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Abstract 
 

During embryogenesis in the mouse, primordial germ cells develop, move to the 
genital ridge of the embryo, and form germline cysts as the ovary develops.  The 
cells in these cysts are linked by intercellular bridges.  The cysts then undergo a 
breakdown process which ultimately results in primordial follicles, each of which 
consists of a single oocyte surrounded by somatic cells called granulosa cells.  
During this cyst breakdown process, approximately one-third of the original 
oocytes become enclosed in primordial follicles, the amount of which is 
representative of the number of eggs a female will have available to her during 
her reproductive life, while the other oocytes die.  It has already been evidenced 
that introducing environmental estrogens into the female mouse during one of 
three critical time periods in development can alter oocyte development, thus 
limiting the female’s number of primordial follicles that can be used to reproduce.  
Because the cyst breakdown mechanism is conserved in other mammals; the 
mouse can be used as a model for studying germ cell development in humans, 
thus providing valuable insight into female reproductive disorders that may be 
caused by follicle depletion, such as primary amenhorrea and premature ovarian 
insufficiency.  My area of research is to determine whether exogenous estrogens 
have an effect on cyst breakdown during the perinatal period.  In order to 
accomplish this, neonatal mice were injected subcutaneously with two 
concentrations of three different estrogenic compounds on post-natal days 1-4 
(PND1-4).  These mice were dissected for their ovaries on PND5.  After 
dissection, the ovaries were fixed, stained with an oocyte marker, and observed 
using a laser-scanning confocal microscope.  The images were analyzed to 
characterize and quantify the follicles within the ovaries, and the results were 
compared to see if there was a difference between the amount of cyst breakdown 
and the progression of follicle development between the experimental groups and 
the control group.  Additionally, materials that were used to prepare the injections 
of exogenous estrogens were separately tested on mice in order to test the 
effectiveness of the injection materials. 
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Introduction 

 
 One crucial area of study within developmental biology is reproduction.  

Research within the realm of mammalian reproduction is especially significant 

since it pertains to reproductive disorders in human beings, the incidence of which 

has increased significantly among women in recent years in the United States:  

from 6.7 million in 1995 (Stephen and Chandra, 1995) to 7.3 million in 2002 

(Chandra et al., 2006).  Scientific research to thoroughly understand biological 

mechanisms of mammalian female reproduction is still in progress, and these 

research attempts include further investigation of germ cell development.  

Recently, the key components of oocyte development have been identified.  

Through their research on mice (Mus musculus), Pepling and Spradling 

determined that the mechanism of germline cyst formation, in which 

synchronously dividing cysts form germ cells that are connected by intercellular 

bridges, is conserved in mice, as it has already been observed in invertebrates 

(Pepling and Spradling, 1998).  Through a combination of cell separation and 

germ cell death, or apoptosis, one-third of the oocytes in these germ line cysts 

survive to become enclosed in primordial follicles, each of which consists of a 

single oocyte surrounded by a single layer of flattened granulosa cells.  This 

follicle pool is incredibly important for fertility because its population represents 

the total amount of oocytes that will be available to a female during her 

reproductive lifetime.  Because this population is determined at birth, 

understanding the biological mechanisms for primordial follicle assembly is 

critical to understanding mammalian reproduction.  In addition to elucidating the 
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components involved in normal follicle assembly, it is important to determine if 

and how external influences affect this process since some female reproductive 

disorders involve the depletion of this pool of follicles.  Two such female 

reproductive disorders are primary amenorrhea and premature ovarian 

insufficiency (POI) (Pepling, 2006).  Primary amenorrhea is defined as an 

absence of menarche in females of at least 16 years of age who have developed 

normal secondary sex characteristics (Master-Hunter and Heiman, 2006).  

Primary ovarian insufficiency is marked by a premature depletion of ovarian 

follicles or arrested folliculogenesis (menopause) in females age 40 and younger 

(Beck-Peccoz and Persani, 2006).  Hopefully, continued research on primordial 

follicle assembly and cyst breakdown will shed light on the prevention and 

treatment of reproductive disorders caused by follicle depletion.   

 The primordial follicle stage represents the first phase of mammalian 

folliculogenesis, the process by which the ovarian follicle matures.  After the 

primordial follicle pool is established, follicular growth progresses.  The 

primordial follicle is stimulated by lutenizing hormone (LH) to begin the 

maturation process.  The granulosa cells surrounding the oocyte then develop into 

cuboidal granulosa cells.  When an oocyte is entirely surrounded by these 

cuboidal cells, it is in a primary follicle.  The oocyte of the primary follicle 

enlarges, and the cuboidal granulosa cells undergo mitosis to produce multiple 

layers of granulosa cells, which characterize a secondary follicle.  In this stage, 

the oocyte is enveloped by the zona pellucida, an extracellular matrix containing 

special proteins which allow subsequent penetration by a sperm.  Also, a layer of 
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theca cells forms from interstitial stroma cells and surrounds the proliferating 

granulosa cells.  This theca layer is vascularized by a network of capillary vessels 

which deliver influential endocrine factors to the follicle.  (van der Hurk and 

Zhao, 2005).  Due to apoptosis of either the granulosa cells or the oocyte, most of 

the follicles undergo atresia, or follicle death, at this point (Hsu and Hsueh, 2000).  

A follicular antrum full of fluid then forms in the follicle, causing this antral 

follicle to significantly increase in size.  This antrum contains growth-supporting 

proteins and hormones.  At this point in folliculogenesis, the antral follicle’s 

development is reliant on follicle-stimulating hormone (FSH).  The antral follicle 

continues to grow and develop until a surge of lutenizing hormone (LH) during 

the preovulatory stage.  Stimulation by LH causes the fully grown preovulatory 

follicle to resume meiosis and pause again in metaphase II.  Then ovulation 

occurs:  the follicle ruptures, and the oocyte is released from the ovary, where it 

waits to be fertilized.  Sperm penetration triggers an activation stimulus that 

instigates the completion of meiosis and the beginning of embryonic 

development.  The granulosa cells remaining in the empty follicle become the 

corpus luteum, which secretes the estrogen and progesterone needed to maintain 

the endometrium of the uterus during pregnancy.  If fertilization does not occur 

within fourteen days, the corpus luteum degenerates into the corpus albicans, 

which may leave scar tissue in the ovary (van der Hurk and Zhao, 2005).  

Abnormalities in follicle development may also contribute to female reproductive 

disorders, such as polycystic ovary syndrome (PCOS).  In PCOS, an excessive 

amount of follicles exhibit prolonged survival and enter the growth phase of 
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folliculogenesis but arrest in the antral stage, thus causing anovulatory infertility, 

a large accumulation of unovulated follicles in the ovary, and hormonal imbalance 

(Franks and Hardy, 2010).  Thorough knowledge of follicle development could 

provide insight into follicle depletion and follicle arrest and continues to be an 

active area of scientific research. 

Figure 1 describes a timeline of primordial follicle assembly.  Primordial 

follicles form from primordial germ cells (PGCs), or oocyte precursors, through 

the process of cyst breakdown.  At approximately 10.5 days post coitum (dpc), 

PGCs move to the genital ridge from the embryo’s external and then divide 

mitotically until approximately 13.5 dpc.  At this point, the germ cells are called 

oogonia, and in the mouse ovary they colonize in clusters called germ line cysts.  

Like the germ cells of invertebrate females, female mouse germ cells have been 

found to divide synchronously and connect through intercellular bridges that form 

as a result of incomplete cytokinesis.  Next, these connected germ cell clusters 

begin to undergo meiosis until around 17.5 dpc, when meiosis for these germ 

cells—now called oocytes—comes to a pause at the diplotene stage of prophase I, 

during which the synaptonemal complex, a protein structure which facilitates the 

synapsis of homologous chromosomes, disbands and the chromosomes separate 

slightly.  The germ cell clusters separate through a process called cyst breakdown 

during the perinatal period.  Primordial follicle assembly is accomplished through 

a combination of cell separation and apoptosis within these smaller germ cell 

clusters until single oocytes remain. 
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During the perinatal period, the apoptosis of germ cells accompanies cyst 

breakdown, and nearly two-thirds of the initial germ cell population dies.  Figure 

2 describes the incorporation of apoptosis in cyst breakdown.  The function of this 

systematic cell death is still unknown and requires more research.  It is possible 

that it is a required process for the completion of cyst breakdown (Pepling and 

Spradling, 2001). 

 

 

 

Figure 1.  Timeline of mouse germ cell development (Pepling, 2006).  Oocytes are labeled in 

green, and granulosa cells are labeled in red. 
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Many questions remain regarding this mechanism.  Currently, it is  

uncertain as to why only one-third of oocytes are selected to live while the others 

die and how the survivor oocytes are chosen.  However, it is possible that two-

thirds of oocytes die in order to nurse the remaining oocytes and ensure their 

survival (Pepling and Spradling, 2001).  Additional areas of research within this 

realm are whether the process of cyst breakdown is susceptible to external 

influences and if so, when cyst breakdown is most vulnerable to their effects.  In 

mammalian oogenesis, three critical time windows during which exogenous 

estrogen exposure may adversely affect development have already been 

identified:  the initiation of meiosis in the fetal ovary, perinatal formation of 

follicles, and oocyte growth and maturation (Hunt and Hassold, 2008). 

In order to answer these questions, it is key to understand the mechanism 

of folliculogenesis’ regulators.  One such regulator may be estrogen.  Since 

neonates’ exposure to estrogen drastically changes during the perinatal period, it 

is possible that cyst breakdown could be a product of this adjustment (Pepling, 

2006).   

Figure 2.  Model of germ line cyst breakdown (Pepling and Spradling, 2001). Surviving 
oocytes are labeled in yellow, and oocytes undergoing cell death are labeled in green.  
Apoptosis results in the breaking apart of the cyst.  Ultimately, the process results in 
primordial follicles, single oocytes each surrounded by one layer of granulosa cells (not 
pictured here). 

A
. 
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Upon their diffusion into the cell, estrogenic compounds bind specific 

receptor proteins, estrogen receptor alpha (ERα) or estrogen receptor beta (ERβ).  

The ligand-receptor complex then binds as a dimer to an estrogen response 

element (ERE), a segment of DNA in the upstream region of the target gene.  

Then, the necessary coactivators are recruited, and transcription begins when 

chromosome structure is modified (Dahlman-Wright et al., 2006).  Insightful 

information has been gained through extensive research on some exogenous 

estrogens, synthetic and naturally-occurring materials in the environment that 

mimic estrogens in their hormonal function and interrupt the function of natural 

hormones.  Examples of exogenous estrogens which signal through this 

mechanism include:  bisphenol-A (BPA), diethylstilbestrol (DES), 

ethinylestradiol (EE), genistein, dioxin, dichlorodiphenyldichloroethylene (DDE), 

dichlorodiphenyltrichloroethane (DDT), and polychlorinated biphenyls (PCB’s) 

(see Figure 3). 

 

 

 

Figure 3.  Molecular structures of estradiol (a) and some exogenous estrogens (b-i):  
bisphenol A (b), diethylstilbestrol (c), ethinylestradiol (d), genistein (e), dioxin (f), 
dichlorodiphenyldichloroethylene (g), dichlorodiphenyltrichloroethane (h), and 
polychlorinated biphenyls (i). 
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Exogenous estrogen exposure has varying effects on development 

expanding beyond the mammalian realm.  Claims have been made that pesticides, 

especially DDT, have adverse effects on shorebird populations.  This was a 

serious concern considering the increased integration of pesticides into the diet of 

Americans (Carson, 1962).  The importance of Carson’s claim was realized when 

some species of birds became endangered due to their eggshells becoming 

increasingly fragile after these birds had been exposed to DDT (Cooke, 1973).  

Additional problems within animal populations have been linked with exogenous 

estrogen exposure, such as the occurrence of intersex fish, or male fish that 

develop female reproductive organs (Scholz and Klüver, 2009) and the decline in 

the Florida alligator population due to a decreased birth rate and the reduced size 

of male genitalia (Guillette et al., 1994). 

Three extensively-researched exogenous estrogens are DES, EE, and 

BPA.  Many pregnant women were treated with DES in their first trimester during 

the 1940s-1970s in order to prevent miscarriage or spontaneous abortion.  Thus 

far, this exposure has had a multigenerational effect.  The first DES generation, 

which consists of the women who ingested DES while pregnant, had an increased 

risk of breast cancer (Steiner and Klubert, 2008).  Teratogen-related defects in the 

second DES generation coined the term “DES daughters” and “DES sons” in 

reference to children of women who consumed DES during pregnancy.  In DES 

daughters, there was no significant increase in risk of breast cancer development; 

however, these women did exhibit a significantly higher risk of clear cell 

adenocarcinoma (CCA) of the cervix and vagina (Verloop et al., 2010) and 
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pregnancy complications including preeclampsia (Troisi et al., 2007).  DES 

daughters were also more likely to have spontaneous pregnancy losses, ectopic 

pregnancies, and pre-term deliveries (Kaufman et al., 2000).  DES sons 

experienced an increased risk of cryptorchidism, epididymal cysts, and testicular 

inflammation and infection, and these risks increased with earlier exposure 

(Palmer et al., 2009).  Research on transgenerational effects in the third DES 

generation, children of individuals with prenatal DES exposure, has just recently 

begun since these individuals are still relatively young.  Thus far, preliminary 

findings have determined that members of the third DES generation may have an 

increased risk of ovarian cancer (Titus-Ernstoff et al., 2008) and hypospadias 

(Klip et al., 2002); however, the severity of these risks is still under debate 

(Brouwers et al., 2006; Palmer et al., 2005; Titus-Ernstoff et al., 2008).  

Ethinylestradiol is one of the main active ingredients in many contraceptive pills 

and can leave the body through the urine and feces as a xenoestrogen.  In fish 

downstream from a wastewater treatment plant effluent that contained estrogenic 

compounds, there was a significantly higher incidence of reduced gonad size, 

modified sex ratios, and intersex fish (Vajda et al., 2008).  Like DES, neonatal 

BPA exposure may have a multigenerational effect. Deformities found in the 

oocytes of BPA-exposed fetal mice (second generation) were the abnormalities of 

incomplete synapsis and end-to-end associations of chromosomes.  Incomplete 

synapsis is the absence of synapsis during the pachytene stage of meiosis I.  End-

to-end associations are synapses between the ends of nonhomologous 

chromosomes, and this 2007 study may be the first to report such a meiotic defect.  



14 
 

Because normal meiotic chromosomal activity is disrupted, oocytes in the BPA 

group had a much higher incidence of hyperploidy.  In the third generation, 

similar levels of hyperploidy were observed in the embryos of the BPA-treated 

group (Susiarjo et al., 2007).  Exposure to bisphenol A may increase obesity 

(Ebobeid and Allison, 2008).  BPA is also a thyroid disruptor as it binds thyroid 

hormone receptors, which interrupts thyroid hormone signaling, an integral 

developmental pathway (Zoeller, 2007), and it is associated with elevated levels 

of some liver enzymes, heart disease, and diabetes (vom Saal and Myers, 2008).  

Perniatal exposure to low BPA doses can increase breast cancer risk and alter 

breast development (Brisken, 2008).  Additionally, studies in rodents and in 

humans have indicated that BPA exposure increases the risk of prostate cancer 

and alters fetal prostate development (Nagel et al., 1997; Timms et al., 2005; Ho 

et al., 2006; Richter et al., 2007).  The breadth of these effects is understandable 

considering the prevalence of BPA in polycarbonate plastics and food and 

beverage cans. 

Exposure to environmental estrogens during one of Hunt and Hassold’s 

three critical time periods may have multiple effects on follicle development. 

These can include an arrest or a delay in follicle development and a decrease in 

germ cell apoptosis.  For instance, the exposure of neonatal mice to genistein, a 

phytoestrogen found in soybeans, resulted in an increased incidence of multiple 

oocyte follicles (MOFs), or follicles containing more than one oocyte, which 

could possibly be part of a germ line cyst that never fully underwent cyst 

breakdown to become a group of single oocytes individually surrounded by 
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granulosa cells (Jefferson et al., 2006).  In mice, this is problematic because the 

prescence of MOF’s decreases their fertility (Pepling, 2006).  Also, a larger 

number of oocytes survived cyst breakdown, indicating that less apoptosis of 

germ cells occurred.  If these dying germ cells do, in fact, serve a nursing 

function, then the surviving oocytes may be malnourished (Jefferson et al., 2006).  

A second study shows that in vivo and in vitro perinatal exposure to estrogen, 

progesterone, and genistein, respectively, inhibits oocyte nest breakdown and the 

formation of primordial follicles, but does not affect oocyte number (Chen et al., 

2007).  This study aims to determine whether perinatal exposure to other 

exogenous estrogens has an effect cyst breakdown, germ cell apoptosis, and 

follicle development in the mouse. 

 

Materials and Methods 

Animals 

 The mouse strain used in these experiments was an outbred strain called 

CD-1, which was obtained from Charles River Laboratories.  CD-1 females were 

mated with males and checked daily for vaginal plugs.  When a plug was noticed 

in a female, she was isolated and the date at which the plug was observed was 

known as 0.5 days post-coitum (dpc).  Birth usually occurred at approximately 

19.5 dpc, and the day of birth became known as post-natal day (PND) 1.  Ovaries 

were collected from CD-1 neonates at PND 5.  Using a dissecting microscope, 

these ovaries were collected via dissection in 1x phosphate-buffered saline (PBS). 
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Whole-Mount Antibody Staining of Neonatal Ovaries 

 In order to perform analysis on the CD-1 ovaries, the mice were dissected, 

and their ovaries were transferred to tubes containing 600 µL of a fixative 

mixture.  The mixture contained a final concentration of 0.67x PBS and 5.3% 

formaldehyde (200 µL of 16% formaldehyde from Ted Pella Inc. and 400 µL of 

PBS).  The tubes containing the ovaries were labeled with the age of the ovaries, 

the mouse strain, the treatment they received, and the date of collection.  These 

tubes were left to nutate overnight at 4°C.  The next day, the ovaries were washed 

twice quickly with 1 mL of PT (1x PBS/0.1% Triton X-100), and for the third 

wash in PT they were placed on a nutator for at least 30 minutes at room 

temperature.  The ovaries were then washed in 1 mL of PT+5% bovine serum 

albumin (BSA) for 60 minutes on a nutator at room temperature.  Ovaries were 

either processed immediately or stored at 4°C in 1 mL of PT+5% BSA on a 

nutator. 

Next, 1 µL of the primary antibody STAT-3 (C20) (Santa Cruz 

Biotechnology), which serves as an oocyte marker (Murphy, et al. 2005), in 500 

µL of PT+5% BSA was added to the ovaries, which were incubated overnight at 

4°C on a nutator.  In a second tube, 2.5 µL of the secondary antibody, goat anti-

rabbit Alexa 488 (Molecular Probes), was added to 500 µL of PT+5% BSA.  A 

pinch of embryo powder (ground pellet isolated from homogenized PND12.5-

14.5 mouse embryos incubated in ice-cold acetone and centrifuged at 10,000 g) 

was added to the mixture, and this tube was labeled accordingly, wrapped in 

aluminum foil, and incubated on a nutator overnight at 4°C for use the following 



17 
 

day.  The solution containing the secondary antibody was centrifuged briefly 

before it was added to ovaries. 

The next day, the ovaries were washed in 1 mL of PT+1% BSA for 30 

minutes at room temperature.  In order to remove the RNA from the ovaries, they 

were then washed with 10 µL of 10 mg/ml RNase in 1 mL of PT+1% BSA for 30 

minutes at room temperature.  After that, the ovaries were incubated in 10 µL of 

0.5 mg/mL propidium iodide (PI) (Molecular Probes) in 1 mL PT+1% BSA (to 

give a final concentration of 5 µg/mL) on a nutator for 20 minutes at room 

temperature.  After the PI solution was added, the tubes were wrapped entirely in 

aluminum foil and remained wrapped in the foil for the rest of the staining 

procedure in order to prevent fluorescence loss.  Excess PI was removed from the 

ovaries by washing them in 1 mL of PT+1% BSA for 30 minutes on a nutator at 

room temperature.  Next, the preabsorbed secondary antibody mixture was added 

to the ovaries, and the foil-covered tube was placed on a nutator for 2-4 hours at 

room temperature.  Then, the ovaries were washed at room temperature in 1 mL 

of PT+1% BSA three times with each wash having a duration of 30 minutes.  One 

quick wash with 1 mL of 1x PBS was applied to the ovaries, and then the PBS 

was removed.  Approximately 100 µL of Vectashield (Vector Laboratories) was 

added to the ovaries, and the ovaries were left to sit in the Vectashield for 15 

minutes.  Finally, the ovaries were carefully mounted on a slide (Fisher Finest) 

and covered with a coverslip (Corning), sealed with nail polish, and stored at  

-20°C. 
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Confocal Microscopy 

 Indirect immunofluorescence was used to view the stained PND5 ovaries 

using a Zeiss LSM 710 confocal microscope.  Quantifications of oocyte number, 

follicle development, and cyst breakdown were obtained using images obtained 

from confocal microscopy.  The confocal pictures were taken by imaging two 

separate areas in each ovary, with four planar images 20 µm apart in each area to 

give a total of eight sections per ovary.  The number of oocytes was determined 

by counting the number of oocytes in each image.  If an image plane did not 

contain any oocytes, then its data was omitted from the average of the data from 

all the image planes.  The amount of cyst breakdown that had occurred was 

analyzed by counting the number of single oocytes and comparing this amount to 

the number of oocytes that were still in cysts (or unassembled).  In order to 

determine whether oocytes were in cysts or not, above and below the section 

analyzed, 1 µm apart, a ten-image stack was taken for each of the eight sections.  

Since each image stack had five images above and below the section being 

analyzed, this allowed one to see whether an oocyte was part of a germline cyst 

above or below the plane of focus.  Finally, follicle development was quantified 

in each of the eight sections by observing each oocyte, determining its stage in 

follicle development, and quantifying the number of total number of oocytes in 

each stage. 

 The oocytes were classified as unassembled if they were not entirely 

surrounded by granulosa cells and if they were observed as being in clusters 

(Figure 4a).  In order for an oocyte to be considered a single oocyte, it was 
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required that it not touch another oocyte.  Single oocytes were enclosed in 

follicles which fell into three categories:  primordial, primary, or secondary.  A 

single oocyte surrounded by flattened, crescent-shaped granulosa cells defined a 

primordial follicle (Figure 4b).  A primary follicle (Figure 4d) was a single oocyte 

completely enclosed in one layer of cuboidal granulosa cells.  A secondary 

follicle (Figure 4e) was a larger single oocyte surrounded by multiple layers of 

cuboidal granulosa cells. 

 

     

   

 

 

 

 

 

 

Figure 4.  Stages of follicle development.  Ovaries are stained with PI (red) and STAT-3 (C20) 
(green) and imaged at 63x.  Oocytes in cysts that had connecting cytoplasm are considered 
unassembled (a).  Single oocytes surrounded by one layer of flattened granulosa cells were 
classified as primordial follicles (b).  A transitional follicle (c) is surrounded by a single layer of 
granulosa cells, part of which are flattened with the rest being cuboidal in shape.  Single 
oocytes, which were surrounded by a single layer of cuboidal granulosa cells, were classified as 
primary follicles (d).  A secondary follicle (e) was characterized by a single oocyte surrounded 
by multiple layers of cuboidal granulosa cells.  A multiple oocyte follicle (MOF) consists of 
multiple oocytes surrounded by granulosa cell layers (f). 

a b c 

d e f 
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Preparation and Delivery of Estrogenic Compound Injections 

 CD-1 neonates were injected with a total volume of 50 µL of either plain 

peanut oil (Wegman’s) or a mixture consisting of an estrogenic compound 

dissolved in peanut oil.  Three different estrogenic compounds were dissolved, 

respectively, into peanut oil:  diethylstilbestrol (DES) (Acros), ethinylestradiol 

(EE) (Sigma-Aldrich), and bisphenol-A (BPA) (Sigma-Aldrich).  Two different 

mixtures were made for each estrogenic compound that was tested to yield a total 

of six different injection mixtures containing estrogenic compounds.  The mixture 

with the lower concentration had a final concentration of 5 mg per kg of body 

weight per day (mg/kg/day) when injected into each neonate, thus exposing each 

neonate to 10 µg of the estrogenic compound on each day of injection.  The 

mixture with the higher concentration had a final concentration of 50 mg/kg/day 

when injected into each neonate, thus exposing each neonate to 100 µg of the 

estrogenic compound on each day of injection. 

 One injection was made for each neonate.  Prior to making the injections 

the amount of peanut oil and estrogenic compound were carefully determined 

according to the desired concentration.  The pre-measured amount of the 

estrogenic compound was added to 0.5 mL of absolute ethanol (Pharmco-

AAPER) (Jordan et al., 1983) in a 20 mL beaker.  A small, magnetic stirrer was 

added to the 20 mL beaker, which was left to stir on a magnetic stirring plate until 

the estrogenic compound was dissolved.  When it had fully dissolved, the peanut 

oil from the 100 mL beaker was poured into the 20 mL beaker.  The contents of 

this beaker were stirred for one minute.  Then the total contents of this beaker 
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were transferred back to the 100 mL beaker, which was left to stir on the magnetic 

stirrer plate for one hour.  Once all of the ethanol had evaporated from the beaker, 

1-mL syringes (Kendall Monoject) were filled slightly past the 0.05 mark.  The 

syringes were capped with 26-gauge needles (Becton-Dickinson), and the 

syringe’s plunger was pushed to the 0.05 mL mark to remove air from the syringe 

and needle.  The syringes were labeled according to any estrogenic compounds 

and the concentrations that they contained. 

 The injection of neonates began on PND1.  On PND1, the entire litter of 

neonates was removed from its cage and placed in a small plastic container with 

an open top.  After each neonate was injected subcutaneously with the syringe’s 

contents, a small portion of its tail was clipped off using a small pair of sterilized 

scissors.  This allowed the observer to see whether or not each neonate had been 

injected on the subsequent post-natal days of injection.  Then, the neonate was 

carefully placed back in its cage in order to ensure that its mother would 

recognize and continue to feed it.  This procedure, with the exception of the tail-

clippings, was repeated once a day on PND2-PND4.  On PND5, the neonate’s 

ovaries were collected via dissection and placed into the dilute fixative, the first 

step of the antibody staining procedure. 

 

Statistical Analyses of Cyst Breakdown, Total Number of Oocytes, and 

Follicle Development 

 Statistical significance was determined by conducting one-way ANOVA 

tests with P values less than 0.05 considered significant.  One-way ANOVA was 



22 
 

implemented in order to investigate treatment effects on cyst breakdown, total 

number of oocytes, and follicle development. 

 

Results 

Examination of Mice Injected with Estrogenic Compounds 

 Ovaries from mice injected with estrogenic compounds dissolved in 

peanut oil were collected at PND5 and investigated for defects in oocyte 

development and were compared to ovaries from mice injected with plain peanut 

oil.  From these ovaries, cyst breakdown (Figures 5, 6 and 7), total number of 

oocytes (Figure 8), and follicle development (Figure 9) were analyzed. 

 

Cyst Breakdown in Mice Injected with Estrogenic Compounds 

 In order to determine whether or not exogenous estrogen exposure may 

play a role in cyst breakdown during the perinatal period, neonatal mice that had 

been exposed to either 10 µg/day or 100 µg/day of DES, EE, or BPA dissolved in 

peanut oil or were injected with plain peanut oil during PND1-4 were analyzed at 

PND5.  For the evaluation of cyst breakdown, the number of single oocytes was 

compared to the number of oocytes in cysts.  Mice injected with peanut oil had 

84.2% single oocytes.  In mice treated with 10 µg DES per day, the percentage of 

single oocytes decreased significantly to 55.3%.  While the percentage of single 

oocytes decreased slightly to 50.8% in mice treated with the higher concentration 

of DES, in comparison to those treated with the lower concentration of DES this 

difference was not significant (Figure 5). 
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Figure 6 shows the significant decrease in percentage of single oocytes in mice 

treated with both concentrations of EE, respectively.  Mice treated with the higher 

concentration of EE had a slightly larger percentage of single oocytes at 62.6%; 

however, this difference was not significant when compared to mice treated with 

the lower concentration of EE, which had 61.2% single oocytes 

Figure 5.  Cyst breakdown in the control group and in mice treated with DES.  Significant 
difference between percentage of single oocytes at the same stage of development with or 
without neonatal exposure to DES (one way ANOVA, P < 0.05; n = 10-12 ovaries per group).  
Asterisks indicate significance in comparison to mice injected with peanut oil. 

* 
* 
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Figure 7 displays the significant difference between the control group and mice 

injected with the higher concentration of BPA.  The percentages of single oocytes 

decreased in a manner that was directly proportional to the concentration of BPA 

that was injected; however, the differences between the control group and mice 

injected with the lower concentration of BPA and between the two treatment 

groups were not significant with 75.4% single oocytes for the lower concentration 

and 68.6% single oocytes for the higher concentration of BPA. 

 

Figure 6.  Cyst breakdown in the control group and in mice treated with EE.  Significant 
difference between percentage of single oocytes at the same stage of development with or 
without neonatal exposure to EE (one way ANOVA, P < 0.05; n = 8-12 ovaries per group).  
Asterisks indicate significance in comparison to mice injected with peanut oil. 

* * 
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Total Number of Oocytes in Mice Injected with Estrogenic Compounds 

 The total number of oocytes per confocal section was determined for the 

mice injected with plain peanut oil and for mice injected with two different 

concentrations of DES, EE, or BPA dissolved in peanut oil, respectively, in order 

to determine whether exogenous estrogen exposure has a role in oocyte survival.  

It is expected that two-thirds of oocytes undergo apoptosis during the perintal 

period.  Figure 8 displays a trend that increased exposure to DES, EE, and BPA 

does inhibit germ cell death during the perinatal period.  These treatment groups 

had 12.3, 12.5, 13.0, and 15.8 oocytes per confocal section, respectively. The only 

insignificant differences belonged to the groups injected with 10 µg DES/day and 

Figure 7.  Cyst breakdown in the control group and in mice treated with BPA.  Significant 
difference between percentage of single oocytes at the same stage of development with or 
without neonatal exposure to BPA (one way ANOVA, P < 0.05; n = 8-12 ovaries per group).  
Asterisks indicate significance in comparison to mice injected with peanut oil. 

* 
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10 µg EE/day, respectively, which had 8.8 and 10.2 oocytes per section.  Mice 

injected with peanut oil had an average of 8.0 oocytes per section. 

 

 

 

 

 

Follicle Development in Mice Injected with Estrogenic Compounds 

 In order to determine whether exogenous estrogen exposure had a 

significant role in follicle development, oocytes from mice injected with plain 

peanut oil and from mice injected with two different concentrations of DES, EE, 

or BPA dissolved in peanut oil, respectively, were assessed using confocal 

microscopy.  The single oocytes in each confocal section were classified as 

primordial follicles, primary follicles, or secondary follicles.  Mice injected with 

Figure 8.  Total number of oocytes in mice injected with plain peanut oil and with two 
concentrations of DES, EE, and BPA, respectively, dissolved in peanut oil.  Significant 
difference between the number of oocytes per confocal section at the same stage of 
development with or without neonatal exposure to DES, EE, or BPA (one way ANOVA,  
P < 0.05; n = 8-12 ovaries per group).  Asterisks indicate significance in comparison to  
mice injected with peanut oil. 

* * 
* 

* 
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peanut oil had 62.3% primordial follicles, 27.9% primary follicles, and 9.7% 

secondary follicles. 

 Exposure to the lower concentration of DES did not significantly alter the 

percentage of primordial follicles at 62.2%; however, exposure to the higher 

concentration of DES increased the percentage of primordial follicles 

significantly to 82.6%.  Treatment with the lower concentration of DES increased 

the number of primary follicles to 37.8% and decreased the number of secondary 

follicles to 1.4%, and treatment with the higher concentration of DES decreased 

the percentage of primary follicles to 16% and the percentage of secondary 

follicles to 1.4%.  However, these changes were not significant.  A similar trend 

was observed for both concentrations of EE, respectively.  Mice injected with the 

lower concentration of EE had 64.6% primordial follicles, 34.6% primary 

follicles, and 0.8% secondary follicles.  Mice injected with the higher 

concentration of EE had 82.7% primordial follicles, 16.9% primary follicles, and 

0.4% secondary follicles.  Exposure to both concentrations of BPA significantly 

increased the percentage of primordial follicles to 81.0% for the lower 

concentration and 89.5% for the higher concentration.  While treatment with both 

concentrations did lower the percentage of primary follicles, this effect was 

significant only for the higher concentration of BPA, which had 10.5% primary 

follicles.  Treatment with both concentrations of BPA also lowered the percentage 

of secondary follicles to 0.8% and 0.0%, but this effect was insignificant in both 

instances (Figure 9). 
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Evaluation of media used to prepare injections of estrogenic compounds 

 Two experiments were completed in order to determine whether the media 

used in the preparation of estrogenic compound injections had affected any 

changes resulting from exogenous estrogen exposure.  The first experiment 

investigated the effects of using absolute ethanol in injection preparation by 

collecting and analyzing ovaries from two treatment groups.  The first treatment 

group consisted of mice that received injections of 10 µg estradiol/day prepared 

without dissolving the estradiol (Acros) in absolute ethanol.  The second 

treatment group consisted of mice that received injections of 10 µg estradiol/day 

prepared by dissolving the estradiol in the absolute ethanol and adding peanut oil 

Figure 9.  Follicle development in mice injected with plain peanut oil and with two 
concentrations of DES, EE, and BPA, respectively, dissolved in peanut oil.  Significant 
difference between percentages of follicles at the same stage of development with or without 
neonatal exposure to DES, EE, or BPA (one way ANOVA, P < 0.05; n = 8-12 ovaries per 
group).  Asterisks indicate significance in comparison to mice injected with peanut oil. 

* * * 
* 

* 
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to this mixture.  All ovaries were collected at PND5.  Ovaries from both groups of 

mice treated with estradiol were investigated for defects in oocyte development 

by comparing them to ovaries from mice injected with peanut oil.  From these 

ovaries, cyst breakdown (Figure 10), total number of oocytes (Figure 11), and 

follicle development (Figure 12) were analyzed.  The second experiment 

investigated the effects of the type of oil used in injection preparation by 

collecting and analyzing ovaries from two additional treatment groups.  In this 

experiment untreated ovaries served as the control group, and ovaries from mice 

injected with 50 µL of plain peanut oil and corn oil, respectively, comprised the 

treatment groups.  All ovaries were collected at PND5.  Ovaries from mice 

injected with oil were investigated for defects in oocyte development by 

comparing them to ovaries from untreated mice.  From these ovaries, cyst 

breakdown (Figure 13), total number of oocytes (Figure 14), and follicle 

development (Figure 15) were analyzed. 

 

The Effect of Absolute Ethanol in Injection Preparation on Mouse Ovary Cyst 

Breakdown 

 In order to determine whether using absolute ethanol in the preparation of 

the injections of exogenous estrogens may have affected the amount of cyst 

breakdown during the perinatal period, neonatal mice were exposed to 10 µg 

estradiol/day that was either dissolved in absolute ethanol before being added to 

peanut oil or added directly to the peanut oil.  Mice received injections of 

estradiol prepared with or without absolute ethanol during PND1-4, and their 
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ovaries were collected and analyzed at PND5.  Exposure to estradiol administered 

via injections prepared without absolute ethanol significantly decreased the 

amount of cyst breakdown to 69.6%.  While only 64.6% single oocytes were 

observed for the mice which received estradiol injections prepared with absolute 

ethanol, this change was not significant in comparison to mice which received 

estradiol injections prepared without ethanol (Figure 10). 

 

 

 

 

 
 

 

Figure 10.  Cyst breakdown in mice injected with plain peanut oil and with 10 µg 
estradiol/day in peanut oil prepared with or without absolute ethanol.  Significant difference 
between percentage of single oocytes at the same stage of development with or without 
absolute ethanol used in injection preparation (one way ANOVA, P < 0.05; n = 8-12 ovaries 
per group).  Asterisks indicate significance in comparison to mice injected with peanut oil. 

* * 
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The Effect of Absolute Ethanol in Injection Preparation on the Total 

Number of Oocytes 

 The total number of oocytes per confocal section was determined for mice 

injected with plain peanut oil and for mice receiving injections of peanut oil 

containing 10 µg estradiol/day prepared with or without absolute ethanol in order 

to determine whether using absolute ethanol in injection preparation played a role 

in oocyte survival.  Figure 11 shows that ovaries from mice that received estradiol 

injections prepared without absolute ethanol had a significantly larger amount of 

oocytes per confocal section at 11.4 oocytes per section.  Ovaries from mice that 

received estradiol injections prepared with absolute ethanol had 14.1 oocytes per 

section; however, this increase was not significant relative to the ovaries from 

mice which received injections prepared without absolute ethanol. 
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The Effect of Absolute Ethanol in Injection Preparation on Mouse Follicle 

Development 

 In order to determine whether using absolute ethanol in injection 

preparation had a significant role in follicle development, oocytes from mice 

injected with plain peanut oil and mice which received estradiol injections 

prepared with or without absolute ethanol were assessed using confocal 

microscopy.  The single oocytes were classified as primordial, primary, or 

secondary. 

 A significant increase in the percentage of primordial follicles was 

observed between mice injected with peanut oil and both groups of mice injected 

Figure 11.  Total number of oocytes in mice injected with plain peanut oil and with 10 µg 
estradiol/day in peanut oil prepared with or without absolute ethanol.  Significant difference 
between the number of oocytes per confocal section at the same stage of development with or 
without absolute ethanol in estradiol injection preparation (one way ANOVA, P < 0.05;  
n = 8-12 ovaries per group).  Asterisks indicate significance in comparison to mice injected 
with peanut oil. 

* 

* 
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with estradiol.  Mice that received estradiol injections prepared with absolute 

ethanol did not have a significantly larger increase than those that received 

injections prepared without absolute ethanol, with 87.8% versus 79.5% primordial 

follicles.  For both treatment groups the percentages of primary follicles 

descreased to 16.5% and 11.5%, respectively; however, this change was 

significant for estradiol injections prepared with ethanol only.  Decreases in the 

percentages of secondary follicles were also observed for both treatment groups, 

but at 4% and 0.5%, these differences were not significant (Figure 12). 

 

 

 

 

 
 

Figure 12.  Follicle development in mice injected with plain peanut oil and with 10 µg 
estradiol/day in peanut oil prepared with or without absolute ethanol.  Significant difference 
between percentages of follicles at the same stage of development with or without using 
absolute ethanol in estradiol injection preparation (one way ANOVA, P < 0.05; n = 8-12 
ovaries per group).  Asterisks indicate significance in comparison to mice injected with  
peanut oil. 

* 

* 

* 
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The Effect of Peanut Oil as a Delivery Medium on Mouse Ovary Cyst 

Breakdown 

 In order to determine whether or not using peanut oil as a delivery medium 

affected the cyst breakdown resulting from exogenous estrogen exposure during the 

perinatal period, neonatal mice were injected with plain peanut oil or corn oil, 

respectively, during PND1-4.   Ovaries from untreated mice and mice injected with 

corn oil and peanut oil were collected and analyzed at PND5.  Figure 13 shows that 

less cyst breakdown occurred in ovaries from mice injected with corn oil and peanut 

oil at 81.5% and 84.2%, respectively; however, these differences were not 

significant relative to ovaries from untreated mice.  While slightly more cyst 

breakdown was observed in mice injected with peanut oil than in those injected 

with corn oil, this difference was also insignificant. 
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The Effect of Peanut Oil as a Delivery Medium on the Total Number of 

Oocytes 

 

The Effect of Peanut Oil as a Delivery Medium on the Total Number of 

Oocytes 

 The total number of oocytes per confocal section was determined for 

untreated mice, mice injected with corn oil, and mice injected with peanut oil in 

order to determine whether using peanut oil as an exogenous estrogen delivery 

medium affected the number of oocytes per section that resulted from exogenous 

estrogen exposure.  Figure 14 shows that ovaries from mice injected with corn oil 

had a significantly larger amount of oocytes (14.2) per confocal section than both 

those from untreated mice and mice injected with peanut oil, which had 6.1 and 

8.0 oocytes per section, respectively.  The difference in the total number of 

Figure 13.  Cyst breakdown in untreated mice and mice injected with corn oil and peanut oil, 
respectively.  Significant difference between percentage of single oocytes at the same stage of 
development with or without oil injection (one way ANOVA, P < 0.05; n = 8-12 ovaries per 
group).  Asterisks indicate significance in comparison to untreated mice. 
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oocytes between untreated mice and mice injected with peanut oil was not 

significant. 

 
 

 

 

 
The Effect of Peanut Oil as a Delivery Medium on Mouse Follicle 

Development 

 Percentages of primordial follicles increased significantly to 82.0% and 

62.3%  in ovaries from mice treated with corn oil and peanut oil, respectively.  

The percentage of primordial follicles in mice treated with corn oil was 

significantly larger than the percentage of primordial follicles in mice injected 

with peanut oil.  While the percentages of primary follicles decreased in mice 

injected with corn oil and peanut oil to 16.7% and 27.9%, respectively, this was 

Figure 14.  Total number of oocytes in untreated mice and mice injected with corn oil and 
peanut oil, respectively.  Significant difference between the number of oocytes per confocal 
section at the same stage of development with or without oil injection (one way ANOVA,  
P < 0.05; n = 8-12 ovaries per group).  Asterisks indicate significance in comparison to 
untreated mice. 

* 
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only significant for mice injected with corn oil.  Although the percentages of 

secondary follicles decreased in both mice injected with corn oil (1.3%) and 

peanut oil (9.7%), these differences were not significant (Figure 15). 

 

 

 

 

Discussion 

 
 Evidence shows that exposure to exogenous estrogens can inhibit germline 

cyst breakdown in mouse.  Since infertility affects such a large population in the 

United States, understanding the relationship between exogenous estrogen 

exposure and primordial follicle assembly is imperative.  A simultaneous 

occurrence of cyst breakdown and apoptosis contributes to primordial follicle 

assembly and approximately one-third of germ cells survive to become primordial 

Figure 15.  Follicle development in untreated mice and mice injected with corn oil and peanut 
oil, respectively.  Significant difference between the percentages of follicles at the same stage 
of development with or without oil injection (one way ANOVA, P < 0.05; n = 8-12 ovaries per 
group).  Asterisks indicate significance in comparison to untreated mice. 

* 

* 

* 
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follicles (Pepling and Spradling, 2001).  Since some female reproductive 

disorders, such as primary amenorrhea and primary ovarian insufficiency, result 

from follicle depletion, understanding the role of exogenous estrogens in 

primordial follicle assembly is integral to the preservation of a female’s pool of 

primordial follicles and thus, the enhancement of her reproductive capacity.  

Thorough knowledge of this mechanism would allow further investigation of 

preventative measures through which a female’s pool of primordial follicles could 

be maximized. 

 Estrogens play many roles in the female body, including the regulation of 

metabolism, reproduction, behavior (Boon et al., 2010), and the skeletal system 

(Frenkel et al., 2010).  It has been suggested that the exposure of fetal oocytes to 

maternal estrogen could maintain fetal germline cysts and that cyst breakdown 

during the perinatal period is initiated by the decline in maternal estrogen levels at 

birth (Pepling, 2006).  The effects of exogenous estrogen exposure on the mouse 

ovary have been previously researched.  Neonatal exposure to DES increases the 

occurrence of MOF’s in the ovaries of mice at PND10-34 (Iguchi et al., 1986).  

Also, neonatal exposure to estradiol, progesterone, and genistein was shown to 

inhibit cyst breakdown in the ovaries of mice at PND4 (Chen et al., 2007).  In this 

study, we wanted to determine whether neonatal exposure to DES, EE, or BPA 

would have an effect on primordial follicle assembly that would be visible in the 

mouse ovary at PND5.  Additionally, we investigated whether an increase in the 

concentration of these exogenous estrogens would have a significant effect on 

primordial follicle assembly.  We observed that DES and EE significantly 
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decreased the percentage of single oocytes in the mouse ovary with there being no 

significant effect due to concentration increase.  The results of BPA were unique 

in that exposure to the lower concentration did not significantly decrease the 

percentage of single oocytes, while the higher concentration did.  The lower 

concentrations of DES and EE were sufficient for cyst breakdown inhibition; 

however, they were not sufficient to affect the total number of oocytes.  Only the 

higher concentrations of DES and EE significantly increased the total number of 

oocytes while both concentrations of BPA had this effect.  The significant 

increases in the percentages of primordial follicles resulting from exogenous 

estrogen exposure (Figure 9), which exhibit a pattern similar to that in Figure 10, 

could suggest that inhibition of germ cell death and arrest during follicle 

development proceed through similar pathways for DES, EE, and BPA or that a 

certain threshold amount exists for each of these in the mouse. 

 The second part of this study was to evaluate the roles of absolute ethanol 

in injection preparation and peanut oil as a delivery medium.  Using absolute 

ethanol in the preparation of estradiol injections had no significant effect on cyst 

breakdown or the total number of oocytes.  The only significant difference 

observed between mice that received estradiol injections prepared with or without 

absolute ethanol, respectively, was that a significantly lower percentage of 

primary follicles was observed in mice given estradiol prepared with absolute 

ethanol.  This suggests that using absolute ethanol in the preparation may have 

additional inhibitory effects regarding progression through follicle development. 
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Neither corn oil nor peanut oil affected cyst breakdown; however, mice injected 

with corn oil had a significantly higher amount of oocytes per confocal section in 

comparison to untreated mice and mice injected with peanut oil.  This suggests 

that corn oil may itself contain a germ cell death inhibitor, which makes it 

undesirable as an injection delivery medium since effects of the delivery medium 

should mimic untreated mice as closely as possible so that the effects of the 

estrogenic compound in transit are not unnecessarily masked or enhanced.  

Considering this criterion, both corn oil and peanut oil may seem unappealing as 

delivery media due to their effects on follicle development:  injection with both 

oil types, respectively, significantly increased the percentages of primordial 

follicles, and injection with corn oil significantly decreased the percentages of 

primary follicles.  While exposure to neither oil yielded a follicle development 

pattern that resembled that of untreated mice, it would be more beneficial to use 

peanut oil as a delivery medium since its results are closer to those of untreated 

mice.  However, this does not eliminate the usage of other oils or substances as 

delivery media, and future research could find a model delivery medium which 

would not affect cyst breakdown, the total number of oocytes, and follicle 

development. 

 While DES, EE, and BPA are important and prevalent exogenous 

estrogens in the environment, they most certainly are not the only ones.  

Considering the significant results of this study and previous research, additional 

investigation of other exogenous estrogens should continue in order to gain 
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extensive knowledge regarding how these endocrine disruptors affect primordial 

follicle assembly, and thus, female fertility. 
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 Since infertility is a growing issue for human beings, more research must 

be done in order to thoroughly understand mammalian reproduction.  Some 

female reproductive disorders are the result of an insufficient amount of eggs 

within the ovaries or a defect in the process by which these eggs mature and 

become ready for ovulation.  Studying the development and maturation of eggs in 

genetically similar animals can provide insight into human reproduction, and the 

mouse has been used as a model organism for such studies.  Recent studies in 

mice have shown that during the perinatal period, or the period around and 

including birth, large clusters of interconnected eggs undergo a series of division 

and programmed cell death and separation until a smaller amount of individual 

eggs form in the fetal ovary.  The amount of single eggs that result from this 

process represents the entire amount of eggs that will be available to a female 

during her reproductive lifetime; therefore, it is imperative that flaws are 

eliminated from this mechanism.  Based on several studies, it has been theorized 

that the removal of newborn mice from the maternal high-estrogen environment 

may initiate the process by which individual eggs form.  Considering this 

hypothesis, recent research has shown that perinatal exposure to estrogen and to 

compounds that mimic estrogen in their signaling pathways in the cell can inhibit 

this breakdown process, thus reducing the number of individual eggs that can 

form and diminishing the female’s reproductive capacity.  The experiments 

described in this project aimed to describe any significant changes in the 

breakdown process by investigating three estrogenic substances whose effects had 
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not previously been evaluated during the perinatal period in mice:  

diethylstilbestrol (DES), ethinylestradiol (EE), and bisphenol A (BPA). 

 In order to expose baby mice to these three substances, injections were 

prepared.  First, the appropriate amounts of peanut oil and the estrogenic 

compound were measured.  The estrogenic compound was dissolved in ethanol, 

and this solution was added to the oil.  The oil was slowly mixed until all of the 

ethanol evaporated to leave a solution of the estrogenic compound dissolved in 

peanut oil.  Small and equal amounts of this solution were then loaded into sterile 

syringes, which were capped with thin sterile needles.  Any air was squeezed out 

of the needle.  On the day of birth, which is designated post-natal day one 

(PND1), each newborn mouse received an injection of the solution just below its 

skin.  After each mouse was injected, a small portion at the end of its tail was 

clipped off.  Tail removal ensured that the mice injected on the first day would be 

distinguishable on subsequent days of injection.  Mice with clipped tails received 

an injection of the same estrogenic substance once a day for the next three days to 

give a total of four injections for each mouse.  On PND5, or four days after the 

day of birth, these mice were dissected for their ovaries, which were then placed 

into a preservative solution.  The ovaries soaked in the preservative solution 

overnight.  The next day, the preservative was washed out of the ovaries, and the 

ovaries were soaked in solutions that removed all ribonucleic acid (RNA) from 

the ovaries’ cells and stained the egg cells green and the nuclei in the ovary cells 

red.  The stained ovaries were then mounted onto clear glass slides in a medium 

which preserved their color stains.  A smaller glass slide was placed over the 
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ovaries and mounting medium, which were sealed between the two glass slides 

with nail polish.  This was completed for a total of six treatment groups:  DES, 

EE, and BPA at two different concentrations each. 

 These ovaries were imaged under a confocal microscope, which used a 

laser to scan through eight equidistant optical planes in each ovary.  These images 

were analyzed in order to determine the total number of eggs in each section, the 

number of single eggs versus the number of eggs still in interconnected clusters, 

and the developmental stage of each egg.  These numbers were compared to those 

from the ovaries of mice injected with plain peanut oil.  The breakdown of the 

cluster was significantly inhibited by both concentrations of DES and EE and by 

the higher concentration of BPA; therefore, fewer single eggs were present in 

these ovaries.  The number of eggs in each optical plane increased significantly in 

ovaries treated with the higher concentrations of DES and EE, respectively, and 

the ovaries treated with both concentrations of BPA, respectively.  Once single 

eggs form, they must mature through a few developmental stages before they are 

ready for ovulation and fertilization.  Classifying single eggs according to their 

developmental stages determined whether treatment with an estrogenic substance 

had an effect on the eggs’ developmental progress.  The number of single eggs in 

the first developmental stage increased significantly in ovaries from mice treated 

with the high concentrations of DES and EE and both concentrations of BPA, 

respectively.  The number of single eggs in the next developmental stage 

decreased significantly in ovaries from mice treated with the high concentration 

of BPA.  These findings suggest that perinatal exposure to estrogenic substances 
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may cause eggs to arrest in the first developmental stage or possibly slow down 

the process of maturation.  Either way, this could lead to a loss of ovulation or 

irregular ovulation, thus leading to infertility. 

 In order to determine whether the preparation method and/or delivery 

medium had any effects on these results, additional experiments were performed 

in order to evaluate the usage of ethanol in injection preparation and the 

effectiveness of peanut oil as a delivery medium.  In order to determine whether 

using ethanol in injection preparation affected the results, the same analyses that 

were performed on ovaries from mice injected with peanut oil containing 

estradiol—a naturally-occurring estrogen found in the body—prepared with 

ethanol and on ovaries from mice injected with peanut oil containing estradiol that 

was prepared without ethanol.  The results were compared those of mice which 

did not receive any injections or treatment.  The breakdown of interconnected 

clusters and programmed cell death were significantly inhibited in both treatment 

groups, and there was no significant difference for either cyst breakdown or the 

number of oocytes per optical plane between these two groups.  Although there 

was no significant difference in cyst breakdown and in total number of oocytes 

between the two groups that were injected with estradiol, egg development may 

have been affected by using ethanol in the preparation of the estradiol injections:  

while ovaries from mice that received both types of estradiol injections had 

significantly larger amounts of single eggs in the first developmental stage, only 

mice injected with estradiol injections prepared with ethanol had a significantly 

lower amount of single eggs in the second developmental stage.  This suggests 
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that ethanol could activate estradiol in such a way that the inhibition of these 

eggs’ developmental progress is enhanced.  It is imperative to understand what 

activates substances that mimic estrogen signaling pathways considering the 

abundance of exogenous estrogens in the environment and in everyday items, 

such as aluminum cans and plastic water bottles.  In order to evaluate the 

effectiveness as peanut oil as a delivery medium for exogenous estrogens, ovaries 

were isolated from mice injected with plain corn oil and peanut oil, respectively, 

and were analyzed and compared to ovaries from mice which received no 

injections.  No significant differences in the breakdown of interconnected clusters 

were observed in ovaries from mice injected with corn oil and peanut oil, 

respectively; however, the number of eggs per section increased significantly only 

in mice that were injected with corn oil.  Additionally, while mice injected with 

peanut oil and corn oil both had significantly higher amounts of single eggs in the 

first developmental stage, only mice injected with corn oil also had a significantly 

lower amount of single eggs in the second developmental stage.  This suggests 

that corn oil or something that it contains may inhibit the progression of egg 

development and cell death, also. 

 The early years are imperative to healthy development, and this 

experiment supplies additional evidence of this.  Influences that may affect an 

organism’s reproductive capacity are especially important to monitor because 

they can cause infertility.  This is especially important within the realm of 

mammalian reproduction since millions of human beings struggle with infertility 

and invest in expensive treatments.  These experiments not only show the effects 
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that external influences can have on mammalian reproduction, but also show that 

the effects of these substances may be enhanced by other materials with which 

they come in contact. 
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