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ABSTRACT

Interferen
e management is one of the key te
hniques that drive evolution of wireless

networks from one generation to another. Te
hniques in 
urrent 
ellular networks

to deal with interferen
e follow the basi
 prin
iple of orthogonalizing transmissions

in time, frequen
y, 
ode, and spa
e. My PhD work investigate information theoreti


models that represent a new perspe
tive/te
hnique for interferen
e management. The

idea is to explore the fa
t that an interferer knows the interferen
e that it 
auses to

other users non
ausally and 
an/should exploit su
h information for 
an
eling the

interferen
e. In this way, users 
an transmit simultaneously and the throughput of

wireless networks 
an be substantially improved. We refer to the interferen
e treated

in su
h a way as �dirty interferen
e� or �non
ausal state�.

In parti
ular, my PhD thesis investigates two 
lasses of information theoreti


models and develops dirty interferen
e 
an
elation s
hemes that a
hieve the funda-

mental 
ommuni
ation limits. One 
lass of models (referred to as state-dependent

interferen
e 
hannels) 
apture the s
enarios that users help ea
h other to 
an
el dirty

interferen
e. The other 
lass of models (referred to as state-dependent 
hannels with

helper) 
apture the s
enarios that one dominate user interferes a number of other

users and assists those users to 
an
el its dirty interferen
e. For both 
lasses of mod-

els, by 
omparing the 
orresponding a
hievable rate regions with the outer bounds on

the 
apa
ity region. We 
hara
terize the 
hannel parameters under whi
h the devel-

oped inner bounds meet the outer bounds either partially of fully, and thus establish

the 
apa
ity regions or partial boundaries of the 
apa
ity regions.
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1

CHAPTER 1

INTRODUCTION

1.1 Motivation

New innovation of interference management is the major factor that drives evolution of

cellular wireless networks from one generation to another.In second generation cellu-

lar systems, the frequency division multiplexing (FDM) andtime division multiplexing

(TDM) are adopted, in which multiple transmissions are orthogonalized in frequency or

time to avoid interference among these transmissions. In third generation cellular sys-

tem, orthogonal codes are used by simultaneous transmissions to avoid interference, which

is widely known as code division multiple access (CDMA). In current fourth generation

cellular networks, orthogonal frequency division multiplexing (OFDM) is implemented,

which significantly improves data rate.

Despite the above new innovations, the demands for increasingly high data transmis-

sion rate continue to call for new interference management technologies for future cellular

networks. Given that all up-to-date cellular wireless networks use the orthogonalization

idea for handling interference, should/can new generationwireless networks employ non-

orthogonalization idea so that all communication resources can be used simultaneously to

improve throughputs?
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A general non-orthogonal approach was proposed by Han and Kobayashi in [1] via

information theoretic study of the interference channel. The idea is to split messages at

transmitters so that receivers can decode part of messages intended for other receivers and

remove these signals (i.e., interference) from their received outputs. Some special cases

of such a scheme have been shown to be optimal (i.e., achieve the capacity region) in

certain interference regime. (1) Fully decoding and canceling the interference has been

shown in [2] to be optimal in the very strong interference regime. (2) Jointly decoding

all messages has been shown in [3] to be optimal in the strong interference regime. (3)

Treating interference as noise has been shown in [4–6] to be optimal (achieves the sum

capacity) in the weak interference regime.

However, rate splitting requires user pairs to share codebooks, which substantially in-

creases the complexity of design. In many cases, this is not possible in practice when

transmissions are not within the same network domain. Furthermore, the interference can

be superposition of signals to many receivers (in downlink), and it is difficult for a receiver

to decode such interference. Although the special case of treating interference as noise

does not require codebook sharing, it does not perform well in most scenarios.

In this thesis, we explore a new perspective/technique for interference management,

which exploits the fact that an interferer knows the interference that it causes to other users

noncausally and can/should exploit such information for canceling the interference. In this

way, users can transmit simultaneously and the throughput of wireless networks can be

substantially improved. Since the interference that is noncausally known at the transmitter

is referred to as “dirty/state” corruption of the channel ininformation theory, we refer to

the interference treated in such a way as “dirty interference” or “noncausal state”.

In the following, we use a practical example (see Fig. 1.1) tofurther illustrate our idea.

Consider a cellular network that incorporates device-to-device (D2D) communications. It

is typical that the cellular base station causes interference to D2D transmissions. In fact, the

base station itself knows such interference noncausally, because the interference is the sig-



3

Fig. 1.1: A practical example for the D2D communication in cellular system.

nal that the base station sends to cellular receivers. Thus,the interference can be viewed as

the noncausal state sequence (denoted asSn in Fig. 1.1). The base station is then able to ex-

ploit such information about the interference (i.e., state) and send a help signal (denoted by

X0 in Fig. 1.1) to assist D2D users to cancel the interference. Since the help signalX0 may

also cause interference to the cellular receiver, simply reversing the state complete ruins

the cellular communication. Therefore, a more sophisticated scheme should be designed to

deal with the interference. More specifically, this thesis designs adapted dirty paper coding

schemes for various of state-dependent models, in which thestate information is precoded

into help signal. The receiver then cancel the state interference with the assistance of the

help signal. The throughput of the wireless networks can hence be significantly improved,

compared with the orthogonalized transmission.

1.2 Channel Models

Towards designing a dirty interference cancelation framework for wireless networks, this

thesis explores two classes of state-dependent interference networks and the goal is to de-
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velop dirty interference cancellation schemes that achieve the fundamental communication

limits. One class of models (referred to as state-dependentinterference channels) capture

the scenarios that users help each other to cancel dirty interference. The other class of

models (referred to as state-dependent channels with helper) capture the scenarios that one

dominate user interferes a number of other users and assiststhese users to cancel its dirty

interference. We next introduce the models that we study in detail.

For the class of state-dependent interference channels, westudy two models, i.e., the

state-dependent interference channel with state known at both transmitters (IC-ST) and the

cognitive interference channel with state known at the cognition transmitter (CIC-ST). In

these models, transmitters interfere with each other, and the state models the additional

interference due to the fact that the transmitters also sendsignals to other receivers (not

included in the model) in broadcast scenarios.

For the IC-ST (see Fig. 1.2), two transmitters send two messages to two receivers,

respectively, via an interference channel. The channel is corrupted by an independent and

identically distributed (i.i.d.) state sequence, which isassumed to be knownnoncausallyat

both transmitters. One example scenario for this channel models is as follows. In cellular

networks, two base stations communicate with two users which are near the edge between

two adjacent cells. The state captures the signal that the base stations transmit to other

users (not included in the model) in the network. For this model, we consider both the

state-dependent regular IC and the state-dependent Z-IC.

Fig. 1.2: An illustration of the IC-ST models

The second model we study is the CIC-ST (see Fig. 1.3), in which a primary trans-
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mitter sends a message to two receivers (receivers 1 and 2) with assistance of a cognitive

transmitter, and the cognitive transmitter also sends a separate message to receiver 2. The

channel is corrupted by an i.i.d. state sequence. The state sequence is noncausally known at

the cognitive transmitter. This model is well motivated in practical networks. For example,

it is often the case in cognitive radio networks that a primary transmitter wishes to send

a common message to a number of primary receivers, and a cognitive transmitter (which

often knows the primary transmitter’s message via its necessary coordination with the pri-

mary transmitter) can cooperatively send the common message to the primary receivers.

This cognitive transmitter may also have its own message intended to one of the primary

receivers. At the same time, the cognitive transmitter can communicate to some secondary

receivers simultaneously, and its signals to these receivers then interfere with the primary

receivers. Such a signal is clearly known by the cognitive transmitter noncausally, and is

captured by the state in the model. A similar scenario can also occur in cellular networks.

For example, two base stations may cooperatively send certain common information to

many receivers which are near the edge between the two cells that the two base stations

serve. In addition, one of the base stations may transmit additional information to receivers

in its own cell.

For the CIC-ST model, we investigate two scenarios. The firstscenario assumes that

the state sequence is noncausally known at both the cognitive transmitter and receiver 2,

and is referred to as the CIC-STR (which stands for the cognitive interference channel with

state information noncausally known at both the cognitive transmitter and receiver 2). The

second scenario assumes that the state sequence is noncausally known only at the cognitive

transmitter, and is referred to as the CIC-ST (which stands for the cognitive interference

channel with state information noncausally known at only the cognitive transmitter).

The second class of models we study are state-dependent channels with an additional

helper, for which we study four models, i.e., the state-dependent single-user channel with a

helper, the state-dependent parallel networks with a common state-cognitive helper, the
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Fig. 1.3: An illustration of the CIC-STR (including the dashed line) and CIC-ST (without
the dashed line) models

state-dependent multiple access channel (MAC) with a helper, and the state-dependent

broadcast channel with a helper.

In the state-dependent single-user channel with a helper (see Fig. 1.4), the transmitter

communicates with the receiver via a state-corrupted channel. The state is not known to

the transmitter, but to a helper noncausally, which wishes to assist the receiver to cancel the

state.

Fig. 1.4: An illustration of the state-dependent single-user channel with a helper

In the state-dependent parallel networks with a common state-cognitive helper (see

Fig. 1.5),K transmitters wish to sendK messages respectively toK receivers overK

parallel channels, and the receivers are corrupted by states. The channel state is known to

neither the transmitters nor the receivers, but to a helper noncausally. The helper hence

assists these transmitter-receiver pairs to cancel state interference. Furthermore, the helper

also has its own message to be sent simultaneously to its corresponding receiver. Since the

state information is known only to the helper, but not to the corresponding transmitters,

transmitter-side state cognition and receiver-side stateinterference are mismatched. The
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practical motivation of such a channel can be referred to Fig. 1.1 with the understanding

that the helper models the base station and the multiple parallel channels model multiple

D2D transmissions.

More specifically, we study three (sub) models of the state-dependent parallel networks

with a common helper. Model I serves as a basic model, which consists of only one state-

corrupted receiver (K = 1) and a helper that assists this receiver to cancel state interference

in addition to transmitting its own message. Our study of this model provides necessary

techniques to deal with state in the mismatched context for studying more complicated

models II and III. In fact, this model can be viewed as the state-dependent Z-interference

channel, in which the interference is only at receiver 1 caused by the helper. In contrast to

the state-dependent Z-interference channel studied previously in [7], which assumes that

state interference at both receivers are known to both (corresponding) transmitters, our

model assumes that state interference is known noncausallyonly to the helper, not to the

corresponding transmitter 1. Model II consists of two transmitter-receiver pairs in addition

to the helper, and only one receiver is interfered by a state sequence. Model III consists

of a common helper assists multiple transmitter-receiver pairs with each receiver corrupted

by an independently distributed state sequence.

Fig. 1.5: An illustration of the state-dependent parallel channel with a common helper

In the state-dependent MAC with a helper (see Fig. 1.6), transmitter 1 and transmitter

2 send their own message to the receiver, respectively. The channel is corrupted by a state
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sequence. The state sequence is known to neither the transmitters nor the receiver, but is

known to a helper noncausally. Hence, the helper assists thereceiver to cancel the state

interference. A practical example for this model could be the multiple-access communi-

cations in a picocell located inside a macrocell of a cellular network. The macrocell user

serves as a helper to assist the communications in the picocell to cancel the interference.

Fig. 1.6: An illustration of the state-dependent MAC with a helper

For the state-dependent broadcast channel with a helper, westudied two scenarios.

In scenario I (see Fig. 1.7), a transmitter sends one common message to two receivers

over the broadcast channel, which is interfered by a state sequence. The state sequence is

known at neither the transmitter nor the receivers. A helperwhich knows the state sequence

noncausally assists both receivers to deal with the channelstate. Scenario II (see Fig. 1.8)

is similar to scenario I with the difference being that the transmitter sends two independent

messages to receivers 1 and 2, respectively. This model naturally arises in many practical

scenarios, for example, downlink cellular communications. Consider two adjacent cells in

a cellular network. It is likely that downlink transmissionsignals from one base station

causes large interference to users in its adjacent cell. However, the base station can serve

as a helper at the same time, and assists the downlink transmission in its adjacent cell to

cancel its interference.

It is clear that in the first class of state-dependent interference channels, the state in-

formation is known at one or both transmitters and can hence be exploited for encoding

messages. Hence, the focus is to design schemes that best exploit state information for en-

coding messages. However, for the second class of state-dependent channels with a helper,



9

Fig. 1.7: An illustration of the state-dependent broadcastchannel with a helper: Scenario
with a common message

Fig. 1.8: An illustration of the state-dependent broadcastchannel with a helper: Scenario
with private messages

the state is known at only a helper which does not know messages. The key issue is to

design encoding and state cancellation in a distributed manner to achieve the best overall

performance. We are also interested in exploring whether distributed scheme can achieve

the performance of the channel without the state corruption.

1.3 Related Work

Initiated by Shannon in [8], the channel with state corruption has been intensively studied

for the past a few decades. Motivated by practical interestsof modeling interference as

state, our focus is on the cases in which the state is noncausally known at transmitters. In

[9], the single-user channel with state known noncausally at the transmitter is studied, and

the capacity is obtained for the discrete memoryless channel via Gel’fand-Pinsker binning.

Based on this result, in [10], the capacity for the state-dependent single-user Gaussian

channel is obtained, and it is shown that the state can be perfectly canceled as if there is no

state interference. The achievable scheme is referred to as“dirty paper coding".

Following similar schemes, various state-dependent network models are studied, and it
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has been shown that the state interference can be perfectly or partially canceled at receivers.

For example, the state-dependent broadcast channel has been studied in, e.g., [11–15], in

which the transmitter knows the state noncausally and can exploit such information to

select the codeword to be sent in the channel. In [16], the state-dependent relay channel

is studied, in which the source node knows the state and can use such information for

encoding. In [11, 17], the MAC with the receiver being corrupted by one state variable

is studied. In such a model, both transmitters are assumed toknow the state sequence

noncausally, and can use the state information to independently encode their own messages.

Similarly, in [18], the state-dependent cognitive MAC is studied, in which one transmitter

knows both messages as well as the state, and can hence use state information to encode

both messages.

More closely to our work, a few interference channel models with state noncausally

known at transmitters have been studied. In [19] and [20], the interference channel with

state known at both transmitters is studied. Various achievable schemes have been designed

and the corresponding achievable regions are compared in [20]. The gap between inner and

outer bounds on the capacity region has been characterized within certain finite bits in [19].

In [21], the interference channel is corrupted by two independent states, each interfering

one receiver. The states are available at their corresponding transmitters. The capacity

region is obtained for the strong interference regime with the state power going to infinity.

The Gaussian state-dependent IC model we study is the same asthat studied in [19]

and [20]. However, differently from [19, 20], our focus hereis to characterize the exact

capacity region, or points on the boundary of the capacity region. We note that the capac-

ity region/the sum capacity has been characterized for the Gaussian interference channel

withoutstate in the following three regimes: (1) very strong interference channels [2]; (2)

strong interference channels [3]; and (3) a certain weak interference channel [4–6] (based

on the technique developed in [22]). And for the state-dependent Z-IC model, capacity/sum

capacity has been characterized for the corresponding channel without state for the (1) very
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strong Z-IC [3, 23]; strong Z-IC [3, 23]; and weak Z-IC [23]. We study whether or not the

capacity region/the sum capacity in these regimes are achievable when the two receivers’

outputs are also corrupted by differently scaled state, andif so, what transmission schemes

are capacity achieving.

In [24] and [25], a model of the cognitive interference channel with state was studied,

in which both transmitters (i.e., the primary and cognitivetransmitters) jointly send one

message to receiver 1, and the cognitive transmitter sends an additional message separately

to receiver 2. The i.i.d. state sequence is noncausally known at the cognitive transmitter

only. Inner and outer bounds on the capacity region were provided. The difference of our

CIC-ST model from the model studied in [24] and [25] lies in that the common message

jointly sent by both transmitters needs to be decoded at bothreceivers instead of only at

receiver 1 as in [24] and [25]. Although the two models appearsimilar to each other, their

capacity regions can have different forms, and the transmission schemes achieving these

regions can also be different. This fact is already demonstrated by the two corresponding

models without state studied respectively in [26–32] and [33]. The capacity bounds in

[26–32] and the capacity region in [33] have different forms, and are achieved by different

achievable schemes. Therefore, our study can lead to new information theoretic insights.

A common nature that the above models share is that the users are at the same level,

thus, for each message to be transmitted, at least one transmitter in the system knows both

the message and the state, and can incorporate the state information in encoding of the

message so that state interference at the corresponding receiver can be cancelled. However,

in practice, it is often the case that transmitters that havemessages intended for receivers

do not know the state, whereas some third-party nodes know the state, but do not know

the message. In such a mismatched case, a dominant user will help all the interfered users

to cancel state, though state information cannot be exploited in encoding of messages. A

number of previously studied models capture such mismatched property. For example,

in [34], a transmitter sends a message to a state-dependent receiver, and a helper knows
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the state noncausally and can help the transmission. Lattice coding is designed in [34]

for the helper to assist state cancelation at the receiver, and is shown to be optimal under

certain channel conditions. In [35, 36], the state-dependent relay channel is studied, and

the case with the state noncausally known only at the relay isthe mismatched scenario.

Furthermore, in [37], the state-dependent MAC channel is studied with the state known at

only one transmitter. In such a case, the other transmitter’s message cannot be encoded

with the information of the state. In [38–40], the MAC is corrupted by two states that are

respectively known at the two transmitters. In such a case, neither message can be encoded

with the full information of the state. In our study, we also focus on the mismatched

scenarios as discribed above. Howecer, we are interested inthe following issues that are

not captured in the previously studied models: (1) what is the optimal way for the helper

to assist the interfered receiver (2) when there are multiple state-dependent transmitter-

receiver links, how should the helper trade off among helping multiple state-interfered

receivers; (3) when the helper has its own message intended for a separate receiver (not

state-dependent), how should the helper trade off between sending its own message and

assisting state-dependent receivers; and (4) under what channel conditions, the above two

tradeoffs are optimal (i.e., achieve the boundary of the capacity region).

1.4 Summary of Contributions and Thesis Organiza-

tion

As a summary, this thesis leads to one journal publication [41], two journal submissions

[42] and [43], and eight conference publications [44–51]. In the following, I briefly sum-

marize the contributions of my thesis.

In Chapter 2, we study the state-dependent IC/Z-IC. More specifically, in the very

strong interference regime, we characterize the conditions on the channel parameters, under

which the capacity region of the IC and Z-IC channelswithoutstate can be achieved by the
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correspondingstate-dependentIC/Z-IC. The capacity of the state-dependent IC/Z-IC are

thus characterized under those cases. In the strong interference regime, we characterize the

conditions on the channel parameters, under which points onthe capacity region boundary

of the channelwithout state can be achieved. Hence, these points also lie on the capac-

ity region boundary of the state-dependent channel. For theweak interference regime, we

obtain the sum capacity. We also compare the state-dependent regular IC with Z-IC, and

provide a few insights.

In Chapter 3, we study the CIC-ST(R). We first study the CIC-STR. For this scenario,

we obtain the capacity region for both the discrete memoryless and Gaussian channels. We

further study the CIC-ST. For this scenario, we obtain the inner and outer bounds on the

capacity region for the discrete memoryless channel and itsdegraded version. Then we

characterize the capacity region for the degraded semideterministic channel and for chan-

nels that satisfy a less noisy condition. For the Gaussian channels, we partition the channel

into two cases based on how the interference compares with the signal at receiver 1. For

each case, we derive the inner and outer bounds on the capacity region, and characterize

the partial boundaries of the capacity region. We also characterize the full capacity region

for channels that satisfy certain conditions. We further show that certain Gaussian chan-

nels achieve the capacity of the same channels with state noncausally known at both the

cognitive transmitter and receiver 2.

In Chapter 4, we study the state-dependent single-user channel with a helper. In the

previous work [34], the capacity in the regime of infinite state power is characterized based

on Lattice coding. In this thesis, we consider the general case with finite state power. We

first derive the achievable scheme combining two methods to cancel state: 1. precoding

the state with a single bin scheme; 2. directly reversing thestate. By comparing the lower

bound derived and the upper bound from the previous work, we characterize the capacity

rate for channel under various channel parameters.

In Chapter 5, we study three models of parallel communication networks with a state-
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cognitive helper. For each model, there is unique challengeto design capacity-achieving

schemes for the helper to trade off among multiple functions. For model I, we design an

adapted dirty paper coding together with superposition coding for the helper to trade off

between assisting to cancel the state and transmitting its own message. We showed that

such a scheme achieves the full capacity region or segments on the capacity region bound-

ary for all channel parameters. For model II, we design a multi-layer scheme, such that the

helper assists receiver 1 to cancel the infinite-power statewhile simultaneously eliminating

its interference to receiver 2. Such a scheme achieves two segments on the capacity region.

Over one segment, the helper is capable to fully cancel the interference that it causes to

receiver 2, and simultaneously assists receiver 1 to achieve a certain positive rate. In the

second segment, the sum capacity is obtained with the helperdedicated to help receiver

1. For model III, we employ a time-sharing scheme such that the helper alternatively as-

sists each receiver, and we show that such a scheme achieves the sum capacity for certain

channel parameters.

In Chapter 6, we study the state-dependent MAC with a helper.We first derive an outer

bound on the capacity region, and then obtain an inner bound based on a dirty interference

cancelation scheme. By comparing the inner and outer bounds, we characterize the full

capacity region or segment on the boundary of the capacity region under various channel

parameters.

In Chapter 7, we study the state-dependent broadcast channel with a helper. In scenario

1, the transmitter sends one message to both receivers, and in scenario II, the transmit-

ter sends two private messages respectively to two receivers. We derive inner and outer

bounds for both scenarios. By comparing the inner and outer bounds, we characterize

capacity/capacity region under various ranges of channel parameters.

In Chapter 8, we summarize the above results with some insights, and discuss about

possible future works.



15

CHAPTER 2

STATE-DEPENDENT INTERFERENCE

CHANNEL

In this chapter, we study the state-dependent regular IC andthe state-dependent Z-IC. We

consider three regimes for each channel model, i.e. the verystrong, strong and weak

regime. For both very strong state-dependent regular IC andZ-IC, we characterize the

capacity region and the conditions under which capacity region is obtained. For the strong

(but not very strong) state-dependent regular IC and Z-IC, we characterize the points on

the capacity boundary. For the weak state-dependent regular IC and Z-IC, we obtain the

sum capacity. And for each regime, we make comparison between the result for regular

IC and Z-IC, and reveal whether Z-IC has advantage over regular IC in cancelling state

interference.

2.1 Channel Model

In the state-dependent IC and the state-dependent Z-IC (seeFig. 1.2 in Section 1.2. For

convenience of reference, we include the figure again as Fig.2.1 in this section), transmitter

1 sends a messageW1 to receiver 1, and transmitter 2 sends a messageW2 to receiver 2.
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Fig. 2.1: The IC-ST model

The channel is corrupted by an i.i.d. state sequenceSn, which is assumed to be known

noncausallyat both transmitters. More specifically, encoder 1f1 : {W1,Sn} → X n
1 at

transmitter 1 maps a messagew1 ∈ {1, . . . , 2nR1} and a state sequencesn ∈ Sn to an

input xn
1 , and encoder 2f2 : {W2,Sn} → X n

2 at transmitter 2 maps a messagew2 ∈

{1, . . . , 2nR2} and the state sequencesn to an inputxn
2 . For the state-dependent regular

IC, these two inputs are sent over the memoryless interference channel characterized by

PY Z|X1X2S, and for the Z-IC, only receiver 1 is interfered by transmitter 2’s signal, while

receiver 2 is free from interference. Hence, the channel is characterized byPY1|X1X2S and

PY2|X2S. Decoder 1g1 : Yn
1 →W1 at receiver 1 decodesW1 and decoder 2g2 : Yn

2 →W2

at receiver 2 is required to decodeW2, with the probability of error approaching zero as the

codeword lengthn goes to infinity. The capacity region is defined to be the closure of the

set of all achievable rate pairs(R1, R2).

We study the Gaussian channel with the outputs at receivers 1and 2 for one channel

use given by

Y = X1 + aX2 + S +N1

Z = bX1 +X2 + cS +N2 (2.1)

wherea, b andc are constants, the noise variablesN1, N2 ∼ N (0, 1), andS ∼ N (0, Q).

Both the noise variables and the state variable are i.i.d. over channel uses. The channel

inputsX1 andX2 are subject to the average power constraintsP1 andP2. For the Z-IC, the
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channel parameterb = 0, and thus receiver 2 is not interfered by transmitter 1.

2.2 Very Strong Interference Regime

In this section, we study the state-dependent regular IC andZ-IC in the very strong regime,

and characterize the conditions under which the capacity region can be obtained, i.e., the

capacity region of the ICwithoutstate can be achieved. We also compare the results of the

two channels.

2.2.1 State-Dependent Regular IC

In this subsection, we study the state-dependent regular ICin the very strong regime, in

which the channel parameters satisfy

P1 + a2P2 + 1 ≥ (1 + P1)(1 + P2)

b2P1 + P2 + 1 ≥ (1 + P1)(1 + P2). (2.2)

In such a regime, the channelwithout stateis the very strong IC, and its capacity region has

been characterized in [2], which contains rate pairs(R1, R2) satisfying

R1 6
1

2
log (1 + P1) (2.3a)

R2 6
1

2
log (1 + P2). (2.3b)

In this case, the two users achieve the single-user channel capacity even with interference.

Our focus here is to study under what conditions on the channel parameters we can design

schemes for thestate-dependentIC to achieve the above capacity region, i.e., the state at

receivers can be fully cancelled. Clearly, in this case, theabove capacity region also serves

as the capacity region for the state-dependent channel.

There are two challenges here. (1) Since the state are scaleddifferently at two receivers,
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each transmitter needs to deal with the compound state corruption in two receivers. (2) The

scheme to achieve the capacity region for the very strong IC without state suggests that the

receivers decode the interference first, and then cancel it from the received output so that

decoding of the intended input does not experience interference. For the state-dependent

channel, if both transmitters employ dirty paper coding, receivers decode only auxiliary

random variables, but not the exact input of the other transmitter. Hence, canceling the

signal interference would cause certain left-over state interference.

In the following, we design a coding scheme to achieve the single-user channel capacity

for each user based oncooperativedirty paper coding between the two transmitters such

that (1) the two transmitters cooperatively cancel the compound states at the two receivers,

and furthermore (2) each transmitter design its dirty paperinput based on the original state

plus the left-over interference by decoding the other transmitter’s dirty paper coded inter-

ference. The cooperation between the transmitters is possible due to the state information

known to both transmitters.

We first design an achievable scheme for the discrete memoryless channel, which is

useful for the Gaussian channel. The two transmitters encode their messagesW1 andW2

into two auxiliary random variablesU andV , respectively, based on Gel’fand-Pinsker bin-

ning scheme [9]. Since the channel satisfies the very strong interference condition, each

receiver first decodes the auxiliary random variable corresponding to the message intended

for the other receiver, and then decodes its own message by decoding the auxiliary random

variable for itself. For instance, receiver 1 first decodesV , then uses it to cancel the mes-

sage interference and state interference, and finally decodes its message by decodingU .

Such an achievable scheme yields the following achievable region.

Proposition 2.1. For the state-dependent IC with state noncausally known at both trans-
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mitters, the achievable region consists of rate pairs(R1, R2) satisfying:

R1 6 min{I(U ; Y1V ), I(U ; Y2)} − I(U ;S) (2.4a)

R2 6 min{I(V ; Y2U), I(V ; Y1)} − I(V ;S) (2.4b)

for some distributionPSUVX1X2Y1Y2
= PSPU |SPX1|USPV |SPX2|V SPY1Y2|X1X2S, whereU

andV are auxiliary random variables.

Proof. See Appendix A.1.

By choosing joint Gaussian distributions for the auxiliaryrandom variables and the

channel inputs in the achievable region given in Proposition 2.1, we can obtain an achiev-

able region for the Gaussian channel. In particular,U is designed to deal with the state

interference forY1 after cancellingV , andV is designed to deal with the state interfer-

ence forY2 after cancellingU . Therefore, coefficients in dirty paper coding ofU andV

are jointly designed to cancel the states at the two receivers. Furthermore, by requiring

I(U ; Y1V ) ≥ I(U ; Y1) andI(V ; Y1U) ≥ I(V ; Y1) in (2.4a) and (2.4b), the resulting region

is the same as the capacity region of the channel without state, and thus the capacity region

of the state-dependent IC is established. We state this result in the following theorem.

Theorem 2.1. Consider the state-dependent Gaussian IC with state noncausally known

at both transmitters. If the channel parameters(a, b, c, P1, P2, Q) satisfy the following

conditions:

(b2P1 + P2 + c2Q+ 1)

(1 + P2)(1 +
(1+P2)(c+cP1−bP1)2Q+QP1(1+P2−acP2)2

((1+P1)(1+P2)−abP1P2)2
)
> 1 + P1 (2.5a)

(P1 + a2P2 +Q + 1)

(1 + P1)(1 +
P2(c+cP1−bP1)2Q+Q(1+P1)(1+P2−acP2)2

((1+P1)(1+P2)−abP1P2)2
)
> 1 + P2, (2.5b)

then the capacity region consists of rate pairs(R1, R2) satisfying(2.3a)and (2.3b), i.e., is

the same as the single-user capacity for both receivers.
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Proof. In Proposition 2.1, we setU andV asU = X1 + αS, V = X2 + βS, where

X1, X2 andS are independent Gaussian variables with mean zero and variancesP1, P2

andS, respectively. We then designα based on dirty paper coding forY ′
1 = Y1 − aV =

X1 + (1 − aβ)S + N1, and designβ based on dirty paper coding forY ′
1 = Y1 − bU =

X2 + (c− bα)S +N2. We further requireα andβ to satisfy the following conditions:

α

1− aβ
=

P1

P1 + 1
(2.6a)

β

c− bα
=

P2

P2 + 1
. (2.6b)

By solving the equations (2.6a) and (2.6b), we have

α =
P1(1 + P2 − acP2)

(1 + P1)(1 + P2)− abP1P2

β =
cP2(C(1 + P1)− bP1)

(1 + P1)(1 + P2)− abP1P2
.

Then the bounds in equations (2.4a) and (2.4b) becomes

R1 6
1

2
log (1 + P1)

R2 6
1

2
log (1 + P2), (2.7)

if

1

2
log (1 + P1) 6 I(U ; Y2)− I(U ;S)

1

2
log (1 + P2) 6 I(V ; Y1)− I(V ;S). (2.8)

By computing the mutual information terms in the above equations based on the chosen

distributions forU andV , we obtain the conditions given in the theorem. Such an achiev-

able region is therefore the capacity region, because it is the same as the corresponding
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channel without state. This can be formally shown by following steps similar to those in

Appendix A.7.

Although the conditions (2.5a) and (2.5b) are expressed in complicated forms, they can

be easily checked numerically. We provide numerical illustration in Section 2.2.3. Fol-

lowing Theorem 2.1, we also obtain the following result for the state-dependent symmetric

Gaussian IC as a special case.

Corollary 2.1. For the state-dependent symmetric Gaussian IC with state noncausally

known at the transmitters, i.e.,a = b, c = 1, andP1 = P2, the capacity region contains

rate pairs(R1, R2) satisfying

R1 6
1

2
log (1 + P )

R2 6
1

2
log (1 + P ), (2.9)

if a ≥ ath, whereath solves the following equation

(P + a2P +Q + 1)(1 + P + aP )2

(1 + P )[(1 + P + aP )2 +Q(1 + 2P )]
= 1 + P. (2.10)

Proof. If a = b andc = 1, then the conditions (2.5b) and (2.5a) reduce to the following

single condition:

(P + a2P +Q + 1)(1 + P + aP )2

(1 + P )[(1 + P + aP )2 +Q(1 + 2P )]
> 1 + P. (2.11)

Such a condition is equivalent to the one given in the corollary.
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2.2.2 State-Dependent Z-IC

In this subsection, we study the state-dependent Z-IC, i.e., b = 0, in the very strong regime,

in which the channel parameter satisfies

a2 > 1 + P1. (2.12)

Under the above condition, the channelwithoutstate is very strong, and its capacity region

contains rate pairs(R1, R2) satisfying (2.3a) and (2.3b), i.e., the two users achieve the

single-user channel capacity.

Similarly to the regular IC, we also design cooperative dirty paper coding between

the two transmitters, which encodes the messagesW1 andW2 into two auxiliary random

variablesU andV , respectively. The difference from the scheme for the regular IC lies

in the fact that since receiver 2 is interference free,V can be designed to fully cancel the

state at receiver 2. Then receiver 1 first decodes the auxiliary random variableV to cancel

the interference as well as partial state, and then decodes its own message and cancels the

remaining state by decoding the auxiliary random variableU . Based on this achievable

scheme, we have the following achievable region for the discrete memoryless channel.

Proposition 2.2. For the state-dependent Z-IC with state noncausally known at both trans-

mitters, the achievable region consists of rate pairs(R1, R2) satisfying:

R1 6 I(U ;V Y1)− I(U ;S),

R2 6 I(V ; Y2)− I(V ;S) (2.13)

for some distributionPSPU |SPV |SPX1|USPX2|V SPY1|X1X2SPY2|X2S that satisfiesI(V ; Y2) 6

I(V ; Y1).

Proof. See Appendix A.2.
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By choosing the joint Gaussian distribution for the auxiliary random variables and the

channel inputs in the achievable region in Proposition 2.2,we obtain the achievable region

for the state-dependent Gaussian Z-IC. In particular, the auxiliary random variableV is

designed to deal with the state interference forY2, butU is designed to deal with the state

interference forY1 after cancellingV . By further comparing this achievable region with

the capacity region of the Z-ICwithoutstate, we obtain the following capacity result.

Theorem 2.2. For the state-dependent Gaussian Z-IC with state noncausally known at both

transmitters, if its channel parameters(a, c, P1, P2, Q) satisfy the following conditions:

P2(a
2P2 + P1 + 1)

P2Q(1− α)2 + (P2 + α2Q)(P1 + 1)
> 1 + P2,

whereα = P2

P2+1
c, then the capacity region consists of rate pairs(R1, R2) satisfying(2.3a)

and (2.3b).

Proof. We setU andV in Proposition 2.2 asU = X1 + βS, V = X2 + αS, whereX1, X2

andS are independent Gaussian variables with mean zero and variancesP1, P2 andQ,

respectively, and setα andβ to be

α =
P2

(1 + P2)
b, β =

P1

1 + P1

(1− α).

Substituting the above choice of the Gaussian distributioninto Proposition 2.2 yields the

desired region and the condition in Theorem 2.2.

Since such an achievable region is the same as the capacity region of the corresponding

channel without state, it can be shown to be the capacity region of the state-dependent

channel.
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2.2.3 Comparison of State-Dependent Regular IC and Z-IC

In this subsection, we compare the result in Theorem 2.1 for the state-dependentregular

IC and the result in Theorem 2.2 for the state-dependentZ-IC.

1.5 2 2.5 3 3.5 4
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0

2

4

6

a

c

 

 

Z−IC
Regular IC

P
1
=1;

P
2
=1;

Q=1.2;

Fig. 2.2: Conditions on channel parameters(a, c) under which the state-dependent Gaus-
sian regular IC and Z-IC achieve the capacity of the corresponding channel without state in
the very strong regime.

We setP1 = 1, P2 = 1, andQ = 1.2 for both channels, and set the additional inter-

ference link in the regular IC to have the channel gainb = 4 such that it does not affect a

fair comparison. In Fig. 2.2, we plot the range of parameter pairs (a, c) under which the

two single-user channel capacities can be achieved for bothstate-dependentregular ICand

Z-IC. The ranges between the two solid lines and between the two dashed lines respectively

correspond to the regular IC and Z-IC. It is clear that the regular IC has a larger range than

the Z-IC particularly for largea. Such observation suggests that it is easier to fully cancel

the state for the regular IC than the Z-IC, which may appear counter intuitive, since the

state-dependent Z-IC possesses an interference free link.In fact, it is reasonable, because

receiver 2 in the regular IC can decode the dirty paper coded signal of transmitter 1 due to

the very strong interference, via which it can cancel certain amount of state. In this way,

the one more interference link to receiver 2 in the regular IChelps receiver 2 to cancel the

state.



25

2.3 Strong Interference Regime

Since the very strong IC is studied separately in Section 2.2, in this section, we study

the state-dependent regular IC and Z-IC in the strong, but not very strong regime, and

characterize the conditions under which points on the capacity region boundary can be

obtained. We then compare the results for the regular IC and Z-IC.

2.3.1 State-Dependent Regular IC

In this subsection, we study the state-dependent regular ICin the strong but not very strong

regime, in which the channel parameters satisfy

a ≥ 1, b ≥ 1,

min{P1 + a2P2 + 1, b2P1 + P2 + 1} 6 (1 + P1)(1 + P2). (2.14)

Without loss of generality, we assume thatP1 + a2P2 + 1 6 b2P1 + P2 + 1. Under the

above conditions, the ICwithoutstate is strong, and the capacity region was characterized

in [3], which contains rate pairs(R1, R2) satisfying

R1 6
1

2
log (1 + P1), R2 6

1

2
log (1 + P2),

R1 +R2 6
1

2
log(1 + P1 + a2P2). (2.15)

The above capacity is achieved by requiring both receivers to decode both messages, and

hence the capacity region is the intersection of the capacity regions of two multiple-access

channels. We illustrate such a capacity region in Fig. 2.3, as the pentagon O-A-B-E-F-O.

Our goal here is to study whether points on the boundary of such a pentagon (i.e., the

capacity region boundary of the ICwithout state) can be achieved by the corresponding

state-dependentIC. The main difference of the strong regime from the very strong regime
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Fig. 2.3: Capacity region of the strong IC without state

studied in Section 2.2 is the additional sum rate constraintin the capacity region. Although

the cooperative dirty paper coding scheme that we design forthe very strong regime fully

cancels the state in the single-user rate bounds, it does notfully cancel the state in the sum

rate bound. Thus, new schemes need to be designed here in order for the state-dependent

IC to achieve the sum rate boundary of the capacity region of the IC without state, i.e., the

line B-E in Fig. 2.3. Then the points on the line A-B and the line F-E are achievable if the

two corner pointsB andE on the sum rate boundary are achievable.

The idea of our achievable scheme is to exploit the fact that the sum rate boundary B-E

is due to the decoding requirement at receiver 1 (as a receiver of the MAC), and hence

every point on B-E can be achieved by message splitting and successive cancelation. For

the state-dependent channel, in addition to rate splitting, we also utilizelayered dirty paper

codingandsuccessive state cancelationto fully cancel the state at receiver 1. If such a

coding scheme does not introduce extra bounds for receiver 2to decode the two messages,

then the sum rate boundary can be achieved.

Based on the above idea, we first design an achievable scheme for the corresponding

discrete memoryless channel which is useful for studying the Gaussian channel. We split

the messageW1 into two partsW11 andW12, which are encoded into the auxiliary random

variablesU1 andU2 successively using Gel’fand-Pinsker binning. We also split the message
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W2 into two partsW21 andW22, which are encoded into the auxiliary random variables

V1 andV2 successively using Gel’fand-Pinsker binning scheme. Bothreceivers decode

both messages with reasonable decoding orders, such that the decoding capability of the

two receivers are accommodated. As an illustration, we nextadopt the decoding order

W11,W21,W22,W12 at receiver 1 and the decoding orderW21,W11,W12,W22 at receiver 2.

The resulting achievable rate region is given in the following Proposition.

Proposition 2.3. For the state-dependent IC with state noncausally known at both trans-

mitters, an achievable region consists of rate pairs(R1, R2) satisfying:

R1 6 min{I(U1; Y1), I(U1;V1Y2)}

+min{I(U2;V1V2Y1|U1), I(U2;V1Y2|U1)} − I(U1U2;S)

R2 6 min{I(V1; Y2), I(V1;U1Y1)}

+min{I(V2;U1U2Y2|V1), I(V2;U1Y1|V1)} − I(V1V2;S) (2.16)

for some distribution

PSU1U2V1V2X1X2Y1Y2
= PSPU1|SPU2|SU1

PX1|U1U2SPV1|SPV2|SV1
PX2|V1V2SPY1Y2|SX1X2

whereU1, U2, V1, andV2 are auxiliary random variables.

Proof. See Appendix A.3.

Remark 2.1. A more comprehensive achievable region can be obtained by taking the con-

vex hull of the union over achievable regions resulting fromall possible decoding orders of

messages at the two receivers.

Proposition 2.3 provides an example achievable region, based on which we next show

that the designed scheme achieves the capacity region or partial boundary of the capacity

region for the state-dependent Gaussian IC under certain conditions on channel parameters.
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Namely, we characterize the conditions on the channel parameters under which points on

the sum rate boundary of the IC without state (i.e., the line B-E in Fig. 2.3) can be achieved

by the state-dependent Gaussian IC.

We note that any rate point on the line B-E can be characterized by

R1 =
1

2
log

(

1 +
P ′
1

a2P ′′
2 + P ′′

1 + 1

)

+
1

2
log (1 + P ′′

1 )

R2 =
1

2
log

(

1 +
a2P ′

2

a2P ′′
2 + P1 + 1

)

+
1

2
log

(

1 +
a2P ′′

2

P ′′
1 + 1

)

(2.17)

for someP ′
1, P

′′
1 , P

′
2, P

′′
2 > 0, P ′

1 + P ′′
1 6 P1, andP ′

2 + P ′′
2 6 P2.

In order to achieve any rate point given in (2.17), we design layered dirty paper cod-

ing for the auxiliary random variablesU1, V1, V2, andU2 in order to successively decode

messages and cancel the state at receiver 1. More specifically, dirty paper coding forU1 is

designed to cancel the state treating all other variables asnoise, and thenV1, V2 andU2 are

designed to successively cancel the residual state after subtracting the previously decoded

auxiliary random variables fromY1. Furthermore, by requiring the rate bounds due to de-

coding at receiver 2 to be larger than those due to decoding atreceiver 1, the rate point of

interest is thus achievable for the state-dependent IC. We state this result in the following

theorem.

Theorem 2.3. Any rate point given in(2.17)with the parameters(P ′
1, P

′′
1 , P

′
2, P

′′
2 ) is on the

capacity region boundary of the state-dependent IC if the channel parameters satisfy the

following conditions

1

2
log

(

1 +
P ′
1

P ′′
1 + a2P2 + 1

)

6I(U1;V1Y2) (2.18a)

1

2
log(1 + P ′′

1 ) 6I(U2;V1Y2|U1) (2.18b)

1

2
log

(

1 +
a2P ′

2

P ′′
1 + a2P ′′

2 + 1

)

6I(V1; Y2) (2.18c)

1

2
log

(

1 +
a2P ′′

2

P ′′
1 + 1

)

6I(V2;U1U2Y2|V1) (2.18d)
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where the mutual information terms in the above conditions are computed based on the

following auxiliary random variables

U1 = X ′
1 + α1S, U2 = X ′′

1 + α2S

V1 = aX ′
2 + β1S, V2 = aX ′′

2 + β2S (2.19)

whereX ′
1, X

′′
1 , X

′
2, X

′′
2 are independent Gaussian variables with mean zero and variances

P ′
1, P

′′
1 , P

′
2 andP ′′

2 , correspondingly,X1 = X ′
1 +X ′′

1 , X2 = X ′
2 +X ′′

2 , andα1, α2, β1 and

β2 are given by

α1 =
P ′
1

P1 + a2P2 + 1
, α2 =

P ′′
1

P1 + a2P2 + 1

β1 =
a2P ′

2

P1 + a2P2 + 1
, β2 =

a2P ′′
2

P1 + a2P2 + 1
.

Proof. The achievability follows from Proposition 2.3 by choosingthe auxiliary random

variablesU1, U2, V1, andV2 as in (2.19) based on the successive dirty paper coding for

removing the state from the received signalY1 so that the rate point given in (2.17) is

achievable at receiver 1. For this rate point to be achievable also at receiver 2, following

Proposition 2.3, the following conditions should be satisfied

I(U1; Y1) 6I(U1;V1Y2) (2.20a)

I(U2;V1V2Y1|U1) 6I(U2;V1Y2|U1) (2.20b)

I(V1;U1Y1) 6I(V1; Y2) (2.20c)

I(V2;U1Y1|V1) 6I(V2;U1U2Y2|V1). (2.20d)

By substituting the auxiliary random variables defined in (2.19) into (2.20a)-(2.20d),

we obtain the conditions (2.18a)-(2.18d) on the channel parameters, under which the given

boundary point is achievable by the state-dependent IC. Thus, such a point is on the capac-
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ity region boundary, because it is on the capacity boundary of the channel without state,

which serves as an outer bound. Formal justification can follow steps similar to those in

Appendix A.7.

The mutual information terms in Theorem 2.4 can be explicitly computed in close

forms. Thus, Theorem 2.4 provides a computable way for checking whether any point

on the sum rate boundary of the capacity of the IC without state is also on the capacity

boundary for the corresponding state-dependent channel under certain channel parameters.

We provide an example range of parameters in Section 2.3.3.

2.3.2 State-Dependent Z-IC

In this subsection, we study the state-dependent Z-IC (i.e., b = 0) in the strong but not very

strong regime, in which the channel parameters satisfy

1 6 a2 6 (1 + P1). (2.21)

Under the above conditions, the Z-ICwithoutstate is strong (but not very strong Z-IC),

and the capacity region is characterized in [3], which contains rate pairs(R1, R2) satisfying

R1 +R2 6
1

2
log(1 + P1 + a2P2)

R1 6
1

2
log (1 + P1), R2 6

1

2
log (1 + P2). (2.22)

The above capacity region is illustrated in Fig. 2.4 as the pentagon O-A-B-E-F-O, which

is obtained by requiring receiver 1 to decode both messages and receiver 2 to decode the

messageW2.

Similarly to the regular IC, our goal here is also to study whether the points on the

boundary of such a pentagon (i.e., the capacity region boundary of the Z-ICwithoutstate)

can be achieved by the correspondingstate-dependentZ-IC. We focus on the sum rate
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Fig. 2.4: Capacity region of the strong Z-IC without state

boundary of the pentagon (i.e., the line B-E in Fig. 2.4), andthen the points on the line A-B

and the line E-F are achievable if the two corner pointsB andE are achievable. We first

design an achievable scheme for the state-dependent discrete memoryless Z-IC following

the same idea as that for the regular IC based on rate splitting, layered dirty paper coding

and successive state cancelation aiming at fully cancelingthe state at receiver 1. The only

difference lies in that receiver 2 here decodes onlyW21 andW22. Such a scheme then yields

the following achievable rate region.

Proposition 2.4. For the state-dependent Z-IC with state noncausally known at both trans-

mitters, an achievable region consists of rate pairs(R1, R2) satisfying:

R1 6 I(U1;V1Y1) + I(U2;V1V2Y1|U1)− I(U1, U2;S)

R2 6 min{I(V1; Y2), I(V1; Y1)}

+min{I(V2; Y2|V1), I(V2;U1Y1|V1)} − I(V1V2;S) (2.23)

for some distributionPSU1U2V1V2X2X1Y2Y1
= PSPU1U2|SPV1V2|SPX1|U1U2SPX2|V1V2SPY1|SX1X2

PY2|SX2
, whereU1, U2, V1 andV2 are auxiliary random variables.

Proof. See Appendix A.4.

Now specializing Proposition 2.4 to the Gaussian case yields an achievable region,

based on which we can check if and under what conditions the points on the line B-E in
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Fig. 2.4 are achievable. Since points on the line B-E can alsobe characterized in (2.17) , we

thus follow the same design of layered dirty paper coding forthe auxiliary random variables

U1, V1, V2, andU2 as that for the regular IC in order to fully cancel the state atreceiver 1

successively. Then by requiring the decoding bounds at receiver 2 to be larger than those

of receiver 1, points on B-E can be shown to be achievable by the state-dependent Z-IC.

We state this result in the following theorem.

Theorem 2.4. Any rate point characterized in(2.17)with the parameters(P ′
1, P

′′
1 , P

′
2, P

′′
2 )

is on the capacity region boundary of the state-dependent Gaussian Z-IC with state non-

causally known at the transmitters if the channel parameters satisfy the following condi-

tions

1 +
a2P ′

2

a2P ′′
2 + P1 + 1

6
a2P ′

2(P2 + b2Q+ 1)

P ′
2(ab− α)2 + (P ′′

2 + 1)(a2P ′
2 + α2Q)

(2.24a)

1 +
a2P ′′

2

P ′′
1 + 1

6
a2P ′′

2 [P
′
2(a

2P ′′
2 + (ab− α)2Q+ a2) + α2Q(P ′′

2 + 1)]

a2P ′′
2 (α

2Q+ a2P ′
2) + (a2b− aα− aγ)2P ′

2P
′′
2Q+ a2γ2P ′

2Q
(2.24b)

whereα =
a2P ′

2

a2P2+P1+1
, andγ =

a2P ′′
2

a2P2+P1+1
.

Proof. In order to achieve a rate point given in (2.17) with the parameters(P ′
1, P

′′
1 , P

′
2, P

′′
2 ),

we apply Proposition 2.4 and choose the auxiliary random variablesU1, U2, V1, andV2

based on the dirty paper coding as in (2.19) so that the state in the received signalY1 can

be fully canceled.

In order for receiver 2 to decode at this rate point (without introducing more constraints

on the rates), due to Proposition 2.4, the following conditions should be satisfied

I(V1; Y1) 6I(V1; Y2), I(V2;U1Y1|V1) 6 I(V2; Y2|V1). (2.25)

By substituting the auxiliary random variables defined in (2.19) into (2.25), the condi-

tions (2.24a) and (2.24b) on the channel parameters can be obtained, under which the rate

point of interest is achievable over the state-dependent Z-IC. Thus, such a rate point is on
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the capacity region boundary, because it is on the capacity region boundary of the channel

without state, which serves as an outer bound.

Theorem 2.4 provides the conditions on the channel parameters under which a certain

given point is on the capacity region boundary. In Proposition 2.5 and Corollary 2.2, we

also characterize a line segment on the capacity region boundary for a given set of channel

parameters.

Proposition 2.5. For the state-dependent Gaussian Z-IC with state noncausally known at

both transmitters, if a point (sayB′) on the lineB − E in Fig. 2.4 satisfies the conditions

in Theorem 4, i.e., it is on the capacity region boundary, then the pointB is also on the

capacity region boundary, and thus the line segmentB′ − B is on the capacity region

boundary.

Proof. See Appendix A.5.

Based on Proposition 2.5, we characterize a segment on the capacity region boundary

in the following corollary.

Corollary 2.2. For the state-dependent Gaussian Z-IC with state noncausally known at

the transmitters, letR∗
2 = 1

2
log( a2P2(P2+b2Q+1)

P2Q(ab−β)2+a2P2+β2Q
), whereβ = a2P2

a2P2+P1+1
. If R∗

2 >

1
2
log(1 + a2P2

1+P1

), then the lineB − B′ are on the capacity region boundary with the rate

coordinates of the pointsB andB′ given by

Point B :

(

1

2
log(1 + P1),

1

2
log(1 +

a2P2

1 + P1
)

)

Point B′ :

(

1

2
log(1 + a2P2 + P1)−R∗

2, R
∗
2

)

. (2.26)

Proof. See Appendix A.6.
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2.3.3 Comparison of State-Dependent Regular IC and Z-IC

In this subsection, we compare the result in Theorem 2.3 for the state-dependent regular

IC and the result in Theorem 2.4 for the state-dependent Z-ICin the strong interference

regime.

In Fig. 2.5, we plot the parameter ranges characterized in Theorem 2.3 and in Theorem

2.4. For both the regular IC and the Z-IC, we setP1 = 1, P2 = 1, Q = 2 anda = 1.2.

Moreover, for the regular IC, we setb = 4, which implies that the interference is strong

enough such that its corresponding channel without state has the same capacity region as

that of the Z-IC. Thus, the only flexible parameter left for both the regular IC and the Z-

IC is the scaling coefficientc for the state. We study the range ofc that guarantees the

points on the lineB − E to be on the capacity region boundary of the state-dependent

regular IC and Z-IC. We note that each point on the lineB − E can be parameterized

as the rate pair(R1, R2) = (R1,
1
2
log(1 + P1 + a2P2) − R1), whereR1 changes from

R1 = 0.5 (corresponding to point B) toR1 = 1
2
log 1.72 (corresponding to point E). In

Fig. 2.5, for eachR1 (and hence for each corresponding point on theB − E line), we plot

the range ofc that guarantees the point(R1, R2) to be on the capacity region boundary

of the state-dependent regular IC to be between the two solidlines, and plot the range of

c that guarantees the point(R1, R2) to be on the capacity region boundary of the state-

dependent Z-IC between the two dashed lines. Although the two ranges do not overlap,

their structures are similar and the sizes of the ranges are comparable. This implies that

both channels have the same flexibility to achieve the capacity region boundary point of the

corresponding channel without state, and hence suggests that neither channel cancels the

state more easily than the other. This is because for both theregular IC and the Z-IC, the

layered dirty paper coding is designed in the same way to successively cancel the state for

receiver 1. Hence, the advantage of the Z-IC at the other receiver is not significant due to

the state interference that is not fully canceled. We further note that Fig. 2.5 also suggests
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that it is easier to achieve a point on theB −E line when the point is closer to the pointB

for both channels.
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Fig. 2.5: Ranges ofc under which points on the sum capacity boundary of the strong
regular/Z-IC without state can be achieved by the state-dependent channel

2.4 Weak Interference Regime

In this section, we study both the state-dependent regular IC and Z-IC in the weak interfer-

ence regime, in which the channel parameters satisfy|a(1+ b2P1)|+ |b(1+ a2P2)| 6 1 for

the regular IC and satisfya2 6 1 for the Z-IC. Under such conditions, the sum capacity for

the regular IC without state has been established in [4–6], and for the Z-IC without state

has been established in [23]. In both cases, the sum capacitycan be achieved by treating

interference as noise at each receiver. Hence, for the corresponding state-dependent IC, in-

dependent dirty paper coding at two transmitters to cancel the state at their corresponding

receivers (treating the interference as noise) can achievethe same sum capacity. Decoding

at each receiver is not affected by how the interference signal is coded. Such an observation

yields the following results.

Theorem 2.5. For the state-dependent Gaussian IC with state noncausallyknown at both

transmitters, if|a(1 + b2P1)|+ |b(1 + a2P2)| 6 1, then the sum capacity is given by

Csum=
1

2
log

(

1 +
P1

a2P2 + 1

)

+
1

2
log

(

1 +
P2

b2P1 + 1

)

. (2.27)
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For the state-dependent Gaussian Z-IC with state noncausally known at both transmitters,

if a2 6 1, then the sum capacity is given by

Csum=
1

2
log

(

1 +
P1

a2P2 + 1

)

+
1

2
log (1 + P2) . (2.28)

Proof. See Appendix A.7.
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CHAPTER 3

STATE-DEPENDENT COGNITIVE

INTERFERENCE CHANNEL

In this chapter, we study the cognitive interference channel with state. More specifically,

we consider two sub models, i.e., the CIC-STR and CIC-ST. Forthe CIC-STR, we char-

acterize the capacity region for both discrete memoryless channel and Gaussian channel.

In particular, we partition the Gaussian CIC-STR into two sets based on the channel pa-

rameters, and derive the capacity region for the two sets, respectively. For the CIC-ST, we

derive inner and outer bound for the discrete memoryless channel and its degraded version,

and obtain the capacity region for channels that satisfy certain conditions. We then study

the Gaussian CIC-ST. We also partition the channel into two sets, and derive inner and

outer bounds for the two sets. By comparing the inner and outer bounds, we obtain the

partial capacity boundary for the Gaussian CIC-ST, and fullcapacity region for channel

with parameters satisfying certain conditions.
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Fig. 3.1: The CIC-STR (including the dashed line) and the CIC-ST (without the dashed
line) models

3.1 Channel Model

For the cognitive interference channel with state known at one transmitter (see Fig. 1.3 in

Section 1.2. For convenience of reference, we include the figure again as Fig. 3.1 in this

section), we investigate two scenarios, i.e., CIC-STR and the CIC-ST.

In the CIC-ST, two transmitters (referred to as the primary transmitter and the cognitive

transmitter) jointly send a messageW1 to two receivers (say receivers 1 and 2), and the

cognitive transmitter sends another messageW2 to receiver 2. The channel is also corrupted

by an i.i.d. state sequence. The scenario, in which the statesequence is noncausally known

at both the cognitive transmitter and receiver 2 (CIC-STR) and the scenario, in which the

state sequence is noncausally known only at the cognitive transmitter (CIC-ST) are studied.

More specifically, encoder 1f1 : W1 → X n
1 at transmitter 1 maps a messagew1 ∈ W1 to

a codewordxn
1 ∈ X n

1 , and encoder 2f2 : W1 ×W2 × Sn → X n
2 at transmitter 2 maps a

message pair(w1, w2) ∈ W1 ×W2 and a state sequencesn ∈ Sn to a codewordxn
2 ∈ X n

2 .

Decoder 1g1 : Yn
1 → W1 at receiver 1 maps a received sequenceyn1 into a message

ŵ
(1)
1 ∈ W1, and decoder 2g2 : Yn

2 →W1 ×W2 at receiver 2 maps a received sequenceyn2

into a message pair
(

ŵ
(2)
1 , ŵ2

)

∈ W1 ×W2 with the probability of error approaching zero

as the codeword lengthn goes to infinity. The capacity region is defined to be the closure

of the set of all achievable rate pairs(R1, R2).
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We note that the above definition is also applicable to the CIC-STR, if the second de-

coder is changed tog2 : (Yn
2 , S

n)→W1 ×W2.

In the following, we define a number of channel conditions forclassifying the channels

in our study:

• PY1Y2|X1X2S = PY2|X1X2SPY1|Y2
(3.1)

• PY1Y2|X1X2S = PY2|X1X2SPY1|Y2X1S (3.2)

• PY1Y2|X1X2S = PY1|X1X2SPY2|Y1X1S (3.3)

• I(X1; Y1) ≤ I(X1; Y2) and I(U ; Y1|X1) ≤ I(U ; Y2|X1)

for all PUX1X2S s.t. PX1SUX2
= PX1

PSPUX2|SX1
(3.4)

• I(X1U ; Y1) ≥ I(X1U ; Y2)

for all PUX1X2S s.t. PX1SUX2
= PX1

PSPUX2|SX1
(3.5)

We also study the Gaussian CIC-ST and CIC-STR models defined as follows. We note

that the two models have the same input-output relationship. The Gaussian CIC-ST and

CIC-STR have outputs at receivers 1 and 2 for one symbol time given by

Y1 = X1 + aX2 + S +N1 (3.6a)

Y2 = bX1 +X2 + cS +N2 (3.6b)

where the noise variablesN1 ∼ N (0, 1) andN2 ∼ N (0, 1), and the state variableS ∼

N (0, Q). Both the noise variables and the state variable are i.i.d. over channel uses.

The channel inputs are subject to the average power constraints 1
n

∑n

i=1X
2
1i 6 P1, and

1
n

∑n

i=1X
2
2i 6 P2.
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3.2 The CIC-STR Model

In this section, we present our results for the CIC-STR. We first provide the capacity re-

gion for the discrete memoryless channel, and then characterize the capacity region for the

Gaussian model for two sets of channels:|a| > 1 and|a| 6 1.

3.2.1 Discrete Memoryless Channels

We design an achievable scheme that employs rate-splitting, superposition coding and

Gel’fand-Pinsker binning scheme. The primary transmitterfirst encodesW1. Then the

cognitive transmitter cooperatively encodes and transmitsW1 using superposition. More-

over, the cognitive transmitter employs rate splitting fortransmittingW2, i.e., splitsW2

into two componentsW21 andW22 with W21 intended for both receivers to decode andW22

intended only for receiver 2 to decode. The cognitive transmitter encodesW21 andW22 by

superposing them onW1. Furthermore, since the cognitive transmitter knows the channel

state information, it employs Gel’fand-Pinsker scheme viaan auxiliary random variableU

(in the following capacity region) to reduce state interference for receiver 1 to decodeW1

andW21. Hence,U contains information of bothW1 andW21, and plays dual roles: help-

ing to cancel state interference and serving as a rate splitting random variable for carrying

the messageW21. We also note that since receiver 2 has the knowledge of the state, no

additional auxiliary random variable is needed for cancelling state interference for receiver

2.

The CIC-STR is easier to analyze than the CIC-ST, because receiver 2 knows the state

and can hence remove the state interference from its output.In this way, the design of

achievable schemes needs to deal with only the state interference at receiver 1. Whereas

for the CIC-ST, in which the state information is known at neither receiver, the achievable

scheme needs to deal with state interference at both receivers. This involves the design for

compound states, and hence results in a more challenging problem.
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We characterize the full capacity region for the CIC-STR in the following theorem.

Theorem 3.1. The capacity region for the CIC-STR consists of rate pairs(R1, R2) satisfy-

ing:

R1 6I(X1U ; Y1)− I(U ;S|X1) (3.7a)

R2 6I(X2; Y2|SX1) (3.7b)

R1 +R2 6I(X1X2; Y2|S) (3.7c)

R1 +R2 6I(X1U ; Y1) + I(X2; Y2|X1US)− I(U ;S|X1) (3.7d)

for some distributionPX1SUX2Y1Y2
= PX1

PSPUX2|X1SPY1Y2|SX1X2
, whereU is an auxiliary

random variable and its cardinality is bounded by|U| 6 |X1||X2||S|+ 1.

Proof. Since the CIC-DM-STR can be viewed as a special case of the CIC-DM-ST with

Y2 = (Y2, S), the achievability proof follows directly from the achievable region for the

CIC-DM-ST given in (3.18a)-(3.18e) by settingT = X1, V = X2 andY2 = Y2S.

For the converse, we first obtain the following outer bound consisting of rate pairs

(R1, R2) satisfying

R1 6 I(KX1; Y1)− I(K;S|X1) (3.8a)

R2 6 I(X2; Y2|SX1) (3.8b)

R1 +R2 6 I(X1X2; Y2|S) (3.8c)

R1 +R2 6 I(TKX1; Y1)− I(TK;S|X1) + I(X2; Y2|X1TKS) (3.8d)

for some distributionPX1STKX2Y1Y2
= PX1

PSPKT |X1SPX2|X1SKTPY1Y2|SX1X2
, whereK

andT are auxiliary random variables. The proof is detailed in Appendix B.1.

In order to show that the region (3.7a)-(3.7d) is the capacity region, it is sufficient

to show that the above outer bound (3.8a)-(3.8d) is a subset of the region (3.7a)-(3.7d).

Towards this end, we apply the technique in [13] and analyze the outer bound (3.8a)-(3.8d)
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by considering the following two cases.

If I(T ; Y1|KX1) − I(T ;S|KX1) 6 0, the outer bound (3.8a)-(3.8d) can be further

bounded as:

R1 6I(KX1;Y1)− I(K;S|X1) (3.9a)

R2 6I(X2;Y2|SX1) (3.9b)

R1 +R2 6I(X1X2;Y2|S) (3.9c)

R1 +R2 6I(KX1;Y1)− I(K;S|X1) + [I(T ;Y1|KX1)

− I(T ;S|KX1)] + I(X2;Y2|X1TKS)

6I(KX1;Y1)− I(K;S|X1) + I(X2;Y2|X1KS), (3.9d)

which implies that the outer bound (3.8a)-(3.8d) is contained in (3.7a)-(3.7d) by setting

U = K in (3.7a)-(3.7d).

If I(T ; Y1|KX1) − I(T ;S|KX1) > 0, the outer bound (3.8a)-(3.8d) can be further

bounded as:

R1 6I(KX1; Y1)− I(K;S|X1)

=I(KTX1; Y1)− I(KT ;S|X1)− [I(T ; Y1|KX1)− I(T ;S|KX1)]

6I(KTX1; Y1)− I(KT ;S|X1) (3.10a)

R2 6I(X2; Y2|SX1) (3.10b)

R1 +R2 6I(X1X2; Y2|S) (3.10c)

R1 +R2 6I(TKX1; Y1)− I(TK;S|X1) + I(X2; Y2|X1KTS) (3.10d)

which also implies that the outer bound (3.8a)-(3.8d) is contained in (3.7a)-(3.7d) by

settingU = KT in (3.7a)-(3.7d).
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3.2.2 Gaussian Channels

In this section, we characterize the capacity region for theGaussian CIC-STR. We partition

Gaussian channels into two classes based on the value of the channel parametera, and char-

acterize the capacity region for each class. We note that ourresults for Gaussian channels

exploit the fact that for both|a| 6 1 and |a| > 1, the Gaussian channel is stochastically

degraded givenX1 andS, i.e., its marginal distributions at the two receivers are the same as

a physically degraded Gaussian channel that satisfies the conditions (3.2) and (3.3), respec-

tively. Because the capacities of the two Gaussian channelsare the same, our results below

are applicable to both stochastically degraded and physically degraded channels with the

proofs exploiting the physical degradedness conditions (3.2) and (3.3).

We first provide the capacity region for the Gaussian channelwith |a| 6 1.

Theorem 3.2. For the Gaussian CIC-STR, if|a| 6 1, the capacity region consists of rate

pairs (R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log

(

1 +
a2P ′

2

a2P ′′
2 + 1

)

(3.11a)

R2 6
1

2
log(1 + P ′′

2 ) (3.11b)

R1 +R2 6
1

2
log
(

1 + b2P1 + 2bρ21
√

P1P2 + (1− ρ22s)P2

)

(3.11c)

whereP ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2, P ′
2 > 0, P ′′

2 > 0, andρ221 + ρ22s 6 1.

We explain the achievable scheme used for obtaining the above capacity region as fol-

lows. Here, the cognitive transmitter’s powerP2 is split into three parts: 1.cooperatively

transmittingW1 via beamforming, 2.transmitting additionalW1 via an auxiliary random

variableU to deal with the state at receiver 1 using dirty paper coding,3.transmittingW2.

Here, rate splitting is not used, i.e.,W21 = φ, because for the case|a| 6 1, forcing receiver

1 to decode certainW21 may reduce the achievable region.
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Proof. Consider the following rate region, which consists of rate pairs(R1, R2) satisfying

R1 6I(X1U ; Y1)− I(U ;S|X1) (3.12a)

R2 6I(X2; Y2|UX1S) (3.12b)

R1 +R2 6I(X1X2; Y2|S) (3.12c)

for some distributionPSX1UX2Y1Y2
= PX1

PSPUX2|X1SPY2|X1X2SPY1|Y2X1S. This region is

contained in (3.7a)-(3.7d), and is hence achievable. This can be seen by observing that

I(X2; Y2|UX1S) 6 I(X2U ; Y2|X1S) and the sum rate bound (3.7d) is equal to the sum of

the two bounds on the individual rates in (3.12a) and (3.12b).

The achievability of (3.11a)-(3.11c) is then obtained by choosing the following jointly

Gaussian distribution for the random variables:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, P ′

2), X ′′
2 ∼ N (0, P ′′

2 ),

P ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2

X2 = ρ21

√

P2

P1
X1 +X ′

2 +X ′′
2 + ρ2s

√

P2

Q
S

U = X ′
2 + α

(

1 + aρ2s

√

P2

Q

)

S (3.13)

whereX1, X ′
2 , X ′′

2 andS are independent, andα =
a2P ′

2

a2P ′
2
+a2P ′′

2
+1

.

The converse proof is detailed in Appendix B.2.

We next characterize the capacity region for the Gaussian channel with|a| > 1.

Theorem 3.3. For the Gaussian CIC-STR, if|a| > 1, the capacity region consists of rate
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pairs (R1, R2) satisfying:

R2 6
1

2
log(1 + (1− ρ221 − ρ22s)P2) (3.14a)

R1 +R2 6
1

2
log(1 + b2P1 + 2bρ21

√

P1P2 + (1− ρ22s)P2) (3.14b)

R1 +R2 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log(1 + a2(1− ρ22s − ρ221)P2) (3.14c)

whereρ221 + ρ22s 6 1.

Differently from Theorem 3.2, due to the fact that|α| > 1, receiver 1 is stronger in

decodingW2. Hence, the achievable scheme setsW21 = W2, i.e., requires receiver 1

to decode the full messageW2. The cognitive transmitter’s powerP2 is split into two

parts: 1.cooperatively transmittingW1 via beamforming, 2.transmitting additionalW1 and

W21 = W2 via an auxiliary random variableU to deal with the state at receiver 1 using

dirty paper coding.

Proof. The achievability follows from (3.7a)-(3.7d) by choosing jointly Gaussian distribu-

tion for random variables as follows:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, (1− ρ221 − ρ22s)P2)

X2 = ρ21

√

P2

P1
X1 +X ′

2 + ρ2s

√

P2

Q
S

U = X ′
2 + α

(

1 + aρ2s

√

P2

Q

)

S (3.15)

whereX1, X ′
2 andS are independent, andα =

a2(1−ρ2
21
−ρ2

2s
)P2

a2(1−ρ2
21
−ρ2

2s
)P2+1

. We note that with this

choice of the random variables, the first bound in (3.7a)-(3.7d) is redundant.

In order to prove the converse for Theorem 3.3, we first prove the following outer

bound.
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Lemma 3.1. For the CIC-DM-STR, if it satisfies the condition(3.3), an outer bound on the

capacity region consists of rate pairs(R1, R2) satisfying

R2 6 I(X2; Y2|SX1) (3.16a)

R1 +R2 6 I(X1X2; Y2|S) (3.16b)

R1 +R2 6 I(X1; Y1) + I(X2; Y1|SX1) (3.16c)

for some distributionPSX1UX2Y1Y2
= PX1

PSPUX2|X1SPY1|X1X2SPY2|Y1X1S.

The proof for the above lemma is detailed in Appendix B.3. Forthe Gaussian channel

with |a| > 1, it satisfies the condition (3.3). We then use the above lemmafor developing

the converse proof, which is detailed in Appendix B.4.

3.3 The CIC-ST Model

In this section, we present our results for the CIC-ST. We first derive inner and outer bound

for the discrete memoryless channel, and then characterizethe capacity region for chan-

nel under certain conditions. For the Gaussian CIC-ST, we partition the channel into two

classes based on the channel condition, and derive inner andouter bounds for both classes.

By comparing the inner and outer bounds, we obtain partial boundary for the capacity

region.

3.3.1 Discrete Memoryless Channels

In this section, we investigate the discrete memoryless CIC-ST model. We first provide

inner and outer bounds on the capacity region, and then identify a few special cases, for

which we establish the capacity region.

In order to derive an inner bound on the capacity region, we design an achievable

scheme, which includes superposition coding, rate-splitting, and Gel’fand-Pinsker binning
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scheme. The primary and cognitive transmitters cooperatively transmitW1. The cogni-

tive transmitter splitsW2 into two componentsW21 andW22 with W21 intended for both

receivers andW22 intended only for receiver 2. Differently from the scheme for the CIC-

STR, here the cognitive transmitter employs Gel’fand-Pinsker scheme via three auxiliary

random variablesT , U andV (as in Lemma 3.2) to reduce state interference respectively

for W1, W21 andW22. In particular,T deals with state interference for either receiver 1 or

receiver 2 to decodeW1, U deals with state interference for either receiver 1 or receiver 2

to decodeW21, andV deals with state interference for receiver 2 to decodeW22. In par-

ticular, T andU cannot be combined because it is possible thatU deals with the state at

receiver 2 whereasT deals with the state at receiver 1. This also explains the reason that

only one auxiliary random variableU is needed for obtaining the capacity region for the

CIC-STR model, in which only state interference at receiver1 needs to be handled, and

hence a single auxiliary random variableU (combiningT andU) is sufficient for receiver

1 to decode bothW1 andW21. At the receiver end, since receiver 1 can decodeW21, it can

eliminate the interference caused by this message when it decodesW1.

We now provide an achievable region based on the above achievable scheme, which is

useful in establishing our main inner bound.

Lemma 3.2. An achievable region for the CIC-ST consists of rate pairs(R1, R2) satisfying:

R2 = R21 +R22, R21 > 0, R22 > 0

R1 +R21 6 I(TUX1; Y1)− I(TU ;S|X1)

R22 6 I(V ; Y2|UTX1)− I(V ;S|UTX1)

R21 +R22 6 I(UV ; Y2|X1T )− I(UV ;S|X1T )

R21 +R22 6 I(TUV ; Y2|X1)− I(TUV ;S|X1)

R1 +R21 +R22 6 I(TUV X1; Y2)− I(TUV ;S|X1)

for some distributionPX1STUVX2Y1Y2
= PX1

PSPTUV X2|SX1
PY1Y2|SX1X2

, whereT , U andV
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are auxiliary random variables.

Proof. The detailed proof is relegated to Appendix B.5

Based on Lemma 3.2, our main inner bound on the capacity region is given in the

following theorem.

Theorem 3.4. For the CIC-ST, an achievable region consists of rate pairs(R1, R2) satis-

fying:

R1 6I(X1TU ; Y1)− I(TU ;S|X1) (3.18a)

R2 6I(UV ; Y2|X1T )− I(UV ;S|X1T ) (3.18b)

R2 6I(TUV ; Y2|X1)− I(TUV ;S|X1) (3.18c)

R1 +R2 6I(X1TUV ; Y2)− I(TUV ;S|X1) (3.18d)

R1 +R2 6I(X1TU ; Y1) + I(V ; Y2|X1TU) (3.18e)

− I(TUV ;S|X1)

for some distributionPX1STUVX2Y1Y2
= PX1

PSPTUVX2|SX1
PY1Y2|SX1X2

that satisfies

I(V ; Y2|UTX1)− I(V ;S|UTX1) > 0.

Proof. By applying Fourier-Motzkin elimination [52], we eliminateR21 andR22 from the

bounds in Lemma 3.2 and obtain the bounds in Theorem 3.4.

We next derive the following inner bound, which is achieved by a simpler scheme that

combinesT andU together as one auxiliary random variable. This inner boundis useful

for studying Gaussian channels in Section 3.3.2.2.

Corollary 3.1. For the CIC-ST, an achievable region consists of rate pairs(R1, R2) satis-
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fying:

R1 6I(X1T ; Y1)− I(T ;S|X1)

R2 6I(V ; Y2|X1T )− I(V ;S|X1T )

R2 6I(TV ; Y2|X1)− I(TV ;S|X1)

R1 +R2 6I(X1TV ; Y2)− I(TV ;S|X1) (3.19a)

for some distributionPX1STV X2Y1Y2
= PX1

PSPTV X2|X1SPY1Y2|SX1X2
that satisfies

I(V ; Y2|TX1)− I(V ;S|TX1) ≥ 0. (3.20)

Proof. The achievable region in Corollary 3.1 follows directly from Theorem 3.4 by setting

U = T .

We next provide an outer bound on the capacity region for the CIC-ST.

Theorem 3.5. An outer bound for the the CIC-ST consists of the rate pairs(R1, R2) satis-

fying:

R1 6I(X1TU ; Y1)− I(TU ;S|X1)

R2 6I(TV ; Y2|X1)− I(TV ;S|X1)

R1 +R2 6I(X1TV ; Y2)− I(TV ;S|X1)

for some distributionPX1STUV X2Y1Y2
= PX1

PSPTUVX2|X1SPY1Y2|SX1X2
, which satisfies the

Markov chain conditionsT ↔ UV ↔ X1X2S ↔ Y1Y2.

Proof. The proof employs the techniques in [9] for the Gel’fand-Pinsker model, and ex-

ploits independence properties among variables in our model. In particular, the auxiliary

random variables are carefully constructed. The detailed proof is relegated to Appendix

B.6.
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We now provide inner and outer bounds for the degraded channel, which are useful for

further identifying the cases for which we obtain the capacity region.

Theorem 3.6. If the CIC-ST satisfies the degradedness condition(3.1) (i.e., receiver 1 is

degraded with regard to receiver 2), then an achievable region consists of the rate pairs

(R1, R2) satisfying:

R1 6I(X1T ; Y1)− I(T ;S|X1) (3.22a)

R2 6I(V ; Y2|X1T )− I(V ;S|X1T ) (3.22b)

R2 6I(TV ; Y2|X1)− I(TV ;S|X1) (3.22c)

for some distributionPX1STV X2Y1Y2
= PX1

PSPTV X2|X1SPY1Y2|SX1X2
that satisfies

I(V ; Y2|TX1)− I(V ;S|TX1) ≥ 0.

An outer bound on the capacity region for such a channel consists of the rate pairs

(R1, R2) satisfying:

R1 6I(X1T ; Y1)− I(T ;S|X1)

R2 6I(TV ; Y2|X1)− I(TV ;S|X1)

for some distributionPX1STV X2Y1Y2
= PX1

PSPTV X2|X1SPY1Y2|SX1X2
, which satisfies the

Markov chain conditionsT ↔ V ↔ X1X2S ↔ Y1Y2.

Proof. The achievability follows from the achievable region givenin Corollary 3.1 by re-

moving the bound (3.19a) due to the degradedness condition.The proof of the outer bound

is detailed in Appendix B.7.

The inner and outer bounds given in Theorems 3.4 and 3.5 do notmatch in general.

We next identify two classes of channels, for which we obtainthe capacity region. We first
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provide the capacity region for the degraded semideterministic channel in the following

theorem.

Theorem 3.7. If the CIC-ST model satisfies the degradedness condition(3.1) and the

semideterministic condition such thatY2 is a deterministic function ofX1, X2 andS, then

the capacity region of the channel consists of rate pairs(R1, R2) satisfying:

R1 6 I(X1T ; Y1)− I(T ;S|X1) (3.24a)

R2 6 H(Y2|X1TS) (3.24b)

R2 6 H(Y2|X1)− I(TY2;S|X1) (3.24c)

for some distributionPX1STX2Y1Y2
= PX1

PSPTX2|SX1
PY2|X1X2SPY1|Y2

, whereT is an aux-

iliary random variable and its cardinality is bounded by|T | 6 |X1||X2||S|+ 1.

Proof. The achievability follows from (3.22a)-(3.22c) by settingV = Y2. The proof of the

converse is detailed in Appendix B.8.

We next obtain the following capacity region when receiver 1is less noisy than receiver

2, i.e, the channel satisfies the condition (3.5).

Theorem 3.8. For the CIC-ST, if it satisfies the condition(3.5), the capacity region consists

of rate pairs(R1, R2) satisfying:

R2 6I(U ; Y2|X1)− I(U ;S|X1)

R1 +R2 6I(X1U ; Y2)− I(U ;S|X1)

for some distributionPX1SUX2Y1Y2
= PX1

PSPUX2|X1SPY1Y2|SX1X2
, whereU is an auxiliary

random variable and its cardinality is bounded by|U| 6 |X1||X2||S|.

We note that if condition (3.5) is satisfied, receiver 1 is less noisy than receiver 2. Thus,

bounds on achievable rates are dominated by receiver 2, and only one auxiliary random



52

variableU is needed for dealing with state interference for receiver 2to decode all mes-

sages.

Proof. The achievability follows from Theorem 1 by settingT = φ, V = U and using

(3.5) to remove the redundant bounds. The converse follows from the capacity region

of the MAC (with its receiver being receiver 2 in our model) with state available at one

transmitter given in [18], which clearly is an outer bound for our model.

3.3.2 Gaussian Channels

In this section, we consider the Gaussian CIC-ST model. Similarly to Section 3.2.2, we

partition the Gaussian CIC-ST into two classes corresponding to |a| > 1 and|a| 6 1, and

study these two classes separately in this and next subsections. In each subsection, we

first provide inner and outer bounds on the capacity region, and then characterize partial

boundaries of the capacity region based on these bounds. We also obtain the full capacity

region for channels that satisfy certain conditions.

3.3.2.1 Gaussian Channel: |a| > 1

If |a| > 1, the Gaussian channel satisfies the condition (3.3). We firstprovide an inner

bound for this class of channels.

Proposition 3.1. For the Gaussian CIC-ST, if|a| > 1, an inner bound consists of rate pairs

(R1, R2) satisfying:

R2 6
1

2
log(1 + P ′

2) (3.26a)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log(1 + P ′

2) (3.26b)

R1 +R2 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log

(

1 +
a2P ′2

2 + 2aρ2s1ρ2s2P
′
2 − a2ρ22s1P

′
2 − ρ22s1

a2ρ22s1P
′
2 + ρ22s2P

′
2 + P ′

2 + ρ22s1 − 2aρ2s1ρ2s2P ′
2

)

(3.26c)
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whereP ′
2 = (1 − ρ221 − ρ22s)P2 and ρ221 + ρ22s 6 1, ρ2s1 = α(c

√
Q + ρ2s

√
P2), ρ2s2 =

(
√
Q+ aρ2s

√
P2), α =

P ′
2

P ′
2
+1

.

Similarly to the Gaussian CIC-STR, due to the fact that|a| > 1, i.e., receiver 1 is

stronger in decodingW2, the achievable scheme setsW21 = W2, i.e., requires receiver

1 to decode full messageW2. The cognitive transmitter’s powerP2 is split into two parts:

1.cooperatively transmittingW1 via beamforming, 2.transmitting additionalW1 andW21 =

W2 via dirty paper coding. Differently from the CIC-STR, the auxiliary random variable

U is used here to deal with the state interference at receiver 2(instead of receiver 1 for

the CIC-STR). This is also due to the fact that|a| > 1 so that receiver 2 is weaker in

decoding information from the cognitive transmitter and hence needs additional help in

state cancellation via dirty paper coding than receiver 1. Therefore, in the above achievable

region, (3.26a) reflects the fact that receiver 2 decodesW21 = W2, and (3.26b) and (3.26c)

respectively reflect the facts that receiver 2 and receiver 1decode bothW1 andW21 = W2.

Proof. By settingT = X1 andU = V in the inner bound given in Theorem 3.4, we obtain

an inner bound that includes the following bounds:

R2 6I(U ; Y2|X1)− I(U ;S|X1) (3.27a)

R1 +R2 6I(X1U ; Y2)− I(U ;S|X1) (3.27b)

R1 +R2 6I(X1U ; Y1)− I(U ;S|X1) . (3.27c)

Based on the above bounds, we choose the jointly Gaussian input distribution and em-

ploy dirty paper coding forU to deal with the state inY2. More specifically, we set the
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random variables as follows and obtain the desired inner bound:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, P ′

2)

X2 = ρ21

√

P2

P1

X1 +X ′
2 + ρ2s

√

P2

Q
S

U = X ′
2 + α

(

c+ ρ2s

√

P2

Q

)

S (3.28)

whereX1, X ′
2 andS are independent random variables, andα =

P ′
2

P ′
2
+1

.

We next provide an outer bound on the capacity region based onthe following idea.

Since bothW1 andW2 must be decoded at receiver 2, the two transmitters and receiver

2 form a cognitive MAC with state known at the cognitive transmitter. Hence, the capacity

region for such a MAC serves as an outer bound for the GaussianCIC-ST.

Proposition 3.2. For the Gaussian CIC-ST, if|a| > 1, an outer bound consists of rate pairs

(R1, R2) satisfying:

R2 6
1

2
log(1 + P ′

2) (3.29a)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log(1 + (1− ρ221 − ρ22s)P2)

(3.29b)

whereP ′
2 ≤ (1− ρ221 − ρ22s)P2 andρ221 + ρ22s 6 1.

Proof. It is clear that the outer bound in Proposition 3.2 is equivalent to the region that

consists of rate pairs(R1, R2) satisfying:

R2 6
1

2
log(1 + (1− ρ221 − ρ22s)P2) (3.30a)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log(1 + (1− ρ221 − ρ22s)P2) (3.30b)
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whereρ221 + ρ22s 6 1. This region is the capacity region of the MAC with state (with its

receiver being receiver 2 in our model) given in [18], and hence serves as an outer bound

for our model.

Although the inner bound (3.26a)-(3.26c) and the outer bound (3.29a)-(3.29b) do not

match in general, we show that these bounds characterize some boundary points of the

capacity region. In order to characterize boundary points of the capacity region, we first

change the inner bound (3.26a)-(3.26c) into a more convenient form, which consists of rate

pairs(R1, R2) satisfying

R2 6
1

2
log(1 + P ′

2) (3.31a)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q + c2Q + 1

)

+
1

2
log(1 + (1− ρ221 − ρ22s)P2) (3.31b)

R1 +R2 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q +Q+ 1

)

+
1

2
log

(

1 +
(a2(1− ρ221 − ρ22s)P2 + 2aρ2s1ρ2s2 − a2ρ22s1) (1− ρ221 − ρ22s)P2 − ρ22s1

(a2ρ22s1 + ρ22s2 + 1− 2aρ2s1ρ2s2) (1− ρ221 − ρ22s)P2 + ρ22s1

)

(3.31c)

whereP ′
2 ≤ (1 − ρ221 − ρ22s)P2, ρ221 + ρ22s 6 1, ρ2s1 = α(c

√
Q + ρ2s

√
P2), ρ2s2 = (

√
Q +

aρ2s
√
P2), andα =

(1−ρ2
21
−ρ2

2s
)P2

(1−ρ2
21
−ρ2

2s
)P2+1

. Such a region is equivalent to (3.26a)-(3.26c), because

it is obtained by substituting the equality constraintP ′
2 = (1 − ρ221 − ρ22s)P2 into (3.26a)

and (3.26b) (which does not change the bounds), and relaxingthe constraint onP ′
2 to be

P ′
2 ≤ (1− ρ221− ρ22s)P2, which affects only (3.26a) and clearly does not enlarge theregion.

We now denote the bounds in (3.31a)-(3.31c) byr2(P
′
2), r12(ρ21, ρ2s), and r̃12(ρ21, ρ2s).

For0 ≤ P ′
2 ≤ P2, let

(ρ∗21(P
′
2), ρ

∗
2s(P

′
2)) = argmax

(ρ21,ρ2s):P ′
2
≤(1−ρ2

21
−ρ2

2s
)P2

r12(ρ21, ρ2s). (3.32)
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Based on these notations, we characterize partial boundaryof the capacity region for the

Gaussian channel as follows.
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Fig. 3.2: An illustration of the partial boundary of the capacity region for a Gaussian
CIC-ST with|a| > 1.

Theorem 3.9. Consider the Gaussian CIC-ST with|a| > 1. For 0 ≤ P ′
2 ≤ P2, the rate

pairs

(

r12

(

ρ∗21(P
′
2), ρ

∗
2s(P

′
2)

)

− r2(P
′
2), r2(P

′
2)

)

are on the boundary of the capacity

region if r12(ρ∗21(P
′
2), ρ

∗
2s(P

′
2)) ≤ r̃12(ρ

∗
21(P

′
2), ρ

∗
2s(P

′
2)). The rate pairs(R1, r2(P2)) are

also on the boundary of the capacity region ifR1 ≤ min{r12, r̃12}|ρ21=0,ρ2s=0 − r2(P2).

Proof. The rate pairs given in the theorem are achievable due to the condition given in

the theorem. They are also on the boundary of the outer bound given in Proposition 3.2,

becauser2 andr12 are the same as the bounds onR1 and onR1 +R2, respectively, and the

chosen parameters(ρ∗21(P
′
2), ρ

∗
2s(P

′
2)) for each value ofP ′

2 guarantees that the rate pairs are

on the boundary. The second statement is clear because whenP ′
2 = P2, R2 achieves the

maximum value, and hence any such rate pair is on the boundaryif it is achievable.

In Fig. 3.2, we demonstrate the partial boundary of the capacity region characterized

in Theorem 3.9. We consider the channel defined by the parametersP1 = P2 = Q = 1,

a = 1.5, b = 1.6 and c = 0.9. We plot the boundaries of the inner bound given in

Proposition 3.1 and the outer bound given in Proposition 3.2, respectively. It is clear that

the two boundaries match whenR2 is above a certain threshold, and this matching part thus

characterizes some boundary points of the capacity region as studied in Theorem 3.9.
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We next show that under certain channel conditions, the outer bound given in Proposi-

tion 3.2 fully characterizes the capacity region.

Theorem 3.10. For the Gaussian CIC-ST, if|a| > 1 and the channel satisfies the condition

(3.5), the capacity region consists of rate pairs(R1, R2) satisfying:

R2 6
1

2
log(1 + P ′

2) (3.33a)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log(1 + P ′

2) (3.33b)

whereP ′
2 = (1− ρ221 − ρ22s)P2 andρ221 + ρ22s 6 1.

As explained after Theorem 3.8, if the less noisy condition (3.5) is satisfied, receiver

2 dominates the performance of the channel. Thus, the achievable scheme that uses the

auxiliary random variable for dealing with the state at receiver 2 via dirty paper coding

turns out to be optimal.

Proof. Following from the region in Theorem 3.8, we set the random variables as in (3.28)

and obtain an achievable region as given in (3.33a)-(3.33b). Such an achievable region

is equivalent to the outer bound given in Proposition 3.2 as we comment in the proof of

Proposition 3.2.

3.3.2.2 Gaussian Channel: |a| 6 1

We first note that the inner bound given in Proposition 3.1 forthe case when|a| > 1 also

serves as an inner bound for the case when|a| 6 1. However, the choice of auxiliary

random variables (T = φ andU = V ) for obtaining this inner bound requires receiver 1 to

decode all information for receiver 2. As such, this bound works well only when receiver

1 is stronger than receiver 2, and does not serve as a good inner bound for the case when

|a| 6 1. Thus, in this subsection, we develop two new inner bounds and one new outer
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bound on the capacity region for the case when|a| 6 1. We also note that the outer bound

in Proposition 3.2 is applicable and useful here as demonstrated in the sequel.

We derive the two inner bounds based on the same achievable region for the discrete

memoryless channel with different choices of the distributions for the auxiliary random

variables.

Proposition 3.3. For the Gaussian CIC-ST, if|a| 6 1, then an inner bound on the capacity

region consists of rate pairs(R1, R2) satisfying

R1 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log

(

1 +
a2P ′

2

a2P ′′
2 + 1

)

(3.34a)

R2 6
1

2
log(1 + P ′′

2 ) (3.34b)

R2 6
1

2
log

(

1 +
a2P ′

2
2 + 2aρ2s1ρ2s2P

′
2 − ρ22s1(P

′
2 + P ′′

2 + 1)

a2P ′
2P

′′
2 + ρ22s1(P

′
2 + P ′′

2 + 1) + a2ρ2s2P
′
2 + a2P ′

2 − 2aρ2s1ρ2s2P ′
2

)

+
1

2
log(1 + P ′′

2 ) (3.34c)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log

(

1 +
a2P ′

2
2 + 2aρ2s1ρ2s2P

′
2 − ρ22s1(P

′
2 + P ′′

2 + 1)

a2P ′
2P

′′
2 + ρ22s1(P

′
2 + P ′′

2 + 1) + a2ρ2s2P
′
2 + a2P ′

2 − 2aρ2s1ρ2s2P
′
2

)

+
1

2
log(1 + P ′′

2 ) (3.34d)

whereρ2s1 = α
(

1 + aρ2s

√

P2

Q

)√
Q, ρ2s2 =

(

c+ ρ2s

√

P2

Q

)√
Q, α =

a2P ′
2

a2P ′
2
+a2P ′′

2
+1

,

|ρ21| 6 1, |ρ2s| 6 1, P ′
2 > 0, P ′′

2 > 0, andP ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2.

Similarly to the CIC-STR, if|a| 6 1, the cognitive transmitter’s powerP2 is split into

three parts: 1.cooperatively transmittingW1 via beamforming, 2.P ′
2 + ρ22sP2 are for either

transmitting additionalW1 or transmittingW2 using dirty paper coding (viaT ) to deal with

the state at receiver 1, 3.transmittingW2 using dirty paper coding (viaV ) to deal with the

state at receiver 2. Therefore, in the above achievable region, (3.34a) reflects the fact that

receiver 1 decodesW1 contained in bothX1 andT , (3.34b) reflects the fact that receiver 2
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decodesW2 contained inV , (3.34c) reflects the fact that receiver 2 decodesW2 contained

in bothT andV , and (3.34d) reflects the fact that receiver 2 decodesW1 contained inX1,

andW2 contained in bothT andV . We note thatT plays two roles: either transmittingW1

or transmittingW2.

Proof. The above theorem is based on Corollary 3.1 by choosing(T, V,X1, X2) to be

jointly Gaussian and employing dirty paper coding withT chosen for dealing with the

state forY1 andV chosen for dealing with the state forY2. More specifically, We set the

random variables as follows:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, P ′

2), X ′′
2 ∼ N (0, P ′′

2 ),

P ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2

X2 = ρ21

√

P2

P1
X1 +X ′

2 +X ′′
2 + ρ2s

√

P2

Q
S

T = X ′
2 + α

(

1 + aρ2s

√

P2

Q

)

S

V = X ′′
2 + β

(

c− α + (1− aα)ρ2s

√

P2

Q

)

S (3.35)

whereX1, X ′
2, X

′′
2 andS are independent random variables,α =

a2P ′
2

a2P ′
2
+a2P ′′

2
+1

, andβ =

P ′′
2

P ′′
2
+1

.

Proposition 3.4. For the Gaussian CIC-ST, if|a| 6 1, then an inner bound on the capacity
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region consists of rate pairs(R1, R2) satisfying

R1 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q +Q+ 1

)

+
1

2
log

(

1 +
a2P ′2

2 + 2aρ2s1ρ2s2P
′
2 − a2ρ22s1(P

′
2 + P ′′

2 )− ρ22s1
a2ρ22s1P

′
2 + ρ22s2P

′
2 + a2ρ22s1P

′′
2 + a2P ′

2P
′′
2 + P ′

2 + ρ22s1 − 2aρ2s1ρ2s2P ′
2

)

(3.36a)

R2 6
1

2
log(1 + P ′′

2 ) (3.36b)

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q + c2Q + 1

)

+
1

2
log(1 + (1− ρ221 − ρ22s)P2) (3.36c)

whereρ2s1 = α(c
√
Q + ρ2s

√
P2), ρ2s2 = (

√
Q + aρ2s

√
P2), α =

P ′
2

P ′
2
+P ′′

2
+1

, |ρ21| 6 1,

|ρ2s| 6 1, P ′
2 > 0, P ′′

2 > 0, andP ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2.

We note that the inner bounds in Proposition 3.3 and 3.4 are based on the same achiev-

able region for the discrete memoryless channel, i..e., Corollary 3.1, except that the auxil-

iary random variableT is designed to deal with the state at receiver 2 in Proposition 3.4.

Proof. The above theorem is based on Corollary 3.1 by choosing(T, V,X1, X2) to be

jointly Gaussian and employing dirty paper coding by choosingT andV as follows:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, P ′

2), X ′′
2 ∼ N (0, P ′′

2 ),

P ′
2 + P ′′

2 = (1− ρ221 − ρ22S)P2

X2 = ρ21

√

P2

P1

X1 +X ′
2 +X ′′

2 + ρ2s

√

P2

Q
S

T = X ′
2 + α

(

c+ ρ2s

√

P2

Q

)

S

V = X ′′
2 + β(1− α)

(

c+ ρ2s

√

P2

Q

)

S (3.37)

whereX1, X ′
2, X

′′
2 andS are independent random variables,α =

P ′
2

P ′
2
+P ′′

2
+1

, andβ =
P ′′
2

P ′′
2
+1

.
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Here,T is chosen for dealing with the state forY2 (differently from the proof for Proposition

3.3) based on dirty paper coding whereX ′′
2 is taken as noise. We then subtractT from Y2

and designV for dealing with the state forY ′
2 = Y2 − T based on dirty paper coding. For

this choice of the auxiliary random variables, the second bound onR2 in Corollary 3.1 is

redundant becauseI(T ; Y2|X1)− I(T ;S|X1) > 0.

We next provide two outer bounds, both of which are useful forcharacterizing the

capacity results. The first outer bound is given by the capacity region of the Gaussian CIC-

STR that we present in Theorem 3.2 in Section 3.2.2. For convenience, we rewrite this

bound below.

Corollary 3.2. For the Gaussian CIC-ST, if|a| 6 1, then the capacity region of CIC-STR

serves as an outer bound on the capacity region, which consists of rate pairs(R1, R2)

satisfying

R1 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log

(

1 +
a2P ′

2

a2P ′′
2 + 1

)

R2 6
1

2
log(1 + P ′′

2 )

R1 +R2 6
1

2
log(1 + b2P1 + 2bρ21

√

P1P2 + (1− ρ22s)P2)

whereP ′
2 + P ′′

2 = (1− ρ221 − ρ22s)P2, P ′
2 > 0, P ′′

2 > 0, andρ221 + ρ22s 6 1.

As we comment at the beginning of this subsection, the outer bound in Proposition 3.2

is also applicable and useful for the case with|a| 6 1. For convenience, we rewrite it below

as a corollary.

Corollary 3.3. For the Gaussian CIC-ST, if|a| 6 1, an outer bound on the capacity region
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consists of rate pairs(R1, R2) satisfying:

R2 6
1

2
log(1 + P ′′

2 )

R1 +R2 6
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

+
1

2
log(1 + (1− ρ221 − ρ22s)P2)

whereP ′′
2 6 (1− ρ221 − ρ22s)P2, P ′′

2 ≥ 0, andρ221 + ρ22s 6 1.

For Gaussian channels with|a| 6 1, we characterize partial boundaries of the capacity

region based on the inner and outer bounds respectively given in Proposition 3.3 and 3.4,

and Corollaries 3.2 and 3.3. Although the forms of inner bounds are complicated, we show

that some boundary points on the capacity region are determined only by a subset of there

bounds, and can hence be characterized via the given outer bounds.

We let∆ = (ρ21, ρ2s, P
′
2) and user′1(∆, P ′′

2 ), r
′
2(P

′′
2 ), r̃

′
2(∆, P ′′

2 ), r
′
12(∆, P ′′

2 ) to denote

the bounds (3.34a)-(3.34d) given in Proposition 3.3. For0 ≤ P ′′
2 ≤ P2, let

∆∗(P ′′
2 ) = argmax

∆:P ′
2
+P ′′

2
=(1−ρ2

21
−ρ2

2s
)P2

r′1(∆, P ′′
2 ). (3.40)

Based on these notations, we characterize partial boundaryof the capacity region for the

Gaussian channel as follows.

Theorem 3.11. Consider the Gaussian CIC-ST with|a| 6 1. For 0 ≤ P ′′
2 ≤ P2, the rate

pairs (r′1(∆
∗(P ′′

2 ), P
′′
2 ), r

′
2(P

′′
2 )) are on the boundary of the capacity region ifr′2(P

′′
2 ) ≤

r̃′2(∆
∗(P ′′

2 ), P
′′
2 ) andr′1(∆

∗(P ′′
2 ), P

′′
2 ) + r′2(P

′′
2 ) ≤ r′12(∆

∗(P ′′
2 ), P

′′
2 ).

Proof. The rate pairs given in the theorem are contained in inner bound 1 given in Propo-

sition 3.3 due to the conditions given in the theorem. We nextshow that these rate pairs

are also on the boundary of an outer bound. Following from outer bound 1 in Corollary

3.2,R1 6 r′1(∆, P ′′
2 ) andR2 6 r′2(P

′′
2 ) also determine an outer bound with(∆, P ′′

2 ) taking

the same values as in inner bound 1 given in Proposition 3.3. Then the chosen parameters
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∆∗(P ′′
2 ) for each value ofP ′′

2 guarantee that the rate pairs are on the boundary of this outer

bound.

We next characterize additional boundary points of the capacity region based on in-

ner bound 2 given in Proposition 3.4 and outer bound 2 given inCorollary 3.3. We use

r′′1(ρ21, ρ2s, P
′
2, P

′′
2 ), r

′′
2(P

′′
2 ), andr′′12(ρ21, ρ2s) to denote the bounds (3.36a)-(3.36c) given in

Proposition 3.4. For0 ≤ P ′′
2 ≤ P2, let

(ρ∗21(P
′′
2 ), ρ

∗
2s(P

′′
2 )) = argmax

(ρ21,ρ2s):P ′′
2
≤(1−ρ2

21
−ρ2

2s
)P2

r′′12(ρ21, ρ2s), (3.41)

and letP ′∗
2 (P ′′

2 ) = (1 − ρ∗21(P
′′
2 )

2 − ρ∗2s(P
′′
2 )

2)P2 − P ′′
2 . Based on these notations, we

characterize partial boundary of the capacity region as follows.

Theorem 3.12. Consider the Gaussian CIC-ST with|a| 6 1. For 0 ≤ P ′′
2 ≤ P2, the rate

pairs(r′′12(ρ
∗
21(P

′′
2 ), ρ

∗
2s(P

′′
2 ))−r′′2(P

′′
2 ), r

′′
2(P

′′
2 )) are on the boundary of the capacity region

if r′′12(ρ
∗
21(P

′′
2 ), ρ

∗
2s(P

′′
2 ))− r′′2(P

′′
2 ) ≤ r′′1(ρ

∗
21(P

′′
2 ), ρ

∗
2s(P

′′
2 ),

P ′∗
2 (P ′′

2 ), P
′′
2 ). The rate pairs(R1, r

′′
2(P2)) are also on the boundary of the capacity region

if R1 ≤ min{r′′1 , r′′12 − r′′2(P2)}|ρ21=0,ρ2s=0,P ′
2
=0.

Proof. The rate pairs given in the theorem are clearly contained in inner bound 2 given in

Proposition 3.4. These rate pairs are also on the boundary ofouter bound 2 given in Corol-

lary 3.3, becauser′′2 andr′′12 are the same as the bounds onR2 and onR1+R2, respectively,

and the chosen parameters(ρ∗21(P
′′
2 ), ρ

∗
2s(P

′′
2 )) for each value ofP ′′

2 guarantee that the rate

pairs are on the boundary. The second statement is clear because whenP ′′
2 = P2, R2

achieves the maximum value, and hence any rate pair with suchR2 is on the boundary if it

is achievable.

Theorems 3.11 and 3.12 collectively characterize partial boundary of the capacity re-

gion for the Gaussian channel with|a| 6 1. In Fig. 3.3, we demonstrate these boundary

points of the capacity region for an example channel with theparametersP1 = P2 = Q =
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1, b = 0.85, c = 0.9 anda = 0.8. We plot the boundaries of the two inner bounds given

in Proposition 3.3 and Proposition 3.4, and the boundaries of the two outer bounds given

in Corollary 3.2 and Corollary 3.3, respectively. It can be seen that the two inner bounds

are very close to each other. The boundary of inner bound 1 matches the boundary of outer

bound 1 whenR1 is above a certain value, and this part is thus on the boundaryof the

capacity region. We also note that this part of the boundary achieves the capacity region

of the CIC-STR. It can further be seen that the boundary of inner bound 2 matches the

boundary of outer bound 2 whenR2 is above a certain threshold, and this part is hence also

on the boundary of the capacity region.
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Fig. 3.3: An illustration of inner and outer bounds and the partial boundary of the capacity
region for a Gaussian CIC-ST with|a| 6 1

It can be seen that outer bounds 1 and 2 separately characterize certain parts of the

boundary of the capacity region for Gaussian channels with|a| 6 1. We further show that

each of these two outer bounds can characterize the full capacity region for channels that

satisfy certain conditions.

Theorem 3.13. For the Gaussian CIC-ST, if|a| 6 1 and the channel satisfies the condition
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(3.4), the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

)

+
1

2
log

(

1 +
a2P ′

2

a2P ′′
2 + 1

)

R2 6
1

2
log(P ′′

2 + 1)

whereP ′
2 + P ′′

2 = (1 − ρ221 − ρ22s)P2, P ′
2 > 0, P ′′

2 > 0 and ρ221 + ρ22s 6 1, |ρ21| 6 1,

|ρ2s| 6 1.

We note that the above capacity region matches the capacity region in [24] of a cog-

nitive interference model with state, in whichW1 is intended only for receiver 1. This is

reasonable because under the condition (3.4), receiver 1 isweaker in decodingW1 than

receiver2, and receiver 2 can hence always decodeW1, which satisfies the additional re-

quirement in the channel model. Consequently, in the designation of auxiliary random

variables, more resources are used to help receiver 1 to cancel signal and state interference.

This is why only part ofP2 is used to transmitW2, and there is a tradeoff between the rates

R1 andR2.

Proof. Under the condition (3.4), the bounds in the achievable region in Corollary 3.1

reduce to:

R1 6I(X1T ; Y1)− I(T ;S|X1) (3.43a)

R2 6I(V ; Y2|X1T )− I(V ;S|X1T ) (3.43b)

R2 6I(TV ; Y2|X1)− I(TV ;S|X1) (3.43c)

Based on the above bounds, we choose the same jointly Gaussian input distribution as in

(3.35). In particular, since the auxiliary random variableT is chosen to employ dirty paper

coding to deal with the state inY1, it guarantees thatI(T ; Y1|X1)− I(T ;S|X1) > 0, which

implies thatI(T ; Y2|X1) − I(T ;S|X1) > 0 due to the condition (3.4). Hence, (3.43c) is
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redundant. Thus, we obtain an achievable region that matches the first two bounds of outer

bound 1 in Corollary 3.2 and is hence tight.

The following theorem identifies the channels for which outer bound 2 given in Corol-

lary 3.3 characterizes the full capacity region.

Theorem 3.14. For the Gaussian CIC-ST, if|a| 6 1 and the channel satisfies the condition

(3.5), the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P ′
2

P ′′
2 + 1

)

(3.44a)

+
1

2
log

(

1 +
b2P1 + 2bρ21

√
P1P2 + ρ221P2

(1− ρ221)P2 + 2cρ2s
√
P2Q+ c2Q+ 1

)

R2 6
1

2
log(1 + P ′′

2 ) (3.44b)

whereP ′
2 + P ′′

2 = (1 − ρ221 − ρ22s)P2, P ′
2 > 0, P ′′

2 ≥ 0 and ρ221 + ρ22s 6 1, |ρ21| 6 1,

|ρ2s| 6 1.

Proof. With the condition (3.5), it can be seen that an achievable region determined by

the following bounds is contained in the inner bound given inCorollary 3.1, and is hence

achievable.

R1 6I(X1T ; Y2)− I(T ;S|X1) (3.45a)

R2 6I(V ; Y2|X1T )− I(V ;S|X1T ) (3.45b)

R2 6I(TV ; Y2|X1)− I(TV ;S|X1) . (3.45c)

The achievability follows from the above region by choosingthe jointly Gaussian dis-

tribution and employing dirty paper coding forT to deal with the state forY2 and forV

to deal with the remaining state forY2 after subtracting1
a
T . More specifically, we set the
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auxiliary random variable as follows:

X1 ∼ N (0, P1), X ′
2 ∼ N (0, P ′

2), X ′′
2 ∼ N (0, P ′′

2 ),

P ′
2 + P ′′

2 = (1− ρ221 − ρ22S)

X2 = ρ21

√

P2

P1

X1 +X ′
2 +X ′′

2 + ρ2s

√

P2

Q
S

T = X ′
2 + α

(

c+ ρ2s

√

P2

Q

)

S

V = X ′′
2 + β(1− α)

(

c+ ρ2s

√

P2

Q

)

S (3.46)

whereX1, X ′
2, X

′′
2 andS are independent random variables,α =

P ′
2

P ′
2
+P ′′

2
+1

, andβ =
P ′′
2

P ′′
2
+1

.

Such a choice of the input distribution also implies thatI(T ; Y2|X1) − I(T ;S|X1) > 0,

and the bound (3.45c) is hence redundant. The proof for the converse follows by observing

that the region (3.44a)-(3.44b) has the same boundary points as outer bound 2 given in

Corollary 3.3, and hence the two regions are equivalent.
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CHAPTER 4

STATE-DEPENDENT SINGLE-USER

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent Gaussian single-user channel with a helper.

In the previous work [34], the capacity in the regime of infinite state power is characterized

based on lattice coding. In this thesis, we focus on the regime with general state-power.

We design an achievable scheme combining two methods to cancel state: 1. precoding the

state with a single bin scheme; 2. directly reversing the state. By comparing the lower

bound derived based on the above scheme and the upper bound from the previous work, we

characterize the capacity of the channel under various channel parameters.

4.1 Channel Model

Fig. 4.1: The state-dependent single-user channel with a helper
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In the state-dependent single-user channel with a helper (see Fig. 1.4 in Section 1.2.

For convenience of reference, we include the figure again as Fig. 4.1 in this section), a

transmitter wishes to send messageW to a receiver over a state-corrupted channel, and a

helper that knows the state information noncausally wishesto assist the receiver to cancel

state interference.

More specifically, the transmitter has an encoderf : W → X n, which maps the mes-

sagew ∈ W to a codewordxn ∈ X n. The inputxn is transmitted over the channel.

The receiver is interfered by an i.i.d. state sequenceSn, which is known at neither the

transmitter nor the receiver, but at a helper noncausally. Thus, the encoder at the helper,

f0 : Sn → X n
0 , maps the state sequencessn ∈ Sn to a codewordxn

0 ∈ X n
0 . The entire chan-

nel transition probability is given byPY |X0,X,S. The decoder at the receiver,g : Yn →W,

maps a received sequenceyn into a messagêw ∈ W.

We study the Gaussian channel model with the following output at the receiver for one

symbol time:

Y = X0 +X + S +N (4.1)

where the noise variableN and the state variableS are Gaussian distributed with distri-

butionsN ∼ N (0, 1) andS ∼ N (0, Q), and all of the variables are independent and are

i.i.d. over channel uses. The channel inputsX0, andX are subject to the average power

constraints1
n

∑n

i=1X
2
0i 6 P0 and 1

n

∑n

i=1X
2
i 6 P .

4.2 Achievable Scheme and Lower Bound

In this section, we design an achievable scheme for the state-dependent Gaussian single-

user channel with a helper. Two basic ideas to cancel the state are integrated together: 1.

reversing the channel state directly; 2. precoding state into a help signal based on a single

bin scheme. In [34], the focus of the design is on the regime ofinfinite state power. Hence,
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only precoding the state is utilized, because it is impossible to reverse the infinite-power

state directly. And the capacity result in [34] suggests that, precoding the state is capacity

achieving for the infinite state power regime. However, for the regime with finite state

power, it is useful to apply both methods as we demonstrate inour study. By integrating

state reversion with single-bin scheme, we obtain the following achievable rate.

Proposition 4.1. For the state-dependent Gaussian single-user channel witha helper, a

rateR is achievable if it satisfies

R 6 min{R1(α, β), R2(α, β)}, (4.2)

where

R1(α, β) =
1

2
log(

P ′
0(P

′
0 + (1 + β)2Q + P + 1)

P ′
0Q(α− 1− β)2 + P ′

0 + α2Q
) (4.3a)

R2(α, β) =
1

2
log(1 +

P (P ′
0 + α2Q)

P ′
0Q(α− 1− β)2 + P ′

0 + α2Q
) (4.3b)

for some(α, β, P ′
0) such thatP ′

0 + β2Q 6 P0.

Proof. We first derive an achievable rate in the following lemma for the discrete memory-

less state-dependent single-user channel with a helper based on Proposition 5.2 by setting

X ′
0 = φ.

Lemma 4.1. For the discrete memoryless state-dependent single-user channel with a helper,

a rateR is achievable if it satisfies

R 6 I(UX ; Y )− I(U ;S) (4.4a)

R 6 I(X ; Y |U) (4.4b)

for some distributionPSPX0|SPXPY |SX0X .
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Proposition 4.1 then follows from Lemma 4.1, by choosing thejoint Gaussian distribu-

tion for the random variables as follows:

X0 = X ′
0 + βS

U = X ′
0 + αS

whereX ′
0 ∼ N (0, P ′

0), and−
√

P0−P ′
0

Q
6 β 6

√

P0−P ′
0

Q
.

We note that the achievable rate in Proposition 4.1 is optimized overα andβ. It is clear

that the optimization is a max-min problem, i.e., maximization of minimum ofR1(α, β)

andR2(α, β). In general, such optimization cannot be solved analytically with close form

expressions. In order to obtain further insights of such a lower bound, we consider two spe-

cial cases in which the optimization is solved analyticallyand the corresponding achievable

rate turns out to achieve the capacity. The idea is to optimizeR1(α, β) andR2(α, β) sep-

arately. For example, whenR1(α, β) is optimized, ifR2(α, β) at the optimizing values of

α andβ is greater than the optimalR1(α, β), then the corresponding optimalR1(α, β) is

achievable. The same argument is applicable to optimizeR2(α, β) instead. Such an idea

yield the following two corollaries on the achievable rate.

Corollary 4.1. For the state-dependent Gaussian single-user channel witha helper, a rate

R is achievable if it satisfies

R 6
1

2
log(1 +

P

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0) (4.5a)

R 6
1

2
log(1 +

P ((1 + P0(1− ρ20S))
2 + (1− ρ20S)P0(

√
Q+ ρ0S

√
P0)

2)

(Q + 2ρ0S
√
P0Q+ P0 + 1)(1 + P0 − ρ20SP0)

), (4.5b)

for someρ0S such that−1 6 ρ0S 6 1.

Proof. It can be shown thatR1(α, β) is optimized byα =
(1+β)P ′

0

P ′
0
+1

. We then setβ =

ρ0S

√

P0

Q
to better illustrate the result, whereρ0S = E[X0S]√

P0Q
, and−1 6 ρ0S 6 1. Corollary

4.1 then follows by substitutingα andβ into (4.3a) and (4.3b).
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Corollary 4.2. For the state-dependent Gaussian single-user channel witha helper, a rate

R is achievable if it satisfies

R 6
1

2
log

P0(P0 +Q + P + 1)

P0 +Q
, (4.6a)

R 6
1

2
log(1 + P ). (4.6b)

Proof. It can be shown thatR2(α, β) is optimized by settingα = 1 andβ = 0. Corollary

4.2 then follows by substitutingα andβ into into (4.3a) and (4.3b).

4.3 Capacity Results

In order to characterize the capacity, we first present two upper bounds on the capacity in

the following lemma. The first bound is characterized in [34], and the second bound is the

capacity of the corresponding channel without state corruption.

Lemma 4.2. For the state-dependent Gaussian single-user channel witha helper, the ca-

pacity is upper bounded by

C 6 max
−16ρ0S61

1

2
log(1 +

P

Q + 2ρ0S
√
P0Q + P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0) (4.7a)

C 6
1

2
log(1 + P ) (4.7b)

By comparing the achievable rate in Corollaries 4.1 and 4.2,we obtain the capacity

results in the following two theorems.
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Theorem 4.1. For the state-dependent single-user channel with a helper,define

ρ∗0S = argmax
−16ρ0S61

(1 +
P

Q + 2ρ0S
√
P0Q + P0 + 1

)(1 + P0 − ρ20SP0) (4.8a)

R1(ρ0S) =
1

2
log(1 +

P

Q + 2ρ0S
√
P0Q + P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0) (4.8b)

R2(ρ0S) =
1

2
log(1 +

P [(P0 − ρ20SP0 + 1)2 + (1− ρ20S)P0(
√
Q+ ρ0S

√
P0)

2]

(
√
Q + ρ0S

√
P0)2 + (P0 − ρ20SP0 + 1)2 + (1− ρ20S)P0(

√
Q + ρ0S

√
P0)2

).

(4.8c)

If the channel parameters satisfy the following condition:

R1(ρ
∗
0S) 6 R2(ρ

∗
0S), (4.9)

then the channel capacity is given byC = R1(ρ
∗
0S).

Proof. Based on the achievable rate in Corollary 4.1, the bound in (4.5a) is optimized for

ρ∗0S = argmax
ρ0S

(1 + P
Q+2ρ0S

√
P0Q+P0+1

)(1 + P0 − ρ20SP0). If R1(ρ
∗
0S) 6 R2(ρ

∗
0S), then

R1(ρ
∗
0S) is achievable, which matches the upper bound (4.7a) in Lemma6.1, and is hence

the capacity of the channel.

Theorem 4.2. For the state-dependent single-user channel with a helper,channel state can

be fully cancelled, if the channel parameters satisfy the following condition:

P 2
0 + P0Q−Q(P + 1) > 0 (4.10)

then the channel capacity isC = 1
2
log(1 + P ).

Proof. Based on the achievable rate in Corollary 4.2, when (4.10), the bound in (4.6a) is

larger than the RHS of (4.6b), then the capacity of the channel without state corruption

1
2
log(1 + P ) is achieved, which is thus the capacity of the state-dependent channel.

In Fig. 4.2, we plot the lower bounds in Corollary 4.1 and 4.2 and the upper bounds

in Lemma 4.2 as a function of the helper’s powerP0, for the channel withP = 5, and
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Fig. 4.2: Lower and upper bounds for the state-dependent single-user channel with a
helper

Q = 12. The solid line and the dashed line are the two bounds in (4.7a) and (4.7b), and the

dot line and the cross line are the two lower bounds in Corollary 4.1 and 4.2. Therefore,

the points on the lineA-B correspond to the capacity result in Theorem 4.1, and the points

on the lineC-D correspond to the capacity result in Theorem 4.2. The resultsuggests that

whenP0 is small, the channel capacity is determined by a function ofthe helper’s power

P0 and the state powerQ. AsP0 becomes large enough, the channel capacity is determined

only by the transmitter’s powerP , i.e., the state is perfectly canceled. We further note that

the channel capacity without state can even be achieved by points withP0 < Q (i.e., some

points on the line C-D). This indicates that for these points, the state are fully cancelled not

only by reversing the state, but also by precoding the state.

In Fig. 4.3, we plot the lower bound in Proposition 4.1 (dashed line), the lower bound

achieved by single bin scheme only (dashed-dot line), and the lower bound achieved by

direct reversion only (solid line) as a function of the helper’s powerP0. It can be seen that

the combination of the two methods provides larger achievable rate.

In Fig. 4.4, we plot the set of channel parameters(Q,P0) for which our scheme achieves

the capacity. Each point in the figure corresponds to the channel with certainP0 andQ with

fixed P = 5. The points in the upper part correspond to channel parameters that satisfy



75

P
0

0 2 4 6 8 10

R
(b

its
/u

se
)

0.2

0.4

0.6

0.8

1

1.2

1.4

Lower Bound
No Single Bin 
No Reverse

P=5;
Q=12;

Fig. 4.3: Lower and upper bounds for the state-dependent single-user channel with a
helper

0 100 200 300 400
0

1

2

3

4

5

6

Q

P 0

C= 1/2log(1+P)

C= f(Q)

Fig. 4.4: Capacity achievable points

(4.10), and hence the capacity for single-user channel without state is obtained. The points

in the lower part corresponds to channel parameters that satisfy (4.8a)-(4.8c), and hence

the capacity is characterized by a function of not onlyP , but alsoP0 andQ. As the state

powerQ goes to infinity, the result matches the result in [34].
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CHAPTER 5

STATE-DEPENDENT PARALLEL

CHANNEL WITH A COMMON HELPER

In this chapter, we study the state-dependent parallel channel with a common helper. We

consider three submodels for the channel. For each model, wederive inner and outer

bounds. By comparing inner and outer bounds, we characterize the segments on the capac-

ity boundary for the Gaussian channel with the state power goes to infinity.

5.1 Channel Model

Fig. 5.1: The state-dependent parallel channel with a common helper
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In the state-dependent parallel channel with a common helper (see Fig. 1.5 in Sec-

tion 1.2. For convenience of reference, we include the figureagain as Fig. 5.1 in this

section), each transmitter (say transmitterk) has an encoderfk : Wk → X n
k , which

maps a messagewk ∈ Wk to a codewordxn
k ∈ X n

k for k = 1, . . . , K. TheK inputs

xn
1 , . . . , x

n
K are transmitted overK parallel channels, respectively. Each receiver (say re-

ceiverk) is interfered by an i.i.d. state sequenceSn
k for k = 1, . . . , K, which is known

at none of transmitters1, . . . , K and receivers1, . . . , K. A common helper is assumed

to know all state sequencesSn
k for k = 1, . . . , K noncausally. Thus, the encoder at the

helper,f0 :W0 × {Sn
1 , . . . ,Sn

K} → X n
0 , maps a messagew0 ∈ W0 and the state sequences

(sn1 , . . . , s
n
K) ∈ Sn

1 × . . . × Sn
K to a codewordxn

0 ∈ X n
0 . The entire channel transition

probability is given byPY0|X0

∏K

k=1 PYk|X0,Xk,Sk
. There areK + 1 decoders with each at

one receiver,gk : Yn
k → Wk, maps a received sequenceynk into a messagêwk ∈ Wk for

k = 0, 1, . . . , K.

We study the following three Gaussian channel models.

In model I,K = 1, i.e., the helper assists one transmitter-receiver pair. The channel

outputs at receiver 0 and 1 for one symbol time are given by

Y0 = X0 +N0, (5.1a)

Y1 = X0 +X1 + S1 +N1. (5.1b)

In model II,K = 2, in which one helper assists two transmitter-receiver pairs, and only

one receiver is interfered by a state sequence. The channel outputs at receivers 0, 1 and 2

for one symbol time are given by

Y0 = X0 +N0, (5.2a)

Y1 = X0 +X1 + S1 +N1, (5.2b)

Y2 = X0 +X2 +N2. (5.2c)
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In model III, K is general, in which a common helper assists multiple transmitter-

receiver pairs with each receiver corrupted by an independently distributed state sequence.

This model is more general than model I, but does not include model II as a special case

(due to infinite state power). The channel outputs at receivers 0 and receivers1, . . . , K for

one symbol time are given by

Y0 = X0 +N0, (5.3a)

Yk = X0 +Xk + Sk +Nk, for k = 1, . . . , K (5.3b)

In the above three models, the noise variablesN0, N1 . . . , NK and the state variables

S1, . . . , SK are Gaussian distributed with distributionsN0, . . . , NK ∼ N (0, 1) andSk ∼

N (0, Qk) for k = 1, . . . , K, and all of the variables are independent and are i.i.d. overchan-

nel uses. The channel inputsX0, X1, . . . , XK are subject to the average power constraints

1
n

∑n

i=1X
2
ki 6 Pk for k = 0, 1, . . . , K.

We are interested in the regime of high state power, i.e., asQk →∞ for k = 1, . . . , K.

Our goal is to design helper strategies in order to cancel thehigh power state interference

and to further characterize the capacity region in this regime.

5.2 Model I: K = 1

In this section, we study the model I withK = 1. It is a basic model, in which the helper

assists one transmitter-receiver pair. Understanding this model will help the study of the

general parallel network. In this section, we first develop outer and inner bounds on the

capacity region, and then characterize the boundary of the capacity region based on these

bounds.

We first provide an outer bound on the capacity region in high state power regime.

Proposition 5.1. For the Gaussian channel of model I, an outer bound on the capacity
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region for the regime whenQ1 →∞ consists of rate pairs(R0, R1) satisfying:

R1 6
1

2
log(1 + P1) (5.4a)

R0 +R1 6
1

2
log(1 + P0). (5.4b)

The bound (5.4a) onR1 follows simply from the capacity of the single-user channel

between transmitter 1 and receiver 1 without signal and state interference. The bound

(5.4b) on the sum rate is limited only by the powerP0 of the helper, and does not depend

on the powerP1 of transmitter 1. Intuitively, this is becauseP0 is split for transmission

of W0 and for helping transmission ofW1 by removing state interference, and henceP0

determines a trade-off betweenR0 andR1. On the other hand, improving the powerP1,

although may improveR1, can also cause more interference for receiver 1 to decode the

auxiliary variable for canceling state and interference. Thus, the balance of the two effects

determines thatP1 does not affect the sum rate.

Proof. The proof is detailed in Appendix C.1.

We further note that although the sum-rate upper bound (5.4b) can be achieved easily

by keeping transmitter 1 silent (i.e.,R0 achieves the sum rate bound withR1 = 0), we are

interested in characterizing the capacity region (i.e., the trade-off betweenR0 andR1) rather

than a single point that achieves the sum-rate capacity. In the next section, we characterize

such optimal trade-off based on the sum-rate bound.

We then design a coding scheme and derive the achievable region accordingly. The ma-

jor challenge in designing an achievable scheme arises fromthe mismatched property due

to transmitter-side state cognition and receiver-side state interference, i.e., state interference

to receiver 1 is known noncausally only to the helper, not to the corresponding transmitter

1. Since we study the regime with large state power, transmitter 1 can send information to

receiver 1 only if the helper assists to cancel the state. Thus, the helper needs to resolve the

tension between transmitting its own message to receiver 0 and helping receiver 1 to cancel
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its interference. A simple scheme of time-sharing between the two transmitters in general

is not optimal.

We design a layered coding scheme as follows. The helper splits its signal into two

parts in a layered fashion: one (represented byX ′
0 in Proposition 5.2) for transmitting its

own message and the other (represented byU in Proposition 5.2) for helping receiver 1

to remove both state and signal interference. In particular, the second part of the scheme

applies a single-bin dirty paper coding scheme, in which transmission ofW1 and treatment

of state interference for decodingW1 are performed separately by transmitter 1 and the

helper. This is because the helper knows the state but does not know the message (of

transmitter 1) that the state interferes, and hence cannot encode this message via the regular

multi-bin dirty paper coding as in [10]. Based on such a scheme, we obtain the following

achievable rate region for the discrete memoryless channel, which is useful for deriving an

inner bound for the Gaussian channel.

Proposition 5.2. For the discrete memoryless channel of model I, an inner bound on the

capacity region consists of rate pairs(R0, R1) satisfying:

R0 6 I(X ′
0; Y0) (5.5a)

R1 6 I(X1; Y1|U) (5.5b)

R1 6 I(X1U ; Y1)− I(U ;S1X
′
0) (5.5c)

for some distributionPS1
PX′

0
PU |S1X

′
0
PX0|US1X

′
0
PX1

PY0|X0
PY1|S1X0X1

.

Proof. The proof is detailed in Appendix C.2.

Based on Proposition 5.2, we have the following simpler inner bound.

Corollary 5.1. For the discrete memoryless channel of model I, an inner bound on the
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capacity region consists of rate pairs(R0, R1) satisfying:

R0 6 I(X ′
0; Y0) (5.6a)

R1 6 I(X1; Y1|U) (5.6b)

for some distributionPS1
PX′

0
PU |S1X

′
0
PX0|US1X

′
0
PX1

PY0|X0
PY1|S1X0X1

that satisfies

I(U ; Y1) > I(U ;S1X
′
0). (5.7)

Proof. The region follows from Proposition 5.2 because (5.5c) is redundant due to the

condition (5.7).

The inner bound in Corollary 5.1 corresponds to an intuitiveachievable scheme based

on successive cancelation. Namely, the condition guarantees that receiver 1 decodes the

auxiliary random variableU first, and then removes it from its output and decodes the mes-

sage, which results in the bound (5.6b). In particular, cancelation ofU leads to cancelation

of signal and state interference at receiver 1.

We next derive an inner bound for the Gaussian channel of model I based on Corollary

5.1.

Proposition 5.3. For the Gaussian channel of model I, in the regime whenQ1 → ∞, an

inner bound on the capacity region consists of rate pairs(R0, R1) satisfying:

R0 6
1

2
log

(

1 +
β̄P0

βP0 + 1

)

(5.8a)

R1 6
1

2
log

(

1 +
P1

1 + (1− 1
α
)2βP0

)

(5.8b)

for some real constantsα > 0 and0 6 β 6 1 that satisfyα 6
2βP0

βP0+P1+1
.

Proof. Proposition 5.3 follows from Corollary 5.1 by choosing the joint Gaussian distribu-
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tion for random variables as follows:

U = X ′′
0 + α(S1 +X ′

0), X0 = X ′
0 +X ′′

0

X ′
0 ∼ N (0, β̄P0), X

′′
0 ∼ N (0, βP0)

X1 ∼ N (0, P1)

whereX ′
0, X

′′
0 , X1 andS1 are independent,α > 0, 0 6 β 6 1, andβ̄ = 1− β.

We note that in Proposition 5.3, the parameterα captures correlation between the state

variableS1 and the auxiliary variableU for dealing with the state, and can be chosen to

optimize the rate region. This is in contrast to the classical dirty paper coding [10], in which

such correlation parameter is fixed for state cancelation. Therefore, although Corollary 5.1

may provide a smaller inner bound than that given in Proposition 5.2, it can be shown

that two inner bounds are equivalent for our chosen auxiliary random variables and input

distribution after optimizing overα.

By comparing the inner and outer bounds, we characterize theboundary points of the

capacity region for the Gaussian channel of model I based on the inner and outer bounds

given in Propositions 5.3 and 5.1, respectively. We divide the Gaussian channel into three

cases based on the conditions on the power constraints: (1)P1 > P0 + 1; (2) P0 − 1 6

P1 < P0 + 1 and (3)0 6 P1 < P0 − 1. For each case, we optimize the dirty paper coding

parameterα in the inner bound in Proposition 5.3 to find achievable rate points that lie on

the sum-rate upper bound (5.4b) in order to characterize theboundary points of the capacity

region.

Case 1: P1 > P0 + 1. The capacity region is fully characterized in the following

theorem.

Theorem 5.1. For the Gaussian channel of model I, in the regime whenQ1 → ∞, if
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Fig. 5.2: The capacity region for case 1 withP0 = 1.5 andP1 = 3.

P1 > P0 + 1, the capacity region consists of the rate pairs(R0, R1) satisfying

R0 +R1 6
1

2
log(1 + P0). (5.9)

Proof. Let P̃1 be the actual power for transmittingW1. Then the inner bound (5.8b) on

R1 is optimized whenα = 2βP0

βP0+P̃1+1
. By settingP̃1 = βP0 + 1, the inner bound given in

Proposition 5.3 matches the outer bound given in Proposition 5.1, and hence is the capacity

region.

The capacity region of case 1 is illustrated in Fig. 5.2.

Theorem 5.1 implies that whenP1 is large enough, the power of the helper limits the

system performance. Furthermore, sinceP1 for transmission ofW1 causes interference to

receiver 1 to decode the auxiliary variable for canceling state and interference, beyond a

certain value, increasingP1 does not improve the rate region any more. Theorem 5.1 also

suggests that in order to achieve different points on the boundary of the capacity region

(captured by the parameterβ), different amounts of power̃P1 should be applied.

Case 2:P0 − 1 6 P1 < P0 + 1. We summarize the capacity result in the following

theorem.

Theorem 5.2. Consider the Gaussian channel of model I in the regime whenQ1 → ∞,

andP0−1 6 P1 < P0+1. If P1 > 1, the rate points(R0, R1) on the lineA-B (see Fig. 5.3

(a) and Fig. 5.4 (a)) are on the capacity region boundary. More specifically, the pointsA
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andB are characterized as:

Point A :

(

1

2
log(1 + P0), 0

)

Point B :

(

1

2
log(1 +

P0 − P1 + 1

P1

),
1

2
logP1

)

If P1 < 1 the rate pointA (see Fig. 5.3 (b) and Fig. 5.4 (b)) is on the capacity region

boundary, and is characterized as:

Point A :

(

1

2
log(1 + P0), 0

)
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Proof. We first setα = 2βP0

βP0+P1+1
, and then substituteα into (5.8b) and obtain the following

inner bound:

R0 6
1

2
log

(

1 +
β̄P0

βP0 + 1

)

(5.12a)

R1 6
1

2
log

(

1 +
4βP0P1

4βP0 + (P1 + 1− βP0)2

)

. (5.12b)

WhenP1 > 1, by settingβ = P1−1
P0

, we obtain an achievable rate point B given by
(

1
2
log(1 + P0−P1+1

P1

), 1
2
logP1

)

, which is also on the outer bound. It is also clear that the

point A given by
(

1
2
log(1 + P0), 0

)

is achievable by settingβ = 0, which is also on the

outer bound. Thus, the lineA − B is on the boundary of the capacity region due to time

sharing.

For this case, ifP1 > 1, i.e.,P1 is larger than the noise power, inner and outer bounds

match over the line A-B as illustrated in Fig. 5.3 (a) and Fig.5.4 (a), and thus optimal trade-

off betweenR0 andR1 is achieved over the points on the line A-B. IfP1 < 1, the inner

and outer bounds match only at the rate point A as illustratedin Fig. 5.3 (b) and Fig. 5.4

(b), which achieves the sum-rate capacity. We further note that Fig. 5.3 is different from

Fig. 5.4 in the outer bound. Fig. 5.4 corresponds to the case with P0 ≥ P1, and hence the

capacity region is also upper bounded by the single-user capacity ofR1. Such a bound is

redundant in Fig. 5.3 which corresponds to the case withP0 < P1, becauseP0 is not large

enough to perfectly cancel state and signal interference atreceiver 1. However, in case 3,

we show that this single-user capacity ofR1 is achievable simultaneously with a certain

positiveR0.

Case 3:P1 < P0−1. We first summarize the capacity results in the following theorem.

Theorem 5.3. Consider the Gaussian channel of model I in the regime whenQ1 →∞, and

P1 < P0−1. If P1 > 1, the rate points(R0, R1) on the lineA-B (see Fig. 5.5 (a)) are on the

boundary of the capacity region. More specifically, the pointsA andB are characterized
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as:

Point A :

(

1

2
log(1 + P0), 0

)

Point B :

(

1

2
log(1 +

P0 − P1 + 1

P1
),
1

2
logP1

)

And the rate points(R0, R1) on the lineD-E (see Fig. 5.5 (a)) are on the boundary of the

capacity region. The pointsD andE are characterized as:

Point D :

(

1

2
log(

P0 + 1

P1 + 2
),
1

2
log(1 + P1)

)

Point E :

(

0,
1

2
log(1 + P1)

)

If P1 < 1, then pointA (see Fig. 5.5 (b)) is on the capacity region boundary. The point A

is characterized as:

Point A :

(

1

2
log(1 + P0), 0

)

And the rate points(R0, R1) on the lineD-E (see Fig. 5.5 (b)) are on the boundary of the

capacity region. The pointsD andE are characterized as:

Point D :

(

1

2
log(

P0 + 1

P1 + 2
),
1

2
log(1 + P1)

)

Point E :

(

0,
1

2
log(1 + P1)

)

Proof. For case 3, the inner bound boundary given in Proposition 5.3is characterized by

segment I consisting of rate points satisfying:

R0 6
1

2
log

(

1 +
β̄P0

1 + βP0

)

(5.17a)

R1 6
1

2
log(1 + βP0) (5.17b)
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for 0 6 β 6
P1+1
P0

; and segment II consisting of rate points satisfying

R0 6
1

2
log

(

1 +
β̄P0

1 + βP0

)

(5.18a)

R1 6
1

2
log(1 + P1) (5.18b)

for P1+1
P0

6 β 6 1. Segment I is obtained by settingα = 2βP0

βP0+P1+1
, and segment II is

obtained by settingα = 1.

For segment I, ifP1 > 1, the line A-B is on the boundary of the capacity region as

shown in Fig. 5.5 (a). IfP1 < 1, only pointA is on the capacity boundary as shown

in Fig. 5.5 (b). For segment II, it is clear that the single-user channel capacity forR1 is

achievable. Furthermore, by settingβ = P1+1
P0

, the pointD is achievable. Thus, the line

D −E as shown in Fig. 5.5 (a) and (b) is on the boundary of the capacity region.

Similarly to cases 2, the inner and outer bounds match partially over the sum rate bound,

i.e., the two bounds match over the line A-B (see Fig. 5.5 (a))if P1 > 1 and match at only

the point A (see Fig. 5.5 (b)) ifP1 < 1. However, differently from case 2, the inner

and outer bounds also match whenR1 = 1
2
log(1 + P1) over the line D-E (see Fig. 5.5

(a) and (b)). This is because the powerP0 of the helper in this case is large enough to

fully cancel state and signal interference so that transmitter 1 is able to reach its maximum

single-user rate to receiver 1 without interference. Furthermore, the helper is also able to

simultaneously transmit its own message at a certain positive rate.

5.3 Model II: K = 2

In this section, we study the model II withK = 2, and only receiver 1 corrupted by the

channel state. In this model, the challenge lies in the fact that the helper needs to assist

receiver 1 to remove the state interference, but such signalinevitably causes interference to

receiver 2. To better understand the function of the helper,we study the case withW0 = φ,
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Fig. 5.5: Inner and outer bounds for case 3, which match partially on the boundaries.

and henceY0 = φ. It is straight-forward to generalize these results to the model with

W0 6= φ.

We first provide a useful outer bound for Model II.

Proposition 5.4. For the Gaussian channel of model II withW0 = φ, in the regime when

Q1 →∞, an outer bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6min

{

1

2
log(1 + P0),

1

2
log(1 + P1)

}

(5.19a)

R2 6
1

2
log(1 + P2) (5.19b)

R1 +R2 6
1

2
log(1 + P0 + P2). (5.19c)

Proof. The proof is detailed in Appendix C.3.

We note that (5.19a) represents the best single-user rate ofreceiver 1 with the helper

dedicated to help it as shown in Equation (5.4a) and (5.4a), (5.19b) is the single-user ca-

pacity for receiver 2, and (5.19c) implies that although thetwo transmitters communicate

over parallel channels to their corresponding receivers, due to the shared common helper,

the sum rate is still subject to a certain rate limit.

We next describe our idea to design an achievable scheme. We first note that although

receiver 2 is not interfered by the state, the signal that thehelper sends to assist receiver 1



89

to deal with the state still causes unavoidable interference to receiver 2. A natural idea to

optimize the transmission rate to receiver 2 is simply to keep the helper silent. In this case,

without the helper’s assistance, receiver 1 gets zero rate due to infinite state power. Here,

we design a novel scheme, which enables the single-user channel capacity for receiver 2

and a certain positive rate for receiver 1 simultaneously. Consequently, the helper is able to

assist receiver 1 without causing interference to receiver2. In our achievable scheme, the

signal of the helper is split into two parts, represented byU andV as in Proposition 5.5.

Here,U is designed to help receiver 1 to cancel the state while treating V as noise, andV

is designed to help receiver 2 to cancel the interference caused byU . Since there is no state

interference at receiver 2,U is decoded only at receiver 1. Based on such an achievable

scheme, we obtain the following achievable region.

Proposition 5.5. For the Gaussian channel of model II withW0 = φ, an achievable region

consists of the rate pair(R1, R2) satisfying

R1 6 I(X1; Y1|U), (5.20a)

R2 6 I(X2; Y2|V ), (5.20b)

for some distributionPS1UV X0X1X2
= PS1

PUV X0|S1
PX1

PX2
, whereU and V are auxiliary

random variables satisfyinf that

I(U ;Y1) > I(U ;S1), (5.21a)

I(V ;Y2) > I(V ;US1). (5.21b)

Proof. The proof is detailed in Appendix C.4.

Following from the above achievable region, we obtain an achievable region for the

Gaussian channel by setting an appropriate joint input distribution.

Proposition 5.6. For the Gaussian channel of model II withW0 = φ, in the regime when
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Q1 →∞, an inner bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1

(1− 1
α
)2P01 + P02 + 1

)

(5.22a)

R2 6
1

2
log

(

1 +
P2

1 + (β−1)2P02P01

P02+β2P01

)

(5.22b)

whereP01, P02 > 0,P01+P02 6 P0, 0 6 α 6
2P01

1+P0+P1

, andP 2
02+2βP01P02 > β2P01(P02+

P2 + 1).

Proof. The region follows from Proposition 5.5 by choosing jointlyGaussian distribution

for random variables as follows:

U = X01 + αS1, V = X02 + βX01

X0 = X01 +X02

X01 ∼ N (0, P01), X02 ∼ N (0, P02)

X1 ∼ N (0, P1), X2 ∼ N (0, P2)

whereX01, X02, X1, X2 andS1 are independent.
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Fig. 5.6: Segments of the capacity boundary for the Gaussianchannel of model II

Comparing the inner and outer bounds given in Propositions 5.6 and 5.4, respectively,

we characterize two segments of the boundary of the capacityregion, over which the two
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bounds meet.

Theorem 5.4. Consider the Gaussian model II withW0 = φ, in the regime whenQ1 →∞,

the rate points on the lineA-B (see Fig. 5.6-(a)) are on the capacity region boundary. More

specifically, if1
2
(1 + P0 + P1) >

P 2

0

P0+P2+1
, pointsA andB are characterized as

Point A :

(

0,
1

2
log(1 + P2)

)

Point B :

(

1

2
log

(

1 +
4P1P

2
0

(1 + P0 + P1)2(1 + P0 + P2)− 4P1P
2
0

)

,
1

2
log(1 + P2)

)

.

If 1
2
(1 + P0 + P1) <

P 2

0

P0+P2+1
, pointsA andB are characterized as

Point A :

(

0,
1

2
log(1 + P2)

)

Point B :

(

1

2
log

(

1 +
P1(P0 + P2 + 1)

P0 + (P0 + 1)(P2 + 1)

)

,
1

2
log(1 + P2)

)

.

Furthermore, the rate points on the lineC-D (see Fig. 5.6-(a)) are also on the capacity

region boundary. IfP1 > P0 + 1, the pointsC andD are characterized as

Point C :

(

1

2
log(1 + P0),

1

2
log

(

1 +
P2

P0 + 1

))

Point D :

(

1

2
log(1 + P0), 0

)

,

as illustrated in Fig. 5.6-(a).

If P1 6 P0 − 1, the pointsC andD is characterized as

Point C :

(

1

2
log(1 + P1),

1

2
log

(

1 +
P2

P1 + 2

))

Point D :

(

1

2
log(1 + P1), 0

)

,

as illustrated in Fig. 5.6-(b).

Proof. We first show that the lineA-B is achievable. The point A is achievable by keeping
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the helper silent. To show that the point B is achievable, we setβ = 1 in Proposition 5.6,

and hence the achievable rateR2 in (5.22b) reaches the single-user channel capacity, and

the conditionP 2
02 + 2βP01P02 > β2P01(P02 + P2 + 1) becomesP01 6

P 2

0

P0+P2+1
. We set

P01 =
P 2

0

P0+P2+1
.

If 1
2
(1+P0+P1) >

P 2

0

P0+P2+1
, we have 2P01

1+P0+P1

6 1. Thus, settingα = 2P01

1+P0+P1

, (5.22a)

and (5.22b) imply that the point B is achievable.

If 1
2
(1 + P0 + P1) 6

P 2

0

P0+P2+1
, we have 2P01

1+P0+P1

> 1. By settingα = 1, (5.22a) and

(5.22b) imply that the point B is achievable.

We next show that the lineC-D is on the capacity boundary.

As implied by Theorems 5.1 and 5.3, the only possible cases that the outer bound

(5.19a) (i.e. the maximum rateR1 with the helper fully assisting receiver 1) can be achieved

are whenP1 6 P0 − 1 andP1 > P0 + 1.

If P1 > P0 + 1, setting the actual transmission power of transmitter 1 asP̃1 = P0 + 1,

P01 = P0, α = P0

1+P0

andβ = 0, then (5.22a) and (5.22b) imply that the rate point C

is achievable. This point also achieves the sum capacity. Itis obvious that pointD is

achievable, and hence the points on the lineC-D are on the capacity boundary.

If P1 6 P0− 1, by settingβ = 0, α = 1 andP01 = P̃0 = P1+1 (whereP̃0 is the actual

transmission power of the helper), then (5.22a) and (5.22b)imply that the rate point C is

achievable. In particular, the actual power the helper usesisP1 + 1 rather thanP0, because

largerP0 does not help receiver 1 to decode more, but increases interference to receiver

2. It is clear that the pointD is achievable. Hence, the points on the lineC-D are on the

capacity boundary.

The capacity result for the lineA-B in Theorem 5.4 indicates that our coding scheme

effectively enables the helper to assist receiver 1 withoutcausing interference to receiver

2. Hence,R2 achieves the corresponding single-user channel capacity,while transmitter 1

and receiver 1 communicate at a certain positive rateR1 with the assistance of the helper.

The capacity result for the lineC-D in Theorem 5.4 can be achieved based on a scheme,
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in which the helper assists receiver 1 to deal with the state and receiver 2 treats the helper’s

signal as noise. Such a scheme is guaranteed to be the best by the outer bound if receiver

1’s rate is maximized.

Corollary 5.2. For the Gaussian channel of model II withW0 = φ, in the regime when

Q1 →∞, if P1 > P0 + 1, the sum capacity is given by1
2
log(1 + P0 + P2).

5.4 Model III: General K

In this section, we consider the Gaussian channel of model III with K > 2, in which there

are multiple receivers with each interfered by an independent state. In this section, we

present the results for the scenario, in which the helper dedicates to help two users without

transmitting its own message, i.e.,K = 2 andW0 = φ. It is straight-forward to extend

the result to the more general scenario, in which the helper assists more than two users and

transmits its own message at the same time, i.e.,K > 2 andW0 6= φ.

We note that model III is more general than model I, but does not include model II as

a special case, because model II has one receiver that is not corrupted by state, but each

receiver (excluding the helper’s targeted receiver) in model III is corrupted by an infinitely

powered state sequence. Hence for model III, the challenge lies in the fact that the helper

needs to assist multiple receivers to cancel interference caused by independent states. In

this subsection, we first derive an outer bound on the capacity region, and then derive

an inner bound based on a time-sharing scheme for the helper.Somewhat interestingly,

comparing the inner and outer bounds concludes that the time-sharing scheme achieves

the sum capacity under certain channel parameters, and we hence characterize segments

of the capacity region boundary corresponding to the sum capacity under these channel

parameters.

We first derive an outer bound on the capacity region.
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Proposition 5.7. For the Gaussian channel of model III withK = 2 andW0 = φ, in the

regime whenQ1, Q2 → ∞, an outer bound on the capacity region consists of rate pairs

(R1, R2) satisfying:

R1 6
1

2
log(1 + P1) (5.27)

R2 6
1

2
log(1 + P2) (5.28)

R1 +R2 6
1

2
log(1 + P0). (5.29)

Proof. The proof is detailed in Appendix C.5.

Although the two transmitters transmit over parallel channels, the above outer bound

suggests that their sum rate is still subject to a certain constraint determined by the helper’s

power. This implies that it is not possible for one common helper to cancel the two inde-

pendent high-power states simultaneously (i.e., using thecommon resource). This fact also

suggests that a time-sharing scheme, in which the helper alternatively assists each receiver,

can be desirable to achieve the sum rate upper bound (i.e., toachieve the sum capacity).

We hence design a time-sharing achievable scheme. The helper splits its transmission

duration into two time slots with the fractionγ of the total time duration for assisting re-

ceiver 1 and the fraction1 − γ for assisting receiver 2. Each transmitter transmits only

during the time slot that it is assisted by the helper, and keeps silent while the helper as-

sisting the other transmitter. We note that the power constraints for transmitters 1 and 2 in

their corresponding transmission time slots areP1

γ
and P2

1−γ
, respectively.

Now at each transmission slot, the channel consists of one transmitter-receiver pair with

the receiver corrupted by a infinite-power state, and one helper that assists the receiver to

cancel the state interference. Such a model is equivalent tothe state-dependent single-user
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channel with a helper studied in [34]. We rewrite the achievable rate as follows:

R(P, P0) :=



































1
2
log(1 + P0), P > P0 + 1

1
2
log(1 + 4P0P

4P0+(P0−P−1)2
), P0 − 1 6 P 6 P0 + 1

1
2
log(1 + P ), P 6 P0 − 1.

(5.30)

By employing the time-sharing scheme between the helper assisting one receiver and the

other alternatively, we obtain the following achievable region.

Proposition 5.8. For the Gaussian channel of model III withK = 2 andW0 = φ, in the

regime withQ1, Q2 → ∞, an inner bound on the capacity region consists of rate pairs

(R1, R2) satisfying:

R1 6 γR

(

P1

γ
, P0

)

(5.31a)

R2 6 (1− γ)R

(

P2

1− γ
, P0

)

(5.31b)

where0 6 γ 6 1 is the time-sharing coefficient, and the functionR(·, ·) is defined in(5.30).

We note that following from (5.30), the best possible single-user rate is1
2
log(1 + P0),

which can be achieved ifP > P0 + 1. This best rate may not be possible ifP is not

large enough. Interestingly, in a time-sharing scheme, both transmitters can simultane-

ously achieve the best single user rate1
2
log(1 + P0) over their transmission fraction of

time, because both of their powers get boosted over a certainfraction of time, although

neither power is larger thanP0 + 1. In this way, the sum rate upper bound (5.29) can be

achieved. The following theorem characterizes the sum capacity of the channel for the

scenario described above.

Theorem 5.5. For the Gaussian channel of model III withK = 2 and W0 = φ, in

the regime withQ1, Q2 → ∞, if P1 + P2 > P0 + 1, then the sum capacity equals
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1
2
log(1 + P0). The rate points that achieve the sum capacity (i.e. on the capacity re-

gion boundary) are characterized as(R1, R2) =
(

γR(P1

γ
, P0), (1− γ)R( P2

1−γ
, P0)

)

for

γ ∈
(

max(1− P2

P0+1
, 0),min( P1

P0+1
, 1)
)

.

Proof. The proof is detailed in Appendix C.6.

The above theorem implies the following characterization of the full capacity region

under certain parameters.

Corollary 5.3. For the Gaussian channel of model III withK = 2 andW0 = φ, in the

regime withQ1, Q2 →∞, if P1, P2 > P0 + 1, then the capacity region consists of the rate

pair (R1, R2) satisfyingR1 +R2 6
1
2
log(1 + P0).

We next provide channel examples to understand the outer andinner bounds respec-

tively in Proposition 5.7 and 5.8, and in the sum capacity in Theorem 5.5. It can be seen

that the power constraints fall into four cases, among whichwe consider the following three

cases: case 1.P1 > P0, P2 > P0; case 2.P1 > P0, P2 < P0; and case 3.P1 < P0, P2 < P0

by noting that case 4 is opposite to case 2 and is omitted due tosymmetry of the two

transmitters.

• Case 1: P1 > P0, P2 > P0. We consider an example channel withP0 = 1,

P1 = 1.8 andP2 = 1.5. Fig. 5.7 plots the inner and outer bounds on the capac-

ity region. In particular, the two bounds meet over the line segment B-C, which

corresponds to the rate points(R1, R2) =
(

γR(P1

γ
, P0), (1− γ)R( P2

1−γ
, P0)

)

for

γ ∈
(

max(1 − P2

P0+1
, 0),min( P1

P0+1
, 1)

)

as characterized in Theorem 5.5. All these

rate points achieve the sum capacity. It can also be seen thatalthough neither trans-

mitter achieves the best possible single-user rate, the sumcapacity can be achieved

due to the time-sharing scheme. We also note that, in this case, if the conditions in

Corollary 5.3 are satisfied, the full capacity region is characterized.
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Fig. 5.7: Segment on the capacity region for the Gaussian channel of model III

• Case 2:P1 > P0, P2 6 P0. We consider an example channel withP0 = 2, P1 = 2.5

andP2 = 0.8. Fig. 5.8 plots the inner and outer bounds on the capacity region. Sim-

ilarly to case 1, the two bounds meet over the line segment B-Cas characterized in

Theorem 5.5, and the points on such a line segment achieve thesum capacity. Dif-

ferently from case 1, transmitter 2 achieves its single-user channel capacity indicated

by the point A in Figure 5.8. This is consistent with the single user rate provided in

(5.30) for the case withP2 6 P0 − 1.
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• Case 3:P1 < P0, P2 < P0. We consider an example channel withP0 = 4, P1 = 3

andP2 = 3. Figure 5.9 plots the inner and outer bounds on the capacity region.

The points on the line segment B-C achieve the sum capacity ascharacterized in

Theorem 5.5, and the points A and D respectively achieve the single-user capacity

for two transceiver pairs. This is consistent with the single-user rate provided in

(5.30) for the case withP1, P2 6 P0 − 1.
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CHAPTER 6

STATE-DEPENDENT MULTIPLE ACCESS

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent MAC with a helper. Our focus is on the

Gaussian channel with additive state. We derive an outer bound on the capacity region, and

obtain an inner bound based on a dirty interference cancelation scheme. By comparing the

inner and outer bounds, we characterize the full capacity region or segment on the boundary

of the capacity region under various channel parameters.

6.1 Channel Model

Fig. 6.1: The state-dependent MAC with a helper

In the state-dependent MAC with a common helper (see Fig. 1.6in Section 1.2. For



100

convenience of reference, we include the figure again as Fig.6.1 in this section), transmitter

1 and transmitter 2 send their own messages to the receiver, respectively. The channel is

corrupted by a state sequence. The state sequence is known toneither the transmitters nor

the receiver, but is known to a helper noncausally. Hence, the helper assists the receiver

to cancel the state interference. More specifically, two encoders, each at one transmitter,

fk : Wk → X n
k map the messagewk ∈ Wk to a codewordxn

k ∈ X n
k for k = 1, 2. The

encoder at the helper,f0 : Sn → X n
0 maps the state sequencesn ∈ Sn into a codeword

xn
0 ∈ X n

0 . The help signalxn
0 and the inputsxn

1 , x
n
2 are transmitted over the MAC to the

receiver. The channel transition probability is given byPY |X0X1X2S. The decoder at the

receiver,g : Yn → (W1,W2) maps the received sequenceyn into two messageŝwk ∈ Wk

for k = 1, 2.

We focus on the Gaussian channel with the output at receiver for one channel use given

by

Y = X0 +X1 +X2 + S +N (6.1)

where the noise variableN ∼ N (0, 1) and the state variableS ∼ N (0, Q). Both the noise

and state variables are i.i.d. over channel uses. The channel inputsX0, X1 andX2 are

subject to the average power constraintsP0, P1 andP2.

6.2 Outer and Inner Bounds on Capacity

In this section, we provide outer and inner bounds on the capacity region for the state-

dependent Gaussian MAC with a helper. We start with an outer bound as follows.

Proposition 6.1. For the state-dependent Gaussian MAC with a helper, an outerbound on
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the capacity region consists of the rate pairs(R1, R2) satisfying:

R1 6min

{

1

2
log(1 + P1),

1

2
log(1 + P0)

+
1

2
log

(

1 +
P0 + 2ρ0S

√
P0Q+ P1 + 1

Q

)

}

(6.2a)

R2 6min

{

1

2
log(1 + P2),

1

2
log(1 + P0)

+
1

2
log

(

1 +
P0 + 2ρ0S

√
P0Q+ P2 + 1

Q

)

}

(6.2b)

R1 +R2 6min

{

1

2
log(1 + P1 + P2),

1

2
log(1 + P0)

+
1

2
log

(

1 +
P0 + 2ρ0S

√
P0Q+ P1 + P2 + 1

Q

)

}

(6.2c)

for someρ0S that satisfies−1 6 ρ0S 6 1.

Proof. The first bounds in (6.2a)-(6.2c) follow from the capacity ofthe Gaussian MAC

without state. The remaining bounds arise due to capabilityof the helper for assisting state

cancelation. Detailed proof is relegated to D.1.

In particular, we are interested in the large state power regime, i.e.,Q → ∞. The

following outer bound for such a regime follows readily fromProposition 6.1.

Corollary 6.1. For the state-dependent Gaussian MAC with a helper, in the regime that

Q→∞, an outer bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log(1 + P1) (6.3a)

R2 6
1

2
log(1 + P2) (6.3b)

R1 +R2 6min

{

1

2
log(1 + P1 + P2),

1

2
log(1 + P0)

}

(6.3c)

We note that asQ → ∞, the communication rates are not only bounded by the power
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constraints of transmitters 1 and 2, but also by the power of the helper. This is because as the

state power becomes asymptotically large, the receiver must remove the state interference

first in order to decode useful information. In this case, increasing the powersP1 andP2

causes more interference for the receiver to remove the state, and hence may reduce the

sum rate. Thus, whenP1 + P2 is large enough, the sum rate depends only on the power of

the helper that affects how the state can be removed.

We next derive an achievable region for the channel. The basic idea of the achievable

scheme is to employ a dirty interference cancelation scheme, i.e., the helper incorporates

two schemes for canceling state interference: scheme 1 cancels some state power by sig-

nals that exactly reverses the state realization; and scheme 2 uses dirty paper coding via

generation of an auxiliary variable (represented byU in Proposition 6.2) to incorporate the

state information so that the receiver decodes such variable first to cancel the state and then

decode the users’ information. Based on such an achievable scheme, we derive the fol-

lowing inner bound on the capacity region. The detailed proof is omitted due to the space

limitations.

Proposition 6.2. For the discrete memoryless state-dependent MAC with a helper, an inner

bound on the capacity region consists of rate pairs(R0, R1) satisfying:

R1 6 I(X1; Y |UX2) (6.4a)

R2 6 I(X2; Y |UX1) (6.4b)

R1 +R2 6 I(X1X2; Y |U) (6.4c)

for some distributionPSPU |SPX0|USPX1
PX2

PY |SX0X1X2
such that

I(U ; Y ) > I(U ;S). (6.5)

Proof. The proof is detailed in Appendix D.2.
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We note that the constraint (6.5) is imposed because the receiver needs to decode the

auxiliary codeword (with single letter representationU) that the helper generates to cancel

the state. Based on the above inner bound, we derive the following inner bound for the

Gaussian channel.

Proposition 6.3. For the state-dependent Gaussian MAC with a helper, an innerbound on

the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1

(α−1−β)2P00Q

P00+α2Q
+ 1

)

(6.6a)

R2 6
1

2
log

(

1 +
P2

(α−1−β)2P00Q

P00+α2Q
+ 1

)

(6.6b)

R1 +R2 6
1

2
log

(

1 +
P1 + P2

(α−1−β)2P00Q

P00+α2Q
+ 1

)

(6.6c)

for some real constantsα, β, and0 6 P00 6 P0 that satisfy

−
√

P0−P00

Q
6 β 6

√

P0−P00

Q
, and

α2Q(P1 + P2 + 1 + P00)− 2αP00Q(1 + β)− P 2
00 6 0. (6.7)

Proof. The region follows from Proposition 6.2 by choosing the joint Gaussian distribution

for random variables as follows:

U = X00 + αS, X0 = X00 + βS, X00 ∼ N (0, P00),

whereX00 andS are independent. The constraints onβ follows due to the power con-

straints onX0.

We note that the above construction of the inputX0 of the helper reflects two state

cancelation schemes: the termβS represents directly cancelation of some state power via

reverse of the state realization; and the variableX00 is used for dirty paper coding via
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generation of the state-correlated auxiliary variableU . Hence, the parameterβ controls the

balance of two schemes in the integrated scheme, and can be optimized to achieve the best

performance. This scheme is also equivalent to the one withU = X0 + αS, whereX0

andS are correlated. While such approaches have been consideredin the literature (see

e.g., [37]), we believe that selectingU andX0 successively provides a more operational

meaning to the correlation structure.

In the high state power regime, i.e.,Q → ∞, it is necessary thatβ = 0, because the

helper’s inputX0 has only limited power. Hence, in this case, the achievable scheme com-

pletely uses dirty paper coding for state cancelation. Sucha scheme yields the following

inner bound.

Corollary 6.2. For the state-dependent Gaussian MAC with a helper, in the regime with

Q→∞, an inner bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1

(1− 1
α
)2P0 + 1

)

(6.8a)

R2 6
1

2
log

(

1 +
P2

(1− 1
α
)2P0 + 1

)

(6.8b)

R1 +R2 6
1

2
log

(

1 +
P1 + P2

(1− 1
α
)2P0 + 1

)

(6.8c)

for some constantα that satisfies0 6 α 6
2P0

P0+P1+P2+1
.

6.3 Capacity Results

In this section, by comparing the inner and outer bounds, we characterize the capacity

region or segment on the capacity boundary under various channel parameters. We first

characterize the capacity region for case 1 when the helper’s power is relatively large.

Theorem 6.1. For the state-dependent Gaussian MAC with a helper, ifP0 > P1 + P2 + 1,
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the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log(1 + P1) (6.9a)

R2 6
1

2
log(1 + P2) (6.9b)

R1 +R2 6
1

2
log(1 + P1 + P2) (6.9c)
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Fig. 6.2: An illustration of the capacity region for state-dependent Gaussian MAC with a
helper for case 1 withP1 = P2 = 3, P0 = 7.5 and arbitraryQ (characterized by Theorem
6.1) and case 2 withP1 = P2 = 3, P0 = 4.5 andQ = 8 (characterized by Theorem 6.2).

Proof. The achievability follows by settingα = 1 andβ = 0 in Proposition 6.3. It is easy

to check that the condition (6.7) is satisfied givenP0 > P1+P2+1. It is clear that such an

inner bound matches the outer bound in Proposition 6.1.

Theorem 6.1 implies that if the helper’s power is above a certain threshold, the capacity

region of the state-dependent MAC with a helper is the same asthe capacity region of the

MAC without state. Thus, the helper is capable to fully cancel the state interference at the

receiver. In particular, the statement holds for any state interference power, which can be

as large as infinite. In Fig. 6.2, we illustrate the capacity region of case 1 under an example

set of channel parameters, i.e.,P1 = P2 = 3, P0 = 7.5, and arbitraryQ.

We next characterize the capacity region for case 2 when the helper’s power is not large

enough.
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Theorem 6.2. For the state-dependent Gaussian MAC with a helper, ifP0 < P1 + P2 + 1,

and if

√

Q 6 max
06P006P0

√

P0 − P00 +
P00√

P1 + P2 + 1− P00

, (6.10)

then the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log(1 + P1) (6.11a)

R2 6
1

2
log(1 + P2) (6.11b)

R1 +R2 6
1

2
log(1 + P1 + P2). (6.11c)

Proof. When (6.10) is satisfied, by settingα = 1 + β in Proposition 6.3, the region in

(6.11a)-(6.11c) is achieved, which matches with the outer bound, and hence is the capacity

region.

Theorem 6.2 implies that if the helper’s power is below a certain threshold, then the

capacity region of the state-dependent MAC with a helper is the same as the capacity region

of the MAC without state when the state power is lower than a certain value. Thus, the

helper can fully cancel the state interference at the receiver only for a certain range of state

power. It can also be checked that the threshold onQ given in (6.10) can be larger thanP0,

which implies that dirty paper coding is necessary in the achievable scheme to fully cancel

state interference.

The capacity region in Fig. 6.2 is also applicable to case 2 characterized in Theorem 6.2

under certain channel parameters, for example, whenP1 = P2 = 3, P0 = 4.5 andQ = 8.

Compared to case 1, the helper’s power is smaller, but achieves the same capacity region.

This is reasonable, because the state powerQ in case 2 is limited by a certain threshold,

but the powerQ in case 1 can be arbitrary.

We finally study case 3 with the helper’s power being small. For this case, the capacity
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region is limited by the helper’s power constraint. The following theorem characterizes

the sum capacity and the segment of the boundary of the capacity region in the large state

power regime.

Theorem 6.3. For the state-dependent Gaussian MAC with a helper, ifP0 < P1 + P2 − 1,

in the regime ofQ→∞, the sum capacity equals to1
2
log(1+P0). Furthermore, the points

on the line B-C (see Fig. 6.3 for an illustration) are on the boundary of the capacity region,

where the points B and C are characterized as

B : (
1

2
log(1 + P0)− RB, RB)

where RB =
1

2
log(1 +

P0min{P2, P0 + 1}
1 + P0

)

C : (RC ,
1

2
log(1 + P0)− RC)

where RC =
1

2
log(1 +

P0min{P1, P0 + 1}
1 + P0

).

Proof. Achievability of the sum capacity follows from Corollary 6.2 by setting the actual

transmission powers of the two transmitters to be0 6 P̃1 6 P1 and0 6 P̃2 6 P2 such

that P̃1 + P̃2 = P0 + 1. The upper bound on the sum capacity follows from Corollary

6.1. The points B and C are characterized by settingP̃2 = min{P2, P0 + 1} and P̃1 =

min{P1, P0 + 1}, respectively.

We illustrate an example of case 3 in Fig. 6.3, in which the inner and outer bounds

match over the line B-C.

Theorem 6.3 implies the characterization of the full capacity under further conditions,

as given in the following corollary.

Corollary 6.3. For the state-dependent Gaussian MAC with a helper, ifP0 < min{P1, P2}−

1, in the regime ofQ→∞, the capacity region consists of rate pairs(R1, R2) satisfying:

R1 +R2 6
1

2
log(1 + P0). (6.12)
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Fig. 6.3: A illustration of the segment of the capacity boundary for state-dependent Gaus-
sian MAC with a helper:P0 < P1 + P2 − 1.

Theorem 6.3 and its Corollary 6.3 imply that if the helper’s power is below a certain

threshold, then the capacity region of the state-dependentMAC with a helper is strictly

smaller than the capacity region of the MAC without state. Thus, the helper is not able

to fully cancel the state interference at the receiver. Thisis particularly reflected in the

asymptotical regime as the state powerQ→∞.
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CHAPTER 7

STATE-DEPENDENT BROADCAST

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent broadcast channel with a helper for two sce-

narios. In scenario 1, the transmitter sends one message to both receivers, and in scenario

II, the transmitter sends two private messages respectively to two receivers. Our focus is

on the Gaussian channel with additive state. We derive innerand outer bounds for both

scenarios. By comparing the inner and outer bounds, we characterize the capacity/capacity

region under various ranges of channel parameters.

7.1 Channel Model

Fig. 7.1: The state-dependent broadcast channel with a helper: Scenario with a common
message
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Fig. 7.2: The state-dependent broadcast channel with a helper: Scenario with private
messages

We study two scenarios for the state-dependent broadcast channel with a helper. In

scenario I (see Fig. 1.7 in Section 1.2. For convenience of reference, we include the figure

again as Fig. 7.1 in this section), the transmitter wishes totransmit one common message

W ∈ W to two receivers. The encoderf : W → X n, maps a messagew ∈ W to

a codewordxn ∈ X n. The inputxn is transmitted over the broadcast channel, which

is interfered by an i.i.d. state sequenceSn. The state sequence is known at neither the

transmitter nor the receivers. A helper which knows the state sequence noncausally assists

both receivers to deal with the channel state. Thus, the encoder at the helper,f0 : Sn →

X n
0 , maps the state sequencessn ∈ Sn to a codewordxn

0 ∈ X n
0 . The channel transition

probability is given byPY1Y2|X0XS. Two decoders with each at one receiver,gk : Yn
k →W,

maps a received sequenceynk into the messagêw ∈ W for k = 1, 2.

Scenario II (see Fig. 1.8 in Section 1.2. For convenience of reference, we include the

figure again as Fig. 7.2 in this section) is similar to scenario I with the difference being that

the transmitter sends two independent messagesW1 ∈ W1 andW2 ∈ W2 to receivers 1 and

2, respectively. Hence, the encoder,f : (W1,W2) → X n, maps two messagesw1 ∈ W1

andw2 ∈ W2 to a codewordxn ∈ X n. The helper now assists both receivers to deal with

the channel state. The two decoders with each at one receiver, gk : Yn
k → Wk, maps a

received sequenceynk into a messagêwk ∈ Wk for k = 1, 2.

We study the Gaussian state-dependent broadcast channel, in which the outputs at the
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two receivers for one channel use are given by

Y1 =X0 + S +
1

a
(X + Z1), (7.1a)

Y2 =X0 + S +X + Z2. (7.1b)

where the noise variablesZ1 andZ2 and the state variablesS are Gaussian distributed with

distributionsZ1 ∼ N (0, N1), Z2 ∼ N (0, N2) andS ∼ N (0, Q), and all of these variables

are independent and are i.i.d. over channel uses. The channel inputsX0 andX are subject

to the average power constraints1
n

∑n

i=1X
2
0i 6 P0 and 1

n

∑n

i=1X
2
i 6 P .

7.2 Scenario I: Common Message

In this section, we study scenario I, in which only one commonmessage is transmitted

from the transmitter to both receivers. We first derive a useful upper bound.

Proposition 7.1. For the state-dependent Gaussian broadcast channel in scenario I, an

upper bound on the capacity is given by

R 6 min

{

1

2
log

(

1 +
P

N1

)

,
1

2
log

(

1 +
P

N2

)

,

1

2
log

(

1 +
a2P0

N1

)

+
1

2
log

(

1 +
P0 + 2

√
P0Q+ 1

a2
(P +N1)

Q

)

,

1

2
log

(

1 +
P0

N2

)

+
1

2
log

(

1 +
P0 + 2

√
P0Q+ P +N2

Q

)

}

. (7.2)

We note that, in (7.2), the first two terms represent the capacity for the compound

channel without state. The third and fourth terms equal to the best single-user rates of

receivers 1 and 2, respectively, with the helper dedicated to help each receiver, which can

be reduced from the result in Proposition 5.1.

We next derive an achievable rate based on the dirty interference cancelation scheme, in

which the helper incorporates two schemes for canceling state interference: scheme 1 can-
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cels some state power by a signal that exactly reverses the state realization; and scheme 2

uses dirty paper coding via generation of an auxiliary variable (represented byU in Proposi-

tion 7.2) to incorporate the state information so that the receiver decodes such variable first

to cancel the state and then decode the users’ information. We first provide an achievable

region for the discrete memoryless channel in the followingproposition.

Proposition 7.2. For the state-dependent broadcast channel with a helper, a rate R is

achievable if it satisfies

R 6 I(X ; Yk|U) for k=1, 2, (7.3)

for some distributionPSUX0X = PSPUX0|SPX , whereU is an auxiliary random variable such

that

I(U ;Yk) > I(U ;S) for k=1, 2. (7.4)

Proof. The achievable region follows from a coding scheme in which the state is encoded

using a single-bin coding at the helper, and a successive cancellation at each receivers. This

is similar to the coding scheme in Proposition 5.2 for each receiver.

Following from Proposition 7.2, we obtain an achievable rate for the Gaussian channel.

Proposition 7.3. For the state-dependent Gaussian broadcast channel in scenario I, a rate

R is achievable if it satisfies

R 6 min















1

2
log



1 +
P

(1+β−α)2a2P00Q

P00+α2Q
+N1



 , (7.5a)

1

2
log



1 +
P

(1+β−α)2P00Q

P00+α2Q
+N2



















, (7.5b)
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whereP00 + β2Q 6 P0, P00 > 0,

α2Q
P +N1

a2
+ α2P00Q− 2α(1 + β)P00Q 6 P 2

00, and

α2Q(P +N2 + P00)− 2α(1 + β)P00Q 6 P 2
00.

Proof. The achievability follows from Proposition 7.2 by choosingjointly Gaussian distri-

bution as follows:

U = X00 + αS, X0 = X00 + βS

X00 ∼ N (0, P00), X ∼ N (0, P )

whereX00, X andS are independent.

Comparing the lower and upper bounds given in Propositions 7.3 and 7.1, respectively,

we characterize the capacity for three ranges of channel parameters, respectively, in the

following three theorems.

Theorem 7.1. For the state-dependent Gaussian broadcast channel in scenario I, if P0 >

max{P +N2,
P+N1

a2
}, the capacity is given by

C = min

{

1

2
log

(

1 +
P

N1

)

,
1

2
log

(

1 +
P

N2

)

}

. (7.6)

Proof. WhenP0 > max{P + N2,
P+N1

a2
}, by settingα = 1 + β for (7.5a) and (7.5b), the

rate in (7.6) is achievable which matches the outer bound in Proposition 7.1, and hence is

the capacity rate.

Theorem 7.1 indicates that when the helper’s power is large enough, it can help the

receivers to fully cancel the state interference. In particular, this holds even when the state

power is arbitrarily large. This is very useful as finite amount of helper’s power can help to
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cancel infinite amount of interference power. We next consider the case when the helper’s

power is below a certain threshold.

Theorem 7.2. For the state-dependent Gaussian broadcast channel in scenario I, if P0 <

max{P +N2,
P+N1

a2
}, and

√

Q 6 max
06P006P0

√

P0 − P00 +
P00

√

max{P+N1

a2
, P +N2} − P00

, (7.7)

the channel capacity is given by

C = min{1
2
log(1 +

P

N1
),
1

2
log(1 +

P

N2
)}. (7.8)

Proof. When (7.7) is satisfied, by settingα = 1 + β in Proposition 7.3, the rate in (7.8) is

achieved, which matches the upper bound in Proposition 7.1.Hence, the capacity rate is

obtained.

Theorem 7.2 implies that when the helper’s power is below a certain threshold, only a

limited power of state interference can be fully canceled with the assistance of the helper.

We note that such powerQ of the state can still be larger than the helper’s powerP0,

which implies that the combined scheme in Proposition 7.2 isnecessary to fully cancel the

state interference. One example of such channel parameterscan be given bymax{P +

N2,
P+N1

a2
} = 7, P0 = 4.5, andQ = 8.

We note that if the state power is asymptotically large, the upper bound in Proposition

7.1 (and hence the capacity) can be determined only by the helper’s power, as summarized

in the following theorem. It is also clear that whenQ → ∞, with limited helper’s power,

direct cancellation does not lead to any positive transmission rate, and dirty paper coding

is necessary for state cancelation.

Theorem 7.3. For the state-dependent Gaussian broadcast channel in scenario I, suppose
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Q→∞, andP > max{a2P0 +N1, P0 +N2}. If the channel parameters satisfy

a2P0 +N1 +N2 6 P0 +
2

a2
N1, and

N2
1 (1− a2) 6 a4P0(N1 −N2), (7.9)

then, the channel capacity is given byC = 1
2
log(1 + a2P0

N1

). Furthermore, if the channel

parameters satisfy

1

a2
(P0 +N1 +N2) 6 P0 + 2N2, and

P0(N2 −N1) > (a2 − 1)N2
2 , (7.10)

then, the channel capacity is given byC = 1
2
log(1 + P0

N2

).

Proof. When (7.9) is satisfied, by setting̃P = a2P0 + N1 andα = a2P0

a2P0+N1

, the rate

C = 1
2
log(1+ a2P0

N1

) is achieved, which matches with the outer bound. Hence, the capacity

rate is obtained.

Similarly, when (7.10) is satisfied, by setting̃P = P0 + N2 andα = P0

P0+N2

, the rate

C = 1
2
log(1+ P0

N2

) is achieved, which matches the outer bound. Hence, the capacity rate is

obtained.

We note that the two ranges of channel parameters in Theorem 7.3 respectively corre-

spond to the cases with the channel performance bounded by receivers 1 and 2.

7.3 Scenario II: Private Messages

In this section, we study scenario II, in which the transmitter sends two independent mes-

sages to the two receivers, respectively. Without loss of generality, we assume thatN1 >

N2, which implies that in the original broadcast channel without state, receiver 1’s channel

quality is worse than receiver 2. We first derive an outer bound on the capacity region.
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Proposition 7.4. For the state-dependent Gaussian broadcast channel in scenario II with

N1 > N2, an outer bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6 min

{

1

2
log(1 +

P1

P − P1 +N1
),

1

2
log(1 +

a2P0

N1
) +

1

2
log
(

1 +
P0 + 2

√
P0Q+ 1

a2 (P +N1)

Q

)

}

, (7.11a)

R2 6 min

{

1

2
log(1 +

P − P1

N2
),

1

2
log(1 +

P0

N2
) +

1

2
log
(

1 +
P0 + 2

√
P0Q+ P +N2

Q

)

}

, (7.11b)

where0 6 P1 6 P .

The outer bound for each rate consists of two bounds. The firstone is based on the

capacity region of the Gaussian broadcast channel without state. The second one is the best

single-user rate with the helper dedicated to help each receiver, which can be reduced from

the result in [47].

We then derive the following achievable region based on the helper employing the dirty

interference cancellation scheme as for scenario I. Furthermore, superposition coding is

used for broadcasting two messages.

Proposition 7.5. For the state-dependent broadcast channel in scenario II, an inner bound

on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6 I(V ;Y1|U), (7.12a)

R2 6 I(X ;Y2|UV ), (7.12b)

R1 +R2 6 I(X ;Y2|U), (7.12c)

for some distributionPSPU |SPX0|SUPV PX|V , whereI(U ; Yk) > I(U ;S) for k = 1, 2.

Following from Proposition 7.5, we obtain the following achievable rate region for the

Gaussian channel.
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Proposition 7.6. For the state-dependent Gaussian broadcast channel in scenario II with

N1 > N2, an inner bound on the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log

(

1 +
P1

(1+β−α)2a2P00Q

P00+α2Q
+ P − P1 +N1

)

, (7.13a)

R2 6
1

2
log

(

1 +
P − P1

(1+β−α)2P00Q

P00+α2Q
+N2

)

, (7.13b)

R1 +R2 6
1

2
log

(

1 +
P

(1+β−α)2P00Q

P00+α2Q
+N2

)

, (7.13c)

whereP00 + β2Q 6 P0, P00 > 0, 0 6 P1 6 P ,

α2Q
P +N1

a2
+ α2P00Q− 2α(1 + β)P00Q 6 P 2

00, and

α2Q(P +N2 + P00)− 2α(1 + β)P00Q 6 P 2
00.

Proof. The proof follows from Proposition 7.5 by choosing jointly Gaussian distribution

as follows:

U = X00 + αS, X0 = X00 + βS

X = V +X ′, X00 ∼ N (0, P00)

V ∼ N (0, P1), X
′ ∼ N (0, P − P1)

whereX00, V , X ′ andS are independent.

By comparing the outer and inner bounds, we characterize thecapacity region for two

ranges of channel parameters.

Theorem 7.4. For the state-dependent Gaussian broadcast channel in scenario II with

N1 > N2, if P0 > max{P +N2,
P+N1

a2
}, the capacity region consists of rate pairs(R1, R2)
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satisfying:

R1 6
1

2
log

(

1 +
P1

P − P1 +N1

)

, (7.14a)

R2 6
1

2
log

(

1 +
P − P1

N2

)

. (7.14b)

Proof. WhenP0 > max{P + N2,
P+N1

a2
}, by settingα = 1 + β for (7.13a)- (7.13c), the

region in (7.14a) and (7.14b) is achievable which matches the outer bound in Proposition

7.4, and hence is the capacity region.

Similarly to Theorem 7.1, Theorem 7.4 implies that when the helper’s power is larger

than a certain threshold, the state is fully canceled with the assistance of the helper, and the

state power can be arbitrarily large. Thus, the capacity region of the corresponding channel

without state is achieved.

We next study the case with the helper’s power being smaller than a threshold following

similar step in Theorem 7.2.

Theorem 7.5. For the state-dependent Gaussian broadcast channel in scenario II with

N1 > N2, if P0 < max{P +N2,
P+N1

a2
}, and

√

Q 6 max
06P006P0

√

P0 − P00 +
P00

√

max{P+N1

a2 , P +N2} − P00

, (7.15)

the capacity region consists of rate pairs(R1, R2) satisfying:

R1 6
1

2
log(1 +

P1

P − P1 +N1
), (7.16a)

R2 6
1

2
log(1 +

P − P1

N2
). (7.16b)

Proof. When (7.15) is satisfied, by settingα = 1 + β for (7.13a)- (7.13c), the region in

(7.16a) and (7.16b) is achieved, which matches the outer bound in Proposition 7.4. Hence,

the capacity region is obtained.

Theorem 7.5 implies that if the helper’s power is not large enough, only the state with
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limited power can be fully cancelled to result in the capacity region of the corresponding

broadcast channel without state. Nevertheless, such statepower can still be larger than the

helper’s power demonstrating necessity of using dirty paper coding. One example of such

channel parameters is given bymax{P +N2,
P+N1

a2
} = 7.5, P0 = 5, andQ = 9.
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CHAPTER 8

CONCLUSION

In this thesis, we studied the state-dependent interference channels in two classes. One

class of models, including the state-dependent interference channel and the state-dependent

cognitive interference channel, capture the scenarios that the state cancellation and the mes-

sage transmission are performed by the same node. The other class of models, including the

state-dependent single-user channel with a helper, the state-dependent parallel channel with

a common helper, the state-dependent MAC with a helper, and the state-dependent broad-

cast channel with a helper, capture the scenarios that the state cancellation is performed by

a separate helper. For each channel model, we derived the inner and outer bounds on the

capacity region, and characterized the capacity partially/fully for various channel parame-

ters. In particular, for the second class of models, our results demonstrate that the capacity

region is not only bounded by the transmitter’s power, but also by the helper’s power. This

suggests that the state cannot always be perfectly cancelled.

This thesis demonstrates that interference in wireless networks can be effectively can-

celed by its source node via dirty interference cancelation. Thus, users can transmit simul-

taneously as well as enjoy low or no interference transmission environments. In this way,

dirty interference cancelation is very promising to substantially improve the performance

of wireless networks. Future work can be focused on three aspects:
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1. For the MAC and broadcast channel, we derived inner and outer bounds, and char-

acterized capacity region for channel with various channelparameters. In particular,

the outer bound is only tight for the regimes that the state can be perfectly cancelled,

and fail to characterize the relationship among the capacity region, the helper’s power

and the state power. In the future, we will develop more sophisticated outer bounds,

and study how does the helper and the state power influence thechannel capacity.

2. Since dirty interference cancelation provide a new technique that enables simultane-

ous transmission, it is also interesting to compare our dirty interference cancellation

scheme with the conventional interference management techniques based on the or-

thogonality idea. We will compare the achievable region in the model consisting of

a base station and a D2D transmitter, sending two messages totheir corresponding

receivers. The base station has high transmission power andinterferes the D2D re-

ceiver. We assume that the cellular and D2D transmissions donot share codebooks

and hence Han-Kobayashi rate splitting cannot be applied. For such a model, we

compare the performance of two schemes: dirty interferencecancellation and the

orthogonalized transmission via time sharing.

3. Since D2D communications can be diversified, and can include multi-access trans-

missions and broadcast transmissions, we will also extend the model to include mul-

tiple D2D user pairs with more complex structures. For such ascenario, we will

compare the sum rate over the cellular receiver and the D2D receivers for the two

schemes: dirty interference cancellation, and time sharing scheme. In particular, the

sum rate depends on the locations of the D2D receivers from the base station. We

will assume that the D2D receivers are located uniformly andindependently over a

certain range, and derive average sum rates for the two schemes. Comparison of the

two schemes will provide us the gain that dirty interferencecancelation yields on

average.
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APPENDIX A

PROOF FOR CHAPTER 2

A.1 Proof of Proposition 2.1

We use random codes and fix the following joint distribution:

PSUX1V X2Y1Y2
= PSPU |SPX1|USPV |SPX2|V SPY1Y2|X1X2S.

Let T n
ǫ (PSUX1V X2Y1Y2

) denote the strongly jointǫ-typical set based on the above distribu-

tion.

Code Construction:

1. Generate2n(R1+R′
1
) codewordsUn(w1, l1) with i.i.d. components based onPU . Index

these codewords byw1 = 1,· · · , 2nR1 . l1 = 1, 2,· · · , 2nR′
1 .

2. Generate2n(R2+R′
2
) codewordsV n(w2, l2) with i.i.d. components based onPV . Index

these codewords byw2 = 1,· · · , 2nR2 . l2 = 1, 2,· · · , 2nR′
2 .

Encoding:

1. Encoder 1: Givenw1, andsn, selectun(w1, l̃1) such that

(un(w1, l̃1), s
n) ∈ T n

ǫ (PUS).
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Otherwise, set̃l1 = 1. It can be shown that for largen, suchun exists with high

probability if

R′
1 > I(U ;S). (A.1)

Given selectedun(w1, l̃1) andsn, generatexn
1 with i.i.d. components based onPX1|US

for transmission.

2. Encoder 2: Givenw2, andsn, selectvn(w2, l̃2) such that

(vn(w2, l̃2), s
n) ∈ T n

ǫ (PV S).

Otherwise, set̃l2 = 1. It can be shown that for largen, suchvn exists with high

probability if

R′
2 > I(V ;S). (A.2)

Given selectedvn(w2, l̃2) andsn, generatexn
2 with i.i.d. components based onPX2|V S

for transmission.

Decoding:

1. Decoder 1: Givenyn1 , find the unique pair(ŵ2, l̂2) such that

(vn(ŵ2, l̂2), y
n
1 ) ∈ T n

ǫ (PV Y1
).

If no or more than one such pairs(ŵ2, l̂2) can be found, then declare error. One can

show that for sufficiently largen, decoding is correct with high probability if

R2 +R′
2 6 I(V ; Y1). (A.3)

After successfully decodingvn, find the unique pair(ŵ1, l̂1) such that
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(vn(ŵ2, l̂2), u
n(ŵ1, l̂1), y

n
1 ) ∈ T n

ǫ (PV UY1
).

If no or more than one such pairs with differentw1 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R1 +R′
1 6 I(U ;V Y1). (A.4)

2. Decoder 2: Givenyn2 , find the unique pair(ŵ1, l̂1) such that

(un(ŵ1, l̂1), y
n
2 ) ∈ T n

ǫ (PUY2
).

If no or more than one such pairs(ŵ1, l̂1) can be found, then declare error. One can

show that for sufficiently largen, decoding is correct with high probability if

R1 +R′
1 6 I(U ; Y2). (A.5)

After successfully decodingun, find the unique pair(ŵ2, l̂2) such that

(un(ŵ1, l̂1), v
n(ŵ2, l̂2), y

n
2 ) ∈ T n

ǫ (PUV Y2
).

If no or more than one such pairs with differentw2 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R2 +R′
2 6 I(V ;UY2). (A.6)
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Proposition 2.1 is thus proved by combining (A.1)-(A.6).

A.2 Proof of Proposition 2.2

The coding scheme for the very strong Z-IC is similar to that for the regular IC. More

specifically, codebook generation, encoding and decoding for decoder 1 are the same as

those in Appendix A.1. We next describe decoding for decoder2 as follows.

Decoding for decoder 2:

Givenyn2 , find the unique pair(ŵ2, l̂2) such that

(vn(ŵ2, l̂2), y
n
2 ) ∈ T n

ǫ (PV Y2
).

If no or more than one such pairs with differentw2 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability if

R2 +R′
2 6 I(V ; Y2).

If I(V ; Y2) 6 I(V ; Y1), then the boundR2 + R′
2 6 I(V ; Y1) obtained in decoding for

decoder 1 (see (A.3)) is redundant. Hence, the corresponding achievable region is as given

in Proposition 2.2.

A.3 Proof of Proposition 2.3

The achievable scheme applies rate splitting, superposition and Gel’fand-Pinsker binning.

In particular, we split the messageW1 into two componentsW11 andW12, and splitW2

into two componentsW21 andW22. We use random codes and fix the following joint
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distribution:

PSU1U2X1V1V2X2Y1Y2
= PSPU1U2|SPX1|U1U2SPV1V2|SPX2|V1V2SPY1Y2|X1X2S.

Code Construction:

1. Generate2n(R11+R′
11
) codewordsUn

1 (w11, l11) with i.i.d. components based onPU1
.

Index these codewords byw11 = 1,· · · , 2nR11 , l11 = 1, 2,· · · , 2nR′
11.

2. For eachun
1(w11, l11), generate2n(R12+R′

12
) codewordsUn

2 (w11, l11, w12, l12)with i.i.d.

components based onPU2|U1
. Index these codewords byw12 = 1,· · · , 2nR12, l12 =

1, 2,· · · , 2nR′
12 .

3. Generate2n(R21+R′
21
) codewordsV n

1 (w21, l21) with i.i.d. components based onPV1
.

Index these codewords byw21 = 1,· · · , 2nR21 , l21 = 1, 2,· · · , 2nR′
21.

4. For eachvn1 (w21, l21), generate2n(R22+R′
22
) codewordsV n

2 (w21, l21, w22, l22) with i.i.d.

components based onPV2|V1
, Index these codewords byw22 = 1,· · · , 2nR22 , l22 =

1, 2,· · · , 2nR′
22 .

Encoding:

1. Encoder 1: Givenw11, andsn, selectun
1 (w11, l̃11) such that

(un
1(w11, l̃11), s

n) ∈ T n
ǫ (PU1S).

Otherwise, set̃l11 = 1. It can be shown that for largen, suchun
1 exists with high

probability if

R′
11 > I(U1;S). (A.7)

Givenw12, w11, l̃11, andsn, selectun
2(w11, l̃11, w12, l̃12) such that

(un
2(w11, l̃11, w12, l̃12), u

n
1(w11, l̃11), s

n) ∈ T n
ǫ (PU2SU1

).
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Otherwise, set̃l12 = 1. It can be shown that for largen, suchun
2 exists with high

probability if

R′
12 > I(U2;S|U1). (A.8)

Givenun
1 (w11, l̃11), un

2(w11, l̃11, w12, l̃12), andsn, generatexn
1 with i.i.d. components

based onPX1|U1U2S for transmission.

2. Encoder 2: Givenw21, andsn, selectvn1 (w21, l̃21) such that

(vn1 (w21, l̃21), s
n) ∈ T n

ǫ (PV1S).

Otherwise, set̃l21 = 1. It can be shown that for largen, suchvn1 exists with high

probability if

R′
21 > I(V1;S). (A.9)

Givenw22, w21, l̃21 andsn, selectvn2 (w21, l̃21, w22, l̃22) such that

(vn2 (w21, l̃21, w22, l̃22), v
n
1 (w21, l̃21), s

n) ∈ T n
ǫ (PV2SV1

).

Otherwise, set̃l22 = 1. It can be shown that for largen, suchvn2 exists with high

probability if

R′
22 > I(V2;S|V1). (A.10)

Given vn1 (w21, l̃21), vn2 (w21, l̃21, w22, l̃22) andsn, generatexn
2 with i.i.d. components

based onPX2|V1V2S for transmission.

Decoding:

1. Decoder 1: Givenyn1 , find the unique pair(ŵ11, l̂11) such that

(un
1 (ŵ11, l̂11), y

n
1 ) ∈ T n

ǫ (PU1Y1
).
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If no or more than one such pairs with differentw11 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R11 +R′
11 6 I(U1; Y1).

After successfully decodingun
1 , find the unique tuple(ŵ21, l̂21, ŵ22, l̂22) such that

(vn1 (ŵ21, l̂21),v
n
2 (ŵ21, l̂21, ŵ22, l̂22), u

n
1(ŵ11, l̂11), y

n
1 )

∈ T n
ǫ (PV1V2U1Y1

).

If no or more than one such tuples with different rate pairs(w21, w22) can be found,

then declare error. One can show that for sufficiently largen, decoding is correct

with high probability if

R21 +R′
21 6 I(V1;U1Y1)

R22 +R′
22 6 I(V2;U1Y1|V1)

After successfully decodingun
1 , vn1 andvn2 , we find the unique pair(ŵ12, l̂12) such

that

(un
2(ŵ11, l̂11, ŵ12, l̂12), v

n
1 (ŵ21, l̂21),v

n
2 (ŵ21, l̂21, ŵ22, l̂22), u

n
1(ŵ11, l̂11), y

n
1 )

∈ T n
ǫ (PU2U1V1V2Y1

).

If no or more than one such pair with differentw12 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability



129

if

R12 +R′
12 6 I(U2;V1V2Y1|U1) (A.11)

2. Decoder 2: Givenyn2 , find the unique pair(ŵ21, l̂21) such that

(vn1 (ŵ21, l̂21), y
n
2 ) ∈ T n

ǫ (PV1Y2
).

If no or more than one such pairs with differentw21 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R21 +R′
21 6 I(V1; Y2).

After successfully decodingvn1 , find the unique tuple(ŵ11, l̂11, ŵ12, l̂12) such that

(un
1(ŵ11, l̂11), u

n
2(ŵ11, l̂11, ŵ12, l̂12), v

n
1 (ŵ21, l̂21), y

n
2 ) ∈ T n

ǫ (PU1U2V1Y2
).

If no or more than one such tuples with different rate pair(w11, w12) can be found,

then declare error. One can show that for sufficiently largen, decoding is correct

with high probability if

R11 +R′
11 6 I(U1;V1Y2)

R12 +R′
12 6 I(U2;V1Y2|U1)

After successfully decodingvn1 , un
1 andun

2 , we find the unique pair(ŵ22, l̂22) such
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that

(vn2 (ŵ21, l̂21, ŵ22, l̂22), u
n
1(ŵ11, l̂11),u

n
2(ŵ11, l̂11, ŵ12, l̂12), v

n
1 (ŵ21, l̂21), y

n
2 )

∈ T n
ǫ (PV2V1U1U2Y2

).

If no or more than one such pair with differentw22 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R22 +R′
22 6 I(V2;U1U2Y2|V1) (A.12)

The corresponding achievable region is thus characterizedby

R11 6 min{I(U1; Y1), I(U1;V1Y2)} − I(U1;S)

R12 6 min{I(U2;V1V2Y1|U1), I(U2;V1Y2|U1)} − I(U2;S|U1)

R21 6 min{I(V1; Y2), I(V1;U1Y1)} − I(V1;S)

R22 6 min{I(V2;U1U2Y2|V1), I(V2;U1Y1|V1)} − I(V2;S|V1)

Proposition 6.2 follows by settingR1 = R11 +R12 andR2 = R21 +R22, and applying

Fourier-Motzkin elimination to the above region.

A.4 Proof of Proposition 2.4

The coding scheme for the strong Z-IC is similar to that for the regular IC. More specifi-

cally, codebook generation and encoding for the strong Z-ICare the same as those for the

regular IC provided in Appendix A.3. We next describe decoding as follows.

Decoding:
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1. Decoder 1: Givenyn1 , find the unique pair(ŵ21, l̂21) such that

(vn1 (ŵ21, l̂21), y
n
1 ) ∈ T n

ǫ (PV1Y1
).

If no or more than one such pairs with differentw21 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R21 +R′
21 6 I(V1; Y1).

After successfully decodingvn1 , find the unique pair(ŵ11, l̂11) such that

(vn1 (ŵ21, l̂21), u
n
1(ŵ11, l̂11), y

n
1 ) ∈ T n

ǫ (PV1U1Y1
).

If no or more than one such rate pairs with differentw11 can be found, then declare

error. One can show that for sufficiently largen, decoding is correct with high prob-

ability if

R11 +R′
11 6 I(U1;V1Y1).

After successfully decodingun
1 andvn1 we find the unique pair(ŵ22, l̂22) such that

(vn2 (ŵ21, l̂21, ŵ22, l̂22),v
n
1 (ŵ21, l̂21), u

n
1(ŵ11, l̂11), y

n
1 )

∈ T n
ǫ (PU1V1V2Y1

).

If no or more than one such pairs with differentw22 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability
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if

R22 +R′
22 6 I(V2;U1Y1|V1) (A.13)

After successfully decodingun
1 , vn1 andvn2 , we find the unique pair(ŵ12, l̂12) such

that

(un
2(ŵ11, l̂11, ŵ12, l̂12), v

n
1 (ŵ21, l̂21),v

n
2 (ŵ21, l̂21, ŵ22, l̂22), u

n
1(ŵ11, l̂11), y

n
1 )

∈ T n
ǫ (PU2U1V1V2Y1

).

If no or more than one such pairs with differentw12 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R12 +R′
12 6 I(U2;V1V2Y1|U1). (A.14)

2. Decoder 2: Givenyn2 , find the unique pair(ŵ21, l̂21) such that

(vn1 (ŵ21, l̂21), y
n
2 ) ∈ T n

ǫ (PV1Y2
).

If no or more than one such pairs with differentw21 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R21 +R′
21 6 I(V1; Y2).
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After successfully decodingvn1 , find the unique pair(ŵ22, l̂22) such that

(vn2 (ŵ21, l̂21, ŵ22, l̂22), v
n
1 (ŵ21, l̂21), y

n
2 ) ∈ T n

ǫ (PV2V1Y2
).

If no or more than one such pairs with differentw22 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability

if

R22 +R′
22 6 I(V2; Y2|V1). (A.15)

The corresponding achievable region is thus characterizedby

R11 6 I(U1; Y1V1)− I(U1;S)

R12 6 I(U2;V1V2Y1|U1)− I(U2;S|U1)

R21 6 min{I(V1; Y2), I(V1; Y1)} − I(V1;S)

R22 6 min{I(V2; Y2|V1), I(V2;U1Y1|V1)} − I(V2;S|V1).

Proposition 2.4 then follows by settingR1 = R11 + R12 andR2 = R21 + R22, and

applying Fourier-Motzkin elimination to the above region.

A.5 Proof of Proposition 2.5

AssumeP ′
1B′ , P ′′

1B′ , P ′
2B′ andP ′′

2B′ are power allocation parameters corresponding to the

given pointB′ under which the conditions in (2.24a) and (2.24b) are satisfied. In order to

prove that the pointB is also achievable, we design the following coding scheme. We split

W1 intoW11 andW12, and splitW2 intoW21 andW22. We then encode the messagesW11,

W12, W21 andW22 into auxiliary random variablesU1, U2, V1, andV2, respectively. Then

receiver 1 decodes in the order ofV1, V2, U1 andU2, and receiver 2 decodes in the order of
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V1 andV2. It can be shown that(R1, R2) is achievable if it satisfies

R1 6 I(U1; Y1V1V2) + I(U2;V1V2Y1|U1)− I(U1, U2;S)

R2 6 min{I(V1; Y2), I(V1; Y1)}

+min{I(V2; Y2|V1), I(V2; Y1|V1)} − I(V1V2;S) (A.16)

for some distributionPSU1U2V1V2X2X1Y2Y1
= PSPU1U2|SPV1V2|SPX1|U1U2SPX2|V1V2SPY1|SX1X2

PY2|SX2
. We now compute (A.16) by setting the auxiliary random variables as in (2.19),

with the power allocationsP ′
1B′ , P ′′

1B′ , P ′
2B′ andP ′′

2B′ for X ′
1, X

′′
1 , X ′

2 andX ′′
2 in U1, U2,

V1 andV2, respectively. It can be verified that due to (2.24a) and (2.24b) that the power

allocation parameters satisfy, the two mutual informationtermsI(V1; Y2) andI(V2; Y2|V1)

in R2 become redundant. It can then be verified that the rate pair corresponding to the point

B satisfies the resulting (A.16), and is hence achievable. Thus, the lineB−B′ is achievable

by time sharing.

A.6 Proof of Corollary 2.2

It is sufficient to show that the pointB′ satisfies Theorem 2.4, i.e., it is on the capacity

region boundary. Then following Proposition 2.5, the lineB−B′ is on the capacity region

boundary. It can be verified that the pointB′ is characterized by (2.17) by settingP ′
2 = 0,

P ′′
2 = P2, P ′′

1 to satisfy

1 +
a2P2

P ′′
1 + 1

6
a2P2(P2 + b2Q + 1)

P2Q(ab− β)2 + a2P2 + β2Q
, (A.17)

andP ′
1 = P1−P ′′

1 . Then it can be verified that the condition (2.24a) and (2.24b) in Theorem

2.4 are satisfied by the pointB′.
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A.7 Proof of Theorem 2.5

Similarly to [4], [5] and [6], to achieve the sum capacity forthe state-dependent Gaus-

sian IC, we apply dirty paper coding forX1 treatingaX2 + N1 as noise and apply dirty

paper coding forX2 treatingbX1 + N1 as noise. Thus, the point(R1, R2) = (1
2
log(1 +

P1

a2P2+1
), 1

2
log(1 + P2

b2P1+1
)) can be achieved.

For the outer bound, applying Fano’s inequality, we have

nR1 6 I(W1; Y
n
1 ) + nǫn

6 I(W1; Y
n
1 S

n) + nǫn

= I(W1; Y
n
1 |Sn) + nǫn

6 I(W1X
n
1 ; Y

n
1 |Sn) + nǫn

= I(Xn
1 ; Y

n
1 |Sn) + I(W1; Y

n
1 |SnXn

1 ) + nǫn

= I(Xn
1 ; Y

n
1 |Sn) + nǫn

= I(Xn
1 ;X

n
1 + aXn

2 + Sn +Nn
1 |Sn) + nǫn

= I(Xn
1 ;X

n
1 + aXn

2 +Nn
1 |Sn) + nǫn

=
∑

sn

p(Sn = sn)I(Xn
1 ;X

n
1 + aXn

2 +Nn
1 |Sn = sn) + nǫn. (A.18)

Similarly, we have

nR2 6
∑

sn

p(Sn = sn)I(Xn
2 ; bX

n
1 +Xn

2 +Nn
2 |Sn = sn) + nǫn. (A.19)
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Combining (A.18) and (A.19), we obtain

n(R1 +R2)

6
∑

sn

p(Sn = sn) max
PXn

1
|SnPXn

2
|Sn

[I(Xn
1 ;X

n
1 + aXn

2 +Nn
1 |Sn = sn)

+ I(Xn
2 ; bX

n
1 +Xn

2 +Nn
2 |Sn = sn)] + 2nǫn

=
∑

sn

p(Sn = sn) max
PXn

1
PXn

2

[I(Xn
1 ;X

n
1 + aXn

2 +Nn
1 ) + I(Xn

2 ; bX
n
1 +Xn

2 +Nn
2 )] + 2nǫn

= max
PXn

1
PXn

2

[I(Xn
1 ;X

n
1 + aXn

2 +Nn
1 ) + I(Xn

2 ; bX
n
1 +Xn

2 +Nn
2 )] + 2nǫn.

If |a(1 + b2P1)| + |b(1 + a2P2)| 6 1, following the results in [5, Section IV.C], we

further obtain

R1 +R2 6
1

2
log

(

1 +
P1

a2P2 + 1

)

+
1

2
log

(

1 +
P2

b2P1 + 1

)

+ 2ǫn.

Hence, the rate point(R1, R2) = (1
2
log(1 + P1

a2P2+1
), 1

2
log(1 + P2

b2P1+1
)) is sum-rate

optimal. Thus, the sum capacity is obtained.
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APPENDIX B

PROOF FOR CHAPTER 3

B.1 Proof of the Outer Bound (3.8a)-(3.8d)

Consider a(2nR1, 2nR2, n) code with an average error probabilityP (n)
e . The probability

distribution onW1 ×W2 × Sn × X n
1 × X n

2 ×Yn
1 × Yn

2 is given by

PW1W2SnXn
1
Xn

2
Y n
1
Y n
2
= PW1

PW2

[

n
∏

i=1

PSi

]

PXn
1
|W1

PXn
2
|W1W2Sn

n
∏

i=1

PY1iY2i|X1iX2iSi
.

By Fano’s inequality, we have

H(W1|Y n
1 ) 6 nR1P

(n)
e + 1 = nδ1n

H(W1W2|SnY n
2 ) 6 n(R1 +R2)P

(n)
e + 1 = nδ2n (B.1)

whereδ1n, δ2n → 0 asn → +∞. Let δn = δ1n + δ2n, which also satisfies thatδn → 0 as

n→ +∞.
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We define the following auxiliary random variables:

Ki = (W1, S
n
i+1, X

n
1 , Y

i−1
1 )

Ti = Y n
2(i+1) (B.2)

which satisfies the Markov chain condition:

KiTi ↔ X1iX2iSi ↔ Y1iY2i (B.3)

for i = 1,· · · , n.

We first boundR1 based on the Fano’s inequality as follows:

nR1 6 I(W1; Y
n
1 ) + nδn

(a)
=

n
∑

i=1

[I(W1S
n
i+1; Y

i
1 )− I(W1S

n
i ; Y

i−1
1 )] + nδn

(b)
=

n
∑

i=1

[I(W1S
n
i+1; Y

i−1
1 ) + I(W1S

n
i+1; Y1i|Y i−1

1 )

− I(W1S
n
i+1; Y

i−1
1 )− I(Si; Y

i−1
1 |W1S

n
i+1)] + nδn

=
n
∑

i=1

[I(W1S
n
i+1; Y1i|Y i−1

1 )− I(Si; Y
i−1
1 |W1S

n
i+1)] + nδn

=

n
∑

i=1

[H(Y1i|Y i−1
1 )−H(Y1i|W1S

n
i+1Y

i−1
1 )

−H(Si|W1S
n
i+1) +H(Si|W1S

n
i+1Y

i−1
1 )] + nδn

(c)

6

n
∑

i=1

[H(Y1i)−H(Y1i|W1S
n
i+1Y

i−1
1 Xn

1 )− (H(Si|X1i)

+H(Si|W1S
n
i+1Y

i−1
1 Xn

1 ))] + nδn

(d)

6

n
∑

i=1

[I(KiX1i; Y1i)− I(Ki;Si|X1i)] + nδn (B.4)

where(a) follows due to cancellation of the terms in the sum, and the fact thatY 0
1 = φ, (b)
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follows from the chain rule of mutual information,(c) follows becauseXn
1 is a function of

W1, and(d) follows from the definition ofKi. The single letter characterization follows

standard steps and is hence omitted.

We next boundR2 as follows:

nR2

(a)

6 I(W2; Y
n
2 S

n) + nδn

6 I(W2; Y
n
2 S

nW1) + nδn

(b

6 I(W2; Y
n
2 |W1S

n) + nδn

=
n
∑

i=1

I(W2; Y2i|Y n
2(i+1)S

nW1X
n
1 ) + nδn

(c)

6

n
∑

i=1

[H(Y2i|SiX1i)−H(Y2i|W2Y
n
2(i+1)S

nW1X
n
1X2i)] + nδn

(d)

6

n
∑

i=1

[H(Y2i|SiX1i)−H(Y2i|SiX1iX2i)] + nδn

=
n
∑

i=1

I(X2i; Y2i|SiX1i) + nδn. (B.5)

where(a) follows from Fano’s inequality (B.1),(b) follows from chain rule and the fact

thatW2 and(W1, S
n) are independent,(c) follows because conditioning does not increase

entropy, and(d) follows from the Markov chainKiTi ↔ X1iX2iSi ↔ Y1iY2i.

We further boundR1 +R2 based on Fano’s inequality as follows:

n(R1 +R2)

6 I(W1W2; Y
n
2 S

n) + nδn

=
n
∑

i=1

I(W2W1; Y2i|Y n
2(i+1)S

n) + nδn

(a)

6

n
∑

i=1

[H(Y2i|Si)−H(Y2i|W2Y
n
2(i+1)S

nW1X1iX2i)] + nδn

(b)

6

n
∑

i=1

[H(Y2i|Si)−H(Y2i|SiX1iX2i)] + nδn
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=

n
∑

i=1

I(X1iX2i; Y2i|Si) + nδn. (B.6)

where(a) follows because conditioning does not increase entropy, and (b) follows because

Y2i is independent of other variables givenX1i, X2i andSi.

We introduce a lemma which is useful in the proof.

Lemma B.1. : [53, Lemma 7] For a set of random variables(T, Y1 . . . , Yn, Z1, . . . , Zn),

n
∑

i=1

I(Yi;Z
i−1|TY n

i+1) =

n
∑

i=1

I(Y n
i+1;Zi|TZ i−1). (B.7)

We proceed to derive an alternative bound onR1 +R2 as follows:

n(R1 +R2) 6 I(W1; Y
n
1 ) + I(W2; Y

n
2 S

n) + nδn

(a)

6 I(W1; Y
n
1 ) + I(W2; Y

n
2 S

n|W1) + nδn (B.8)

where(a) follows becauseW1 andW2 are independent.

The first term in (B.8) can be bounded as follows:

I(W1; Y
n
1 ) =

n
∑

i=1

I(W1; Y1i|Y i−1
1 )

(a)

6

n
∑

i=1

I(W1Y
i−1
1 ; Y1i)

(b)
=

n
∑

i=1

[I(W1Y
i−1
1 Sn

i+1Y
n
2(i+1); Y1i)− I(Sn

i+1Y
n
2(i+1); Y1i|W1Y

i−1
1 )]

(c)
=

n
∑

i=1

[I(W1Y
i−1
1 Sn

i+1Y
n
2(i+1); Y1i)− I(SiY2i; Y

i−1
1 |W1S

n
i+1Y

n
2(i+1))]

(d)
=

n
∑

i=1

[I(W1Y
i−1
1 Sn

i+1Y
n
2(i+1); Y1i)− I(SiY2i; Y

i−1
1 W1S

n
i+1Y

n
2(i+1))

+ I(W1S
n
i+1Y

n
2(i+1);SiY2i)]
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(e)
=

n
∑

i=1

[I(W1Y
i−1
1 Sn

i+1Y
n
2(i+1); Y1i)− I(Si; Y

i−1
1 W1S

n
i+1Y

n
2(i+1))

+ I(W1S
n
i+1Y

n
2(i+1);SiY2i)− I(Y2i; Y

i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)]

(f)
=

n
∑

i=1

[I(TiKiX1i; Y1i)− I(TiKiX1i;Si)

+ I(W1S
n
i+1Y

n
2(i+1);SiY2i)− I(Y2i; Y

i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)] (B.9)

where(a) follows from chain rule and the fact that mutual informationis nonnegative,(b)

follows from chain rule,(c) follows from Lemma B.1,(d) and(e) follows from chain rule,

and(f) follows from the definition forTi andKi.

We next consider the last two terms in (B.9) together with thesecond term in (B.8) as

follows:

I(W2; Y
n
2 S

n|W1) +
n
∑

i=1

[

I(W1S
n
i+1Y

n
2(i+1);SiY2i)− I(Y2i; Y

i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)

]

(a)
=

n
∑

i=1

[

I(W2; Y2iSi|W1S
n
i+1Y

n
2(i+1)) + I(W1S

n
i+1Y

n
2(i+1);SiY2i)

− I(Y2i; Y
i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)

]

(b)
=

n
∑

i=1

[I(W1W2S
n
i+1Y

n
2(i+1);SiY2i) + I(Si−1;SiY2i|W1W2S

n
i+1Y

n
2(i+1))

− I(Sn
i+1Y

n
2(i+1);Si|W1W2S

i−1)− I(Y2i; Y
i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)]

(c)
=

n
∑

i=1

[I(W1W2S
n
i+1S

i−1Y n
2(i+1);SiY2i)− I(Sn

i+1Y
n
2(i+1);Si|W1W2S

i−1)

− I(Y2i; Y
i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)]

(d)
=

n
∑

i=1

[I(W1W2S
n
i+1S

i−1Y n
2(i+1);SiY2i)− I(Sn

i+1Y
n
2(i+1)W1W2S

i−1;Si)

− I(Y2i; Y
i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)]

(e)
=

n
∑

i=1

[

I(W1W2S
n
i+1S

i−1Y n
2(i+1); Y2i|Si)− I(Y2i; Y

i−1
1 W1S

n
i+1Y

n
2(i+1)|Si)

]
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(f)

6

n
∑

i=1

[

H(Y2i|SiY
i−1
1 W1X

n
1 S

n
i+1Y

n
2(i+1))−H(Y2i|SiY

i−1
1 W1X

n
1W2S

n
i+1S

i−1Y n
2(i+1)X2i)

]

(g)

6

n
∑

i=1

[

H(Y2i|SiY
i−1
1 W1X

n
1 S

n
i+1Y

n
2(i+1))−H(Y2i|SiY

i−1
1 W1X

n
1 S

n
i+1Y

n
2(i+1)X2i)

]

(h)
=

n
∑

i=1

I(X2i; Y2i|X1iTiKiSi) (B.10)

where(a) follows from chain rule,(b) follows from chain rule to combine the first two

terms in the previous step and Lemma B.1,(c) follows from chain rule,(d) follows from

chain rule and becauseW1, W2 andSi−1 are independent fromSi, (e) follows from chain

rule, (f) follows becauseXn
1 is a function ofW1 and conditioning does not increase en-

tropy,(g) follows becauseY2i is independent of other variables givenX1i, X2i andSi, and

(h) follows from the definition ofTi andKi.

Therefore, substituting (B.9) and (B.10) into (B.8), we obtain

n(R1 +R2) 6

n
∑

i=1

[I(TiKiX1i; Y1i)− I(TiKi;Si|X1i)

+ I(X2i; Y2i|X1iTiKiSi)] + nδn. (B.11)

B.2 Proof of the Converse for Theorem 3.2

For the Gaussian channel, if|a| 6 1, it satisfies the condition (3.2). For these channels, we

first prove the following bounds.

nR1 6

n
∑

i=1

[I(UiX1i; Y1i)− I(Ui;Si|X1i)] + nδn (B.12a)

nR2 6

n
∑

i=1

I(X2i; Y2i|UiX1iSi) + nδn (B.12b)

n(R1 +R2) 6
n
∑

i=1

I(X1iX2i; Y2i|Si) + nδn (B.12c)

The bound (B.12a) follows from (B.4) by settingUi = Ki = (W1S
n
i+1X

n
1 Y

i−1
1 ) for
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i = 1, . . . , n. The bound (B.12c) follows from (B.6).

We then boundR2 as follows and obtain (B.12b):

nR2 =I(W2; Y
n
2 S

n) + nδn

(a)

6I(W2; Y
n
2 S

n|W1) + nδn

(b)
=I(W2; Y

n
2 |W1S

n) + nδn

=

n
∑

i=1

I(W2; Y2i|W1S
nY i−1

2 ) + nδn

=

n
∑

i=1

[H(Y2i|W1S
nY i−1

2 )−H(Y2i|W1W2S
nY i−1

2 )] + nδn

(c)
=

n
∑

i=1

[H(Y2i|W1S
nXn

1 Y
i−1
1 Y i−1

2 )−H(Y2i|W1W2S
nY i−1

2 Xn
1 Y

i−1
1 )] + nδn

(d)

6

n
∑

i=1

[H(Y2i|W1S
n
i+1X

n
1 Y

i−1
1 Si)−H(Y2i|W1S

n
i+1SiX

n
1 Y

i−1
1 X2i)] + nδn

(e)

6

n
∑

i=1

[H(Y2i|SiX1iUi)−H(Y2i|SiX1iUiX2i)] + nδn

6

n
∑

i=1

I(X2i; Y2i|UiX1iSi) + nδn (B.13)

where(a) follows becauseW1 andW2 are independent,(b) follows becauseW2 andS are

independent,(c) follows from the degradedness condition (3.2) so thatXn
1 andY i−1

1 can

be added into the conditioning,(d) follows from the fact that givenX1i, X2i, andSi, Y2i is

independent of all other variables, and(e) follows from the definition ofUi.

We further derive the bounds (B.12a)-(B.12c) for Gaussian channels. We first consider
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the bound onR1 as follows:

R1 6
1

n

n
∑

i=1

[I(X1iUi; Y1i)− I(Ui;Si|X1i)]

=
1

n

n
∑

i=1

[h(Y1i)− h(Y1i|X1iUi)− h(Si|X1i) + h(Si|X1iUi)]

(a)
=

1

n

n
∑

i=1

[h(Y1i)− h(Y1i|X1iUiSi)− I(Si; Y1i|X1iUi)− h(Si|X1i) + h(Si|X1iUi)]

=
1

n

n
∑

i=1

[h(Y1i)− h(Y1i|X1iUiSi)− h(Si|X1i) + h(Si|X1iUiY1i)]

(b)

6
1

n

n
∑

i=1

[h(Y1i)− h(Y1i|X1iUiSi)− h(Si) + h(Si|X1iY1i)] (B.14)

where(a) follows because addition of the second and third terms equals the second term

in the previous step, and(b) follows becauseSi andX1i are independent and conditioning

does not increase entropy.

We then derive bound for each term in (B.14) respectively as follows. The first term in

(B.14) can be derived as:

1

n

n
∑

i=1

h(Y1i)

(a)

6
1

2n

n
∑

i=1

log 2πe(E(X1i + aX2i + Si +Ni)
2)

6
1

2n

n
∑

i=1

log 2πe

(

E[X2
1i] + 2aE(X1iX2i) + a2E[X2

2i]

+ 2aE(X2iSi) + E[S2
i ] + E[N2

i ])

)

(b)

6
1

2
log 2πe









1

n

n
∑

i=1

E[X2
1i] +

2a

n

n
∑

i=1

E(X1iX2i) +
a2

n

n
∑

i=1

E[X2
2i]



145

+
2a

n

n
∑

i=1

E(X2iSi) +
1

n

n
∑

i=1

E[S2
i ] +

1

n

n
∑

i=1

E[N2
i ])









(c)

6
1

2
log 2πe









P1 + a2P2 +Q+ 1 +
2a

n

n
∑

i=1

E(X1iX2i) +
2a

n

n
∑

i=1

E(X2iSi)









6
1

2
log 2πe

(

P1 + a2P2 +Q + 1 + 2aρ21
√

P1P2 + 2aρ2s
√

P2Q

)

(B.15)

whereρ21 =
1

n

∑
n

i=1
E(X1iX2i)√
P1P2

andρ2s =
1

n

∑
n

i=1
E(X2iSi)√
P2Q

. In the above derivation,(a) follows

from the fact that the Gaussian distribution maximizes the entropy given the variance of the

random variable,(b) follows from the concavity of the logarithm function and Jensen’s

inequality, and(c) follows from the power constraints.

We next quantify the term1
n

∑n

i=1 h(Y1i|X1iUiSi) via its upper and lower bounds. We

first have

1

n

n
∑

i=1

h(Y1i|X1iX2iSi)

(a)

6
1

n

n
∑

i=1

h(Y1i|X1iUiSi) 6
1

n

n
∑

i=1

h(Y1i|X1iSi) (B.16)

where(a) follows because conditioning does not increase entropy andgivenX1i, X2i, and

Si, Y1i is independent of all other variables.

For the left-hand side, we have

1

n

n
∑

i=1

h(Y1i|X1iX2iSi) =
1

2
log 2πe. (B.17)
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For the right-hand side, by settingα = aρ21

√

P2

P1

andβ = aρ2S

√

P2

Q
, we have

1

n

n
∑

i=1

h(Y1i|X1iSi)

=
1

n

n
∑

i=1

h(X1i + aX2i + Si +N1i|SiX1i)

=
1

n

n
∑

i=1

h(aX2i +N1i − αX1i − βSi|SiX1i)

(a)

6
1

n

n
∑

i=1

h(aX2i +N1i − αX1i − βSi)

(b)

6
1

2n

n
∑

i=1

log(2πeE[(aX2i +N1i − αX1i − βSi)
2])

(c)

6
1

2
log 2πe









a2P2 + 1 + α2P1 + β2Q

− 2aα
1

n

n
∑

i=1

E[X1iX2i]− 2aβ
1

n

n
∑

i=1

E[X2iSi]









=
1

2
log 2πe

(

1 + a2(1− ρ22S − ρ221)P2

)

. (B.18)

where(a) follows because conditioning does not increase entropy,(b) follows because the

Gaussian distribution maximizes the entropy for variableswith certain variance, and(c)

follows from the concavity of thelog function and Jensen’s inequality.

Therefore, combining (B.17) and (B.18), we conclude that there exists0 6 P ′′
2 6

(1− ρ22S − ρ221)P2 such that

1

n

n
∑

i=1

h(Y1i|X1iUiSi) =
1

2
log 2πe(1 + a2P ′′

2 ) . (B.19)
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The third term in (B.14) is given by

1

n

n
∑

i=1

h(Si) =
1

2
log 2πeQ . (B.20)

Finally, for the fourth term in (B.14), we first defineα′ = −aρ21
√
P2P1(aρ2s

√
P2Q+Q)

(a2(1−ρ2
21
)P2+Q+2aρ2s

√
P2Q+1)P1

andβ ′ = − P1

aρ21
√
P1P2

α′, and then have

1

n

n
∑

i=1

h(Si|X1iY1i)

=
1

n

n
∑

i=1

h(Si|X1i, X1i + aX2i + Si +N1i)

=
1

n

n
∑

i=1

h(Si − α′X1i − β ′(aX2i + Si +N1i)|X1i, X1i + aX2i + Si +N1i)

(a)

6
1

n

n
∑

i=1

h(Si − α′X1i − β ′(aX2i + Si +N1i))

(b)

6
1

n

n
∑

i=1

log

(

2πeE(Si − α′X1i − β ′(aX2i + Si +N1i))
2

)

(c)

6
1

2
log 2πe









Q+ α
′2P1 + a2β

′2P2 + β
′2Q+ 2aβ

′2 1

n

n
∑

i=1

E(X2iSi) + β
′2

+ 2α′β ′a
1

n

n
∑

i=1

E(X1iX2i)− 2β ′a
1

n

n
∑

i=1

E(X2iSi)− 2β ′Q









=
1

2
log 2πe

(a2(1− ρ221 − ρ22s)P2 + 1)Q

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q + 1

(B.21)

where(a) follows because conditioning does not increase entropy,(b) follows because the

Gaussian distribution maximizes the entropy for variableswith certain variance, and(c)

follows from the concavity of thelog function and Jensen’s inequality.
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Substituting (B.15), (B.17), (B.20) and (B.21) into (B.14), we obtain

R1 6
1

2
log









1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q +Q+ 1









+
1

2
log









1 +
a2P ′

2

a2P ′′
2 + 1









(B.22)

whereP ′
2 = (1− ρ221 − ρ22s)P2 − P ′′

2 .

We then boundR2 by further deriving (B.12b). Whena 6 1, we haveY1i = aY2i +

(1− ab)X1i+(1− ac)Si+N ′
i , whereN ′

i ∼ N (0, 1− a2) and is independent fromY n
2 , Xn

1

andSn. By applying the conditional entropy power inequality [54], we have

22h(Y1i|UiSiX1i) =22h(aY2i+(1−ab)X1i+(1−ac)Si+N ′
i
|UiSiX1i)

=22h(aY2i+N ′
i
|UiSiX1i)

>22h(aY2i|UiSiX1i) + 22h(N
′
i
|UiSiX1i)

=22h(Y2i|UiSiX1i)+log(a2) + 2πe(1− a2). (B.23)

Thus,

1

n

n
∑

i=1

h(Y2i|UiSiX1i)

6
1

n

n
∑

i=1

1

2
log

(

22h(Y1i|UiSiX1i) − 2πe(1− a2)

a2

)

(a)

6
1

2
log

(

22
1

n

∑
n

i=1
h(Y1i|UiSiX1i) − 2πe(1− a2)

a2

)

(b)
=
1

2
log(2πe(1 + P ′′

2 )) (B.24)

where(a) follows from the concavity of the functionlog (2x − b) for b > 0, and(b) follows
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from (B.19).

Therefore, we have

R2 6
1

n

n
∑

i=1

I(X2i; Y2i|X1iSiUi)

=
1

n

n
∑

i=1

[h(Y2i|X1iSiUi)− h(Y2i|X1iSiX2i)]

(a)
=

1

2
log(2πe(1 + P ′′

2 ))−
1

2
log(2πe)

=
1

2
log(1 + P ′′

2 ) . (B.25)

where(a) follows from (B.19).

We finally boundR1 +R2 by further deriving (B.12c). We setα′′ = ρ2s

√

P2

Q
, and have

R1 +R2

6
1

n

n
∑

i=1

I(X1iX2i; Y2i|Si)

=
1

n

n
∑

i=1

[h(Y2i|Si)− h(Y2i|X1iSiX2i)]

=
1

n

n
∑

i=1

h(bX1i +X2i + cSi +N1i|Si)−
1

2
log 2πe

=
1

n

n
∑

i=1

h(bX1i +X2i +N1i − α′′Si|Si)−
1

2
log 2πe

(a)

6
1

n

n
∑

i=1

h(bX1i +X2i +N1i − α′′Si)−
1

2
log 2πe

(b)

6
1

n

n
∑

i=1

log(2πeE(bX1i +X2i +N1i − α′′Si)
2)− 1

2
log 2πe

(c)

6
1

2
log 2πe









b2P1 + P2 + 1 + α
′′2Q + 2b

1

n

n
∑

i=1

E[X1iX2i]− 2α′′ 1

n

n
∑

i=1

E[X2iSi]









− 1

2
log 2πe
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=
1

2
log(b2P1 + P2 + 1 + 2bρ21

√

P1P2 − ρ22sP2). (B.26)

where(a) follows because conditioning does not increase entropy,(b) follows because the

Gaussian distribution maximizes the entropy for variableswith certain variance, and(c)

follows from the concavity of thelog function and Jensen’s inequality.

B.3 Proof of Lemma 3.1

Following (B.5) and (B.6), we obtain

nR2 6

n
∑

i=1

I(X2i; Y2i|SiXi) + nδn (B.27a)

n(R1 +R2) 6

n
∑

i=1

I(X1iX2i; Y2i|Si) + nδn. (B.27b)

We then prove an alternative bound onR1 + R2 as in (B.28) on the top of next page,

where(a) follows due to the chain rule and the fact thatW1 andW2 are independent,(b)

follows because conditioning does not increase entropy,(c) follows from degradedness

condition (3.3),(d) follows because the termH(Y1i|X1i) is added and subtracted,(e) fol-

lows because conditioning does not increase entropy,(f) follows because givenX1i, X2i,

andSi, Y2i is independent of all other variables, and(g) follows becauseXn
1 is a function

of W1 and conditioning does not increase entropy.

B.4 Proof of the Converse for Theorem 3.3

Based on the outer bound derived in Appendix B.3, we further derive an outer bound for

the Gaussian channel. We first derive a bound onR2 based on (B.27a). We setα = ρ21

√

P2

P1
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n(R1 +R2)

6I(W1; Y
n
1 ) + I(W2; Y

n
2 |Sn) + nδn

(a)

6I(W1; Y
n
1 ) + I(W2; Y

n
2 |SnW1) + nδn

=I(W1; Y
n
1 ) +H(W2|SnW1)−H(W2|SnW1Y

n
2 ) + nδn

(b)

6I(W1; Y
n
1 ) +H(W2|SnW1)−H(W2|SnW1Y

n
2 Y

n
1 X

n
1 ) + nδn

(c)
=I(W1; Y

n
1 ) +H(W2|SnW1)−H(W2|SnW1Y

n
1 ) + nδn

=I(W1; Y
n
1 ) + I(W2; Y

n
1 |SnW1) + nδn

=
n
∑

i=1

[H(Y1i|Y i−1
1 )−H(Y1i|W1Y

i−1
1 ) +H(Y1i|SnW1Y

i−1
1 )−H(Y1i|SnW1W2Y

i−1
1 )] + nδn

(d)
=

n
∑

i=1

[H(Y1i|Y i−1
1 )−H(Y1i|X1i) +H(Y1i|X1i)−H(Y1i|W1Y

i−1
1 )

+H(Y1i|SnW1Y
i−1
1 )−H(Y1i|SnW1W2Y

i−1
1 )] + nδn

(e)

6

n
∑

i=1

[H(Y1i)−H(Y1i|X1i) +H(Y1i|X1i)− I(Sn; Y1i|W1Y
i−1
1 )

−H(Y1i|SnX1iX2iW1W2Y
i−1
1 )] + nδn

(f)
=

n
∑

i=1

[I(X1i; Y1i) +H(Y1i|X1i)−H(Y1i|SiX1iX2i)]− I(Sn; Y n
1 |W1) + nδn

=
n
∑

i=1

[I(X1i; Y1i) +H(Y1i|X1i)−H(Y1i|SiX1iX2i)]−H(Sn) +H(Sn|Y n
1 W1) + nδn

=

n
∑

i=1

[I(X1i; Y1i) +H(Y1i|X1i)−H(Y1i|SiX1iX2i)−H(Si) +H(Si|Y n
1 W1S

n
i+1)] + nδn

(g)

6

n
∑

i=1

[I(X1i; Y1i) +H(Y1i|X1i)−H(Y1i|SiX1iX2i)−H(Si) +H(Si|Y1iX1i)] + nδn

=
n
∑

i=1

[I(X1i; Y1i) +H(Y1i|X1i)−H(Y1i|SiX1iX2i)− I(Si; Y1i|X1i)] + nδn

=

n
∑

i=1

[I(X1i; Y1i)−H(Y1i|SiX1iX2i) +H(Y1i|SiX1i)] + nδn

=
n
∑

i=1

[I(X1i; Y1i) + I(X2i; Y1i|SiX1i)] + nδn (B.28)
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andβ = ρ2s

√

P2

Q
, whereρ21 =

1

n

∑
n

i=1
E(X1iX2i)√
P1P2

andρ2s =
1

n

∑
n

i=1
E(X2iSi)√
P2Q

. We then obtain:

R2 6
1

n

n
∑

i=1

h(Y2i|X1iSi)− h(Y2i|X1iX2iSi)

=
1

n

n
∑

i=1

h(bX1i +X2i + cSi +N1i|SiX1i)−
1

2
log 2πe

=
1

n

n
∑

i=1

h(X2i +N1i − αX1i − βSi|SiX1i)−
1

2
log 2πe

(a)

6
1

n

n
∑

i=1

h(X2i +N1i − αX1i − βSi)−
1

2
log 2πe

(b)

6
1

2n

n
∑

i=1

log
(

2πeE(X2i +N1i − αX1i − βSi)
2
)

− 1

2
log 2πe

(c)

6
1

2
log









P2 + 1 + α2P1 + β2Q− 2α
1

n

n
∑

i=1

E[X1iX2i]− 2β
1

n

n
∑

i=1

E[X2iSi]









=
1

2
log(1 + (1− ρ22s − ρ221)P2) (B.29)

where(a) follows because conditioning does not increase entropy,(b) follows because the

Gaussian distribution maximizes the entropy for variableswith certain variance, and(c)

follows from the concavity of thelog function and Jensen’s inequality.

Following (B.26), we obtain the following bound onR1 +R2 based on (B.27b)

R1 +R2 6
1

2
log
(

b2P1 + P2 + 1 + 2bρ21
√

P1P2 − ρ22sP2

)

. (B.30)
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We further derive (B.28) for the Gaussian channel as follows:

R1 +R2 6
1

n

n
∑

i=1

[I(X1i; Y1i) + I(X2i; Y1i|X1iSi)]

=
1

n

n
∑

i=1

[h(Y1i)− h(Y1i|X1i) + h(Y1i|X1iSi)− h(Y1i|SiX1iX2i)]

=
1

n

n
∑

i=1

[h(Y1i)− I(Si; Y1i|X1i)− h(Y1i|SiX1iX2i)] (B.31)

(a)
=
1

n

n
∑

i=1

[h(Y1i)− h(Si) + h(Si|X1iY1i)− h(Y1i|SiX1iX2i)]

where(a) follows becauseSi andX1i are independent.

Following (B.15), (B.17), (B.20), and (B.21) in Appendix B.2, we obtain

1

n

n
∑

i=1

h(Y1i) 6
1

2
log 2πe(P1 + a2P2 +Q+ 1 + 2aρ21

√

P1P2 + 2aρ2s
√

P2Q)

1

n

n
∑

i=1

h(Y1i|X1iX2iSi) =
1

2
log 2πe

1

n

n
∑

i=1

h(Si) =
1

2
log 2πeQ

1

n

n
∑

i=1

h(Si|X1iY1i) 6
1

2
log 2πe

(a2(1− ρ221 − ρ22s)P2 + 1)Q

a2(1− ρ221)P2 + 2aρ2s
√
P2Q+Q+ 1

Substituting the above bounds into (B.31), we obtain

R1 +R2

6
1

2
log

(

1 +
P1 + 2aρ21

√
P1P2 + a2ρ221P2

a2(1− ρ221)P2 + 2aρ2s
√
P2Q +Q+ 1

)

+
1

2
log
(

1 + a2(1− ρ22s − ρ221)P2

)

(B.32)

which concludes the proof.
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B.5 Proof of Lemma 3.2

The achievable scheme applies rate splitting, superposition coding and Gel’fand-Pinsker

binning scheme. We use random codes and fix the following joint distribution:

PSX1TUVX2Y1Y2
=

PX1
PSPT |X1SPU |X1TSPV |TUX1SPX2|TUVX1SPY1Y2|X1X2S.

Let T n
ǫ (PSX1TUVX2Y1Y2

) denote the strongly jointǫ-typical set based on the above distribu-

tion. For a given sequencexn, let T n
ǫ (PU |X |xn) denote the set of sequencesun such that

(un, xn) is jointly typical based on the distributionPXU .

Code Construction:

1. Generate2nR1 codewordsxn
1 (w1) with i.i.d. components based onPX1

. Index these

codewords byw1 = 1,· · · , 2nR1.

2. For eachxn
1 (w1), generatetn(w1, v1) with i.i.d. components based onPT |X1

. Index these

codewords byv1 = 1,· · · , 2nR̃1.

3. For eachxn
1 (w1) andtn(w1, v1), generateun(w1,

v1, w21, v21) with i.i.d. components based onPU |X1T . Index these codewords byw21 =

1,· · · , 2nR21 andv21 = 1,· · · , 2nR̃21 .

4. For eachxn
1 (w1), tn(w1, v1), andun(w1, v1, w21,

v21), generatevn(w1, v1, w21, v21, w22, v22) with i.i.d. components based onPV |X1TU .

Index these codewords byw22 = 1,· · · , 2nR22 andv22 = 1,· · · , 2nR̃22 .

Encoding:

1. Encoder 1: Givenw1, mapw1 into xn
1 (w1) for transmission.

2. Encoder 2:
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− Givenw1, xn
1 (w1) andsn, selecttn(w1, ṽ1) such that

(tn(w1, ṽ1), s
n, xn

1 (w1)) ∈ T n
ǫ (PX1

PSPT |X1S).

Otherwise, set̃v1 = 1. It can be shown that for largen, suchtn exists with high

probability if

R̃1 > I(T ;S|X1). (B.33)

− Givenw21 and selectedtn(w1, ṽ1), selectun(w1,

ṽ1, w21, ṽ21) such that

(un(w1, ṽ1, w21, ṽ21), t
n(w1, ṽ1), s

n, xn
1 (w1))

∈ T n
ǫ (PX1

PSPT |X1SPU |X1ST ).

Otherwise, set̃v21 = 1. It can be shown that for largen, suchun exists with high

probability if

R̃21 > I(U ;S|X1T ). (B.34)

− Givenw22 and selectedun(w1, ṽ1, w21, ṽ21), selectvn(w1, ṽ1, w21, ṽ21, w22, ṽ22) such

that

(vn(w1, ṽ1, w21, ṽ21, w22, ṽ22),

un(w1, ṽ1, w21, ṽ21), t
n(w1, ṽ1), s

n, xn
1 (w1))

∈ T n
ǫ (PX1

PSPT |X1SPU |X1STPV |UX1ST ). (B.35)

Otherwise, set̃v22 = 1. It can be shown that for largen, suchvn exists with high

probability if

R̃22 > I(V ;S|UX1T ). (B.36)



156

− Given selectedxn
1 (w1), tn(w1, ṽ1), un(w1, ṽ1,

w21, ṽ21), vn(w1, ṽ1, w21, ṽ21, w22, ṽ22) and sn, generatexn
2 with i.i.d. components

based onPX2|TUVX1S for transmission.

Decoding:

1. Decoder 1: Givenyn1 , find the unique tuple(ŵ1, v̂1, ŵ21, v̂21) such that

(xn
1 (ŵ1), t

n(ŵ1, v̂1), u
n(ŵ1, v̂1, ŵ21, v̂21), y

n
1 )

∈ T n
ǫ (PX1TUY1

).

If no or more than one such tuples with differentw1 can be found, then declare error.

One can show that for sufficiently largen, decoding is correct with high probability if

R1 + R̃1 +R21 + R̃21 6 I(TUX1; Y1) (B.37)

We note that since receiver 1 is not required to decodeW21 correctly by the channel

model, the corresponding error events do not need to be analyzed.

2. Decoder 2: Givenyn2 , find a tuple(ŵ1, v̂1,

ŵ21, v̂21, ŵ22, v̂22) such that

(xn
1 (ŵ1), t

n(ŵ1, v̂1), u
n(ŵ1, v̂1, ŵ21, v̂21),

vn(ŵ1, v̂1, ŵ21, v̂21, ŵ22, v̂22), y
n
2 ) ∈ T n

ǫ (PX1TUV Y2
).

If no or more than one such tuples can be found, then declare error. It can be shown that
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for sufficiently largen, decoding is correct with high probability if

R22 + R̃22 6 I(V ; Y2|UX1T ) (B.38a)

R21 + R̃21 +R22 + R̃22 6 I(UV ; Y2|X1T ) (B.38b)

R̃1 +R21 + R̃21 +R22 + R̃22 6 I(TUV ; Y2|X1) (B.38c)

R1 + R̃1 +R21 + R̃21 +R22 + R̃22 6 I(TUV X1; Y2) (B.38d)

Lemma 3.2 is thus proved by combining (B.33)-(B.38d).

B.6 Proof of Theorem 3.5

Consider a(2nR1, 2nR2, n) code with an average error probabilityP (n)
e . The probability

distribution onW1 ×W2 × Sn × X n
1 × X n

2 ×Yn
1 × Yn

2 is given by

PW1W2SnXn
1
Xn

2
Y n
1
Y n
2
= PW1

PW2

[

n
∏

i=1

PSi

]

PXn
1
|W1

PXn
2
|W1W2Sn

n
∏

i=1

PY1iY2i|X1iX2iSi
. (B.39)

By Fano’s inequality, we have

H(W1|Y n
1 ) 6 nR1P

(n)
e + 1 = nδ1n (B.40a)

H(W1W2|Y n
2 ) 6 n(R1 +R2)P

(n)
e + 1 = nδ2n (B.40b)

whereδ1n, δ2n → 0 asn → +∞. Let δn = δ1n + δ2n, which also satisfies thatδn → 0 as

n→ +∞.
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We define the following auxiliary random variables:

Ti = (W1, S
n
i+1, X

n
1 )

Ui = (Ti, Y
i−1
1 )

Vi = (Ti,W2, Y
i−1
2 ) (B.41)

which satisfy the Markov chain conditions:

Ti ←→ UiVi ←→ X1iX2iSi ←→ Y1iY2i (B.42)

for i = 1,· · · , n.

The following bound onR1 follows the same steps as in (B.4) in Appendix B.1, and we

have

nR1 6

n
∑

i=1

[I(TiUiX1i; Y1i)− I(TiUi;Si|X1i)] + nδn. (B.43)

I.e.we defineTi = (W1, S
n
i+1, X

n
1 ) andUi = (Ti, Y

i−1
1 )

We next boundR2 and obtain

nR2

=I(W2; Y
n
2 ) + nδn 6 I(W2; Y

n
2 |W1) + nδn

(a)
=

n
∑

i=1

[I(W2S
n
i+1; Y

i
2 |W1)− I(W2S

n
i ; Y

i−1
2 |W1)] + nδn

(b)
=

n
∑

i=1

[I(W2S
n
i+1; Y

i−1
2 |W1) + I(W2S

n
i+1; Y2i|W1Y

i−1
2 )

− I(W2S
n
i+1; Y

i−1
2 |W1)− I(Si; Y

i−1
2 |W1W2S

n
i+1)] + nδn

=
n
∑

i=1

[I(W2S
n
i+1; Y2i|W1Y

i−1
2 )− I(Si; Y

i−1
2 |W1W2S

n
i+1)] + nδn

=

n
∑

i=1

[H(Y2i|W1Y
i−1
2 )−H(Y2i|W1W2S

n
i+1Y

i−1
2 )
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−H(Si|W1W2S
n
i+1) +H(Si|W1W2S

n
i+1Y

i−1
2 )] + nδn (B.44)

(c)
=

n
∑

i=1

[H(Y2i|W1Y
i−1
2 X1i)−H(Y2i|W1W2S

n
i+1X

n
1 Y

i−1
2 )

−H(Si|W1W2S
n
i+1X1i) +H(Si|W1W2S

n
i+1X

n
1 Y

i−1
2 )] + nδn

(d)

6

n
∑

i=1

[H(Y2i|X1i)−H(Y2i|X1iTiVi)−H(Si|X1i) +H(Si|X1iTiVi)] + nδn

=

n
∑

i=1

[I(TiVi; Y2i|Xi)− I(TiVi;Si|X1i)] + nδn. (B.45)

where(a) follows due to cancellation of the terms in the sum and because Y 0
1 = φ, (b)

follows from chain rule,(c) follows becauseXn
1 is a function ofW1, and (d) follows

because conditionning does not increase entropy, and from the definition ofTi andVi.

We then bound the sum rateR1 +R2 as follows.

n(R1 +R2) = I(W1W2; Y
n
2 ) + nδn

(a)
=

n
∑

i=1

[I(W1W2S
n
i+1; Y

i
2 )− I(W1W2S

n
i ; Y

i−1
2 )] + nδn

(b)
=

n
∑

i=1

[I(W1W2S
n
i+1; Y

i−1
2 ) + I(W1W2S

n
i+1; Y2i|Y i−1

2 )

− I(W1W2S
n
i+1; Y

i−1
2 )− I(Si; Y

i−1
2 |W1W2S

n
i+1)] + nδn

=

n
∑

i=1

[I(W1W2S
n
i+1; Y2i|Y i−1

2 )− I(Si; Y
i−1
2 |Sn

i+1W1W2)] + nδn

=
n
∑

i=1

[H(Y2i|Y i−1
2 )−H(Y2i|W1W2S

n
i+1Y

i−1
2 )

−H(Si|Sn
i+1W1W2) +H(Si|Sn

i+1W1W2Y
i−1
2 )] + nδn

(c)

6

n
∑

i=1

[H(Y2i)−H(Y2i|W1W2S
n
i+1X

n
1 Y

i−1
2 )

−H(Si|X1i) +H(Si|W1W2S
n
i+1X

n
1 Y

i−1
2 )] + nδn

(d)
=

n
∑

i=1

[I(X1iTiVi; Y2i)− I(TiVi;Si|X1i)] + nδn (B.46)
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where(a) follows due to cancellation of the terms in the sum and because Y 0
1 = φ, (b)

follows due to chain rule,(c) follows becauseSn is independent of(Xn
1 ,W1,W2), Sn is

i.i.d. and becauseXn
1 is a function ofW1, and(d) follows from the definition ofTi andVi.

B.7 Proof of the Outer Bound for Theorem 3.6

We define the following auxiliary random variables:

Ti = (W1, S
n
i+1, X

n
1 , Y

i−1
1 )

Vi = (Ti,W2, Y
i−1
2 ) (B.47)

which satisfy the Markov chain conditions:

Ti ←→ Vi ←→ X1iX2iSi ←→ Y1i ←→ Y2i (B.48)

for i = 1,· · · , n.

By following the step similar to those in (B.4), we obtain thefollowing bound onR1:

nR1 6

n
∑

i=1

[I(TiX1i; Y1i)− I(Ti;Si|X1i)] + nδn. (B.49)

We next derive a bound onR2 by continuing to derive the bound (B.44) as follows:

nR2

6

n
∑

i=1

[H(Y2i|W1Y
i−1
2 )−H(Y2i|W1W2S

n
i+1Y

i−1
2 )

−H(Si|W1W2S
n
i+1) +H(Si|W1W2S

n
i+1Y

i−1
2 )] + nδn

(a)
=

n
∑

i=1

[H(Y2i|W1Y
i−1
2 X1i)−H(Y2i|W1W2S

n
i+1X

n
1 Y

i−1
1 Y i−1

2 )

−H(Si|W1W2S
n
i+1X1i) +H(Si|W1W2S

n
i+1X

n
1 Y

i−1
1 Y i−1

2 )] + nδn
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6

n
∑

i=1

[H(Y2i|X1i)−H(Y2i|X1iTiVi)

−H(Si|X1i) +H(Si|X1iTiVi)] + nδn

=

n
∑

i=1

[I(TiVi; Y2i|Xi)− I(TiVi;Si|X1i)] + nδn. (B.50)

where(a) follows due to the degradedness condition (3.2), and becauseX1i is a function

of W1.

B.8 Proof of the Converse for Theorem 3.7

We define the auxiliary random variableTi = (W1S
n
i+1X

n
1 Y

i−1
1 ), which satisfies the Markov

chain:

Ti ↔ X1iX2iSi ↔ Y1iY2i, for i = 1,· · · , n. (B.51)

Following (B.49), we obtain

nR1 6

n
∑

i=1

[I(TiX1i; Y1i)− I(Ti;Si|X1i)] + nδn.

We next boundR2 as follows.

nR2 =I(W2; Y
n
2 ) + nδn

(a)

6I(W2; Y
n
2 |W1S

nXn
1 ) + nδn

=

n
∑

i=1

[I(W2; Y2i|W1S
nXn

1 Y
i−1
2 )] + nδn

6

n
∑

i=1

H(Y2i|W1S
nXn

1 Y
i−1
2 ) + nδn

(b)
=

n
∑

i=1

H(Y2i|W1S
nXn

1 Y
i−1
1 Y i−1

2 ) + nδn
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(c)

6

n
∑

i=1

H(Y2i|W1S
n
i+1X

n
1 Y

i−1
1 Si) + nδn

=

n
∑

i=1

H(Y2i|X1iTiSi) + nδn (B.52)

where(a) follows becauseW2 is independent of(W1, S
n, Xn

1 ), (b) follows due to the de-

gradedness condition (3.1), and(c) follows because conditioning does not increase entropy.

We then derive another bound onR2 by continuing to derive the bound (B.44) as fol-

lows:

nR2

6

n
∑

i=1

[H(Y2i|W1Y
i−1
2 )−H(Y2i|W1W2S

n
i+1Y

i−1
2 )

−H(Si|W1W2S
n
i+1) +H(Si|W1W2S

n
i+1Y

i−1
2 )] + nδn

(a)
=

n
∑

i=1

[H(Y2i|W1X
n
1 Y

i−1
2 )−H(Y2i|W1W2S

n
i+1Y

i−1
2 )−H(Si|W1W2X

n
1 S

n
i+1)

+H(Si|W1W2X
n
1 S

n
i+1Y

i−1
1 Y i−1

2 Y2i) + I(Y2i;Si|W1W2S
n
i+1Y

i−1
2 )] + nδn

(b)

6

n
∑

i=1

[H(Y2i|X1i)−H(Si|X1i) +H(Si|X1iTiY2i)] + nδn

=
n
∑

i=1

[H(Y2i|X1i)− I(TiY2i;Si|X1i)] + nδn. (B.53)

where(a) follows becauseXn
1 is a function ofW1 and from the degradedness condition

(3.1), and(b) follows becauseSi is independent of(W1,W2, X
n
1 ), and conditioning does

not increase entropy, and follows from the definition ofTi.
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APPENDIX C

PROOF FOR CHAPTER 5

C.1 Proof of Proposition 5.1

The first bound follows easily from the single-user rate bound of receiver 1 as follows.

nR1 6 I(W1; Y
n
1 ) + nǫn

6 I(W1; Y
n
1 S

n
1X

n
0 ) + nǫn

= I(W1; Y
n
1 |Sn

1X
n
0 ) + nǫn

6 h(Y n
1 |Sn

1X
n
0 )− h(Y n

1 |W1S
n
1X

n
1X

n
0 ) + nǫn

= h(Xn
1 +Nn

1 )− h(Nn
1 ) + nǫn

6
n

2
log(1 + P1) (C.1)

We then bound the sum rate as follows. For the messageW0, based on Fano’s inequality,

we have

nR0 6 I(W0; Y
n
0 ) + nǫn (C.2)

= h(Y n
0 )− h(Y n

0 |W0) + nǫn,
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whereǫn → 0 asn→∞.

For the messageW1, based on Fano’s inequality, we have

nR1 6 I(W1; Y
n
1 ) + nǫn (C.3)

= h(Y n
1 )− h(Y n

1 |W1) + nǫn

6 h(Y n
1 )− h(Y n

1 |W1X
n
1 ) + nǫn

= h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 ) + nǫn

6 h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 |W0Y
n
0 ) + nǫn

Summation of (C.2) and (C.3) yields

n(R0 +R1) 6 h(Y n
0 ) + h(Y n

1 )− h(Y n
0 , X

n
0 + Sn

1 +Nn
1 |W0) + nǫn

= h(Y n
0 ) + h(Y n

1 )− h(Xn
0 +Nn

0 , X
n
0 + Sn

1 +Nn
1 |W0) + nǫn (C.4)

Since the two receivers perform decoding independently, the capacity region of the

channel depends on only the marginal distributions of(X0, Y0) and(X0, X1, S, Y1). It is

clear that settingN1 = N0 does not change the two marginal distributions respectively

involving Y0 andY1, and hence does not affect the capacity region. Thus,

n(R0 +R1) 6 h(Y n
0 ) + h(Y n

1 )− h(Xn
0 +Nn

1 , X
n
0 + Sn

1 +Nn
1 |W0) + nǫn

6 h(Y n
0 ) + h(Y n

1 )− h(Sn
1 , X

n
0 +Nn

1 |W0) + nǫn

6 h(Y n
0 ) + h(Y n

1 )− h(Sn
1 )− h(Nn

1 ) + nǫn

6
n

2
log(1 + P0) +

n

2
log

(

1 +
P0 + 2

√
P0Q1 + P1 + 1

Q1

)

+ nǫn (C.5)

As Q1 →∞, the second term of the above bound goes to0, and we have

R0 +R1 6
1

2
log(1 + P0). (C.6)
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C.2 Proof of Proposition 5.2

We use random codes and fix the following joint distribution:

PS1X
′
0
UX0X1Y0Y1

= PS1
PX′

0
PU |S1X

′
0
PX0|US1X

′
0
PX1

PY0|X0
PY1|X0X1S1

.

Let T n
ǫ (PS1X

′
0
UX0X1Y0Y1

) denote the strongly jointǫ-typical set (see, e.g., [55, Sec. 10.6]

and [56, Sec. 1.3] for definition) based on the above distribution. For a given sequencexn,

let T n
ǫ (PU |X |xn) denote the set of sequencesun such that(un, xn) is jointly typical based

on the distributionPXU .

1. Codebook Generation

• Generate2nR̃ i.i.d. codewordsun(t) according toP (un) =
∏n

i=1 PU(ui) for the

fixed marginal probabilityPU as defined, in whicht ∈ [1, 2nR̃].

• Generate2nR0 i.i.d codewordsx
′n
0 (w0) according toP (x

′n
0 ) =

∏n

i=1 PX′
0
(x′

0i)

for the fixed marginal probabilityPX′
0

as defined, in whichw0 ∈ [1, 2nR0].

• Generate2nR1 i.i.d. codewordsxn
1 (w1) according toP (xn

1 ) =
∏n

i=1 PX1
(x1i)

for the fixed marginal probabilityPX1
as defined, in whichw1 ∈ [1, 2nR1].

2. Encoding

• Encoder at the helper: Givenw0, mapw0 into x
′n
0 (w0). For eachx

′n
0 (w0), se-

lect t̃ such that(un(t̃), sn1 , x
′n
0 (w0)) ∈ T n

ǫ (PS1
PX′

0
PU |S1X

′
0
). If un(t̃) cannot be

found, set̃t = 1. Then map(sn1 , u
n(t̃), x

′n
0 (w0)) intoxn

0 = f
(n)
0 (x

′n
0 (w0), s

n
1 , u

n(t̃)).

Based on the rate distortion type of argument [55, Sec. 10.5]or the Covering

Lemma [57, Sec. 3.7], it can be shown that suchun(t̃) exists with high proba-

bility for largen if

R̃ > I(U ;S1X
′
0). (C.7)
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• Encoder 1: Givenw1, mapw1 into xn
1 (w1).

3. Decoding

• Decoder 0: Givenyn0 , find ŵ0 such that(x
′n
0 (ŵ0), y

n
0 ) ∈ T n

ǫ (PX′
0
Y0
). If no or

more than onêw0 can be found, declare an error. It can be shown that the

decoding error is small for sufficient largen if

R0 6 I(X ′
0; Y0). (C.8)

The proof for the above bound (and the similar bounds in the sequel) follows

the standard techniques as given in [55, Sec. 7.7], and henceis omitted.

• Decoder 1: Givenyn1 , find a pair(t̂, ŵ1) such that(un(t̂), xn
1 (ŵ1), y

n
1 )

∈ T n
ǫ (PUX1Y1

). If no or more than one such pair can be found, then declare

an error. It can be shown that decoding is successful with small probability of

error for sufficiently largen if the following conditions are satisfied

R1 6I(X1; Y1|U), (C.9)

R̃ 6I(U ; Y1|X1), (C.10)

R1 + R̃ 6I(UX1; Y1). (C.11)

We note that (C.10) corresponds to the decoding error for theindext, which is not the

message of interest. Hence, the bound (C.10) can be removed.Hence, combining (C.7),

(C.8), (C.9), and (C.11), and eliminating̃R, we obtain the desired achievable region.
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C.3 Proof of Proposition 5.4

The single rate bounds follow from Proposition 5.1 and the single-user channel capacity.

For the sum rate bound, based on Fano’s inequality, we have

n(R1 +R2) 6I(W1; Y
n
1 ) + I(W2; Y

n
2 ) + nǫn

=h(Y n
1 )− h(Y n

1 |W1) + h(Y n
2 )− h(Y n

2 |W2) + nǫn

(a)
=h(Y n

1 )− h(Y n
1 |W1X

n
1 ) + h(Y n

2 )− h(Y n
2 |W2X

n
2 ) + nǫn

=h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 ) + h(Y n
2 )− h(Xn

0 +Nn
2 ) + nǫn

6h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 |Xn
0 +Nn

1 )

+ h(Y n
2 )− h(Xn

0 +Nn
2 ) + nǫn

where (a) follows from the fact thatXn
1 is a function ofW1, andXn

2 is a function ofW2,

and they are independent fromXn
0 , state and noise. As argued in Appendix C.1, setting

Nn
1 = Nn

2 does not change the capacity region. Thus,

n(R1 +R2) 6h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 , X
n
0 +Nn

1 ) + h(Y n
2 ) + nǫn

=h(Y n
1 )− h(Sn

1 , X
n
0 +Nn

1 ) + h(Y n
2 ) + nǫn

=h(Y n
1 )− h(Sn

1 )− h(Xn
0 +Nn

1 |Sn
1 ) + h(Y n

2 ) + nǫn

6h(Y n
1 )− h(Sn

1 )− h(Xn
0 +Nn

1 |Sn
1 , X

n
0 ) + h(Y n

2 ) + nǫn

(b)
=h(Xn

0 +Xn
1 + Sn

1 +Nn
1 )− h(Sn

1 )− h(Nn
1 ) + h(Xn

0 +Xn
2 +Nn

1 ) + nǫn

6
n

2
log 2πe(P1 + P0 + 2

√

P0Q1 +Q1 + 1)− n

2
log(2πeQ1)

+
n

2
log 2πe(P0 + P2 + 1)− n

2
log(2πe) + nǫn

=
n

2
log

(

P1 + P0 + 2
√
P0Q1 +Q1 + 1

Q1

)

+
n

2
log(P0 + P2 + 1) + nǫn

→n

2
log(P0 + P2 + 1) as Q1 →∞
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where (b) follows from the fact thatXn
0 andSn

1 are independent fromNn
1 .

C.4 Proof of Proposition 5.5

We use random codes and fix the following joint distribution:

PS1UVX0X1X2Y1Y2
= PV US1

PX0|V US1
PX1

PX2
PY1|X0X1S1

PY2|X0X2
.

Let T n
ǫ (PS1UV X0X1X2Y1Y2

) denote the strongly jointǫ-typical set based on the above distri-

bution.

1. Codebook Generation

• Generate2nR̃1 i.i.d. codewordsun(t) according toP (un) =
∏n

i=1 PU(ui) for

the fixed marginal probabilityPU as defined, in whicht ∈ [1, 2nR̃1].

• Generate2nR̃2 i.i.d. codewordsvn(k) according toP (vn) =
∏n

i=1 PV (vi) for

the fixed marginal probabilityPV as defined, in whichk ∈ [1, 2nR̃2].

• Generate2nR1 i.i.d. codewordsxn
1 (w1) according toP (xn

1 ) =
∏n

i=1 PX1
(x1i)

for the fixed marginal probabilityPX1
as defined, in whichw1 ∈ [1, 2nR1].

• Generate2nR2 i.i.d. codewordsxn
2 (w2) according toP (xn

2 ) =
∏n

i=1 PX2
(x2i)

for the fixed marginal probabilityPX2
as defined, in whichw2 ∈ [1, 2nR2].

2. Encoding

• Encoder at the helper: Givensn1 , find t̃, such that(un(t̃), sn1 ) ∈ T n
ǫ (PS1U). Such

un(t̃) exists with high probability for largen if

R̃1 > I(U ;S1). (C.12)



169

• For each̃t selected, select̃k, such that(vn(k̃), un(t̃), sn1) ∈ T n
ǫ (PV US1

). Such

vn(k̃) exists with high probability for largen if

R̃2 > I(V ;S1U). (C.13)

• Map (sn1 , u
n, vn) into xn

0 = f
(n)
0 (un(t̃), vn(k̃), sn1 ).

• Encoder 1: Givenw1, mapw1 into xn
1 (w1).

• Encoder 2: Givenw2, mapw2 into xn
2 (w2).

3. Decoding

• Decoder 1: Givenyn1 , find (ŵ1, t̂) such that(xn
1 (ŵ1), u

n(t̂), yn1 ) ∈ T n
ǫ (PX1UY1

).

If no or more than onêw1 can be found, declare an error. One can show that the

decoding error is small for sufficient largen if

R1 6 I(X1; Y1U) (C.14)

R1 + R̃1 6 I(X1U ; Y1). (C.15)

• Decoder 2: Givenyn2 , find (ŵ2, k̂) such that(xn
2 (ŵ2), v

n(k̂), yn2 ) ∈ T n
ǫ (PX2V Y2

).

If no or more than onêw2 can be found, declare an error. One can show that the

decoding error is small for sufficient largen if

R2 6 I(X2; Y2V ), (C.16)

R2 + R̃2 6 I(X2V ; Y2). (C.17)

Combining (C.12)-(C.17), and eliminating̃R1 andR̃2, we have
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R1 6 I(X1; Y1U) (C.18a)

R1 6 I(X1U ; Y1)− I(U ;S1) (C.18b)

R2 6 I(X2; Y2V ) (C.18c)

R2 6 I(X2V ; Y2)− I(V ;US1) (C.18d)

When conditions (5.21a) and (5.21b) are satisfied, (C.18b) and (C.18d) are redundant,

and hence, we have the desired achievable region.

C.5 Proof of Proposition 5.7

The bounds onR1 andR2 follow from the single-user channel capacity. For the sum rate

bound, based on the Fano’s inequality, we have

n(R1 +R2) 6I(W1; Y
n
1 ) + I(W2; Y

n
2 ) + nǫn

=h(Y n
1 )− h(Y n

1 |W1) + h(Y n
2 )− h(Y n

2 |W2) + nǫn

(a)
=h(Y n

1 )− h(Y n
1 |W1X

n
1 ) + h(Y n

2 )− h(Y n
2 |W2X

n
2 ) + nǫn

=h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 ) + h(Y n
2 )− h(Xn

0 + Sn
2 +Nn

2 ) + nǫn

6h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 |Xn
0 +Nn

1 )

+ h(Y n
2 )− h(Xn

0 + Sn
2 +Nn

2 |Xn
0 +Nn

2 , X
n
0 + Sn

1 +Nn
1 )

+ h(Xn
0 +Nn

1 )− h(Xn
0 +Nn

1 ) + nǫn

where (a) follows from the fact thatXn
1 is a function ofW1, Xn

2 is a function ofW2, and

they are independent fromXn
0 , Sn

1 , Sn
2 , Nn

1 andNn
2 . Since receivers 1 and 2 decode based

on the marginal distributions only, settingNn
1 = Nn

2 does not affect the channel capacity.
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Therefore,

n(R1 +R2)

6h(Y n
1 )− h(Xn

0 + Sn
1 +Nn

1 , X
n
0 + Sn

2 +Nn
1 , X

n
0 +Nn

1 )

+ h(Y n
2 ) + h(Xn

0 +Nn
1 ) + nǫn

=h(Y n
1 )− h(Sn

1 , S
n
2 , X

n
0 +Nn

1 ) + h(Y n
2 ) + h(Xn

0 +Nn
1 ) + nǫn

=h(Y n
1 )− h(Sn

1 )− h(Sn
2 )− h(Xn

0 +Nn
1 |Sn

1 , S
n
2 )

+ h(Y n
2 ) + h(Xn

0 +Nn
1 ) + nǫn

6h(Y n
1 )− h(Sn

1 )− h(Sn
2 )− h(Xn

0 +Nn
1 |Sn

1 , S
n
2 , X

n
0 )

+ h(Y n
2 ) + h(Xn

0 +Nn
1 ) + nǫn

(b)
=h(Y n

1 )− h(Sn
1 )− h(Sn

2 )− h(Nn
1 ) + h(Y n

2 ) + h(Xn
0 +Nn

1 ) + nǫn

(c)
=

n
∑

i=1

h(Y1i|Y i−1
1 )− h(S1i)− h(S2i)− h(N1i)

+ h(Y2i|Y i−1
2 ) + h(X0i +N1i|X i−1

0 +N i−1
1 ) + nǫn

6

n
∑

i=1

h(Y1i)− h(S1i)− h(S2i)− h(N1i) + h(Y2i) + h(X0i +N1i) + nǫn

=
n
∑

i=1

[h(X0i +X1i + S1i +N1i)− h(S1i)− h(S2i)− h(N1i)

+ h(X0i +X2i + S2i +N1i) + h(X0i +N1i)] + nǫn (C.19)

We then derive the items respectively. The first term in (C.19) can be derived as

n
∑

i=1

h(X0i +X1i + S1i +N1i)

(d)

6
1

2

n
∑

i=1

log 2πe(E(X0i +X1i + Si +Ni)
2)

6
1

2

n
∑

i=1

log 2πe

(

E[X2
0i] + E(X0iSi) + E[S2

i ] + E[X2
1i] + E[N2

i ])

)
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(e)

6
n

2
log 2πe









1

n

n
∑

i=1

E[X2
0i] +

2

n

n
∑

i=1

E(X0iSi)

+
1

n

n
∑

i=1

E[S2
i ] +

1

n

n
∑

i=1

E[X2
1i] +

1

n

n
∑

i=1

E[N2
i ])









(f)

6
n

2
log 2πe









P0 +Q+ P1 + 1 +
2

n

n
∑

i=1

E(X1iSi)









6
n

2
log 2πe

(

P0 + P1 +Q + 1 + 2
√

P0Q

)

(C.20)

where (d) follows from the fact that the Gaussian distribution maximizes the entropy given

the variance of the random variable,(e) follows from the concavity of the logarithm func-

tion and Jensen’s inequality, and(f) follows from the power constraints. Similarly, we

have

n
∑

i=1

h(X0i +X2i + S1i +N1i) 6
n

2
log 2πe(P2 + P0 + 2

√

P0Q2 +Q2 + 1)

n
∑

i=1

h(X0i +N1i) 6
n

2
log(P0 + 1)

And hence, we have

n(R1 +R2)

6
n

2
log 2πe(P1 + P0 + 2

√

P0Q1 +Q1 + 1)− n

2
log(2πeQ1)−

n

2
log(2πeQ2)

− n

2
log(2πe) +

n

2
log 2πe(P2 + P0 + 2

√

P0Q2 +Q2 + 1) +
n

2
log 2πe(P0 + 1) + nǫn

6
n

2
log

(

P1 + P0 + 2
√
P0Q1 +Q1 + 1

Q1

)

+
n

2
log

(

P2 + P0 + 2
√
P0Q2 +Q2 + 1

Q2

)

+
n

2
log(P0 + 1) + nǫn

→n

2
log(P0 + 1) as Q1 →∞, Q2 →∞
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where (b) follows from the fact thatXn
0 , Sn

1 andSn
2 are independent fromNn

1 .

C.6 Proof of Theorem 5.5

The proof contains two parts: 1. we first show that ifP1 + P2 > P0 + 1, then the sum

capacity can be obtained; 2. we further characterize the time allocation parametersγ that

achieves the sum capacity.

1. For a givenP0, we consider the following two cases.

a). If the power constraint satisfiesP1 + P2 = P0 +1, by applying Proposition 5.8, and

by settingγ = P1

P1+P2

, the point(R1, R2) = ( P1

2(P1+P2)
log(1 + P0),

P2

2(P1+P2)
log(1 + P0)) is

achievable, which achieves the sum rate outer bound in Proposition 5.7.

b). If P1+P2 > P0+1, we set the actual transmission powerP̃1 andP̃2 of transmitters

1 and 2 to satisfỹP1 + P̃2 = P0 + 1, P̃1 6 P1 andP̃2 6 P2. Then following a), the sum

capacity is obtained.

2. In order for each transmitter to achieve the sum capacity during its own transmission

slot, (5.30) together with (5.31a) and (5.31b) imply that

P1

γ
> P0 + 1 (C.21)

P2

1− γ
> P0 + 1. (C.22)

It is clear that (C.21) implies

γ 6
P1

P0 + 1
,

and (C.22) implies

γ > 1− P2

P0 + 1
.

Considering0 ≤ γ ≤ 1, we obtain the desired bounds onγ.
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APPENDIX D

PROOF FOR CHAPTER 6

D.1 Proof of Proposition 6.1

We show the outer bound that involves the impact of the helper. In particular, we focus on

he sum rate bound. The single rate bounds follow from the similar steps.

For the sum rate bound, based on Fano’s inequality , we have

n(R1 +R2)

6I(W1W2; Y
n) + nǫn

=h(Y n)− h(Y n|W1W2) + nǫn

6h(Y n)− h(Xn
0 +Xn

1 +Xn
2 + Sn +Nn|W1X

n
1W2X

n
2 ) + nǫn

(a)
=h(Y n)− h(Xn

0 + Sn +Nn) + nǫn

6h(Y n)− h(Xn
0 + Sn +Nn|Xn

0 +Nn) + nǫn

=h(Y n)− h(Xn
0 + Sn +Nn|Xn

0 +Nn) + h(Xn
0 +Nn)− h(Xn

0 +Nn) + nǫn

=h(Y n)− h(Xn
0 + Sn +Nn, Xn

0 +Nn) + h(Xn
0 +Nn) + nǫn

=h(Y n)− h(Sn, Xn
0 +Nn) + h(Xn

0 +Nn) + nǫn
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=h(Y n)− h(Sn)− h(Xn
0 +Nn|Sn) + h(Xn

0 +Nn) + nǫn

6h(Y n)− h(Sn)− h(Xn
0 +Nn|SnXn

0 ) + h(Xn
0 +Nn) + nǫn

(b)
=h(Y n)− h(Sn)− h(Nn) + h(Xn

0 +Nn) + nǫn

6
n

2
log 2πe(P0 + P1 + P2 + 2ρ0S

√

P0Q +Q+ 1)

− n

2
log(2πeQ) +

n

2
log 2πe(P0 + 1)− n

2
log(2πe)

6
n

2
log(P0 + 1)

+
n

2
log(

P0 + P1 + P2 + 2ρ0S
√
P0Q +Q+ 1

Q
)

whereǫn → 0 asn → ∞, ρ0S =
∑

n

i=1
E(X0iSi)√
P0Q

, (a) follows because(Xn
0 , S

n, Nn) are

independent from(W1, X
n
1 ,W2, X

n
2 ), and (b) follows becauseXn

0 andSn are independent

from Nn.

D.2 Proof of Lemma 6.2

We design the following scheme for the discrete memoryless with state noncausally known

at the helper.

We use random codes and fix the following joint distribution:

PSUX0X1X2Y = PSPU |SPX0|USPX1
PX2

PY |X0X1X2S

LetT n
ǫ (PSUX0X1X2Y ) denote the strongly jointǫ-typical set based on the above distribution.

For a given sequencexn, letT n
ǫ (PU |X |xn) denote the set of sequencesun such that(un, xn)

is jointly typical based on the distributionPXU .

1. Codebook Generation

• Generate2nR̃ codewordsUn(t)with the probability ofPU , in whicht ∈ [1, 2nR̃].
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• Generate2nR1 codewordsXn
1 (w1) with the probability ofPX1

, in whichw1 ∈

[1, 2nR1 ].

• Generate2nR2 codewordsXn
2 (w2) with the probability ofPX2

, in whichw2 ∈

[1, 2nR2 ].

2. Encoding

• Encoder 0: For givensn, select̃t such that(un(t̃), sn) ∈ T n
ǫ (PSU). If un(t̃) can

be found, map(sn, un(t̃)) into xn
0 , else,xn

0 = fn(sn, un(1)).

It is easy to show that suchun(t̃) exists with high probability for largen if

R̃ > I(U ;S). (D.1)

• Encoder 1: Givenw1, mapw1 into xn
1 (w1).

• Encoder 2: Givenw2, mapw2 into xn
2 (w2).

3. Decoding: Givenyn,

(a) Findt̂ such that(un(t̂), yn) ∈ T n
ǫ (PUY ). One can show that the decoding error

is small for sufficient largen if

R̃ 6 I(U ; Y ). (D.2)

(b) For selectedun, find ŵ1 andŵ2 such that(x1(ŵ1), (x2(ŵ2), u
n(t̂), yn)

∈ T n
ǫ (PX′

1
UY ). One can show that the decoding error is small for sufficient

largen if

R1 6I(X1; Y |UX2) (D.3)

R2 6I(X2; Y |UX1) (D.4)

R1 +R2 6I(X1X2; Y |U) (D.5)
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According to (D.1)- (D.5), exploit the Foriour-Mozkin elimination to eliminateR̃, we

have the achievable region as in Lemma 6.2.
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APPENDIX E

PROOF FOR CHAPTER 7

E.1 Proof of Proposition 7.5

We use random codes and fix the following joint distribution:

PSUX0V XY1Y2
= PSPU |SPX0|USPV PX|V PY1|X0XSPY2|X0XS.

Let T n
ǫ (PSUX0V XY1Y2

) denote the strongly jointǫ-typical set based on the above distribu-

tion.

1. Code Construction:

(a) Generate2nR1 codewordsvn(w1) with i.i.d. components based onPV . Index

these codewords byw1 = 1,· · · , 2nR1.

(b) For eachvn(w1), generate2nR2 codewordsxn(w1, w2) with i.i.d. components

based onPX|V . Index these codewords byw2 = 1,· · · , 2nR2.

(c) Generate2nR̃ codewordsUn(l) with i.i.d. components based onPU . Index these

codewords byl = 1, 2,· · · , 2nR̃.

2. Encoding:
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(a) Encoder: Givenw1, map it intovn(w1). Givenvn andw2, map it intoxn(w1, w2).

(b) Encoder at the helper: Givensn, select̃l such that

(un(l̃), sn) ∈ T n
ǫ (PUS).

Otherwise, set̃l = 1. It can be shown that for largen, suchun exists with high

probability if

R̃ > I(U ;S). (E.1)

(c) Given selectedun(l̃) andsn, generatexn
0 with i.i.d. components based onPX0|US

for transmission.

3. Decoding: Givenyn,

(a) Decoder 1:

i. Find l̂ such that(un(l̂), yn1 ) ∈ T n
ǫ (PUY1

). One can show that the decoding

error is small for sufficient largen if

R̃ 6 I(U ; Y1). (E.2)

ii. For selectedun, find ŵ1 such that(v(ŵ1), u
n(l̂), yn1 ) ∈ T n

ǫ (PV UY1
). One

can show that the decoding error is small for sufficient largen if

R1 6I(V ; Y1|U). (E.3)

(b) Decoder 2:

i. Find l̂ such that(un(l̂), yn2 ) ∈ T n
ǫ (PUY2

). One can show that the decoding

error is small for sufficient largen if

R̃ 6 I(U ; Y2). (E.4)
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ii. For selectedun, find ŵ2 such that(v(ŵ1), x(ŵ1, ŵ2), u
n(l̂), yn2 )

∈ T n
ǫ (PV XUY2

). One can show that the decoding error is small for sufficient

largen if

R2 6I(X ; Y2|V U) (E.5)

R1 +R2 6I(X ; Y2|U) (E.6)

According to (E.1)- (E.6), exploit the Foriour-Mozkin elimination to eliminateR̃, we have

the achievable region as in Proposition 7.5.
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