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Abstract
The decays of ψ(2S) into γpp̄, π0pp̄ and ηpp̄ have been studied with the CLEO-c detector using

a sample of 24.5 million ψ(2S) events obtained from e+e− annihilations at
√
s = 3686 MeV. The

data show evidence for the excitation of several N∗ resonances in pπ0 and pη channels in π0pp̄ and

ηpp̄ decays, and f2 states in γpp̄ decay. Branching fractions for decays of ψ(2S) to γpp̄, π0pp̄ and

ηpp̄ have been determined. No evidence for pp̄ threshold enhancements was found in the reactions

ψ(2S) → Xpp̄, where X = γ,π0,η. We do, however, find confirming evidence for a pp̄ threshold

enhancement in J/ψ → γpp̄ as previously reported by BES.

∗ Now at: Pacific Northwest National Laboratory, Richland, WA 99352

2



I. INTRODUCTION

There is long-standing interest in 6-quark dibaryons and 3 quark - 3 antiquark “baryo-
nium” states which are permitted in QCD, and may possibly exist. Of particular interest is
a possible bound state of a proton and an antiproton. The pp̄ state, sometimes called “pro-
tonium”, was searched for in many experiments, but no credible evidence was found [1, 2].
Interest was revived in 2002 by two reports by the Belle Collaboration of threshold en-
hancements in M(pp̄) in the decays B± → K±pp̄ [3] and B̄0 → D∗0pp̄ [4]. These reports
were followed by a BES report of threshold enhancement in the decay J/ψ → γpp̄ [5].
Subsequently, there have been reports of threshold enhancements and studies by Belle in
B+ → π+pp̄, B0 → K0pp̄, and B+ → K∗+pp̄ [6]; by BaBar in B+ → K+pp̄ [7]; and
B0 → pp̄ + (D̄0, D̄∗0, D−π+, or D∗−π+) [8]; and most recently by Belle in B+ → K+pp̄
and B+ → π+pp̄ [9]. Many theoretical explanations, cusp effects, final state interactions,
quark fragmentation, and real bound states of quarks and gluons, have been suggested for
these threshold enhancements [10].

If the enhancement reported by BES in the decay J/ψ → γpp̄ [5] is due to a threshold
resonance, it is reasonable to expect that evidence for it may be found also in ψ(2S) → γpp̄.
Further insight into its nature may be provided by the study of the reactions ψ(2S) → π0pp̄
and ηpp̄.

II. EVENT SELECTION

In this paper we report on studies of these reactions observed in the CLEO-c detector in a
data sample of 24.5 million ψ(2S) events obtained by e+e− annihilations at

√
s =3.686 GeV

at the Cornell Electron Storage Ring, CESR. In addition, we use 20.7 pb−1 of off-resonance
data taken at

√
s = 3.67 GeV.

The CLEO-c detector, described in detail elsewhere [11], has a solid angle coverage of 93%
for charged and neutral particles. The charged particle tracking and identification system
operates in a 1.0 T solenoidal magnetic field, and consists of an inner drift chamber, a
central drift chamber, and a ring-imaging Cherenkov (RICH) detector. It has a momentum
resolution of ∼0.6% at momenta of ∼1 GeV/c. The CsI elecromagnetic calorimeter has a
photon energy resolution of ∼2.2% for Eγ = 1 GeV and ∼5% at 100 MeV.

Photons and charged particles with | cos θ| < 0.8 were accepted in the detector, where θ
is the polar angle with respect to the incoming positron beam. For the modes involving the
direct decays of the ψ(2S), exactly two oppositely charged tracks were required in candidate
events. A photon candidate was defined as a shower which does not match a track within
100 mrad, is not in one of the few cells of the electromagnetic calorimeter known to be noisy,
has the transverse distribution of energy consistent with an electromagnetic shower, and has
an energy more than 30 MeV. For γpp̄ the number of showers was required to be ≥ 1, and
it was required that the most energetic shower (the signal photon candidate) does not make
a π0 or η with any other shower with a pull mass < 3σ. For π0pp̄ and ηpp̄ the number of
showers was required to be ≥ 2.

To identify charged tracks as protons and antiprotons, the energy loss in the drift cham-
bers (dE/dx) and RICH information was used. For tracks of momentum less than 0.9
GeV/c, only dE/dx information is used. To utilize dE/dx information, for each particle

hypothesis, X = π, K, p or p̄, we calculate χ
dE/dx
X = [(dE/dx)meas − (dE/dx)pred]/σX ,

where (dE/dx)meas is the measured value of dE/dx, (dE/dx)pred is the predicted value for
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hypothesis X , and σX is the standard deviation of the measurements for hypothesis X . We

cut on both the deviation of the measured dE/dx from a given particle hypothesis, χ
dE/dx
X ,

and the difference in χdE/dx between two particle hypotheses, ∆χ
dE/dx
X,Y ≡ χ

dE/dx
X − χ

dE/dx
Y .

For higher momentum tracks, we use a combined log-likelihood variable. For example, to
differentiate between proton and pion we construct

∆Lp,π = (χdE/dxp )2 − (χdE/dxπ )2 + 2× (LRICHp − LRICHπ )

where LRICHπ,p are the log-likelihoods obtained from the RICH subdetector. We use RICH
information if the track has | cos θ| < 0.8 and the track has valid RICH information for
at least one hypothesis (pion or proton), and at least three photons consistent with that
hypothesis were recorded in the RICH.

We consider three different momentum regions for charged tracks.

• p < 0.9 GeV/c: In this momentum region only dE/dx information for the tracks is
available, and it is required that it be within 3σp of the proton hypothesis, and must

be more “proton-like” than “pion-like” or “kaon-like”, i.e. |χdE/dxp | < 3, ∆χπ,p > 0,
and ∆χK,p > 0.

• 0.9 GeV/c < p < 1.15 GeV/c: In this momentum region, although we are above
the threshold for a proton to emit Cherenkov radiation in the RICH, the probability
that it will do so is still low. Therefore, if RICH information is available, we require
that the track be more “proton-like” in the combined log-likelihood variable, i.e.,

∆Lp,π < 0. If RICH information is not available, we again require that |χdE/dxp | < 3,
and additionally require a 5σ difference between the proton hypothesis and the pion
and kaon hypotheses, i.e., ∆χπ,p > 5, and ∆χK,p > 5, in order to reduce the number
of other particles which pass these cuts.

• p > 1.15 GeV/c: In this momentum region, dE/dx alone no longer provides useful
information for proton identification. We require that RICH information be available,
and that ∆Lp,π < 0.

We require one of the charged tracks to be identified as a proton or antiproton and
assume the other track to be its antiparticle as required by baryon conservation, and we
require the proton and antiproton to come from a common vertex, with kinematic fit yielding
χ2
pp̄ vertex < 20.
Finally, in order to select the events for the channels of interest:

• For selection of ψ(2S) → γpp̄ events we require χ2
fit/degrees of freedom (d.o.f.) < 5

for the four-momentum conservation constrained fit to p, p̄ and the signal photon
candidate.

• For selection of ψ(2S) → π0(η)pp̄ events, we first require that only one π0(η) be made
by any two photons and the pull mass be within 3σ. Then we require χ2

fit/d.o.f. < 5
for the four-momentum conservation constrained fit to p, p̄, and π0(η). We remove
the events corresponding to ψ(2S) → π0(η)J/ψ by rejecting candidates for which
M(pp̄) =M(J/ψ)± 20 MeV/c2. Figure 1 shows the distribution of M(γγ) before and
after the selection of π0 and η described above.
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• For selection of ψ(2S) → π+π−J/ψ, J/ψ → γpp̄ events the additional event selection
requirements are described in Sec. VIII.

The values of the χ2 cuts for the fits were selected based on the comparison of the data
and the phase space distributions for the individual decays obtained from Monte Carlo (MC)
simulations.

FIG. 1. Distribution of M(γγ) in ψ(2S) → π0(η)pp̄. The unshaded histogram shows the M(γγ)

distribution before the selection of π0 and η, and the shaded histogram shows it after the π0 and

η selection described in the text.

III. MONTE CARLO STUDIES

In order to verify the event selection criteria and determine efficiencies, 50,000 phase space
MC events were generated for each decay channel analyzed. As an example, for ψ(2S) → γpp̄
events withM(pp̄) <2.85 GeV/c2 the contribution of each step of event selection is presented
in Table I. The overall phase space efficiency is (27.7± 0.2)%. The corresponding efficiency
for ψ(2S) → π0pp̄ is (26.9± 0.2)%, and for ψ(2S) → ηpp̄ it is (27.7± 0.2)%.

We also use ψ(2S) “generic” MC events with the available statistics of about five times
data events (∼118 million events). The generic ψ(2S) MC sample is generated using the
available branching fractions for the ψ(2S), χcJ , J/ψ, and ηc decays, with unmeasured
decay modes simulated by JETSET [12]. We have tested the event selection using a generic
MC sample. We apply the same event selection to these MC events, extract the different
branching fractions, and compare them to the branching fractions which were input in
creating the generic MC sample. The agreement between the input and output branching
fractions for ψ(2S) → γpp̄, π0pp̄, and ηpp̄, is found to be within (2.4± 3.9)%, (1.0± 1.0)%,
and (3.0± 4.0)%, respectively.

IV. OVERVIEW OF ψ(2S) DECAYS

Figure 2 shows Dalitz plots for the data for the three decays. All three Dalitz plots
show event populations which are far from uniform, as would be expected for pure phase
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TABLE I. Efficiencies of the individual event selection criteria for the decay ψ(2S) → γpp̄ based

on phase space MC simulation.

Selection requirement Efficiency (%)

Charged track and photon selection

Nch = 2, net charge = 0, Nγ ≥1 74.5

Signal photon does not make

π0 with any other shower 97.0

Vertex fit, constrained fit

χ2
vertex < 20, χ2

fit < 5 84.3

Proton-antiproton identification 98.2

M(pp̄) <2.85 GeV/c2 64.3

All p, p̄ and most energetic photon

are in the barrel (| cos θ| < 0.8) 72.0

Total 27.7

FIG. 2. (a) Dalitz plots for the data: (a) M2(pγ) versus M2(p̄γ) for ψ(2S) → γpp̄; (b) M2(pπ0)

versus M2(p̄π0) for ψ(2S) → π0pp̄; (c) M2(pη) versus M2(p̄η) for ψ(2S) → ηpp̄.

space decays, and suggest contribution by intermediate excited nucleon states, N∗, and
mesons. Since the branching fractions for N∗ decays to Nπ and Nη are generally much
larger than those for decays to Nγ, we expect excitation of N∗ states in ψ(2S) → π0pp̄ and
ψ(2S) → ηpp̄. Similarly, we expect excitation of intermediate meson states which decay into
pp̄, fJ states in ψ(2S) → γpp̄ and ηpp̄, and aJ states in ψ(2S) → π0pp̄.

A caveat about the intermediate states is in order. The intermediate N∗ and f0,2 states
which we use in our analysis tend to have masses ≥ 1.5 GeV/c2 . Unfortunately, the
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existence of most high mass N∗ resonances is either uncertain or poorly established, and
their masses and widths have large uncertainties, so much so that the 2008 Particle Data
review (PDG08) [13] omits many of them from its summary table. Similar uncertainties exist
for meson states with masses ≥ 1.5 GeV/c2 . Therefore our identification of an observed
resonance with a known resonance is necessarily tentative.

Our data lack the statistics to make a full partial wave analysis. Instead, we analyse the
projections of the Dalitz plots of invariant mass distributions for M(p(γ, π0, η)) and M(pp̄).
Throughout this paper, charge conjugate states and their contributions are implied.

We fit the invariant mass distributions with contributions from phase space and the min-
imum number of resonances required to obtain good fits. The resonances are parametrized
in terms of relativistic Breit-Wigner functions with mass dependent widths and include the
Blatt-Weisskopf penetration factors [13, see p. 772]. We note that peak positions and widths
in the relativistic fits can be substantially different from those for the simple Breit-Wigner
function, particularly for large widths and proximity to thresholds [13].

In order to take proper account of intermediate states and possible reflections in the Dalitz
plots we analyze the data in the full range of pp̄ invariant mass, from threshold to 3.6 GeV/c2

. In this important respect the present analysis differs from the BES analyses [5, 16, 17].
In the following Sections, V, VI and VII we discuss the decays ψ(2S) → γpp̄, π0pp̄ and

ηpp̄, respectively. In Sec. VIII we present the results of the analysis of our limited statistics
sample of J/ψ → γpp̄ events.

V. THE DECAY ψ(2S) → γpp̄

For the search for a threshold enhancement in ψ(2S) → γpp̄, and for the measurement
of the inclusive branching fraction B(ψ(2S) → γpp̄) we limit ourselves to M(pp̄) < 2.85
GeV/c2, below the ηc mass. As a check on our analysis technique, we use our data for
M(pp̄) > 3.15 GeV/c2 to calculate the B(χcJ → pp̄) branching fractions and compare them
to recent measurements.

FIG. 3. Distributions of the χ2 of four-momentum conservation constrained fits for ψ(2S) → γpp̄:

(a) χ2 of vertex fit, (b) χ2 of the four-momentum conservation fit. Points correspond to the data

and the shaded histograms correspond to the phase space MC simulation. Dashed lines indicate

the cut values used.
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FIG. 4. Distributions of E/pc for ψ(2S) → γpp̄ for M(pp̄) < 2.85 GeV/c2: (a) protons, (b)

antiprotons. Because of annihilations E/p for antiprotons extends over a much larger range than

for protons. Points correspond to the data and the shaded histograms to the phase space MC

simulation.

FIG. 5. Distributions of the momenta of charged particles for ψ(2S) → γpp̄: (a) protons, (b)

antiprotons. Points correspond to the data and the shaded histograms to the phase space MC

simulation.

In Fig. 3 we show the χ2 distributions for the data and the phase space MC events
for vertex fit and four-momentum conservation constrained fit to the proton, antiproton
and most energetic shower in the event. All other selection criteria have been applied.
Comparison of these distributions suggests the cut values χ2

pp̄ vertex < 20 and χ2
fit < 20.

In Fig. 4 we compare E/pc distributions for protons and antiprotons in data and the
phase space ψ(2S) → γpp̄ MC simulation, where E is the energy determined from the
calorimeter and p is the momentum determined from track reconstruction. The distributions
of protons and antiprotons are different, because antiprotons annihilate in the material of
the electromagnetic calorimeter. However, for both protons and antiprotons, the data and
the phase space MC distributions show good agreement.

In Fig. 5 proton and antiproton momentum distributions for the data and the phase space

8



TABLE II. Results for B(χcJ → pp̄) for χcJ states. The PDG08 values for B(ψ(2S) → γχcJ) have

been used to obtain the results for B(χcJ → pp̄).

χc0 χc1 χc2
Mass (MeV/c2) 3412.8±1.0 3512.5±0.4 3555.0±1.0

N(events) 236.0 ± 18.4 79.0 ± 10.7 62.5 ± 9.8

Efficiency in % 39.5 41.4 37.9

B(ψ(2S) → γχcJ)×B(χcJ → pp̄)× 106 22.0 ± 1.7 7.05 ± 0.96 6.07 ± 0.95

B(χcJ → pp̄)× 105 (this analysis) 23.4 ± 2.1 8.0 ± 1.1 7.3 ± 1.2

B(χcJ → pp̄)× 105 (CLEO [14]) 25.7 ± 1.5 ± 2.0 9.0 ± 0.8 ± 0.6 7.7 ± 0.8 ± 0.6

B(χcJ → pp̄)× 105 (PDG08 [13]) 21.4 ± 1.9 6.6 ± 0.5 6.7 ± 0.5

ψ(2S) → γpp̄ MC simulation are shown. The agreement between MC simulation and data
momentum distributions is not good, and may indicate the effect of intermediate resonances.

In Fig. 6 we present the M(pp̄) invariant mass distributions for the data and the ψ(2S)
generic MC simulation, which includes the excitation of χcJ and ηc, but not the ISR generated
J/ψ. All event selection criteria have been applied. The generic MC events are normalized
to the number of ψ(2S) events in the data for a qualitative comparison.

FIG. 6. Distribution ofM(pp̄) for ψ(2S) → γpp̄. All event selection criteria have been applied. The

points represent data and the shaded histogram is the generic MC distribution, which is normalized

to the 24.5 million ψ(2S) events in data. The dashed line indicates theM(pp̄) = 2.85 GeV/c2 limit

of the range used for ψ(2S) → γpp̄ branching fraction calculations.

In Fig. 6 we note that there is an excess of events in the data over the generic MC
simulation in the region M(pp̄) < 2.3 GeV/c2 . The generic MC simulation has no input for
possible resonances in this mass region.
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FIG. 7. Fit of the photon energy distribution for ψ(2S) → γpp̄. Events in the figure are the same

as in Fig. 6. The fit has χ2/d.o.f. = 100/98.

The excitation of the χcJ states, shown in Fig. 6 gives us an opportunity to further test
the appropriateness of our event selection.

To extract χcJ branching ratios we fit the photon energy Eγ distribution shown in Fig. 7
with Breit–Wigner functions convolved with Crystal Ball line shape [15], and a second-order
polynomial background. The fit results for photon energies agree with those expected for the
χcJ resonances within ±2 MeV. As seen in Table II, our calculated values of B(χcJ → pp̄)
agree within errors with both the results of a recent CLEO measurement [14], which use the
same data, and PDG08 [13]. These measurements are intended as checks on the analysis
technique only and not as new measurements, and no systematic errors are included.

In order to explore the intermediate state resonances which are excited in the reaction
ψ(2S) → γpp̄ we study several presentations of the data. These include the pγ versus p̄γ
Dalitz plot, the M(pp̄) and M(pγ) projections, and the distributions of cosΘ, where Θ is
the angle between the proton and antiproton in the rest frame of the photon-proton system.

The three panels in Fig. 8 show M2(pγ) versus M2(p̄γ) Dalitz plots respectively for
phase space MC simulation, data, and MC simulation with the intermediate resonances as
described below. Figure 9 shows phase space MC distributions superimposed on the data
for M(pp̄), M(pγ, p̄γ) and cosΘ. (In the last two plots events have been included for both
pγ and p̄γ, resulting in double counting).

In the distributions shown in Figs. 8 and 9, it is clear that pure phase space distributions
fail to describe the data. Significant contributions by intermediate states are required. We
have made MC studies of the contributions that various known scalar and tensor meson reso-
nances would make to these distributions. We find that the best candidates are f2(1950) and
f2(2150) with parameters given in PDG08. We determine MC shapes of the contributions
that f2(1950), f2(2150), and phase space make to the distributions for M(pp̄), M(pγ) and
cosΘ, and determine their relative magnitudes by fitting the data distributions. Using the
PDG08 [13] values for masses and widths for the two resonances, the best fit is obtained with
relative fractions listed in Table III. The corresponding MC determined efficiencies, which
are found to be insensitive to the uncertainties in masses and widths of the resonances, are
also listed in the table. The overall efficiency of the admixture of the resonances and phase
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FIG. 8. Dalitz plots ofM2(pγ) versusM2(p̄γ) for ψ(2S) → γpp̄: (a) the phase space MC simulation;

(b) the data; (c) the sum of three MC plots for f2(1950), f2(2150) and phase space.

FIG. 9. Distributions in data (points) compared to the phase space MC distributions (solid lines):

(a) theM(pp̄) invariant mass distributions; (b) theM(pγ) distributions; (c) the cosΘ distributions.

Phase space normalization is arbitrary in all plots.

FIG. 10. Distributions in data (points) compared with the sum of the MC distributions in the

proportions given in Table III (solid lines): (a) the M(pp̄) invariant mass distributions; (b) the

M(pγ) distributions; (c) the cosΘ distributions. The individual contributions are: f2(1950) shown

with the dotted line marked 1, f2(2150) shown with the dotted-dashed line marked 2, and phase

space shown with the dashed line marked 3.
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TABLE III. Fractions and efficiencies for the intermediate resonances and the phase space contri-

bution for the best fits for the reaction ψ(2S) → γpp̄.

State M (MeV/c2) Γ (MeV/c2) Fraction (%) ǫ

f2(1950) 1944±12 472±18 32±5 0.375

f2(2150) 2156±11 167±30 21±5 0.410

Phase space 47±6 0.277

space is

〈ǫ〉 = 0.336± 0.008. (1)

As shown in Fig. 10 good fits to all three distributions are obtained with the above
admixtures, their respective χ2/d.o.f. being 15/24 for M(pp̄), 33/35 for M(pγ), and 23/20
for cosΘ. The resulting Dalitz plot, shown in Fig. 8(c), is also in good qualitative agreement
with that for the data. No evidence is found in the data for a narrow resonance R with
ΓR < 40 MeV/c2 anywhere in the regionM(pp̄) = 2200−2800 MeV/c2. The 90% confidence
level upper limit is B(ψ(2S) → γR)× B(R → pp̄) < 2× 10−6.

A. Determination of B(ψ(2S) → γpp̄)

In the region M(pp̄) < 2.85 GeV/c2, we obtain N = 407 ± 20 ψ(2S) → γpp̄ candidate
events. We evaluate the background due to ψ(2S) → π0pp̄, in which one photon from
the π0 decay is lost, as Nbkg(π

0) = 38 ± 2. In addition, by analyzing the continuum data
at

√
s = 3.76 GeV we determine that the luminosity-normalized continuum background

contribution is Ncont = 26± 8 counts. With the relative contributions of f2(1950), f2(2150),
and phase space as in Table III, and the effective overall efficiency (Eq. (1)) we get

B(ψ(2S) → pp̄γ) =
N −Nbkg −Ncont

〈ǫ〉 ×Nψ(2S)

= (4.18± 0.26(stat))× 10−5. (2)

The individual product branching fractions are

B(ψ(2S) → γf2(1950))× B(f2(1950) → pp̄)

= (1.2± 0.2(stat))× 10−5, (3)

B(ψ(2S) → γf2(2150))× B(f2(2150) → pp̄)

= (0.72± 0.18(stat))× 10−5. (4)

Estimates of systematic errors are provided in Sec. IX.
Our result for B(ψ(2S) → γpp̄) differs by 2σ from the PDG08 result based on the BES

measurement [16], B(ψ(2S) → γpp̄) = (2.9±0.6)×10−5 in which no account of intermediate
resonances was taken. The results in Eqs. (3) and (4) represent the first measurements of
these product branching fractions.
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FIG. 11. (a) MC-determined efficiency as a function of ∆M = M(pp̄) − 2mp for ψ(2S) → γRthr,

Rthr → pp̄. (b) The solid curve is the shape of the ∆M distribution from MC simulation for the

admixtures shown in Table III, and the dashed curve is the shape of the ∆M distribution from

MC simulation for phase space alone. Relative normalizations are arbitrary.

FIG. 12. Fits of the ∆M ≡ M(pp̄) − 2mp distribution for ψ(2S) → γpp̄ decay. The dotted line

is the sum of the resonance and phase space contributions according to Table III, the dashed line

shows the fitted threshold resonance contribution. The solid line is the sum of all contributions.

B. Search for Threshold Enhancement in ψ(2S) → γpp̄

Figure 10(a) shows that a good fit to the M(pp̄) spectrum is obtained with the sum
of contributions from f2(1950), f2(2150), and phase space, with χ2/d.o.f. = 15/24. No
threshold resonance seems to be needed. However, to reach a quantitative conclusion we
study in detail the pp̄ threshold region, ∆M = M(pp̄) − 2mp = 0 − 300 MeV/c2. To do
so, we evaluate the contributions of the f2 resonances and phase space in this region, and
determine the efficiency for ψ(2S) → γRthr, Rthr → pp̄ in this region. The results are shown
in Fig. 11.
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The ∆M = M(pp̄) − 2mp event distribution is shown in Fig. 12. A visual inspection of
the distributions shows that there is no evidence for a statistically significant enhancement
at the threshold, ∆M = 0. In fact, a straight line fit to the data gives χ2/d.o.f. = 52/58.
However, we must consider the contributions due to the f2 resonances and phase space as
has been determined in Table III, and as shown in Fig. 11(b), and the efficiency 〈ǫ〉 = 55.8%
in the threshold region. Figure 12 shows the best fit obtained using these contributions
plus a Breit-Wigner threshold resonance with the parameters obtained by BES [5], namely
M(pp̄) = 1859 MeV/c2, and Γ = 20 MeV/c2. The fit has χ2/d.o.f. = 53/58, and includes
the best fit threshold resonance Rthr with 9+10

−9 counts. This leads to

B(ψ(2S) → γRthr)× B(Rthr → pp̄) = NR
ǫNψ(2S)

= (0.66+0.73
−0.66)× 10−6 or < 1.6× 10−6, 90% CL, (5)

where CL means confidence level. This is more than a factor three more restrictive than the
current best limit [16].

VI. THE DECAY ψ(2S) → π0pp̄

Our analysis of ψ(2S) → π0pp̄ follows the same steps as described in Sec. IV for ψ(2S) →
γpp̄. Figure 13 shows the three Dalitz plots respectively for (a) phase space MC simulation,
(b) data, and (c) MC simulation with the resonances described below. The phase space and
data Dalitz plots differ dramatically, and the MC plot with the resonances described below
is in impressive agreement with the data. Figure. 14 shows the projected distributions for
M(pπ0), M(pp̄), and cosΘ, the polar angle of p in the rest frame of π0p. It is clear that the
pure phase space distributions do not reproduce the data in either the Dalitz plots or the
projected distributions. Figure 15 shows the same three distributions with good quality fits
based on resonance shapes determined from MC simulations, as described below.

The N∗ intermediate states in ψ(2S) → π0pp̄ are most clearly visible in the M(pπ0)
distribution of Fig. 14(a), with enhancements near M(pπ0) ≈ 1400 MeV/c2 and M(pπ0) ≈
2300 MeV/c2. Similarly, the meson intermediate states are most clearly visible in theM(pp̄)
distribution of Fig. 14(b), with enhancements near M(pp̄) ≈ 2100 MeV/c2 amd M(pp̄) ≈
2900 MeV/c2. The enhancement at M(pπ0) ≈ 1400 MeV/c2 can be identified with the
well known N∗(1440), which we call N∗

1 , and the enhancement at M(pp̄) ≈ 2100 MeV/c2,
which we call R1, can be identified with the known resonance f0(2100) [13]. The large
enhancements inM(pπ0) at 2300 MeV/c2, which we call N∗

2 , and inM(pp̄) at 2900 MeV/c2,
which we call R2, can not be identified with known N∗ and f0,2 resonances, and we have to
take an empirical approach for them.

Because the mass and width of f0(2100) are well defined, in all subsequent analysis we
keep them fixed to their PDG08 values. To determine the optimum values for the masses
and widths of the N∗

1 , N
∗

2 and R2 resonances following procedure was used.
Because the Dalitz plot projections contain reflections, the projections can not be fitted

with simple Breit-Wigner resonances. Instead, MC distributions have to be generated for
individual resonances with assumed masses and widths, and their optimum values have to
be determined by fitting the data distributions with the MC generated distributions. Our
procedure takes account of reflections, but does not include taking account of any possible
interferences between resonances.
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FIG. 13. Dalitz plots of M2(pπ0) versus M2(p̄π0) for the channel ψ(2S) → π0pp̄: (a) the phase

space MC simulation; (b) the data; (c) the sum of four MC plots for R1(2100), R2(2900), N
∗
1 (1440)

and N∗
2 (2300).

FIG. 14. Distributions in data (points) compared to the phase space MC distributions: (a) the

M(pπ0) distributions. (b) the M(pp̄) invariant mass distributions. (c) the cosΘ distributions.

Normalization is arbitrary in all plots.

FIG. 15. Distributions in data (points) compared to the sum of the MC distributions in the pro-

portions given in Table IV (solid lines): (a) the M(pπ0) distributions; (b) the M(pp̄) distributions;

(c) the cosΘ distributions. The individual contributions are: R1(2100) shown with the dashed line

marked 1, N∗
1 (1440) shown with the dotted line marked 2, N∗

2 (2300) shown with the dotted-dashed

line marked 3, R2(2900) shown with the dotted line marked 4.
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TABLE IV. Fractions and efficiencies for the intermediate resonances for the reaction ψ(2S) →
π0pp̄.

Resonance M (MeV/c2) Γ (MeV/c2) Fraction (%) ǫ

N∗
1 (1440) 1400±25 220±20 50±4 0.241

N∗
2 (2300) 2300±25 300±30 28±4 0.276

R1(2100) 2103±8 209±19 8±3 0.275

R2(2900) 2900±20 250±25 24±4 0.241

We first fit the M(pπ0) distribution with only N∗

1 and N∗

2 resonances and determine the
best fit values for their masses and widths by iterating each in 5 MeV/c2 steps. We then fit
the M(pp̄) distribution with just the above N∗

1 and N∗

2 resonances. We find that the M(pp̄)
distribution is fitted poorly, with χ2/d.o.f.=65/37, and the enhancements at M(pp̄) ≈ 2100
MeV/c2 and M(pp̄) ≈ 2900 MeV/c2 are not reproduced. We then explicitly introduce fixed
parameter R1(2100), and R2 on whose parameters we iterate to find their best values. As
expected, the fit to the M(pp̄) distribution is improved, with χ2/d.o.f.=44/33. We go back
to the M(pπ0) distribution to determine the effect of including R1 and R2. It is found that
their contribution is structureless in theM(pπ0) distribution, and it does not affect the best
fit parameters of N∗

1 and N∗

2 .
In Table IV final resonance parameters of N∗

1 , N
∗

2 , R1 and R2 are listed. The errors in the
masses and widths are those which change the likelihood of fits by two units. The efficiencies
are as determined by MC simulations. The relative fractions are determined by the final fit
to the M(pp̄) distribution.

The fits obtained for M(pπ0), M(pp̄) and cosΘ distributions with the final set of pa-
rameters for all four resonances are shown in Fig. 15(a,b,c). The individual resonance
contributions are shown with dotted and dashed lines. The corresponding composite Dalitz
plot is shown in Fig. 13(c). It agrees very well with that for data in Fig. 13(b). No evidence
for a pp̄ threshold enhancement is observed in the M(pp̄) distribution of Fig. 15(b).

BES reported the result for ψ(2S) → π0pp̄ using their sample of 14 million ψ(2S)
events [17]. Since the number of events was almost a factor of two smaller than in the
present investigation, they were not able to reach any conclusions about intermediate states
other than to note that there was “indication of some enhancement around 2 GeV/c2.”

A. Determination of B(ψ(2S) → π0pp̄)

We consider all events in the M(pp̄) spectrum for M(pp̄) < 3.6 GeV/c2 (Fig. 15(b))
for determination of the branching fraction B(ψ(2S) → π0pp̄), except those with M(pp̄) =
3.097± 0.020 GeV/c2, which could come from J/ψ production.

We obtain N = 1063± 33 ψ(2S) → π0pp̄ candidate events. Using our branching fraction
of B(ψ(2S) → γpp̄ = (4.18 ± 0.26) × 10−5, and the efficiency determined in Eq. (1) we
estimate Nbkg = 15± 1 background counts due to misidentified γpp̄ events.

We estimate the non-resonant contribution of π0pp̄ production by using the data taken
at the off–ψ(2S) resonance energy of

√
s = 3.67 GeV. It leads to a luminosity-normalized

non-resonant contribution in our data, Ncont = 105± 16.
The efficiencies determined from the N∗

1 (1440), N
∗

2 (2300), R1(2100) and R2(2900) MC

16



simulations are 24.1%, 27.6%, 27.5%, and 24.1%, respectively. The overall efficiency of the
admixture of the resonances is 〈ǫ〉 = (25.4± 0.2)%.

This yields a branching fraction of

B(ψ(2S) → pp̄π0) =
N −Nbkg −Ncont

〈ǫ〉 ×Nψ(2S) × B(π0 → γγ)

= (1.54± 0.06(stat))× 10−4. (6)

This result is in agreement with the PDG08 [13] value of (1.33 ± 0.17) × 10−4, and has a
factor three smaller error.

We can also determine the product branching fractions for the N∗

1 (1440), N
∗

2 (2300),
R1(2100) and R2(2900) resonances by taking account of their respective fractions and effi-
ciencies given in Table IV. The resulting product branching fractions are

B(ψ(2S) → p̄N∗

1 (1440))× B(N∗

1 (1440) → pπ0)

= (8.1± 0.7(stat))× 10−5, (7)

B(ψ(2S) → p̄N∗

2 (2320))× B(N∗

2 (2320) → pπ0)

= (4.0± 0.6(stat))× 10−5, (8)

B(ψ(2S) → π0R1(2100))× B(R1(2100) → pp̄)

= (1.1± 0.4(stat))× 10−5, (9)

B(ψ(2S) → π0R2(2900))× B(R2(2900) → pp̄)

= (2.3± 0.7(stat))× 10−5. (10)

These are the first determinations of these product branching fractions. Estimates of
systematic errors are provided in Sec. IX.

VII. THE DECAY ψ(2S) → ηpp̄

As shown in Fig. 1, the yield of ηpp̄ (184 counts) is nearly a factor of 6 smaller than for π0pp̄
(1063 counts). Dalitz plots ofM2(pη) versus M2(p̄η) are shown in Fig. 16, (a) for pure phase
space, (b) for the data, and (c) for resonances described below. As in the ψ(2S) → π0pp̄
case, it is seen that the Dalitz plot for the data (Fig. 16(b)) is completely different from the
uniformly populated Dalitz plot for phase space MC simulation (Fig. 16(a)). The data are
clearly dominated by the contribution of intermediate states. As shown in Fig. 16(c) the
sum of MC simulated contributions of resonances described below reproduces the data very
well.

The projected distributions for (a)M(pη), (b)M(pp̄), and (c) cosΘ, where Θ is the polar
angle of the p in the rest frame of ηp, are shown in Fig. 17, together with MC generated
distributions for phase space. As expected, the phase space distributions do not reproduce
the data distributions.

In the M(pη) invariant mass distribution (Fig. 17(a)) no evidence is found for N∗

1 (1440)
and N∗

2 (2300) resonances seen in the M(pπ0) plot of Fig. 15(a), but a large peak is observed

atM(pη) ∼ 1540 MeV/c2. This suggests excitation of N∗(1535) JP = 1
2

−
nucleon resonance
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FIG. 16. Dalitz plots of M2(pη) versus M2(p̄η) for the channel ψ(2S) → ηpp̄: (a) the phase space

MC simulation; (b) the data; (c) the sum of two MC plots for R1(2100) (20%), and N∗(1535)

(80%).

FIG. 17. Distributions in data (points) compared to the phase space MC distributions: (a) the

M(pη) distributions; (b) the M(pp̄) invariant mass distributions; (c) the cosΘ distributions. Nor-

malization of the curves is arbitrary in all plots.

FIG. 18. Distributions in data (points) compared to the sum of the MC distributions in the

proportions given in Table V (solid lines): (a) theM(pη) distributions; (b) theM(pp̄) distributions;

(c) the cosΘ distributions. The individual contributions are: R1(2100) shown with the dotted line

marked 1, N∗(1535) shown with the dashed line marked 2.
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of PDG08 [13] with M = 1525 − 1545 (MeV/c2) and Γ = 125 − 175 (MeV/c2), which is
known to decay into Nη with a branching fraction of (45-60)%.

In the M(pp̄) distribution (Fig. 17(b)) there is a broad enhancement in the 2.7 − 3.0
GeV/c2 region which arises mainly as reflection of the N∗(1535) resonance in M(pη). In
addition there is a narrow enhancement near M(pp̄) ≈ 2100 MeV/c2 reminiscent of the one
observed in M(pp̄) from ψ(2S) → π0pp̄ decay.

The optimized masses and widths we obtain for these resonances, and their fractions and
estimated efficiencies are shown in Table V. It is found that the MC-determined efficiencies
are insensitive to the uncertainties in masses and widths of the resonances.

TABLE V. Fractions and efficiencies for the intermediate resonances for the best fits for the reaction

ψ(2S) → ηpp̄.

Resonance M (MeV/c2) Γ (MeV/c2) Fraction (%) ǫ

N∗(1535) 1535±10 150±25 80±6 0.294

R1(2100) 2103±8 209±19 20±6 0.259

We fit our data distribution for M(pη) and M(pp̄) with an admixture of MC simulated
shapes for these two resonances (the fit result shows that the contribution from the phase
space MC is consistent with zero). The best fit admixture is:

(0.20± 0.06)×R1(2100) + (0.80± 0.06)×N∗(1535). (11)

The final results for the M(pη), M(pp̄) and cosΘ distributions are presented in Fig. 18
with solid lines. The dashed and dotted lines represent the contributions from the individual
resonances. Good agreement between the data and the fitted distributions is obtained for
all three distributions, with χ2/d.o.f. are 35/30 (M(pη)), 30/30 (M(pp̄)) and 32/20 (cosΘ).

TheM2(pη) versusM2(p̄η) Dalitz plot in Fig. 16(c) constructed with the MC distributions
for the above resonance admixture is seen to reproduce very well the Dalitz plot of data in
Fig. 16(b).

A. Determination of B(ψ(2S) → ηpp̄)

We consider the entire M(pp̄) spectrum with M(pp̄) < 3.077 GeV/c2 in Fig. 18(b) for
the determination of B(ψ(2S) → ηpp̄).

We obtain N = 184±14 ψ(2S) → ηpp̄ candidate events. We do not find any background
contribution from feed-down from other decay channels. We estimate the continuum con-
tribution of ηpp̄ production by using the data taken at

√
s = 3.67 GeV. It leads to the

luminosity-normalized contribution Ncont = 30± 8 counts.
The reconstruction efficiencies determined from the R1(2100) and N

∗(1535) MC simula-
tions are 25.9% and 29.4%, respectively and the overall effective efficiency of the resonances
admixture is 〈ǫ〉 = (28.7± 0.2)%.

This yields a branching fraction of

B(ψ(2S) → ηpp̄) =
N −Ncont

〈ǫ〉 ×Nψ(2S) × B(η → γγ)

= (5.6± 0.6(stat))× 10−5. (12)
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This is in agreement with the PDG08 [13] value of (6.0± 1.2)× 10−5, and has a factor two
smaller error. We can determine the product branching ratios for the production of N∗(1535)
and R1(2100) resonances by taking account of their respective fractions and efficiencies. We
obtain

B(ψ(2S) → p̄N∗(1535))× B(N∗(1535) → pη)

= (4.4± 0.6(stat))× 10−5, (13)

B(ψ(2S) → ηR1(2100)× B(R1(2100) → pp̄)

= (1.2± 0.4(stat))× 10−5. (14)

These are the first determinations of these product branching fractions. Estimates of
systematic errors are provided in Sec. IX.

VIII. SEARCH FOR pp̄ THRESHOLD ENHANCEMENT IN J/ψ → γpp̄

Although the number of π+π− tagged J/ψ events in our sample of ψ(2S) → π+π−J/ψ
is 8.7 million, as compared to the 58 million event J/ψ sample of BES II, it is instructive
to analyze it for the sub-threshold resonance with M(pp̄) = 1859+3

−10
+5
−25 MeV/c2 reported by

BES [5].
For selection of ψ(2S) → π+π−J/ψ, J/ψ → γpp̄ events, we require first χ2

pp̄ vertex < 20

and χ2
fit/d.o.f. < 3 of the J/ψ mass constrained fit to pp̄ and most energetic shower in the

event, then χ2
vertex < 40 and χ2

fit/d.o.f. < 10 of the four-momentum conservation constrained
fit to π+π− and J/ψ.

In Fig. 19 we show the distribution of pp̄ invariant mass as a function of ∆M =M(pp̄)−
2mp in the extended mass region ∆M = 0 - 970 MeV/c2. We believe that it is essential to
analyze the data in the extended mass region, because as we have seen for ψ(2S) decays,
higher mass resonances make contributions all the way down to the pp̄ threshold. Further,
as shown in Fig. 19, a much better estimate of the phase space contribution can be made
when data in the extended mass region is taken into account. Fig. 19 shows an enhancement
near pp̄ threshold and a large broad enhancement around ∆M ≈ 200 MeV/c2. We therefore
analyze our data in the extended mass region, ∆M = 0 − 970 MeV/c2, and take account
of possible resonances other than the one near the pp̄ threshold. Our analysis differs in
this essential respect from that of BES in which data in the limited region, ∆M = 0 − 300
MeV/c2, was analyzed, and no account was taken of the enhancement around ∆M ≈ 200
MeV/c2.

We have made an attempt to fit the present ∆M distribution with a threshold resonance
plus the complement of resonances and phase space observed in the case of ψ(2S) → γpp̄,
i.e. f2(1950) (corresponding to ∆M ≈ 74 MeV/c2), f2(2150) (corresponding to ∆M ≈ 224
MeV/c2), and phase space. No evidence for a contribution due to the f2(1950) resonance
was found. All subsequent fits were therefore tried with an S-wave threshold resonance
plus MC shapes determined for contributions of a resonance at M = 2100 ± 20 (MeV/c2),
Γ = 160± 20 (MeV/c2) (our optimum values), and phase space. The MC-determined event
selection efficiency as a function of ∆M is shown in Fig. 20. The average efficiency, weighted
by the threshold resonance contribution, as shown by the curves marked (1) in Fig. 21, was
found to be ǫ = 0.254.
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FIG. 19. The ∆M = M(pp̄) − 2mp invariant mass distribution for the data for J/ψ → γpp̄. The

curve illustrates the shape of the phase space contribution.

FIG. 20. MC-determined efficiency as a function of ∆M ≡ M(pp̄) − 2mp for J/ψ → pp̄ decays.

The weighted average efficiency over the whole range is 25.4%.

We find that if, like BES, we fit the ∆M distribution only in the region ∆M = 0 − 300
MeV/c2, and do not consider the contribution due to the resonance at M(pp̄) = 2100
MeV/c2, we obtain a good fit (χ2/d.o.f.=15/26) which is essentially identical to that obtained
by BES [5], with the results

M(Rthr) = 1861+16
−6 MeV/c2,

Γ(Rthr) = 0+32
−0 MeV/c2,

B(J/ψ → γRthr)×B(Rthr → pp̄) = (5.9+2.8
−3.2)×10−5. (15)

The errors are statistical only.
Fitting data in the extended region ∆M = 0−970 MeV/c2 leads to a better determination

of the phase space contribution; it is smaller than what is obtained if the fit is confined to the
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FIG. 21. Fits of the ∆M = M(pp̄) − 2mp invariant mass distribution for J/ψ → γpp̄ decays.

Dashed lines are the contributions of (1) Rthr, (2) f2(2100) and (3) the phase space. The solid line

is the sum of all three contributions. (a) Fit in the full region ∆M = 0 − 970 MeV/c2. (b) Same

fit in the ∆M = 0− 300 MeV/c2.

small region, ∆M = 0−300 MeV/c2. The fit with all parameters kept free (χ2/d.o.f.=97/89)
leads to the fractional contributions of f2(2100) of (22 ± 3)% and phase space (54 ± 3)%.
The threshold resonance obtains 231+85

−59 counts and leads to the following parameters

M(Rthr) = 1837+10+9
−12−7 MeV/c2,

Γ(Rthr) = 0+44
−0 MeV/c2,

B(J/ψ → γRthr)×B(Rthr → pp̄) = (11.4+4.3+4.2
−3.0−2.6)×10−5. (16)

The first errors are statistical, and the second errors are estimates of systematic errors
obtained by varying the mass and width of the 2100 MeV/c2 resonance by their 1σ uncer-
tainties. The same result, M(Rthr) = 1837+9

−12 MeV/c2, is obtained when Γ(Rthr) is fixed to
20 MeV/c2.

Figure 21(a) shows the fit in the region ∆M = 0 − 970 MeV/c2, and Fig. 21(b) shows
the same fit in the ∆M = 0− 300 MeV/c2 region.

The fit result for mass in Eq. 16 is consistent with the conjecture that the threshold
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enhancement might be due to the tail of a subthreshold resonance at that mass. This
possibility was raised earlier by BES with their observation of a resonance with massM(R) =
1833.7± 6.1± 2.7 MeV/c2 in the reaction J/ψ → γR, R → π+π−η [18].

IX. SYSTEMATIC UNCERTAINTIES

In Table VI we list various contributions to the systematic uncertainties in the branching
fractions. References to previous CLEO studies for several of these are also given. The
uncertainty in feed-down and continuum contributions to the background leads to system-
atic uncertainties of 1%, 1.4%, and 2% in γpp̄, π0pp̄, and ηpp̄, respectively. All the above
contributions add in quadrature to 3.5%, 4.0%, and 5.5% uncertainty in γpp̄, π0pp̄, and ηpp̄,
respectively. Since the uncertainties in the fractions of individual resonance and continuum
contributions are taken into account in the statistical uncertainties, the above are the sys-
tematic uncertainties in the product branching fractions for the individual resonances in
these decays. For B(ψ(2S) → γpp̄), B(ψ(2S) → π0pp̄), and B(ψ(2S) → ηpp̄), the uncertain-
ties in the fractions of individual resonance and continuum contributions lead to additional
systematic uncertainties because the different contributions have different efficiencies. To
take account of correlations in the fractions, the effective overall efficiencies were determined
by MC simulations and the relative uncertainties found to be 2.4%, 0.8%, and 0.7% for γpp̄,
π0pp̄, and ηpp̄, respectively. Thus the total systematic uncertainties in B(ψ(2S) → γpp̄),
B(ψ(2S) → π0pp̄), and B(ψ(2S) → ηpp̄) are 4.2%, 4.1%, and 5.5%, respectively.

The results for the branching fractions with systematic errors are given in Table VII.
It is found that ±100 MeV/c2 changes in the masses and widths of resonances introduce

changes in branching fractions much less than 1%.

TABLE VI. Sources of systematic uncertainties in branching fractions in %. References to previous

CLEO publications for estimates of uncertainties are given in square brackets.

Source [Ref] γpp̄ π0pp̄ ηpp̄

Number of ψ(2S) [19] 2.0 2.0 2.0

Trigger efficiency [20, 21] 1.0 1.0 1.0

Tracking efficiency [22] 2×1.0 2×1.0 2×1.0

Particle identification [19] 1.0 1.0 1.0

γ, π0, η reconstruction [21] 1.0 2.0 4.0

Background subtraction 1.0 1.4 2.0

Sub total (quadrature) 3.5 4.0 5.5

Resonance fractions 2.4 0.8 0.7

Total (quadrature) 4.2 4.1 5.5

X. SUMMARY AND CONCLUSIONS

Using CLEO data for 24.5 million ψ(2S) we have studied decays ψ(2S) → γpp̄, π0pp̄,
and ηpp̄. In all three decays we find that intermediate N∗(N̄∗) states decaying into π0N(N̄)
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TABLE VII. Summary of the measured quantities. First errors are statistical, second errors are

systematic.

Quantity Events Our result PDG08

(10−5) (10−5)

B(ψ(2S) → γpp̄) 348± 22 4.18 ± 0.26 ± 0.18 2.9 ± 0.6

B(ψ(2S) → π0pp̄) 948± 37 15.4 ± 0.6± 0.6 13.3 ± 1.7

B(ψ(2S) → ηpp̄) 154± 16 5.6± 0.6± 0.3 6.0 ± 1.2

B(ψ(2S) → γf2(1950)) × B(f2(1950) → pp̄) 111± 19 1.2± 0.2± 0.1

B(ψ(2S) → γf2(2150)) × B(f2(2150) → pp̄) 73± 18 0.72 ± 0.18 ± 0.03

B(ψ(2S) → p̄N∗
1 (1440)) × B(N∗

1 (1440) → pπ0) 474± 42 8.1± 0.7± 0.3

B(ψ(2S) → p̄N∗
2 (2300)) × B(N∗

2 (2300) → pπ0) 265± 39 4.0± 0.6± 0.2

B(ψ(2S) → π0R1(2100)) × B(R1(2100) → pp̄) 76± 29 1.1± 0.4± 0.1

B(ψ(2S) → π0R2(2900)) × B(R2(2900) → pp̄) 133± 38 2.3± 0.7± 0.1

B(ψ(2S) → p̄N∗(1535)) × B(N∗(1535) → pη) 123± 16 4.4± 0.6± 0.3

B(ψ(2S) → ηR1(2100)) × B(R1(2100) → pp̄) 31± 10 1.2± 0.4± 0.1

and ηN(N̄), and fJ , aJ meson resonances decaying into pp̄ make important contributions
to the total decay. We have determined branching fractions for the total decay and for
the contributions of the individual intermediate states. For the total decays our branching
fractions have factors two to three smaller uncertainties than in the current literature. The
product branching fractions for decays through individual intermediate states have been
determined for the first time. The results are summarized in Table VII.

We do not find any evidence for a threshold enhancement in any of the three ψ(2S) decay
channels. For ψ(2S) → γpp̄ we set a stringent upper limit for the threshold resonance Rthr,
B(ψ(2S) → γRthr)× B(Rthr → pp̄) < 1.6× 10−6 at 90% CL.

With a limited sample of 8.6 million J/ψ available to us from ψ(2S) → π+π−J/ψ
we have searched for J/ψ → γRthr. We find a pp̄ threshold enhancement. When it
is analyzed taking into account an enhancement at M(pp̄) = 2100 MeV/c2, we obtain
M(Rthr) = 1837+10+9

−12−7 MeV/c2, Γ(Rthr) = 0+44
−0 MeV/c2, and B(J/ψ → γRthr)×B(Rthr →

pp̄) = (11.4+4.3+4.2
−3.0−2.6)×10−5.
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