship between the completeness of a metric space (X, d) 

and the completeness of that metric space (H  (X), h). 

If you have a complete metric space, then the set of all compact sets along 

with the Hausdorff distance between the points in these sets is also a 
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complete metric space.  Because H  (X) is complete, this means that any 

Cauchy sequence in H  (X) has a limit. 

Theorem VI.1 The Completeness of the Space of Fractals. Let (X, d) be a 

complete metric space.  Then (H  (X), h) is a complete metric space.  Moreover, if 

{An} n=1

∞  ∈ H  (X) is a Cauchy sequence, then 

 A = lim
n →∞

An ∈ H  (X) 

can be characterized as follows: 

 A = {x ∈ X: there is a Cauchy sequence {xn ∈ An} that converges to x}. 

VII. The Contraction Mapping Theorem 

In this section, we learn about contraction mappings and the Contraction 

Mapping Theorem, which are used in fractals to contract the large picture 

into a smaller image.  We also cover the definition of the fixed point, which 

could be considered the limit of the fractal picture. 

Definition VII.1 A transformation f: X ���� X on a metric space (X, d) is called 

contractive or a contraction mapping if there is a constant 0 ≤ s < 1 such that  

d(f(x), f(y)) ≤ s • d(x, y) for all x,     y ∈  X. 

Any such number s is called a contractivity factor for f. 



 

Example: Suppose we want to contract the graph of the function 

R2 by 

 

1

3
 in the x direction and 

 

˜ y =
1

3
y .  Solving for 

variables into the equation,

This means that the contraction of 

directions is 

 

˜ y =

In the above example the point (0,0) does not move after the contraction is 

applied.  This point is known as a 

performed on a metric space, there is always one 

other points in the spa

point and converge to that point when the limit is taken.

Suppose we want to contract the graph of the function 

 
direction and 

 

1

3
 in the y direction.  To do this set 

 
.  Solving for x and y, 

 

x = 3˜ x  and 

 

y = 3 ˜ y .  So plugging the new 

variables into the equation,

 

(3 ˜ y ) =
1

3
(3 ˜ x )2 .  Then 

 

(3 ˜ y ) =
1

3
(9 ˜ x 2)

 
This means that the contraction of 

 

y =
1

3
x 2  by 

 

1

3
 in both the x 

˜ x 
2 . 

In the above example the point (0,0) does not move after the contraction is 

applied.  This point is known as a fixed point.  In any contraction that is 

performed on a metric space, there is always one fixed point.  In fact, all the 

other points in the space that are being contracted move around that one 

point and converge to that point when the limit is taken. 
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Suppose we want to contract the graph of the function y =
1

3
x

2  in 

direction.  To do this set ˜ x =
1

3
x  and 

So plugging the new 

) .  So 3˜ y = 3 ˜ x 
2 .  

 and y 

 

In the above example the point (0,0) does not move after the contraction is 

In any contraction that is 

.  In fact, all the 

ed move around that one 
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Theorem VII.2 [The Contraction Mapping Theorem] Let f : X ���� X be a 

contraction mapping on a complete metric space (X, d).  Then f possesses 

exactly one fixed point xf ∈  X and moreover for any point x ∈  X, the sequence  

{f on (x) : n = 0, 1, 2, …} converges to xf.  That is,  

 lim
n →∞

 f on (x) = xf,  for each x ∈ X. 

 

VIII. Contraction Mappings on the Space of Fractals 

In this section, we apply the Contraction Mapping Theorem to the space of 

fractals.  We review properties that exist between a metric space X and H  (X).  

We also learn about iterated function systems and attractors of iterated 

function systems, which are very important when producing fractals, and will 

be talked about in more detail in the Algorithm section. 

If w is a contraction mapping on the metric space (X, d), then w is also a 

contraction mapping on H  (X) with the same contractivity factor. 

Lemma VIII.1 Let w : X ���� X be a contraction mapping on the metric space (X, 

d) with contractivity factor s.  Then w : H  (X) � H  (X) defined by  

 w(B) = {w(x) : x ∈ B} for all B ∈ H  (X) 

is a contraction mapping on (H  (X), h(d)) with contractivity factor s. 
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To make fractals, you need to apply multiple contraction mappings, which 

often have different contractivity factors to the space H  (X).  The union of 

these different contraction mappings on the same space is what makes a 

fractal picture.   

Lemma VIII.2 Let (X, d) be a metric space.  Let {wn : n = 1, 2, …, N} be 

contraction mappings on (H  (X), h).  Let the contractivity factor for wn be 

denoted by sn for each n.  For each B ∈ H  (X), define W : H  (X) � H  (X) by 

 W(B) = w1 (B) ∪ w2 (B) ∪ … ∪ wn (B) 

            = 
  

wnn=1

N

U B( ). 

Then W is a contraction mapping with contractivity factor 

s = max sn : n =1,2,...,N{ }. 

 

Definition VIII.1 An iterated function system, or IFS, consists of a complete 

metric space (X, d) together with a finite set of contraction mappings wn : X ���� 

X with respective contractivity factors sn, for n = 1, 2, …, N.  The notation for the 

IFS just announced is {X; wn, n = 1, 2, …, N} and its contractivity factor is s = 

max{sn : n = 1, 2, …, N}. 

 



 21

An iterated function system of different contractions on a picture is what is 

used to generate a fractal picture. 

 

Theorem VIII.1 Let {X; wn, n = 1, 2, …, N} be an iterated function system with 

contractivity factor s.  Then the transformation W : H  (X) � H  (X) defined for 

all B ∈ H  (X) by, 

 W(B) = 
  

wnn=1

N

U B( ) 

is a contraction mapping metric space (H  (X), h(d)) with contractivity factor s.  

That is for all B, C ∈ H  (X), 

 h(W(B), W(C)) ≤ s • h(B, C). 

Its unique fixed point, A ∈ H  (X), obeys 

             A = W(A) = 
  

wnn=1

N

U A( ) 

and is given by A = lim
n →∞

 W on(B) for any B ∈ H  (X). 

 

An IFS also has one fixed point that does not move after the contractions are 

applied.  This point is the limit of the system. 
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Definition VIII.2 The fixed point A ∈ H  (X) described in the theorem is called 

the attractor of the IFS. 

 

IX. Linear and Affine Transformations 

The contractions we will use are all linear transformation, that is, maps in 

which the big picture is contracted into a smaller image of the picture such 

that the zero, or point of the large picture on the origin, goes to the zero in the 

small picture such that the map preserves addition and scalar multiplication 

on points.  This smaller picture is a replica of the large picture just a fraction 

of the size.  An affine transformation is a linear transformation plus a shift so 

that the small image is no longer at the origin.  Both linear and affine 

transformations are used to produce fractal pictures.  

 

To make a linear contraction map, we multiply by a matrix denoted A. Since 

we are concerned with contraction maps, the values in A will be greater than 

0 and less than 1. 

 

Theorem IX.1 Let T : R2 � R2 be a linear transformation.  Then there exists a 

unique matrix A such that for all x ∈  R2 
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          T(x n ) = Ax . 

In fact, A is the m x n matrix whose jth column is the vector T(ej), where ej is the 

jth column of the identity matrix in R2; that is, 

          A = [T(e1) … T(en)]. 

Example:  If a linear transformation has matrix A =

1

4
0

0
2

9

 

 

 
 
 

 

 

 
 
 
, then the 

transformation is T1(x ) =

1

4
0

0
2

9

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 .  If we set T(x ) =

xn

yn

 

 
 

 

 
 , then xn =

1

4
x  and 

yn =
2

9
y . 

If an affine transformation has matrix A =

1

4
0

0
2

9

 

 

 
 
 

 

 

 
 
 
 and shift b =

3

7
4

5

 

 

 
 
 

 

 

 
 
 
, then the 

transformation is T2(x ) =

1

4
0

0
2

9

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

3

7
4

5

 

 

 
 
 

 

 

 
 
 
.  If we set T(x ) =

xn

yn

 

 
 

 

 
 , then

xn =
1

4
x +

3

7
 and yn =

2

9
y +

4

5
. 

Example: Let T : R2 � R2 be the transformation that rotates each point in R2 

about the origin through an angle θ , with a counterclockwise rotation for a 

positive angle.  We could show geometrically that such a transformation is 

linear.  Find the standard matrix A of this transformation. 
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Solution: 
1

0

 

 
 

 

 
  rotates into 

cosθ
sinθ

 

 
 

 

 
  and 

0

1

 

 
 

 

 
  rotates into 

−sinθ
cosθ

 

 
 

 

 
 .  By Theorem 

IX.1, A= 
cosθ −sinθ
sinθ cosθ

 

 
 

 

 
 . 

X. Algorithms 

There are two different algorithms that can be used to compute fractals from 

iterated function systems.  The first method is known as the Deterministic 

Algorithm and the second method is known as the Random Iteration 

Algorithm. 

In the Deterministic Algorithm, you start with any point x in the metric space, 

H  (X).  You then apply all N contraction mappings in the iterated function 

system to x and get N new points.  You then apply all N contraction mappings 

to each of the N new points found and get NN new points.  This process is 

continued infinite times.  The sequence of all the points found approaches the 

fixed point or limit and creates the fractal picture.   

The picture that results is a combination of smaller versions of the original 

picture.  The fixed limit point ensures the property of self- similarity. This 

means that all the small pictures are similar to the original large picture only 

contracted and shifted in some cases. 
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Algorithm X.1 The Deterministic Algorithm. Let {X; w1, w2, … wN} be an IFS.  

Choose a compact set A0 ⊂ R2.  Then compute successively An = W on (A) 

according to  

          An+1 = 
  j=1

n

U  wj(An)  for n = 1, 2, … 

Thus construct a sequence {An : n = 1, 2, 3, …} ⊂ H  (X).  Then by Theorem 7.1 the 

sequence {An} converges to the attractor of the IFS in the Hausdorff metric. 

The Random Iteration Algorithm is what was used to generate my fractal.  

This algorithm is similar to the Deterministic Algorithm except instead of 

applying all N contraction mappings to each point found, one of the N 

contraction mappings is chosen at random and applied to each point found.  

The limit of this sequence of points also approaches the fixed point only the 

points jump around more making the picture not as clearly defined.   

Algorithm X.2 The Random Iteration Algorithm.  Let {X; w1, w2, … wN} be 

an IFS, where probability pi > 0 has been assigned to wi for i = 1, 2, …N, where 

pi
i=1

N∑ =1.  Choose x0 ∈ X and then choose recursively, independently,  

          xn ∈ {w1(xn-1), w2(xn-1), …, wN(xn-1)}  for n = 1, 2, 3, …,  

where the probability of the event xn = wi(xn-1) is pi.  Thus, construct a sequence  

          {xn : n = 0, 1, 2, 3, …} ⊂ X. 

 

XI. Construction of a Classic Fractal 
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The triangle at the top of the first page with infinite triangles inside of it is an 

example of a fractal.  It is known as the Sierpinski triangle.  The Sierpinski 

triangle utilizes contraction mappings to create smaller images that form the 

large image. 

 

 

This image is one large triangle made up of 3 smaller, self-similar triangles, 

which are each made up of many smaller, self-similar triangles of itself.  This 

is a fractal.  To produce this fractal, we must use both linear and affine 

transformations.  We show how to get each of those smaller 3 triangles using 

1 linear transformation and 2 affine transformations.    

 

 

We are focusing on the large triangle, which is broken up into three small 

triangles.  We label the bottom left triangle 1, the bottom right triangle 2, and 

the top triangle 3.  There are two necessary steps to follow when drawing a 
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fractal.  One, the picture must line up with the origin, and two, the image 

must fit in a1×1 square.  Triangle 1 is lined up with the origin and if we 

rescale the x-y axis, the picture fits within a 1×1 square.  Recall that the point 

at 
1

0

 

 
 

 

 
  is labeled e1 and the point at 

0

1

 

 
 

 

 
  is labeled e2.  We want images of e1

 and 

e2 under the transformation since Theorem IX.1 then gives the formula. 

 

To send the fractal to any of the three triangles, we must first do a linear 

transformation and line the small triangle up with the origin and determine 

where e1 and e2 are.  Then if the triangle is shifted away from the origin, we 

must determine the shift and add that shift to the linear transformation 

making an affine transformation. 

 

Lining triangle 1 up with the origin, e1 is at 
1

2
,0

 
 
 

 
 
  and e2 is at 0,

1

2

 
 
 

 
 
 .  In the 

picture, triangle 1 remains against the origin.  So the transformation of 

triangle 1 is T1(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 . 
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Lining triangle 2 up with the origin, e1 is at 
1

2
,0

 
 
 

 
 
  and e2 is at 0,

1

2

 
 
 

 
 
 .  This 

triangle is shifted away from the origin 
1

2
,0

 
 
 

 
 
 .  So the transformation of 

triangle 2 is T2(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

2
0

 

 
 
 

 

 
 
 
. 

 

When triangle 3 is lined up with the origin, once again e1 is at 
1

2
,0

 
 
 

 
 
  and e2 is 

at 0,
1

2

 
 
 

 
 
 .  This triangle is then shifted away from the origin 

1

4
,
1

2

 
 
 

 
 
 .  So the 

transformation of triangle 3 is T3(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

4
1

2

 

 

 
 
 

 

 

 
 
 
. 

 

When either the deterministic or random iteration algorithm is applied to the 

IFS with T1(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 , T2(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

2
0

 

 
 
 

 

 
 
 
, and 

T3(x ) =

1

2
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

4
1

2

 

 

 
 
 

 

 

 
 
 
, the Sierpinski triangle is produced. 

 

XII. Final Fractal 
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For my final fractal, I decided to do a picture of my initials KMM.  To do this, I 

first drew out my initials on a piece of graph paper.  I made them fit into a 

1×1 square by rescaling each of the unit squares to be 
1

12
 of a square.  Next I 

labeled e1 at the point 
1

0

 

 
 

 

 
  and e2 at the point 

0

1

 

 
 

 

 
 .    

 

I then broke each letter up into 4 different sections so that there were 12 

total sections.  I split the “K” by cutting the long piece on the left in half and 

designating each leg as a section, and I split both “M”’s by designating each 

leg as a section and cutting the top part that dips inwards in half, making two 

parallelograms.  The lower portion of the long left part of the “K” was 

segment 1.  The upper portion of the long left part of the “K” was segment 2.  

The upper branch of the “K” was segment 3.  The lower branch of the “K” was 

segment 4.  The left leg of the first “M” was segment 5.  The downward 

slanted top piece on the first “M” was segment 6.  The upward slanted top 

piece on the first “M” was segment 7.  The right leg of the first “M” was 

segment 8.  The left leg of the second “M” was segment 9. The downward 

slanted top piece on the second “M” was segment 10.  The upward slanted 

top piece on the second “M” was segment 11.  And the right leg of the second 

“M” was segment 12.  The image KMM repeating infinite times was sent to 

each of these sections using linear and affine transformations.  To find each 

of these transformations, I used the same method used to find the Sierpinski 

triangle. 
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To find transformation 1, which was the lower portion of the long left part of 

the “K,” the piece was lined up with the origin.  I found e1 at 

1

12
0

 

 
 
 

 

 
 
 
 and e2 at 

0
1

2

 

 
 
 

 

 
 
 
.  

This image was no shifted away from the origin so transformation 1 is 

T1(x ) =

1

12
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 .   

 

 

To find transformation 2, which was the upper portion of the long left part of 

the “K,” the section was lined up with the origin.  I found e1 at 

1

12
0

 

 
 
 

 

 
 
 
 and e2 at 

0
1

2

 

 
 
 

 

 
 
 
.  This piece in my drawing was then shifted 

0
1

2

 

 
 
 

 

 
 
 
.  So transformation 2 is 

T2(x ) =

1

12
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

0
1

2

 

 
 
 

 

 
 
 
. 
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To find transformation 3, which was the upper branch of the “K,” I lined the 

segment up with the origin and found e1 at 

1

4
1

2

 

 

 
 
 

 

 

 
 
 
 and e2 at 

0
1

6

 

 
 
 

 

 
 
 
.  This segment 

was then shifted 

1

12
1

3

 

 

 
 
 

 

 

 
 
 
.  Transformation 3 is T3(x ) =

1

4
0

1

2

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

12
1

3

 

 

 
 
 

 

 

 
 
 
. 

 

I found transformations 4- 12 using the same method described for segments 

1- 3. 

T4 (x ) =

1

6
0

−
1

3

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

12
1

3

 

 

 
 
 

 

 

 
 
 
 

T5(x ) =

1

12
0

−
1

6

2

3

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

3
1

6

 

 

 
 
 

 

 

 
 
 

 

T6(x ) =

1

6
0

−
1

3

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

3
3

4

 

 

 
 
 

 

 

 
 
 

 

T7(x ) =

1

6
0

1

3

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

1

2
1

2

 

 

 
 
 

 

 

 
 
 
 

T8(x ) =

1

12
0

1

6

2

3

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

7

12
0

 

 
 
 

 

 
 
 
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T9(x ) =

1

12
0

−
1

6

2

3

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

2

3
1

6

 

 

 
 
 

 

 

 
 
 

 

T10(x ) =

1

6
0

−
1

3

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

2

3
5

6

 

 

 
 
 

 

 

 
 
 
 

T11(x ) =

1

6
0

1

3

1

6

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

5

6
1

2

 

 

 
 
 

 

 

 
 
 
 

T12(x ) =

1

12
0

1

6

2

3

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

11

12
0

 

 
 
 

 

 
 
 

.

 

Once all of the 12 transformations were calculated, I used the computer 

program Maple to make my fractal.  To use Maple for this purpose, I first had 

to change each of my transformation matrices into the xn, yn form.  So for 

example T2(x ) =

1

12
0

0
1

2

 

 

 
 
 

 

 

 
 
 
×

x

y

 

 
 

 

 
 +

0
1

2

 

 
 
 

 

 
 
 
 where T(x ) =

xn

yn

 

 
 

 

 
  was rewritten as 

x n =
1

12
x  and y n =

1

2
y +

1

2
. 

 

 Maple uses the Random Iteration Algorithm.  With my fractal, it randomly 

chose 1 of the 12 equations of my IFS to apply to each point it found.  The 

sequence of all the points found approached the fixed point and made the 

fractal picture.  I used the program that Professor Banerjee created to make 

fractals.  I programmed it to plot 20,000 points and discard the first 100 
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because the first 100 points plotted were not as close to the fixed point and 

therefore more sporadic as opposed to being close to other points creating 

the fractal picture I was aiming to make. 

restart: 

with(plots): 

x:=10:y:=0: 

n:=20000: 

n1:=100: 

for i from 1 to n do 

j:=rand(1..12): 

c:=j(); 

if (c=1) then 

   xn:=(1/12)*x: 

   yn:=0.5*y+0.5: 

elif (c=2) then 

   xn:=(1/12)*x: 

   yn:=0.5*y: 

elif (c=3) then 

   xn:=0.25*x+(1/12): 

   yn:=0.5*x+(1/6)*y+(1/3): 

elif (c=4) then 

   xn:=(1/6)*x+(1/12): 

   yn:=-(1/3)*x+(1/6)*y+(1/3): 

elif (c=5) then 

   xn:=(1/12)*x+(1/3): 

   yn:=-(1/6)*x+(2/3)*y+(1/6): 

elif (c=6) then 

   xn:=(1/6)*x+(1/3): 

   yn:=-(1/3)*x+(1/6)*y+0.75: 

elif (c=7) then 

   xn:=(1/6)*x+0.5: 

   yn:=(1/3)*x+(1/6)*y+0.5: 

elif (c=8) then 

   xn:=(1/12)*x+(7/12): 

   yn:=(1/6)*x+(2/3)*y: 

elif (c=9) then 

   xn:=(1/12)*x+(2/3): 

   yn:=-(1/6)*x+(2/3)*y+(1/6): 

elif (c=10) then 

   xn:=(1/6)*x+(2/3): 

   yn:=-(1/3)*x+(1/6)*y+(5/6): 

elif (c=11) then 

   xn:=(1/6)*x+(5/6): 
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   yn:=(1/3)*x+(1/6)*y+0.5: 

else 

  xn:=(1/12)*x+(11/12): 

  yn:=(1/6)*x+(2/3)*y: 

end if; 

xx[i]:=xn: yy[i]:=yn: 

x:=xn: y:=yn: 

end do: 

## 

a:=[seq(xx[i],i=n1..n)]: 

b:=[seq(yy[i],i=n1..n)]: 

pair:=(x,y)->[x,y]: 

 P:=zip(pair,a,b): 

plot(P,symbolsize=1,color=blue,style=point,axes=none); 

After plugging this information into Maple, the following fractal appeared. 

 

If you look closely at this picture you will see “KMM” repeated many times in 

the 12 different sections I explained earlier. 
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While I calculated a fractal in a purely mathematical way, fractals also occur 

naturally.  They can be found throughout nature in things such as pinecones, 

leafs, and shorelines.  Zooming in on a small part of a shoreline, it continues 

to look like the original large shoreline even as the area of the shoreline 

decreases in size.  This advancement in mathematics has allowed us to mimic 

the work of nature and understand just how complicated it is.  With 

continued advancement, I wonder what sort of thing could be discovered 

next? 
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