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Abstract  

 For decades, remote sensing has been used by scientists and planners to make detailed 
observations and decisions on areas with industrial problems, remediation and development sites, 
and resource management.  It is challenging to make high spatial and temporal resolution 
observations along headwater and small streams using traditional remote sensing methods, due to 
their high spatial variability and tendency for rapidly changing water quality and discharge.  
With improved technology in sensors and launching platforms, remote sensing via Unoccupied 
Aerial Vehicles (UAVs) now allows for imagery to be collected at high spatial and temporal 
resolution, with the goal of providing a deeper analysis of these intricate and difficult to access 
regions.  One recent area of interest is the use of UAVs to delineate land and water cover. While 
recent innovations in low-altitude multispectral and hyperspectral imagery have been used 
extensively for tracking land cover, it has been used less frequently to detect changes within the 
water column through space and time.  In addition, it is unclear whether classification methods 
applied to headwater systems are translatable across adjacent stream reaches or across flights on 
different days, as well as how much information is needed to perform such classifications.  This 
study demonstrates that UAV multispectral imagery can be used to classify land cover as well as 
uniquely identify submerged aquatic vegetation by combining methods of remote sensing, image 
processing and machine learning.  A linear discriminant analysis (LDA) model was developed to 
provide land and water cover classification maps (with statistical analysis of error) using training 
data from hand delineated multispectral shapefiles.  This method proved to be robust when 
classifying land cover along a single reach, even when using a very small proportion of the 
training data.  Through attempts to transfer data through space and time, this exercise highlights 
the shortcomings in multispectral imagery and the dependence on lighting conditions, reach 
orientation and shading from nearby structures such as vegetation.  Therefore, this approach is 
likely most beneficial for classifying land cover and submerged aquatic vegetation at a single 
reach for a single time, but more work must be done to further identify physical limitations of 
multispectral imagery and calibration methods which might allow for an “absolute” measure of 
reflectance.   
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1.0 Introduction 

Remote sensing has revolutionized our ability to observe the Earth’s surface. In 

particular, technological advances in the past decade have enabled increasingly detailed temporal 

and spatial monitoring of land and water cover through improved sensors as well as new low-

altitude launching platforms (Rogan and Chen, 2004; Blaschke, 2010; Watts et al., 2012; Akar, 

2017).  Historically, remote sensing techniques (e.g., satellite, airborne) have been used to 

delineate locations of headwater and other small streams (Martz and Garbrecht, 1992; Wechsler, 

2007; Kayembe and Mitchell, 2018), however due to spatial resolution, remotely sensed imagery 

has not been used for other applications in these areas.  Instead, stream surveys of water quality 

and other in situ conditions have typically been performed by hand and on foot (e.g., Dai et al., 

2001; Ledford et al., 2017), which can make it more challenging to capture “hot spots” or “hot 

moments” (e.g., McClain et al., 2003; Vidon et al., 2010), or to rapidly observe or map features 

within or below the water column (e.g., submerged aquatic vegetation, stream morphology).  

Conditions are especially challenging in urban environments, where changes in stream water 

quality or streamflow occur over a matter of minutes (Paul and Meyer, 2001; Chen et al., 2015).  

High spatial resolution (< 0.5 m) imagery is needed to make meaningful observations in 

headwater environments, given the small scale of these (Marcus et al., 2003; Feurer et al., 2008).  

To address challenges regarding the rapid and high resolution collection of spatial 

datasets, Unoccupied Aerial Vehicles (UAVs), more commonly referred to as drones, are being 

increasingly adopted for use in scientific studies (Nebiker et al., 2008; Haala et al., 2011; Gago et 

al., 2015; Webster et al., 2018).  UAVs can be flown within tens of meters above ground level, 

enabling the collection of high-resolution data along headwater streams (Flener et al., 2013; 
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DeBell et al., 2015).  The low cost of UAVs enables temporally and spatially flexible 

observation schemes due to the ease of deployment and utilization, facilitating the acquisition of 

large amounts of data that enable a more thorough understanding of the heterogeneity of water 

quality (Dent and Grimm, 1999; Feng et al., 2015).   

 When it comes to translating UAV datasets into meaningful understanding of headwater 

stream water quality, the primary methodological challenges have resulted in two open 

questions: (1) how much data are needed to create translatable approaches that relate UAV 

imagery to a metric of interest (e.g., chlorophyll, Elarab et al., 2015; turbidity, Ehmann et al., 

2018; land cover mapping, Kalantar et al., 2017), and (2) are relationships between UAV 

imagery and in situ observations translatable through space and through time?  When it comes to 

the latter, developing translatable relationships may be influenced by weather conditions during 

UAV acquisition (Zeng et al., 2017), typically treated via standard imagery calibration 

approaches applied after imagery is collected, as well as variations in physical conditions 

through space (e.g., shadows from trees, stream orientation) (Ishida et al., 2018; Tu et al., 2018).  

The goal to create a universal and translatable algorithm between in situ observations of water 

quality and variations in UAV imagery would enable ongoing monitoring via UAV with minimal 

image post processing.   

Land cover classification techniques usually treat water as a homogenous class (Mancini 

et al., 2016; Natesan et al., 2018; Rusnák et al., 2018), or ignore  the delineation of water 

(Ahmed et al., 2017; Akar, 2017; Ishida et al., 2018).  Here, I provide an in-depth analysis of 

land cover classification, with an alternative statistical analysis approach to traditional methods 

such as Rotation Forest (Akar, 2017), Random Forest (Ahmed et al., 2017) or Fast k-means 

algorithms (Mancini et al., 2016).  I also aim to expand on previous studies that have 
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acknowledged the heterogeneity in the “water class” by using multispectral sensors that go 

beyond visual light imagery (e.g. Flynn and Chapra, 2014) in identifying vegetation not only on 

the surface of water, but submerged within the water column (e.g. Husson et al., 2016), using 

imagery collected via UAV platform rather than satellite or plane (e.g. Cho et al., 2008).   

My application focuses on the development of a robust method for identifying and 

separating the presence of submerged aquatic vegetation within the water column of a shallow 

urban stream from open water as well as stream-adjacent land cover.  While UAVs have been 

used to improve understanding of numerous water quality applications, one primary challenge is 

to determine whether objects submerged within the water column - such as nuisance algae, 

milfoil, or channel bottom vegetation - can be observed via low altitude remote sensing (Flynn 

and Chapra, 2014; Chirayath and Earle, 2016; Husson et al., 2016). To test capabilities for 

classifying submerged aquatic vegetation in the presence of environmental variability, I collected 

UAV imagery using a widely available multispectral camera imaging four common bands along 

four reaches spanning a small urban stream.  Imagery was collected across three flight dates.   To 

classify land cover, imagery was statistically analyzed using Linear Discriminant Analysis 

(LDA), a method adapted to this study that uses a complete dataset to train a model that 

maximizes separation between land cover classes for known land cover.  Statistical LDA models 

were then used to assign decision regions that enable classification of unknown pixels based on 

their reflectance for each of several spectral bands.   

While UAVs are being widely adopted for scientific studies, it is not clear whether the 

imagery obtained from these tools is robust to environmental variability introduced during data 

collection (Zeng et al., 2017).  In particular, UAV imagery is impacted by differences in 

environmental conditions from data collected months, weeks, days, or even minutes apart. This 



		
	

4	

variability is integrated across different reach orientations and characteristics.  In this sense, I use 

this case study of land cover classification along a headwater stream to determine whether (or 

not) it is possible to develop a robust method for separating time-varying in-stream conditions, 

specifically submerged aquatic vegetation, from other land cover types.  Ideally, a method 

capable of identifying submerged vegetation would require minimal data with limited extent and 

from a single time, and would be translatable to other down- or upstream areas as well as 

imagery collected on alternative dates.  The major objectives to be addressed in this study are: 

(1) to determine how much information is required to classify submerged aquatic vegetation 

along a single reach at a single time, (2) to determine if statistical models based on UAV imagery 

can be transferred in space and time to successfully separate submerged vegetation from other 

types of vegetation and land cover, and (3) to determine if these statistically-based relationships 

are (most) robust through space or through time. 

 

2.0 Study Area 

Meadowbrook Creek is a first order stream running eastward through Syracuse, NY 

(Figure 1).  The stream first emerges from a retention basin before traveling 5.6 km to an Erie 

Canal feeder channel (Ledford and Lautz, 2015).  The upper 4.1 km of stream is highly 

urbanized with armored banks that disconnect the stream from natural groundwater influx.  This 

channelized section has minimal riparian vegetation and is strongly influenced by road runoff 

(Ledford et al., 2016).  The lower 1.5 km of Meadowbrook Creek is not channelized or armored, 

allowing the stream to meander through a large cemetery before entering 500 m of riparian 

floodplain.  
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I identified four reaches, further referred to as R1, R2, R3, and R4, along the upstream, 

urbanized portion of Meadowbrook Creek based on length and overhead accessibility to ensure 

that maximum aerial imagery could be collected from a UAV during a single flight.  All reaches 

are between 170 and 325 meters in length and between 1.5 and 3.5 meters in width, with 

recorded water depth ranging from 10 cm to 60 cm, although water levels may surpass this range 

with high intensity rain events or with the scheduled release of the retention basin.  Although all 

reaches are surrounded by urbanized land cover, they have heterogeneous shading from canopy 

cover and differing reach orientation. Importantly, growth of submerged aquatic vegetation 

reflects variance in exposure to sunlight as well as nutrient input from urban processes such as 

lawn fertilization, leaking sewer systems, and road runoff.  Presence of submerged vegetation 

varies among reaches, and represents a changing condition within the stream channel which is 

measureable through UAV imagery and has ties to water quality.  It is typically at a minimum 

biomass in winter, begins to develop in April or May, and reaches a maximum biomass in late 

July or August. 

 

3.0 Methods 

3.1 Flight Planning and Data Collection 

I collected imagery using a Sequoia Multispectral Camera and Sunshine Sensor (Parrot 

Drones SAS) attached via 3D printed plastic harness to a DJI Inspire 1 UAV.  The camera 

collects 16 Megapixel visual light (RGB) images, as well as individual Tagged Image Format 

(TIF) files corresponding to green, red, red edge, and near infrared bands (center wavelengths 

and bandwidths of 550 ± 20, 660 ± 20, 735 ± 5, 790 ± 20 nm, respectively).  The Sunshine 

Sensor continuously monitors in-flight lighting conditions in the same bands as those recorded 
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by the multispectral sensor in order to calibrate the Sequoia camera for collection of precise 

imagery regardless of changing light conditions.   

All missions were flown at 30 m above ground level to guarantee clearance above trees 

and power lines.  The Inspire 1 was set to fly at eight km hr-1, to ensure images were collected at 

nearly nadir to limit distortion.  For each reach, the UAV heading was set parallel to the reach 

orientation and set to fly up one side of the stream and back down the opposite side, creating a 

grid pattern with both image frontlap and sidelap upwards of 85%.  To maintain 70 to 80% 

overlap, the camera was set to collect multispectral images in the green, red, red edge, near 

infrared (NIR), and RGB bands every three seconds.  These flights typically began at 11:00 am 

at the most upstream R1, and continued on to downstream reaches.  This timing was selected to 

best constrain changing lighting conditions based on sun position.  I collected images of a 

MicaSense Calibrated Reflectance Panel before and after each individual flight; these images 

were used to radiometrically correct images for inevitably changing lighting conditions.  

Missions were repeatedly flown following this protocol every one to two weeks from April 23, 

2018 through July 30, 2018.  For this particular study, I focus on imagery collected on three 

dates: July 16, July 19, and July 30, 2018. 

3.2 Image Radiometric Calibration and Mosaicking    

Images were corrected and post-processed in Pix4D (v. 4.4.4) software, which was used 

to build georeferenced RGB, green, red, red edge, and NIR orthomosaics across four reaches for 

three flights per reach.  Pix4D uses the in-flight records of lighting conditions recorded by the 

sunshine sensor to normalize images, and employs the radiometric calibration target as an 

absolute reference to correct for changing lighting conditions between flights.  When combined, 

the sunshine sensor and calibration target allow for in-flight and absolute correction of 
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reflectance values while the georeferenced orthomosaics are built.  Spatial resolution of the 

multispectral orthomosaics ranged from 3.1 to 3.5 cm (Appendix Table A1).   

3.3 Automated Land Cover Delineation via Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a statistical method that seeks user input for 

dimensionality reduction and classification (James et al., 2013).  LDA relies on a complete 

training dataset, that includes continuous data for multiple variables with classifications of 

observations in pre-defined groups.  These data are used to create dependent variables 

(discriminants, or scores) that are the linear combination of the multivariable input data.  These 

dependent variables summarize the data while also creating maximum separation between 

classes of data, and minimum separation within individual classes.  Scores are created based on 

an n – 1 (degrees of freedom minus one) basis, with each score representing an additional plane.  

In this study, four land cover types are represented by three scores in a three dimensional plane.  

To build an algorithm that relates submerged aquatic vegetation cover to spectral 

signatures, I imported reach orthomosaics into ArcMap (v. 10.5.1) and used RGB imagery to 

guide hand delineation of four different types of land cover: submerged aquatic vegetation, open 

water, grass, and rock.  These classes represent the four main types of common land cover that I 

identified across stream reaches and the approximately 2 meters of land cover surrounding each 

reach.  I define these covers more specifically as follows:  

• Submerged aquatic vegetation – aquatic non-rooted vegetation with bounds 

constrained within the aqueous stream channel,  

• Grass – all regions of soil and vegetation consisting of short, narrow leaves 

beyond the bounds of the aqueous stream channel, 
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• Rock – all consolidated material not inundated with water which does not consist 

of soil or vegetation, and 

• Open water – all regions within the stream channel which do not contain 

submerged aquatic vegetation, other types of vegetation, or rock.    

All LDA models require a training set – representing known group classifications and 

their corresponding data – as input to generate statistical relationships used to classify unknown 

pixels.  To create an unbiased training dataset, land cover shapefiles were randomly delineated 

throughout each reach (Appendix Figure A6) and used to mask each reflectance band based on 

the four land cover types above.  Pixel reflectance was exported from ArcGIS for these four land 

cover types and summarized in a table of reflectance values for each band indexed by cover type.  

I refer to these data as the “full training dataset” – it contains all of the information from the 

original masking shapefiles, without any trimming or constraints on the number of training pixels 

included in the LDA model (Appendix Table A2).  There are 12 “full training datasets” included 

in this study, one for each reach-time combination.   

From the training dataset, I applied LDA to derive a linear relationship that maximized 

separation between the four cover types on a three-dimensional plane (Appendix Figure A7, A8, 

A9).  LDA relationships consisted of three linear discriminant classifiers (the number of 

classification groups less one) computed as a coefficient plus the summation of the green, red, 

red edge, and NIR reflectance bands each weighted by a loading factor.  Ten-fold cross 

validation was performed during each model run to test model accuracy by determining the 

percentage of misclassified pixels (losses).  LDA discriminants were then used to classify all 

unknown pixels on each reach as either submerged aquatic vegetation, grass, rock or water.  
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As the development of a training dataset requires hand delineation of land cover types, 

this resulted in an uneven number of pixels of a certain land cover per site, and different sizes of 

training datasets across sites and flights.  To identify a common dataset size and to determine 

how much data are needed to create a robust model, I curated and varied the training dataset 

within the LDA approach for R1 on July 16.  I created subsets of the training dataset that 

consisted of a 1:1 ratio among all four types of land cover, and reran the model five times, each 

time putting stricter limits on the total number of pixels to be included in the training data (n = 

1600, n = 1200, n = 800, n = 400, n = 200).  For each n, I created 100 training datasets randomly 

sampled from the full training dataset that were used to classify pixels along the entire reach as 

one of the four types of land cover.  Pixels that did not change classification throughout the 100 

iterations were considered to have 100% classification consistency.  Ten-fold cross validation 

was also performed resulting in the average loss, or percentage of misclassified pixels, for each 

iteration.  A common dataset size of n = 1200 pixels was then created for each reach-time 

combination from each full training dataset.   

3.4 Is the Model Robust through Space and Time? 

 If land cover spectral signals are unique, LDA models developed for one reach should be 

transferable to other reaches and for imagery collected at different times.  To test model 

transferability through space, I combined reflectance values for all four of our study reaches 

from a single date.  Similarly, to test the model’s transferability through time, I combined 

reflectance values from all three of the study dates for a single reach.  Patterns through space and 

time were compared to solar radiation data collected at the Syracuse University weather station 

throughout the study period (“Syracuse University WeatherSTEM,” n.d.).   
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4.0 Results 

Weather across the flight dates from mid to late July was warm, with storms occurring 

between flight dates. Average daily air temperatures ranged from 20˚C to 29 ˚C.  This period was 

also wet, with storms delivering 1.2 cm of precipitation between the July 16 and July 19 flights, 

and a total of 2.3 cm of precipitation from July 22 to July 27, prior to the July 30 flight. 

The full training datasets were used without any trimming to first determine if LDA could 

generate robust and accurate classifications.  Discriminants produced from model runs using the 

full training datasets for individual reaches and flight dates were used to classify between 

1,284,172 and 3,523,431 pixels per reach, per flight (Appendix Table A3).  An example of this 

classification is shown in Figure 3 for R1 (July 16), with classification presented alongside RGB 

imagery.  The percentage of misclassified pixels from the 10-fold cross validation varied from 

0% (R2, July 16) to 16.2% (R2, July 30).  These values are summarized in Figure 4(a).   

To test the limitations of my classification, I randomly subsampled the R1 (July 16) full 

training dataset to only include a specified number of training pixels from each land cover type, 

applied solely to R1.  This exercise allowed me to assess how classification accuracy varied with 

training dataset size. Limiting the number of training data to n = 1600 resulted in 100% 

classification consistency (i.e., pixels that did not change land cover classification over 100 

iterations) for 93.4% of the pixels along R1 (July 16), with an average loss of 3.7% for the 10-

fold cross validation (Appendix Table A4).  Further limiting the training dataset to n = 1200 (300 

pixels per cover type), n = 800 (200 pixels per cover type), n = 400 (100 pixels per cover type) 

and n = 200 (50 pixels per cover type) resulted in greater percentages of unclassified pixels (i.e., 

pixels that changed land cover classification over 100 iterations).  However, this application of 

LDA yielded 100% classification consistency of nearly 80% of the 1,284,172 total pixels along 



		
	

11	

the first stream reach (R1) using only 50 pixels from each land cover type as training data 

(Figure 5).  The average ten-fold cross validation loss for this model was 3.5% (Appendix Table 

A4).  Pixels that had 100% classification consistency were mapped along R1, with white areas 

representing pixels that changed classification across the 100 iterations (Figure 5). 

To assess how training dataset size impacts the accuracy of this method, I used a 

subsampled training dataset (n = 1200, randomly created for each of the 100 iterations, per 

flight) to classify land cover across individual reaches for each flight date.  For each of these 

iterations, we calculated an average percentage of misclassified pixels using 10-fold cross 

validation, shown across these iterations in Figure 4(b).  Applying LDA classification using a 

restricted training dataset did not degrade the percentage of misclassified pixels (also known as 

‘losses’; Figure 4b) as compared to the full training dataset (Figure 4a). All models exhibited low 

losses across reach-time combinations, with losses below 10% for 11 of 12 combinations (Figure 

4b). This finding is also robust, as indicated by the relatively narrow distributions of the average 

percentage of misclassified pixels across 100 training dataset iterations per reach-time 

combination.   

 Training datasets (n = 1200; 300 pixels per land cover type) were combined from 

multiple reaches across a single date and from multiple dates across a single reach to test model 

robustness through space and time.  I found consistency in ten-fold cross validation results 

throughout temporal combinations of data, but variable percentages of misclassified pixels when 

combining reach-wide datasets for a single date.  Combining R1 through R4 data to determine 

the robustness of my model through space yielded mean losses as high as 48.6% on July 30 and 

as low as 2.7% on July 16, with the average losses for each date at 44.8% and 4.0%, respectively.  

Combining July 16, July 19, and July 30 data to determine temporal robustness yielded mean 
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losses all below 20%, with the average loss for R1 at 14.1% and the average loss for R4 at 5.1% 

(Figure 6). These findings suggest that UAV data may be more robust through time, but that 

combining data from different reaches may produce a high percentage of misclassified pixels.  

 

5.0 Discussion  

5.1 Is there Novelty in UAV Submerged Vegetation Classification? 

UAVs equipped with RGB, multispectral and hyperspectral sensors have been used in a 

multitude of exercises to study terrain and delineate land cover (Akar, 2017; Ishida et al., 2018; 

Natesan et al., 2018), a novel technique in and of itself among traditional remote sensing 

approaches.  Ahmed et al. (2017) found significantly higher inaccuracies in land cover and 

vegetation classification when using consumer-grade RGB sensors compared to a multispectral 

sensor, suggesting that a new standard may exist for data collection.  To date, few research 

studies have employed multispectral imagery in diverse environments.  Researchers have called 

for greater numbers of operational applications to diverse places and conditions to better explore 

and highlight the capabilities of multispectral imagery collected from UAV platforms (Ahmed et 

al., 2017).  This study represents one such example seeking to expand current research 

techniques and increase utility and use of these systems in land cover and vegetation 

classification and monitoring.  Automated classification methods following the collection of 

imagery require merging approaches of remote sensing, machine learning and image processing, 

creating a novelty in the combination of differing techniques between the data collection, 

processing, and analysis stages of a particular project.  While most techniques to classify land 

cover do not separate water from submerged cover (Mancini et al., 2016; Natesan et al., 2018; 

Rusnák et al., 2018), I demonstrate that it is possible to use UAV imagery to identify finer 
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features within the water column that may vary through time.  While previous studies have used 

RGB imagery in pursuit of similar objectives (Flynn and Chapra, 2014), my work shows that 

multispectral imagery may be particularly useful for this application, and may not require much 

data to achieve robust classifications of land cover. 

 

5.2 What are the Capabilities of this Data Collection-Analysis Technique?  

This system allows for the collection of inexpensive, high-resolution multispectral 

imagery of a small urban stream.  Collection of low altitude multispectral imagery goes beyond 

fulfilling the demand for higher resolution land cover or land use mapping by providing a deeper 

understanding of environmental impacts such as vegetation health and water column 

heterogeneity, yielding inferences to water quality.  As highlighted in this study, UAV-

multispectral systems facilitate the classification (with statistical analysis of error) of surface and 

in-stream submerged cover at approximately a 3 cm spatial resolution (Figures 3 & 4, Appendix 

Figure A5), with correction for spatial and temporal alterations in lighting conditions.  While not 

included in my study, additional analysis could incorporate more complex vegetation indices 

such as Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), 

and Enhanced Vegetation Index (EVI).  These indices were excluded from this study for model 

simplicity, but may be shown to carry additional meaning for delineating additional water 

column features.   

 As with all models, there is a tradeoff between model complexity (e.g., the amount of 

training data) and resulting output accuracy and uncertainty. To assess this tradeoff, I explored 

how classification uncertainty varied with the amount of training data (Figure 5).  The number of 
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training data pixels can be viewed as a proxy for ‘person-hours’ or even ‘cost’, given this 

training data represents known land cover classes and therefore must be hand delineated. Even as 

the size of the training dataset was restricted, I found that land cover for a large proportion of 

pixels converged to a single cover class (Figure 5).  This was true even for a very small training 

dataset randomized across 100 iterations.  If the goal of a given exercise is to achieve robust 

cover classifications for all pixels, a larger training dataset should be used.  However, I show that 

even a small training dataset can yield robust classifications of land cover.  This approach would 

allow anyone employing this method to spend more time on data collection rather than 

processing.   

5.3 Does this Model Transfer through Space and Time?  

While I show that my LDA model delineates land cover for individual reaches for a 

single flight (Figure 4), the broader goal of any exercise relating multispectral imagery to land 

and water cover is likely to create a model that is transferable through space and time.  

Benchmarking this transferability would allow users to limit time spent in the training phase, 

enabling them to hand delineate a set number of pixels at one “time” (e.g., single flight) to 

repeatedly use as training data for classifying additional local sites or stream reaches. At odds 

with this goal is the environmental variability found within and across stream reaches and 

environmental conditions that may change from flight to flight or during a single UAV flight. 

In particular, incoming irradiance measurements have been found to differ in sunlit and 

shaded regions (Ishida et al., 2018), be directionally variable (Tu et al., 2018), and be affected by 

sun glint on the water surface (Zeng et al., 2017).  These conditions suggest it may be difficult to 

transfer data collected on days with variable lighting conditions among reaches.  They also hint 

that transferability may be impacted by reach orientation and shading.   
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To determine the conditions that most impact whether or not a robust classification can 

be developed across sites for a single date, I compared the percentage of misclassified pixels for 

each flight date (Figure 6) with solar radiation observations during and across each flight (Figure 

7).  Lower percentages of misclassified pixels occurred on July 19, when solar radiation was 

consistent across all flights, and on July 16, when solar radiation was consistent for the first three 

flights (R1 – R3), but increased during the fourth flight (R4).  A higher percentage of 

misclassified pixels occurred on July 30, when solar radiation was high but variable throughout 

all flights (R1 – R4).  This is interesting, because losses were lowest on a day when solar 

radiation varied the most.  I hypothesize that this may be due to R4 being the most shaded reach, 

meaning that reflectance values may be less dependent on variable solar radiation of a constantly 

shaded reach. 

When examining the transferability of LDA models through time, I found that the 

percentage of misclassified pixels was relatively stable from reach to reach (Figure 6).  I 

therefore conclude that when combining training data through time, misclassifications may be 

most dependent on altering lighting conditions (Figure 7) and not physical properties of the 

reach.  In particular, I noted that reach 4 – the most shaded reach – was the least influenced by 

differences in solar radiation across flights (Figure 6).  

While there are challenges when it comes to using multispectral, UAV-based datasets for 

scientifically measuring and studying the variability in land cover and land use, the availability 

of data at greater spatial resolution and at more frequent intervals allows for planners, scientists, 

resource managers and decision makers to have access to detailed and up-to-date land cover 

maps to make informed assessments of problem regions related to remediation and development.  

Low altitude, high resolution multispectral imagery can certainly provide a deeper analysis of 
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these regions which goes beyond bulk classification of land cover, but also includes vegetation 

health, diversity, and as studied in this exercise, presence within the water column (Appendix 

Figure A5).  This is a powerful technique which offers utility to state and federal wildlife 

agencies who aim to conserve protected areas and make informed decisions following 

environmental monitoring (López and Mulero-Pázmány, 2019), while also providing a high level 

of reproducibility related to tasks which previously relied on observer training in correct field-

classifications, resulting in inconsistencies between observers based on level of training (Roper 

and Scarnecchia, 1995). 

 

5.4 Is UAV-Multispectral Data Collection a Universal Tool for all Projects? 

 When properly calibrated, multispectral data are often considered to be a high quality 

measurement of reflectance across variable lighting and environmental conditions.  This exercise 

demonstrates the imperfections of multispectral imagery and the dependence on changing 

lighting conditions, resulting in uncontrollable interactions with environmental variability along 

a reach or across multiple reaches that are difficult to predict.  Dependence on environmental 

conditions make it difficult to transfer data through space and time, and provides useful 

information to be considered when deciding what data collection platform best suits a particular 

project (i.e., UAV versus plane or satellite).  Although UAVs have the capability to collect high 

spatial and temporal resolution data of intricate regions, they are not capable of covering the 

same spatial extent (within a single image) as other platforms, introducing variability between 

images collected even minutes apart.  My work shows that new methodologies are needed to 

reduce the impacts of environmental variability on UAV imagery, as accounting for these 
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varying conditions will likely deliver more accurate and transferable methods for use of 

multispectral datasets.  One complicating factor is that there is much variability and selection 

introduced even before a UAV is put into the air, including the choice of heading, speed, sensor, 

altitude, and time of flight; reconciling these different drivers that can all impact UAV imagery 

collection will be key to improving the transferability of UAV datasets now and into the future. 

6.0 Conclusions 

Innovations in remote sensing are allowing scientists and planners to make meaningful 

contributions to decision making regarding problem regions, remediation and development sites, 

and resource management at newly improved spatial and temporal resolutions.  UAVs have 

recently been employed in studies to create land cover and land use maps which extend beyond 

the scope of traditional methods by providing a deeper analysis of intricate and difficult to access 

regions.  The use of UAV multispectral and hyperspectral imagery integrated with methods in 

remote sensing, image processing and machine learning now allow users to not only classify land 

cover, but also identify relationships of vegetation health, diversity, and presence within the 

water column through space and time.   

This work presents the use of a multispectral-UAV system to classify submerged aquatic 

vegetation in a small urban stream.  Images were orthomosaicked and post-processed for four 

separate reaches, spanning three dates.  A linear discriminant analysis (LDA) model was 

developed to provide land cover classification maps (with statistical analysis of error) using 

training data from hand delineated multispectral shapefiles.  This proved to be a robust technique 

in classifying submerged aquatic vegetation for individual reaches, even when the training 

dataset was restricted to a very small proportion of the original, “full training dataset.” Overall, 

this work demonstrates the shortcomings in multispectral imagery collection and post-
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processing, which have previously been considered as an absolute measurement when properly 

calibrated. Attempts to create a model that was robust through space and time depended on 

changing environmental and physical reach conditions (i.e., solar radiation, reach orientation, 

shading), which are uncontrollable and difficult to predict, even when following proper 

multispectral calibration protocols.  Therefore, my approach is likely most beneficial for 

classifying land cover and submerged aquatic vegetation along a single reach and time, with 

potential to transfer data along reaches with similar orientations and lighting conditions.  

Regardless, UAV data collection is a developing remote sensing technique in headwater stream 

research and monitoring showing promise for high accuracy modeling, with the ability for 

growth and defined accuracy as new studies expand on current research. 

7.0 Figures 

Figure 1. Locations of Reach (1) through Reach (4) from this study on Meadowbrook Creek, running 
eastward through Syracuse, NY. 



		
	

19	

 

 

 

 

 

 

 

 

 

Figure 2. Reflectance values from multispectral imagery are extracted for each land cover type to be used as training data within 
our Linear Discriminant Analysis (LDA) model.  Twelve “full training datasets” were created, one for each reach-time 
combination.  LDA creates three scores to maximize separation among four land cover types. Outputs include a land cover 
classification along the entire reach as well as 10-fold cross validation which identifies the percent of misclassified pixels when 
separating the training data into subsets for training and testing.  
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Figure 3. Linear Discriminant Analysis classification along R1, imaged on July 16, 2018 using a training 
dataset of n = 8450. 
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Figure 4. Ten-fold cross validation losses for each reach for three flight dates using (a) 12 
full training datasets and (b) using a subset of each training dataset (n = 1200; 300 pixels 
per cover type). For (b), average loss from each ten-fold cross validation are shown for 100 
randomly sampled training datasets at each reach. 

Full Training Dataset 

n = 1200 Training Dataset 
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Figure 5. Summarized (top) and mapped (bottom) classification pixels when limiting the amount of 
training data using a 1:1 ratio among all four land cover types for each n (1600 to 200).  A total of 100 
randomly generated training datasets were created from a larger training dataset for each n, and the entire 
reach was classified for each iteration.  Pixels that did not change classification throughout the 100 
iterations were included in the land cover maps.  White areas within the stream or riparian zone (bottom) 
represent pixels that changed land cover classification across the 100 iterations.  
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Figure 6. Subsets of training data (n = 1200) were included from multiple times and locations to determine if the 
model is transferrable through space and time.  R1 through R4 training datasets were combined for each date to 
determine spatial transferability (a).  Training data from July 16, 19, and 30 were combined at each reach to 
determine temporal transferability (b).  
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Figure 7. Solar radiation measurements from a local weather station compared to the 
timing of each flight for (a) July 16, (b) July 19, and (c) July 30. 
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8.0 Appendix 

Here I include additional details regarding flights, post-processing, and analysis below. 

		 R1	(cm)	 R2	(cm)	 R3	(cm)	 R4	(cm)	

16-Jul	 3.5	 3.3	 3.5	 3.3	

19-Jul	 3.5	 3.1	 3.2	 3.2	

30-Jul	 3.4	 3.1	 3.2	 3.3	

 

 

 

 

 

 

 

 

 

 

 

 

Table A1.  Spatial resolution of multispectral orthomosaics (green, red, 
red edge, NIR) for each reach-time combination.   
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16-Jul	 R1	 R2	 R3	 R4	

Submerged	
Aquatic		
Vegetation	

903	 386	 417	 312	

Grass	 4393	 445	 632	 2382	

Rock	 436	 1364	 395	 631	

Water	 2718	 2596	 363	 663	

	 	 	 	 	

19-Jul	 R1	 R2	 R3	 R4	

Submerged	
Aquatic		
Vegetation	 454	 729	 3502	 883	

Grass	 6637	 1274	 6361	 2677	

Rock	 395	 2419	 9415	 5017	

Water	 1022	 1443	 1265	 3201	

	 	 	 	 	

30-Jul	 R1	 R2	 R3	 R4	

Submerged	
Aquatic		
Vegetation	 645	 2970	 4046	 597	

Grass	 3923	 5510	 3404	 1481	

Rock	 1046	 4667	 3311	 2994	

Water	 518	 2975	 1376	 2069	

 

 

Table A2. Number of pixels for each land cover type in the “full training 
dataset” for each reach-time combination. 
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		 R1	 R2	 R3	 R4	

16-Jul	 1284172	 1336779	 2313206	 3413042	

19-Jul	 1341486	 1346963	 3122846	 3523431	

30-Jul	 1585657	 1479372	 2896613	 3141530	

 

 

 

 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Average 
n = 1600 0 0 0 0 0 0 10 42 42 6 0 0 0 0 3.7 
n = 1200 0 0 0 0 0 2 14 40 31 12 1 0 0 0 3.7 
n = 800 0 0 0 0 0 6 11 30 32 17 4 0 0 0 3.7 
n = 400 0 0 0 0 2 4 21 14 19 23 11 5 1 0 3.8 
n = 200 1 1 1 6 6 10 22 11 13 10 9 5 2 3 3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3. Total number of pixels classified using the “full training dataset” as input 
for our LDA classification method for each reach-time combination.  

Table A4. Histogram showing average percentage of misclassified pixels for each 10-fold 
cross validation run over 100 iterations for variable “n” training data, for R1 (July 16). 
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Figure A5.  Area of submerged aquatic vegetation normalized by stream length for the “full training 
dataset” (top) and the n = 1200 training dataset (bottom). 
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Figure A6.  Training data was formed by hand delineating shapefiles of each land cover class along the 
entire reach (12 times, once for each reach-time combination).  Shown here is an example (July 16, R1) of 
how shapefiles were generally distributed. 
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Figure A7.  Four land cover types are separated by three scores for each reach-time combination, using 
both the full training dataset and the n = 1200 training dataset, applied to R1-R4 (July 16). 
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Figure A8.  Four land cover types are separated by three scores for each reach-time combination, using 
both the full training dataset and the n = 1200 training dataset, applied to R1-R4 (July 19). 
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Figure A9.  Four land cover types are separated by three scores for each reach-time combination, using 
both the full training dataset and the n = 1200 training dataset, applied to R1-R4 (July 30). 
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