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Abstract

Wyner’s common information was originally defined for a pair of dependent discrete

random variables. This thesis generalizes its definition in two directions: the num-

ber of dependent variables can be arbitrary, so are the alphabets of those random

variables. New properties are determined for the generalized Wyner’s common in-

formation of multiple dependent variables. More importantly, a lossy source coding

interpretation of Wyner’s common information is developed using the Gray-Wyner

network. It is established that the common information equals to the smallest com-

mon message rate when the total rate is arbitrarily close to the rate distortion function

with joint decoding if the distortions are within some distortion region.

The application of Wyner’s common information to inference problems is also

explored in the thesis. A central question is under what conditions does Wyner’s

common information capture the entire information about the inference object. Under

a simple Bayesian model, it is established that for infinitely exchangeable random

variables that the common information is asymptotically equal to the information of

the inference object. For finite exchangeable random variables, connection between

common information and inference performance metrics are also established.

The problem of decentralized inference is generally intractable with conditional

dependent observations. A promising approach for this problem is to utilize a hier-

archical conditional independence model. Utilizing the hierarchical conditional inde-

pendence model, we identify a more general condition under which the distributed

detection problem becomes tractable, thereby broadening the classes of distributed

detection problems with dependent observations that can be readily solved.



We then develop the sufficiency principle for data reduction for decentralized in-

ference. For parallel networks, the hierarchical conditional independence model is

used to obtain conditions such that local sufficiency implies global sufficiency. For

tandem networks, the notion of conditional sufficiency is introduced and the related

theory and tools are developed. Connections between the sufficiency principle and

distributed source coding problems are also explored. Furthermore, we examine the

impact of quantization on decentralized data reduction. The conditions under which

sufficiency based data reduction with quantization constraints is optimal are identi-

fied. They include the case when the data at decentralized nodes are conditionally

independent as well as a class of problems with conditionally dependent observations

that admit conditional independence structure through the hierarchical conditional

independence model.
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Chapter 1

Introduction

Correlated observations occur in many engineering applications even if samples may

be collected at decentralized nodes. The presence of data dependence may be due

to a common phenomenon that produces the data. Often times, the objective is to

understand such common phenomenon when it is subject to various distortion or ob-

servation noises. This thesis focuses on 1) the quantitative characterization of data

dependence and the physical interpretation of such quantities; 2) statistical inference

in decentralized systems with dependent data. Thus, the thesis can be loosely sepa-

rated into two parts. The first part deals with the generalization of Wyner’s common

information to multi-variate random variables of arbitrary alphabet. Motivated by

some interesting property associated with the generalized common information, we

then explore the use of common information in decentralized inference. The second

part of the thesis addresses several research problems in decentralized inference with

an emphasis on problems involving dependent observations across different sensors.

Quantifying the information that is common between two dependent random vari-
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ables has been a classical problem both in information theory and in mathematical

statistics [1–4]. The most widely used notion is Shannon’s mutual information [1],

which measures the amount of uncertainty reduction in one variable by observing the

other. Other notions of information between a pair of dependent variables include

Gács and Körner’s common randomness [2] and Wyner’s common information [4].

Gács and Körner’s common randomness is defined as the maximum number of

common bits per symbol that can be independently extracted from the correlated

random variables. On the other hand, Wyner’s common information can be defined

as the number of common random bits per symbol that are needed to generate a se-

quence of random variable pairs with the specified joint distribution. While Wyner’s

common information was originally defined for two discrete random variables, the

expression (c.f. Equation 1.1) can be evaluated for any pair of random variables

with arbitrary alphabets. However, the operational meanings available in existing

literature are largely confined to that for discrete alphabets. These include the mini-

mum common rate for the Gray-Wyner lossless source coding problem under a sum

rate constraint, the minimum rate of a common input of two independent random

channels for distribution approximation [4], and the strong coordination capacity of

a two-node network without common randomness and with actions assigned at one

node [5].

This thesis generalizes Wyner’s common information along two directions. The

first is to generalize it to that of multiple dependent random variables. The second

is to generalize it to that of continuous random variables. For the first direction,

Wyner’s common information is defined by introducing a conditional independence

structure among the multiple random variables, which is equivalent to the Markov
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chain condition for two dependent variables. For this case, it is shown that Wyner’s

original interpretations in [4] can be directly extended to that involving multiple

variables. This generalization to multiple dependent random variables also reveals

a surprising monotone property of Wyner’s common information in the number of

variables involved.

For the second direction, we provide a new lossy source coding interpretation using

the Gray-Wyner network. Specifically, we show that, for the Gray-Wyner network,

Wyner’s common information is precisely the smallest common message rate for a cer-

tain range of distortion constraints when the total rate is arbitrarily close to the rate

distortion function with joint decoding. This new operational interpretation justi-

fies the generalization of Wyner’s common information to that of continuous random

variables. Computing Wyner’s common information is known to be a challenging

problem and it was only resolved for several special cases described in [4, 6]. Along

with our generalizations of Wyner’s common information, we provide two new exam-

ples where we can explicitly evaluate the common information of multiple dependent

variables. In particular, we provide closed-form expressions of Wyner’s common in-

formation of bivariate Gaussian random variables as well as multi-variate Gaussian

random variables with a particular correlation structure.

Motivated by the monotonicity property of Wyner’s common information in the

number of variables, we explore the application of Wyner’s common information to

inference problems and its connection with some performance metrics. The central

question we are going to answer is under what conditions does Wyner’s common

information capture the entire information about the inference object under a simple

Bayesian model.

3



In the second part of the thesis, we address several research problems in decen-

tralized inference with dependent observations. Decentralized inference refers to the

decision making process involving multiple sensors [7]. Each sensor summarizes its

observation and sends a message to the fusion center, which makes the final decision

based on the messages it receives. Tremendous efforts have been devoted to this prob-

lem that leads to many fundamental results. However, most of the results obtained for

this model are under the assumption of conditional independence. Therefore, we focus

on the problem of decentralized inference with conditionally dependent observations

in this thesis.

We first study the problem of distributed detection with conditionally dependent

observations. Following the hierarchical conditional independence model proposed

in [8], we identify a more general condition under which the structure of optimal local

sensor decision rules can be specified. This enables us to tackle a much broader class

of distributed detection problems with dependent observations.

We then develop the sufficiency principle that guides local data reduction in decen-

tralized inference. For decentralized inference, data reduction is done locally without

access to the global data. Therefore, the contrasting notions of local sufficiency and

global sufficiency [9] need to be treated with care. We consider two classical inference

networks, parallel networks and tandem networks, in this thesis. For the parallel

networks, we obtain conditions such that local sufficiency implies global sufficiency

for conditionally dependent observations. For the tandem networks, we introduce the

notion of conditional sufficiency and develop related theory and tools associated with

the new notion.

Finally, we investigate decentralized data reduction when each sensor is subject

4



to a quantization constraint under the Bayesian inference framework. We show that

sufficiency based data reduction is structurally optimal for decentralized inference

with conditionally independent observations. For decentralized inference with con-

ditionally dependent observations, quantizing sufficient statistics, even global ones,

need not be optimal. We proceed to identify conditions under which sufficiency based

data reduction is structurally optimal as well as establish a unifying condition that

encompasses both the independent and the dependent observation cases.

In the following, we provide some of the background knowledge for this thesis and

the main contributions of the thesis. We start by introducing the notion of common

information in Section 1.1. In Section 1.2, we review the sufficiency principle for

centralized inference. The outline of the thesis is given in Section 1.3 and the main

contributions are summarized in Section 1.4. Finally, we conclude this chapter with

the notations used in this dissertation in Section 1.5.

1.1 Common information

Consider a pair of dependent random variables X and Y with joint distribution p(x, y)

which denotes either the probability density function if X and Y are continuous or

the probability mass function if X and Y are discrete. Quantifying the information

that is common between X and Y has been a classical problem both in information

theory and in mathematical statistics [1,2,4,10]. There are three widely used notions

in the literature.

5



1.1.1 Mutual information

The most widely used notion is Shannon’s mutual information, defined as

I(X; Y ) = E

[

log
p(x, y)

p(x)p(y)

]

,

where p(x) and p(y) are the marginal distribution of X and Y corresponding to the

joint distribution p(x, y) and E[·] denotes expectation taken with respect to p(x, y).

Shannon’s mutual information measures the amount of uncertainty reduction in one

variable by observing the other. In the case that X and Y are independent, mutual

information I(X; Y ) = 0, indicating that observing one variable X does not give

any information about Y and vice versa. The significance of I(X; Y ) lies in its

applications to a broad range of problems in which concrete operational meanings of

I(X; Y ) can be established. These include both source and channel coding problems

in information and communication theory [11] and hypothesis testing problems in

statistical inference [12].

Generalization of mutual information to N > 2 random variables was first reported

in [13]. The generalization is obtained from the observation that for a pair of random

variables, computing I(X; Y ) is consistent with the Venn diagram for set operations

[12, 14].

1.1.2 Gács and Körner’s common randomness

Gács and Körner’s common randomness is defined as the maximum number of com-

mon bits per symbol that can be independently extracted from discrete random vari-

ables X and Y whose joint distribution is specified by p(x, y). That is

K(X, Y ) = sup H(V ),

6



where the supremum is taken over all the finite random variables V satisfying

V = f(X) = g(Y ),

for some functions f : X → V and g : Y → V. Quite naturally, K(X, Y ) has found

extensive applications in secure communications, e.g., for key generation [15–17].

More recently, a new interpretation of K(X, Y ) using the Gray-Wyner source coding

network was given in [18]. It was noted in [2] [19] that the definition of K(X, Y )

is rather restrictive in that K(X, Y ) equals 0 in most cases except for the special

case when X = (X ′, V ) and Y = (Y ′, V ) and X ′, Y ′, V are independent variables

or those (X, Y ) pair that can be converted to such a dependence structure through

relabeling the realizations, i.e., whose distribution is a permutation of the original

joint distribution matrix. Note that I(X; Y ) = K(X; Y ) = H(V ) for this case.

Gács and Körner’s common randomness has been generalized to multiple random

variables in [20], which extends the encoding process in the definition of common

randomness to that of N terminals.

1.1.3 Wyner’s common information

Assume X, Y are two dependent discrete random variables with distribution p(x, y),

Wyner defined the common information as follows:

C(X, Y ) = inf
X−W−Y

I(X, Y ; W ). (1.1)

Here, the infimum is taken over all auxiliary random variables W such that X, W ,

and Y form a Markov chain.

Wyner provided two operational meanings for the above definition. The first

approach is based on a simple source coding network first studied by Gray and Wyner

7
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Figure 1.1: Gray-Wyner source coding network.

W
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X̃n

Ỹ n

Figure 1.2: Distribution approximation.
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[21] and illustrated in Fig. 1.1. In this system, the encoder observes a sequence of

independent and identically distributed (i.i.d.) random variable pairs (Xn, Y n), and

maps them to three messages W0, W1, W2, taking values in alphabets of respective

sizes 2nR0, 2nR1 and 2nR2. Decoder 1, upon receiving (W0, W1), needs to reproduce

Xn with high reliability while decoder 2, upon receiving (W0, W2), needs to reproduce

Y n with high reliability. Define

∆ =
1

2n

(

E[dH(Xn, X̂n)] + E[dH(Y n, Ŷ n)]
)

, (1.2)

where dH(·, ·) is the Hamming distortion. Let C1 be the the infimum of all achievable

R0 for the system in Fig. 1.1 such that for any ǫ > 0, there exists, for n sufficiently

large, a source code with the total rate R0 + R1 + R2 ≤ H(X, Y ) + ǫ and ∆ ≤ ǫ.

The second approach is shown in Fig. 1.2. In this approach, the joint distribution

of the i.i.d sequences (Xn, Y n)

p(xn, yn) =

n
∏

i=1

p(xi, yi), (1.3)

is approximated by the output distribution of a pair of random number generators.

Specifically, a common input W , uniformly distributed on W = {1, · · · , 2nR0} is sent

to two separate processors which are independent of each other. These processors

(random number generators) generate i.i.d sequence according to two distributions

q1(x
n|w) and q2(y

n|w) respectively. The output sequences of the two processors are

denoted by X̃n and Ỹ n respectively and the joint distribution of the output sequences

is given by

q(xn, yn) =
∑

w∈W

1

|W|q1(x
n|w)q2(y

n|w). (1.4)

9



Let

Dn(q, p) =
1

n

∑

xn∈Xn,yn∈Yn

q(xn, yn) log
q(xn, yn)

p(xn, yn)
. (1.5)

Let C2 be the infimum of rate R0 for the common input such that for any ǫ > 0, there

exists a pair of distribtions q1(x
n|w), q2(y

n|w) and n such that Dn(q, p) ≤ ǫ.

Wyner proved in [4] that

C1 = C2 = C(X, Y ). (1.6)

We emphasize that the above operational meanings of C(X, Y ), both their def-

inition and the proofs, are confined to discrete X and Y . However, the expression

in (1.1) can be easily evaluated for any pair of random variables with discrete or

continuous alphabet. In addition, the two operational interpretations have natural

extensions to the multi-variate case. This motivates our work in generalizing Wyner’s

common information along two directions: that involve multiple variables and vari-

ables with arbitrary alphabets. For multi-variate generalization, we show that both

of Wyner’s operational interpretations hold. For the common information defined

for continuous random variables, we provide a new lossy source coding interpretation

using the Gray-Wyner network.

Finally, for a pair of discrete random variables, it was shown in [4] that the

mutual information, Gács and Körner’s common randomness and Wyner’s common

information satisfy the following relationship

K(X, Y ) ≤ I(X; Y ) ≤ C(X, Y ), (1.7)

and the equalities hold if and only if it is possible to write X = (X ′, V ) and Y =

(Y ′, V ) where X ′, Y ′ are conditionally independent given V .
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1.2 Sufficiency principle

In this section, we review the basic sufficiency principle for centralized inference.

Sufficiency principle is a guiding principle for data reduction. A sufficient statistic is

a function of the data, chosen so that it ‘should summarize the whole of the relevant

information supplied by the sample’ [22]. A classical example is in binary hypothesis

testing where the likelihood ratio can be shown to be a sufficient statistic of the

unknown hypothesis, thus can be used instead of the raw data for subsequent decision

making [23]. Another example is the waveform channel with additive white Gaussian

channel as often assumed in digital communications [24]. It can be easily established

that the outputs of simple correlators (or equivalently, that of matched filters) form

a sufficient statistic for the unknown input signals. In both examples, the original

data, often of high or infinite dimensions, is reduced to low dimension statistics which

greatly facilitate the subsequent inference. Indeed, the sufficiency principle has played

a prominent role in designing various data processing methods for statistical inference

and it encompasses numerous results that have been developed since Fisher’s original

work [22, 25, 26].

Suppose θ is the parameter of inference interest and X , {X1, · · · , Xn} is a

random vector observation, whose distribution is given by p(x|θ). The sufficiency

principle states that a function (or statistic) of X, denoted by T (X), is a sufficient

statistic for θ if the inference outcome does not change when either x or y is observed

as long as T (x) = T (y) [25]. If T (X) is a sufficient statistic for θ, then any inference

about θ should depend on X only through T (X).

A useful tool to identify sufficient statistics is the Neyman-Fisher factorization
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theorem [25] which states that a statistic T (X) is sufficient for θ if and only if there

exist functions g(t|θ) and h(x) such that

p(x|θ) = g(T (x)|θ)h(x). (1.8)

If the parameter θ is itself random, the sufficiency principle can be elegantly

reframed using the data processing inequality, assisted with the use of Shannon’s

mutual information [11]. That is, a function T (X) is a sufficient statistic if and only

if the following Markov chain holds

θ − T (X) − X, (1.9)

which is equivalent to the mutual information equation

I(θ;X) = I(θ, T (X)). (1.10)

The following lemma is a straightforward result from the definition of Markov chain.

Lemma 1. Let X ∼ p(x|θ) where θ is a random parameter. If T (X) is a sufficient

statistic for θ with respect to X, then

p(θ|x) = p(θ|T (x)). (1.11)

Proof. As T (X) is a function of X, θ − X − T (X) form a Markov chain. Together

with (1.9) we thus have

p(θ|x) = p(θ|x, T (x)) = p(θ|T (x)). (1.12)

�

Sufficient statistics are not unique, therefore, it is natural to ask whether one

sufficient statistic is better than another. The sufficient statistic that achieves the
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maximum data reduction is called the minimal sufficient statistic. That is, the mini-

mal sufficient statistic is a sufficient statistic that is a function of all other sufficient

statistics.

As with sufficient statistics, a minimal sufficient statistic can also be characterized

through the use of Markov chains by the data-processing inequality. Assume θ is

random, a statistic M(X) is a minimal sufficient statistic if the following Markov

chain is satisfied

θ − M(X) − T (X) − X, (1.13)

for every other sufficient statistic T (X).

1.3 Outline of thesis

The first part of the thesis, consisting of Chapters 2, 3 and 4, develops Wyner’s com-

mon information for multiple dependent random variables with arbitrary alphabets

and explores its connection to some statistical inference problems.

In Chapter 2, we generalize Wyner’s common information of a pair of discrete

random variables to that of N random variables with arbitrary alphabets. We provide

coding theorems showing that Wyner’s original interpretations in [4] can be directly

extended to that involving multiple variables. We establish a monotone property of

Wyner’s common information in the number of variables which is in contrast to that

of mutual information or common randomness.

In Chapter 3, we develop a lossy source coding interpretation of Wyner’s common

information using the Gray-Wyner network. We show that for the Gray-Wyner net-

work, Wyner’s common information is precisely the smallest common message rate
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for a certain range of distortion constraints when the total rate is arbitrarily close to

the rate distortion function with joint decoding. As the common information is only

a function of the joint distribution, this smallest common rate remains constant even

if the distortion constraints vary, as long as they are in a specific distortion region.

Furthermore, we establish that for successive refinement sources, given a total rate

of rate distortion function, it is optimal to use a two-stage encoding scheme in the

Gray-Wyner network: first encode the common message with rate of common infor-

mation, then encode the two private messages with extra rates. In the same chapter,

we also provide examples of how to compute Wyner’s common information for these

extensions. Specifically, we consider the binary sources and Gaussian sources. For

the Gaussian case, we derive, through an estimation theoretic approach, the common

information for a bivariate Gaussian source and its extension to the multi-variate

case with a certain correlation structure. In addition, we characterize the distortion

regions where the common information equals to the smallest common message rate

in the Gray-Wyner network for both cases.

Chapter 4 explores the application of Wyner’s common information to various

inference problems. The inference problems considered in this chapter arise from

symmetric simple Bayesian models. We study the common information of exchange-

able random variable and show that for infinite exchangeable sequences, the common

information is asymptotically equal to the information object, i.e., the hidden vari-

able in the Bayesian model. For finite exchangeable sequences, while this result is

no longer true in general, we identify two important cases such that the result still

holds. For these two cases, one with binary and the other with Gaussian observa-

tions, we further establish the relationship between common information and relevant
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performance metrics for the underlying inference problems.

Chapter 5 considers the problem of distributed detection with conditionally depen-

dent observations. Under the Bayesian detection framework and utilizing a recently

proposed Hierarchical Conditional Independence (HCI) model [8], we identify a more

general condition associated with the hidden variable for the continuous HCI model

which enables us to tackle a broader class of distributed detection problems with

dependent observations.

Chapter 6 develops the sufficiency principle that guides local data reduction in

networked inference with dependent observations for two classes of inference networks:

the parallel network and the tandem network. For the parallel networks, the HCI

model is used to obtain conditions such that local sufficiency implies global sufficiency.

For the tandem networks, we introduce the notion of conditional sufficiency and

developed related theory and tools.

Chapter 7 investigates the decentralized data reduction problem when each sensor

is subject to a quantization constraint. We show that sufficiency based data reduc-

tion is structurally optimal under the Bayesian inference framework for decentralized

inference with conditionally independent observations. For decentralized inference

with conditionally dependent observations, utilizing the HCI model, we provide a

suitable way of finding optimal data reduction if it exists. We also establish a unify-

ing condition that encompasses both the independent and the dependent observation

cases.

We conclude the thesis in Chapter 8 where we summarize our major contributions

and point to future research directions.
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1.4 Main contributions

In this section, we briefly summarize the main contributions of this thesis. We classify

them into two areas: one related to Wyner’s common information and the other on

decentralized inference with dependent observations. For Wyner’s common informa-

tion, the main contributions are:

• We have generalized Wyner’s common information of a pair of discrete random

variables to that of multiple random variables with arbitrary alphabets. It is

shown that Wyner’s original interpretations directly extend to that involving

multiple variables.

• We have provided a new lossy source coding interpretation of Wyner’s common

information which can be applied to both discrete and continuous random vari-

ables. Wyner’s common information is precisely the smallest common message

rate for a certain range of distortion constraints when the total rate is arbitrarily

close to the rate distortion function with joint decoding.

• We have solved the computation of Wyner’s common information for bivariate

Gaussian random variables.

• We have established the connection between Wyner’s common information and

the symmetric Bayesian inference model.

In the area of decentralized inference with dependent observations, the main contri-

butions are:

• We have identified a more general condition associated with the hidden variable
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for the continuous HCI model which enables us to tackle a broader class of

distributed detection problems with dependent observations.

• We have explored the connection of local sufficiency and global sufficiency with

dependent observations for both parallel and tandem networks.

• We have proposed a new notion, conditional sufficiency, for tandem networks

and developed related theory and tools.

• We have established the conditions under which sufficiency based data reduction

with quantization constraints is optimal for both parallel and tandem networks.
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1.5 Notations

In the following, we introduce notations which will be used throughout this thesis.

Term Desciption

X a random variable

x a realization of a random variable X

X sample space of random variable X

Xn a vector of i.i.d random variables, {X1, · · · , Xn}

X a vector of dependent variables {Xi}

XA a vector of random variables {Xi}, i ∈ A where A is a set of integers.

p(·) pmf or pdf of a random variable

q(·) pmf or pdf of a random variable

X ∼ p(x) the pmf or pdf of X is p(x)

X ∼ N (µ, σ2) X is Gaussian distributed with mean µ and variance σ2

E[·] expectation

dH(·, ·) Hamming distortion

H(·) entropy function

h(a) binary entropy function

h(X) differential entropy of random variable X

I(·; ·) mutual information

K(·, ·) Gács and Körner’s common randomness

C(·, ·) Wyner’s common information

BSC binary symmetric channel

DSBS doubly symmetric binary source

CI conditional independence

HCI hierarchical conditional independence

DHCI discrete HCI

CHCI continuous HCI

HHCI hybrid HCI

BCDF Bayesian cost density function
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Chapter 2

Common Information of N

Random Variables

In Chapter 1, we introduced the concept of Wyner’s common information and its

two operational meanings. However, the original notion of common information was

limited to two discrete random variables. The first question is how does the notion

extend to that of multiple random variables. In addition, definition in (1.1) tells

that the common information can be evaluated for any pair of random variables with

arbitrary alphabets. Therefore, in this chapter, we will generalize Wyner’s common

information to multiple random variables with arbitrary alphabets and provide the

corresponding operational interpretations.

In this chapter, we will discuss the generalization to multiple random variables and

introduce the corresponding coding theorems. The generalization to that of arbitrary

alphabet will be developed in Chapter 3.

The common information for N random variables is defined through a condi-
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tional independence structure which is equivalent to the Markov chain condition for

two dependent variables. We establish a monotone property of Wyner’s common

information in the number of variables. In addition, we prove that Wyner’s original

interpretations in [4] can be directly extended to the multi-variate case.

The rest of this chapter is organized as follows. Definition of Wyner’s common

information for N dependent random variables with arbitrary alphabets is given in

Section 2.1 along with some associated properties. Section 2.2 generalizes the Gray-

Wyner network in Fig. 1.1 to include N source sequences and N decoders. We also

characterize the lossless and lossy rate regions for the generalized network in this

section. In Section 2.3, the operational meanings of Wyner’s common information

are extended to that of N discrete dependent random variables. Section 2.4 concludes

this chapter.

2.1 Common information of N random variables

2.1.1 Definition

Wyner’s original definition of the common information in (1.1) assumes a Markov

chain X − W − Y . This Markov chain is equivalent to stating that X and Y are

conditionally independent given W . This conditional independence structure can be

naturally generalized to that of N dependent random variables. Let X1, · · · , XN be

N dependent random variables that take values in some arbitrary (finite, countable,

or continuous) spaces X1 × X2 × · · · × XN . The joint distribution of X1, · · · , XN is

denoted as p(x1, · · · , xN). We now give the definition of the common information for
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N dependent random variables.

Definition 1. Let {X1, · · · , XN} be a random vector with joint distribution p(x1, · · · , xN ).

The common information of N random variables X1, · · · , XN is defined as

C(X1, · · · , XN) , inf I(X1, · · · , XN ; W ), (2.1)

where the infimum is taken over all the joint distributions of (X1, · · · , XN , W ) such

that

1. the marginal distribution for X1, · · · , XN is p(x1, · · · , xN),

2. X1, · · · , XN are conditionally independent given W , i.e.,

p(x1, · · · , xN |w) =
N
∏

i=1

p(xi|w). (2.2)

2.1.2 Properties

We now discuss several properties associated with the definition given in (2.1).

Wyner’s common information of two random variables (X, Y ) satisfies the follow-

ing inequality

I(X; Y ) ≤ C(X, Y ) ≤ min{H(X), H(Y )}. (2.3)

A similar inequality for the common information of N random variables can be de-

rived. Denote by X , {X1, · · · , XN}, we have the following lemma.

Lemma 2. Let X ∼ p(x1, · · · , xN ), A ⊆ N = {1, 2, · · · , N} and Ā = N\A. We

have

max
A

{I(XA;XĀ)} ≤ C(X) ≤ min
j
{H(X−j)}, (2.4)

where X−j , XN\{j} ={X1, · · · , Xj−1, Xj+1, · · · , XN} for j ∈ N .
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Proof. To verify the upper bound, for any j ∈ N , let Wj = X−j . Thus, X1, · · · , XN

are conditionally independent given Wj, and

I(X; Wj) = I(X;X−j) = H(X−j). (2.5)

Thus C(X) ≤ H(X−j) for all j ∈ N .

For the lower bound, since X1, · · · , XN are conditionally independent given W ,

we have the Markov chain XA − W − XĀ for any subset A ⊆ N . Hence,

I(X; W ) ≥ I(XA; W ) ≥ I(XA;XĀ), (2.6)

where the second inequality is by the data processing inequality.

Therefore,

I(X; W ) ≥ max
A

{I(XA;XĀ)}. (2.7)

This completes the proof of Lemma 2. �

In the following, we show that the common information defined in (2.1) also

satisfies a monotone property. Let us first consider a ternary example with

X = (X ′, U, V ),

Y = (Y ′, U, W ),

Z = (Z ′, V, W ),

where (X ′, Y ′, Z ′, U, V, W ) are mutually independent random variables. It is easy to

show that for this example

C(X, Y, Z) = H(U, V, W ),
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C(X, Y ) = H(U).

This simple example is surprising in that

C(X, Y, Z) > C(X, Y ),

i.e., the common information of the three variables is greater than that of two vari-

ables. In other words, the inclusion of an additional variable increases the common

information. Indeed, we have the following lemma:

Lemma 3. Let X ∼ p(x). For any two sets A, B that satisfy A ⊆ B ⊆ N =

{1, 2, · · · , N}, we have

C(XA) ≤ C(XB), (2.8)

Proof. Let W ′ be the auxiliary variable that achieves C(XB), i.e., I(XB; W ′) =

infW I(XB; W ). Since A ⊆ B, XB being conditionally independent given W ′ im-

plies that XA are conditionally independent given W ′. Thus

I(XB; W ′) ≥ I(XA; W ′),

≥ inf I(XA; W ),

where the infimum is taken over all W such that XA is independent given W . �

The above monotone property of the common information is contrary to what

the name implies: conceptually, the information in common ought to decrease when

new variables are included in the set of random variables. Such is the case for Gács

and Körner’s common randomness, i.e., K(XA) ≥ K(XB). As a consequence, we

have that for any N random variables C(X) ≥ K(X). The fact that the common

information C(X) increases as more variables are involved suggests that it may have
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potential applications in statistical inference problems. This will be explored in detail

in Chapter 5.

2.2 Generalized Gray-Wyner networks

In Chapter 1, we reviewed the fact that Wyner’s common information has its op-

erational interpretation in Gray-Wyner network as shown in Fig. 1.1. Therefore, it

is quite natural to consider a generalized Gray-Wyner source coding network with

N source sequences for common information of N random variables. To facilitate

this extension, we first explore the generalized Gray-Wyner network in detail in this

section.

Consider the Gray-Wyner source coding network [21] with one encoder and N

decoders as shown in Fig. 2.1.

The encoder observes a sequence {Xn
1 , Xn

2 , · · · , Xn
N}, which is the sequence of n

independent drawings of N random variables (X1, · · · , XN), X1 ∈ X1, · · · , XN ∈ XN ,

from a distribution p(x1, · · · , xN ). The source alphabets (X1, · · · ,XN) can be either

discrete or continuous. The sequence can also be expressed as {X1, · · · ,Xn} where

each Xk = {X1k, · · · , XNk}, k = 1, · · · , n, is a length-N vector with joint distribution

p(x1, · · · , xN).

There are a total of N receivers, with the ith receiver only interested in recovering

the ith component sequence Xn
i . The encoder encodes the source into N +1 messages,

one is a public message available at all receivers while the other N messages are private

messages only available at the corresponding receivers.

For m = 1, 2, · · · , let Im = {0, 1, 2, · · · , m−1}. We define an (n, M0, M1, · · · , MN)
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Figure 2.1: Generalized Gray-Wyner source coding network.

code corresponding to the generalized Gray-Wyner model.

Definition 2. An (n, M0, M1, · · · , MN) code consists of the following:

• an encoder mapping f : X n
1 × · · · × X n

N → IM0 × IM1 × · · · IMN
,

• N decoder mappings gi : IMi
× IM0 → X̂ n

i , i = 1, 2, · · · , N.

Here X̂i is the reproducing alphabets for Xi, i = 1, · · · , N . For an (n, M0, M1, · · · , MN)

code defined above, let

f(Xn
1 , · · · , Xn

N) = (W0, W1, · · · , WN),

where Xn
i ∈ X n

i , i = 1, · · · , N and (W0, W1, · · · , WN) is the tuple of indices. Then

set

X̂n
i = gi(Wi, W0), i = 1, 2, · · · , N,

where X̂n
i ∈ X̂ n

i , i = 1, · · · , N .

We now discuss below the lossless and lossy cases for the generalized Gray-Wyner

network respectively.
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2.2.1 Lossless Gray-Wyner source coding

If the source alphabets (X1, · · · ,XN) are finite sets, we define the probability of error

of an (n, M0, M1, · · · , MN) code as

P (n)
e =

1

nN

N
∑

i=1

E[dH(Xn
i , X̂n

i )], (2.9)

where X̂n
i = gi(Wi, W0) ∈ X n

i for i = 1, · · · , N dH(un, ûn) is the Hamming distance

between un and ûn.

A rate tuple (R0, R1, · · · , RN) is said to be achievable if for any ǫ > 0, there exists,

for n sufficiently large, an (n, M0, M1, · · · , MN ) code such that

Mi ≤ 2n(Ri+ǫ), i = 0, 1, · · · , N, (2.10)

P (n)
e ≤ ǫ. (2.11)

Denote by R1 the region of all achievable rate tuples (R0, R1, · · · , RN). The rate

region R1 of the lossless source coding problem for generalized Gray-Wyner network

is given in the following theorem.

Theorem 1. R1 is the union of all rate tuples (R0, R1, · · · , RN) that satisfy

R0 ≥ I(X1, · · · , XN ; W ), (2.12)

Ri ≥ H(Xi|W ), i = 1, 2, · · · , N, (2.13)

for some W ∼ p(w|x1, · · · , xN ).

2.2.2 Lossy Gray-Wyner source coding

In this section, we consider a more general case for the source coding problem of

Gray-Wyner network where we require that the source sequence to be reproduced to

within a certain fidelity criterion.
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Specifically, for source sequence with arbitrary alphabets, let d(x, x̂) , {d1(x1, x̂1),

· · · , dN(xN , x̂N)} be a compound distortion measure. For an (n, M0, M1, · · · , MN)

code, define ∆i, i = 1, · · · , N to be the average distortion between the ith component

sequence of the encoder input and the ith decoder output,

∆i , E[di(X
n
i , X̂n

i )] =
1

n

n
∑

k=1

E[di(Xik, X̂ik)]. (2.14)

The vector of average distortions is defined as

∆ , {∆1, · · · , ∆N}. (2.15)

An (n, M0, M1, · · · , MN) code with an average distortion vector ∆ is said to be an

(n, M0, M1, · · · , MN ,∆) rate distortion code. Let D , {D1, D2, · · · , DN} ∈ R
N
+ . A

rate tuple (R0, R1, · · · , RN) is said to be D-achievable if for arbitrary ǫ > 0, there

exists, for n sufficiently large, an (n, M0, M1, · · · , MN ,∆) code such that

Mi ≤ 2n(Ri+ǫ), i = 0, 1, · · · , N, (2.16)

∆ ≤ D + ǫ. (2.17)

Let R2(D) be the region of all D-achievable rate tuples (R0, R1, · · · , RN).

Theorem 2. R2(D) is the union of all rate tuples (R0, R1, · · · , RN ) that satisfy

R0 ≥ I(X1, · · · , XN ; W ), (2.18)

Ri ≥ RXi|W (Di), i = 1, 2, · · · , N, (2.19)

for some W ∼ p(w|x1, · · · , xN ).

Here, RXi|W (Di) is the conditional rate distortion function defined as in [27]

RXi|W (Di) = min
pt(x̂i|xi,w):Edi(Xi,X̂i)≤Di

I(Xi; X̂i|W ). (2.20)
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Theorems 1 and 2 are direct extensions of Theorems 4 and 8 in [21] for Gray-Wyner

network with two receivers. Note that in [21], the authors proved only the discrete

case for [21, Theorem 8], the proof for continuous alphabets can be constructed in a

similar fashion.

2.3 Operational meaning of Wyner’s common in-

formation for N variables

Section 1.1 describes two operational interpretations of Wyner’s common information

for two discrete random variables based on the Gray-Wyner network and distribution

approximation. These operational interpretations can also be extended to the com-

mon information of N dependent random variables. In this section, we will show that

the common information of N random variables defined in Definition 1 has operational

significance in the generalized Gray-Wyner network and distribution approximations.

2.3.1 Gray-Wyner network interpretation

For the first approach, we consider the lossless Gray-Wyner network with N terminals

discussed in Section 2.2.1. For this Gray-Wyner source coding network, a number

R0 is said to be achievable if for any ǫ > 0, there exists, for n sufficiently large, an

(n, M0, M1, · · · , MN ) code (c.f. Definition 2) with

M0 ≤ 2nR0 , (2.21)

1

n

N
∑

i=0

log Mi ≤ H(X1, · · · , XN) + ǫ, (2.22)

P (n)
e ≤ ǫ, (2.23)
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where P
(n)
e is given in (2.9). As with the case for two random variables, we define C1

as the infimum of all achievable R0.

Theorem 3. For N discrete random variables X1, · · · , XN with joint distribution

p(x1, · · · , xN),

C1 = C(X1, · · · , XN). (2.24)

The proof of Theorem 3 is a direct extension of the proof for two discrete random

variables in [4] and hence is omitted.

The above theorem stated that the common information of N discrete random

variables is the minimum common information rate R0 needed for the generalized

Gray-Wyner network to recover the intended sources losslessly while keeping the total

rate close to the entropy bound. The counterpart to this is the lossy source coding

interpretation applicable to the Gray-Wyner network with discrete and continuous

alphabet source sequences. This will be explored in Chapter 3. In the following, we

explore another operational meaning of Wyner’s common information for multiple

variables, namely that of distribution approximation.

2.3.2 Distribution approximation interpretation

The second approach of interpreting the common information of N discrete random

variable uses distribution approximation. Let {X1, · · · ,Xn} be i.i.d. copies of X with

distribution p(x) = p(x1, · · · , xN), i.e., the joint distribution for {X1, · · · ,Xn} is

p(n)(x1, · · · ,xn) =

n
∏

k=1

p(xk). (2.25)

An (n, M, ∆) generator consists of the following:
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• a message set W with cardinality M ;

• for all w ∈ W, probability distributions q
(n)
i (xn

i |w), for i = 1, 2, · · · , N .

Define the probability distribution on X n
1 ×X n

2 × · · · × X n
N

q(n)(x1, · · · ,xn) =
∑

w∈W

1

M

N
∏

i=1

q
(n)
i (xn

i |w). (2.26)

Let

∆ = Dn

(

q(n)(x1, · · · ,xn); p(n)(x1, · · · ,xn)
)

=
∑

xn

1

n
q(n)(x1, · · · ,xn) log

q(n)(x1, · · · ,xn)

p(n)(x1, · · · ,xn)
,

(2.27)

where p(n)(x1, · · · ,xn) is defined in (2.25) and q(n)(x1, · · · ,xn) is defined as in (2.26).

A number R is said to be achievable if for all ǫ > 0, if for n sufficiently large there

exists an (n, M, ∆) generator with M ≤ 2nR and ∆ ≤ ǫ. Define C2 as the infimum of

all achievable R.

Theorem 4. For N discrete random variables X1, · · · , XN with joint distribution

p(x1, · · · , xN),

C2 = C(X1, · · · , XN). (2.28)

The proof can be constructed in the same way as that of [4, Theorems 5.2 and

6.2], hence is omitted.

2.4 Summary

This chapter generalized Wyner’s common information, defined for a pair of discrete

random variables, to that of N random variables with arbitrary alphabets. Common

information for N random variables is defined through a conditional independence
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structure which is equivalent to the Markov chain condition for two dependent vari-

ables. We established a monotone property of Wyner’s common information in the

number of variables. We also introduced the coding theorems related to the lossless

and lossy source coding problems for the generalized Gray-Wyner network involving

multiple dependent random sequences.

We then established that the common information of N random variables is the

minimum common information rate R0 needed for the generalized Gray-Wyner net-

work to recover the intended sources losslessly while keeping the total rate close to

the entropy bound. It is also equal to the smallest rate of the common input to N in-

dependent processors (random number generators) such that the output distribution

is arbitrarily close to the specified joint distribution.
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Chapter 3

Lossy Source Coding

Interpretation of Wyner’s

Common Information

The common information defined in (2.1) equally applies to that of continuous random

variables. Such definitions are only meaningful when they are associated with concrete

operational interpretations. However, the interpretations provided in the previous

chapter only apply to discrete random variables. In this chapter, we will provide an

operational meaning for the common information of continuous random variables.

This new interpretation is motivated by the connection between the common

information of discrete random variables and the losslessly source coding of Gray-

Wyner network. For continuous random variables, it is quite natural to explore the

connection between the common information and the lossy source coding of Gray-

Wyner network in a manner analogous to that of the discrete counterpart. This is
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the focus of the present chapter.

Specifically, we will show that for the Gray-Wyner network, Wyner’s common

information is precisely the smallest common message rate for a certain range of

distortion constraints when the total rate is arbitrarily close to the rate distortion

function with joint decoding. As the common information is only a function of the

joint distribution, this smallest common rate remains constant even if the distortion

constraints vary, as long as they are in a specific distortion region. While this new

interpretation holds for the general case of N dependent random variable, we elect

to present coding theorems involving only a pair of dependent variables for ease of

notion and presentation.

The rest of this chapter is organized as follows. Section 3.1 reviews the concepts

of joint, marginal and conditional rate distortion functions and their relations. Sec-

tion 3.2 develops a lossy source coding interpretation of the common information

utilizing the Gray-Wyner network. Section 3.3 uses two examples, the doubly sym-

metric binary source and the bivariate Gaussian source, to illustrate the lossy source

coding interpretation of Wyner’s common information. The common information for

bivariate Gaussian source and its extension to the multi-variate case is also derived

in Section 3.3. Section 3.4 concludes this chapter.
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3.1 Joint, marginal and conditional rate distortion

functions

The rate distortion function of a source represents the minimum rate required to

describe the source within a fidelity criterion. In this section, we review the joint,

marginal and conditional rate distortion functions and their relations. These results

will be used to show our main result in subsequent sections. Two-dimensional sources

will be considered in this section and the results can be generalized immediately to

N -dimensional vector sources.

3.1.1 Definitions

The joint, marginal and conditional rate functions are defined as follows. Given

a two-dimensional source (X1, X2) with probability distribution p(x1, x2) and two

distortion measures d1(x1, x̂1) and d2(x2, x̂2) defined on X1 × X̂1 and X2 × X̂2, the

joint rate distortion function of (X1, X2) is given by

RX1X2(D1, D2) = min
pt(x̂1x̂2|x1x2)

I(X1, X2; X̂1, X̂2), (3.1)

where the random variables X̂1, X̂2 are defined by the test channels pt(x̂1x̂2|x1x2) and

the minimum is taken over all test channels pt(x̂1x̂2|x1x2) such that Ed1(X1, X̂1) ≤

D1, Ed2(X2, X̂2) ≤ D2. Similarly, the marginal rate distortions are defined by

RX1(D1) = min
pt(x̂1|x1):Ed1(X1,X̂1)≤D1

I(X1; X̂1), (3.2)

RX2(D2) = min
pt(x̂2|x2):Ed2(X2,X̂2)≤D2

I(X2; X̂2). (3.3)

Given a two-dimensional source (X, Y ) with probability distribution p(x, y) and

distortion measure d(x, x̂) on X × X̂ , we can define the conditional rate distortion
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function as

RX|Y (D) = min
pt(x̂|x,y):Ed(X,X̂)≤D

I(X; X̂|Y ), (3.4)

where the expectations are over both X and Y . The conditional rate distortion

function of X given Y is the rate needed to transmit the source X within a fidelity

criterion when Y is available both at the encoder and the decoder. More detailed

discussions can be found in [27].

3.1.2 Rate distortion function relations

In this section, we discuss the properties and relations among joint, marginal and

conditional rate distortion functions.

Lemma 4. [28,29] Given a two-dimensional source (X1, X2) with joint distribution

p(x1, x2) and two distortion measures d1(x1, x̂1), d2(x2, x̂2) defined respectively on

X1 × X̂1 and X2 × X̂2, the rate distortion functions satisfy the following inequalities

RX1X2(D1, D2) ≥ RX1|X2(D1) + RX2(D2), (3.5a)

RX1|X2
(D1) ≥ RX1(D1) − I(X1; X2), (3.5b)

RX1X2(D1, D2) ≥ RX1(D1) + RX1(D2) − I(X1; X2). (3.5c)

RX1(D1) ≥ RX1|X2
(D1), (3.6a)

RX1(D1) + RX2(D2) ≥ RX1X2(D1, D2). (3.6b)

Sufficient conditions for equality in (3.5) are that the optimum backward test channels

for the functions on the left side of each equation factor appropriately, i.e., for (3.5a)

pb(x1x2|x̂1x̂2) = p(x1|x̂1x2)p(x2|x̂2), for (3.5b) pb(x1|x̂1x2) = p(x1|x̂1) and for (3.5c)
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that pb(x1x2|x̂1x̂2) = p(x1|x̂1)p(x2|x̂2). Equalities hold in (3.6) if and only if X1 and

X2 are independent.

Lemma 4 shows that the relations among rate distortion functions are analogous

to that of the corresponding entropies. Specifically, the entropies have the following

relations:

H(X1, X2) = H(X1|X2) + H(X2) (3.7a)

H(X1|X2) = H(X1) − I(X1; X2) (3.7b)

H(X1, X2) = H(X1) + H(X2) − I(X1; X2) (3.7c)

H(X1) ≥ H(X1|X2) (3.8a)

H(X1) + H(X2) ≥ H(X1X2), (3.8b)

with equality in (3.8) if and only if X1 and X2 are independent. Therefore, (3.6)

is exactly the same as (3.8) and (3.5) is resemblance to (3.7) except that the rate

distortion function relations involve inequalities in stead of equalities [28].

Furthermore, Gray has shown that under quite general conditions, equalities hold

in (3.5) for small values of distortion. This is because the marginal, joint and con-

ditional rate distortion functions equal to their Extended Shannon Lower Bounds

(ESLB) [27, 28] under suitable conditions. These ESLB, denoted by R
(L)
X (D) for a

rate distortion function RX(D), satisfy the property stated in Lemma 5.

We use the following notations in Lemma 5. Denote by D a surface in the m-

dimensional space and ∆ an m-dimensional vector. The inequality ∆ ≤ D means

that there exists a vector β ∈ D such that ∆ ≤ β. If there is no such a vector,

∆ > D. Likewise, D1 ≤ D2 means that β ≤ D2 for any β ∈ D1 [28].
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Lemma 5. [28] Given a two-dimensional source (X1, X2) with joint distribution

p(x1, x2) such that for x1 ∈ X1, x2 ∈ X2, p(x2|x1) > 0, reproduction alphabets X̂1 =

X1, X̂2 = X2 and two per-letter distortion measures d1(x1, x̂1) and d2(x2, x̂2) that

satisfy

di(xi, x̂i) > di(xi, xi) = 0, xi 6= x̂i, i = 1, 2, (3.9)

there exist strictly positive surfaces D(X1X2), D(X1|X2), D(X1) and D(X2) such that

RX1X2(D1, D2) = R
(L)
X1X2

(D1, D2), if (D1, D2) ≤ D(X1X2),

RX1|X2(D1) = R
(L)
X1|X2

(D1), if D1 ≤ D(X1|X2),

RX1(D1) = R
(L)
X1

(D1), if D1 ≤ D(X1),

RX2(D2) = R
(L)
X2

(D2), if D2 ≤ D(X2),

and

D(X1|X2) ≤ D(X1),

D(X1X2) ≤ (D(X1|X2),D(X2)) ≤ (D(X1),D(X2)) .

Finally,

R
(L)
X1X2

(D1, D2) = R
(L)
X1|X2

(D1) + R
(L)
X2

(D2), (3.10)

= R
(L)
X1

(D1) + R
(L)
X2

(D2) − I(X1; X2). (3.11)

It is apparent that when the rate distortion functions equal to their corresponding

ESLB, equations (3.10) and (3.11) imply equalities in (3.5a)-(3.5c). Therefore, given

a two-dimensional source satisfying the conditions in Lemma 5, there exists a strictly

positive surface D(X1X2) such that (3.5a)-(3.5c) of Lemma 4 hold with equality if

(D1, D2) ≤ D(X1X2).
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3.2 A lossy source coding interpretation of com-

mon information

In this section, we develop a lossy source coding interpretation of Wyner’s common

information using the Gray-Wyner network.

In the previous chapter, a quantity C1 with respect to the lossless source coding

of Gray-Wyner network was defined and was shown to be equivalent to the common

information of discrete random variables. A natural approach for continuous random

variables is thus to examine the Gray-Wyner network with lossy source coding to

see if an analogous interpretation exists. In this section, we first define a quantity

C3(D1, D2) with respect to the lossy source coding of Gray-Wyner network in a way

similar to that of C1 for a two-dimensional source. We then establish the connection

between C3(D1, D2) and the common information which provides a lossy source coding

interpretation for the common information of arbitrary alphabets.

While the result in this section is based on a pair of random variables for ease of

notation, the conclusion extends to multiple random variables directly.

3.2.1 Common message rate of lossy Gray-Wyner source cod-

ing

First, we give the definition of C3(D1, D2). Given a two-dimensional source (X1, X2) ∼

p(x1, x2), for any (D1, D2) ≥ 0, a number R0 is said to be (D1, D2)-achievable if for

any ǫ > 0, there exists, for n sufficiently large, an (n, M0, M1, M2, ∆1, ∆2) code (as
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defined in Section 2.2 for N = 2) with

M0 ≤ 2nR0, (3.12)

∑2
i=0

1
n

log Mi ≤ RX1X2(D1, D2) + ǫ, (3.13)

∆1 ≤ D1 + ǫ, ∆2 ≤ D2 + ǫ. (3.14)

C3(D1, D2) is defined as the infimum of all R0’s that are (D1, D2)-achievable.

Thus, C3(D1, D2) is the minimum common message rate for the Gray-Wyner net-

work with sum rate RX1X2(D1, D2) while satisfying the distortion constraint. Since

RX1X2(D1, D2) is always (D1, D2)-achievable, it is obvious that

C3(D1, D2) ≤ RX1X2(D1, D2). (3.15)

The following theorem gives a precise characterization of C3(D1, D2).

Theorem 5.

C3(D1, D2) = C̃(D1, D2), (3.16)

where C̃(D1, D2) is the solution to the following optimization problem:

inf I(X1, X2; W ) (3.17)

subject to RX1|W (D1) + RX2|W (D2) + I(X1, X2; W ) = RX1X2(D1, D2).

Proof. See Appendix A. �

The authors in [30] gave an alternative characterization of C3(D1, D2). Define

C∗(D1, D2) = inf I(X1, X2; W ),

39



where the infimum is taken over all joint distributions for X1, X2, X
∗
1 , X

∗
2 , W such

that

X∗
1 − W − X∗

2 , (3.18)

(X1, X2) − (X∗
1 , X

∗
2 ) − W, (3.19)

where (X∗
1 , X

∗
2 ) achieves RX1X2(D1, D2). It was shown in [30] that C3(D1, D2) =

C∗(D1, D2). This, combined with Theorem 5, establishes that

C̃(D1, D2) = C∗(D1, D2). (3.20)

C̃(D1, D2) is derived from the rate distortion region R2(D1, D2) given in Theorem

2 while the authors in [30] chose to derive C∗(D1, D2) from an alternative charac-

terization of R2(D1, D2) given in [31]. In Appendix B, we provide a direct proof of

(3.20) for completeness. Also, as given in Appendix B, a necessary condition for the

equality condition in the optimization problem (3.17) is

RX1X2|W (D1, D2) = RX1|W (D1) + RX2|W (D2). (3.21)

3.2.2 Lossy source coding interpretation

Given our characterization of C3(D1, D2) in Theorem 5, we now establish its con-

nection with C(X1, X2) which leads to a new interpretation of Wyner’s common

information. We begin with the following two lemmas.

Lemma 6. Let W be the random variable that achieves the common information of

X1 and X2. If

RX1X2|W (D1, D2) + C(X1, X2) = RX1X2(D1, D2),
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then

C3(D1, D2) ≤ C(X1, X2). (3.22)

Lemma 6 is a direct consequence of Theorem 5 as the Markov chain X1 −W −X2

implies RX1X2|W (D1, D2) = RX1|W (D1) + RX2|W (D2). Thus, the equality constraint

in (3.17) is satisfied. Inequality (3.22) follows as

C3(D1, D2) = C̃(D1, D2) ≤ I(X1, X2; W ) = C(X1, X2).

The next lemma gives a sufficient condition under which C3(D1, D2) ≥ C(X1, X2).

Lemma 7. For any distortion pair (D1, D2), if the rate distortion function satisfies

RX1X2(D1, D2) = RX1(D1) + RX2(D1) − I(X1; X2), (3.23)

then we have

C3(D1, D2) ≥ C(X1, X2).

Proof. See Appendix C. �

Lemmas 6 and 7, together with the relations of marginal, joint and conditional

rate distortion functions described in Lemmas 4 and 5, allow us to determine a region

where C3(D1, D2) = C(X1, X2) as stated in Theorem 6.

Theorem 6. Let random variables X1, X2 be distributed as p(x1, x2) on X1×X2 such

that for x1 ∈ X1, x2 ∈ X2, p(x2|x1) > 0. Let the reproduction alphabets X̂1 = X1,

X̂2 = X2. The two per-letter distortion measures d1(x1, x̂1), d2(x2, x̂2) satisfy

di(xi, x̂i) > di(xi, xi) = 0, xi 6= x̂i, i = 1, 2. (3.24)
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Then there exists a strictly positive surface γ , (γ1, γ2) such that, for (D1, D2) ≤ γ,

C3(D1, D2) = C(X1, X2). (3.25)

Proof. See Appendix D. �

Theorem 6 shows that Wyner’s common information is precisely the smallest com-

mon message rate C3(D1, D2) of Gray-Wyner network for a certain range of distortion

constraints when the total rate is arbitrarily close to the rate distortion function with

joint decoding. As the common information is only a function of the joint distribu-

tion, hence is fixed for a given p(x1, x2), it is surprising that the smallest common

rate C3(D1, D2) remains constant even if the distortion constraints vary, as long as

they are in a specific distortion region.

3.2.3 Discussions

While Theorem 6 establishes that C3(D1, D2) = C(X1, X2) for (D1, D2) ≤ γ, it does

not specify the value of the positive distortion vector γ. Let Dc , (Dc
1, D

c
2) be the two-

dimensional distortion surface such that RX1X2(D
c
1, D

c
2) = C(X1, X2), then we must

have that γ ≤ Dc. This is because if γ > Dc, then there exists (D1, D2) such that

γ ≥ (D1, D2) > Dc and C3(D1, D2) ≤ RX1X2(D1, D2) < RX1X2(D
c
1, D

c
2) = C(X1, X2),

which contradicts Theorem 6. Now let us consider a particular point on the surface

Dc.

Lemma 8. Let W be an auxiliary random variable that achieves C(X1, X2). Suppose

there exists a distortion pair (D0
1, D

0
2) satisfying, for i = 1, 2,

RXi
(D0

i ) = I(Xi; W ),

D0
i = inf x̂i(w) Edi(Xi, X̂

0
i (W )),

(3.26)
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where x̂0
1(w), x̂0

2(w) are deterministic functions. Then, we have

C3(D
0
1, D

0
2) = RX1X2(D

0
1, D

0
2) = C(X1, X2) = I(X1, X2; W ). (3.27)

It is apparent that (D0
1, D

0
2) is on the distortion surface Dc.

Proof. To prove (3.27), we first show that RX1X2(D
0
1, D

0
2) = I(X1, X2; W ). From the

definition of (D0
1, D

0
2) in (3.26), we have

RX1X2(D
0
1, D

0
2) ≥ RX1(D

0
1) + RX2(D

0
2) − I(X1; X2) = I(X1, X2; W ), (3.28)

where the first inequality is from (3.5c). On the other hand,

RX1X2(D
0
1, D

0
2) ≤ I(X1, X2; X̂

0
1 , X̂

0
2 ) ≤ I(X1, X2; W ). (3.29)

Therefore, RX1X2(D
0
1, D

0
2) = I(X1, X2; X̂

0
1 , X̂

0
2 ) = I(X1X2; W ).

Furthermore, we can show

C3(D
0
1, D

0
2) = C(X1, X2), (3.30)

using Lemma 7 and the fact that C3(D
0
1, D

0
2) ≤ RX1X2(D

0
1, D

0
2). �

This means that given total rate of C(X1, X2), the optimal scheme for the Gray-

Wyner network to transmit the pair of sources (Xn
1 , Xn

2 ) within distortion constraints

(D0
1, D

0
2) is to communicate W to the two receivers using the common channel.

Let us now decrease the distortion constraints from (D0
1, D

0
2) to (D1, D2) ≤ (D0

1, D
0
2).

The question is whether the rate C(X1, X2) is still (D1, D2)−achieveble, i.e., if it is

possible to transmit the sources (Xn
1 , Xn

2 ) with smaller distortions (D1, D2) with the

sum rate at RX1X2(D1, D2) while keeping the common rate at C(X1, X2).
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In the following, we identify a sufficient condition for C3(D1, D2) = C(X1, X2)

for such (D1, D2) pair for successively refinable sources. A source X with distortion

measure d(x, x̂) is said to be successively refinable from a coarser distortion δ1 to a

finer distortion δ2 (δ1 ≥ δ2) if it can be encoded in two stages in which the optimal

descriptions at the second stage is a refinement of the optimal descriptions at the

first stage [32]. Similar definition can be applied to vector sources with individual

distortion constraints and the details can be found in [33].

Theorem 7. Let W be the auxiliary variable that achieves C(X1, X2) and (D0
1, D

0
2)

be a distortion pair satisfying (3.26). If the source (X1, X2) is successively refinable

from (D0
1, D

0
2) to (D1, D2) for (D1, D2) ≤ (D0

1, D
0
2), and Xi is successively refinable

from D0
i to Di for Di ≤ D0

i , i = 1, 2, then,

C3(D1, D2) = C(X1, X2),

for any (D1, D2) ≤ (D0
1, D

0
2).

Proof. See Appendix E. �

Theorem 7 gives a sufficient condition under which C3(D1, D2) = C(X1, X2) for

any (D1, D2) ≤ (D0
1, D

0
2). This sufficient condition ensures the optimality of a two-

stage encoding scheme in the Gray-Wyner network: first encode the common message

with rate C(X1, X2) to obtain a coarse distortion (D0
1, D

0
2), then encode the two

private messages with rates RX1|W (D1) and RX2|W (D2). The successive refinement

assumption guarantees that the two-step approach can achieve the distortion (D1, D2)

and the sum rate does not exceed the total rate RX1X2(D1, D2).

In the following section, we will consider two examples involving successively re-

finable sources: the binary random variables and bivariate Gaussian variables. For
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these two cases, we compute explicitly the function C3(D1, D2) and establish its con-

nection with C(X1, X2). The distortion pair (D0
1, D

0
2) satisfying (3.26) are identified

for both cases, providing practical significance to Theorem 7.

3.3 Common information for two examples

The computation of common information for a given source is known to be a challeng-

ing problem even for the original definition of a pair of dependent discrete random

variables. To date, only several special cases have been resolved [4, 6].

We have generalized the definition of Wyner’s common information to that involv-

ing multiple dependent variables of arbitrary alphabets, it is natural to consider the

computation of the common information for the generalized setting. In this section,

we discuss the computation of the common information for two cases: the binary

and the Gaussian sources. For both cases, we evaluate the common information in-

volving multiple variables. In particular, we derive, through an estimation theoretic

approach, the common information for a bivariate Gaussian source and its extension

to the multi-variate case with a certain correlation structure. In addition, we char-

acterize the distortion region where the common information equals to the smallest

common message rate in the Gray-Wyner network for both cases.

3.3.1 Binary random variables

In this section, we consider the common information of multiple exchangeable binary

random variables.

Let S be a Bernoulli random variable with successive probability β for 0 ≤ β ≤ 1,
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denoted from now on as S ∼ Bernoulli(β), i.e., S ∈ {0, 1} and P (S = 1) = β. Let

Xi, i = 1, · · · , N , be the output of a Binary Symmetric Channel (BSC) with crossover

probability a1 (0 ≤ a1 ≤ 1
2
) and with S as input. The BSCs are independent of each

other. Thus, we have the conditional distribution of the output

p(x1, · · · , xN |s) =

N
∏

i=1

p(xi|s), (3.31)

where each term p(xi|s) is a BSC channel with

p(xi|s) =











1 − a1, if xi = s,

a1, otherwise,

(3.32)

for xi ∈ {0, 1}. Therefore, the joint distribution of (X1, X2, · · · , XN) is given by

p(x1, x2, · · · , xN ) =
∑

s∈{0,1}

p(s)
N
∏

i=1

p(xi|s), (3.33)

= βatN
1 (1 − a1)

N−tN + (1 − β)(1 − a1)
tN aN−tN

1 , (3.34)

where tN =
∑N

i=1 xi.

For N = 2, the joint distribution of (X1, X2) is given by the following probability

matrix,







β(1 − a1)
2 + (1 − β)a2

1 a1(1 − a1)

a1(1 − a1) βa2
1 + (1 − β)(1 − a1)

2






. (3.35)

It has been shown by Witsenhausen [6] that for the binary source (X1, X2) with joint

distribution of the form (3.35), the common information is achieved with W being S

with the corresponding common information

C(X1, X2) = I(X1X2; S) = H(X1, X2) − 2h(a1), (3.36)
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where h(·) is the binary entropy function, defined as h(a1) = −a1 log(a1) − (1 −

a1) log(1−a1). Note that when β = 1
2
, (X1, X2) is a Doubly Symmetric Binary Source

(DSBS) whose common information was also derived by Wyner using a different

approach in [4].

We now compute the common information for N variables.

Proposition 1. Let S ∼ Bernoulli(β) and let Xi, i = 1, · · · , N , be the output of

independent BSCs with common input S and crossover probability 0 ≤ a1 ≤ 1/2.

Then for any N ≥ 2, the common information for X1, · · · , XN is given as

C(X1, · · · , XN) = I(X1, · · · , XN ; S). (3.37)

Proof. That C(X1, · · · , XN) ≤ I(X1, · · · , XN ; S) follows from the definition of the

common information (2.1). The inequality C(X1, · · · , XN) ≥ I(X1, · · · , XN ; S) can

be proved by contradiction. Suppose there exists a W such that

C(X1, · · · , XN) = I(X1, · · · , XN ; W ) < I(X1, · · · , XN ; S), (3.38)

i.e., C(X1, · · · , XN) is achieved by W and it is strictly less than I(X1, · · · , XN ; S).

Since W induces conditional independence of X1, · · · , XN , we have, from (3.38),

N
∑

i=1

H(Xi|W ) >
N
∑

i=1

H(Xi|S). (3.39)

Thus, there must exist two random variables Xk, Xj, k, j ∈ {1, · · · , N} such that

H(Xk|W ) + H(Xj|W ) > H(Xk|S) + H(Xj|S). (3.40)

Given that the sequence {X1, · · · , XN} is exchangeable (See Definition 3 in Chapter

4), p(xk, xj) has the same joint distribution as p(x1, x2). Thus,

C(X1, X2) = C(Xk, Xj) = I(Xk, Xj; W ) < I(Xk, Xj; S) = I(X1, X2; S). (3.41)

47



This, however, contradicts the fact that S achieves C(X1, X2). Thus the proposition

is proved. �

We now study the asymptotic value of the common information for binary sources

with distribution defined in (3.34). First, we note that if a1 = 1/2, X1, X2, · · · , XN

are mutually independent for any N , so C(X1, X2, · · · , XN) = 0.

Corollary 1. For a1 < 1/2,

lim
N→∞

C(X1, X2, · · · , XN) = H(S) (3.42)

Proof. From Proposition 1, C(X1, · · · , XN) = I(X1, · · · , XN ; S). First we have

I(X1, · · · , XN ; S) = H(S) − H(S|X1, · · · , XN) ≤ H(S), (3.43)

for any N . On the other hand, for any ǫ, it can be established that

H(S|X1, · · · , XN) < ǫ, (3.44)

for N sufficiently large. This is because by the law of large number, one can con-

struct an estimate of S using X1, · · · , XN that converges to S in probability. Hence

inequality (3.44) is a consequence of applying Fano’s inequality. Thus, we have

lim
N→∞

C(X1, X2, · · · , XN) = H(S). (3.45)

�

We now characterize the minimum common rate C3(D1, D2) for a DSBS.

Proposition 2. Consider a DSBS (X1, X2) with distribution

p(x1, x2) =











1
2
(1 − a0), if x1 = x2,

1
2
a0, otherwise,

(3.46)
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where, without loss of generality, 0 ≤ a0 ≤ 1/2. Let a1 be such that a0 = 2a1(1 −

a1), 0 ≤ a1 ≤ 1/2. With Hamming distortion d1 = d2 = dH , we have

C3(D1, D2) =



























C(X1, X2), (D1, D2) ∈ E10,

RX1X2(D1, D2), (D1, D2) ∈ E2 ∪ E3,

0, (D1, D2) ≥ (1
2
, 1

2
),

(3.47)

C(X1, X2) ≤ C3(D1, D2) ≤ RX1X2(D1, D2), (D1, D2) ∈ E11, (3.48)

where

E10 = {(D1, D2) : 0 ≤ Di ≤ a1, i = 1, 2},

E11 = E c
10 ∩ {(D1, D2) : D1 + D2 − 2D1D2 ≤ a0},

E2 = E c
10 ∩ E c

11 ∩
{

(D1, D2) : max
{

D1−D2

1−2D2
, D2−D1

1−2D1

}

≤ a0

}

,

E3 = E c
10 ∩ E c

11 ∩ E c
2 ∩
{

(D1, D2) : Di ≤ 1
2
, i = 1, 2

}

.

(3.49)

Proof. For Xi ∼ Bernoulli(1/2), i = 1, 2 with Hamming distortion, the rate distor-

tion function is

RXi
(Di) =











1 − h(Di), 0 ≤ Di ≤ 1
2
,

0, Di ≥ 1
2
.

(3.50)

The joint rate distortion function of the DSBS (X1, X2) is given by [33]

RX1X2(D1, D2)=



























1 + h(a0) − h(D1) − h(D2), (D1, D2) ∈ E1,

1 − (1 − a0)h
(

D1+D2−a0

2(1−a0)

)

− a0h
(

D1−D2+a0

2a0

)

, (D1, D2) ∈ E2,

1 − h (min{D1, D2}) , (D1, D2) ∈ E3.

(3.51)

where E1 = E10 ∪ E11 with E10, E11, E2 and E3 defined in (3.49). Therefore, for this

DSBS, RX1(D1) + RX2(D2) − I(X1; X2) = RX1X2(D1, D2), for (D1, D2) ∈ E1. From
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Figure 3.1: The distortion regions E10, E11, E2 and E3 for the DSBS. C3(D1, D2) =

C(X1, X2) in the shaded region.

Lemma 7, we have for (D1, D2) ∈ E1,

C3(D1, D2) ≥ C(X1, X2). (3.52)

On the other hand, the conditional rate distortion function RXi|S(Di), i = 1, 2, is

given by [28]

RXi|S(Di) =











h(a1) − h(Di), 0 ≤ Di ≤ a1,

0, Di ≥ a1.

(3.53)

Therefore, RX1|S(D1) + RX2|S(D2) + I(X1, X2; S) = RX1X2(D1, D2) is satisfied for

(D1, D2) ∈ E10. By Theorem 5, C3(D1, D2) ≤ C(X1, X2) for (D1, D2) ∈ E10. Together

with (3.52) and given that E10 ⊂ E1, we have proved that for (D1, D2) ∈ E10,

C3(D1, D2) = C(X1, X2). (3.54)

For (D1, D2) ∈ E2, we only need to show that C3(D1, D2) ≥ RX1X2(D1, D2). It was
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shown in [33] that the backward test channel that achieves RX1X2(D1, D2) is given by

X1 = X̂1 + Z1,

X2 = X̂2 + Z2,

(3.55)

where both X̂1, X̂2 and Z1, Z2 are binary vectors independent of each other with the

probability mass functions given respectively as

PX̂1X̂2
=







1
2

0

0 1
2






, PZ1Z2 =

1

2







2 − a0 − D1 − D2 D2 − D1 + a0

D1 − D2 + a0 D1 + D2 − a0






. (3.56)

Therefore, (X̂1, X̂2) that achieves RX1X2(D1, D2) satisfies

X̂2 = X̂1. (3.57)

For the characterization C∗(D1, D2) of C3(D1, D2), any W satisfying the Markov

chain X̂1 −W − X̂1 must satisfy H(X̂1|W ) = 0. Thus, X̂1 is a function of W and we

have

I(X1, X2; W ) = I(X1, X2; W, X̂1) ≥ I(X1, X2; X̂1) = RX1X2(D1, D2). (3.58)

Therefore, C3(D1, D2) = RX1X2(D1, D2).

The region E3 is a degenerated one. For example, RX1X2(D1, D2) = RX1(D1) if

a0 < D2−D1

1−2D1
and Di ≤ 1

2
, i = 1, 2. This implies that the optimal coding scheme is

to ignore X2 and optimally compress X1. Then X̂2 can be estimated from X̂1 with

distortion less than D2. The case of a0 < D1−D2

1−2D2
is dealt with similarly. Hence, similar

to the region E2, C3(D1, D2) = RX1X2(D1, D2). �

The characterization of C3(D1, D2) is plotted in Fig. 3.1 as a function of the dis-

tortion constraints. C3(D1, D2) = C(X1, X2) in the shaded region. For the symmetric
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C3(D, D)

Da1
1
20

C(X1, X2)
RX1X2(D, D)

Figure 3.2: The relationship between C3(D, D) and D for the DSBS with D1 = D2 =

D.

distortion constraint, D1 = D2 = D, the relation of C3(D, D) and D for the DSBS is

given in Fig. 3.2. For the DSBS, C3(D, D) is a constant and equals to the common

information as long as D ≤ a1.

The claim C3(D1, D2) = C(X1, X2) for (D1, D2) ∈ E10 can also be proved using

Theorem 7. RX1X2(a1, a1) is achieved by the backward test channel pb(x1, x2|s) =

p(x1|s)p(x2|s). The vector source (X1, X2) is successively refinable for any (D1, D2) ≤

(a1, a1) [33] and the scalar source Xi is successively refinable for any Di ≤ a1, i = 1, 2

[32]. Thus by Theorem 7, C3(D1, D2) = C(X1, X2) for (D1, D2) ≤ (a1, a1).

For the DSBS, not only the common information C(X1, X2) is (D1, D2)-achievable

for any (D1, D2) ≤ (a1, a1), but also the rate RX1X2(D
′
1, D

′
2) is also (D1, D2)-achievable

for any (D′
1, D

′
2) satisfying (D1, D2) ≤ (D′

1, D
′
2) ≤ (a1, a1).

This can be shown as follows. The backward test channel that achieves RX1X2(D
′
1, D

′
2)

can be decomposed as pb(x1, x2|x̂1x̂2) = pb(x1|x̂1)pb(x2|x̂2) where

pb(xi|x̂i) =











1 − D′
i, if xi = x̂i,

D′
i, Otherwise.

(3.59)
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for i = 1, 2. Then for (D1, D2) ≤ (D′
1, D

′
2) ≤ (a1, a1), let the rates R0, R1, R2 in

Theorem 2 be

R0 = RX1X2(D
′
1, D

′
2) (3.60)

= 1 + h(a0) − h(D′
1) − h(D′

2), (3.61)

Ri = RXi|X̂1X̂2
(Di) (3.62)

= RXi|X̂i
(Di) (3.63)

= h(D′
i) − h(Di), i = 1, 2, (3.64)

where (3.63) is because of the Markov chain Xi − X̂i − X̂1X̂2. Since R0, R1 and R2

in (3.61) and (3.64) sum up to RX1X2(D1, D2), RX1X2(D
′
1, D

′
2) is (D1, D2)-achievable.

3.3.2 Gaussian random variables

In this section we consider bivariate Gaussian random variables X1, X2 with zero

mean and covariance matrix

K2 =







σ2
1 ρσ1σ2

ρσ1σ2 σ2
2






. (3.65)

The common information between this pair of Gaussian random variables is given in

the following theorem.

Theorem 8. For two joint Gaussian random variables X1, X2 with covariance matrix

K2, the common information is

C(X1, X2) =
1

2
log

1 + ρ

1 − ρ
. (3.66)
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Proof. See Appendix F. �

As the common information of (X1, X2) is only a function of the correlation coef-

ficient ρ, we consider, without loss of generality, the covariance matrix

K ′
2 =







1 ρ

ρ 1






. (3.67)

The above result generalizes to multi-variate Gaussian random variables satisfying

a certain covariance matrix structure, the proof of which can be constructed in a

similar fashion.

Corollary 2. For N joint Gaussian random variables X1, X2, · · · , XN with covari-

ance matrix KN ,

KN =





















1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · ·

ρ ρ · · · 1





















, (3.68)

the common information is

C(X1, · · · , XN) =
1

2
log

(

1 +
Nρ

1 − ρ

)

. (3.69)

We now characterize the minimum common rate C3(D1, D2) in the Gray-Wyner

lossy source coding network for bivariate Gaussian random variables with covariance

matrix K ′
2 in equation (3.67). It was shown in [30] that for symmetric distortion, i.e.,

D1 = D2 = D,

C3(D, D) =



























C(X1, X2), 0 ≤ D ≤ 1 − ρ,

RX1X2(D, D), 1 − ρ ≤ D ≤ 1,

0, D ≥ 1.

(3.70)
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We characterize C3(D1, D2) for general distortion (D1, D2) in the following proposi-

tion.

Proposition 3. For bivariate Gaussian random variables X1, X2 with zero mean,

covariance matrix K ′
2 and squared error distortion, we have that

C3(D1, D2) =



























C(X1, X2), (D1, D2) ∈ D10,

RX1X2(D1, D2), (D1, D2) ∈ D2 ∪ D3,

0, (D1, D2) ≥ (1, 1),

(3.71)

C(X1, X2) ≤ C3(D1, D2) ≤ RX1X2(D1, D2), (D1, D2) ∈ D11, (3.72)

where

D10 = {(D1, D2) : 0 ≤ Di ≤ 1 − ρ, i = 1, 2},

D11 = Dc
10 ∩ {(D1, D2) : D1 + D2 − D1D2 ≤ 1 − ρ2},

D2 = Dc
10 ∩ Dc

11 ∩
{

(D1, D2) : min
{

1−D1

1−D2
, 1−D2

1−D1

}

≥ ρ2
}

,

D3 = Dc
10 ∩ Dc

11 ∩ Dc
2 ∩ {(D1, D2) : Di ≤ 1, i = 1, 2}.

(3.73)

Proof. The joint rate distortion function for Gaussian random variables with squared

error distortion [33–35] is given by

RX1X2(D1, D2) =



























1
2
log 1−ρ2

D1D2
, (D1, D2) ∈ D1,

1
2
log 1−ρ2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2 , (D1, D2) ∈ D2,

1
2
log 1

min{D1,D2}
, (D1, D2) ∈ D3,

(3.74)

where D1 = D10 ∪ D11. The marginal rate distortion function for Xi ∼ N (0, 1), i =

1, 2, is

RXi
(Di) =











1
2
log 1

Di
, 0 ≤ Di ≤ 1,

0, Di ≥ 1.

(3.75)
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Therefore, RX1(D1) + RX2(D2) − I(X1; X2) = RX1X2(D1, D2), for (D1, D2) ∈ D1.

From Lemma 7, for (D1, D2) ∈ D1,

C3(D1, D2) ≥ C(X1, X2). (3.76)

On the other hand, the random variable W in the following decomposition of X1

and X2 achieves the common information

Xi =
√

ρW +
√

1 − ρNi, i = 1, 2. (3.77)

where W, N1, N2 are mutually independent standard Gaussian random variables. The

conditional distribution of X given W is Gaussian distribution with variance 1 − ρ.

Hence, for i = 1, 2, the conditional rate distortion function is

RXi|W (Di) =











1
2
log 1−ρ

Di
, 0 ≤ Di ≤ 1 − ρ,

0, Di ≥ 1 − ρ.

(3.78)

The condition RX1|W (D1) + RX2|W (D2) + I(X1, X2; W ) = RX1X2(D1, D2) is satisfied

for (D1, D2) ∈ D10. From Theorem 5, C3(D1, D2) ≤ C(X1, X2) for (D1, D2) ∈ D10.

Since, D10 ∈ D1, we proved that for (D1, D2) ∈ D10,

C3(D1, D2) = C(X1, X2). (3.79)

For (D1, D2) ∈ D2, it was shown in [33] that the pair (X̂1, X̂2) achieving RX1X2(D1, D2)

satisfies

X̂2 =

√

1 − D2

1 − D1

X̂1. (3.80)

Hence, using the characterization C∗(D1, D2), it is easy to show that the W satisfying

the Markov chains (3.18) and (3.19) must satisfy two Markov chains

X1X2 − X̂1 − W − X̂2, (3.81)
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Figure 3.3: The distortion regions D10,D11,D2 and D3 for bivariate Gaussian random

variables. C3(D1, D2) = C(X1, X2) in the shaded region.

X1X2 − X̂2 − W − X̂1. (3.82)

Therefore, we have

I(X1, X2; W ) = I(X1, X2; X̂1) = I(X1, X2; X̂1, X̂2), (3.83)

which proved C3(D1, D2) = RX1X2(D1, D2).

The region D3 is a degenerated one. For example, RX1X2(D1, D2) = RX1(D1) if

1−D2

1−D1
< ρ2, this means that the correlation between X1 and X2 is so strong that the

optimal coding scheme is to encode X1 to within distortion D1 and ignore X2. Then

X̂2 can be estimated from X̂1. We have

X̂2 = ρX̂1. (3.84)

The case of 1−D1

1−D2
< ρ2 is dealt with similarly. Hence, we have C3(D1, D2) =

RX1X2(D1, D2). �
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The characterization of C3(D1, D2) is plotted in Fig. 3.3 as a function of the

distortion constraints. C3(D1, D2) = C(X1, X2) in the shaded region.

Similar to the binary case, the claim C3(D1, D2) = C(X1, X2) for (D1, D2) ∈ D10

can also be proved using Theorem 7. This is because for the bivariate Gaussian

random variables with covariance matrix K ′
2, RX1X2(1 − ρ, 1 − ρ) is achieved by

the backward test channel pb(x1, x2|w) = p(x1|w)p(x2|w), (X1, X2) is successively

refinable for any (D1, D2) ≤ (1 − ρ, 1 − ρ) [33] and Xi is successively refinable for

Di ≤ 1 − ρ, i = 1, 2 [32].

Let (D1, D2) ≤ (D′
1, D

′
2) ≤ (1−ρ, 1−ρ), then the rate RX1X2(D

′
1, D

′
2) is (D1, D2)-

achievable in the Gray-Wyner network. This is because for (D′
1, D

′
2) ∈ E10, the joint

rate distortion function RX1X2(D
′
1, D

′
2) is achieved by Gaussian distributed (X̂1, X̂2)

satisfying X1 − X̂1 − X̂2 − X2 where the covariance matrix of (X̂1, X̂2) is [33]

KX̂1X̂2
=







1 − D′
1 ρ

ρ 1 − D′
2






. (3.85)

Then for (D1, D2) ≤ (D′
1, D

′
2) ≤ (1 − ρ, 1 − ρ), let the rates R0, R1, R2 in Theorem 2

be as follows:

R0 = RX1X2(D
′
1, D

′
2) = 1

2
log 1−ρ2

D′
1D′

2
,

Ri = RXi|X̂1X̂2
(Di) = RXi|X̂i

(Di) = 1
2
log

D′
i

Di
, i = 1, 2.

(3.86)

R0, R1 and R2 in (3.86) sum up to RX1X2(D1, D2), so RX1X2(D
′
1, D

′
2) is (D1, D2)-

achievable.

Therefore, in the Gray-Wyner network, we can use the rate allocation in (3.86)

to achieve the distortion (D1, D2) ≤ (1 − ρ, 1 − ρ) for any (D1, D2) ≤ (D′
1, D

′
2) ≤

(1−ρ, 1−ρ). The minimal R0 satisfying (3.86) is exactly C(X1, X2), which is achieved

by letting (D′
1, D

′
2) = (1 − ρ, 1 − ρ).
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3.4 Summary

In this chapter, we showed that, for lossy source coding using the Gray-Wyner net-

work, Wyner’s common information is precisely the smallest common message rate

for a certain range of distortion constraints when the total rate is arbitrarily close to

the rate distortion function with joint decoding. As the common information is only

a function of the joint distribution, this smallest common rate remains constant even

if the distortion constraints vary, as long as they are in a specific distortion region.

Furthermore, we have shown that for successive refinement sources, given a total

rate of rate distortion function, it is optimal to use a two-stage encoding scheme in

the Gray-Wyner network: first encode the common message with rate of common

information to obtain a coarse distortion, then encode the two private messages with

extra rates to achieve the desired distortion.

We also discussed the common information for two examples: the binary sources

and Gaussian sources. For both cases, we evaluated the common information of mul-

tiple variables. In particular, we derived, through an estimation theoretic approach,

the common information for a bivariate Gaussian source and its extension to the

multi-variate case with a certain correlation structure. In addition, we characterized

the distortion region where the common information equals to the smallest common

message rate in the Gray-Wyner network for both cases.
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Chapter 4

Common Information and

Statistical Inference

4.1 Introduction

In Chapter 2, we have seen that the inclusion of an additional variable increases the

common information. This seems to contradict the intuition that common informa-

tion should decrease as the number of random variables increase as is the case for the

generalization of Gács and Körner’s common randomness [2, 36].

This monotonicity property of Wyner’s common information motivates us to ex-

plore the application of it to inference problems: it is expected that any notion of

information, if it is relevant to any inference problems, ought to be non-decreasing as

more observations come in.

To further motivate our study, consider the following generalization of the DSBS.

Let W be a Bernoulli random variable with successive probability β. Let the sequence
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of observations X1, X2, · · · , be generated from independent BSC with crossover prob-

ability not equal to 1/2. We have shown in Corollary 1 that

lim
n→∞

C(X1, · · · , Xn) = H(W ). (4.1)

That is , the common information asymptotically captures the entire information of

the hidden variable W .

In addition, Wyner’s common information satisfies both the data processing in-

equality and the additivity property:

• If X−Y −Z forms a Markov chain, then C(X, Z) ≤ min{C(X, Y ), C(Y, Z)} [6].

• If (X1, Y1), (X2, Y2), · · · , (Xn, Yn) is an independent sequence of random vari-

ables pairs, then

C(X1, · · · , Xn, Y1, · · · , Yn) =

n
∑

i=1

C(Xi, Yi). (4.2)

These properties are necessary for any notion of information that is relevant to sta-

tistical inference.

A natural model that arises is the simple hierarchical model as in Fig. 4.1, where θ

is a random variable with distribution p(θ) while the observations Xi, i = 1, 2, · · · , n,

are independent noisy realizations governed by transition probability pi(xi|θ). The

binary example is a special case of this hierarchical model. Thus, the joint distribution

of θ and X1, · · · , Xn satisfies

p(θ, x1, · · · , xn) = p(θ)
n
∏

i=1

pi(xi|θ). (4.3)

This simple Bayesian model often arises in various inference problems where one

wants to infer about θ with p(θ) serving as its prior while the observations X1, · · · , Xn
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θ

X1 X2 Xn

· · ·

Figure 4.1: A simple Bayesian graphical model.

supply the samples for inference. The conditional independence assumption is directly

motivated by the conditional independence structure in defining the common infor-

mation.

Clearly, given the conditional independence assumption of the Bayesian model

in (4.3), the dependence among the observations come entirely from the common

variable θ. A natural question is that, for such a simple Bayesian inference problem,

does the common information capture the entire information about θ that is contained

in X1, · · · , Xn? Or, mathematically, does the equation

C(X1, · · · , Xn) = I(θ; X1, · · · , Xn) (4.4)

hold? Notice that since I(θ; X1, · · · , Xn) carries the meaning of uncertainty reduc-

tion in θ by observing X1, · · · , Xn, it can be interpreted as the information about θ

contained in the data X1, · · · , Xn.

This is, however, not true in general. Consider a simple example where θ is

Bernoulli(1/2) and X1 and X2 are the output of two independent BSCs with crossover

probabilities ǫ1 = 1/2 and ǫ2 6= 1/2. Clearly, C(X1, X2) = 0 (since X1 and (θ, X2)

are independent) but I(X1X2; θ) = I(X2; θ) = 1 − h(ǫ2) > 0.

However, if we are to impose some symmetric condition in the model, i.e., if all Xi’s

are not only conditionally independent but are also identically distributed, stronger
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and concrete connections between the common information and inference problems

can be established.

With a symmetric model, the observations generated by the simple Bayseian model

constitute an exchangeable sequence. We will show that for infinite exchangeable

random variables, the common information is asymptotically equal to the information

of the inference object θ. Such statement, however, is not true for finite n, i.e.,

C(X1, · · · , Xn) is not always equal to I(X1, · · · , Xn; θ) even if the random variables

are infinitely extendable, by which we mean a finite sequence that can be extended to

an infinite exchangeable sequence. However, there exist some special cases, including

both the binary and Gaussian cases, such that equality still holds for finite n. For these

two cases, we will also establish concrete connections between common information

and inference performance metrics.

The rest of this chapter is organized as follows. In Section 4.2, the results of

common information for both infinite and finite exchangeable random variables are

given. In Section 4.3, the connection between the common information and inference

performance metrics are established for the binary and Gaussian cases. Section 4.4

concludes this chapter.

4.2 Common information for exchangeable random

variables

We start by introducing the concept of exchangeable random variables.
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4.2.1 Exchangeable random variables

Definition 3. An exchangeable sequence of random variables is a finite or infinite

sequence X1, X2, X3, · · · of random variables such that for every permutation σ of the

indices 1, 2, 3, · · · , the joint probability distribution of the permuted sequence

Xσ(1), Xσ(2), Xσ(3), · · ·

is the same as the joint probability distribution of the original sequence.

For finite n, (X1, · · · , Xn) is called n−exchangeable. A k−exchangeable sequence

(X1, · · · , Xk) is n−extendable if it has the same distribution as the k first of an n−

exchangeable variables (X1, · · · , Xn). In particular, a k−exchangeable sequence is

infinite-extendable if it has the same distribution as the k first variables of an infinite

exchangeable sequence.

It was first shown by de Finetti, later generalized by Hewitt and Savage in [37]

that any infinite exchangeable probability measure is a unique mixture of i.i.d prod-

uct measures. Specifically, a sequence of random variables X1, X2, X3, · · · is infinite

exchangeable if and only if there exists (p(θ), p(x|θ)) such that, for any k,

p(x1, · · · , xk) =

∫

θ

k
∏

i=1

p(xi|θ)p(θ)dθ. (4.5)

Furthermore, the p(x|θ) and p(θ) pair is unique for an infinite exchangeable sequence.

Clearly, from the definition of exchangeable sequences, if a finite exchangeable

sequence (X1, · · · , Xn) is infinitely extendable, then there must exist (p(θ), p(x|θ))

such that

p(x1, · · · , xn) =

∫

θ

n
∏

i=1

p(xi|θ)p(θ)dθ. (4.6)
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Any sequence that is generated according to a symmetric Baysian model is an

infinite exchangeable sequence if it is infinite or an infinite extendable exchangeable

sequence if it is finite. The converse is not true, however, for finite sequences. That

is, if a sequence is finite exchangeable, there may not exist a p(θ) and p(x|θ) pair that

gives rise to the sequence via a simple Baysian model.

As our intent is to study the relevance of the common information in inference

problems, we consider in the following exchangeable sequences that are actually gen-

erated by a symmetric Bayesian model as described in Fig. 4.1. The inference

problem is therefore to infer about θ given the sample (X1, · · · , Xn). As the ob-

servations are independent conditional on θ, it is intuitive that dependence among

Xi’s comes solely from θ. Given that I(θ; X1, · · · , Xn) carries the interpretation

of uncertainty reduction in θ by observing (X1, · · · , Xn), one natural question is if

C(X1, · · · , Xn) = I(θ; X1, · · · , Xn)? As we shall see, this is not always the case and

our endeavor is to identify conditions such that the equality holds.

4.2.2 Common information for infinite exchangeable sequences

For infinite exchangeable sequences, we have the following result.

Theorem 9. Let X1, · · · , Xn be generated by the Bayesian model described above,

Asymptotically, we have

lim
n→∞

C(X1, · · · , Xn) = lim
n→∞

I(X1, · · · , Xn; θ). (4.7)

In addition, if Θ is finite where Θ is the alphabet of θ, limn→∞ C(X1, · · · , Xn) > 0

and there exists a consistent estimator θ̂(X1, · · · , Xn) of θ, then

lim
n→∞

C(X1, · · · , Xn) = H(θ). (4.8)
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Proof. First, by the symmetry of the problem, the hidden variable W that achieves

limn→∞ C(X1, · · · , Xn) induces identical p(xi|w). By the de Finetti Theorem, the

hidden variable W that induces conditional i.i.d. sequences X1, X2, · · · is unique and

given the observations arise from the Bayesian model, we must have W = θ, i.e., θ

achieves the common information as n → ∞.

Given that Θ is finite, limn→∞ C(X1, · · · , Xn) > 0 and there exists a consistent

estimate of θ, θ̂(X1, · · · , Xn), we have

lim
n→∞

P{θ̂(X1, · · · , Xn) = θ} = 1, ∀θ ∈ Θ.

Hence, H(θ|θ̂(X1, · · · , Xn)) → 0. From the Markov chain

θ − (X1, · · · , Xn) − θ̂(X1, · · · , Xn),

we have

lim
n→∞

H(θ|X1, · · · , Xn) = 0. (4.9)

�

Therefore, for infinite exchangeable sequences generated from a simple Bayesian

model, the data informs about the unknown parameter perfectly. In such a case, the

common information is precisely the amount of information in the Bayesian prior as

defined using the Shannon entropy.

4.2.3 Common information for finite exchangeable sequences

While it is tempting to speculate that the same conclusion holds for the finite ex-

changeable sequence generated from a simple symmetric Bayesian model, the follow-

ing example shows that this is not the case.
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Example 1. Let θ be uniformly distributed over [0, 1] and p(x|θ) = θx(1 − θ)1−x for

x ∈ {0, 1}, i.e., θ is the success probability for the Bernoulli random variable X. For

n = 2, the joint distribution of X1, X2 is

p(x1, x2) =

∫ 1

0

θt(1 − θ)2−tdθ = B(t + 1, 3 − t), (4.10)

where t = x1 + x2 and B(a, b) is the beta function defined as

B(a, b) =

∫ 1

0

ya−1(1 − y)b−1dy.

It is straightforward to simplify the joint distribution and obtain

p(x1, x2) =
1

3
δx1,x2 +

1

6
(1 − δx1,x2), (4.11)

where

δx1,x2 =











1 if x1 = x2,

0 otherwise.

(4.12)

This is a DSBS whose common information was given in Section 3.3.1. The hid-

den variable W that achieves the common information is a Bernoulli(1/2) random

variable and X1 and X2 are connected to W through two independent BSCs with

crossover probability a1 = 0.2113, i.e., a1 satisfies

a1 ∗ a1 = 2a1(1 − a1) = 1/3.

The common information can be computed to be C(X1, X2) = I(X1, X2; W ) = 0.430

whereas I(X1, X2; θ) = 0.476.

From the above example, it is clear that the same marginal distribution p(x1, x2)

may arise from two different Bayesian models. This, of course, does not contradict
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de Finetti Theorem because of the finite number of samples. Indeed, the marginal

distributions will diverge for these two models for n > 3. Another observation is that,

for the model that the common information is indeed the same as mutual information

between the prior and the observations, the observations are connected to the prior

through an additive channel (modulo 2 sum). Indeed, this result can be generalized

to any Bernoulli variables. Before proceeding, we first introduce the following lemma.

Lemma 9. Let (X1, · · · , Xm), m > 2, be an exchangeable sequence generated from

a simple Bayesian model. Let W be a variable the induces conditional independence

of (X1, · · · , Xm). If W achieves the common information of (X1, · · · , Xn) for any n

with m ≥ n ≥ 2, it also achieves the common information of (X1, · · · , Xm).

Proof. We prove it by contradiction. Since W achieves the common information of

(X1, · · · , Xn),

C(X1, · · · , Xn) = I(X1, · · · , Xn; W ).

Suppose that there exists another W ′ such that

C(X1, · · · , Xm) = I(X1, · · · , Xm; W ′) < I(X1, · · · , Xm; W ), (4.13)

i.e., C(X1, · · · , Xm) is achieved by W ′ and is strictly less than I(X1, · · · , Xm; W ).

Since W ′ induces conditional independence of (X1, · · · , Xm), and by our assumption

that W also induces conditional independence of (X1, · · · , Xm), we have, from (4.13),

m
∑

i=1

H(Xi|W ) <
m
∑

i=1

H(Xi|W ′). (4.14)

Thus, there must exist a subset of {1, · · · , m} with size n, denoted by {k1, · · · , kn},

such that

n
∑

i=1

H(Xki
|W ) <

n
∑

i=1

H(Xki
|W ′). (4.15)
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Given that the sequence (X1, · · · , Xm) is exchangeable, p(xk1 , · · · , xkn
) has the same

joint distribution as p(x1, · · · , xn). Thus,

C(X1, · · · , Xn) = C(Xk1, · · · , Xkn
). (4.16)

This, however, contradicts the fact that W achieves C(X1, · · · , Xn) since from (4.15),

I(Xk1 , · · · , Xkn
; W ′) < I(Xk1, · · · , Xkn

; W ). (4.17)

Thus the lemma is proved. �

Given the above lemma, we now examine two examples. We show that for the two

special cases, the binary and the Gaussian variables, common information captures

the entire information about the variables that represents the prior that generates

the additive symmetric Bayesian model.

First, consider the exchangeable binary sequences obtained via an additive sym-

metric Bayesian model.

Proposition 4. Let θ ∼ Bernoulli(β) and let Xi, i = 1, · · · , n be the output of

independent BSCs with common input θ and crossover probability not equal to 1/2,

then we have

C(X1, · · · , Xn) = I(X1, · · · , Xn; θ). (4.18)

Proposition 4 is proved in Proposition 1 and it can also be proved by Lemma 9

using the fact that the common information of the source for n = 2 is achieved with

W being θ.

A similar result can be obtained for exchangeable Gaussian random variables.
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Proposition 5. Let Y ∼ N (0, P ) and let Zi, i = 1, · · · , n be i.i.d ∼ N (0, σ2). Let

Xi = Y + Zi. Then,

C(X1, · · · , Xn) = I(X1, · · · , Xn; Y ). (4.19)

Proof. Notice that Xi’s form an exchangeable sequence with pairwise correlation co-

efficient

ρ =
P

P + σ2
. (4.20)

Then by applying Corollary 1, the common information can be obtained to be

C(X1, · · · , Xn) =
1

2
log

(

1 +
nρ

1 − ρ

)

=
1

2
log

(

1 +
nP

σ2

)

. (4.21)

Straightforward calculation shows that

C(X1, · · · , Xn) = I(X1, · · · , Xn; Y ). (4.22)

�

4.3 Common information and inference

In this section, we will consider the Bayesian estimation problem. The inference goal

is to estimate the variable θ in Fig. 4.1 that gives rise to the observation model.

For the two special cases, namely the binary and the Gaussian cases, the common

information captures the entire information about the hidden variable that generates

the additive symmetric Bayesian model. As such, the common information is expected

to be intimately related the inference performance of such models. In this section,

we explore connections between the common information and the respective inference

performance metrics.
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For the binary case, it is natural to use error probability as a performance metric.

Let θ be a Bernoulli(β) variable and Xis are the output of independent and identical

BSC(a1) with common input θ. Let P
(n)
e be the minimum probability of error of

estimating θ from observations X1, · · · , Xn. We have

Proposition 6.

H(θ) − H(P (n)
e ) ≤ C(X1, · · · , Xn) ≤ H(θ) − P

(n)
e

2
. (4.23)

Proof. Estimating θ is equivalent to testing a simple hypothesis

H0 : θ = 0

H1 : θ = 1

with prior probability β and 1 − β. For θ = 0, X1, · · · , Xn are i.i.d Bernoulli dis-

tributed with success probability a1, while for θ = 1, X1, · · · , Xn are i.i.d Bernoulli

distributed with success probability 1 − a1. Without loss of generality, assume

0 < a1 < 1/2. The likelihood ratio is

p(x1, · · · , xn|θ = 0)

p(x1, · · · , xn|θ = 1)
=

(1 − a1)
tnan−tn

1

atn
1 (1 − a1)n−tn

.

where tn = sumn
i=1xi. The maximum a posteriori probability detector that minimizes

the probability of error is

θ̂ =











1 if tn > n
2

+ 1
2

log β

1−β

log
1−a1

a1

,

0 otherwise.

(4.24)

It was shown by Rényi in [38] that for this test,

P
(n)
e

2
≤ H(θ|X1, · · · , Xn) ≤ H(P (n)

e ). (4.25)
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where the second inequality is Fano’s inequality. Together with (4.18), this proved

(4.23). �

It was shown in [38] that limn→∞ P
(n)
e = 0 if and only if limn→∞ H(θ|X1, · · · , Xn) =

0. Therefore, limn→∞ P
(n)
e = 0 if and only if limn→∞ C(X1, · · · , Xn) = H(θ), which

is consistent with Theorem 9.

Let us now consider the additive Gaussian model. For i = 1, · · · , n,let Xi = Y +Zi,

where Y ∼ N (0, P ) and Zi be i.i.d N (0, σ2). The inference problem is to estimate Y

using X1, · · · , Xn and the performance metric is the usual mean squared error (MSE).

We have

Proposition 7.

C(X1, · · · , Xn) =
1

2
log

P

E (4.26)

where

E =
Pσ2

σ2 + nP
(4.27)

is the MMSE of estimating Y using X1, · · · , Xn.

Proof. Through direct computation. �

Proposition 7 can also be proved using the following alternative approaches.

• The MMSE of estimating Y using X1, · · · , Xn is bounded by [11]

E ≥ 1

2πe
e2h((Y |X1,··· ,Xn) (4.28)

where equality is hold if and only if Ŷ = E[Y |X1, · · · , Xn] and Y, X1, · · · , Xn

are jointly Gaussian. For the additive Gaussian model, the inequality is tight
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and using (4.27) and the fact that h(Y ) = 1
2
log(2πeP ), we can directly obtain

(4.26).

• From [39], the MMSE and the mutual information between input and the output

of a Gaussian channel satisfies

dI(snr)

snr
=

1

2
mmse(snr) (4.29)

Since

X̄ =
1

n

n
∑

i=1

Xi (4.30)

is a sufficient statistic for Y given X1, · · · , Xn, I(Y ; X̄) = I(Y ; X1, · · · , Xn).

The channel from Y to X̄ is an additive Gaussian channel with noise distributed

according to N (0, σ2/n). Using (4.29) and that Y achieves the common infor-

mation of X1, · · · , Xn, we can obtain (4.26).

4.4 Summary

Motivated by the monotonicity property of common information with respect to the

number of random variables, we explored the application of Wyner’s common in-

formation to various inference problems. The inference problems considered in this

chapter arise from symmetric simple Bayesian models. As such models give rise to

exchangeable random variables, we studied the common information of exchangeable

random variable. It was shown that for infinite exchangeable sequences, the common

information is asymptotically equal to the information object, i.e., the hidden vari-

able in the Bayesian model. For finite exchangeable sequences, while this result is
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no longer true in general, we identify two important cases such that the result still

holds. For these two cases, one binary and the other Gaussian, we further established

relationship between the common information and that of the inference performance

metrics.
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Chapter 5

Distributed Detection with

Dependent Observations

The second part of the thesis deals with decentralized inference with a particular

emphasis on problems involving conditionally dependent observations. In the present

chapter, we focus on the canonical distributed detection model shown in Fig. 5.1. A

fusion center makes a decision regarding the hypothesis H using outputs U1, · · · , UK

from the K sensors. Different from a centralized system, the observation at each

sensor needs to be quantized separately prior to being sent to the fusion center to make

a final decision. The reason for quantization is that the observations are typically

collected remotely and the communication between the sensors and the fusion center

may be severely bandlimited. Tremendous effort has been devoted to this problem

that leads to many fundamental results (see [40–43] and references therein).

While the optimum fusion rule is known to be the likelihood-ratio test (LRT) at

the fusion center [44–46], finding the optimal local senor decision rules is much more
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challenging because of the distributed nature. Most of the results obtained are under

the assumption that local sensor observations are conditionally independent given the

underlying hypothesis, i.e., the joint distribution of the observations obeys

p(x1, · · · , xK |Hl) =
K
∏

k=1

p(xk|Hl), l = 0, 1, · · · , L − 1. (5.1)

Under this assumption the problem simplifies significantly: it was shown that the

optimal local sensor decision are threshold quantizers that operate on the likelihood

ratio of the observations under different scenarios [42,47,48]. Therefore, the problems

reduces to finding the quantizer thresholds for which a person-by-person optimization

(PBPO) methodology can be adopted [40]. In the simple case of a binary hypotheses

testing (L=2) where each sensor sends a single bit to the fusion center, the optimal

decision rule at each sensor is simply an LRT.

Without the conditional independence assumption, the problem of finding the op-

timal local decision rule becomes intractable in general. Such situation arises if one

detects a random signal in independent noises or a deterministic signal in correlated

noises. It was shown in [49] that the problem becomes NP complete when the ob-

servations are conditionally dependent. In such a case, the form of the optimal local

decision rule is often unknown and is coupled with other sensor rules and the fusion

rule. LRTs at local sensors often are not optimal even for the binary hypotheses and

binary sensor output. For example, for the simple problem of two sensors observing a

shift-in-mean correlated Gaussian random variables [50] [51], the optimality of LRT

for this problem can only be established for certain parameter regions.

A potentially promising framework for distributed detection with dependent and

independent observations is the HCI model [8]. The main idea is to inject a hidden
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Fusion Center

Figure 5.1: A canonical distributed detection system.

random variable W such that the sensor observations are conditionally independent

with respect to this new variable regardless of the dependence structure of the orig-

inal model. This new model unifies existing results for distributed detection with

dependent observations and is also useful in solving new problems that otherwise

seem quite formidable.

Two classes of distributed detection problem with dependent observations were

identified in [8] whose optimal local decision rules are reminiscent in structure to the

conditional independence case. When W has a finite alphabet, it was shown that

the form of the optimal local decision rule can be determined independently of any

other sensor decision rule and the fusion rule, and is essentially of the same form

as that of the conditionally independent case. However, when W is a continuous

random variable, it is not clear when the optimal decision structure resembles that of

the conditional independence case. A sufficient condition was proposed in [8] under

which single threshold quantizers at local sensors are optimal for binary hypothesis

testing with binary sensor outputs. The utility of this condition can be demonstrated

by its treatment of a previously known problem, namely the two sensor Gaussian

problem [51].
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However, this condition is limited in that it applies to the case where the final

form of the test at local sensors amounts to directly quantizing the observations. In

this chapter, we propose a more general sufficient condition such that single threshold

quantizers of functions (i.e., statistics) of the observations at local sensors are optimal

for binary hypotheses testing and binary sensor outputs. This includes the previous

result as a special case. Furthermore, we illustrate the usefulness of this new result

using the problem of detecting a random signal in independent noises. While the

problem can be readily solved using the result of the present chapter, the original

approach provided in [8] appears to be inadequate because of the restrictive conditions

therein.

The rest of this chapter is organized as follows. Section 5.1 describes the problem

of Bayesian distributed detection. Section 5.2 gives the hierarchical conditional inde-

pendence model for Bayesian distributed inference problem. Section 5.3 generalized

the sufficient condition under which single threshold quantizers are optimal for binary

hypotheses testing and binary sensor outputs for a class of problems with dependent

observations. An example of detection of random signals in independent noises is

given in Section 5.4 to illustrate the usefulness of the obtained result. Section 5.5

concludes the chapter.

5.1 Bayesian distributed detection

Consider the parallel distributed M-ary hypothesis testing system with K sensors as

in Fig.5.1. The observations at local sensors are denoted as Xk, k = 1, · · · , K and
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their joint conditional density p(x1, · · · , xK |H)1, H ∈ {0, 1, · · · , M − 1}, is assumed

known. Based on its own observation Xk, sensor k makes a local decision Uk =

γk(Xk) ∈ {0, 1, · · · , L−1}. Local decisions from all sensors are transmitted to the fu-

sion center where a global decision is made U0 = γ0(U1, · · · , UK) ∈ {0, 1, · · · , M −1}.

Let the prior probability of the hypothesis H be πH . Denote by X = {X1, · · · , XK},

x = {x1, · · · , xK}.

In general, the variables involved in this model satisfy the following Markov chain

H − X− U − U0, (5.2)

and

p(u|x) =

K
∏

k=1

p(uk|xk). (5.3)

The objective of a Bayesian hypothesis testing problem for a parallel network is to

obtain the set of decision rules {γ0, γ1, · · · , γK} that minimizes the expected Bayesian

cost. Let cu0,h be the Bayesian cost of deciding U0 = u0 when H = h is true. Denote

by Xk = X\Xk = {X1, · · · , Xk−1, Xk+1, · · · , XK}.

The average Bayesian cost C that needs to be minimized for the hypothesis testing

problem is

C =

M−1
∑

u0=0

M−1
∑

h=0

cu0,hπhp(u0|h) (5.4)

=

∫

X

∑

u

M−1
∑

u0=0

M−1
∑

h=0

cu0,hπhp(u0|u)p(u|x)p(x|h)dx, (5.5)

1We use p(·) to denote both probability density function and probability mass function. Its

meaning shall become clear in the context of where it appears.
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where (5.5) is from the Markov chain H − X − U − U0. Expanding C with respect

to sensor k, we have

C =

∫

Xk

∑

uk

p(uk|xk)fk(uk, xk)dxk, (5.6)

where fk(uk, xk) is the Bayesian Cost Density Function (BCDF) for the kth sensor

making decision uk while observing xk and is defined as

fk(uk, xk) ,

M−1
∑

u0=0

M−1
∑

h=0

∑

uk

cu0,hπhp(u0|uk, uk)

∫

Xk

p(uk|xk)p(xk, xk|h)dxk (5.7)

=
M−1
∑

u0=0

M−1
∑

h=0

cu0,hπhp(xk|h)p(u0|uk, xk, h), (5.8)

where (5.8) is because

p(u0|uk, xk, h) =
∑

uk

p(u0|uk, uk)

∫

Xk

p(uk|xk)p(xk|xk, h)dxk. (5.9)

From equation (5.18), to minimize the expected Bayesian cost C, the optimal

kth sensor decision rule given fixed decision rules at all other sensors and the fusion

center is to make a decision uk such that fk(uk, xk) is minimized. Since the BCDF

fk(Uk, Xk) is coupled with the fusion rule γ0(·) and other sensor decision rules γi(·),

i 6= k, the problem of finding the optimal decision rule is difficult in general.

When the observations follow a Conditional Independence (CI) model where the

observations at local sensors follow a joint distribution that satisfies

p(x1, · · · , xK |H) =

K
∏

k=1

p(xk|H), H ∈ {0, 1, · · · , M − 1}, (5.10)

then p(u0|uk, xk, h) in (5.8) reduces to p(u0|uk, h) and the BCDF in (5.8) becomes to

fk(uk, xk) =
M−1
∑

h=0

αk(uk, h)p(xk|h), (5.11)
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where

αk(uk, h) ,

M−1
∑

u0=0

cu0,hπhp(u0|uk, h), (5.12)

is a scalar function of the sensor output Uk = uk and the underlying hypothesis

H = h. The optimal decision rule at the kth sensor is

Uk = γk(Xk) = arg min
uk

M−1
∑

h=0

αk(uk, h)p(xk|h). (5.13)

Thus, the optimal kth sensor decision rule γk(Xk) reduces to an optimal M-ary

Bayesian hypotheses test with Bayesian cost coefficients αk(uk, h) for M hypotheses

and L possible decisions.

5.2 Hierarchical Conditional Independence (HCI)

model

A HCI model is defined by introducing a new random variable W (can be a scalar

variable or a vector variable) such that [8]

1. the following Markov chain holds

H − W − X −U − U0. (5.14)

2. X1, · · · , XK are conditionally independent given W, i.e.,

p(x1, · · · , xK |w) =
K
∏

k=1

p(xk|w). (5.15)

The inclusion of the hidden variable W induces conditional independence of the

sensor observations with respect to this new variable regardless of the dependence
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structure of the original model. Although it seems that the HCI model is less general,

it has been shown in [8] that any distributed detection model in Fig.5.1 satisfying (5.2)

can be represented as a HCI model and vice versa. Therefore, this HCI model provides

a unified framework for analyzing distributed detection problems under various de-

pendence assumptions. Besides, although this HCI model is proposed for distributed

detection problem, it can be used for general decentralized inference problems.

This HCI model unifies existing results for distributed detection with dependent

observations and is also useful in solving new problems that otherwise seem quite

formidable. The HCI model can be classified into three categories according to the

support set of W: “Discrete” HCI (DHCI) model, “Continuous” HCI(CHCI) model

and “Hybrid” HCI (HHCI) model.

Under the HCI model, the conditional distribution of X1, · · · , Xk given H can be

expanded as (assume W is of finite alphabet)

p(x|H) =
∑

w

p(x,w|H) (5.16)

=
∑

w

p(w|H)

K
∏

k=1

p(xk|w). (5.17)

If W is of continuous alphabet, the summation in the above equations is replaced by

integration.

5.2.1 DHCI model

Now let us consider the Bayesian hypothesis testing problem for the HCI model. By

the discussion in Section 5.1, the average Bayesian cost C that needs to be minimized
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for the hypothesis testing problem is

C =

∫

Xk

∑

uk

p(uk|xk)fk(uk, xk)dxk, (5.18)

Here fk(uk, xk) is the BCDF for the kth sensor making decision uk while observing

xk and is equal to

fk(uk, xk) =
M−1
∑

u0=0

M−1
∑

h=0

cu0,hπhp(xk|h)p(u0|uk, xk, h). (5.19)

For the DHCI model where W is a finite alphabet scalar variable, e.g., W ∈

{0, 1, · · · , N − 1}, by substituting (5.17) into (5.19), the BCDF can be simplified as:

fk(uk, xk) =
N−1
∑

w=0

βk(uk, w)p(xk|w), (5.20)

where

βk(uk, w),

M−1
∑

u0=0

M−1
∑

h=0

cu0,hπhp(u0|uk, w)p(w|h), (5.21)

is a scalar function of the sensor output Uk and W = w. The optimal decision rule

at the kth sensor thus is

Uk = γ(Xk) = arg min
uk

N−1
∑

y=0

βk(uk, w)p(xk|w). (5.22)

Similar to the CI case, γk(Xk) at sensor k under the DHCI model is also an optimal

multiple Bayesian hypotheses test of N hypotheses and L decisions with Bayesian

cost coefficients βk(uk, w) for uk = 0, · · · , L − 1, y = 0, · · · , N − 1.

5.2.2 CHCI model

For the CHCI model when W is a continuous scalar random variable, similar to the

DHCI model, we can have the BCDF as follows:

fk(uk, xk) =

∫

W

βk(uk, w)p(xk|w)dw (5.23)
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where βk(uk, w) is similarly defined as in (5.21) except that p(·) now denotes pdf

instead of pmf.

However, unlike the DHCI model, the BCDF for this model can not be described

completely by a set of finite parameters. Hence, unlike the optimal design problem

under the DHCI model, it is not clear when the optimal decision structure resembles

that of the conditional independence case.

In [8], by imposing additional constraints on W for the CHCI model, or more

specifically, on p(xk|w) and p(w|h), a class of CHCI model was determined where the

optimal local decision rules are the threshold quantizers of local observations. The

result is given in the following.

Proposition 8. [8, Propostion 1] Consider a distributed binary hypothesis testing

system with scalar sensor observations and binary sensor outputs. Suppose that the

distributed hypothesis testing problem is equivalent to a CHCI model where W is a

scalar random variable, and the following three conditions are satisfied:

1. The fusion center implements a monotone fusion rule that satisfies

P (U0 = 1|Uk = 1, w) ≥ P (U0 = 1|Uk = 0, w);

2. The ratio p(w|H=1)
p(w|H=0)

is a nondecreasing function of w;

3. The ratio p(xk|w)
p(x′

k
|w)

is also a nondecreasing function of w for any xk > x′
k.

Then there exists a single threshold quantizer at sensor k, i.e.,

Uk =











1, if Xk ≥ τk,

0, if Xk < τk,

for some suitable τk, that minimizes the error probability Pe.
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Proposition 8 provides a new tool in addressing distributed detection with depen-

dent observations. For example, it provides a new approach to solve the problem of

shift-in-mean dependent Gaussian random variables [8]. However, for many detection

problems that require a test statistic that is not necessarily monotone in the obser-

vations, directly using Proposition 8 is futile. One can pivot such problems using

transformed data but except for the case where the transformation is 1-1, further

justification is needed to preserve the optimality.

5.3 More general condition for CHCI model

We generalize Proposition 8 in this section to include cases where quantization at local

sensors may operate on a general statistic instead of directly on the data. Sufficient

conditions are derived for such quantizers to be the optimal form of local sensor

decision rules.

A real-parameter family of densities pθ(w), is said to have Monotone Likelihood

Ratio (MLR) in T (w) if there exists a real-valued function T (w) such that for any

θ < θ′ the distributions pθ and pθ′ are distinct and
pθ′(T (w))

pθ(T (w))
is a nondecreasing function

of T (w) [52]. In Proposition 8, if we treat the hypothesis H as a parameter, the MLR

is used in condition 2 for a special case: T (w) = w. We will extend the result where

a general statistic T (w) is used in the MLR. Correspondingly, the optimal quantizers

will operate on some statistics instead of the original observations.

If the ratio p(w|H=1)
p(w|H=0)

is a nondecreasing function of T (w), T (W ) is a sufficient

statistic for H . If T (w) is a one-to-one mapping of w, then the situation reduces to

that considered in Proposition 8. We now consider the general case when T (w) is
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monotone in w in disjoint intervals.

Let the sample spaces of Xk and W be subsets of the real line, i.e., X ∈ R,

W ∈ R, and let A1, · · · , Am are disjoint intervals of R. Suppose the function T (·) on

R is monotone in each interval, i.e.,

T (r) = Ti(r), for r ∈ Ai

and Ti(r) is monotone in r for r ∈ Ai.

To ease notation and presentation, we focus on binary hypothesis testing, scalar

sensor observations and binary sensor outputs. The general M-ary hypotheses testing

with L > 2 sensor outputs can be treated similarly. We have the following theorem.

Theorem 10. Consider a distributed binary hypothesis testing system with scalar

sensor observations and binary sensor outputs. Suppose that the distributed hypothesis

testing problem is equivalent to a CHCI model where the hidden random variable Y

is a scalar random variable. Furthermore,

1. The fusion center implements a monotone fusion rule that satisfies

P (U0 = 1|Uk = 1, w) ≥ P (U0 = 1|Uk = 0, w).

2. The ratio p(w|H=1)
p(w|H=0)

is a nondecreasing function of T (w), Zi(t) , T−1
i (t) has a

continuous derivative on t and the set Tw , {t : t = Ti(w)} for some w ∈ Ai is

the same for each i = 1, · · · , m.

3. For any S(xk) > S(x′
k), xk, x

′
k ∈ Ai, i = 1, · · · , m, λ(xk,t)

λ(x′
k
,t)

is a nondecreasing

function of t for t ∈ Tw, where

λ(xk, t) ,
∑m

i=1

(

pXk|W (xk|Zi(t))
∣

∣

d
dt

Zi(t)
∣

∣h(Zi(t))
)

(5.24)
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h(w)=(P (U0 = 1|Uk = 1, w) − P (U0 = 1|Uk = 0, w))π1p(w|H = 0) (5.25)

and S(·) is a function on R such that S(r) has the monotone property for r ∈ Ai.

Then there exists a single threshold quantizer at sensor k such that

Uk =











1 if S(xk) ≥ τk

0 otherwise

(5.26)

for some suitable τk that minimizes the error probability Pe.

Proof. See Appendix G. �

S(Xk) may not be unique, i.e., there may be multiple functions that satisfy the

conditions in the Theorem. Often times, setting S(·) = T (·) may satisfy the specified

conditions. Proposition 8 is a special case of Theorem 10 with T (w) = w, S(xk) = xk.

For this case, λ(xk, t) reduces to p(xk|w)h(w) where h(y) is positive. So p(xk|w)
p(x′

k
|w)

being

nondecreasing of w for xk ≥ x′
k is equivalent to that λ(xk,t)

λ(xk,t)
being nondecreasing of t

for S(xk) > S(x′
k).

5.4 Detection of a random signal in Gaussian noise

Consider the detection of a common random signal S in Gaussian noise using K

sensors. The observations at the kth sensor is

Xk = akS + Nk,

where ak is a deterministic attenuation factor and Nk is the observation noise at the

kth sensor with Gaussian distribution Nk ∼ N(0, σ2). The hypotheses test is

H = 0 : S ∼ N(0, σ2
0)
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H = 1 : S ∼ N(0, σ2
1)

where 0 < σ2
0 < σ2

1 .

For this problem, each sensor makes a binary decision and sends it to a fusion

center which makes a final decision. The problem of finding optimal local decision

rules was studied in [8] where a separate proof was given as Proposition 8 does not

apply. We show in the following that one can directly apply Theorem 10 to solve this

problem.

Let W = S, so we have H − W − X and X are conditionally independent given

W . Thus, this is a CHCI model with hidden variable being the random signal S.

Assume that a monotone fusion rule, e.g. AND rule, is used at the fusion center.

First we notice that p(w|H=1)
p(w|H=0)

is a monotone function of |w|, this is because p(w|H=1)
p(w|H=0)

=

σ0

σ1
exp

[

1
2

(

1
σ2
0
− 1

σ2
1

)

w2
]

, σ0 < σ1.

Thus, let T (w) = |w|. Both X and W are the real lines. We divide the real line

into two intervals: A1 = [0, +∞), A2 = (−∞, 0) where T (w) is increasing on A1 and

decreasing on A2.

By the definition of λ(xk, t) in (5.24), we have

λ(xk, t) = p(xk|t)h(t) + p(xk| − t)h(−t), (5.27)

Also, we can obtain that h(t) = h(−t) ≥ 0 by the symmetry of the fusion rule and

the symmetry of p(w|H = 0). Therefore,

λ(xk, t) = (p(xk|t) + p(xk| − t))h(t). (5.28)

Choose S(xk) = |xk|, and one can verify that condition 3 in Theorem 10 is satisfied.

That is λ(xk,t)
λ(x′

k
,t)

is a nondecreasing function of t for |xk| > |x′
k| where xk, x

′
k ∈ Ai,

i = 1, 2.
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For xk, x
′
k ∈ A1, |xk| > |x′

k| implies xk > x′
k ≥ 0. We now verify that λ(xk,t)

λ(x′
k
,t)

is a

nondecreasing function of t.

λ(xk, t)

λ(x′
k, t)

=
p(xk|t) + p(xk| − t)

p(x′
k|t) + p(x′

k| − t)
(5.29)

=
e

xkakt

σ2 + e
−xkakt

σ2

e
x′

k
akt

σ2 + e
−x′

k
akt

σ2

e−
x2

k
−x

′2
k

2σ2 . (5.30)

Differentiate ln λ(xk ,t)
λ(x′

k
,t)

with respect to t, we have

d

dt
ln

λ(xk, t)

λ(x′
k, t)

≥ 0 (5.31)

for xk > x′
k ≥ 0 and t > 0. So λ(xk ,t)

λ(x′
k
,t)

is a nondecreasing function of t for xk, x
′
k ∈ A1.

Similarly, for xk, x
′
k ∈ A2, |xk| > |x′

k| implies xk < x′
k < 0. One can verify that

λ(xk,t)
λ(x′

k
,t)

is also a nondecreasing function of t.

Hence, by Theorem 10, the optimal local decision rule is

Uk =











1 if |xk| ≥ τk

0 otherwise

(5.32)

Clearly, the choice of S(·) is not unique here. For example, any monotone functions

of |xk|, e.g., x2
k, can be used instead.

5.5 Summary

The problem of distributed detection with conditionally dependent observations was

considered in this chapter. Utilizing the so-called HCI model, we identify more gen-

eral conditions under which the distributed detection problem becomes tractable.

This proposed generalization enables us to tackle a much broader class of distributed

detection problems with dependent observations. The problem of detecting a random

signal in independent noises is used to illustrate the advantage of such an approach.
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Chapter 6

Sufficiency Principle for

Decentralized Data Reduction

6.1 Introduction

The sufficiency principle has played a prominent role in designing data processing

methods for statistical inference. The primary goal of sufficiency-based data reduction

is dimensionality reduction to facilitate subsequent inferences based on the reduced

data [22, 25, 26].

This chapter studies data reduction in decentralized inference and extends the

sufficiency principle to systems where data reduction needs to be done locally. De-

centralized inference refers to the decision making process involving multiple sen-

sors [7]. Parallel networks and tandem networks, illustrated in Figs. 6.1 and 6.2, are

two canonical models for decentralized inference.

For decentralized inference, data reduction is done locally without access to the
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global data. Therefore, the contrasting notions of local sufficiency and global suffi-

ciency need to be treated with care [9]. A sufficient statistic defined with respect to

local data is referred to as a local sufficient statistic; if a collection of local statistics

form a global sufficient statistic, they are said to be globally sufficient.

For the special case when data are conditionally independent given the inference

parameter, local sufficient statistics are known to be globally sufficient. This result

was established for parallel networks in [9, 53, 54] and it is straightforward to show

that the same result holds for tandem networks.

However, for the general case when data are conditionally dependent, a set of local

sufficient statistics need not be globally sufficient and vice versa. In this chapter,

we develop theories and tools for decentralized data reduction with conditionally

dependent observations for both parallel and tandem networks. We show that global

sufficiency of local statistics is not determined solely by the statistical characterization

of local data but also depends on the statistical property of the global data as well

as the structure of the network.

For parallel networks, we investigate the sufficiency principle under the HCI model,

which is a framework proposed to deal with distributed detection with conditionally

dependent observations [8]. Suitable conditions are identified under this HCI model

such that local sufficiency implies global sufficiency.

For tandem networks such as that described in Fig. 6.2, X2 is fully available at

the decision node. We define a novel notion of conditional sufficiency to capture the

difference in network structure with that of the parallel network.

Data reduction through sufficiency statistics has application beyond that of sta-

tistical inference problems. It was shown, for example, that sufficient statistic based
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X1

X2

θ p(x1,x2|θ)

X1

X2

T1(X1)

T2(X2)

γ(·) θ̂

Figure 6.1: Parallel network.

X1

X2

θ p(x1,x2|θ)

X1

X2

T (X1)

γ(·) θ̂

Figure 6.2: Tandem network.

data reduction achieves the same rate distortion function as the original data for

the point to point remote rate distortion problem [55]. In this chapter, we apply

the sufficient statistics to two classical distributed source coding problems. There,

sufficiency-based data reduction prior to a source encoder is shown to incur no penalty

on the corresponding rate region or the rate distortion function.

The rest of the paper is organized as follows. Section 6.2 develops the sufficiency

principle in parallel networks with emphasis on conditionally dependent observations.

Section 6.3 deals with tandem networks where the notion of conditional sufficiency is

introduced and associated theories are developed. In Section 6.4, the connection be-

tween the developed sufficiency principle and two distributed source coding problems

is explored. Section 6.5 concludes the chapter.
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6.2 Sufficient principle for parallel network

This section considers decentralized data reduction in a parallel network as illustrated

in Fig. 6.1. Let θ ∼ p(θ) be the parameter of interest and Xi the local observation

at sensor i for i = 1, 2. For a decentralized system, there is a need to distinguish the

notions of local versus global sufficient statistics [9]. When θ is random, for i = 1, 2,

Ti(Xi) is a local sufficient statistic if

θ − Ti(Xi) − Xi, (6.1)

form a Markov chain, i.e., sufficiency is defined with respect to the local observation

Xi. On the other hand, we call (T1(X1), T2(X2)) a global sufficient statistic if the

Markov chain

θ − (T1(X1), T2(X2)) − (X1,X2), (6.2)

holds. It is apparent that for the general case, the two individual Markov chains (6.1)

and (6.2) do not imply each other.

6.2.1 Conditionally independent observations

For the conditional independence case, it can be easily established that local suffi-

ciency implies global sufficiency. The converse also holds for the conditional indepen-

dence case, which is given in the following proposition.

Proposition 9. Let X1 and X2 be conditionally independent observations given the

random parameter θ. If (T1(X1), T2(X2)) form a global sufficient statistic for θ, then

both T1(X1) and T2(X2) are respectively local sufficient statistics with respect to the

observations X1 and X2.
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We first state some useful properties of Markov chains [56] that will be used for

subsequent proofs:

• Symmetry: X − Z − Y ⇒ Y − Z − X;

• Decomposition: X − Z − Y W ⇒ X − Z − Y ;

• Weak Union:X − Z − Y W ⇒ X − ZW − Y ;

• Contraction: X − Z − Y and X − ZY − W ⇒ X − Z − Y W ;

• Intersection: X − ZW − Y and X − ZY − W ⇒ X − Z − Y W .

Proof. Since X1 and X2 are independent given θ, X1−θ−X2 form a Markov chain and

so does (X1, T1(X1))−θ−X2 as T1(X1) is a function of X1. Using the weak union prop-

erty, we have that X1−(θ, T1(X1))−X2 form a Marokov chain. That (T1(X1), T2(X2))

is globally sufficient implies that (6.2) holds and thus X1 − (T1(X1), T2(X2))− θ form

a Markov chain according to the decomposition and symmetry properties. Com-

bining X1 − (θ, T1(X1)) − X2 and X1 − (T1(X1), T2(X2)) − θ, and using the in-

tersection property we get the Markov chain X1 − T1(X1) − (θ, T2(X2)) whenever

p(x1, T1(x1), T2(x2), θ) is positive. Thus T1(X1) is a local sufficient statistic for θ.

That T2(X2) is locally sufficient for θ can be established similarly. �

6.2.2 Conditionally dependent observations

While the above establishes that global and local sufficient statistics imply each other

for conditionally independent observations, the same is not true for the dependent

case. Consider the following trivial example.
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Example 2. Let X1 = X2 in Fig. 6.1. It is clear that (T1(X1) = X1, T2(X2) = ∅) is

globally sufficient for θ while T2(X2) = ∅ is not locally sufficient.

The rest of this section is devoted to the question of how to identify global suffi-

cient statistics at distributed nodes with conditionally dependent observations. Our

approach leverages the HCI model, which is a framework developed for distributed

detection with conditionally dependent observations, as discussed in Section 5.2. An

HCI model is constructed by introducing a hidden variable W such that the following

Markov chains hold:

X1 −W −X2,

θ − W − (X1,X2).

(6.3)

That is, W induces conditional independence between X1 and X2 as well as condi-

tional independence between the inference parameter θ and the sensor observations

(X1,X2). Any general distributed inference model is equivalent to an HCI model and

vice versa. We notice here that while we only illustrate the HCI model using the two

sensor system, the framework is applicable to that involving any arbitrary number

of sensors where we replace the Markov chain X1 − W − X2 with the equivalent

conditional independence assumption.

Notice that the second Markov chain in defining the HCI model implies that the

information about the inference parameter θ in the data (X1,X2) is preserved entirely

in W. This is formalized in the following lemma.

Lemma 10. Let X1,X2 ∼ p(x1,x2|θ) and suppose that there exists a random variable

W such that

θ − W − (X1,X2). (6.4)
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A statistic T (X1,X2) that is sufficient for W is also sufficient for θ.

Proof. The Markov chain (6.4) implies that θ − W − (X1,X2, T (X1,X2)) forms a

Markov chain for any statistics T (X1,X2). That T (X1,X2) is sufficient for W implies

the Markov chain W−T (X1,X2)−(X1,X2). It is straightforward to show that these

two Markov chains give rise to a long Markov chain

θ − W − T (X1,X2) − (X1,X2). (6.5)

Therefore, T (X1,X2) is sufficient for θ. �

Lemma 10 is not useful in itself as T (X1,X2) is a function of the global data which

is not available in either of the nodes. Its use is mainly for establishing the following

result.

Theorem 11. Let X1,X2 ∼ p(x1,x2|θ) and suppose there exists a random variable

W such that θ − W − (X1,X2). Let T (W) be a sufficient statistic for θ, i.e., θ −

T (W) − W.

1. If a pair of statistics (T1(X1), T2(X2)) are globally sufficient for T (W), they are

globally sufficient for θ.

2. If T (W) induces conditional independence between X1 and X2 and (T1(X), T2(X2))

are locally sufficient for T (W), then (T1(X1), T2(X2)) are globally sufficient for

θ.

Proof. To prove the first result, from Lemma 10, we only need to show that the

Markov chain θ−T (W)− (X1,X2) holds. Note first that the Markov chain T (W)−

(θ,W) − (X1,X2) forms a Markov chain as T (W) is a function of W . Together
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with θ−W− (X1,X2) we obtain the Markov chain (θ, T (W))−W− (X1,X2) using

the contraction property. Combined with the Markov chain θ − T (W) − W, we get

θ − T (W) − W − (X1,X2) which implies θ − T (W) − (X1,X2).

To prove the second result, since conditional independence ensures that local suf-

ficient statistics are globally sufficient, (T1(X1), T2(X2)) are thus sufficient for T (W).

The first result then establishes that they are also sufficient for θ. �

Applying Theorem 11 to the HCI model, we have the following corollary.

Corollary 3. For an HCI model, local sufficiency with respect to the hidden variable

implies global sufficiency.

Corollary 3 suggests that a way to obtain global sufficient statistics at individual

nodes is to ensure local sufficiency of the statistics with respect to the hidden variable

W in the HCI model. However, as we shall illustrate, the approach is meaningful

only if the hidden variable W is chosen appropriately. For example, choosing W =

(X1,X2) ensures that the Markov chains used to define the HCI model in (6.3) are

always satisfied, yet it does not lead to any meaningful data reduction. We now use

a simple example to show how Corollary 3 can be used for data reduction through an

appropriately chosen W.

Example 3. For i = 1, · · · , n, let

X1i = θ + Z + Ui,

X2i = θ + Z + Vi,

where Z, U1, · · · , Un, V1, · · · , Vn are mutually independent Gaussian random variables

such that Z ∼ N (0, ρ), Uj ∼ N (0, 1−ρ), Vj ∼ N (0, 1−ρ). Thus, we need to estimate
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a parameter θ in the presence of a constant interference Z and independent noises

Ui and Vi. Since X1i, X2i ∼ N(θ, θ, 1, 1, ρ), given θ, X1 and X2 are not independent

conditioned on θ.

Choose the hidden variable W = θ + Z. One can verify easily that W satisfies the

Markov chains θ − W − (X1,X2) and X1 − W −X2 required by the HCI model. For

Gaussian observations, it is also clear that
∑

i X1i and
∑

i X2i are locally sufficient

for W . Therefore, from Corollary 3, (
∑

i X1i,
∑

i X2i) is globally sufficient for θ.

The next example is motivated by the cooperative spectrum sensing problem [57].

Example 4. Consider the hypothesis testing problem involving K sensors where the

two hypotheses under test with observations are

H0 : Xk = Nk, (6.6)

H1 : Xk = hkS + Nk, (6.7)

where Xk, k = 1, · · · , K, is the observation at sensor k, hk’s are circularly symmetric

complex Gaussian and independent of each other and of other variables, S is a signal

taking values in the set S = {sm = rmejθm, m = 1, · · · , M} with probability p(S =

sm) = πm, and Nk is the observation noise at the kth sensor which is circularly

complex Gaussian distributed and is independent of each other. This hypothesis testing

problem can be used to describe the baseband model of detecting the presence of a QAM

signal in independent Rayleigh fading channels using K sensors. Each sensor makes a

local decision Uk = γ(Xk) and sends it to a fusion center which makes a final decision

regarding the hypothesis under test.

The observations are not conditionally independent under H1 given that the ob-

servations contain a common random signal S. Again, taking a Baysian viewpoint
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where we assume that the true hypothesis H is a binary random variable, then H−S−

(X1, · · · , XK) form a Markov chain since the observations depend on the hypothesis

only through the signal. It is easy to verify that the statistic |S| is sufficient for H

given S. Thus, the Markov chain H − |S| − S − (X1, · · · , XK) holds. On the other

hand, given |S|, the observations are conditionally independent of each other under the

independent Rayleigh fading assumption. Therefore, |S| serves as the hidden variable

W for the HCI model corresponding to this decentralized hypothesis testing problem.

For any k, |Xk| is a minimal sufficient statistic for |S|. This can be easily verified

by writing out the ratio p(xk||s|)
p(x′

k
||s|) for two sample points xk and x′

k. Therefore, from

Corollary 3, {|Xk|}, k = 1, · · · , K, are globally sufficient for H.

6.3 Sufficiency principle for tandem network

A tandem network, as illustrated in Fig. 6.2, is one such that compressed data are

transmitted to a node which also has its own observation. The second node will

then make a final decision using its own data and the input from the first node.

Knowing that X2 is available at the fusion center even without directly observing

X2 should have an impact on how node X1 summarizes its own data X1. A natural

way of extending the sufficiency principle to this network is as follows: the inference

performance should remain the same whether the inference is based on (X1,X2) or

(T (X1),X2). From the data processing inequality, the sufficiency of T (X1) can thus

be characterized using the Markov chain θ − (T (X1),X2) − (X1,X2). Given that

T (X1) is a function X1, it is straightforward to show that that the Markov chain

θ− (T (X1),X2)− (X1,X2) is equivalent to θ− (T (X1),X2)−X1. This motivates the

99



following definition of conditional sufficiency.

Definition 4. A statistic T (X1) is a conditional sufficient statistic for θ, conditioned

on X2, if the conditional distribution of the sample X1 given the value of T (X1) and

X2 does not depend on θ.

The definition allows us to generalize a number of classical results related to

sufficient statistics.

Theorem 12. Let X1,X2 be distributed according to p(x1,x2|θ). Let q(T (x1),x2|θ)

be the joint distribution of T (X1) and X2, then T (X1) is a conditional sufficient

statistic for θ, conditioned on X2, if for every (X1,X2) pair, the ratio p(x1,x2|θ)
q(T (x1),x2|θ)

is

constant as a function of θ.

Similarly, the Neyman-Fisher factorization theorem can also be generalized to the

conditional case.

Theorem 13. Let X1,X2 be distributed according to p(x1,x2|θ). A statistic T (X1)

is conditionally sufficient for θ, conditioned on X2, if and only if there exist functions

g(t,x2|θ) and h(x1,x2) such that,

p(x1,x2|θ) = g(T (x1),x2|θ)h(x1,x2), (6.8)

for all sample points (x1,x2) and all parameter values θ.

The proof can be constructed similarly to that of the factorization theorem in [25,

Theorem 6.2.6].

Minimal sufficient statistic plays a prominent role in statistical inference as it

attains maximum data reduction without compromising inference performance. Sim-
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ilar to the definition of minimal sufficient statistic [25], we can define the notion of

minimal conditional sufficient statistic as follows.

Definition 5. A conditional sufficient statistic T (X1) is a minimal conditional suf-

ficient statistic if it is a function of any other conditional sufficient statistic U(X1).

The following theorem provides a meaningful way to find minimal conditional

sufficient statistics.

Theorem 14. Let X1,X2 be distributed according to p(x1,x2|θ). Suppose there exists

a function T (X1) such that for every two sample points x1, x̂1, and x2, the ratio

f(x1,x2|θ)
f(x̂1,x2|θ)

is constant as a function of θ if and only if T (x1) = T (x̂1). Then T (X1) is

a minimal conditional sufficient statistic for θ given X2.

The proof follows the same line of proof for Theorem 6.2.13 in [25].

The definition of conditional sufficiency is more general than global sufficiency.

This is because if there exist a pair of statistics (T1(X1), T2(X2)) that are globally

sufficient for θ, then T1(X1) must be conditionally sufficient for θ, conditioned on X2.

Example 5. Let {X1i, X2i}, i = 1, · · · , n be i.i.d according to p(x1, x2|θ), where

p(x1, x2|θ) =











2 θ < x1 < θ + 1, θ < x2 < x1,

0 otherwise.

The marginal distribution of X1 and X2 are therefore,

p(x1|θ) = 2(x1 − θ), θ < x1 < θ + 1,

p(x2|θ) = 2(θ + 1 − x2), θ < x2 < θ + 1.

It can be easily shown that no data reduction is possible using the marginal dis-

tribution, i.e., no meaningful locally sufficient statistics can be found other than the
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data themselves. Note that X1 is uniformly distributed on the interval (x2, θ + 1),

therefore, we have

p(x1|x2, θ) =
1

∏n
i=1(θ + 1 − x2i)

, x2i < x1i, (max
i

{x1i} − 1) < θ.

Thus, maxi{X1i} is a conditional sufficient statistic for θ, conditioned on X2. Simi-

larly, we can obtain that mini{X2i} is a conditional sufficient statistic of X2, condi-

tioned on X1. This is consistent with the fact that (maxi{Xi}, mini{Yi}) is globally

sufficient given both X1 and X2.

6.4 Sufficient statistics and distributed source cod-

ing

In this section, we study the connection between the sufficiency principle and two

distributed source coding problems: the lossless source coding with side information

problem and the remote source coding with side information available both at encoder

and decoder. We show that for these two problems, sufficient statistic based data

reduction achieves the same rate distortion function as the original data.

6.4.1 Source coding with side information

Consider the lossless source coding problem in Fig. 6.3. An i.i.d. sequence of source

pairs (Xn, Y n) are encoded separately with rates (R1, R2) and the descriptions are

sent to a decoder where only Xn is to be recovered with asymptotically vanishing

probability of error. A rate pair (R1, R2) is achievable if there exists a lossless source

code with rates (R1, R2). The rate region R is defined as the closure of the set of all
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Figure 6.3: Source coding with side information.

achievable rate pairs and was shown to be [4, 58],

R = {(R1, R2) : R1 ≥ H(X|U), R2 ≥ I(Y ; U), X − Y − U}. (6.9)

Assume T (Y ) is a sufficient statistic for X, i.e., X − T (Y ) − Y . Define

R′ = {(R1, R2) : R1 ≥ H(X|U), R2 ≥ I(T (Y ); U), X − T (Y ) − U}, (6.10)

which is the rate region for encoding (Xn, T n(Y n)) where T n(Y n) is the i.i.d sequence

T (Yi), i = 1, · · · , n. The following theorem shows that encoding reduced data T n(Y n)

achieves the same rate region as encoding the original data.

Theorem 15.

R = R′. (6.11)

Proof. It is straightforward to show R ⊇ R′. To show R ⊆ R′, let (R1, R2) ∈ R,

then there exists a U such that X − Y − U , R1 ≥ H(X|U), R2 ≥ I(Y ; U). Since

(X, T (Y )) − Y − U and X − T (Y ) − Y , the Markov chain X − T (Y ) − Y − U

holds. Therefore, R1 ≥ H(X|U), R2 ≥ I(Y ; U) ≥ I(T (Y ); U) by the data processing

inequality. Thus, (R1, R2) ∈ R′. �

A direct consequence of Theorem 15 is that the corner point of the rate region

(R1 = H(X|Y ), R2 = H(T (Y )) may be strictly smaller than (R1 = H(X|Y ), R2 =
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(H(X|Y ), H(M(Y ))

R1

R

R2

H(X)H(X|Y )

H(M(Y ))

Figure 6.4: The corner points of the rate region for the source coding with side

information problem.

H(Y ). This observation was first reported in [18]. Specifically, the corner point can

be obtained by finding the smallest admissible R2 when R1 = H(X|Y ) and it was

shown that [18]

inf{R2 : (H(X|Y ), R2) ∈ R} = inf
X−Y −U,X−U−Y

I(Y ; U),

= H(ΦX
Y ).

As it turns out, the quantity ΦX
Y is precisely the minimal sufficient statistic of X

given Y , M(Y ). The corner point of the rate region for the source coding with side

information problem is shown in Fig. 6.4.

6.4.2 Remote source coding with side information

In this section, we examine the application of the conditional sufficient statistics in a

remote rate distortion problem with side information.
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Figure 6.5: Remote source coding with side information.

Consider a model in Fig 6.5, which is the remote source coding with side informa-

tion available at both the encoder and decoder. We will show that in this problem, the

rate distortion function will not change by encoding a conditional sufficient statistic

T (X).

Let (X, Y, Z) ∼ p(x, y, z) and d(z, ẑ) be a given distortion function. Let (Xn, Y n, Zn)

be i.i.d sequences drawn from (X, Y, Z). Upon receiving the sequences (Xn, Y n), the

encoder generates a description of the sources with rate R and sends it to the decoder

who has the side information Y n and wishes to reproduce Zn with distortion D. The

rate distortion function R(D) is the infimum of rate R such that there exist maps

fn : X n × Yn → {1, · · · , 2nR}, gn : Yn × {1, · · · , 2nR} → Ẑn such that

lim sup
n→∞

Ed(Zn, gn(Y
n, fn(Xn, Y n))) ≤ D. (6.12)

It is easy to show that the rate distortion function R(D) is:

R(D) = min
p(u|x,y)

min
f

I(X; U |Y ), (6.13)

where the minimum is taken over all p(u|x, y) and functions ẑ = f(u, y) such that

E1[d(Z, Ẑ)] ,
∑

x,y,z,u

p(x, y, z)p(u|x, y)d(z, f(u, y)) ≤ D. (6.14)

Let T (X) be a conditional sufficient statistic for the remote source Z, conditioned
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on Y (i.e., Z − (T (X), Y ) − (X, Y )). Define

R′(D) = min
p(u|t,y)

min
f

I(T (X); U |Y ), (6.15)

where the minimum is taken over all p(u|t, y) and functions ẑ = f(u, y) such that

E2[d(Z, Ẑ)] ,
∑

t,y,z,u

p(t, y, z)p(u|t, y)d(z, f(u, y)) ≤ D. (6.16)

R′(D) is the rate distortion function when we have (T n(Xn), Y n) instead of (Xn, Y n)

at the encoder, where T n(Xn) is the i.i.d sequence T (Xi), i = 1, · · · , n.

Theorem 16.

R(D) = R′(D). (6.17)

Proof. It is obvious that R(D) ≤ R′(D).

We now show R(D) ≥ R′(D). For any U that achieves R(D), since T (X) is a

function of X, we have the Markov chain (T (X), Y ) − (X, Y ) − U , hence

I(X; U |Y ) = H(U |Y ) − H(U |X, Y ) (6.18)

≥ H(U |Y ) − H(U |T (X), Y ) (6.19)

= I(T (X); U |Y ). (6.20)

Given that T (X) is a conditional sufficient statistic for Z, we have the following

D ≥ E1[d(Z, Ẑ)]

=
∑

y,z,u

d(z, f(u, y))

(

∑

x

p(x, y, z)p(u|x, y)

)

(6.21)

=
∑

y,z,u

d(z, f(u, y))

(

∑

x

p(z|x, y)p(x, y, u)

)

(6.22)

=
∑

y,z,u

d(z, f(u, y))





∑

t

p(z|t, y)
∑

x:T (x)=t

p(x, y, u)



 (6.23)
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=
∑

y,z,u

d(z, f(u, y))

(

∑

t

p(z|t, y)p(t, y, u)

)

(6.24)

=
∑

y,z,u

d(z, f(u, y))

(

∑

t

p(u|t, y)p(t, y, z)

)

(6.25)

= E2[d(Z, Ẑ)] (6.26)

where (6.23) comes from the definition of conditional sufficiency and (6.24) is true by

defining p(t, y, u) =
∑

x:T (x)=t p(x, y, u). This shows that for any p(u|x, y) and f(u, y)

satisfying (6.14) there exist p(u|t, y) and f(u, y) such that (6.16) is satisfied. Thus,

R(D) ≥ R′(D). �

6.5 Summary

This chapter develops the sufficiency principle that guides local data reduction in

networked inference with dependent observations for two classes of inference networks:

parallel network and tandem network.

For the parallel network, the HCI model is used for conditional dependent ob-

servations to obtain conditions such that local sufficiency implies global sufficiency.

For the tandem network, the notion of conditional sufficiency is proposed and related

theories and tools associated with this new sufficiency concept are developed.

Finally, we established that data reduction using suitable notions of sufficiency

incurs no penalty on the rate region for two distributed source coding problems.
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Chapter 7

Decentralized Data Reduction with

Quantization Constraints

7.1 Introduction

Sufficiency based data reduction ensures no loss of inference performance using the

reduced data. While the sufficiency principle often results in maximum dimensionality

reduction, communicating a one-dimensional real data may still be infeasible when

communication is subject to a finite capacity constraint.

In this chapter, we consider the simple case where each sensor node communicates

only a finite number of bits to the fusion center. Directly quantizing the raw data,

especially if the data is of high dimension and quantizers operate in a decentralized

fashion, is often a formidable task [59]. As such, it is often desirable to achieve

maximum data reduction at each node prior to quantization.

We are then led to the question: is it optimal to implement data reduction by
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forming a collection of global sufficient statistics followed by the design of optimal

quantizers using the reduced data? Alternatively, one can consider the sufficiency

principle to be the ubiquitous principle for data reduction in a ‘lossless’ sense, that

is, complete information in the original data needs to be retained in the statistics.

When practical constraints such as finite-bit quantization are imposed which result

in inevitable loss of information, is sufficient principle still the guiding principle for

data reduction?

Unfortunately, as seen from Example 6, the answer to this question is negative in

general. However, there exist results where quantizing sufficient statistics is known

to be optimal. The classical example is distributed detection with conditionally in-

dependent observations where the local likelihood ratios form a set of global suffi-

cient statistics. Indeed, Tsitsiklis established in [60] that likelihood ratio quantizers

(LRQ’s) are optimal for a broad class of performance criteria, even with non-ideal,

possibly coupling channels between the sensors and the fusion center [61, 62]. There

also exist instances where quantizing local sufficient statistics is globally optimal for

certain parameter regimes in the dependent observation case [63].

The objective of this chapter is thus to identify, for decentralized inference involv-

ing dependent data, conditions under which data reduction using sufficient statistics

is still optimal when quantization is required at each node. While the result includes

that of [60] as its special case, the approach differs from that of [60] as we do not

start with an explicit form of quantizers thus can not explore the structural infor-

mation of the statistics as that of [60]. Instead, our approach utilizes the Markovian

structure implied in sufficient statistics. On the other hand, our optimality is strictly

in the sense of minimizing a Bayesian cost as opposed to that of [60] which includes
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a broader class of performance criteria. We discuss the problem in details for parallel

networks and generalize the results to tandem networks.

Related to the work in this chapter is the quantizer design for distributed estima-

tion in [59] and [64] where necessary conditions for optimal quantizers are derived. We

do not explicitly address the quantizer design problem. Instead, we derive sufficient

conditions such that sufficient statistics based data reduction followed by quantiza-

tion is structurally optimal. Various optimal quantizer design approaches can then

be applied to the reduced data which is often much more tractable than dealing with

the raw data.

The rest of this chapter is organized as follows. Section 7.2 establishes the struc-

tural optimality of sufficiency based data reduction for centralized inference when

quantization is required. In Section 7.3, the sufficiency principle is re-examined in de-

centralized inference when quantization is necessary at each node. Both conditionally

independent and conditionally dependent observations are considered. We establish

the structural optimality of sufficiency based data reduction followed by quantizers

for the independent case. For the dependent case, we identify a class of problems

where we prove that sufficiency based data reduction is still optimal in the presence

of quantizers. Also we obtain a unifying condition under which the sufficiency based

data reduction is optimal, which includes the independence and dependence condi-

tions as its special cases in this section. Section 7.4 discuss the centralized inference

with quantization constraints for tandem networks. Section 7.5 concludes the chapter.
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7.2 Centralized inference with quantization

In this section, we consider a simple centralized inference system where the entire

data is available at a single node. We establish the optimality of sufficiency based

data reduction when quantization is required.

Consider a centralized inference system in which quantization is required, as shown

in Fig. 7.1(a). Here, θ is the parameter of inference interest with distribution p(θ),

X is the random vector observation, γ(·) is the quantizer directly operating on the

data X and the output of the quantizer is U = γ(X) ∈ {0, . . . , L − 1} where L is

the number of possible outputs. The estimator at the fusion center is denoted by the

function h(·) whose input is the quantizer output.

Let T (X) be any sufficient statistic for θ. To establish the optimality of sufficiency

based data reduction with a quantization constraint, we will show in the following that

the two systems in Fig. 7.1 achieve the same optimal performance where the second

system applies data reduction to obtain T (X) prior to a quantization operation. The

quantizer and estimator in Fig. 7.1(b) are similarly defined by U ′ = γ′(T (X)) and

h′(U ′). Note that for a centralized system there is no distinction between local and

global sufficient statistics.

Let d(θ, θ̂) be a given cost function between the parameter θ and the estimator

output θ̂. For the model in Fig. 7.1(a), θ̂ = h(U) = h(γ(X)). The Bayesian cost is

the expected cost function given by

C = E[d(θ, h(γ(X)))], (7.1)

where the expectation is taken with respect to both the random parameter θ and the
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X U
p(x|θ) γ(·) h(·)θ θ̂

(a)

X T (X) U ′

p(x|θ) T (·) γ′(·) h′(·)θ θ̂′

(b)

Figure 7.1: Centralized inference systems with quantizers operating on (a) the raw

data X, (b) a statistic T (X).

observation X. Let

Cmin = min
γ,h

C. (7.2)

For the model in Fig. 7.1(b), θ̂′ = h′(γ′(T (X)) and the Bayesian cost is given by

C ′ = E[d(θ, h′(γ′(T (X)))], (7.3)

where again the expectation is taken with respect to θ and X. Let

C ′
min = min

γ′,h′
C ′. (7.4)

We now establish that the system described in Fig. 7.1(b) is structurally optimal,

i.e., it can achieve the same inference performance as that of Fig. 7.1(a), hence quan-

tizing the sufficient statistic achieves the same minimum Bayesian cost as quantizing

the observation in centralized inference.

Theorem 17. For the Bayesian cost in (7.1) and (7.3),

Cmin = C ′
min. (7.5)

Proof. Apparently, C ′
min ≥ Cmin as one can always define a new quantizer γ(X) =

γ′(T (X)) for any given γ′(·), thus converting any system described by Fig. 7.1(b) to

that of Fig. 7.1(a) whose performance is no better than Cmin.
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Next we establish C ′
min ≤ Cmin by showing that for any pair of (γ(·), h(·)) that

achieves Cmin, there exists corresponding (γ′(·), h′(·)) pair that can achieve the same

cost.

Expanding C in (7.1) with respect to the observation X, we have

C =

∫

θ

∫

X

d(θ, h(γ(x)))p(x, θ)dxdθ (7.6)

=

∫

X

∫

θ

d(θ, h(γ(x)))p(θ|x)p(x)dθdx (7.7)

=

∫

X

f(u,x)p(x)dx, (7.8)

where (7.8) is by the following definitions

u , γ(x) (7.9)

f(u,x) ,

∫

θ

d(θ, h(u))p(θ|x)dθ. (7.10)

From (7.8), to minimize the Bayesian cost function C, the optimal quantizer given

fixed estimator h(·) is to make a decision u such that f(u,x) is minimized, that is

U = γ(X) = arg min
u

f(u,X). (7.11)

On the other hand, since T (X) is the sufficient statistic of θ, by Lemma 1, we have

f(u,x) =

∫

θ

d(θ, h(u))p(θ|T (x))dθ. (7.12)

Therefore, given h(·) being the optimal estimator, the optimal quantizer decides U =

i ∈ {0, . . . , L − 1} if

0 ≥ f(i,x) − f(j,x)

=

∫

θ

(d(θ, h(i)) − d(θ, h(j))) p(θ|T (x))dθ, (7.13)
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for any j ∈ {0, . . . , L− 1}. Note that (7.13) depends on X only through T (X), hence

can be realized by a γ′(T (X)). Such an γ′(·), together with h′(·) = h(·), can also

achieve Cmin. Thus, the proof is complete. �

The above result is not surprising in view of the fact that a sufficient statistic

captures all the information about θ contained in the data. Indeed, the above theorem

can be viewed as a simple instantiation of the sufficiency principle for the Bayesian

cost. Other inference objective functions can also be used. Consider for example the

“indirect rate distortion problem” [65] where a noisy version of a source sequence is

observed at the encoder while the decoder tries to minimize the end-to-end distortion

subject to a rate constraint between the encoder and the decoder. It was shown in [55]

that data reduction using a sufficient statistic at the encoder does not affect the rate

distortion function.

In decentralized inference, however, the same statement is not necessarily true,

i.e., sufficient statistics based data reduction may not be optimal when quantization

is required at individual nodes.

7.3 Decentralized data reduction with quantiza-

tion constraints in parallel networks

We now consider decentralized inference where quantization is required at each node.

For simplicity and ease of presentation, we assume a simple two-node system, as

illustrated in Fig. 7.2. The result extends to systems with more than two nodes in a

straightforward manner.
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h′(·)θ θ̂′

(b)

Figure 7.2: Decentralized inference systems with quantizers operating on (a) the raw

data Xi, i = 1, 2, (b) statistics Ti(Xi), i = 1, 2.

Let θ ∼ p(θ) be the parameter of interest and Xi the local observation at sensor

i with a likelihood function p(xi|θ), for i = 1, 2. Statistics and quantizers at local

nodes, as well as the estimator at the fusion center are defined in a similar fashion

as that in Section 7.2. Let d(θ, θ̂) be the cost function where θ is the true parameter

and θ̂ its estimate. The Bayesian costs for Fig. 7.2(a) and Fig. 7.2(b) are given

respectively by

C = E[d(θ, h(U1, U2))], (7.14)

C ′ = E[d(θ, h′(U ′
1, U

′
2))], (7.15)

where Ui = γi(Xi) ∈ {0, . . . , L − 1} and U ′
i = γ′

i(Ti(Xi)) ∈ {0, . . . , L − 1} .

The additional constraint that a quantizer is used at each sensor node may lead to

inevitable information loss. As such, it is not clear whether global sufficient statistics

based data reduction is still optimal. That is, even if (T1(X1), T2(X2)) form a global

sufficient statistic, can the system in Fig. 7.2(b) achieve the same performance as that
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of Fig. 7.2(a)?

The answer, unfortunately, is no, as can be seen from the following simple example.

Example 6. Consider the degenerate case where X1 = X2 and Ui is constrained to be

of one bit. Clearly (T1(X1) = X1, T2(X2) = φ) is a global sufficient statistic. However

it is trivial to see that quantizing such constructed T1(X1) and T2(X2) using 1-bit each

can be strictly suboptimal compared with quantizing the data directly, with the former

equivalent to a 1-bit quantizer of the data whereas the latter a 2-bit quantizer.

The above example involves data that are conditionally dependent given the pa-

rameter of interest. It turns out when data are conditionally independent given θ,

the answer is indeed the affirmative, i.e., quantizing sufficient statistics is structurally

optimal.

7.3.1 Conditionally independent observations

Theorem 18. For the Bayesian costs in (7.14) and (7.15) when X1 and X2 are

conditionally independent given θ,

min
γ1,γ2,h

C = min
γ′
1,γ′

2,h′
C ′. (7.16)

Note that for conditionally independent observations, there is no need to distin-

guish between local and global sufficient statistics. We now establish Theorem 18

using the Bayesian cost for a two-sensor system.

Proof. Let

Cmin = min
γ1,γ2,h

C, (7.17)
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where the minimum Bayesian cost is achieved by the optimal quantizers γ∗
i (·) and

estimator h∗(·). It is easy to see that Fig. 7.2(b) can not achieve a better performance

than Cmin. Thus we only need to show that Cmin can be achieved by Fig. 7.2(b), i.e.,

one can find (γ′
1(·), γ′

2(·), h′(·)) that achieve Cmin for the given sufficient statistics

T1(X1) and T2(X2). Similar to the proof for the centralized case, it suffices to show

that the optimal quantizers γ∗
i (Xi) achieving Cmin depends on Xi only through Ti(Xi).

As X1 and X2 are conditionally independent,

p(x1,x2, θ) = p(θ)p(x1|θ)p(x2|θ) (7.18)

= p(x1)p(θ|x1)p(x2|θ) (7.19)

= p(x1)p(θ|T1(x1))p(x2|θ). (7.20)

The last step comes from the fact that T1(X1) is sufficent for the data X1 and Lemma

1. Expanding C with respect to X1, we get

C =

∫

θ

∫

X1

∫

X2

d(θ, h(γ1(x1), γ2(x2)))p(x1,x2, θ)dx2dx1dθ (7.21)

=

∫

θ

∫

X1

∫

X2

d(θ, h(γ1(x1), γ2(x2)))p(x1)p(θ|T1(x1))p(x2|θ)dx2dx1dθ(7.22)

=

∫

X1

f1(u1,x1)p(x1)dx1, (7.23)

where

f1(u1,x1) ,

∫

x2

∫

θ

d(θ, h(u1, γ2(x2)))p(θ|T1(x1))p(x2|θ)dθdx2. (7.24)

Let γ2(·) and h(·) take the form of the optimal γ∗
2(·) and h∗(·), γ∗

1(·) must be chosen

such that the corresponding f1(u1,x1) is minimized. The condition for making U1 =

γ∗
1(x1) = i ∈ {0, . . . , L − 1} given X1 = x1 is

0 ≥ f1(i,x1) − f1(j,x1),
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=

∫

x2

∫

θ

[d(θ, h∗(i, γ∗
2(x2))) − d(θ, h∗(j, γ∗

2(x2)))] p(θ|T1(x1))p(x2|θ)dθdx2, (7.25)

for any j ∈ {0, . . . , L − 1}. Therefore, (7.25) depends on X1 only through T1(X1).

The optimal quantizer γ∗
2(·) at the second node, given that γ1(·) and h(·) take the

form of γ∗
1(·) and h∗(·), can be similarly shown to be a function of the sufficient statistic

T2(X2). Thus we have established that both γ∗
1(·) and γ∗

2(·) can be equivalently

expressed as functions of T1(X1) and T2(X2) respectively, i.e., there exist γ′
1(·) and

γ′
2(·) such that

γ′
1(T1(X1)) = γ∗

1(X1), (7.26)

γ′
2(T2(X2)) = γ∗

2(X2). (7.27)

Thus, the above γ′
1(·) and γ′

2(·), together with h′(·) = h∗(·), achieves Cmin for Fig. 7.2(b).

�

The fact that likelihood ratio quantizer is optimal for decentralized detection

with conditionally independent observations can be naturally derived from the above

general result.

Example 7. Let θ ∈ {0, 1} and its estimate θ̂ ∈ {0, 1}. The observations X1 and X2

are independent given θ. Let d(·) take the form of 0 − 1 cost, i.e., d(θ, θ̂) = 0 when

θ = θ̂ and 1 otherwise. It is a trivial exercise to show Ti(xi) = p(xi|θ=1)
p(xi|θ=0)

is a sufficient

statistic for θ with respect to Xi. Thus quantizing Ti(Xi) is structurally optimal,

which is consistent with [60] as the inference problem is precisely a hypothesis testing

problem.
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7.3.2 Conditionally dependent observations

While the previous section establishes the optimality of sufficiency based data reduc-

tion for conditionally independent observations even with quantization constraints,

Example 6 indicates that such is not the case with conditionally dependent observa-

tions. Nevertheless, in this section, we establish that within the problems involving

dependent observations, there exist a class of problems such that quantizing sufficient

statistics is still structurally optimal. Here we again utilize the HCI model [8].

Theorem 19. Let W be a hidden variable such that the conditions for HCI model

(6.3) are true. If T1(X1) and T2(X2) are local statistics that are sufficient with respect

to W, then quantizing T1(X1) and T2(X2) at the respective sensor is structurally

optimal for the decentralized inference problem.

Note that the first Markov chain in (6.3) indicates that X1 and X2 are condi-

tionally independent given W. If T1(X1) and T2(X2) are locally sufficient for W,

(T1(X1), T2(X2)) is globally sufficient for W and hence for θ by Corollary 3.

Proof. Let Cmin be the minimum Bayesian cost achieved by Fig. 7.2(a) with the

corresponding optimal quantizers γ∗
i (·), i = 1, 2, and estimator h∗(·). We show that

γ∗
i (Xi) is necessarily a function of the sufficient statistic Ti(Xi).

Without loss of generality, we assume that W is continuous. From (6.3), we have

p(x1,x2|θ) =

∫

W

p(x1,x2,w|θ)dw (7.28)

=

∫

W

p(x1|w)p(x2|w)p(w|θ)dw (7.29)

=

∫

W

p(w|x1)p(x1)

p(w)
p(x2|w)p(w|θ)dw. (7.30)
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=

∫

W

p(w|T1(x1))p(x1)

p(w)
p(x2|w)p(w|θ)dw. (7.31)

Expanding C with respect to X1, we obtain

C =

∫

θ

∫

X1

∫

X2

d(θ, h(γ1(x1), γ2(x2)))p(x1,x2, θ)dx2dx1dθ (7.32)

=

∫

θ

∫

X1

∫

X2

∫

W

d(θ, h(γ1(x1), γ2(x2)))
p(w|T1(x1))

p(w)
p(x1)p(x2|w)p(w|θ)dwdx2dx1dθ

(7.33)

,

∫

X1

f ′
1(u1,x1)p(x1)dx1, (7.34)

where

f ′
1(u1,x1) ,

∫

θ

∫

X2

∫

W

d(θ, h(u1, γ2(x2)))
p(w|T (x1))

p(w)
p(x2|y)p(w|θ)dwdx2dθ. (7.35)

Therefore, given γ∗
2(·) and h∗(·), for γ∗

1(·) to achieve Cmin, γ∗
1(x1) must be such that

f ′
1(u1,x1) is minimized, i.e., U1 = i ∈ {0, . . . , L − 1} if

i = arg min
u1

f ′
1(u1,x1). (7.36)

From (7.35), γ∗
1(X1) depends on X1 only through T1(X1). Similar argument shows

that γ∗
2(·) is also a function of the sufficient statistic T2(X2). �

The key to applying the above result depends largely on a well chosen W for

the HCI model. For example, the näıve choice of W = (X1,X2), while satisfying the

defining Markov chains, does not result in any data reduction as the sufficient statistics

for the data are nothing but the original data. The next two examples illustrate that

carefully chosen W can indeed lead to meaningful data reduction without performance

loss.
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Example 8. Consider Example 3 in Chapter 6 under the constraint of quantization,

i.e., we need to estimate θ based on the quantized version of X1 and X2. Since
∑

j X1j

and
∑

j X2j are locally sufficient for the hidden variable W , quantizing
∑

j X1j and

∑

j X2j is structurally optimal by Theorem 19.

Example 9. Consider Example 4 in Chapter 6 when quantization is needed at each

node. In Example 4 we have shown that {|Xk|}, k = 1, · · · , K are globally sufficient

for H. Therefore, from Theorem 19, quantizing |Xk| at the kth sensor is structurally

optimal. This result is consistent with that in [57] which shows that the optimal

detector at each local sensor is an energy detector for the corresponding cooperative

spectrum sensing problem, i.e., in the form of a threshold test using |Xk|2.

7.3.3 A general condition

Theorems 18 and 19 establish the structural optimality of sufficiency based data

reduction with independent data and with dependent data under a given HCI de-

pendence structure, respectively. In this section, we provide a unifying framework for

these two cases. To proceed, we note that in Theorems 18 and 19 the joint distribution

p(x1,x2, θ) can be expressed in both cases as the product of p(x1) and a nonnegative

function of T1(x1), x2 and θ. We show that this factorization is indeed what is needed

to establish that quantizing T1(X1) achieves the same optimal inference performance

as quantizing X1 given that the optimal quantizer γ∗
2(·) and the optimal estimator

h∗(·) are used at the second sensor and at the fusion center respectively.

Theorem 20. If there exist two nonnegative functions g(·) and f(·) and a statistic
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T1(X1) such that

p(x1,x2, θ) = g(x1)f(T1(x1),x2, θ), (7.37)

then quantizing T1(X1) achieves the same optimal inference performance as quantizing

X1.

From (7.37), if we marginalize X2 on both sides, we have

p(x1, θ) = g(x1)

∫

x2

f(T1(x1),x2, θ)dx2. (7.38)

Thus, by the factorization theorem [25], (7.37) implies that T1(X1) is a local sufficient

statistic for θ.

Proof. Let Cmin be the minimum Bayesian cost achieved by Fig. 7.2(a) with quantizer

γ∗
i (·) and estimator h∗(·). We show that, if (7.37) holds, then γ∗

1(X1) depends on X1

only through the sufficient statistic T1(X1).

Again, expanding C with respect to X1, we get

C =

∫

θ

∫

x1

∫

x2

d(θ, h(γ1(x1), γ2(x2))p(x1,x2, θ)dx2dx1dθ (7.39)

=

∫

θ

∫

x1

∫

x2

d(θ, h(γ1(x1), γ2(x2))g(x1)f(T1(x1),x2, θ)dx2dx1dθ (7.40)

,

∫

x1

α1(u1,x1)g(x1)dx1, (7.41)

where

α1(u1,x1) ,

∫

θ

∫

x2

d(θ, h(u1, γ2(x2)))f(T1(x1),x2, θ)dx2dθ. (7.42)

Given the optimal second quantizer γ∗
2(·) and estimator h∗(·), γ∗

1(·) must be such that

it minimizes α1(u1,x2), i.e., U1 = γ∗
1(x1) = i ∈ {0, . . . , L − 1} if

0 ≥ α1(i,x1) − α1(j,x1), (7.43)
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for any t ∈ {0, . . . , L− 1}. The proof is thus complete by recognizing that α1(u1,x1)

depends on x1 only through T (x1). �

The fact that (7.37) implies that T1(X1) is a sufficient statistic for X1 does not

mean T1(X1) being a sufficient statistic is a necessary condition for optimality. This

is because (7.37) itself is only a sufficient condition for optimality. Given below is

a trivial example illustrating that a local statistic which achieves optimality is not

necessarily a sufficient statistic.

Example 10. For i = 1, · · · , n, let

X1i = θ + Wi,

X2i = θ + Vi,

where θ, W1, · · · , Wn, V1, · · · , Vn are mutually independent Gaussian random variables

such that θ ∼ N (0, 1), Wj ∼ N (0, 1), Vj ∼ N (0, 1). Then X1 and X2 are condition-

ally independent given θ. It is also clear that
∑

i X1i and
∑

i X2i are locally sufficient

for θ, thus quantizing
∑

i X1i and
∑

i X2i can achieve the optimal inference with cor-

responding quantizers γ∗
1(·) and γ∗

2(·) and the optimal estimator h∗(·).

Now consider another local statistic U(X1) = γ∗
1(
∑

i X1i) ∈ {0, 1}. If we quantize

this statistic instead of
∑

i X1i at the first node while using γ∗
2(·) at the second node

and h∗(·) at the fusion center, the optimal inference is also guaranteed. But it is

straightforward to see that U(X1) is not a sufficient statistic for θ.

The next example shows how to find local statistics for data reduction using

Theorem 20.
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Example 11. Let us reconsider Example 6 where X1 = X2. Now that quantizing

(X1, ∅), which is globally sufficient, does not achieve the optimal inference, one might

ask that what local statistics can be used to achieve the same optimal inference per-

formance as the raw data. Since this problem is equivalent to a centralized inference

problem with a 2-bit quantizer, Theorem 17 implies that quantizing the minimal suffi-

cient statistic M(X1) at each sensor can achieve the optimal inference. But a minimal

sufficient statistic is a function of any other sufficient statistic [25], thus any local

sufficient statistics (T1(X1), T2(X2)) at each node attains the structural optimality.

The same results can also be obtained using Theorem 20. As X1 = X2, we have

p(x1,x2, θ) = p(x1, θ)
(a)
= p(x1)p(θ|T1(x1)), (7.44)

where (a) is from Lemma 1. We see that (7.44) is exactly in the same form as in

Theorem 20. It follows that quantizing T1(X1) is sufficient to achieve the optimal

inference given the second optimal quantizer γ∗
2(·) and the optimal estimator h∗(·).

Similarly, if we let T2(X2) be any sufficient statistic with respect to X2 and rewrite

p(x1,x2, θ) as p(x2)p(θ|T2(x2)), it is straightforward to see that T2(X2) is also suffi-

cient for the optimal inference. Therefore, we may use T1(X1) and T2(X2) at each

sensor to achieve data reduction prior to quantization and still attains the optimal

inference.

Note that while any local sufficient statistics (T1(X1), T2(X2)) preserve the optimal

inference performance for this degraded observation model, they may not achieve the

same degree of data reduction as that of the minimal sufficient statistic M(X1).
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Figure 7.3: Decentralized inference systems for tandem networks with quantizer op-

erating on (a) the raw data X1, (b) a statistic T1(X1).

7.4 Decentralized data reduction with quantiza-

tion constraints in tandem networks

In this section, we consider decentralized data reduction with quantization constraints

in tandem networks as illustrated in Fig. 7.3. In a tandem network, local decisions

propagate sequentially until they reach the last sensor which also serves as the fusion

center. We consider a simple two-sensor tandem in this section. As one can see, the

tandem network in Fig. 7.3(a) has the whole observation X2 available at the fusion

center while the parallel network in Fig. 7.2(a) only has access to a function of X2

at the fusion center. Since X2 is a function of itself, one may guess that quantizing

a sufficient statistic T (X1) at the first node is structurally optimal. Indeed, this is

true under the general condition as in Theorem 20, which includes both conditionally

independent and dependent observations.
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Parallel to the parallel networks, we have the following Theorem for tandem net-

works.

Theorem 21. If there exist two nonnegative functions g(·) and f(·) and a statistic

T1(X1) such that

p(x1,x2, θ) = g(x1)f(T1(x1),x2, θ), (7.45)

then for the tandem network as in Fig. 7.3, quantizing T1(X1) achieves the same

optimal inference performance as quantizing X1.

Proof. Similar to the parallel networks case, we can define the Bayasian costs for

Fig. 7.3(a) and Fig. 7.3(b) as follows

C = E[d(θ, h(γ(X1),X2))], (7.46)

C ′ = E[d(θ, h′(γ′(T (X1)),X2))]. (7.47)

Let Cmin = minγ,h C, then the proof follows exactly the same steps as the proof of

Theorem 20 except that γ2(X2) is replaced with X2. �

Since the condition (7.45) in Theorem 21 includes the conditionally independent

data and dependent data under a given HCI model as special cases, similar to the

results in Theorem 18 and 19 for parallel networks, we have the following conclusions

for tandem networks.

• If X1 and X2 are conditionally independent given θ, then quantizing a locally

sufficient statistic T (X1) is optimal.

• If X1,X2 and θ satisfy a HCI model with hidden variable W and T (X1) is a

locally sufficient statistic with respect to W, then quantizing T (X1) at the first

sensor is structurally optimal for the decentralized inference problem.
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Example 12. Consider Example 7 under the tandem setting. Since the local likelihood

ratio T1(x1) = p(x1|θ=1)
p(x1|θ=0)

is a sufficient statistic for θ with respect to X1, quantizing

T (X1) is structurally optimal by Theorem 21, which is consistent with the result in

[66].

One may ask if the general condition (7.25) in Theorem 21 is the same as the

definition of conditional sufficiency discussed in Chapter 6. Actually, we can show

that the condition (7.25) is a special case of conditional sufficiency. This is because

(7.25) implies (6.8) in Theorem 13. Also, (7.25) implies that T1(X1) is a locally

sufficient statistic for θ while for the definition of conditional sufficiency, T (X1) is not

necessarily a locally sufficient statistic.

7.5 Summary

In this chapter we have investigated the decentralized data reduction problem when

each sensor is subject to a quantization constraint. We do not address explicit quan-

tizer design in this work; instead, we find sufficient conditions such that a separation

approach, namely data reduction followed by a quantizer, is structurally optimal un-

der the Bayesian inference framework for both centralized inference and decentralized

inference with conditionally independent observations. We consider the problem un-

der both the parallel and tandem network frameworks. For decentralized inference

with conditionally dependent observations, quantizing sufficient statistics, even global

ones, need not be optimal. Nevertheless, utilizing the HCI model, we have provided

a suitable way of finding optimal data reduction if it exists. We have also established

a unifying condition that encompasses both the independent and the dependent ob-
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servation cases.
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Chapter 8

Conclusion and Future Research

8.1 Conclusion

Correlated observations are often present in many engineering applications. In this

thesis, we have focused on the characterization of the dependence of correlated obser-

vations and on decentralized inference problems with dependent observations. This

thesis consists of two part. In the first part, we attempt to make progress toward a

better understanding of Wyner’s common information among random variables, both

in its generalization to much more general settings and in its operational interpreta-

tion that has not been discovered before. In the second part, we address decentralized

inference involving dependent observations with an emphasis on the development of

the sufficiency principle for distributed data reduction.

For the first part, we have generalized Wyner’s common information, defined orig-

inally for a pair of discrete random variables, to that of multiple random variables

with arbitrary alphabets. We show that Wyner’s original interpretations of common
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information can be directly extended to that involving multiple variables. We then de-

veloped a new interpretation of Wyner’s common information using the Gray-Wyner

network that applies to continuous random variables. That is, for the Gray-Wyner

network, Wyner’s common information is precisely the smallest common message rate

for a certain range of distortion constraints when the total rate is arbitrarily close to

the rate distortion function with joint decoding. As the common information is only

a function of the joint distribution, this smallest common rate remains constant even

if the distortion constraints vary, as long as they are in a specific distortion region.

Evaluating the generalized common information has been studied for the two

special but very important examples: the binary sources and Gaussian sources. In

particular, we derived, through an estimation theoretic approach, the common in-

formation for a bivariate Gaussian source and its extension to the multi-variate case

with a certain correlation structure.

We established a monotone property of Wyner’s common information in the num-

ber of variables which is in contrast to other notions of common information. The

application of Wyner’s common information to simple Bayesian inference models was

explored where the observations are assumed to be exchangeable random variable. It

is shown that for infinite exchangeable sequences, the common information is asymp-

totically equal to the information of the inference object, i.e., the hidden variable in

the Bayesian model. For finite exchangeable sequences, while this result is no longer

true in general, we identify two important cases such that the result still holds. For

these two cases, one binary and the other Gaussian, we further established the rela-

tionship between the common information and various inference performance metrics.

For the second part, we first considered the problem of distributed detection with
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conditionally dependent observations utilizing the hierarchical conditional indepen-

dence model. Under the Bayesian detection framework, we identified a more general

condition associated with the hidden variable for the CHCI model which enables

us to tackle a much broader class of distributed detection problems with dependent

observations.

We developed the sufficiency principle that guides local data reduction in net-

worked inference with dependent observations for both the parallel network and tan-

dem network. For the parallel network, the HCI model is used to obtain conditions

such that local sufficiency implies global sufficiency. For the tandem network, a new

notion of conditional sufficiency was proposed to capture the structure of tandem

network.

Finally, we have studied decentralized data reduction in distributed inference when

each sensor is subject to a quantization constraint in both the parallel and tandem

networks. The sufficiency based data reduction was shown to be structurally optimal

under the Bayesian inference framework for decentralized inference with conditionally

independent observations. For decentralized inference with conditionally dependent

observations, utilizing the HCI model, we provided a suitable way of finding optimal

data reduction if it exists. Finally, a unifying condition that encompasses both the

independent and the dependent observation cases was established.

8.2 Future work

Wyner provided two approaches to interpret Wyner’s common information: one is

based on lossless source coding for the Gray-Wyner network and the other on a
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distribution approximation problem. We have shown that the common information

admits a lossy source coding interpretation using the Gray-Wyner network, thus pro-

vide justification for the generalization to continuous random variables. It is natural

to ask if Wyner’s second approach, that of distribution approximation, also applies

to continuous random variables.

In Chapter 4, we concluded that the common information for finite exchange-

able sequences does not equal to the information of the inference object in a simple

Bayesian inference model. Nevertheless, for the binary and the Gaussian cases, the

equality holds. A possible direction of future work is to find more general condition

under which the common information does capture the entire information of the in-

ference object. A promising approach to examine the class of exchangeable random

variables that correspond to additive Bayesian model as is the case for the binary and

Gaussian cases.

In Chapter 6, we have defined the notion of conditional sufficiency intended for ap-

plication in tandem networks. On the other hand, Theorem 21 in Chapter 7 provides

a sufficient condition under which the sufficiency based data reduction is structurally

optimal for tandem networks. As discussed in Section 7.4, the condition in Theorem

21 is a special case of conditional sufficiency. Our future work is to explore if the

conditional sufficiency based data reduction can be proved to be optimal for tandem

networks.

We have developed the sufficiency principle for inference networks with and with-

out quantization constraints. Besides sufficient statistics, the notions of ancillary

and complete statistics are also of great importance in statistical inference. Ancillary

statistics are functions of observations that are independent of the parameter of infer-
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ence interest and play an important role for inference problems involving the class of

complete distributions. One direction of research is to develop the theory of ancillary

and complete statistics for networked inference problems.
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Appendix A

Proof of Theorem 5

We first show that C3(D1, D2) ≥ C̃(D1, D2). Let R0 be (D1, D2)-achievable, then

there exists an (n, M0, M1, M2) code such that (3.12)-(3.14) are satisfied. Define

Ri = 1
n

log Mi for i = 1, 2. Since (R0, R1, R2) is (D1, D2)-achievable, from Theorem

2, there exists a W such that

R0 ≥ I(X1, X2; W ),

Ri ≥ RXi|W (Di), i = 1, 2

and for any ǫ > 0,
2
∑

i=0

Ri ≤ RX1X2(D1, D2) + ǫ. (A.1)

Therefore,

RX1X2(D1, D2) + ǫ ≥
2
∑

i=0

Ri (A.2)

≥I(X1, X2; W )+

2
∑

i=1

RXi|W (Di) (A.3)

≥ I(X1, X2; W )+RX1X2|W (D1, D2) (A.4)
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≥RX1X2(D1, D2) (A.5)

where (A.4) is from (3.6b) and (A.5) comes from (3.5b). Thus, we have

I(X1, X2; W )+RX1|W (D1) + RX2|W (D2) = RX1X2(D1, D2). (A.6)

Hence, if R0 is (D1, D2)-achievable, there exists a W such that R0 ≥ I(X1, X2; W )

and (A.6) is true. It shows that C3(D1, D2) ≥ C̃(D1, D2).

Next we show C3(D1, D2) ≤ C̃(D1, D2). Let W ′ be the random variable that

achieves C̃(D1, D2). For any R0 > C̃(D1, D2) and ǫ > 0, let

ǫ1 = min
{ ǫ

3
, R0 − C̃(D1, D2)

}

, (A.7)

and hence ǫ1 > 0. From Theorem 2, there exists an (n, M0, M1, M2) code with

Ed1(X1, X̂1) ≤ D1, Ed2(X2, X̂2) ≤ D2, and

1

n
log M0 ≤ I(X1, X2; W

′) + ǫ1 = C̃(D1, D2) + ǫ1 ≤ R0, (A.8)

1

n
log Mi ≤ RXi|W ′(Di) + ǫ1, (A.9)

for i = 1, 2. Sum over (A.8) and (A.9), we get

2
∑

i=0

1

n
log Mi ≤ I(X1, X2; W

′) +
2
∑

i=1

RXi|W ′(Di) + 3ǫ1

≤ RX1X2(D1, D2) + ǫ, (A.10)

where inequality (A.10) comes from (A.7) and definition of C̃(D1, D2).

This proves that R0 is (D1, D2)-achievable, thus completes the proof of C3(D1, D2) ≤

C̃(D1, D2).
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Appendix B

Direct proof of

C̃(D1, D2) = C∗(D1, D2)

First we show that C̃(D1, D2) ≥ C∗(D1, D2). Let W be the variable that achieves

C̃(D1, D2) and let X̂1, X̂2 be random variables that achieve RX1|W (D1) and RX2|W (D2),

i.e.,

I(X1, X2; W ) + RX1|W (D1) + RX2|W (D2) = RX1X2(D1, D2), (B.1)

RX1|W (D1) = I(X1; X̂1|W ), (B.2)

RX2|W (D2) = I(X2; X̂2|W ), (B.3)

E[d1(X1, X̂1)] ≤ D1, (B.4)

E[d2(X2, X̂2)] ≤ D2. (B.5)

Without loss of generality, we can assume that the joint distribution of (X1, X2, X̂1, X̂2, W )

factors as p(x1, x2, x̂1, x̂2, w) = p(x1, x2, w)p(x̂|x, w)p(ŷ|y, w) because the distortion
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D1 is independent of X2 and D2 is independent of X1. We now establish

RX1X2|W (D1, D2) = RX1|W (D1) + RX2|W (D2). (B.6)

This is from (B.1) and the inequalities

RX1X2|W (D1, D2) + I(X1, X2; W ) ≥ RX1X2(D1, D2), (B.7)

RX1|W (D1) + RX2|W (D2) ≥ RX1X2|W (D1, D2), (B.8)

from Lemma 4. Therefore, together with (B.1)-(B.5), we have

RX1X2|W (D1, D2) = I(X1; X̂1|W ) + I(X2; X̂2|W ) (B.9)

= H(X̂1|W )+H(X̂2|W )−H(X̂1|X1, W ) − H(X̂2|X2, W )(B.10)

≥ H(X̂1, X̂2|W ) − H(X̂1|X1, W ) − H(X̂2|X2, W ) (B.11)

= H(X̂1, X̂2|W )−H(X̂1|W, X1, X2)−H(X̂2|W, X1, X2) (B.12)

= I(X1, X2; X̂1, X̂2|W ) (B.13)

≥ RX1X2|W (D1, D2). (B.14)

As the left-hand side (LHS) and right-hand side (RHS) of the above inequalities are

the same, all the inequalities must be equalities so we have

I(X̂1; X̂2|W ) = 0. (B.15)

Then we have

RX1X2(D1, D2)

= I(X1, X2; W ) + I(X1; X̂1|W ) + I(X2; X̂2|W ) (B.16)

= I(X1, X2; W, X̂1, X̂2)−I(X1, X2; X̂1, X̂2|W )+I(X1; X̂1|W ) + I(X2; X̂2|W )(B.17)
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= I(X1, X2; X̂1, X̂2) + I(X1, X2; W |X̂1, X̂2) (B.18)

≥ I(X1, X2; X̂1, X̂2) (B.19)

≥ RX1X2(D1, D2).

As the LHS and RHS of the above inequalities are the same, all the inequalities must

be equalities so we have

I(X1, X2; W |X̂1, X̂2) = 0, (B.20)

I(X1, X2; X̂1, X̂2) = RX1X2(D1, D2). (B.21)

Therefore, X1, X2, X̂1, X̂2, W satisfy the Markov chains in (3.18) and (3.19) and

X̂1, X̂2 achieve RX1X2(D1, D2). Thus, C̃(D1, D2) ≥ C∗(D1, D2).

Next we show that C̃(D1, D2) ≤ C∗(D1, D2). Let X1, X2, X
∗
1 , X

∗
2 , W achieve

C∗(D1, D2). Therefore, they satisfy the Markov chains in (3.18) and (3.19) and

I(X1, X2; X
∗
1 , X

∗
2 ) = RX1X2(D1, D2) and E[d1(X1, X

∗
1 )] ≤ D1, E[d2(X2, X

∗
2 )] ≤ D2.

RX1X2(D1, D2)

= I(X1, X2; X
∗
1 , X

∗
2 ) (B.22)

= I(X1, X2; W, X∗
1 , X

∗
2 ) (B.23)

= I(X1, X2; W ) + I(X1, X2; X
∗
1 , X

∗
2 |W ) (B.24)

= I(X1, X2; W ) + H(X∗
1 |W ) + H(X∗

2 |W ) − H(X∗
1 , X

∗
2 |X1, X2, W ) (B.25)

= I(X1, X2; W ) + I(X1; X
∗
1 |W ) + I(X2; X

∗
2 |W ) + H(X∗

1 |X1, W ) (B.26)

+H(X∗
2 |X2, W ) − H(X∗

1 , X
∗
2 |X1, X2, W ) (B.27)

≥ I(X1, X2; W ) + I(X1; X
∗
1 |W ) + I(X2; X

∗
2 |W ) + H(X∗

1 |X1, X2, W ) (B.28)

+H(X∗
2 |X1, X2, W ) − H(X∗

1 , X
∗
2 |X1, X2, W ) (B.29)
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= I(X1, X2; W ) + I(X1; X
∗
1 |W ) + I(X2; X

∗
2 |W ) + I(X∗

1 ; X∗
2 |X1, X2, W )(B.30)

≥ I(X1, X2; W ) + I(X1; X
∗
1 |W ) + I(X2; X

∗
2 |W ) (B.31)

≥ I(X1, X2; W ) + RX1|W (D1) + RX2|W (D2) (B.32)

≥ I(X1, X2; W ) + RX1X2|W (D1, D2) (B.33)

≥ RX1X2(D1, D2), (B.34)

where (B.23) is from the Markov chain (X1, X2) − (X∗
1 , X

∗
2 ) − W , (B.25) is from the

Markov chain X∗
1 − W − X∗

2 , (B.29) is because conditioning reduces entropy, (B.33)

and (B.34) are by the properties of rate distortion functions. As the LHS and RHS of

the above inequalities are the same, all the inequalities must be equalities so we have

I(X1, X2; W ) + RX1|W (D1) + RX2|W (D2) = RX1X2(D1, D2). (B.35)

Therefore, C∗(D1, D2) = I(X1, X2; W ) ≥ C̃(D1, D2).
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Appendix C

Proof of Lemma 7

Let W be the random variable that achieves C3(D1, D2). Thus,

C3(D1, D2) = I(X1, X2; W ), (C.1)

with

RX1|W (D1) + RX2|W (D2) + I(X1, X2; W ) = RX1X2(D1, D2). (C.2)

Combined with (3.23), we have that

RX1(D1) + RX2(D2) − I(X1; X2)

= RX1|W (D1) + RX2|W (D2) + I(X1, X2; W ) (C.3)

≥ RX1(D1) − I(X1; W ) + RX2(D2) − I(X2; W ) (C.4)

+I(X1, X2; W ) (C.5)

= RX1(D1) + RX2(D2) − I(X1; X2) + I(X1; X2|W ) (C.6)

≥ RX1(D1) + RX2(D2) − I(X1; X2), (C.7)
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where equation (C.3) is from equations (C.2) and (3.23), inequality (C.5) comes

from Lemma 4, (C.6) is by the chain rule and inequality (C.7) is by the fact that

I(X1; X2|W ) ≥ 0.

Because the LHS of (C.3) is the same as the RHS of (C.7), we can conclude that

all the inequalities above should be equalities. This implies I(X1; X2|W ) = 0, i.e.,

X1 and X2 are conditional independent given W . Therefore,

C(X1, X2) ≤ I(X1, X2; W ) = C3(D1, D2), (C.8)

the proof is complete.

141



Appendix D

Proof of Theorem 6

Let W be the random variable that achieves the common information of X1, X2.

By Lemma 5, there exists a strictly positive surface D(X1X2|W ) such that for any

0 ≤ (D1, D2) ≤ D(X1X2|W ),

I(X1, X2; W ) + RX1X2|W (D1, D2) = RX1X2(D1, D2). (D.1)

Also by Lemma 5, there exists a strictly positive surface D(X1X2) ≥ D(X1X2|W )

such that for any 0 ≤ (D1, D2) ≤ D(X1X2),

RX1(D1) + RX2(D2) − I(X1; X2) = RX1X2(D1, D2). (D.2)

Since D(X1X2|W ) ≤ D(X1X2), let γ = D(X1X2|W ), both equalities (D.1) and (D.2)

hold for 0 ≤ (D1, D2) ≤ γ. Therefore, from Lemmas 6 and 7, C3(D1, D2) = C(X1, X2)

for 0 ≤ (D1, D2) ≤ γ.
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Appendix E

Proof of Theorem 7

First we show that for any (D1, D2) ≤ (D0
1, D

0
2),

RX1X2|W (D1, D2) + I(X1, X2; W ) = RX1X2(D1, D2). (E.1)

In Proposition 8, we have shown that RX1X2(D
0
1, D

0
2) = I(X1, X2; X̂

0
1 , X̂

0
2 ) =

I(X1X2; W ).

Now, let (X̂1, X̂2) achieve RX1X2(D1, D2). As the vector source (X1, X2) is suc-

cessively refinable under individual distortion constraints [33], we have the Markov

chain X1X2 − X̂1X̂2 − X̂0
1X̂

0
2 . Therefore,

RX1X2(D1, D2) − I(X1, X2; W ) = I(X1, X2; X̂1, X̂2) − I(X1, X2; X̂
0
1 , X̂

0
2 )(E.2)

= I(X1X2; X̂1X̂2|X̂0
1 , X̂

0
2 ) (E.3)

≥ RX1X2|X̂0
1 ,X̂0

2
(D1, D2) (E.4)

≥ RX1X2|W (D1, D2), (E.5)

where the last inequality is from the Markov chain X1X2−W −X̂0
1 , X̂0

2 . On the other

143



hand, by Lemma 4, we have

RX1X2|W (D1, D2) + I(X1X2; W ) ≥ RX1X2(D1, D2). (E.6)

This establishes (E.1). Thus, from Lemma 6, C3(D1, D2) ≤ C(X1; X2).

To complete the proof, we only need to show

RX1(D1) + RX2(D2) − I(X1; X2) = RX1X2(D1, D2). (E.7)

From Lemma 4,

RX1(D1) + RX2(D2) − I(X1; X2) ≤ RX1X2(D1, D2). (E.8)

Therefore, we only need to establish the other direction. For i = 1, 2, let X̂i achieve

RXi
(Di), then by the definition of a successively refinable scalar source [32], we have

the Markov chain Xi − X̂i − X̂0
i for Di ≤ D0

i . Therefore,

RXi
(Di) − I(Xi; W ) = I(Xi; X̃i) − I(Xi; X̂

0
i ) (E.9)

= I(Xi; X̂i|X̂0
i ) (E.10)

≥ RXi|X̂0
i
(Di) (E.11)

≥ RXi|W (Di), (E.12)

where (E.12) is from the Markov chain Xi − W − X̂0
i . Using (E.12), we have

RX1(D1) + RX2(D2) − I(X1; X2) (E.13)

≥ RX1|W (D1) + I(X1; W ) + RX2|W (D1) + I(X2; W ) − I(X1; X2) (E.14)

= RX1|W (D1) + RX2|W (D2) + I(X1X2; W ) (E.15)

= RX1X2|W (D1, D2) + I(X1X2; W ) (E.16)

= RX1X2(D1, D2), (E.17)

which completes the proof.
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Appendix F

Derivation of Wyner’s Common

Information for Bivariate Gaussian

Sources

First, we will show that the common information of (X1, X2) is only a function of the

correlation coefficient ρ. To show this, let X̃i = 1
σi

Xi, i = 1, 2, thus X̃1, X̃2 are joint

Gaussian distributed with zero mean and covariance matrix






1 ρ

ρ 1






.

We have the Markov chain that X̃1 − X1 − X2 − X̃2 and by the data processing

inequality for Wyner’s common information [6], C(X̃1, X̃2) ≤ C(X1, X2). On the

other hand, we have the Markov chain that X1 − X̃1 − X̃2 − X2 and C(X̃1, X̃2) ≤

C(X1, X2). Thus, C(X̃1, X̃2) = C(X1, X2). Without loss generality, we will consider

σ2
1 = σ2

2 = 1 in the following.
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Let

Xi =
√

ρW +
√

1 − ρNi, i = 1, 2, (F.1)

where W, N1, N2 are mutually independent standard Gaussian random variables. It

is clear that X1, X2 are bivariate Gaussian with correlation coefficient ρ,

C(X1, X2) ≤ I(X1, X2; W ) =
1

2
log

1 + ρ

1 − ρ
. (F.2)

Next we will show that

C(X1, X2) ≥
1

2
log

1 + ρ

1 − ρ
. (F.3)

For any U that satisfies the Markov chain X1 − U − X2, let D1 be the minimum

mean square error (MMSE) of estimating X1 using U , thus, D1 = E(X1−E(X1|U))2.

Similarly, let D2 = E(X2 − E(X2|U))2. We now show that I(X1X2; U) ≥ 1
2
log 1+ρ

1−ρ
.

I(X1X2; U) = H(X1X2) − H(X1|U) − H(X2|U) (F.4)

= I(X1; U) + I(X2; U) − I(X1; X2) (F.5)

≥ I(X1; E(X1|U)) + I(X2; E(X2|U)) − I(X1; X2) (F.6)

≥ RX1(D1) + RX2(D2) − I(X1; X2) (F.7)

=
1

2
log

1 − ρ2

D1D2

, (F.8)

for D1 ≤ 1, D2 ≤ 1, where (F.5) is from the chain rule, (F.6) is from the Markov

chains X1 − U − E(X1|U), X2 − U − E(X2|U) and (F.7) is by the definition of rate

distortion function.

Next we show that D1 + D2 ≤ 2(1 − ρ), D1 ≤ 1, D2 ≤ 1.

2(1 − ρ)
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= E(X1 − X2)
2 (F.9)

= E[X1 − E(X1|U) + E(X1|U) − X2]
2 (F.10)

= E[X1−E(X1|U)]2+E[E(X1|U)−X2]
2+2E[(X1−E(X1|U))(E(X1|U)−X2)](F.11)

= E[X1 − E(X1|U)]2 + E[E(X1|U) − X2]
2 (F.12)

= E[X1 − E(X1|U)]2 + E[E(X1|U) − E(X2|U) + E(X2|U) − X2]
2 (F.13)

= E[X1 − E(X1|U)]2 + E[X2 − E(X2|U)]2 + E[E(X2|U) − E(X1|U)]2 (F.14)

+E[(X2 − E(X2|U))(E(X2|U) − E(X1|U))] (F.15)

= E[X1 − E(X1|U)]2 + E[X2 − E(X2|U)]2 + E[E(X2|U) − E(X1|U)]2 (F.16)

≥ D1 + D2 (F.17)

where (F.12) is from

E[(X1 − E(X1|U))(E(X1|U) − X2)]

= E[(X1 − E(X1|U))E(X1|U)] − E[(X1 − E(X1|U))X2] (F.18)

= −E[(X1 − E(X1|U))X2] (F.19)

= −EUX2 [X2EX1|U [X1 − E(X1|U)]] (F.20)

= −EUX2 [X2(E(X1|U) − E(X1|U))] (F.21)

= 0, (F.22)

and (F.16) is from

E[(X2 − E(X2|U))(E(X2|U) − E(X1|U))]

= E[(X2 − E(X2|U))E(X2|U)] − E[(X2 − E(X2|U))E(X1|U)] (F.23)

= 0 (F.24)

In addition, we have D1 = E[X1 − E(X1|U)]2 = EX2
1 − E[E(X1|U)2] ≤ EX2

1 = 1.
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Thus, we have

I(X1X2; U) ≥ 1

2
log

1 − ρ2

D1D2
(F.25)

≥ 1

2
log

1 − ρ2

(

D1+D2

2

)2 (F.26)

≥ 1

2
log

1 − ρ2

(1 − ρ)2
(F.27)

=
1

2
log

1 + ρ

1 − ρ
, (F.28)

which complete the proof.
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Appendix G

Proof of Theorem 10

Given that all the other rules are fixed, the optimal kth local sensor rule that mini-

mizes the Bayesian cost is

Uk = γk(Xk) = arg min
uk

fk(Uk, Xk), (G.1)

where the BCDF fk(Uk, Xk) is given in (5.19). As the expected Bayesian cost C is

the error probability Pe, we have c11 = c00 = 0 and c01 = c10 = 1. The coefficient

β(uk, w) can be expanded as

β(uk, w) = π0P (U0 = 1|uk, w)p(w|H = 0) + π1P (U0 = 0|uk, w)p(w|H = 1),(G.2)

= (π0p(w|H = 0) − π1p(w|H = 1))P (U0 = 1|uk, w) + π1p(w|H = 1).(G.3)

Then

fk(1, xk) − fk(0, xk) =

∫

Y

pXk|W (xk|w)(β(1, w)− β(0, w))dy (G.4)

=

∫

Y

pXk|W (xk|w) (π0p(w|H = 0) − π1p(w|H = 1))

(P (U0 = 1|Uk = 1, w) − P (U0 = 1|Uk = 0, w))dw(G.5)
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= −
∫

W

pXk|W (xk|w)φ(w)dw (G.6)

where

φ(w) , (P (U0 = 1|Uk = 1, w) − P (U0 = 1|Uk = 0, w)) (π1p(w|H = 1) − π0p(w|H = 0)) ,

= (P (U0 = 1|Uk = 1, w)−P (U0 = 1|Uk = 0, w))π1p(w|H = 0)

(

p(w|H = 1)

p(w|H = 0)
− π0

π1

)

,

= h(w)g(w), (G.7)

and h(w) is defined in (5.25), g(w) is defined by

g(w) ,
p(w|H = 1)

p(w|H = 0)
− π0

π1
. (G.8)

Therefore, the optimal kth sensor rule as

Uk =











1 if
∫

W
pXk|W (xk|w)h(w)g(w)dw > 0,

0 otherwise.

(G.9)

By the second condition in Theorem 10, we have that g(w) is a nondecreasing

function of T (w). Thus, there exists a nondecreasing function ϕ(t) such that g(w) =

ϕ(T (w)).

Furthermore, the optimal kth sensor rule can also be expressed as

∫

W

pXk|W (xk|w)h(w)g(w)dw

=
m
∑

i=1

∫

W∈Ai

pXk|W (xk|w)h(w)g(w)dw (G.10)

=

∫

T

m
∑

i=1

(

pXk |W (xk|Zi(t))

∣

∣

∣

∣

d

dt
Zi(t)

∣

∣

∣

∣

h(Zi(t))g(Zi(t))

)

dt (G.11)

=

∫

T

m
∑

i=1

(

pXk |W (xk|Zi(t))

∣

∣

∣

∣

d

dt
Zi(t)

∣

∣

∣

∣

h(Zi(t))

)

ϕ(t)dt (G.12)

=

∫

T

λ(xk, t)ϕ(t)dt (G.13)

where

150



• Equality (G.11) is by transforming the random variable w to T (w). Zi(t) ,

T−1
i (t) and Ti(w) is monotone of w for w ∈ Ai.

• Equality (G.12) is from the fact that g(Zi(t)) = ϕ(T (Zi(t))) = ϕ(t).

• Equality (G.13) is by the definition of λ(xk, t) in (5.24).

To establish the sufficiency of a single threshold quantizer defined in (5.26), it is

suffices to show that for any S(xk) > S(x′
k), xk, x

′
k ∈ Ai, i = 1, · · · , m,

∫

T

λ(x′
k, t)ϕ(t)dt > 0, (G.14)

implies

∫

T

λ(xk, t)ϕ(t)dt > 0. (G.15)

Since ϕ(t) is a nondecreasing function of t, there exists a values δ ∈ [−∞, +∞]

satisfying the equation ϕ(δ) = 0 and have the property that

ϕ(t) =











≥ 0 if t ≥ δ,

≤ 0 if t < δ.

(G.16)

Also, by the first condition 1 in Theorem 10, h(y) is nonnegative. Therefore,

λ(xk, t) is nonnegative.

For i = 1, · · · , m, let xk, x
′
k ∈ Ai, S(xk) > S(x′

k). By the third condition in

Theorem 10, the ratio λ(xk ,t)
λ(x′

k
,t)

is a nondecreasing function of t. Let ci = λ(xk,δ)
λ(x′

k
,δ)

, we have











λ(xk,t)
λ(x′

k
,t)

≥ ci if t ≥ δ,

λ(xk,t)
λ(x′

k
,t)

≤ ci if t ≤ δ.

(G.17)

We obtain that

∫

T

λ(xk, t)ϕ(t)dt
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=

∫

T

λ(x′
k, t)

λ(xk, t)

λ(x′
k, t)

ϕ(t)dt (G.18)

=

∫

t≥δ

λ(x′
k, t)

λ(xk, t)

λ(x′
k, t)

ϕ(t)dt +

∫

t≤δ

λ(x′
k, t)

λ(xk, t)

λ(x′
k, t)

ϕ(t)dt (G.19)

≥
∫

t≥δ

ciλ(x′
k, t)ϕ(t)dt +

∫

t≤δ

ciλ(x′
k, t)ϕ(t)dt (G.20)

= ci

∫

T

λ(x′
k, t)ϕ(t)dt > 0, (G.21)

where the first term of inequality (G.20) is because for t ≥ δ, ϕ(t) ≥ 0, λ(xk,t)
λ(x′

k
,t)

≥ ci

and λ(x′
k, t) ≥ 0. The second term of (G.20) is because for t ≤ δ, ϕ(t) ≤ 0, λ(xk ,t)

λ(x′
k
,t)

≤ ci

and λ(x′
k, t) ≥ 0.

This establishes that for xk ∈ Ai, the optimal kth sensor rule is Uk = γk(xk) = 1

if S(xk) ≥ τk. Since the above proof is true for any i = 1, · · · , m, this completes the

proof.

152



Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379–423, 1948.
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