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ABSTRACT

Interference management is one of the key techniques that drive evolution of wireless
networks from one generation to another. Techniques in current cellular networks
to deal with interference follow the basic principle of orthogonalizing transmissions
in time, frequency, code, and space. My PhD work investigate information theoretic
models that represent a new perspective/technique for interference management. The
idea is to explore the fact that an interferer knows the interference that it causes to
other users noncausally and can/should exploit such information for canceling the
interference. In this way, users can transmit simultaneously and the throughput of
wireless networks can be substantially improved. We refer to the interference treated
in such a way as “dirty interference” or “noncausal state”.

In particular, my PhD thesis investigates two classes of information theoretic
models and develops dirty interference cancelation schemes that achieve the funda-
mental communication limits. One class of models (referred to as state-dependent
interference channels) capture the scenarios that users help each other to cancel dirty
interference. The other class of models (referred to as state-dependent channels with
helper) capture the scenarios that one dominate user interferes a number of other
users and assists those users to cancel its dirty interference. For both classes of mod-
els, by comparing the corresponding achievable rate regions with the outer bounds on
the capacity region. We characterize the channel parameters under which the devel-
oped inner bounds meet the outer bounds either partially of fully, and thus establish

the capacity regions or partial boundaries of the capacity regions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

New innovation of interference management is the majorofaittat drives evolution of
cellular wireless networks from one generation to anotiarsecond generation cellu-
lar systems, the frequency division multiplexing (FDM) ande division multiplexing
(TDM) are adopted, in which multiple transmissions are agtimalized in frequency or
time to avoid interference among these transmissions. itd tfeneration cellular sys-
tem, orthogonal codes are used by simultaneous transméssi@void interference, which
is widely known as code division multiple access (CDMA). brrent fourth generation
cellular networks, orthogonal frequency division mukixihg (OFDM) is implemented,
which significantly improves data rate.

Despite the above new innovations, the demands for inergigshigh data transmis-
sion rate continue to call for new interference manageneafirtologies for future cellular
networks. Given that all up-to-date cellular wireless reekg use the orthogonalization
idea for handling interference, should/can new generatioeless networks employ non-
orthogonalization idea so that all communication resaitan be used simultaneously to

improve throughputs?



A general non-orthogonal approach was proposed by Han abayashi in [1] via
information theoretic study of the interference channehe Tdea is to split messages at
transmitters so that receivers can decode part of messagesléd for other receivers and
remove these signals (i.e., interference) from their xezkoutputs. Some special cases
of such a scheme have been shown to be optimal (i.e., acHieveapacity region) in
certain interference regime. (1) Fully decoding and cangeahe interference has been
shown in [2] to be optimal in the very strong interferenceimegy (2) Jointly decoding
all messages has been shown in [3] to be optimal in the stiategférence regime. (3)
Treating interference as noise has been shown in [4—6] topbeal (achieves the sum
capacity) in the weak interference regime.

However, rate splitting requires user pairs to share coalehyavhich substantially in-
creases the complexity of design. In many cases, this is osdilple in practice when
transmissions are not within the same network domain. Euribre, the interference can
be superposition of signals to many receivers (in downliakyl it is difficult for a receiver
to decode such interference. Although the special caseeafitig interference as noise
does not require codebook sharing, it does not perform wellast scenarios.

In this thesis, we explore a new perspective/techniquerftarfierence management,
which exploits the fact that an interferer knows the intefiee that it causes to other users
noncausally and can/should exploit such information forceding the interference. In this
way, users can transmit simultaneously and the throughipwireless networks can be
substantially improved. Since the interference that iscaosally known at the transmitter
is referred to as “dirty/state” corruption of the channelriformation theory, we refer to
the interference treated in such a way as “dirty interfeeioc “noncausal state”.

In the following, we use a practical example (see Fig. 1.Tytther illustrate our idea.
Consider a cellular network that incorporates devicedwice (D2D) communications. It
is typical that the cellular base station causes interfegém D2D transmissions. In fact, the

base station itself knows such interference noncausabatlse the interference is the sig-
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Fig. 1.1: A practical example for the D2D communication ifiidar system.

nal that the base station sends to cellular receivers. Thesnterference can be viewed as
the noncausal state sequence (denoteéd'as Fig. 1.1). The base station is then able to ex-
ploit such information about the interference (i.e., Stated send a help signal (denoted by
XoinFig. 1.1) to assist D2D users to cancel the interferenoeeShe help signak, may
also cause interference to the cellular receiver, simphgn®ng the state complete ruins
the cellular communication. Therefore, a more sophisitatheme should be designed to
deal with the interference. More specifically, this thessigns adapted dirty paper coding
schemes for various of state-dependent models, in whickt#te information is precoded
into help signal. The receiver then cancel the state imemfze with the assistance of the
help signal. The throughput of the wireless networks carcédre significantly improved,

compared with the orthogonalized transmission.

1.2 Channel Models

Towards designing a dirty interference cancelation fraor&vior wireless networks, this

thesis explores two classes of state-dependent intedemgtworks and the goal is to de-



velop dirty interference cancellation schemes that aehilee fundamental communication
limits. One class of models (referred to as state-dependtrterence channels) capture
the scenarios that users help each other to cancel dirtsfaréace. The other class of
models (referred to as state-dependent channels withekggure the scenarios that one
dominate user interferes a number of other users and assts users to cancel its dirty
interference. We next introduce the models that we studgiaibl

For the class of state-dependent interference channelstudlg two models, i.e., the
state-dependent interference channel with state knowothttkansmitters (IC-ST) and the
cognitive interference channel with state known at the gagntransmitter (CIC-ST). In
these models, transmitters interfere with each other, hadstate models the additional
interference due to the fact that the transmitters also segrahls to other receivers (not
included in the model) in broadcast scenarios.

For the IC-ST (see Fig. 1.2), two transmitters send two ngEss#o two receivers,
respectively, via an interference channel. The channeansipted by an independent and
identically distributed (i.i.d.) state sequence, whichssumed to be knowroncausallyat
both transmitters. One example scenario for this channelefsas as follows. In cellular
networks, two base stations communicate with two usersiwdie near the edge between
two adjacent cells. The state captures the signal that the s@tions transmit to other
users (not included in the model) in the network. For this elpdie consider both the

state-dependent regular IC and the state-dependent Z-IC.

W, X7

— Encoderl
Channel
—

P

W X ¥Z|X, X, (. ) 7" pf/z
— .~ Encoder2 ——

Fig. 1.2: Anillustration of the IC-ST models

The second model we study is the CIC-ST (see Fig. 1.3), inhwvhiprimary trans-



mitter sends a message to two receivers (receivers 1 andf2pssistance of a cognitive
transmitter, and the cognitive transmitter also sends aragpmessage to receiver 2. The
channel is corrupted by an i.i.d. state sequence. The g@qteeace is noncausally known at
the cognitive transmitter. This model is well motivated nagtical networks. For example,
it is often the case in cognitive radio networks that a pryraansmitter wishes to send
a common message to a number of primary receivers, and atisegmansmitter (which
often knows the primary transmitter's message via its resggscoordination with the pri-
mary transmitter) can cooperatively send the common mestsathe primary receivers.
This cognitive transmitter may also have its own messagaded to one of the primary
receivers. At the same time, the cognitive transmitter @canraunicate to some secondary
receivers simultaneously, and its signals to these receitien interfere with the primary
receivers. Such a signal is clearly known by the cognitimegmitter noncausally, and is
captured by the state in the model. A similar scenario cama@isur in cellular networks.
For example, two base stations may cooperatively sendicartenmon information to
many receivers which are near the edge between the two halishte two base stations
serve. In addition, one of the base stations may transmitiaddl information to receivers
in its own cell.

For the CIC-ST model, we investigate two scenarios. The deshario assumes that
the state sequence is noncausally known at both the cogitimsmitter and receiver 2,
and is referred to as the CIC-STR (which stands for the cogriitterference channel with
state information noncausally known at both the cognitisagmitter and receiver 2). The
second scenario assumes that the state sequence is ndlydawwan only at the cognitive
transmitter, and is referred to as the CIC-ST (which standshe cognitive interference
channel with state information noncausally known at ong/¢bgnitive transmitter).

The second class of models we study are state-dependemtetbavith an additional
helper, for which we study four models, i.e., the state-déepet single-user channel with a

helper, the state-dependent parallel networks with a caomstate-cognitive helper, the
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Fig. 1.3: Anillustration of the CIC-STR (including the dashline) and CIC-ST (without
the dashed line) models

state-dependent multiple access channel (MAC) with a helped the state-dependent
broadcast channel with a helper.

In the state-dependent single-user channel with a helperKgy. 1.4), the transmitter
communicates with the receiver via a state-corrupted alanthe state is not known to

the transmitter, but to a helper noncausally, which wishessist the receiver to cancel the

X7 '
Encoder 0—2 S"

v ~

W 7L Chs Vi W
HEncoder 1 & f{;hmnel Decoder 1 ——

YX, X5 (*)

State.

Fig. 1.4: An illustration of the state-dependent singlerushannel with a helper

In the state-dependent parallel networks with a commore-stagnitive helper (see
Fig. 1.5), K transmitters wish to senfl’ messages respectively 0 receivers overx
parallel channels, and the receivers are corrupted bysstatee channel state is known to
neither the transmitters nor the receivers, but to a helpacausally. The helper hence
assists these transmitter-receiver pairs to cancel stadarence. Furthermore, the helper
also has its own message to be sent simultaneously to isspanding receiver. Since the
state information is known only to the helper, but not to tbheresponding transmitters,

transmitter-side state cognition and receiver-side staéference are mismatched. The



practical motivation of such a channel can be referred to Eify with the understanding
that the helper models the base station and the multipldi@lachannels model multiple
D2D transmissions.

More specifically, we study three (sub) models of the stafgeddent parallel networks
with a common helper. Model | serves as a basic model, whiokists of only one state-
corrupted receiveri{ = 1) and a helper that assists this receiver to cancel starédaraace
in addition to transmitting its own message. Our study of thodel provides necessary
techniques to deal with state in the mismatched contexttfodysng more complicated
models Il and Ill. In fact, this model can be viewed as theestipendent Z-interference
channel, in which the interference is only at receiver 1 edusy the helper. In contrast to
the state-dependent Z-interference channel studiedquslyi in [7], which assumes that
state interference at both receivers are known to both €spanding) transmitters, our
model assumes that state interference is known noncausdifyto the helper, not to the
corresponding transmitter 1. Model Il consists of two traitter-receiver pairs in addition
to the helper, and only one receiver is interfered by a stegeence. Model Il consists
of a common helper assists multiple transmitter-receia@spvith each receiver corrupted

by an independently distributed state sequence.

S]?l L SKW

w, ’ X, [ Channel | Yo 8
»Encoder( . ,],Jlanne —— Decoder0
i, ()

X1" ‘ = Channel r 8

Decoderl ——
P}; X XS, (*)

. . .

—— Encoderl

- . . A

. Lyl Chz | K | K
— Encoderk 0 : e DecoderK ——

P}'KX@XKSK (=)

Fig. 1.5: An illustration of the state-dependent parallemnel with a common helper

In the state-dependent MAC with a helper (see Fig. 1.6)stratter 1 and transmitter

2 send their own message to the receiver, respectively. id@enel is corrupted by a state



sequence. The state sequence is known to neither the titsgrsnmior the receiver, but is
known to a helper noncausally. Hence, the helper assisteet®iver to cancel the state
interference. A practical example for this model could be tfultiple-access communi-
cations in a picocell located inside a macrocell of a cetlaketwork. The macrocell user

serves as a helper to assist the communications in the flitmcancel the interference.
B J

Encoder 0

w; X7 yr W,

Encoder 1 N awa I Decoder ——

h 4

‘Encoder 2

Fig. 1.6: An illustration of the state-dependent MAC withedger

For the state-dependent broadcast channel with a helpestwdéed two scenarios.
In scenario | (see Fig. 1.7), a transmitter sends one comnmessage to two receivers
over the broadcast channel, which is interfered by a stapeesee. The state sequence is
known at neither the transmitter nor the receivers. A helgech knows the state sequence
noncausally assists both receivers to deal with the chastaid. Scenario Il (see Fig. 1.8)
is similar to scenario | with the difference being that tresmitter sends two independent
messages to receivers 1 and 2, respectively. This modefatigitarises in many practical
scenarios, for example, downlink cellular communicatiddsnsider two adjacent cells in
a cellular network. It is likely that downlink transmissisignals from one base station
causes large interference to users in its adjacent cell.ederythe base station can serve
as a helper at the same time, and assists the downlink tragsismiin its adjacent cell to
cancel its interference.

It is clear that in the first class of state-dependent interfee channels, the state in-
formation is known at one or both transmitters and can heecexploited for encoding
messages. Hence, the focus is to design schemes that blkest gbgpe information for en-

coding messages. However, for the second class of staadept channels with a helper,
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Fig. 1.7: Anillustration of the state-dependent broadchannel with a helper: Scenario
with a common message

l | 5" yr 1 W
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Fig. 1.8: Anillustration of the state-dependent broadchsinnel with a helper: Scenario
with private messages

the state is known at only a helper which does not know messagiee key issue is to
design encoding and state cancellation in a distributedherato achieve the best overall
performance. We are also interested in exploring whethstridiited scheme can achieve

the performance of the channel without the state corruption

1.3 Related Work

Initiated by Shannon in [8], the channel with state corrupthas been intensively studied
for the past a few decades. Motivated by practical interestaodeling interference as
state, our focus is on the cases in which the state is nonbakesawn at transmitters. In
[9], the single-user channel with state known noncausalthetransmitter is studied, and
the capacity is obtained for the discrete memoryless cHamn&el'fand-Pinsker binning.
Based on this result, in [10], the capacity for the stateedéent single-user Gaussian
channel is obtained, and it is shown that the state can beqgtlsrtanceled as if there is no
state interference. The achievable scheme is referred“thraspaper coding"”.

Following similar schemes, various state-dependent n&tmodels are studied, and it
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has been shown that the state interference can be perfepidytally canceled at receivers.
For example, the state-dependent broadcast channel hastoeked in, e.g., [11-15], in
which the transmitter knows the state noncausally and catoixsuch information to
select the codeword to be sent in the channel. In [16], tHe-sk@pendent relay channel
is studied, in which the source node knows the state and carswsh information for
encoding. In [11, 17], the MAC with the receiver being cotegby one state variable
is studied. In such a model, both transmitters are assum&daw the state sequence
noncausally, and can use the state information to indeplydncode their own messages.
Similarly, in [18], the state-dependent cognitive MAC iadied, in which one transmitter
knows both messages as well as the state, and can hencetasafstanation to encode
both messages.

More closely to our work, a few interference channel modets wtate noncausally
known at transmitters have been studied. In [19] and [2@,itkerference channel with
state known at both transmitters is studied. Various aelievschemes have been designed
and the corresponding achievable regions are compare@]inBe gap between inner and
outer bounds on the capacity region has been characterifad eertain finite bits in [19].
In [21], the interference channel is corrupted by two indefsnt states, each interfering
one receiver. The states are available at their correspgrtdansmitters. The capacity
region is obtained for the strong interference regime withdtate power going to infinity.

The Gaussian state-dependent IC model we study is the sathatagudied in [19]
and [20]. However, differently from [19, 20], our focus heseto characterize the exact
capacity region, or points on the boundary of the capaciiore We note that the capac-
ity region/the sum capacity has been characterized for #negs§an interference channel
withoutstate in the following three regimes: (1) very strong irgezhce channels [2]; (2)
strong interference channels [3]; and (3) a certain weakf@tence channel [4-6] (based
on the technique developed in [22]). And for the state-ddpahZ-IC model, capacity/sum

capacity has been characterized for the correspondinghehasithout state for the (1) very
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strong Z-IC [3, 23]; strong Z-IC [3, 23]; and weak Z-IC [23].e/8tudy whether or not the
capacity region/the sum capacity in these regimes are\&thle=when the two receivers’
outputs are also corrupted by differently scaled state jfesa] what transmission schemes
are capacity achieving.

In [24] and [25], a model of the cognitive interference cheinmith state was studied,
in which both transmitters (i.e., the primary and cognitikensmitters) jointly send one
message to receiver 1, and the cognitive transmitter senddditional message separately
to receiver 2. The i.i.d. state sequence is honcausally kretwhe cognitive transmitter
only. Inner and outer bounds on the capacity region wereigeov The difference of our
CIC-ST model from the model studied in [24] and [25] lies imattthe common message
jointly sent by both transmitters needs to be decoded at taaitivers instead of only at
receiver 1 as in [24] and [25]. Although the two models apailar to each other, their
capacity regions can have different forms, and the trarsarisschemes achieving these
regions can also be different. This fact is already dematedrby the two corresponding
models without state studied respectively in [26—32] argl.[3The capacity bounds in
[26—32] and the capacity region in [33] have different foyiausd are achieved by different
achievable schemes. Therefore, our study can lead to newnation theoretic insights.

A common nature that the above models share is that the useed the same level,
thus, for each message to be transmitted, at least one tittersmthe system knows both
the message and the state, and can incorporate the stat@atifun in encoding of the
message so that state interference at the correspondeigagecan be cancelled. However,
in practice, it is often the case that transmitters that hmgesages intended for receivers
do not know the state, whereas some third-party nodes knewsttte, but do not know
the message. In such a mismatched case, a dominant useelpitilhthe interfered users
to cancel state, though state information cannot be exgalait encoding of messages. A
number of previously studied models capture such mismetpheperty. For example,

in [34], a transmitter sends a message to a state-deperetmiter, and a helper knows
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the state noncausally and can help the transmission. eattiding is designed in [34]
for the helper to assist state cancelation at the receiadrjsashown to be optimal under
certain channel conditions. In [35, 36], the state-depenhdaday channel is studied, and
the case with the state noncausally known only at the reldlyggsnismatched scenario.
Furthermore, in [37], the state-dependent MAC channeludist with the state known at
only one transmitter. In such a case, the other transnsitteéssage cannot be encoded
with the information of the state. In [38—40], the MAC is agpted by two states that are
respectively known at the two transmitters. In such a casigher message can be encoded
with the full information of the state. In our study, we alsmcfis on the mismatched
scenarios as discribed above. Howecer, we are interestbeé iiollowing issues that are
not captured in the previously studied models: (1) what ésdptimal way for the helper
to assist the interfered receiver (2) when there are maltphte-dependent transmitter-
receiver links, how should the helper trade off among hejpimultiple state-interfered
receivers; (3) when the helper has its own message interwlesl eparate receiver (not
state-dependent), how should the helper trade off betweedirsg its own message and
assisting state-dependent receivers; and (4) under waanehconditions, the above two

tradeoffs are optimal (i.e., achieve the boundary of thecépregion).

1.4 Summary of Contributions and Thesis Organiza-
tion

As a summary, this thesis leads to one journal publicatids, [#vo journal submissions
[42] and [43], and eight conference publications [44-5M]tHe following, | briefly sum-
marize the contributions of my thesis.

In Chapter 2, we study the state-dependent IC/Z-IC. Moreipally, in the very
strong interference regime, we characterize the conditbtorthe channel parameters, under

which the capacity region of the IC and Z-IC channegithoutstate can be achieved by the
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correspondingstate-dependenC/Z-IC. The capacity of the state-dependent IC/Z-IC are
thus characterized under those cases. In the strong irgeceregime, we characterize the
conditions on the channel parameters, under which pointsepapacity region boundary
of the channelvithout state can be achieved. Hence, these points also lie on tlae-cap
ity region boundary of the state-dependent channel. Fowdak interference regime, we
obtain the sum capacity. We also compare the state-deperetgdar IC with Z-I1C, and
provide a few insights.

In Chapter 3, we study the CIC-ST(R). We first study the CIGRSHor this scenario,
we obtain the capacity region for both the discrete memesyésd Gaussian channels. We
further study the CIC-ST. For this scenario, we obtain theerrand outer bounds on the
capacity region for the discrete memoryless channel andedgsaded version. Then we
characterize the capacity region for the degraded semidetistic channel and for chan-
nels that satisfy a less noisy condition. For the Gaussianm#ls, we partition the channel
into two cases based on how the interference compares véthigimal at receiver 1. For
each case, we derive the inner and outer bounds on the capagibn, and characterize
the partial boundaries of the capacity region. We also dbarize the full capacity region
for channels that satisfy certain conditions. We furthesvglthat certain Gaussian chan-
nels achieve the capacity of the same channels with stateansally known at both the
cognitive transmitter and receiver 2.

In Chapter 4, we study the state-dependent single-useneharth a helper. In the
previous work [34], the capacity in the regime of infinitetstpower is characterized based
on Lattice coding. In this thesis, we consider the generse¢ @dth finite state power. We
first derive the achievable scheme combining two methodsiteel state: 1. precoding
the state with a single bin scheme; 2. directly reversingthte. By comparing the lower
bound derived and the upper bound from the previous work, vegacterize the capacity
rate for channel under various channel parameters.

In Chapter 5, we study three models of parallel communioatetworks with a state-
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cognitive helper. For each model, there is unique challeagiesign capacity-achieving
schemes for the helper to trade off among multiple functidfer model I, we design an
adapted dirty paper coding together with superpositionngptbr the helper to trade off
between assisting to cancel the state and transmittingvtsroessage. We showed that
such a scheme achieves the full capacity region or segmertkeaapacity region bound-
ary for all channel parameters. For model I, we design airayer scheme, such that the
helper assists receiver 1 to cancel the infinite-power sthile simultaneously eliminating
its interference to receiver 2. Such a scheme achieves gvoes#s on the capacity region.
Over one segment, the helper is capable to fully cancel teegfarence that it causes to
receiver 2, and simultaneously assists receiver 1 to aglaezertain positive rate. In the
second segment, the sum capacity is obtained with the hdgmicated to help receiver
1. For model lll, we employ a time-sharing scheme such thahtdper alternatively as-
sists each receiver, and we show that such a scheme actievasnh capacity for certain
channel parameters.

In Chapter 6, we study the state-dependent MAC with a helperfirst derive an outer
bound on the capacity region, and then obtain an inner boagédon a dirty interference
cancelation scheme. By comparing the inner and outer bouvelgharacterize the full
capacity region or segment on the boundary of the capaaipmeunder various channel
parameters.

In Chapter 7, we study the state-dependent broadcast dhaitima helper. In scenario
1, the transmitter sends one message to both receiversnaswmario Il, the transmit-
ter sends two private messages respectively to two reseiwd®e derive inner and outer
bounds for both scenarios. By comparing the inner and owandbs, we characterize
capacity/capacity region under various ranges of chararalpeters.

In Chapter 8, we summarize the above results with some itssighd discuss about

possible future works.
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CHAPTER 2

STATE-DEPENDENT INTERFERENCE

CHANNEL

In this chapter, we study the state-dependent regular IGtendtate-dependent Z-IC. We
consider three regimes for each channel model, i.e. the steopng, strong and weak
regime. For both very strong state-dependent regular ICZat@, we characterize the
capacity region and the conditions under which capacitioreig obtained. For the strong
(but not very strong) state-dependent regular IC and Z-I€ characterize the points on
the capacity boundary. For the weak state-dependent relfiiand Z-IC, we obtain the
sum capacity. And for each regime, we make comparison betweeresult for regular
IC and Z-IC, and reveal whether Z-IC has advantage over aed@ in cancelling state

interference.

2.1 Channel Model

In the state-dependent IC and the state-dependent Z-1CF{geé.2 in Section 1.2. For
convenience of reference, we include the figure again agHign this section), transmitter

1 sends a messagg; to receiver 1, and transmitter 2 sends a mess$égéeo receiver 2.
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Fig. 2.1: The IC-ST model

The channel is corrupted by an i.i.d. state sequeficewhich is assumed to be known
noncausallyat both transmitters. More specifically, encodef;1: {W,,S"} — A} at
transmitter 1 maps a message € {1,...,2"%} and a state sequencé € S™ to an
input 27, and encoder %, : {W,,S"} — X} at transmitter 2 maps a message <
{1,...,2"%2} and the state sequene® to an inputz}. For the state-dependent regular
IC, these two inputs are sent over the memoryless interderehannel characterized by
Py 7 x,x,s, and for the Z-IC, only receiver 1 is interfered by transeni®’s signal, while
receiver 2 is free from interference. Hence, the channdiasacterized by, x, x,s and
Py, x,s. Decoder 1g; : Y7 — W, at receiver 1 decodd$’; and decoder 2, : Vi — W,
at receiver 2 is required to decotlé, with the probability of error approaching zero as the
codeword lengtn goes to infinity. The capacity region is defined to be the closd the
set of all achievable rate paif®;, Rs).

We study the Gaussian channel with the outputs at receivarsl2 for one channel

use given by

Y:X1+&X2+S+N1

wherea, b andc are constants, the noise variablég N, ~ N (0,1), andS ~ N (0, Q).
Both the noise variables and the state variable are i.i.@&r okkannel uses. The channel

inputs X; and.X, are subject to the average power constraiitand . For the Z-IC, the
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channel parametér= 0, and thus receiver 2 is not interfered by transmitter 1.

2.2 Very Strong Interference Regime

In this section, we study the state-dependent regular IZal@lin the very strong regime,
and characterize the conditions under which the capadifipmecan be obtained, i.e., the
capacity region of the I@vithoutstate can be achieved. We also compare the results of the

two channels.

2.2.1 State-Dependent Regular IC

In this subsection, we study the state-dependent regular tBe very strong regime, in

which the channel parameters satisfy

P1+a2P2+12(1+P1)(1+P2)

VP +P+1>(1+P)(1+P). (2.2)

In such a regime, the channeithout statas the very strong IC, and its capacity region has

been characterized in [2], which contains rate p@lts, R,) satisfying

Ry < =log (1 + Pl) (238)

N = N

Ry < = log(1+ P). (2.3b)

In this case, the two users achieve the single-user chaapatity even with interference.
Our focus here is to study under what conditions on the cHararameters we can design
schemes for thetate-dependen€C to achieve the above capacity region, i.e., the state at
receivers can be fully cancelled. Clearly, in this caseath@ve capacity region also serves
as the capacity region for the state-dependent channel.

There are two challenges here. (1) Since the state are stitiezently at two receivers,
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each transmitter needs to deal with the compound stategt@mun two receivers. (2) The
scheme to achieve the capacity region for the very strongit@owt state suggests that the
receivers decode the interference first, and then canaant the received output so that
decoding of the intended input does not experience inemf®. For the state-dependent
channel, if both transmitters employ dirty paper codingeigers decode only auxiliary
random variables, but not the exact input of the other trattsm Hence, canceling the
signal interference would cause certain left-over statrference.

In the following, we design a coding scheme to achieve thgisinser channel capacity
for each user based @ooperativedirty paper coding between the two transmitters such
that (1) the two transmitters cooperatively cancel the coungl states at the two receivers,
and furthermore (2) each transmitter design its dirty pamaut based on the original state
plus the left-over interference by decoding the other tratisr’s dirty paper coded inter-
ference. The cooperation between the transmitters islesdile to the state information
known to both transmitters.

We first design an achievable scheme for the discrete meessrylhannel, which is
useful for the Gaussian channel. The two transmitters entioeir messagdd’; and W,
into two auxiliary random variabldg andV’, respectively, based on Gel'fand-Pinsker bin-
ning scheme [9]. Since the channel satisfies the very stnuegférence condition, each
receiver first decodes the auxiliary random variable cpoeding to the message intended
for the other receiver, and then decodes its own messagecbdithg the auxiliary random
variable for itself. For instance, receiver 1 first decotleshen uses it to cancel the mes-
sage interference and state interference, and finally @scitsl message by decodibg

Such an achievable scheme yields the following achievagen.

Proposition 2.1. For the state-dependent IC with state noncausally knowro#t brans-
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mitters, the achievable region consists of rate pais, R,) satisfying:

Ry < min{I(U;V1V), [(U:Y2)} — I(U; S) (2.4a)

Ry < min{I(V;Y2U), I(V; Y1)} — I(V;S) (2.4b)

for some diStribUtionPSUVX1X2yly2 = PSPU|SPX1|USPV\SPX2\VSPY1Y2|X1XQS) whereU

andV are auxiliary random variables.
Proof. See Appendix A.1. O

By choosing joint Gaussian distributions for the auxilimandom variables and the
channel inputs in the achievable region given in Propasi®id, we can obtain an achiev-
able region for the Gaussian channel. In particulais designed to deal with the state
interference fory; after cancellingl’, andV is designed to deal with the state interfer-
ence forY, after cancelling/. Therefore, coefficients in dirty paper coding@fand V'
are jointly designed to cancel the states at the two receivEurthermore, by requiring
I(U; YA V) > I(U;Yr)andI(V; Y,U) > I(V; Y1) in (2.4a) and (2.4b), the resulting region
is the same as the capacity region of the channel withow, statl thus the capacity region

of the state-dependent IC is established. We state thi# neshe following theorem.

Theorem 2.1. Consider the state-dependent Gaussian IC with state naadiguknown
at both transmitters. If the channel parametétsb, ¢, P, P, Q) satisfy the following

conditions:

(b2P1—|—P2—|—CZQ+1)

(14P2)(c+cP1—bP1)2Q4+QPy (14 Pa—acPs)?
U+ B+ == marm-anm? )
P, 2P 1
(PL+aP+Q+1) >14 P, (2.5b)

Py(c4+cP1—bP1)2Q4+Q(14-P1)(1+Pa—acPs)?
(14 P)(1+ = 1((1+1131)(1+P2)—ablP1P2)22 )

then the capacity region consists of rate pdifg, R») satisfying(2.3a)and (2.3b) i.e., is

the same as the single-user capacity for both receivers.
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Proof. In Proposition 2.1, we sdf andV asU = X; + oS,V = X, + S, where
X1, X, and S are independent Gaussian variables with mean zero ancheas®,;, P;
and S, respectively. We then designbased on dirty paper coding fof’ = Y, — al =
X; + (1 —apB)S + Ny, and designs based on dirty paper coding foff = Y, — bU =

Xy + (¢ = ba))S + No. We further requirev and 5 to satisfy the following conditions:

a P
1—af Pi+1
g P
c—ba Py+1

(2.6a)

(2.6b)

By solving the equations (2.6a) and (2.6b), we have

Pi(1+ P, — ach,)
(1+P)(1+ P) —abP Py
cPy(C(1+ Pr) —bPy)
(1+P)(1+ P) —abP Py

b=

Then the bounds in equations (2.4a) and (2.4b) becomes

Ry < zlog(1+4 P)

R2 < log (1 + PQ), (27)

N — DN =

%log (1+ P) < (U Y) — I(U:S)

%log (14 P) < I(V:Y3) — I(V: 8). (2.8)

By computing the mutual information terms in the above eignatbased on the chosen
distributions forU andV, we obtain the conditions given in the theorem. Such an &chie

able region is therefore the capacity region, because ltassame as the corresponding
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channel without state. This can be formally shown by follogvsteps similar to those in

Appendix A.7. O

Although the conditions (2.5a) and (2.5b) are expressednmpticated forms, they can
be easily checked numerically. We provide numerical itatsbn in Section 2.2.3. Fol-
lowing Theorem 2.1, we also obtain the following result toe state-dependent symmetric

Gaussian IC as a special case.

Corollary 2.1. For the state-dependent symmetric Gaussian IC with stateaugsally
known at the transmitters, i.ex,= b, ¢ = 1, and P, = P,, the capacity region contains

rate pairs(R;, R,) satisfying

Ry < =log(1+ P)

N — N~

Ry < =log(1+ P), (2.9)

if a > ay,, Wwhereay, solves the following equation

(P+a*’P+Q+1)(1+ P+ aP)?
(1+P)[(1+P+aP)>+Q(1+2P)]

=1+P. (2.10)

Proof. If « = b andc = 1, then the conditions (2.5b) and (2.5a) reduce to the foligwi

single condition:

(P+a*P+Q+1)(1+P+aP)?
(1+P)[(1+P+aP)?+Q(1+2P)]

>1+P. (2.11)

Such a condition is equivalent to the one given in the complla O
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2.2.2 State-Dependent Z-IC

In this subsection, we study the state-dependent Z-IC)i-e .0, in the very strong regime,

in which the channel parameter satisfies

a>>1+ P (2.12)

Under the above condition, the chanméthoutstate is very strong, and its capacity region
contains rate pairéR;, R,) satisfying (2.3a) and (2.3b), i.e., the two users achieee th
single-user channel capacity.

Similarly to the regular IC, we also design cooperativeydpaper coding between
the two transmitters, which encodes the messageand 1V, into two auxiliary random
variablesU andV, respectively. The difference from the scheme for the r@gld lies
in the fact that since receiver 2 is interference fréezan be designed to fully cancel the
state at receiver 2. Then receiver 1 first decodes the ayxiadom variablé” to cancel
the interference as well as partial state, and then dectglewn message and cancels the
remaining state by decoding the auxiliary random varidbleBased on this achievable

scheme, we have the following achievable region for therdisanemoryless channel.
Proposition 2.2. For the state-dependent Z-IC with state noncausally knaviothn trans-

mitters, the achievable region consists of rate paiks, R,) satisfying:

Ry < I(U; VY1) = I(U; S),

Ry < I(V;Ya) — I(V;S) (2.13)

for some distributionPs Py s Py (s Px, jusPx,vs Pri x, x25 Pys) x5 that satisfied (V;Y;) <

I(V;Yr).

Proof. See Appendix A.2. O
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By choosing the joint Gaussian distribution for the auxylilendom variables and the
channel inputs in the achievable region in Proposition\&e2pbtain the achievable region
for the state-dependent Gaussian Z-IC. In particular, theliary random variabld/ is
designed to deal with the state interference¥grbut U is designed to deal with the state
interference forY; after cancellingl”. By further comparing this achievable region with

the capacity region of the Z-I@ithoutstate, we obtain the following capacity result.

Theorem 2.2. For the state-dependent Gaussian Z-1C with state nonchusabwn at both

transmitters, if its channel parametefs, ¢, P, P,, () satisfy the following conditions:

Pg(a2P2 + P1 + 1)
P,Q(1 —a)?2+ (P +a2Q) (P + 1)

>1+P27

Py

wherea = Byt

¢, then the capacity region consists of rate pdifg , R») satisfying(2.3a)
and(2.3b)

Proof. We setU andV in Proposition 2.2 a8/ = X; + 55,V = X5 + aS, whereX, X,
and S are independent Gaussian variables with mean zero ancheas®;, P, and @),

respectively, and set andg to be

Py P
pum— 767 =
“ (1+P,) & 1+ P

Substituting the above choice of the Gaussian distributitm Proposition 2.2 yields the
desired region and the condition in Theorem 2.2.

Since such an achievable region is the same as the capagiiy & the corresponding
channel without state, it can be shown to be the capacitymnegf the state-dependent

channel. 0
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2.2.3 Comparison of State-Dependent Regular IC and Z-IC

In this subsection, we compare the result in Theorem 2.1hestate-dependerggular

IC and the result in Theorem 2.2 for the state-dependdft

---Z-IC
—Regular IC

4/
2, 4

15 2 2.5 3 3.5 4
a

Fig. 2.2: Conditions on channel parametersc) under which the state-dependent Gaus-
sian regular IC and Z-1C achieve the capacity of the corredpg channel without state in
the very strong regime.

We setP, = 1, P, = 1, and@ = 1.2 for both channels, and set the additional inter-
ference link in the regular IC to have the channel daia 4 such that it does not affect a
fair comparison. In Fig. 2.2, we plot the range of parametersga, ¢) under which the
two single-user channel capacities can be achieved fordtate-dependemnegular ICand
Z-IC. The ranges between the two solid lines and between the tsfeeddines respectively
correspond to the regular IC and Z-IC. It is clear that theil@glC has a larger range than
the Z-IC particularly for large.. Such observation suggests that it is easier to fully cancel
the state for the regular IC than the Z-IC, which may appeantar intuitive, since the
state-dependent Z-IC possesses an interference frediifi&ct, it is reasonable, because
receiver 2 in the regular IC can decode the dirty paper codgdisof transmitter 1 due to
the very strong interference, via which it can cancel cerganount of state. In this way,
the one more interference link to receiver 2 in the regulané{ps receiver 2 to cancel the

State.
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2.3 Strong Interference Regime

Since the very strong IC is studied separately in Section id.2his section, we study
the state-dependent regular IC and Z-IC in the strong, butvery strong regime, and
characterize the conditions under which points on the égpesgion boundary can be

obtained. We then compare the results for the regular IC alt@l Z

2.3.1 State-Dependent Regular IC

In this subsection, we study the state-dependent reguliartti® strong but not very strong

regime, in which the channel parameters satisfy

min{ P, + a*P, + 1,b°P, + P, + 1} < (1 + P)(1 + PR,). (2.14)

Without loss of generality, we assume that+ o>P, + 1 < v*P, + P, + 1. Under the
above conditions, the I@ithoutstate is strong, and the capacity region was characterized

in [3], which contains rate pairg?;, R,) satisfying

—_

1
Ry < §log(1 +P), Ry< §log(1 + P),

1
R, + Ry, < 3 log(1 + P, + a*Py). (2.15)

The above capacity is achieved by requiring both receivedetode both messages, and
hence the capacity region is the intersection of the capesitions of two multiple-access
channels. We illustrate such a capacity region in Fig. Z3ha pentagon O-A-B-E-F-O.
Our goal here is to study whether points on the boundary di sygsentagon (i.e., the
capacity region boundary of the Mgithout state) can be achieved by the corresponding

state-dependen€C. The main difference of the strong regime from the vergrsgrregime
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Fig. 2.3: Capacity region of the strong IC without state

studied in Section 2.2 is the additional sum rate constmaitite capacity region. Although

the cooperative dirty paper coding scheme that we desigthévery strong regime fully

cancels the state in the single-user rate bounds, it dodsalhyotancel the state in the sum
rate bound. Thus, new schemes need to be designed here ifartiee state-dependent
IC to achieve the sum rate boundary of the capacity regiohef@ without state, i.e., the
line B-E in Fig. 2.3. Then the points on the line A-B and thellR-E are achievable if the
two corner pointg3 and £ on the sum rate boundary are achievable.

The idea of our achievable scheme is to exploit the fact ttestum rate boundary B-E
is due to the decoding requirement at receiver 1 (as a receivibe MAC), and hence
every point on B-E can be achieved by message splitting acckessive cancelation. For
the state-dependent channel, in addition to rate spljttiegalso utilizdayered dirty paper
codingandsuccessive state cancelatitmfully cancel the state at receiver 1. If such a
coding scheme does not introduce extra bounds for receitced@code the two messages,
then the sum rate boundary can be achieved.

Based on the above idea, we first design an achievable sclugrtteefcorresponding
discrete memoryless channel which is useful for studyimgGlaussian channel. We split
the messag®/; into two partsit;; andl¥;,, which are encoded into the auxiliary random

variabled/; andU, successively using Gel’fand-Pinsker binning. We alsd Hpéi message
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W5 into two partsi¥,; and WWs5,, which are encoded into the auxiliary random variables
Vi and V5 successively using Gel'fand-Pinsker binning scheme. Beteivers decode
both messages with reasonable decoding orders, such édetdoding capability of the
two receivers are accommodated. As an illustration, we adrpt the decoding order
W1, War, Wao, Wio at receiver 1 and the decoding ord®&s;, W11, Wiq, Wa, at receiver 2.

The resulting achievable rate region is given in the follogviProposition.
Proposition 2.3. For the state-dependent IC with state noncausally knowro#t brans-

mitters, an achievable region consists of rate paiRs, R,) satisfying:

Ry <min{I(Uy; Y1), I(Uy; ViYa)}
+ min{I(Uy; ViVoY1|Uy), I(Us; ViYa|Uy) } — I(U Us; S)
Ry <min{I(V4;Y3), I(Vi; UiY4)}

+ min{f(Vz; U1U2Y2|V1)7 I(V2§ U1Y1|V1)} - I(V1V2§ S) (2-16)

for some distribution

Pstvoavivax, xov1 s = PsPuy s Puy s Pxy o005 Pvi s Pva 1 svi Pxavivas Pyiva s X1 X

whereUy, U, V1, andV; are auxiliary random variables.
Proof. See Appendix A.3. O

Remark 2.1. A more comprehensive achievable region can be obtainedknygt#he con-
vex hull of the union over achievable regions resulting fedhpossible decoding orders of

messages at the two receivers.

Proposition 2.3 provides an example achievable regioredan which we next show
that the designed scheme achieves the capacity region toal fepundary of the capacity

region for the state-dependent Gaussian IC under certatfittans on channel parameters.
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Namely, we characterize the conditions on the channel patersiunder which points on
the sum rate boundary of the IC without state (i.e., the lire iB Fig. 2.3) can be achieved
by the state-dependent Gaussian IC.

We note that any rate point on the line B-E can be charactkéhye

1 P! 1
R =-1 1 1 —log (1 + PV
1T Og( +a2P2”+P1”+1)+2 og(1+F7)
1 a’P! 1 a’ P!
Ry =—1 1 2 —1 1 2 2.17
275 °g< +a2P2”+P1+1)+2 o8 +P1”+1) (217

for someP|, Py, Py, Py > 0, P + P/ < P, andP; + P) < Ps.

In order to achieve any rate point given in (2.17), we desayeted dirty paper cod-
ing for the auxiliary random variablds,, V1, V5, andU, in order to successively decode
messages and cancel the state at receiver 1. More speygjfaiety paper coding fot/; is
designed to cancel the state treating all other variablesiag, and their;, V, andU, are
designed to successively cancel the residual state afinasting the previously decoded
auxiliary random variables fro;. Furthermore, by requiring the rate bounds due to de-
coding at receiver 2 to be larger than those due to decodiregaiver 1, the rate point of
interest is thus achievable for the state-dependent IC.tslte this result in the following

theorem.

Theorem 2.3. Any rate point given itf2.17)with the parameter§p;, P/, P;, Py') is on the
capacity region boundary of the state-dependent IC if trenalel parameters satisfy the

following conditions

1 P!
“log (1 ! <I(Uy; VL Y- 2.18
2 0g< +P1”+a2P2+1) (U3 iY2) (2.182)
1
5108;(1 + Pl') <I(Uy; ViYs|Uh) (2.18b)
1 a’P!
“log (1 2 <I(Vy: Y- 2.1
2 Og( + P1//+a2P2//+1) (Vlv 2) ( 80)

1 a’Py
§log (1 + T 1) <I(Vo; Uy Uy Ya| Vi) (2.18d)
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where the mutual information terms in the above conditiomsa@mputed based on the

following auxiliary random variables

Ul :X{—FOQS, U2 :X{/—‘—OQS

Vi =aX,+ B1S, Vi=aX]+ BS (2.19)

whereX{, X{, X}, X7 are independent Gaussian variables with mean zero and neeis
P, P/, Py and P, correspondingly,X; = X| + X{, Xy, = X/ + X/, anday, as, 5, and

[, are given by

_ L _ Py
N =0, g = —————F———
P1—|—CL2P2+1 P1—|—CL2P2+1

a?P/ a2P//
51:—22 s 522—22 .
P1+G,P2—|—1 P1—|—GP2+1

Proof. The achievability follows from Proposition 2.3 by choositng auxiliary random
variablesU;, U,, V1, and V5 as in (2.19) based on the successive dirty paper coding for
removing the state from the received signalso that the rate point given in (2.17) is
achievable at receiver 1. For this rate point to be achievalslo at receiver 2, following

Proposition 2.3, the following conditions should be satisfi

I(Uy; Y1) <I(Up; ViYa) (2.20a)

I(Uy; VALY, |Uy) <I(Us; V1Yo UY) (2.20b)
I(Vi; i) <I(Vi;Ya) (2.20c)
I(Va; Ur Y1 |Vi) <I(Va; UnUs Yo | V7). (2.20d)

By substituting the auxiliary random variables defined irl@2 into (2.20a)-(2.20d),
we obtain the conditions (2.18a)-(2.18d) on the channelpaters, under which the given

boundary point is achievable by the state-dependent ICs,Buch a point is on the capac-
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ity region boundary, because it is on the capacity boundatiieochannel without state,
which serves as an outer bound. Formal justification caoviofiteps similar to those in

Appendix A.7. O

The mutual information terms in Theorem 2.4 can be expjicittmputed in close
forms. Thus, Theorem 2.4 provides a computable way for dhgokhether any point
on the sum rate boundary of the capacity of the IC withouesimtlso on the capacity
boundary for the corresponding state-dependent chandel wertain channel parameters.

We provide an example range of parameters in Section 2.3.3.

2.3.2 State-Dependent Z-IC

In this subsection, we study the state-dependent Z-1C {i-e.0) in the strong but not very

strong regime, in which the channel parameters satisfy
1<a*<(1+P). (2.21)

Under the above conditions, the Z-¥@thoutstate is strong (but not very strong Z-1C),

and the capacity region is characterized in [3], which ciosteate pairg R;, R») satisfying

1
R+ Ry < 5 log(1 + P, + a*Py)

1 1

The above capacity region is illustrated in Fig. 2.4 as th&tgmon O-A-B-E-F-O, which
is obtained by requiring receiver 1 to decode both messausegeiver 2 to decode the
messagéls.

Similarly to the regular IC, our goal here is also to study thiee the points on the
boundary of such a pentagon (i.e., the capacity region kemyraf the Z-ICwithoutstate)

can be achieved by the correspondstgte-dependerZ-IC. We focus on the sum rate
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Fig. 2.4: Capacity region of the strong Z-1C without state

boundary of the pentagon (i.e., the line B-E in Fig. 2.4), to&h the points on the line A-B
and the line E-F are achievable if the two corner poiitand £ are achievable. We first
design an achievable scheme for the state-dependenttdiscesnoryless Z-1C following
the same idea as that for the regular IC based on rate splittiyered dirty paper coding
and successive state cancelation aiming at fully cancéfiegtate at receiver 1. The only

difference lies in that receiver 2 here decodes d¥ly andil,,. Such a scheme then yields
the following achievable rate region.

Proposition 2.4. For the state-dependent Z-IC with state noncausally knavio#hn trans-

mitters, an achievable region consists of rate paiRs, R,) satisfying:

Ry < I(Uy; ViYh) + 1(Uy; ViVRY1|U) — 1(Un, Us; S)
Ry < min{I(V4;Ys), I(V1; Y1)}
+ min{I(Va; Yo|V1), I(Vo; Uy Y1|VA) } — 1(V1 V53 S) (2.23)

for some distributioPsy, v, v, ve x, x,v2v: = Ps P )5 Pyvive s Pxy 01025 Pxavives Pri s x1 x5
Py, |sx,, WhereU,, Us, Vi andV;, are auxiliary random variables.

Proof. See Appendix A.4. O

Now specializing Proposition 2.4 to the Gaussian case yialt achievable region,

based on which we can check if and under what conditions tivegon the line B-E in
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Fig. 2.4 are achievable. Since points on the line B-E cantsstharacterized in (2.17) , we
thus follow the same design of layered dirty paper codingtferauxiliary random variables
Ui, V1, V,, andUs; as that for the regular IC in order to fully cancel the statesativer 1

successively. Then by requiring the decoding bounds atverce to be larger than those
of receiver 1, points on B-E can be shown to be achievable éthte-dependent Z-IC.

We state this result in the following theorem.

Theorem 2.4. Any rate point characterized i{2.17)with the parametersP;, Py, Py, Py)
is on the capacity region boundary of the state-dependenis&an Z-IC with state non-
causally known at the transmitters if the channel paransesatisfy the following condi-
tions

a’Py . a’Py(Py+ 0*Q + 1)
a?Py + Py +1 = Pj(ab— )+ (P + 1)(a®P} + a2Q)

N a’Py . a’P)[Py(a*P) + (ab — a)*Q + a?) + &*Q(P) + 1)]
Pl +1 = a?2Py(a2Q + a®Pj) + (a2b — aa — ay)2PyPyQ + a*v2PyQ

1+

(2.244a)

(2.24b)

a’P}
a’Py+P1+1"

2 pr
a’ Py

whereo = PPAPA

andy =

Proof. In order to achieve a rate point given in (2.17) with the paetars(P;, Py, Py, Py),
we apply Proposition 2.4 and choose the auxiliary randonmekbas Uy, Us, Vi, and V5
based on the dirty paper coding as in (2.19) so that the stdateireceived signat; can
be fully canceled.

In order for receiver 2 to decode at this rate point (withotrtdducing more constraints

on the rates), due to Proposition 2.4, the following coodiishould be satisfied

I(Vi; Y1) <I(VisYa),  I(Va; UnYa[Vi) < T(Va; Ya V1), (2.25)

By substituting the auxiliary random variables defined ii192 into (2.25), the condi-
tions (2.24a) and (2.24b) on the channel parameters cantamet, under which the rate

point of interest is achievable over the state-dependdft. Z+hus, such a rate point is on
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the capacity region boundary, because it is on the capagipm boundary of the channel

without state, which serves as an outer bound. O

Theorem 2.4 provides the conditions on the channel parasheteler which a certain
given point is on the capacity region boundary. In Proposif2.5 and Corollary 2.2, we
also characterize a line segment on the capacity regiondaoyffior a given set of channel

parameters.

Proposition 2.5. For the state-dependent Gaussian Z-IC with state nonchukabwn at
both transmitters, if a point (sa¥’) on the lineB — FE in Fig. 2.4 satisfies the conditions
in Theorem 4, i.e., it is on the capacity region boundaryntttee pointB is also on the
capacity region boundary, and thus the line segmBht- B is on the capacity region

boundary.
Proof. See Appendix A.5. O

Based on Proposition 2.5, we characterize a segment on plaeibaregion boundary

in the following corollary.

Corollary 2.2. For the state-dependent Gaussian Z-IC with state nonchukabwn at

. 2 2
the transmitters, lef?; = 1 log( PQQC”(GIZQ_(;?_F:’GQ%;FPBQQ), where3 = %. If Ry >

%log(l + fi’;i), then the lineB — B’ are on the capacity region boundary with the rate

coordinates of the point8 and B’ given by

1 1 a2P2
Point B : | =log(1l + P;), = log(1
oint (2 og(l+ Pyp), 5 og(l+ 1 +P1))

1
Point B : (5 log(1+ a®P;, + P)) — R3, R;) : (2.26)

Proof. See Appendix A.6. O
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2.3.3 Comparison of State-Dependent Regular IC and Z-IC

In this subsection, we compare the result in Theorem 2.3hHerstate-dependent regular
IC and the result in Theorem 2.4 for the state-dependent if+iie strong interference
regime.

In Fig. 2.5, we plot the parameter ranges characterized @ofiédm 2.3 and in Theorem
2.4. For both the regular IC and the Z-IC, we $gt=1, P, = 1, Q = 2 anda = 1.2.
Moreover, for the regular IC, we sét= 4, which implies that the interference is strong
enough such that its corresponding channel without stat¢heasame capacity region as
that of the Z-IC. Thus, the only flexible parameter left fottbthe regular IC and the Z-
IC is the scaling coefficient for the state. We study the range ©that guarantees the
points on the lineB — E to be on the capacity region boundary of the state-dependent
regular IC and Z-IC. We note that each point on the life- £ can be parameterized
as the rate paifR,, Ry) = (Ry,3log(1 + P, + a*P,) — R,), whereR, changes from
R; = 0.5 (corresponding to point B) t&;, = %log 1.72 (corresponding to point E). In
Fig. 2.5, for eachRk; (and hence for each corresponding point onfhe E line), we plot
the range of: that guarantees the poi(iR;, i) to be on the capacity region boundary
of the state-dependent regular IC to be between the two boéd, and plot the range of
c that guarantees the poi(iR;, R2) to be on the capacity region boundary of the state-
dependent Z-IC between the two dashed lines. Although tler&inges do not overlap,
their structures are similar and the sizes of the rangesamparable. This implies that
both channels have the same flexibility to achieve the capeegion boundary point of the
corresponding channel without state, and hence suggestaetiher channel cancels the
state more easily than the other. This is because for botrethdar IC and the Z-IC, the
layered dirty paper coding is designed in the same way toessoeely cancel the state for
receiver 1. Hence, the advantage of the Z-IC at the otheiverds not significant due to

the state interference that is not fully canceled. We furtfwee that Fig. 2.5 also suggests
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that it is easier to achieve a point on tRe- E line when the point is closer to the poift

for both channels.

3
2.5 |
i —Regular IC |
& e
o 1.57 PR
--------------------- P:L:l;
I e e
e o2
0

04 042 044 046 048 05
Rl(b|ts/use)

Fig. 2.5: Ranges of under which points on the sum capacity boundary of the strong
regular/Z-1C without state can be achieved by the statexddent channel

2.4 Weak Interference Regime

In this section, we study both the state-dependent reg@lant Z-IC in the weak interfer-
ence regime, in which the channel parameters satsty+ * P, )| + |b(1 + a*P»)| < 1 for

the regular IC and satisfy’ < 1 for the Z-IC. Under such conditions, the sum capacity for
the regular IC without state has been established in [4-8],far the Z-IC without state
has been established in [23]. In both cases, the sum cagagitpe achieved by treating
interference as noise at each receiver. Hence, for thespmneling state-dependent IC, in-
dependent dirty paper coding at two transmitters to cameestate at their corresponding
receivers (treating the interference as noise) can aclireveame sum capacity. Decoding
at each receiver is not affected by how the interferenceasigiroded. Such an observation

yields the following results.

Theorem 2.5. For the state-dependent Gaussian IC with state noncaukabtyvn at both

transmitters, ifia(1 + b*P;)| + |b(1 + a* )| < 1, then the sum capacity is given by

1 P, 1 P,
Com==log (14 -1 ) 4 Zlog 14+ 22 . 2.27
sum 20g<+a2P2+1)+20g<+b2P1+1) (2.27)
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For the state-dependent Gaussian Z-IC with state nonchulsabwn at both transmitters,

if a®> < 1, then the sum capacity is given by

1 P 1
=1 14+ —— —1 1+ 5). 2.2
Csum 5 Og( +a2P2+1) +2 Og( + 2) (2.28)

Proof. See Appendix A.7. O
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CHAPTER 3

STATE-DEPENDENT COGNITIVE

INTERFERENCE CHANNEL

In this chapter, we study the cognitive interference chbhwnith state. More specifically,
we consider two sub models, i.e., the CIC-STR and CIC-STt@ICIC-STR, we char-
acterize the capacity region for both discrete memorylassicel and Gaussian channel.
In particular, we partition the Gaussian CIC-STR into twtsdeased on the channel pa-
rameters, and derive the capacity region for the two seipectively. For the CIC-ST, we
derive inner and outer bound for the discrete memorylessredland its degraded version,
and obtain the capacity region for channels that satisfiazeconditions. We then study
the Gaussian CIC-ST. We also patrtition the channel into tets,sand derive inner and
outer bounds for the two sets. By comparing the inner andrdagends, we obtain the
partial capacity boundary for the Gaussian CIC-ST, anddafiacity region for channel

with parameters satisfying certain conditions.
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Fig. 3.1: The CIC-STR (including the dashed line) and the-SIC(without the dashed
line) models

3.1 Channel Model

For the cognitive interference channel with state knownnat toansmitter (see Fig. 1.3 in
Section 1.2. For convenience of reference, we include thediggain as Fig. 3.1 in this
section), we investigate two scenarios, i.e., CIC-STR apdlIC-ST.

In the CIC-ST, two transmitters (referred to as the primeappsmitter and the cognitive
transmitter) jointly send a messaigjé to two receivers (say receivers 1 and 2), and the
cognitive transmitter sends another mesdégéo receiver 2. The channel is also corrupted
by an i.i.d. state sequence. The scenario, in which the s¢gigence is noncausally known
at both the cognitive transmitter and receiver 2 (CIC-STiRR) the scenario, in which the
state sequence is noncausally known only at the cogniwsinitter (CIC-ST) are studied.
More specifically, encoder f; : W, — A" at transmitter 1 maps a messagee W, to
a codewordr? € AT, and encoder 25 : W, x W, x S™ — X at transmitter 2 maps a
message paifw, ws) € Wi x W, and a state sequengé € S™ to a codewordy, € X'
Decoder 1¢; : Y;' — W, at receiver 1 maps a received sequepgeanto a message
uﬁl) € W, and decoder 2, : V5 — W, x W, at receiver 2 maps a received sequeyice
into a message pa(rwf), ’LZJQ) € Wi x W, with the probability of error approaching zero
as the codeword length goes to infinity. The capacity region is defined to be the a®su

of the set of all achievable rate paiiB;, R).
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We note that the above definition is also applicable to the-ETR, if the second de-
coder is changed tg, : ()5, S™) — W) X W.
In the following, we define a number of channel conditionsdassifying the channels

in our study:

L PY1Y2\X1XQS = PYQ\X1X2$PY1\Y2 (3-1)
L PY1Y2\X1XQS = PY2|X1XQSPY1|Y2X1S (3.2)
L PY1Y2\X1XQS = PY1|X1XQSPY2|Y1X1S (3.3)

I(X1; Y1) < I(X3;Y2) and I(U; Y1 Xy) < I(U; Ya| X7)

for all PUXlXQS S.t. PXlSUXQ = PX1PSPUX2\SX1 (34)

I(X,U; Y1) > I(X,U; Ys)

for all PUXlXQS S.t. PXlSUXQ = PX1PSPUX2\SX1 (35)

We also study the Gaussian CIC-ST and CIC-STR models defméalaws. We note
that the two models have the same input-output relationshife Gaussian CIC-ST and

CIC-STR have outputs at receivers 1 and 2 for one symbol tisrendy

Yi :X1+CLX2+S+N1 (36a)

Yé = le + X2 + cS + N2 (36b)

where the noise variables; ~ A(0,1) and N, ~ N(0, 1), and the state variablg ~
N(0,Q). Both the noise variables and the state variable are i.vdr channel uses.
The channel inputs are subject to the average power camtstfap~" | X7 < P;, and

1 2
n E?:l Xzz < P
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3.2 The CIC-STR Model

In this section, we present our results for the CIC-STR. W& firovide the capacity re-
gion for the discrete memoryless channel, and then chaizetbe capacity region for the

Gaussian model for two sets of channetg:> 1 and|a| < 1.

3.2.1 Discrete Memoryless Channels

We design an achievable scheme that employs rate-spjitsingerposition coding and
Gel'fand-Pinsker binning scheme. The primary transmititst encoded/?;. Then the
cognitive transmitter cooperatively encodes and trarsiiit using superposition. More-
over, the cognitive transmitter employs rate splitting fia@nsmittingis, i.e., splitsiV,
into two component®l’,; andWy, with 15, intended for both receivers to decode aigh
intended only for receiver 2 to decode. The cognitive tratiesmencodedl,; andV,, by
superposing them oW/;. Furthermore, since the cognitive transmitter knows thenaolel
state information, it employs Gel'fand-Pinsker schemeaviauxiliary random variabl&
(in the following capacity region) to reduce state intezfese for receiver 1 to decod&,
andWs,. Hence,U contains information of bothl’; and1V,;, and plays dual roles: help-
ing to cancel state interference and serving as a rateisglittndom variable for carrying
the messagél;;. We also note that since receiver 2 has the knowledge of #ie, sto
additional auxiliary random variable is needed for caneglstate interference for receiver
2.

The CIC-STR is easier to analyze than the CIC-ST, becausérez@ knows the state
and can hence remove the state interference from its outpuhis way, the design of
achievable schemes needs to deal with only the state ireade at receiver 1. Whereas
for the CIC-ST, in which the state information is known atther receiver, the achievable
scheme needs to deal with state interference at both reseilieis involves the design for

compound states, and hence results in a more challengibéepno
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We characterize the full capacity region for the CIC-STRhia tollowing theorem.

Theorem 3.1. The capacity region for the CIC-STR consists of rate p@lits R-) satisfy-

ing:
Ry <I(XhU;Ya) — I(U; S| Xq) (3.7a)
Ry <I(Xs;Y5]5X7) (3.7b)
Ry + Ry <I(X1Xy; Y3[9) (3.7¢)
Ry + Ry <I(XqU; Y1) + 1(X2; Yo | XhUS) — I(U; S1X) (3.7d)

for some distributionPx, svx,viv: = Px, PsPux,x,sPyivs|sx, x,, WhereU is an auxiliary

random variable and its cardinality is bounded ¥ < |Xy||Xs][S| + 1.

Proof. Since the CIC-DM-STR can be viewed as a special case of theDBMEST with
Y, = (Y3, 5), the achievability proof follows directly from the achidsla region for the
CIC-DM-ST given in (3.18a)-(3.18e) by settifig= X1, V = X, andY, = Y5S.

For the converse, we first obtain the following outer boundststing of rate pairs

(R1, R») satisfying

Ry < I(KX1:Yh) — I(K; S|X)) (3.8a)
Ry < I(X5;Y5|SX) (3.8b)
Ry + Ry < I(X1Xy; Ya[S) (3.8¢)
Ry + Ry < I(TKXy; Y1) — I(TK; S| Xy) + 1(Xo; Yo X4 TKS) (3.8d)

for some distributionPx, stx x,vive: = Px, PsPrrix,sPx,)x, 557 Pyiva|sx, x., Where K
and7 are auxiliary random variables. The proof is detailed in Apgix B.1.

In order to show that the region (3.7a)-(3.7d) is the capa@gion, it is sufficient
to show that the above outer bound (3.8a)-(3.8d) is a suliséeaegion (3.7a)-(3.7d).

Towards this end, we apply the technique in [13] and analye®tter bound (3.8a)-(3.8d)
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by considering the following two cases.

If I(T;Y,|KX,) — I(T; S|KX;) < 0, the outer bound (3.8a)-(3.8d) can be further

bounded as:

Ry <I(KX1;Y1) — I(K; S[Xq) (3.9a)
Ry <I(X2;Y2|5Xq) (3.9b)
Ri+ R» <I(X1X2; Y2|S) (39C)

Ry + Ry <I(KX1; Y1) = I(K; S|X1) + [I(T5 Y1 [ K Xq)
— (T S|KX1)] 4 I(X2; Yo| Xy TK'S)

SI(KX13Y7) — I(K; S1Xq) + 1(Xo; Ya | X1 KS), (3.9d)

which implies that the outer bound (3.8a)-(3.8d) is corgdim (3.7a)-(3.7d) by setting
U = K in(3.7a)-(3.7d).
If [(T;Y1|KX,) — I(T;S|KX;) > 0, the outer bound (3.8a)-(3.8d) can be further

bounded as:

Ry <I(KXy; Y1) — I(K;S]X)

=I(KTX ;Y1) = I(KT; 5| X1) — [[(T; V1| KXy) — I(T; S|K X))

<I(KTX:;Y:) — I(KT; S| X)) (3.10a)

Ry <I(X5;Y5]S5X7) (3.10b)

Ry + Ry <I(X1X3;Y5]9) (3.10c¢)
R+ Ry <I(TKX1; Y1) — I(TK; S| Xq) + I(Xo; Yo | X4 KT'S) (3.10d)

which also implies that the outer bound (3.8a)-(3.8d) istamed in (3.7a)-(3.7d) by
settingU = KT in (3.7a)-(3.7d). O
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3.2.2 Gaussian Channels

In this section, we characterize the capacity region foQhassian CIC-STR. We partition
Gaussian channels into two classes based on the value dfahael parameter, and char-
acterize the capacity region for each class. We note thatesuits for Gaussian channels
exploit the fact that for bothu| < 1 and|a| > 1, the Gaussian channel is stochastically
degraded givelX; ands, i.e., its marginal distributions at the two receivers iesame as

a physically degraded Gaussian channel that satisfies tuktioms (3.2) and (3.3), respec-
tively. Because the capacities of the two Gaussian chaanelthe same, our results below
are applicable to both stochastically degraded and phjysibagraded channels with the
proofs exploiting the physical degradedness conditior®y gnd (3.3).

We first provide the capacity region for the Gaussian chawithl|a| < 1.

Theorem 3.2. For the Gaussian CIC-STR, |ii| < 1, the capacity region consists of rate

pairs (Ry, R») satisfying:

1 Py +2 VPP 202 P 1 2p!
R1<§10g<1+ 1+ 2ap21 vV PPy 4 a”py 1 >+§1g<1+ a’Py )

a(1 = p3,) P2 + 2ap25/PoQ + Q + 1 a’Py +1
(3.11a)
Ry <% log(1 + P} (3.11b)
1
Ry + Ry <5 log (1 2Py + 2bpoi/PLPs + (1 — pgs)fb) (3.11¢)

whereP; + Py = (1 — p3, — p3,) P2, Py > 0, Py > 0, andp, + p3, < 1.

We explain the achievable scheme used for obtaining theeatapacity region as fol-
lows. Here, the cognitive transmitter's power is split into three parts: 1.cooperatively
transmittingl¥; via beamforming, 2.transmitting additiondf; via an auxiliary random
variableU to deal with the state at receiver 1 using dirty paper coddagansmittingiVs.
Here, rate splitting is not used, i.&l;,; = ¢, because for the case| < 1, forcing receiver

1 to decode certaiil’;; may reduce the achievable region.
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Proof. Consider the following rate region, which consists of raeg( R;, R,) satisfying

Ry <I(XaU;Yr) — I(U; S| Xq) (3.12a)
Ry <I(Xy: YolUX,S) (3.12b)
Ry 4 Ry <I(X1X3;Y5]5) (3.12¢)

for some distributionPsx, v x,viv: = Px, PsPux,|x,5Pvs|x, x25Pyivax, - This region is
contained in (3.7a)-(3.7d), and is hence achievable. Témshe seen by observing that
I(Xo; Y5|UX,S) < I(X,U; Y3/ X1.S) and the sum rate bound (3.7d) is equal to the sum of
the two bounds on the individual rates in (3.12a) and (3.12b)

The achievability of (3.11a)-(3.11c) is then obtained bgasing the following jointly

Gaussian distribution for the random variables:

XlNN(()?Pl)v XéNN(()?Pé)v XQ/NN(()?P;)?
Py+ Py = (1= p3 — p3) P

P2 P2

Xy = pn Ple + X5+ X3 + pos 55
/ P2
U=X;+« <1+ap23”6> S (3.13)
a2P2’

/ iz 1 —
whereX;, X3, X7 andS are independent, and= AP

The converse proof is detailed in Appendix B.2. O
We next characterize the capacity region for the Gaussianre# with|a| > 1.

Theorem 3.3. For the Gaussian CIC-STR, |ii| > 1, the capacity region consists of rate
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pairs (Ry, R») satisfying:

1
Ry <5 log(1+ (1= p31 — p3,)P2) (3.14a)

1
Ry + Ry < log(1 + b2 Py + 2bpa1/PL Py + (1 — p2,)Py) (3.14b)

Py + 2apa1V/Pi Py + a?p Ps )
a2(1 — p3,) Py + 2ap2sv/P2Q + Q + 1

1
+ 5 log(1+a*(1 = p3; — p31) o) (3.14c)

1
R + Ry <§log <1+

wherep?, + p3, < 1.

Differently from Theorem 3.2, due to the fact thaf > 1, receiver 1 is stronger in
decodingW,. Hence, the achievable scheme sétg = W, i.e., requires receiver 1
to decode the full messad®,. The cognitive transmitter’'s power, is split into two
parts: 1.cooperatively transmittingf; via beamforming, 2.transmitting additionidl; and
Wy = W5 via an auxiliary random variabl& to deal with the state at receiver 1 using

dirty paper coding.

Proof. The achievability follows from (3.7a)-(3.7d) by choosimgritly Gaussian distribu-

tion for random variables as follows:

Xl NN(07P1)7 Xé NN<07 (1 - pgl - pgs)P2>

Py Py

X2 = P21 FIXI + Xé + P2s 65
/ P2
U=X5+a|l+apss a S (3.15)

where X, X} and S are independent, and = a;’;@;ﬁ;ﬁ’%ﬁil. We note that with this
21 2s

choice of the random variables, the first bound in (3.7aj€e(Bis redundant.

In order to prove the converse for Theorem 3.3, we first prinefollowing outer

bound.



46

Lemma 3.1. For the CIC-DM-STR, if it satisfies the conditi(®3), an outer bound on the

capacity region consists of rate paif&;, R,) satisfying

Ry < I(X5;Y5|SX) (3.163)
Ry + Ry < I(X1Xy; Y35) (3.16b)
R1—|—R2 <I(X1,)/1)+](X27}/1|SX1) (316C)

for some diStributionszlU)(ley2 = PX1PSPUX2|X15PY]_|X1XQSPY2|Y]_X]_S'

The proof for the above lemma is detailed in Appendix B.3. therGaussian channel
with |a| > 1, it satisfies the condition (3.3). We then use the above lefiomadeveloping

the converse proof, which is detailed in Appendix B.4. 0J

3.3 The CIC-ST Model

In this section, we present our results for the CIC-ST. Wediesive inner and outer bound
for the discrete memoryless channel, and then charactiérizeapacity region for chan-
nel under certain conditions. For the Gaussian CIC-ST, wttipa the channel into two
classes based on the channel condition, and derive innexdadbounds for both classes.
By comparing the inner and outer bounds, we obtain partiahtdary for the capacity

region.

3.3.1 Discrete Memoryless Channels

In this section, we investigate the discrete memoryless€IGnodel. We first provide
inner and outer bounds on the capacity region, and thenifdenfew special cases, for
which we establish the capacity region.

In order to derive an inner bound on the capacity region, wagtean achievable

scheme, which includes superposition coding, rate-sgitand Gel'fand-Pinsker binning
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scheme. The primary and cognitive transmitters coopeigtivansmitii’;. The cogni-
tive transmitter split3¥, into two component$ly; andWs,, with 15, intended for both
receivers andl’;, intended only for receiver 2. Differently from the schemetfee CIC-
STR, here the cognitive transmitter employs Gel'fand-Renscheme via three auxiliary
random variable§’, U andV (as in Lemma 3.2) to reduce state interference respectively
for Wy, Wy andWa,. In particular, 7 deals with state interference for either receiver 1 or
receiver 2 to decod®d/;, U deals with state interference for either receiver 1 or ke
to decoddly;, andV deals with state interference for receiver 2 to decdde. In par-
ticular, 7" andU cannot be combined because it is possible thateals with the state at
receiver 2 wherea$' deals with the state at receiver 1. This also explains theorethat
only one auxiliary random variablg is needed for obtaining the capacity region for the
CIC-STR model, in which only state interference at recelvereeds to be handled, and
hence a single auxiliary random variatble(combining7” andU) is sufficient for receiver
1 to decode bothl; andV,;. At the receiver end, since receiver 1 can decddg, it can
eliminate the interference caused by this message whenatds|V;.

We now provide an achievable region based on the above atiéescheme, which is

useful in establishing our main inner bound.

Lemma3.2. An achievable region for the CIC-ST consists of rate p@its R») satisfying:

Ry = Ry1 + Rz, Ro1 20, Ro >0

Ri+ Roy < I(TUX ;Y1) — I(TU; S| X1)

Rop < I(V; Yo|UTXy) — I(V; S|UTX;)

Rot + Ras < I{UV: Y| X, T) — I(UV; S|XiT)
Ro1 + Roy < I(TUV: V3| Xy) — I(TUV: S| X))

Rl + R21 + R22 < I(TUVX17}/2) — I(TUV7 S‘Xl)

for some diStribUtiOl’PXlSTUVX2yly2 = PX1PSPTUVXQ\SX1PY1Y2|SX1X2u WhereT, U andV
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are auxiliary random variables.
Proof. The detailed proof is relegated to Appendix B.5 O

Based on Lemma 3.2, our main inner bound on the capacity megigiven in the

following theorem.

Theorem 3.4. For the CIC-ST, an achievable region consists of rate palts, i) satis-
fying:

R, <I(X\TU;Y,) — I(TU; S| X)) (3.18a)

Ry <I(UV:Ya| X\ T) — I(UV; S| X,T) (3.18D)

Ry <I(TUV;Y3|X,) — I(TUV; S| X,) (3.18¢)

Ry + Ry <I(X,TUV:Y,) — I(TUV; S| X;) (3.18d)

Ry + Ry <I(X1TU:Y)) + I(V; Ya| X, TU) (3.18¢)
— I(TUV; S|X))

for some diStributiOI‘lels;pUVX2y1y2 = PX1 PSPTUVX2|SX1 PY1Y2\SX1X2 that satisfies
I(V:YL|UTX,) — I(V; S|UTX,) > 0.
Proof. By applying Fourier-Motzkin elimination [52], we elimimaf?y; and Ry, from the

bounds in Lemma 3.2 and obtain the bounds in Theorem 3.4. O

We next derive the following inner bound, which is achievgdsimpler scheme that
combinesl” andU together as one auxiliary random variable. This inner bdangeful

for studying Gaussian channels in Section 3.3.2.2.

Corollary 3.1. For the CIC-ST, an achievable region consists of rate pélts, R,) satis-
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fying:

Ry <I(V; Y| XaT) — I(V; S1X0T)
Ry <I(TV;Ya|Xy) — [(TV; 5] Xy)

Ry + Ry <I(X,TV;Ys) — I(TV; S| X)) (3.19a)

for some distributionPx, s7v x,viv: = Px, PsPrvx.x,sPvivs|sx, x, that satisfies

I(V;Y5|TXy) — I(V; S|TX,) > 0. (3.20)

Proof. The achievable region in Corollary 3.1 follows directlyfnd heorem 3.4 by setting

U=T. ]
We next provide an outer bound on the capacity region for i £T.

Theorem 3.5. An outer bound for the the CIC-ST consists of the rate pas R,) satis-
fying:

Ry <I(XiTU3 YY) — I(TU; S| Xq)
Ry <I(TV;Yo|Xy) — I(TV; S| X4)

Ry + Ry <I(XiTV;Ys) — I(TV; 5| Xy)

for some diStfibutiOFPXlSTUVXley2 = PX1PSPTUVX2|X15PY1Y2\SXnga which satisfies the

Markov chain condition§” <+ UV < X X,S < Y1Y5.

Proof. The proof employs the techniques in [9] for the Gel'fanddR&r model, and ex-
ploits independence properties among variables in our maddgarticular, the auxiliary
random variables are carefully constructed. The detaitedfgs relegated to Appendix

B.6. 0
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We now provide inner and outer bounds for the degraded chamhieh are useful for

further identifying the cases for which we obtain the catyaggion.

Theorem 3.6. If the CIC-ST satisfies the degradedness condifoh) (i.e., receiver 1 is
degraded with regard to receiver 2), then an achievableaegionsists of the rate pairs

(R1, Ry) satisfying:

Ry <I(XiTi Y1) — I(T; 51X) (3.22a)
Ry <I(V3 Yo X0T) — I(V; 5| X0T) (3.22b)
Ry <I(TV; Ya|Xq) — I(TV; S| X4) (3.22¢)

for some diStribUtiOl’PXlSTVX2y1y2 = PXl PSPTVX2|X15PY1Y2\SX1X2 that satisfies

I(V:Y2|TXy) = I(V;5|TX,) = 0.

An outer bound on the capacity region for such a channel stsgf the rate pairs

(R1, R,) satisfying:

Ry <I(TV;Ya|X,) = I(TV;S]X,)

for some diStribUtiOl’]PXlgTVX2yly2 = PXlPSPTVX2|X15PY1Y2\SX1X2) which satisfies the

Markov chain condition§” <> V < X; X,S < Y1Y5.

Proof. The achievability follows from the achievable region givarCorollary 3.1 by re-
moving the bound (3.19a) due to the degradedness conditieproof of the outer bound

is detailed in Appendix B.7. O

The inner and outer bounds given in Theorems 3.4 and 3.5 dmatith in general.

We next identify two classes of channels, for which we obtiagcapacity region. We first
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provide the capacity region for the degraded semidetestiénchannel in the following

theorem.

Theorem 3.7. If the CIC-ST model satisfies the degradedness cond{8al) and the
semideterministic condition such thgt is a deterministic function ok, X, and S, then

the capacity region of the channel consists of rate péits, R,) satisfying:

Ry < I(X\TsYy) = I(T5 S|X,) (3.24a)
Ry < H(Y:|X,TS) (3.24b)
Ry < H(Ya|X,) — I(TYy; 5|X)) (3.24c)

for some distributionPx, s7x,v,v. = Px, PsPrx,|sx, Py x, x25Pyi|v,» WhereT' is an aux-

iliary random variable and its cardinality is bounded by| < |X1]|X,||S| + 1.

Proof. The achievability follows from (3.22a)-(3.22c) by settivig= Y>. The proof of the

converse is detailed in Appendix B.8. O

We next obtain the following capacity region when receivex l&ss noisy than receiver

2, i.e, the channel satisfies the condition (3.5).
Theorem 3.8. For the CIC-ST, if it satisfies the conditi¢®.5), the capacity region consists

of rate pairs(R;, R») satisfying:

Ry <I(U; Yo|Xy) — I(U; S| X)

Ry + Ry <I(X3U;Ys) — I(U; S| Xh)
for some distributionPx, svx,viv: = Px, PsPux,x1sPyivs|sx, x., WhereU is an auxiliary
random variable and its cardinality is bounded |p¥] < |X;||A%|[S].

We note that if condition (3.5) is satisfied, receiver 1 islasisy than receiver 2. Thus,

bounds on achievable rates are dominated by receiver 2, rdgoe auxiliary random
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variableU is needed for dealing with state interference for receivey 8ecode all mes-

sages.

Proof. The achievability follows from Theorem 1 by settiig= ¢, V = U and using
(3.5) to remove the redundant bounds. The converse folloara the capacity region
of the MAC (with its receiver being receiver 2 in our model}thvstate available at one

transmitter given in [18], which clearly is an outer bounddar model. O

3.3.2 Gaussian Channels

In this section, we consider the Gaussian CIC-ST model. I8ilpito Section 3.2.2, we
partition the Gaussian CIC-ST into two classes correspuontdi|a| > 1 and|a| < 1, and
study these two classes separately in this and next sutisectin each subsection, we
first provide inner and outer bounds on the capacity regiod,then characterize partial
boundaries of the capacity region based on these boundsls@/elatain the full capacity

region for channels that satisfy certain conditions.

3.3.2.1 Gaussian Channel: |a| > 1

If |a| > 1, the Gaussian channel satisfies the condition (3.3). Wepistide an inner

bound for this class of channels.

Proposition 3.1. For the Gaussian CIC-ST, [i#| > 1, an inner bound consists of rate pairs

(R1, R,) satisfying:

1
Ry < 5 log(1+ PY) (3.26a)
1 V2P + 2bpo1 /P Py + p§1P2 > 1
Ry +Ry < =log |1+ + —log(l + P, 3.26b
' 233 g( (1= p3,) P2 + 2¢p2sv/PoQ + 2Q + 1 2 8 2) )
1 Py + 2apo1/P Py + a?p, P
R1—|—R2<—log<1 5 1—1-2GP21 L2+ a7 py s >
2 a*(1 — p5p) P2 + 2ap2s v/ P2Q + Q + 1
1 a’PR +2a P, —a2p2 P, — p2
+ = log (1 + — 2/ 2p281,p252 /2 5 P2s142 — Pas1 ,> (326C)
2 a?pa Py + po50 P + Py + pag — 2ap2s1 2525
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where Py = (1 — p3; — p3,) P and p3; + p3, < 1, p2a = a(eVQ + pasv/Pa), pasz =
P/
(VQ + aprVP), o = P

Similarly to the Gaussian CIC-STR, due to the fact that> 1, i.e., receiver 1 is
stronger in decodingls, the achievable scheme séi§; = W5, i.e., requires receiver
1 to decode full messadé&,. The cognitive transmitter’'s powe, is split into two parts:
1.cooperatively transmitting/; via beamforming, 2.transmitting additioridl, andV,; =
W5 via dirty paper coding. Differently from the CIC-STR, thexdiary random variable
U is used here to deal with the state interference at receigrsBad of receiver 1 for
the CIC-STR). This is also due to the fact that > 1 so that receiver 2 is weaker in
decoding information from the cognitive transmitter anchd¢e needs additional help in
state cancellation via dirty paper coding than receivertier&fore, in the above achievable
region, (3.26a) reflects the fact that receiver 2 decétigs= 115, and (3.26b) and (3.26c¢)

respectively reflect the facts that receiver 2 and receiwkcbde botil; andWy, = W.

Proof. By setting7’ = X; andU = V' in the inner bound given in Theorem 3.4, we obtain

an inner bound that includes the following bounds:

Ry <I(U; Yo|Xy) — I(U; S| Xy) (3.27a)
Ry + Ry <I(X U3 Y2) — I(U; S| X,) (3.27b)
Ry + Ry <I(X,U: Y1) — I(U: 8| X1) . (3.27¢)

Based on the above bounds, we choose the jointly Gaussiahdigtribution and em-

ploy dirty paper coding fof/ to deal with the state iY;. More specifically, we set the
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random variables as follows and obtain the desired innendhou

X1 ~N(0,P), Xi~N(0,P)

| P. | P
Xy = pa1 Fin + X5 + pas 623

P.
U=X),+a <c + pas 5) S (3.28)
where X, X/, andS are independent random variables, ang 5. O

Pj+1°
We next provide an outer bound on the capacity region baségeoiollowing idea.
Since bothV; andW, must be decoded at receiver 2, the two transmitters andvegcei

2 form a cognitive MAC with state known at the cognitive tramitéer. Hence, the capacity

region for such a MAC serves as an outer bound for the Gau€3@ET.

Proposition 3.2. For the Gaussian CIC-ST, |i#| > 1, an outer bound consists of rate pairs
(R1, R») satisfying:

1
Ry <§ log(1 + P) (3.29a)

V2 Py + 20po1/PL Py + p3, Ps
(1= p3,) P2 + 2cpas/P2Q + 2Q + 1

1 1
Ry + Ry <3 log (1 + > + 5 log(1+ (1 - P31 — P3s) )

(3.29b)
whereP; < (1 — p3; — p3,) P> andp3; + p3, < 1.

Proof. It is clear that the outer bound in Proposition 3.2 is eq@ngako the region that

consists of rate pairgR;, R,) satisfying:

1
Ry <5 log(1 + (1= p3; — p3,) o) (3.30a)

V2 Py + 2bpo1 VP P2 + p3, Py >
(1= p3,) P2 + 2cpas vV Po@Q + 2Q + 1

1
+ 5 log(1+ (1= p3y = p3,) ) (3.30b)

1
R+ Ry <§10g <1+
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wherep3, + p3, < 1. This region is the capacity region of the MAC with state wiils
receiver being receiver 2 in our model) given in [18], anddeegerves as an outer bound

for our model. O

Although the inner bound (3.26a)-(3.26¢) and the outer dq@29a)-(3.29b) do not
match in general, we show that these bounds characterize boomdary points of the
capacity region. In order to characterize boundary poihth® capacity region, we first
change the inner bound (3.26a)-(3.26¢) into a more conmefoem, which consists of rate

pairs(R;, R») satisfying

R g% log(1 + P)) (3.31a)

b2 Py 4 2bpa1/Pi Py + p3, Py )
1 — p3,)Pa + 2cpas/PoQ + 2Q + 1

1
+ 5 log(1+ (1= p3y — p3) P2) (3.31b)
P + 2apy1v/Pi P2 + a?p3y Ps )
) (

1
R1+R2 gﬁlog (1—|—<

1
R+ Rs <=log 1+
! 2 2 g( a2(1—p%l)PQ—i‘QCLp%\/PQQ—FQ—'—l
(a*(1 — p3; — pas) Py + 2a —a*pay) (1 — p3, — pa) Py — p3
(1 i P21 — Pas) L2 P25102s2 P2s1 P21 — Pas) L2 P231)
(a%p3g1 + Pogo + 1 — 2apasipase) (1 — p3y — p3,) Po + pagy
(3.31¢)

—1—11
— 10
2 g

whereP; < (1 — p3; — p3,) Pa, p31 + p3, < 1, p2s1 = a(eV/@ + pasV'Pa), pase = (VQ +

_ _(=py=p3.)P» JRE :
apzs\/Py), anda = (B p o Such a region is equivalent to (3.26a)-(3.26¢), because
it is obtained by substituting the equality constraftjt= (1 — p3, — p3,) P, into (3.26a)
and (3.26b) (which does not change the bounds), and reldkengonstraint orP; to be
P) < (1—p3, — p3,) P, which affects only (3.26a) and clearly does not enlargeeh@mn.
We now denote the bounds in (3.31a)-(3.31c)rbyPy), r12(po1, p2s), andriz(pa1, pas)-

For0 < Pj < Py, let

(p31(P3), p5s(P3)) = argmax r12(pat, p2s)- (3.32)

(p21,p25):P3<(1—p3, —p3,) P2
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Based on these notations, we characterize partial bourtdahe capacity region for the

Gaussian channel as follows.

o
@

-+-inner bound
o outer bound

Rz(bit/use)
o o o
N w IS

o
[

OO
o
N}
oL
N
=
N
o
-
N

06 08
Rl(blt/use)

Fig. 3.2: An illustration of the partial boundary of the cajta region for a Gaussian
CIC-ST with|a| > 1.

Theorem 3.9. Consider the Gaussian CIC-ST wilf > 1. For0 < P; < P,, the rate
pairs | 72 (pgl(Pg),p;s(Pg)) — 1o Py), rg(P5)> are on the boundary of the capacity
region if rix(py (Py). p3.(P3)) < Fia(p3, (PY), o (F3)). The rate pairs(Ry, ry(P)) are
also on the boundary of the capacity regiorRif < min{ris, 712}|,,,=0,ps.=0 — T2(1%).

Proof. The rate pairs given in the theorem are achievable due todhéditton given in
the theorem. They are also on the boundary of the outer boned g Proposition 3.2,
because, andr;, are the same as the bounds®nand onR; + R,, respectively, and the
chosen paramete(gs, (Py), p5(Ps)) for each value of?) guarantees that the rate pairs are
on the boundary. The second statement is clear because MhenP,, R, achieves the

maximum value, and hence any such rate pair is on the bouifdaiyachievable. [

In Fig. 3.2, we demonstrate the partial boundary of the dapaegion characterized
in Theorem 3.9. We consider the channel defined by the paeasigt = P, = @ = 1,
a =15b= 16 andc = 0.9. We plot the boundaries of the inner bound given in
Proposition 3.1 and the outer bound given in Proposition i@oectively. It is clear that
the two boundaries match whét is above a certain threshold, and this matching part thus

characterizes some boundary points of the capacity registualied in Theorem 3.9.
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We next show that under certain channel conditions, ther daatend given in Proposi-

tion 3.2 fully characterizes the capacity region.

Theorem 3.10. For the Gaussian CIC-ST, fi&| > 1 and the channel satisfies the condition

(3.5), the capacity region consists of rate pait®;, R,) satisfying:

1
Ry <§ log(1 + Py) (3.33a)

V2 Py + 2bpo1 VP P2 + p3, Py )
1 — p3,) P2 + 2cpas/PoQ + 2Q + 1

+ 5 log(1+ PY) (3.33b)

1
Ry + Ry <§10g<1+(

whereP; = (1 — p3; — p3,) P> andp3; + p3, < 1.

As explained after Theorem 3.8, if the less noisy conditi®®) is satisfied, receiver
2 dominates the performance of the channel. Thus, the adfliegcheme that uses the
auxiliary random variable for dealing with the state at reee?2 via dirty paper coding

turns out to be optimal.

Proof. Following from the region in Theorem 3.8, we set the randonaldes as in (3.28)
and obtain an achievable region as given in (3.33a)-(3.3%)ch an achievable region
is equivalent to the outer bound given in Proposition 3.2 ascamment in the proof of

Proposition 3.2. O

3.3.2.2 Gaussian Channel: |a| < 1

We first note that the inner bound given in Proposition 3.1tlercase whefu| > 1 also
serves as an inner bound for the case when< 1. However, the choice of auxiliary
random variablesi( = ¢ andU = V') for obtaining this inner bound requires receiver 1 to
decode all information for receiver 2. As such, this boundksavell only when receiver

1 is stronger than receiver 2, and does not serve as a goaddouned for the case when

la| < 1. Thus, in this subsection, we develop two new inner boundscae new outer
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bound on the capacity region for the case when< 1. We also note that the outer bound
in Proposition 3.2 is applicable and useful here as dematestin the sequel.

We derive the two inner bounds based on the same achievajmrer the discrete
memoryless channel with different choices of the distiing for the auxiliary random

variables.

Proposition 3.3. For the Gaussian CIC-ST, j&| < 1, then an inner bound on the capacity

region consists of rate pairgR?;, R») satisfying

/ 2.2 2 p/
R1<%10g<1+a2( Tt JopuiiTe o pp By >+11g<1+7ap2 >

1= p3) P+ 2ap2esV/PoQ + Q + 1 2 a’P) +1
(3.34a)
Ry <% log(1 + Py) (3.34b)
Ry <1 log ( a® Py + 2apas1pasa Py — p3o (Ps + P + 1) )
2 a?P)P} + p3,,(P5 + P) + 1) 4 a?pas2 Py 4 a*> P} — 2apas1 pasa Py

1

+ 5 log(1 + PY) (3.34c¢)
V2 Py + 2bpo1 /P P2 + p3, Py >

1— p3) Py + 2cpas/PoQ 4 2Q + 1

+ llog aP3® + 2apaipasaPs — p31 (Py+ Py +1)
2 QP/P// + pQSl(P/ Pg// ) + a2p2s2P2/ + CLZPQ/ - 20P2310232P2/

1
R+ Ry <§10g<1+(

1
+ 5 log(1 + PY) (3.34d)

a?
where pys; = a<1+a'p25\/%>\/7 P2s2 = <C+P2s\/ )\/@ a = ng/url,

21| < L, [p2s| <1, P >0, Py > 0,and Py + P = (1 — p3) — p3,) Po.

Similarly to the CIC-STR, ifia| < 1, the cognitive transmitter's powe?, is split into
three parts: 1.cooperatively transmittiig via beamforming, 22, + p3 P, are for either
transmitting additionall; or transmittingl?, using dirty paper coding (vi&) to deal with
the state at receiver 1, 3.transmittiig using dirty paper coding (vi&) to deal with the
state at receiver 2. Therefore, in the above achievableme@8.34a) reflects the fact that

receiver 1 decodéed’; contained in bothX; and7’, (3.34b) reflects the fact that receiver 2



59

decodedV;, contained inl/, (3.34c) reflects the fact that receiver 2 decodéscontained
in bothT andV, and (3.34d) reflects the fact that receiver 2 decdtlesontained inX,
andl¥, contained in botA” andV’. We note thafl” plays two roles: either transmittirig;

or transmittingil.

Proof. The above theorem is based on Corollary 3.1 by choo§ihg’, X, X,) to be
jointly Gaussian and employing dirty paper coding withchosen for dealing with the
state forY; andV chosen for dealing with the state foy. More specifically, We set the

random variables as follows:

X1 ~N(0,P), X;~N(0,P), XJ~N(,P),

P+ Py = (1—p3 — p3,) P

P P.
Xo = po —2X1+X§+X§,+P2s 25
V P Q

P
T:X£+a<1+ap25 —2>S

Q
" Py
V=X/4+08|c—a+ (1l —ax)ps 0 S (3.35)
where X, X/, X7 andS are independent random variables= %, andg =
PH
AT O

Proposition 3.4. For the Gaussian CIC-ST,

if.] < 1, then aninner bound on the capacity
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region consists of rate pairgR;, R,) satisfying

R, S%log <1+ Py + 2aps1v/Pi Py + a?p3 Ps )

a?(1 — p2)) Py + 2apas/PoQ + Q + 1

4 1 log [ 1+ a2P2’2 + 2ap231p232P’ angﬂ(Pé + Pz”) - p%sl
2 angslpzl + P%szpzl + a2p231P” a?Py Py + Py + p%sl — 2apas1 2525
(3.36a)
1
Ry <§ log(1 + Py) (3.36b)

b* Py + 2bpoy/Pi P + p3, P )
1 — p3)Pa + 2cpas/PoQ + 2Q + 1

1
+ 5 log(1+ (1= py1 — p3,) P2) (3.36¢)

1
R+ Ry <§10g <1+<

whereps; = a(cv/Q + pasv/'P2), pass = (VQ + apes/Pa), a = #, lpa1] <1
|p2s] <1, Py >0, Py > 0,and P, + Py = (1 — p3, — p3,) Po.

We note that the inner bounds in Proposition 3.3 and 3.4 aedan the same achiev-
able region for the discrete memoryless channel, i..eol2oy 3.1, except that the auxil-

iary random variablg" is designed to deal with the state at receiver 2 in Proposgid.

Proof. The above theorem is based on Corollary 3.1 by choosing’, X;, X,) to be

jointly Gaussian and employing dirty paper coding by chongdi andV as follows:

XlNN(()?Pl)v XéNN(()?PZ,)v XQINN(()?PZH)?

P+ Py = (1—p3 — p3s) P>

P2 P2
Xy = —X X' XV o\ | =S
2 = P21 P, 1+ Xo+ 2+P2UQ

T=X§+a<c+p25@/%>5

V=XJ+0(1-a) (c + pas %) S (3.37)

/ 1 PN
where X, X;, X3 andS are independent random variables+ m, andf = 7.
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Here, T is chosen for dealing with the state 6y (differently from the proof for Proposition
3.3) based on dirty paper coding whexd is taken as noise. We then subtrdttrom Y,
and desigri/ for dealing with the state for; = Y, — 7" based on dirty paper coding. For
this choice of the auxiliary random variables, the seconghidaon R, in Corollary 3.1 is

redundant becausdT’; Y| X;) — I(T; S| X;) > 0. O

We next provide two outer bounds, both of which are usefulclwaracterizing the
capacity results. The first outer bound is given by the capaegion of the Gaussian CIC-
STR that we present in Theorem 3.2 in Section 3.2.2. For coexee, we rewrite this

bound below.

Corollary 3.2. For the Gaussian CIC-ST, j&| < 1, then the capacity region of CIC-STR
serves as an outer bound on the capacity region, which cnefsrate pairs(R;, Rs)

satisfying

1 Py + 2ap21\/P P 202 P
R1<§10g<1+ 1+ 2ap21v/ 112 + a”py 1o )

a2(1 - P%l)P2 + 2GP2SVP2Q + Q +1
1 a’P}
21 14 ——-2
+2%<+ﬁ%+J
1
Ry <§ log(1 + Py)

1
Ri+ Ry <§ log(1 4 b2P; + 2bpa1/PiPs + (1 — p3,) P»)

whereP} + P = (1 — p2, — p3,) P, Py > 0, P) > 0, andp3, + p3, < 1.

As we comment at the beginning of this subsection, the outend in Proposition 3.2
is also applicable and useful for the case With< 1. For convenience, we rewrite it below

as a corollary.

Corollary 3.3. For the Gaussian CIC-ST, fif| < 1, an outer bound on the capacity region



62

consists of rate pair§R;, R,) satisfying:

1
Ry <§ log(1 + PJ)

(1 n V2 Py + 2bpo VP P2 + p5 Po )
(1 - p%l)P2 + 2Cp2st2Q + C2Q +1

1
+ 5 log(1+ (1= p — p3,) P2)

1
R+ Ry <§ log

wherePy < (1— p3, — p3,) P, Py > 0, andp3; + pj, < 1.

For Gaussian channels witt < 1, we characterize partial boundaries of the capacity
region based on the inner and outer bounds respectively giveroposition 3.3 and 3.4,
and Corollaries 3.2 and 3.3. Although the forms of inner lesusre complicated, we show
that some boundary points on the capacity region are detedhanly by a subset of there
bounds, and can hence be characterized via the given outedbo

We letA = (por1, p2s, Py) and use’| (A, Py), ri(Py), Th(A, PY), 5 (A, Py) to denote
the bounds (3.34a)-(3.34d) given in Proposition 3.3.(Far Py < P,, let

A*(Py) = argmax (A, Py). (3.40)

AP+ Py =(1=p3, —p3,) P2

Based on these notations, we characterize partial bourtdahe capacity region for the

Gaussian channel as follows.

Theorem 3.11. Consider the Gaussian CIC-ST wiif] < 1. For0 < P) < P,, the rate
pairs (ri(A*(Py), Py),r,(Py)) are on the boundary of the capacity regionif{ Py) <
(AN (Py), Py) andri (A*(Fy), Py) + r5(Py) < rip(A*(Fy), By).

Proof. The rate pairs given in the theorem are contained in innentdugiven in Propo-
sition 3.3 due to the conditions given in the theorem. We séxtv that these rate pairs
are also on the boundary of an outer bound. Following froneobibund 1 in Corollary
3.2, Ry < ri(A, P))andRy < rh(Py) also determine an outer bound with, P}') taking

the same values as in inner bound 1 given in Proposition $18nThe chosen parameters
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A*(Py) for each value o’y guarantee that the rate pairs are on the boundary of this oute

bound. O

We next characterize additional boundary points of the cfpaegion based on in-
ner bound 2 given in Proposition 3.4 and outer bound 2 give@adrollary 3.3. We use
1 (pa1, pas, Py, Py), 5 (Py), andr{y(pa1, p2s) to denote the bounds (3.36a)-(3.36¢) given in
Proposition 3.4. Fob < Py < P,, let

(051 (Py), p3s(Py)) = argmax 15(p21, p2s), (3.41)

(p21,p2¢): Py <(1—p2, —p3,) P>

and letP}(PY) = (1 — p3,(P))? — p3,(PY)*)P, — PJ. Based on these notations, we

characterize partial boundary of the capacity region devia.

Theorem 3.12. Consider the Gaussian CIC-ST wii] < 1. For0 < PJ < P,, the rate
pairs (115 (p5, (Py)), ps.(Py)) — 15 (Py), ri(Py)) are on the boundary of the capacity region
it (031 (P, o (PY)) — 15 (Py) < (3, (PY). piss (P,

P(Py), Py). The rate pairg Ry, (P»)) are also on the boundary of the capacity region

if Ry < min{ry, 77y — 175 (P2) } pp1=0,02.=0,P)=0-

Proof. The rate pairs given in the theorem are clearly containedrieri bound 2 given in
Proposition 3.4. These rate pairs are also on the boundamtef bound 2 given in Corol-
lary 3.3, because] andry, are the same as the boundsi®nand onR; + R,, respectively,
and the chosen parametérs, (Py), ps.(Py)) for each value ofP; guarantee that the rate
pairs are on the boundary. The second statement is cleaud®eehenP, = P,, R,
achieves the maximum value, and hence any rate pair with Buchon the boundary if it

is achievable. ]

Theorems 3.11 and 3.12 collectively characterize parbahidary of the capacity re-
gion for the Gaussian channel witl| < 1. In Fig. 3.3, we demonstrate these boundary

points of the capacity region for an example channel withplilameters?, = P, = Q =
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1,b=0.85,¢=0.9anda = 0.8. We plot the boundaries of the two inner bounds given
in Proposition 3.3 and Proposition 3.4, and the boundaffi¢éseotwo outer bounds given

in Corollary 3.2 and Corollary 3.3, respectively. It can leers that the two inner bounds
are very close to each other. The boundary of inner bound ¢heathe boundary of outer
bound 1 whenR; is above a certain value, and this part is thus on the bounafaitye
capacity region. We also note that this part of the boundelhyeaes the capacity region

of the CIC-STR. It can further be seen that the boundary oénrbound 2 matches the
boundary of outer bound 2 wheky, is above a certain threshold, and this part is hence also

on the boundary of the capacity region.

0. T - ~48pa0
- ==Inner Bound 1 2o
 Inner Bound 2 N2
0.4| © Outer Bound &
“|| ¢ Outer Bound

- QOuter Bound 2
Inner Bound

Rz(bits/use)

P=P,=Q=1
0.1- a=0.8
b=0.85
c=0.9

0 01 02 03

Inner Bound

0. 05 06 07 08 09
Rlﬁ)its/use)

Fig. 3.3: Anillustration of inner and outer bounds and theipbboundary of the capacity
region for a Gaussian CIC-ST with| < 1

It can be seen that outer bounds 1 and 2 separately charactenitain parts of the
boundary of the capacity region for Gaussian channels wjtki 1. We further show that
each of these two outer bounds can characterize the fulctgpagion for channels that

satisfy certain conditions.

Theorem 3.13. For the Gaussian CIC-ST, fif| < 1 and the channel satisfies the condition
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(3.4), the capacity region consists of rate paifs,, R,) satisfying:

Py + 2apa1 /PPy + a?p3 Ps >
a2(1 - P%l)P2 + 2ap2st2Q + Q +1

1 a’P;
Z1 14 "2
"3 °g< +a2P2”+1>

1
Ry <§ log (1 +

1
Ry <§ log(Py' +1)

whereP; + Py = (1 — p3 — p3,) P2, P, > 0, P > 0 andpj; + p3, < L, |pan| < 1,

|p2s| < 1.

We note that the above capacity region matches the capagigrr in [24] of a cog-
nitive interference model with state, in whiéH; is intended only for receiver 1. This is
reasonable because under the condition (3.4), receivewgager in decodingl; than
receiver2, and receiver 2 can hence always dectide which satisfies the additional re-
quirement in the channel model. Consequently, in the desigm of auxiliary random
variables, more resources are used to help receiver 1 telsigoal and state interference.
This is why only part of; is used to transmitl/;, and there is a tradeoff between the rates

R, andRs.

Proof. Under the condition (3.4), the bounds in the achievableoregn Corollary 3.1

reduce to:

Ry <I(XiT3 Y1) — I(T; 51X) (3.43a)
Ry <I(V3 Yo XaT) — I(V; 51 X0T) (3.43b)
Ry <I(TV; Yo|Xq) — I(TV; S| X4) (3.43c)

Based on the above bounds, we choose the same jointly Gaugsid distribution as in
(3.35). In particular, since the auxiliary random variables chosen to employ dirty paper
coding to deal with the state iti, it guarantees that(7’; Y| X;) — I(T; S| X1) > 0, which
implies that!(7; Y5| X,) — I(T; S|X1) > 0 due to the condition (3.4). Hence, (3.43c) is
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redundant. Thus, we obtain an achievable region that mattledirst two bounds of outer

bound 1 in Corollary 3.2 and is hence tight. O

The following theorem identifies the channels for which olkeund 2 given in Corol-

lary 3.3 characterizes the full capacity region.

Theorem 3.14. For the Gaussian CIC-ST, || < 1 and the channel satisfies the condition
(3.5), the capacity region consists of rate pairg;, R,) satisfying:
/
R <% log <1 + i) (3.44a)

Py +1
b2 Py + 2bpo1/Pi P2 + p3 Ps >
1 — p3) Py + 2cpasv/P2Q + 2Q + 1

1
Ry <3 log(1 + Py) (3.44b)

1
—1 1
—1—20g< +(

where Py + P = (1 — p3, — p3,)P2, P, 2 0, Py > 0and p3, + p3, < 1, [pz| < 1,

|/)23| < L

Proof. With the condition (3.5), it can be seen that an achievald@redetermined by
the following bounds is contained in the inner bound givearollary 3.1, and is hence

achievable.

Ry <I(XqT3Ys) — I(T55|1X) (3.45a)
Ry <I(V:; Y| X0 T) — I(V; S| X4 T) (3.45Db)
Ry <I(TV;Ya|X1) — I(TV; S| X1) . (3.45¢)

The achievability follows from the above region by choosing jointly Gaussian dis-
tribution and employing dirty paper coding f@r to deal with the state for; and forV

to deal with the remaining state fog after subtractin%T. More specifically, we set the
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auxiliary random variable as follows:

XlNN(()?Pl)v XéNN(()?PZ/)v XQ/NN(()?PZH)?

P+ Py = (1—p3 — pg)

| P. P.
Xy = pa1 —2X1+X§+X§,+P2s —2s
P Q

T=X\+a (c—i—pgs\/%) S
" P2
V=X+p1-a) (c—l—pgs\/g) S (3.46)

where X, X}, X/ andS are independent random variables= %, andg =
2 2

Such a choice of the input distribution also implies théf’; Y| X,) — I(7; 5| X1) > 0,
and the bound (3.45c) is hence redundant. The proof for theerse follows by observing
that the region (3.44a)-(3.44b) has the same boundaryasmbuter bound 2 given in

Corollary 3.3, and hence the two regions are equivalent. O
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CHAPTER 4

STATE-DEPENDENT SINGLE-USER

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent Gaussiatesisgr channel with a helper.
In the previous work [34], the capacity in the regime of inirstate power is characterized
based on lattice coding. In this thesis, we focus on the regimth general state-power.
We design an achievable scheme combining two methods tekstate: 1. precoding the
state with a single bin scheme; 2. directly reversing theest8y comparing the lower
bound derived based on the above scheme and the upper boonth& previous work, we

characterize the capacity of the channel under variousehgarameters.

4.1 Channel Model

X .
Encoder 0" §

W . c' Vi 14
4JEncoder 1 A J(Dh'lnnel Decoder 1 ———
[ s (*) [

Fig. 4.1: The state-dependent single-user channel withpeehe
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In the state-dependent single-user channel with a helperKgy. 1.4 in Section 1.2.
For convenience of reference, we include the figure againi@s4Fl in this section), a
transmitter wishes to send messafjeto a receiver over a state-corrupted channel, and a
helper that knows the state information noncausally wisbessist the receiver to cancel
state interference.

More specifically, the transmitter has an encofler)V — X, which maps the mes-
sagew € W to a codeword:™ € X™. The inputz” is transmitted over the channel.
The receiver is interfered by an i.i.d. state sequefitewhich is known at neither the
transmitter nor the receiver, but at a helper noncausalhusTthe encoder at the helper,
fo: 8" — A, maps the state sequencés= S" to a codewordy € A, The entire chan-
nel transition probability is given b¥y|x, x,s. The decoder at the receiver; V" — W,
maps a received sequengeinto a message € W.

We study the Gaussian channel model with the following odpthe receiver for one

symbol time:

Y =Xo+X+S+N (4.1)

where the noise variabl® and the state variabl€ are Gaussian distributed with distri-
butionsN ~ AN(0,1) andS ~ N(0,Q), and all of the variables are independent and are
i.i.d. over channel uses. The channel inpiig and X are subject to the average power

constraintst > | X2 < Pyandi Y X2 < P.

4.2 Achievable Scheme and Lower Bound

In this section, we design an achievable scheme for the-degiendent Gaussian single-
user channel with a helper. Two basic ideas to cancel the atatintegrated together: 1.
reversing the channel state directly; 2. precoding statedrhelp signal based on a single

bin scheme. In [34], the focus of the design is on the regimefofite state power. Hence,
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only precoding the state is utilized, because it is impdedii reverse the infinite-power
state directly. And the capacity result in [34] suggests, figecoding the state is capacity
achieving for the infinite state power regime. However, fog tegime with finite state
power, it is useful to apply both methods as we demonstratelirstudy. By integrating

state reversion with single-bin scheme, we obtain theiolig achievable rate.
Proposition 4.1. For the state-dependent Gaussian single-user channelavhblper, a
rate R is achievable if it satisfies

R < min{R;(a, ), Ra(cv, B)}, 4.2)

where

1. B(P+(1+8)’Q+P+1)
Ri(a, B) = 5 10g(p60Q(; —1—- )2+ P)+ a2Q

2
1 P(P} + a*Q)
Bale. ) = gloe A = =57 T B o2

) (4.3a)

) (4.3b)

for some(a, 8, P}) such that?) + 5%Q < P.

Proof. We first derive an achievable rate in the following lemma far tiscrete memory-
less state-dependent single-user channel with a helped lmasProposition 5.2 by setting

X! = ¢.

Lemmad4.1. For the discrete memoryless state-dependent single-hsanel with a helper,
arate R is achievable if it satisfies
RLIUX;Y)—I(U;S) (4.4a)
R<I(X;YU) (4.4b)

for some distributionPs Py s Px Py |sx,x-
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Proposition 4.1 then follows from Lemma 4.1, by choosingjtiret Gaussian distribu-

tion for the random variables as follows:

Xo=X,+BS

U=X;+aS

Py—P! Py—P!
whereX/ ~ N (0, B}), and—,/ OQ 0 LB/ OQ 0, O

We note that the achievable rate in Proposition 4.1 is oggchbverln andj. Itis clear

that the optimization is a max-min problem, i.e., maximizatof minimum of R, («, )
andR,(«, 3). In general, such optimization cannot be solved analyyieeith close form
expressions. In order to obtain further insights of suclwaeldound, we consider two spe-
cial cases in which the optimization is solved analyticalig the corresponding achievable
rate turns out to achieve the capacity. The idea is to opdmiiZ«, 5) and Ry («, 3) sep-
arately. For example, wheR; («, 3) is optimized, if Ry(«, 5) at the optimizing values of
a andg is greater than the optimdt; («, 5), then the corresponding optimal, («, 5) is
achievable. The same argument is applicable to optiriiZe, 5) instead. Such an idea

yield the following two corollaries on the achievable rate.

Corollary 4.1. For the state-dependent Gaussian single-user channelanhilper, a rate

R is achievable if it satisfies

1 P 1
R < = log(1+ + = log(1 + Py — ps P 4.5a
S N R e L R (5%
2 \\2 2 A 5\2
2 (Q+2p05\/P0Q+P0+1)(1+P0—pOSP())

for somepys such that-1 < pgs < 1.

Proof. It can be shown thak,(«, ) is optimized bya = WO - We then sels =

Fo+1
. E[XoS
005 1 /% to better illustrate the result, whepgs = %, and—1 < pps < 1. Corollary

4.1 then follows by substituting andg into (4.3a) and (4.3b). O



72

Corollary 4.2. For the state-dependent Gaussian single-user channelaniilper, a rate

R is achievable if it satisfies

1. P(Rh+Q+P+1)

< = .
R < 2log PO , (4.6a)
R < %log(l + P). (4.6b)

Proof. It can be shown thaR,(«, ) is optimized by settinge = 1 and5 = 0. Corollary

4.2 then follows by substituting andg into into (4.3a) and (4.3b). 0J

4.3 Capacity Results

In order to characterize the capacity, we first present tweeupounds on the capacity in
the following lemma. The first bound is characterized in [24]d the second bound is the

capacity of the corresponding channel without state coioap

Lemma 4.2. For the state-dependent Gaussian single-user channelanitblper, the ca-

pacity is upper bounded by

1 P 1
C < —log(1 —log(1l+ Py — p2 P, 4.7a
—1rgp%§<12 og(l+ Q_|_2pos,/P—0Q_|_PO_|_1)+ 5 og(l+ Py — ppsto)  ( )
1
C <§log(1 + P) (4.7b)

By comparing the achievable rate in Corollaries 4.1 and We? obtain the capacity

results in the following two theorems.
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Theorem 4.1. For the state-dependent single-user channel with a hetiegine

P
Pog = argmax(1l +
03 —1<pos<1( Q + 2posv @ + Po + 1

1 P 1
R = —log(1 —log(1l + Py — p2 P, 4.8b
1(pOS) 9 Og( + Q + 2,005*@ + PO + 1) + 9 Og( + I Pos 0) ( )

Y1+ Py — pigPo) (4.8a)

Ry(pos) = 1log(l + Pl(Po — posPo+1)* + (1 = pos) R (V@ + posv' )] )
T (V@ + posVP)? + (Po = i Po + 12 + (1= i) (V@ + pusVF)?
(4.8¢c)

If the channel parameters satisfy the following condition:

Ri(pps) < Ra(pps), (4.9)

then the channel capacity is given 8y= R, (pfg)-

Proof. Based on the achievable rate in Corollary 4.1, the bound.Baj4s optimized for

pos = argmaxl + 1L+ Py — ppsPo). If Ri(ps) < Ralpps), then

P
o Q+2posx/m+Po+1)(
Ry (p}s) is achievable, which matches the upper bound (4.7a) in Leffaand is hence

the capacity of the channel. O

Theorem 4.2. For the state-dependent single-user channel with a hetbamnnel state can

be fully cancelled, if the channel parameters satisfy thieviong condition:
P4+ PQ—-QP+1)=0 (4.10)

then the channel capacity 5= 1 log(1 + P).

Proof. Based on the achievable rate in Corollary 4.2, when (4.1@)bound in (4.6a) is
larger than the RHS of (4.6b), then the capacity of the chlawitbout state corruption

% log(1 + P) is achieved, which is thus the capacity of the state-deperaf@annel. [

In Fig. 4.2, we plot the lower bounds in Corollary 4.1 and 4n2 ghe upper bounds

in Lemma 4.2 as a function of the helper's powey, for the channel with? = 5, and



74
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0.57 -+-Inner Bound 2
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Fig. 4.2: Lower and upper bounds for the state-dependegtesirser channel with a
helper

@ = 12. The solid line and the dashed line are the two bounds inY4uT&(4.7b), and the

dot line and the cross line are the two lower bounds in Canplial and 4.2. Therefore,

the points on the lingl- B correspond to the capacity result in Theorem 4.1, and th@goi

on the lineC-D correspond to the capacity result in Theorem 4.2. The resglgests that
when P, is small, the channel capacity is determined by a functiothefhelper’'s power

P, and the state powé). As P, becomes large enough, the channel capacity is determined
only by the transmitter’s powep, i.e., the state is perfectly canceled. We further note that
the channel capacity without state can even be achievedihyspuith £, < @ (i.e., some
points on the line C-D). This indicates that for these poithts state are fully cancelled not
only by reversing the state, but also by precoding the state.

In Fig. 4.3, we plot the lower bound in Proposition 4.1 (daklee), the lower bound
achieved by single bin scheme only (dashed-dot line), aadaer bound achieved by
direct reversion only (solid line) as a function of the helpeower F;. It can be seen that
the combination of the two methods provides larger achievatte.

In Fig. 4.4, we plot the set of channel parametélsF,) for which our scheme achieves
the capacity. Each point in the figure corresponds to theradamith certain?, and@ with

fixed P = 5. The points in the upper part correspond to channel parasétat satisfy
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Fig. 4.3: Lower and upper bounds for the state-dependegtesirser channel with a
helper
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Q

Fig. 4.4: Capacity achievable points

(4.10), and hence the capacity for single-user channebwitstate is obtained. The points
in the lower part corresponds to channel parameters thiafysé4.8a)-(4.8c), and hence
the capacity is characterized by a function of not oRlybut alsoF, and(@. As the state

power() goes to infinity, the result matches the result in [34].
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CHAPTER 5

STATE-DEPENDENT PARALLEL

CHANNEL WITH A COMMON HELPER

In this chapter, we study the state-dependent parallelreamth a common helper. We
consider three submodels for the channel. For each modetenee inner and outer
bounds. By comparing inner and outer bounds, we charaetrezsegments on the capac-

ity boundary for the Gaussian channel with the state powes ¢ infinity.

5.1 Channel Model

S]?l L SKW

W P [ | Tohg 1% 1 ¥,
’ »Encoder( S }3113111(131 —— Decoder0 L%
‘ %%, L]
[ — . 4 ' Channel | 4 713}
— ' Encoderl 24— = Chgnnel : Decoder]l —
P}; X XS, (*)

L4 -

- . .

, Xy |, Channel | Y&’ Wy
— X EncoderK —+ 2 p e ( DecoderK —
I Vel Xy XSy *)

Fig. 5.1: The state-dependent parallel channel with a comimetper
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In the state-dependent parallel channel with a common héfse Fig. 1.5 in Sec-
tion 1.2. For convenience of reference, we include the figagain as Fig. 5.1 in this
section), each transmitter (say transmittg¢rhas an encodef, : W, — A}, which
maps a message, € W, to a codewordr} € X for k = 1,..., K. The K inputs
x7, ..., 2 are transmitted oveK parallel channels, respectively. Each receiver (say re-
ceiverk) is interfered by an i.i.d. state sequenggfor £ = 1,..., K, which is known
at none of transmitters, ..., K and receiverd, ..., K. A common helper is assumed
to know all state sequenced for £ = 1,..., K noncausally. Thus, the encoder at the
helper,fo : Wy x {S}, ..., St} — &', maps a message, € W, and the state sequences
(st,....s%) € St x ... x S to a codewordry € AJ. The entire channel transition
probability is given byPy; x, Hle Py, x,,x,,5.- There areX + 1 decoders with each at
one receiverg; : Vi — W, maps a received sequenggeinto a messagée;, € W for
k=0,1,..., K.

We study the following three Gaussian channel models.

In model I, K = 1, i.e., the helper assists one transmitter-receiver pdie dhannel

outputs at receiver 0 and 1 for one symbol time are given by

Yo = Xo + No, (5.1a)

Y, = Xo+ X1+ 5 + M. (5.1b)

In model Il, K = 2, in which one helper assists two transmitter-receiverspaind only
one receiver is interfered by a state sequence. The chantmite at receivers 0, 1 and 2

for one symbol time are given by

Yo = Xo + No, (5.2a)
Yi=Xo+ X1+ 851+ Ny, (5.2b)

Y, = Xo+ X5+ No. (5.2¢)
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In model Ill, K is general, in which a common helper assists multiple tréibsm
receiver pairs with each receiver corrupted by an indepathddistributed state sequence.
This model is more general than model I, but does not includdehll as a special case
(due to infinite state power). The channel outputs at reced@nd receivers, . . ., K for

one symbol time are given by

)/b - XO + N07 (53a)

Yk:X0+Xk+Sk+Nk, fOT ]{?:1,,K (53b)

In the above three models, the noise variabdgs NV, ..., Nx and the state variables
Si, ..., Sk are Gaussian distributed with distribution, ..., Ny ~ N(0,1) andS;, ~
N(0,Q)fork =1,..., K, andall of the variables are independent and are i.i.d. cheen-
nel uses. The channel input§, X, ..., X are subject to the average power constraints
I3 XL < Pyfork=0,1,... K.

We are interested in the regime of high state power, i.&),as> cofork =1,..., K.
Our goal is to design helper strategies in order to cancehitjle power state interference

and to further characterize the capacity region in thismegi

5.2 Modell: K =1

In this section, we study the model | with = 1. It is a basic model, in which the helper
assists one transmitter-receiver pair. Understandirggrtiadel will help the study of the
general parallel network. In this section, we first develageo and inner bounds on the
capacity region, and then characterize the boundary ofdpadity region based on these
bounds.

We first provide an outer bound on the capacity region in higtegpower regime.

Proposition 5.1. For the Gaussian channel of model I, an outer bound on the capa
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region for the regime whe@; — oo consists of rate pair§Ry, R;) satisfying:

1
1

The bound (5.4a) ok, follows simply from the capacity of the single-user channel
between transmitter 1 and receiver 1 without signal anck staerference. The bound
(5.4b) on the sum rate is limited only by the powerof the helper, and does not depend
on the powerP; of transmitter 1. Intuitively, this is becaug® is split for transmission
of W, and for helping transmission &f; by removing state interference, and heri¢e
determines a trade-off betwedty and R;. On the other hand, improving the powg,
although may improvez,, can also cause more interference for receiver 1 to decade th
auxiliary variable for canceling state and interferenceuq, the balance of the two effects

determines thaP; does not affect the sum rate.
Proof. The proof is detailed in Appendix C.1. O

We further note that although the sum-rate upper bound Y& be achieved easily
by keeping transmitter 1 silent (i.62, achieves the sum rate bound with = 0), we are
interested in characterizing the capacity region (i.e tthde-off betweeR, andR;) rather
than a single point that achieves the sum-rate capacithelméxt section, we characterize
such optimal trade-off based on the sum-rate bound.

We then design a coding scheme and derive the achievabteragtordingly. The ma-
jor challenge in designing an achievable scheme arisestiiermismatched property due
to transmitter-side state cognition and receiver-side stéerference, i.e., state interference
to receiver 1 is known noncausally only to the helper, nohtodorresponding transmitter
1. Since we study the regime with large state power, trateniitcan send information to
receiver 1 only if the helper assists to cancel the states;Tthe helper needs to resolve the

tension between transmitting its own message to received ®alping receiver 1 to cancel
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its interference. A simple scheme of time-sharing betweertwo transmitters in general
is not optimal.

We design a layered coding scheme as follows. The helpds sgisignal into two
parts in a layered fashion: one (representeditjyin Proposition 5.2) for transmitting its
own message and the other (represented/liy Proposition 5.2) for helping receiver 1
to remove both state and signal interference. In particthar second part of the scheme
applies a single-bin dirty paper coding scheme, in whichgmaission ofl; and treatment
of state interference for decoding; are performed separately by transmitter 1 and the
helper. This is because the helper knows the state but dddsnow the message (of
transmitter 1) that the state interferes, and hence cameotie this message via the regular
multi-bin dirty paper coding as in [10]. Based on such a sahene obtain the following
achievable rate region for the discrete memoryless chawmhéth is useful for deriving an

inner bound for the Gaussian channel.

Proposition 5.2. For the discrete memoryless channel of model I, an inner da@mmthe

capacity region consists of rate paif&,, R;) satisfying:

Ry < I(Xp; Yo) (5.5a)
Ry < I(X1;11|U) (5.5b)
Ry < I(X1WU; Y1) — I(U; 81 Xg) (5.5¢)

for some distributiorpsl PX(’)PU\S1X6PX0|US1X6PX1 PYO\XOPY1|S1X0X1 .
Proof. The proof is detailed in Appendix C.2. 0J
Based on Proposition 5.2, we have the following simpler ifooaind.

Corollary 5.1. For the discrete memoryless channel of model I, an inner daamthe
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capacity region consists of rate paif&,, R;) satisfying:

Ry < 1(X}; Vo) (5.6a)

Ry < I(X;;Yi|U) (5.6b)

for some distributionPs, Px; Pu|s, x; Pxo|vs, x; Px; Pry | xo Prajsi xox, that satisfies

1(U:Y1) = I(U: $1.X). (5.7)

Proof. The region follows from Proposition 5.2 because (5.5¢) durelant due to the

condition (5.7). O

The inner bound in Corollary 5.1 corresponds to an intuigigkievable scheme based
on successive cancelation. Namely, the condition guagariteat receiver 1 decodes the
auxiliary random variablé& first, and then removes it from its output and decodes the mes-
sage, which results in the bound (5.6b). In particular, elaton ofU leads to cancelation
of signal and state interference at receiver 1.

We next derive an inner bound for the Gaussian channel of hiddesed on Corollary

5.1.

Proposition 5.3. For the Gaussian channel of model I, in the regime whgn— oo, an

inner bound on the capacity region consists of rate paits, ;) satisfying:

1 BP
< =1 1 5.8a
o < gog (14 5500 ) (5.89)
1 P
Ry <=1 1 5.8b
: 20g(+1+<1—§)2ﬁPo) (5:80)
for some real constants > 0 and0 < < 1 that satisfyn < s

Proof. Proposition 5.3 follows from Corollary 5.1 by choosing tbet Gaussian distribu-
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tion for random variables as follows:

U=X{+a(S +Xp), Xo=X;+ X{
X(/) NN((]?BPO)v X(/)/ ~ N(()aﬁPO)

XlNN(O,Pl)

whereX}, X/, X; andsS; are independenty > 0,0 < 3 < 1,and3 =1 — 3. O

We note that in Proposition 5.3, the parametaraptures correlation between the state
variableS; and the auxiliary variablé/ for dealing with the state, and can be chosen to
optimize the rate region. This is in contrast to the clagsicty paper coding [10], in which
such correlation parameter is fixed for state cancelatitverdfore, although Corollary 5.1
may provide a smaller inner bound than that given in Prows®.2, it can be shown
that two inner bounds are equivalent for our chosen auyiliandom variables and input
distribution after optimizing ovet.

By comparing the inner and outer bounds, we characterizbdhadary points of the
capacity region for the Gaussian channel of model | baseth@mner and outer bounds
given in Propositions 5.3 and 5.1, respectively. We divigeGaussian channel into three
cases based on the conditions on the power constraintd? (2) ) +1; (2) P, — 1 <
P, < Py+1and (3)0 < P, < Py, — 1. For each case, we optimize the dirty paper coding
parametery in the inner bound in Proposition 5.3 to find achievable rati@ts that lie on
the sum-rate upper bound (5.4b) in order to characterizedhedary points of the capacity
region.

Case 1: P, > F, + 1. The capacity region is fully characterized in the following

theorem.

Theorem 5.1. For the Gaussian channel of model I, in the regime wiign— oo, if
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Fig. 5.2: The capacity region for case 1 with= 1.5 andP; = 3.

P, > P, + 1, the capacity region consists of the rate pairg, i) satisfying
1

Proof. Let P, be the actual power for transmittifi§;. Then the inner bound (5.8b) on

28P,
BPy+P1+1"

R, is optimized whemv = By settingP, = 8F, + 1, the inner bound given in
Proposition 5.3 matches the outer bound given in Propositid, and hence is the capacity

region. O

The capacity region of case 1 is illustrated in Fig. 5.2.

Theorem 5.1 implies that wheR, is large enough, the power of the helper limits the
system performance. Furthermore, sidgeor transmission ofl/; causes interference to
receiver 1 to decode the auxiliary variable for canceliradesand interference, beyond a
certain value, increasing; does not improve the rate region any more. Theorem 5.1 also
suggests that in order to achieve different points on thenBary of the capacity region
(captured by the parametg}, different amounts of poweP; should be applied.

Case 2. — 1 < P, < Py + 1. We summarize the capacity result in the following

theorem.

Theorem 5.2. Consider the Gaussian channel of model | in the regime whenr- oo,
andP,—1 < P < Py+1. If P, > 1, the rate point§ Ry, R;) on the lineA-B (see Fig. 5.3

(a) and Fig. 5.4 (a)) are on the capacity region boundary. Mepecifically, the pointd
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Fig. 5.4: Inner and outer bounds for case 2 with> P;, which match partially on the
boundaries

and B are characterized as:

1
Point A : (5 log(1+ 1), 0)

Ph—P +1

1
Point B : (5 log(1 + 2

1
)7 5 logpl)

If P, < 1 the rate pointA (see Fig. 5.3 (b) and Fig. 5.4 (b)) is on the capacity region

boundary, and is characterized as:

1
Point A : (5 log(1+ 1), 0)
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Proof. We first setv = 2220 and then substituteinto (5.8b) and obtain the following

BPy+P;+1"
inner bound:
1 BP,
Ry < §log (1 + T 1) (5.12a)
1 48Py Py
Ry <=1 1+ ) 5.12b
LS 508 ( APy + (P +1— 5130)2) (5.12b)

When P, > 1, by settingg = P}%l, we obtain an achievable rate point B given by
(% log(1 + =24, S log Pl), which is also on the outer bound. It is also clear that the
point A given by(% log(1+ Fy), 0) is achievable by setting = 0, which is also on the

outer bound. Thus, the lind — B is on the boundary of the capacity region due to time

sharing. O

For this case, if?, > 1, i.e., P, is larger than the noise power, inner and outer bounds
match over the line A-B as illustrated in Fig. 5.3 (a) and Bidg.(a), and thus optimal trade-
off betweenR, and R, is achieved over the points on the line A-B.Ff < 1, the inner
and outer bounds match only at the rate point A as illustratddg. 5.3 (b) and Fig. 5.4
(b), which achieves the sum-rate capacity. We further rtodié Fig. 5.3 is different from
Fig. 5.4 in the outer bound. Fig. 5.4 corresponds to the caikey > P;, and hence the
capacity region is also upper bounded by the single-usexotigpof R;. Such a bound is
redundant in Fig. 5.3 which corresponds to the case Rijtk: P;, becausé’, is not large
enough to perfectly cancel state and signal interferencecaiver 1. However, in case 3,
we show that this single-user capacity ®f is achievable simultaneously with a certain
positive k.

Case 3:P, < P, — 1. We first summarize the capacity results in the following teeo

Theorem 5.3. Consider the Gaussian channel of model | in the regime when> oo, and
P, < Py—1.1If P, > 1, the rate pointg Ry, R1) on the lineA-B (see Fig. 5.5 (a)) are on the

boundary of the capacity region. More specifically, the poith and B are characterized
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as:

1
Point A : (5 log(1+ 1), 0)

1 Po—P+1. 1
Point B (5 log(1+ 10— A1F 0y 2yog Pl)

Py ) 2

And the rate point$ Ry, R;) on the lineD-FE (see Fig. 5.5 (a)) are on the boundary of the

capacity region. The point® and E are characterized as:

110 (Po—i-l
2 P +2

PointD:( ), = lo (1+P1))

!
2
PointE:(O —log 1+P1)

If P, < 1, then pointA (see Fig. 5.5 (b)) is on the capacity region boundary. Thepdi

is characterized as:
) 1
Point A : (5 log(1+ Fp), 0)

And the rate point$R,, R;) on the lineD-FE (see Fig. 5.5 (b)) are on the boundary of the
capacity region. The point® and E are characterized as:

P0+1)

1
Point D : | =1
oint <2O(P1 5) 5

log(1 + P1)>

1
Point E : <0, 3 log(1 + P1))

Proof. For case 3, the inner bound boundary given in PropositionsscBaracterized by

segment | consisting of rate points satisfying:

1 BP,
< =1 .
Ry 5 log (1+1+5P0) (5.17a)
1
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for 0 < 8 < 2L and segment |l consisting of rate points satisfying

Py ?
1 BP,
<=1 1 5.18
Ro 20g<+1+5po) (5.182)
1
for £ < 3 < 1. Segment | is obtained by setting= -2, and segment Il is

obtained by setting = 1.
For segment |, if?; > 1, the line A-B is on the boundary of the capacity region as
shown in Fig. 5.5 (a). IfP, < 1, only point A is on the capacity boundary as shown

in Fig. 5.5 (b). For segment Il, it is clear that the singletushannel capacity foR; is

achievable. Furthermore, by setting= P}%rl, the pointD is achievable. Thus, the line
D — F as shown in Fig. 5.5 (a) and (b) is on the boundary of the capeagjion. O

Similarly to cases 2, the inner and outer bounds match figher the sum rate bound,
i.e., the two bounds match over the line A-B (see Fig. 5.5ia)) > 1 and match at only
the point A (see Fig. 5.5 (b)) i, < 1. However, differently from case 2, the inner
and outer bounds also match whén = %log(l + P;) over the line D-E (see Fig. 5.5
(a) and (b)). This is because the powgyr of the helper in this case is large enough to
fully cancel state and signal interference so that trartemitis able to reach its maximum
single-user rate to receiver 1 without interference. Famtiore, the helper is also able to

simultaneously transmit its own message at a certain gesiie.

5.3 Model Il: K =2

In this section, we study the model Il withh = 2, and only receiver 1 corrupted by the
channel state. In this model, the challenge lies in the taat the helper needs to assist
receiver 1 to remove the state interference, but such sigentably causes interference to

receiver 2. To better understand the function of the helpestudy the case with, = ¢,
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Fig. 5.5: Inner and outer bounds for case 3, which matchalgrton the boundaries.

and henceY, = ¢. It is straight-forward to generalize these results to tredeh with

Wo # ¢.

We first provide a useful outer bound for Model II.

Proposition 5.4. For the Gaussian channel of model Il with, = ¢, in the regime when

@1 — oo, an outer bound on the capacity region consists of rate pdixs R,) satisfying:

1 1
Ry <min {5 log(1 + Fp), 3 log(1 + Pl)} (5.19a)
1
1
Ry + Rs éilog(l—i—Po—i—Pg) (519C)
Proof. The proof is detailed in Appendix C.3. O

We note that (5.19a) represents the best single-user rasxeier 1 with the helper
dedicated to help it as shown in Equation (5.4a) and (5.8a)90) is the single-user ca-
pacity for receiver 2, and (5.19c) implies that althoughtthie transmitters communicate
over parallel channels to their corresponding receivars,td the shared common helper,
the sum rate is still subject to a certain rate limit.

We next describe our idea to design an achievable schemerdi/adte that although

receiver 2 is not interfered by the state, the signal thaht#iper sends to assist receiver 1
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to deal with the state still causes unavoidable interfexgnaeceiver 2. A natural idea to
optimize the transmission rate to receiver 2 is simply tqokbe helper silent. In this case,
without the helper’s assistance, receiver 1 gets zero wadalinfinite state power. Here,
we design a novel scheme, which enables the single-useneheapacity for receiver 2
and a certain positive rate for receiver 1 simultaneoustngequently, the helper is able to
assist receiver 1 without causing interference to recélvén our achievable scheme, the
signal of the helper is split into two parts, represented/bgndV as in Proposition 5.5.
Here,U is designed to help receiver 1 to cancel the state whileitigt as noise, and’

is designed to help receiver 2 to cancel the interferenceaethylU. Since there is no state
interference at receiver 2] is decoded only at receiver 1. Based on such an achievable

scheme, we obtain the following achievable region.
Proposition 5.5. For the Gaussian channel of model Il with, = ¢, an achievable region

consists of the rate paifR,, R,) satisfying

Ry < I(Xi;YA|U), (5.20a)

Ry < I(Xp; Ya|V), (5.20b)

for some diStribUtiOﬂPSlUVXoXlX2 = P51PUVXO|S1PX1PX21 whereU and V' are auxiliary

random variables satisfyinf that

I(U;vh) = I(U; 51), (5.21a)
I(V;Ys) = I(V;US)). (5.21b)
Proof. The proof is detailed in Appendix C.4. O

Following from the above achievable region, we obtain aneaelble region for the

Gaussian channel by setting an appropriate joint inputidigton.

Proposition 5.6. For the Gaussian channel of model Il with, = ¢, in the regime when



90

@)1 — oo, aninner bound on the capacity region consists of rate paits R.) satisfying:

1 P
R <=log 1+ 5.22a
P2 g( (1—§)2P01+P02+1) ( )

1 P,
1tz <§ log <1 + 1+ (5—1)2P02P01> (5.22b)
Poa+3% Poy

WhereP01, Pog >0, P01—|—P02 < Po, 0<a< 1+21-!’2(1il-P1 , andP022+2ﬁP01P02 > B2P01<P02+
Py +1).
Proof. The region follows from Proposition 5.5 by choosing joinByaussian distribution

for random variables as follows:

U= X +aS, V=Xpn+BXn
Xo = Xo1 + Xo2
Xo1 ~ N (0, Po1), Xo2 ~ N (0, Py2)

XlNN(O,Pl), XQNN<O,P2>

where Xy, Xo2, X1, X2 andS; are independent. O
) )
> =)
JZ JZ
3 )
o o5 o
—Outer Bound —Outer Bound
---Inner Bound D ---Inner Bound
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Fig. 5.6: Segments of the capacity boundary for the Gauss$iannel of model II

Comparing the inner and outer bounds given in Propositiofisbd 5.4, respectively,

we characterize two segments of the boundary of the capaegtgn, over which the two
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bounds meet.

Theorem 5.4. Consider the Gaussian model Il with, = ¢, in the regime whey; — oo,
the rate points on the lind- B (see Fig. 5.6-(a)) are on the capacity region boundary. More

pointsA and B are characterized as

specifically, if} (1 + Py + P;) > P0+PI§2+1,

Point A : (O, % log(1 + P2)>

Point B+ ~1og 1+ it Liog(1 + )
2% 1+ P+ P21+ Py+ Po) —4P P2 )02 % 2]

L1+ P+ D)< H)+P71§2+1’ pointsA and B are characterized as

1
Point A : <0, 5 log(1 4+ P2)>

. 1 Pl(PO+P2+1) 1
Point B : | =1 1 —log(1+ P. .
oin (2 og( +P0+(P0+1)(P2+1) 'y og(l+ )

Furthermore, the rate points on the lig-D (see Fig. 5.6-(a)) are also on the capacity

region boundary. I1{P, > F, + 1, the points_" and D are characterized as

1 1 Py
Point C : | =log(1 + Py), = log [ 1
oint C (2 og(1+h), 5 0g< +P0+1>>

1
Point D : (5 log(1 + PO),O> ,

as illustrated in Fig. 5.6-(a).

If P, < P, — 1, the points” and D is characterized as

1 1 Py
Point C: | =log(1 + Py), = log [ 1
oint C (2 og(l+P1), 3 0g< +P1+2>>

1
Point D : (5 log(1 + Pl),0> ,

as illustrated in Fig. 5.6-(b).

Proof. We first show that the lingl- B is achievable. The point A is achievable by keeping
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the helper silent. To show that the point B is achievable, @&'s= 1 in Proposition 5.6,
and hence the achievable rdte in (5.22b) reaches the single-user channel capacity, and

the conditionP?, + 23Py Pyz > [3*Py1 (P2 + P, + 1) becomesPy; < % We set

P2
For = mrpr
If 114+ P+ Py) > %,We have 2t < 1. Thus, settingr = =52+, (5.22a)

and (5.22b) imply that the point B is achievable.

If L1+ P+ P1) < P0+P71g22+1’ we haveljﬁz(ipl > 1. By settinga = 1, (5.22a) and
(5.22b) imply that the point B is achievable.

We next show that the lin€-D is on the capacity boundary.

As implied by Theorems 5.1 and 5.3, the only possible casasthie outer bound
(5.19a) (i.e. the maximum rafe, with the helper fully assisting receiver 1) can be achieved
are whenP, < Py —landP, > P, + 1.

If P, > P,+ 1, setting the actual transmission power of transmitter Pas Py + 1,

P01:P0,04_

1+P

is achievable. This point also achieves the sum capacitys dbvious that pointD is
achievable, and hence the points on the {ihé are on the capacity boundary.

If P, < Py—1, bysettingd =0, « = 1andPy, = P, = P, + 1 (whereP, is the actual
transmission power of the helper), then (5.22a) and (5.28ply that the rate point C is
achievable. In particular, the actual power the helper issBs+ 1 rather than?,, because
larger P, does not help receiver 1 to decode more, but increasesargade to receiver
2. Itis clear that the poinD is achievable. Hence, the points on the lirfieD are on the

capacity boundary. O

The capacity result for the lind-B in Theorem 5.4 indicates that our coding scheme
effectively enables the helper to assist receiver 1 witlvawising interference to receiver
2. Hence,R, achieves the corresponding single-user channel capaditg transmitter 1
and receiver 1 communicate at a certain positive fgtevith the assistance of the helper.

The capacity result for the lin€-D in Theorem 5.4 can be achieved based on a scheme,



93

in which the helper assists receiver 1 to deal with the stadereceiver 2 treats the helper’s
signal as noise. Such a scheme is guaranteed to be the bést byter bound if receiver

1’s rate is maximized.

Corollary 5.2. For the Gaussian channel of model 1l withl, = ¢, in the regime when

Q1 — oo, if P, > Py + 1, the sum capacity is given Bylog(1 + Py + P»).

5.4 Model III: General K

In this section, we consider the Gaussian channel of modeith & > 2, in which there
are multiple receivers with each interfered by an indepahdeate. In this section, we
present the results for the scenario, in which the helpeicdtss to help two users without
transmitting its own message, i.éC, = 2 andWW, = ¢. It is straight-forward to extend
the result to the more general scenario, in which the helgpgsts more than two users and
transmits its own message at the same time,Ke> 2 andW, # ¢.

We note that model Ill is more general than model |, but dog¢srmobude model Il as
a special case, because model Il has one receiver that iormopted by state, but each
receiver (excluding the helper’s targeted receiver) in ehdidlis corrupted by an infinitely
powered state sequence. Hence for model Ill, the challeagen the fact that the helper
needs to assist multiple receivers to cancel interfereaosad by independent states. In
this subsection, we first derive an outer bound on the capaegion, and then derive
an inner bound based on a time-sharing scheme for the hejmnewhat interestingly,
comparing the inner and outer bounds concludes that theditagng scheme achieves
the sum capacity under certain channel parameters, and nee loharacterize segments
of the capacity region boundary corresponding to the sunaaigpunder these channel
parameters.

We first derive an outer bound on the capacity region.
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Proposition 5.7. For the Gaussian channel of model 1l witk = 2 and W, = ¢, in the
regime when),, (o — oo, an outer bound on the capacity region consists of rate pairs

(R1, R») satisfying:

1
1
R+ Ry < 3 log(1+ Fy). (5.29)
Proof. The proof is detailed in Appendix C.5. O

Although the two transmitters transmit over parallel chelapnthe above outer bound
suggests that their sum rate is still subject to a certaistcaimt determined by the helper’s
power. This implies that it is not possible for one commorpketo cancel the two inde-
pendent high-power states simultaneously (i.e., usingah@non resource). This fact also
suggests that a time-sharing scheme, in which the helgnatively assists each receiver,
can be desirable to achieve the sum rate upper bound (iachteve the sum capacity).

We hence design a time-sharing achievable scheme. Ther Isglits its transmission
duration into two time slots with the fractiopof the total time duration for assisting re-
ceiver 1 and the fractiom — ~ for assisting receiver 2. Each transmitter transmits only
during the time slot that it is assisted by the helper, angh&es#ient while the helper as-
sisting the other transmitter. We note that the power camgs for transmitters 1 and 2 in
their corresponding transmission time slots %reandl%, respectively.

Now at each transmission slot, the channel consists of ansrtritter-receiver pair with
the receiver corrupted by a infinite-power state, and ongenehat assists the receiver to

cancel the state interference. Such a model is equivaleéhetstate-dependent single-user
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channel with a helper studied in [34]. We rewrite the achiévaate as follows:

p

%log(1+Po), P>F+1
R(P, Py) = | Hlog(1 + grrimtirz),  R—1<P< P+l (5.30)
\%10g(1+P), P<Py—1.

By employing the time-sharing scheme between the helpéstagsone receiver and the

other alternatively, we obtain the following achievablgios.

Proposition 5.8. For the Gaussian channel of model Il witk = 2 and W, = ¢, in the
regime with@, > — oo, an inner bound on the capacity region consists of rate pairs

(R1, R») satisfying:

R, < ’}/R (%, Po) (531&)
Py
R (- )r (2 n) (5.31b)

where0 < v < 1isthe time-sharing coefficient, and the functi®f, -) is defined in(5.30)

We note that following from (5.30), the best possible singger rate i$1ﬁ log(1+ Ry),
which can be achieved iP > P, + 1. This best rate may not be possibleAfis not
large enough. Interestingly, in a time-sharing schemeh li@nsmitters can simultane-
ously achieve the best single user rétke)g(l + P,) over their transmission fraction of
time, because both of their powers get boosted over a cdrttion of time, although
neither power is larger thaR, + 1. In this way, the sum rate upper bound (5.29) can be
achieved. The following theorem characterizes the sumaiigpaf the channel for the

scenario described above.

Theorem 5.5. For the Gaussian channel of model lll withih = 2 and W, = ¢, in

the regime withQ,,Q> — oo, if P, + P, > F, + 1, then the sum capacity equals
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%log(l + P,). The rate points that achieve the sum capacity (i.e. on tlpacy re-
gion boundary) are characterized 4%, R,) = (7R(%,PO), (1 —7)R(: P0)> for

1—7?

ve <max(1 — P 0), min(2 1)).
Proof. The proof is detailed in Appendix C.6. O

The above theorem implies the following characterizatibthe full capacity region

under certain parameters.

Corollary 5.3. For the Gaussian channel of model lll with = 2 and W, = ¢, in the
regime withQ, Q> — o, if P;, P, > P, + 1, then the capacity region consists of the rate

pair (R, R,) satisfyingR; + Ry < 3log(1 + P).

We next provide channel examples to understand the outemaed bounds respec-
tively in Proposition 5.7 and 5.8, and in the sum capacity iedrem 5.5. It can be seen
that the power constraints fall into four cases, among wivieltonsider the following three
cases: case 2, > Py, P, > Py, case 2.P, > Py, P, < Py;and case 3P, < Py, P, < B,
by noting that case 4 is opposite to case 2 and is omitted dsgnnetry of the two

transmitters.

e Case 1: P, > Py, > P,. We consider an example channel with = 1,
P, = 1.8and P, = 1.5. Fig. 5.7 plots the inner and outer bounds on the capac-
ity region. In particular, the two bounds meet over the liegraent B-C, which

corresponds to the rate point®,, R;) = <7R(%,PO), (1 —V)R(%,PO)) for

v € | max(l — %, 0), min(%, 1) | as characterized in Theorem 5.5. All these
rate points achieve the sum capacity. It can also be seealthatigh neither trans-
mitter achieves the best possible single-user rate, thecayacity can be achieved
due to the time-sharing scheme. We also note that, in thes dathe conditions in

Corollary 5.3 are satisfied, the full capacity region is elcterized.
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Fig. 5.7: Segment on the capacity region for the Gaussianngiaf model I

e Case 2.P, > F,, P, < Fy. We consider an example channel with= 2, P, = 2.5
and P, = 0.8. Fig. 5.8 plots the inner and outer bounds on the capacitpme&im-
ilarly to case 1, the two bounds meet over the line segmenta3-Characterized in
Theorem 5.5, and the points on such a line segment achiewsitheapacity. Dif-
ferently from case 1, transmitter 2 achieves its single-asannel capacity indicated

by the point A in Figure 5.8. This is consistent with the sengker rate provided in

(5.30) for the case witl?, < P, — 1.
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Fig. 5.8: Segment on the capacity region for the Gaussianngiaf model Il
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e Case 3:P, < Py, P, < P,. We consider an example channel with= 4, P, = 3
and P, = 3. Figure 5.9 plots the inner and outer bounds on the capaetipm.
The points on the line segment B-C achieve the sum capacithasacterized in
Theorem 5.5, and the points A and D respectively achieveitiggesuser capacity
for two transceiver pairs. This is consistent with the stagser rate provided in

(5.30) for the case witl®,, P, < Py — 1.
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Fig. 5.9: Segment on the capacity region for the Gaussianngiaf model Il
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CHAPTER 6

STATE-DEPENDENT MULTIPLE ACCESS

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent MAC with adrel®ur focus is on the

Gaussian channel with additive state. We derive an outandon the capacity region, and
obtain an inner bound based on a dirty interference cangelatheme. By comparing the
inner and outer bounds, we characterize the full capadifipneor segment on the boundary

of the capacity region under various channel parameters.
6.1 Channel Model

5 ,
|

Encoder 0

w, X7 yr WV,

Encoder 1 N awa I Decoder ——

h 4

‘Encoder 2
Fig. 6.1: The state-dependent MAC with a helper

In the state-dependent MAC with a common helper (see FiginlSgection 1.2. For
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convenience of reference, we include the figure again a$Hign this section), transmitter
1 and transmitter 2 send their own messages to the recedggrectively. The channel is
corrupted by a state sequence. The state sequence is knowithter the transmitters nor
the receiver, but is known to a helper noncausally. Henaehtiper assists the receiver
to cancel the state interference. More specifically, twaeecs, each at one transmitter,
fr + Wr — X map the message;, € W, to a codewordr} € A} for k = 1,2. The
encoder at the helpef, : S — X" maps the state sequenge ¢ S™ into a codeword
xg € Ay'. The help signaky and the inputs?, 27 are transmitted over the MAC to the
receiver. The channel transition probability is given By, x, x, x,s- The decoder at the
receiverg : Y" — (W, W) maps the received sequengeinto two messages; € W
fork =1,2.

We focus on the Gaussian channel with the output at receavemie channel use given

by
Y=Xo+ X, +Xo+S+N (6.1)

where the noise variabl® ~ A/(0, 1) and the state variablg ~ N (0, Q). Both the noise
and state variables are i.i.d. over channel uses. The chanqmas X,, X; and X, are

subject to the average power constraiRts P, andP.

6.2 Outer and Inner Bounds on Capacity

In this section, we provide outer and inner bounds on the @gpeegion for the state-

dependent Gaussian MAC with a helper. We start with an outenth as follows.

Proposition 6.1. For the state-dependent Gaussian MAC with a helper, an dagand on
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the capacity region consists of the rate pairg;, R») satisfying:

1 1
Ry <min {5 log(1+ 1), 5 log(1 + Pp)

1 Py + 2posv/ F, P +1
+-log |1+ b 2005 VIO 11 (6.2a)
2 Q
)1 1
Ry <min {5 log(1 + 1), 5 log(1 + Pp)
1 Py + 2posv/ F, P41
+—10g(1+ b+ 2p0s VIV F Py F )} (6.2b)
2 Q
)1 1
Ry + Ry <min {5 log(1+ P + P), 5 log(1 + Pp)
1 Py + 2posv/ P, P+ P+1
+§log(1+ 0+ 2os O%+ ks )} (6.2¢)

for somepys that satisfies-1 < pps < 1.

Proof. The first bounds in (6.2a)-(6.2c) follow from the capacitytibé Gaussian MAC
without state. The remaining bounds arise due to capabilitige helper for assisting state

cancelation. Detailed proof is relegated to D.1. O

In particular, we are interested in the large state poweimegi.e.,(Q — oo. The

following outer bound for such a regime follows readily frétroposition 6.1.

Corollary 6.1. For the state-dependent Gaussian MAC with a helper, in themre that

) — oo, an outer bound on the capacity region consists of rate paks R,) satisfying:

1
1
1 1
R1+R2 Smln{ilog(l+P1+P2),§log(1+Po)} (63C)

We note that ag) — oo, the communication rates are not only bounded by the power
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constraints of transmitters 1 and 2, but also by the powdredfielper. This is because as the
state power becomes asymptotically large, the receivet rmasve the state interference
first in order to decode useful information. In this casereasing the power®, and P,
causes more interference for the receiver to remove the, stati hence may reduce the
sum rate. Thus, whef, + P; is large enough, the sum rate depends only on the power of
the helper that affects how the state can be removed.

We next derive an achievable region for the channel. Thechdsa of the achievable
scheme is to employ a dirty interference cancelation schemethe helper incorporates
two schemes for canceling state interference: scheme Elsasmme state power by sig-
nals that exactly reverses the state realization; and selZuses dirty paper coding via
generation of an auxiliary variable (represented by Proposition 6.2) to incorporate the
state information so that the receiver decodes such varfabt to cancel the state and then
decode the users’ information. Based on such an achievab&are, we derive the fol-
lowing inner bound on the capacity region. The detailed pi®omitted due to the space

limitations.

Proposition 6.2. For the discrete memoryless state-dependent MAC with @&help inner

bound on the capacity region consists of rate paiRgs, R;) satisfying:

Ry < I(X;Y|UX)) (6.42)
Ry < I(X2;Y|UX;) (6.4b)

for some distributionPs Py s Px,vs Px, Px, Pyisx,x: x, such that

[(U;Y) = I(U; S). (6.5)

Proof. The proof is detailed in Appendix D.2. 0J
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We note that the constraint (6.5) is imposed because thé&veeceeeds to decode the
auxiliary codeword (with single letter representationthat the helper generates to cancel
the state. Based on the above inner bound, we derive theviatjoinner bound for the

Gaussian channel.

Proposition 6.3. For the state-dependent Gaussian MAC with a helper, an iboand on

the capacity region consists of rate paiiB;, R,) satisfying:

15!

(a=1-5)2PpoQ
Poo+a2Q +1

Py

(a=1=0)2PyoQ
Poo+a2Q +1

P+ Py

(a=1=0)2PyoQ
Poo+a?Q +1

1
Ry <§log 1+ (6.6a)

(6.6b)

1
Rs Silog 1+

(6.6¢)

1
R+ Ry Silog 1+

for some real constants, 3, and0 < Py, < P, that satisfy

o /P022P00 < 5 < /POZQPOO’ and

a2Q(P1+P2+1+P00) —QOéPOQQ(l—i—B)—PO% < 0. (67)

Proof. The region follows from Proposition 6.2 by choosing the j@aussian distribution

for random variables as follows:
U= Xp+aS, Xo=Xp+08S, Xo~N(,PFy),

where Xyq and S are independent. The constraints @riollows due to the power con-

straints onX,. O

We note that the above construction of the inpit of the helper reflects two state
cancelation schemes: the tefis represents directly cancelation of some state power via

reverse of the state realization; and the varialilg is used for dirty paper coding via
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generation of the state-correlated auxiliary varidbleHence, the parametgrcontrols the
balance of two schemes in the integrated scheme, and cartibezsual to achieve the best
performance. This scheme is also equivalent to the one dita X, + «S, where X,
and S are correlated. While such approaches have been consitetied literature (see
e.g., [37]), we believe that selectirigg and X, successively provides a more operational
meaning to the correlation structure.

In the high state power regime, i.€), — oo, it is necessary that = 0, because the
helper’s inputX, has only limited power. Hence, in this case, the achievatilerse com-
pletely uses dirty paper coding for state cancelation. Susbheme yields the following

inner bound.

Corollary 6.2. For the state-dependent Gaussian MAC with a helper, in theme with

@) — oo, aninner bound on the capacity region consists of rate p@its R,) satisfying:

1 P
<iog (1 6.8
h 2Og< +(1—§>2Po+1) (6.82)
1 P,
Ry <~ 1log 1 6.8b
252 Og( +(1—5)2Po+1) (6.80)
1 P+ P
<iog (1 6.8
R+ Ry 2og< +(1—§)2P0+1) (6.8¢)

for some constant that satisfied) < o < L5

6.3 Capacity Results

In this section, by comparing the inner and outer bounds, eacterize the capacity
region or segment on the capacity boundary under variousnehgarameters. We first

characterize the capacity region for case 1 when the helpewer is relatively large.

Theorem 6.1. For the state-dependent Gaussian MAC with a helpé?y i& P, + P, + 1,
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the capacity region consists of rate paiiB;, R») satisfying:

1
1
1
Rl + R2 < 5 10g(1 + P1 + PQ) (69C)

Rz(bits/use)

G

0.8

0 0.2 04 06
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Fig. 6.2: An illustration of the capacity region for statepgndent Gaussian MAC with a
helper for case 1 witl?, = P, = 3, P, = 7.5 and arbitrary)) (characterized by Theorem
6.1) and case 2 witl, = P, = 3, P, = 4.5 and(@ = 8 (characterized by Theorem 6.2).

Proof. The achievability follows by setting = 1 andg = 0 in Proposition 6.3. It is easy
to check that the condition (6.7) is satisfied given> P, + P, + 1. Itis clear that such an

inner bound matches the outer bound in Proposition 6.1. O

Theorem 6.1 implies that if the helper’s power is above aatethreshold, the capacity
region of the state-dependent MAC with a helper is the santleeasapacity region of the
MAC without state. Thus, the helper is capable to fully canice state interference at the
receiver. In particular, the statement holds for any statierfierence power, which can be
as large as infinite. In Fig. 6.2, we illustrate the capaatjion of case 1 under an example
set of channel parameters, i.€;,,= P, = 3, P, = 7.5, and arbitraryQ).

We next characterize the capacity region for case 2 whendlpehs power is not large

enough.
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Theorem 6.2. For the state-dependent Gaussian MAC with a helpéty ik P, + P, + 1,

and if

POO

< Py — P ) 6.10
\/@ Oérl%?gpo 0 OO+\/P1—|—P2—|—1—PQO ( )
then the capacity region consists of rate pdifg , i) satisfying:
1
1
1
R+ Ry < §log(1+P1+P2) (611C)

Proof. When (6.10) is satisfied, by setting= 1 + /5 in Proposition 6.3, the region in
(6.11a)-(6.11c) is achieved, which matches with the outeinid, and hence is the capacity

region. O

Theorem 6.2 implies that if the helper’s power is below aaiarthreshold, then the
capacity region of the state-dependent MAC with a helpdrasame as the capacity region
of the MAC without state when the state power is lower thanréagevalue. Thus, the
helper can fully cancel the state interference at the receinly for a certain range of state
power. It can also be checked that the threshol@aiven in (6.10) can be larger than,
which implies that dirty paper coding is necessary in theeagtble scheme to fully cancel
state interference.

The capacity region in Fig. 6.2 is also applicable to cases2attierized in Theorem 6.2
under certain channel parameters, for example, whes P, = 3, Py = 4.5 and(@ = 8.
Compared to case 1, the helper’s power is smaller, but aehighe same capacity region.
This is reasonable, because the state pawar case 2 is limited by a certain threshold,
but the power) in case 1 can be arbitrary.

We finally study case 3 with the helper’s power being smalt.thRis case, the capacity
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region is limited by the helper’s power constraint. Thedwling theorem characterizes
the sum capacity and the segment of the boundary of the ¢gpagion in the large state

power regime.

Theorem 6.3. For the state-dependent Gaussian MAC with a helpét ik P, + P, — 1,
in the regime of) — oo, the sum capacity equals gdog(l + P,). Furthermore, the points
on the line B-C (see Fig. 6.3 for an illustration) are on thaubdary of the capacity region,

where the points B and C are characterized as

1
B : (§log(1 + Po) — RB,RB)

Pomin{Pg,P0+1}
1+ Py

)

1
where Rp = 3 log(1 +

1
C . (Rc, 5 lOg(l -+ P()) - Rc)

PO min{Pl,Po + 1}
1+ F

1
where Re = 5 log(1 + ).

Proof. Achievability of the sum capacity follows from Corollary2by setting the actual
transmission powers of the two transmitters toOb& }31 < P and0 < PQ < P, such
that P, + P, = P, + 1. The upper bound on the sum capacity follows from Corollary
6.1. The points B and C are characterized by setftag= min{P,, P, + 1} and P, =

min{ P, P, + 1}, respectively. O

We illustrate an example of case 3 in Fig. 6.3, in which theeinand outer bounds
match over the line B-C.
Theorem 6.3 implies the characterization of the full catyaehder further conditions,

as given in the following corollary.

Corollary 6.3. For the state-dependent Gaussian MAC with a helpé} i min{ P, P>} —

1, in the regime of) — oo, the capacity region consists of rate pai®;, R») satisfying:

1
R+ Ry < 3 log(1+ Fy). (6.12)



108

1
—Outer Bound
0.8r ---Inner Bound H
% 0.6r
3
N 0.4+
o _
PO—4
02 P73
P2—3
GO 0.2 0.8 1

04 06
R 1(blts/use)

Fig. 6.3: A illustration of the segment of the capacity boanydfor state-dependent Gaus-
sian MAC with a helperP, < P, + P, — 1.

Theorem 6.3 and its Corollary 6.3 imply that if the helpersver is below a certain
threshold, then the capacity region of the state-dependé&a@ with a helper is strictly
smaller than the capacity region of the MAC without stateud,ithe helper is not able
to fully cancel the state interference at the receiver. Téigarticularly reflected in the

asymptotical regime as the state power oc.
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CHAPTER 7

STATE-DEPENDENT BROADCAST

CHANNEL WITH A HELPER

In this chapter, we study the state-dependent broadcashehwith a helper for two sce-
narios. In scenario 1, the transmitter sends one messagehodreivers, and in scenario
I, the transmitter sends two private messages respegtivdivo receivers. Our focus is
on the Gaussian channel with additive state. We derive iandrouter bounds for both
scenarios. By comparing the inner and outer bounds, we ciieaize the capacity/capacity

region under various ranges of channel parameters.

7.1 Channel Model

| Sn — H’;’
l L Z | {Decoder 1
Encoder 0 X ‘
. e ol e B
i - Channel i SR
— Encoder |-==——/ P (s) L
KB X, XS

Fig. 7.1: The state-dependent broadcast channel with & hefgzenario with a common
message



110

) | Sn YI" P ﬂ’}.l
l Decoder 1 -———
Encoder 0 Xy ‘
Y 3 |

Channel

= rn
- O S SN
Encoder B (®

~—+Decoder 2|

Fig. 7.2: The state-dependent broadcast channel with ahefcenario with private
messages

We study two scenarios for the state-dependent broadcasnehwith a helper. In
scenario | (see Fig. 1.7 in Section 1.2. For conveniencefefeace, we include the figure
again as Fig. 7.1 in this section), the transmitter wishesaiosmit one common message
W € W to two receivers. The encodgr: W — X", maps a message € W to
a codewordz™ € X™. The inputz™ is transmitted over the broadcast channel, which
is interfered by an i.i.d. state sequeng®e The state sequence is known at neither the
transmitter nor the receivers. A helper which knows theestajuence noncausally assists
both receivers to deal with the channel state. Thus, thedsna the helperf, : S* —

AJ', maps the state sequencgse S” to a codewordry € A'. The channel transition
probability is given byPy, v, x,xs. Two decoders with each at one receivgr; Vi — W,
maps a received sequengginto the message < W for k = 1, 2.

Scenario Il (see Fig. 1.8 in Section 1.2. For conveniencefefrence, we include the
figure again as Fig. 7.2 in this section) is similar to scenbwith the difference being that
the transmitter sends two independent messHges W, andWW, € W, to receivers 1 and
2, respectively. Hence, the encodgér, (W;, W) — X™, maps two messages € W,
andw, € W, to a codeword:™ € X™. The helper now assists both receivers to deal with
the channel state. The two decoders with each at one recgjver); — W, maps a
received sequencag into a messagey, € W, for k =1, 2.

We study the Gaussian state-dependent broadcast chanmdlich the outputs at the
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two receivers for one channel use are given by

1
Yi :XO+S+E<X+ZI)7 (71&)

Yo =Xo+ S+ X + Zs. (7.1b)

where the noise variablég andZ, and the state variableésare Gaussian distributed with
distributionsZ; ~ N(0, Ny), Z ~ N(0, Ny) andS ~ N(0, @), and all of these variables
are independent and are i.i.d. over channel uses. The dhapnoés X, and X are subject

to the average power constraifdty " | X2 < Pyand= " | X2 < P.

7.2 Scenario I: Common Message

In this section, we study scenario I, in which only one commuessage is transmitted

from the transmitter to both receivers. We first derive awlsgbper bound.

Proposition 7.1. For the state-dependent Gaussian broadcast channel inasiceh an

upper bound on the capacity is given by

R < mi 11 l—I—P 11 l—I—P

< min 2Og N ,208; Ny )’
1 2P 1 Py+2VPQ+ L(P+ N
“log (14 220) 4 2og (14 2 bQ + g2 v ,
2 N, 2 Q

1 2 1 Py+2VPQ + P+ N.
_10g<1+ﬁo>+§log<l—l— b F 2V P+ 2)} (7.2)
2

2 Q

We note that, in (7.2), the first two terms represent the agp&ar the compound
channel without state. The third and fourth terms equal &hkibst single-user rates of
receivers 1 and 2, respectively, with the helper dedicaidtetp each receiver, which can
be reduced from the result in Proposition 5.1.

We next derive an achievable rate based on the dirty intaréer cancelation scheme, in

which the helper incorporates two schemes for cancelirtg stterference: scheme 1 can-
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cels some state power by a signal that exactly reversesdteerstlization; and scheme 2
uses dirty paper coding via generation of an auxiliary \@e@represented by in Proposi-
tion 7.2) to incorporate the state information so that tloeireer decodes such variable first
to cancel the state and then decode the users’ informati@firgl provide an achievable

region for the discrete memoryless channel in the followar@position.

Proposition 7.2. For the state-dependent broadcast channel with a helpeata R is

achievable if it satisfies

R < I(X;Y;|U) fork=1,2, (7.3)

for some distributionPsy x,x = PsPyx,sPx, whereU is an auxiliary random variable such

that

I(U:Yy) = I(U; S) fork=1, 2. (7.4)

Proof. The achievable region follows from a coding scheme in whighstate is encoded
using a single-bin coding at the helper, and a successivetiation at each receivers. This

is similar to the coding scheme in Proposition 5.2 for eaceiker. O
Following from Proposition 7.2, we obtain an achievable fat the Gaussian channel.

Proposition 7.3. For the state-dependent Gaussian broadcast channel iresicely a rate

R is achievable if it satisfies

1 P
R<min¢ -log | 1+ (7.5a)
(+B—a)?a?PyoQ ’
2 ( PO(?{-i-ocC;QOO + Nl)

1 P
—log | 1+ (7.5b)
(1+8-0)* PooQ '
. ( Poo-lo-laﬁégo T Nz)
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wherePy, + 3Q < Py, Py > 0,

PiN
0%Q ; L4 a2P@ — 2a(1 + B)Pw@ < P2, and

QZQ(P + NQ + POO) — 20[(]_ + 5)P00Q < P020

Proof. The achievability follows from Proposition 7.2 by choosjomtly Gaussian distri-

bution as follows:

U:Xoo—i—OéS, XOIXOQ—FﬁS

XOONN<0,P00), XNN<O,P)

where Xy, X andsS are independent. O

Comparing the lower and upper bounds given in Propositiadiadd 7.1, respectively,
we characterize the capacity for three ranges of channahpaters, respectively, in the

following three theorems.

Theorem 7.1. For the state-dependent Gaussian broadcast channel iresicen) if Py >

max{P + Ny, ZtM1 the capacity is given by

a2
1 P\ 1 P
—min{ -1 i i B .
C m1n{2 og<1+Nl),20g(1+N2)} (7.6)

Proof. WhenPy > max{P + N,, M1 by settinga = 1 + 3 for (7.5a) and (7.5b), the

a2

rate in (7.6) is achievable which matches the outer boundapdsition 7.1, and hence is

the capacity rate. O

Theorem 7.1 indicates that when the helper’s power is langaigh, it can help the
receivers to fully cancel the state interference. In paldiG this holds even when the state

power is arbitrarily large. This is very useful as finite ambaf helper’s power can help to
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cancel infinite amount of interference power. We next cagrside case when the helper’s

power is below a certain threshold.
Theorem 7.2. For the state-dependent Gaussian broadcast channel irasicel) if Py <

max{P + N,, £} and

Poo
< max Py — Py + , 7.7
\/@ 0<Poo<FPo 0 00 \/max{ P+N17P+ NZ} — Py 7.7

a2

the channel capacity is given by

1 P 1 P
C= min{i log(1 + E)’ 3 log(1 + E)} (7.8)

Proof. When (7.7) is satisfied, by setting= 1 + 3 in Proposition 7.3, the rate in (7.8) is
achieved, which matches the upper bound in PropositionHehce, the capacity rate is

obtained. O

Theorem 7.2 implies that when the helper’s power is belowtairethreshold, only a
limited power of state interference can be fully canceletihwthe assistance of the helper.
We note that such powep of the state can still be larger than the helper's pogr
which implies that the combined scheme in Proposition 7ri2tessary to fully cancel the
state interference. One example of such channel paranegerbe given bynax{P +
No, BEL} = 7, By = 4.5, and@ = 8.

We note that if the state power is asymptotically large, thgen bound in Proposition
7.1 (and hence the capacity) can be determined only by tipet®power, as summarized
in the following theorem. It is also clear that whéh— oo, with limited helper’s power,

direct cancellation does not lead to any positive transonssate, and dirty paper coding

is necessary for state cancelation.

Theorem 7.3. For the state-dependent Gaussian broadcast channel irasicely suppose
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Q — oo, and P > max{a®P, + Ny, Py + N, }. If the channel parameters satisfy

2
a2P0+N1+N2<P0—0——2N1, and
a

NE(1 —a?) < a*Py(Ny — Ny), (7.9)

then, the channel capacity is given 6y= %log(l + “]2\,11’0). Furthermore, if the channel

parameters satisfy

(P0+N1—|—N2) <P0+2N2, and

1

a?

Py(Ny — Ny) > (a® — 1)N3, (7.10)
then, the channel capacity is given 6y= 3 log(1 + %).

Proof. When (7.9) is satisfied, by setting = «2P, + N; anda = %, the rate

C = $log(1+ “]2\,’1’0) is achieved, which matches with the outer bound. Hence ahadaity

rate is obtained.

Similarly, when (7.10) is satisfied, by settidy= P, + N, ando = POTNQ, the rate

C = % log(1+ %) is achieved, which matches the outer bound. Hence, the itppate is

obtained. O

We note that the two ranges of channel parameters in Theoi@mnespectively corre-

spond to the cases with the channel performance boundead&yees 1 and 2.

7.3 Scenario II: Private Messages

In this section, we study scenario Il, in which the transenigends two independent mes-
sages to the two receivers, respectively. Without loss négaity, we assume tha{; >
N, which implies that in the original broadcast channel withstate, receiver 1's channel

quality is worse than receiver 2. We first derive an outer lodoomthe capacity region.
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Proposition 7.4. For the state-dependent Gaussian broadcast channel inasicelt with
N1 > N, an outer bound on the capacity region consists of rate paks R.) satisfying:

Py

P—Pl—l-Nl)7

1
Ry < min {5 log(1 +

1 a?Py. 1 Po+2VPRQ + (P +Ny)

5 loa(l+ =) + 5 log (1+ 5 ) : (7.11a)
1 pP—p

Ry < min{ilog(l—i— N, 1),

1 B 1 Po+2VPo0Q + P+ No

Zlog(1+ 22) 4 2 1og (1 7.11b

3 los(1+ 37) + 5 log (1+ 5 ) (7.11b)

where0 < P, < P.

The outer bound for each rate consists of two bounds. Thediirstis based on the
capacity region of the Gaussian broadcast channel withatg.SThe second one is the best
single-user rate with the helper dedicated to help eaclimercgvhich can be reduced from
the resultin [47].

We then derive the following achievable region based on éhgdn employing the dirty
interference cancellation scheme as for scenario |. Furibee, superposition coding is

used for broadcasting two messages.

Proposition 7.5. For the state-dependent broadcast channel in scenariallnaer bound
on the capacity region consists of rate pai#3;, R,) satisfying:

Ry < I(V;Yi|U), (7.12a)
Ry < I(X;Y2|UV), (7.12b)
Ry + Ry < I(X;Y2|U), (7.12¢)

for some distributionPs P s Px,|su Py Px|v, wherel (U; Y;) > 1(U; S) for k = 1, 2.

Following from Proposition 7.5, we obtain the following aable rate region for the

Gaussian channel.
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Proposition 7.6. For the state-dependent Gaussian broadcast channel inasicelt with
N1 > N, an inner bound on the capacity region consists of rate pdits R.) satisfying:

1 Py
Ry <zlog|1+ , (7.13a)
2 ( (tpoalefn L p— P+ N1>
1 P—-P
Ry < =zlog |1+ — , (7.13b)
2 < (it p=al P00 +N2>
R+ Ry < 1log 1+ L (7.13c¢)
1 2 X 5 Y ) .
2 (1+I£500+();130Q TN,

where Py + 3°Q < Py, Py > 0,0< P, < P,

P+ N
0*Q— +a*PuQ — 20(1 + A)PQ < P, and

CYQQ(P + Ny + Pyo) — 2a(1 + ﬁ)POQQ < P(?O'

Proof. The proof follows from Proposition 7.5 by choosing jointha@sian distribution

as follows:

U= Xy +aS, Xg= Xpy+ S
X =V+X' Xg~N(0,Py)

V ~N(,P), X' ~N(0,P— P)

whereXo, V, X’ andS are independent. O

By comparing the outer and inner bounds, we characterizeapacity region for two
ranges of channel parameters.

Theorem 7.4. For the state-dependent Gaussian broadcast channel inasiced with

N1 = N, if By > max{P + Ny, P;M }, the capacity region consists of rate paif8;, R»)
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satisfying:

1 P,
<log (14—t 7.14
i 20g<+P—P1+N1) (7.142)
1
2

P—-P
log (1 + N, ) . (7.14b)

Proof. When Py, > max{P + N,, ZtM} by settinga = 1 + 3 for (7.13a)- (7.13c), the

a2

region in (7.14a) and (7.14b) is achievable which matchestlier bound in Proposition

7.4, and hence is the capacity region. 0J

Similarly to Theorem 7.1, Theorem 7.4 implies that when talpér's power is larger
than a certain threshold, the state is fully canceled wigretssistance of the helper, and the
state power can be arbitrarily large. Thus, the capacitypregf the corresponding channel
without state is achieved.

We next study the case with the helper’s power being sméléer & threshold following

similar step in Theorem 7.2.

Theorem 7.5. For the state-dependent Gaussian broadcast channel inasiced with
Ni = Ny, if PO < Il’laX{P + NQ, P+N1}, and

a2

Py
< max /Po— Pog+ , 7.15
ve o<hosr ¥ v \/max{ PEN1 P+ No} — Py ( )

a2

the capacity region consists of rate paiiB;, R,) satisfying:

1 P
< =log(l4+ ——1 7.16a
Ry 208;( +P—P1—|—N1) ( )
1 P—-P
< =log(1 . 7.16b
Ry 5 og(1+ N ) ( )

Proof. When (7.15) is satisfied, by setting= 1 + 3 for (7.13a)- (7.13c), the region in
(7.16a) and (7.16b) is achieved, which matches the outerdmuProposition 7.4. Hence,

the capacity region is obtained. O

Theorem 7.5 implies that if the helper’s power is not largewgh, only the state with
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limited power can be fully cancelled to result in the capao#tgion of the corresponding
broadcast channel without state. Nevertheless, suchsiater can still be larger than the

helper’'s power demonstrating necessity of using dirty papding. One example of such

channel parameters is given ax{P + N,, M1} = 7.5, B, = 5, and@ = 9.
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CHAPTER 8

CONCLUSION

In this thesis, we studied the state-dependent interferehannels in two classes. One
class of models, including the state-dependent interéerehannel and the state-dependent
cognitive interference channel, capture the scenariashitbatate cancellation and the mes-
sage transmission are performed by the same node. The @bso€ models, including the
state-dependent single-user channel with a helper, tteedégpendent parallel channel with
a common helper, the state-dependent MAC with a helper, fandtate-dependent broad-
cast channel with a helper, capture the scenarios thatdteecncellation is performed by
a separate helper. For each channel model, we derived tbeana outer bounds on the
capacity region, and characterized the capacity partially for various channel parame-
ters. In particular, for the second class of models, ourltegemonstrate that the capacity
region is not only bounded by the transmitter’s power, bsib &y the helper’s power. This
suggests that the state cannot always be perfectly cadcelle

This thesis demonstrates that interference in wirelessarks can be effectively can-
celed by its source node via dirty interference cancelafitnus, users can transmit simul-
taneously as well as enjoy low or no interference transmissinvironments. In this way,
dirty interference cancelation is very promising to subsédly improve the performance

of wireless networks. Future work can be focused on threecisp
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1. For the MAC and broadcast channel, we derived inner arel daatunds, and char-
acterized capacity region for channel with various chapaehmeters. In particular,
the outer bound is only tight for the regimes that the statebeaperfectly cancelled,
and fail to characterize the relationship among the capesgion, the helper’s power
and the state power. In the future, we will develop more ssipf@ted outer bounds,

and study how does the helper and the state power influenob#@mael capacity.

2. Since dirty interference cancelation provide a new teghethat enables simultane-
ous transmission, it is also interesting to compare ouy dterference cancellation
scheme with the conventional interference managementigpeobs based on the or-
thogonality idea. We will compare the achievable regiornm inodel consisting of
a base station and a D2D transmitter, sending two messagdlesit@orresponding
receivers. The base station has high transmission poweingarieres the D2D re-
ceiver. We assume that the cellular and D2D transmission®tlehare codebooks
and hence Han-Kobayashi rate splitting cannot be appliext.séch a model, we
compare the performance of two schemes: dirty interfereaceellation and the

orthogonalized transmission via time sharing.

3. Since D2D communications can be diversified, and can diechaulti-access trans-
missions and broadcast transmissions, we will also extemdiodel to include mul-
tiple D2D user pairs with more complex structures. For sudtenario, we will
compare the sum rate over the cellular receiver and the D28wers for the two
schemes: dirty interference cancellation, and time shasaleme. In particular, the
sum rate depends on the locations of the D2D receivers frenbdise station. We
will assume that the D2D receivers are located uniformly ialeépendently over a
certain range, and derive average sum rates for the two sshe@@omparison of the
two schemes will provide us the gain that dirty interfereneacelation yields on

average.
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APPENDIX A

PROOF FOR CHAPTER 2

A.1 Proof of Proposition 2.1

We use random codes and fix the following joint distribution:

Psux,vx.vive = PsPuisPx,jusPvisPx,\vsPyiva | x1 X25-

Let 77" (Psux,vx.v,v,) denote the strongly joint-typical set based on the above distribu-
tion.
Code Construction:
1. Generat@""1+11) codewordd/” (wy, [;) with i.i.d. components based dfy. Index
these codewords by; = 1,---,2"f1. [} =1,2,..., 2",
2. Generat@"("2+%2) codewordd/ ™ (w,, l5) with i.i.d. components based d®.. Index
these codewords by, = 1,---,2"f2 [, =1,2,..., 2"%,
Encoding:

1. Encoder 1: Givem,, ands™, selectu” (wy, [;) such that

(u" (wn, l~1), s") e T (Pys).



123

Otherwise, set; = 1. It can be shown that for large, suchu™ exists with high
probability if
R} > I(U; S). (A.1)

Given selected” (wy, [,) ands”, generate:? with i.i.d. components based atx, s

for transmission.

2. Encoder 2: Givem,, ands™, select™ (ws, l}) such that
(0" (wo, l~2), s") € T'(Pys).

Otherwise, set, = 1. It can be shown that for large, suchv™ exists with high
probability if
Ry > I(V;5). (A.2)

Given selected” (w,, I;) ands™, generate:? with i.i.d. components based atx,|vs
for transmission.
Decoding:

1. Decoder 1: Given®, find the unique paifi., I;) such that

(Un<w27 Z2)7y?) S Ten<PVY1>'

If no or more than one such paifg., l}) can be found, then declare error. One can

show that for sufficiently large, decoding is correct with high probability if

Ro+ Ry < I(V;Y3). (A3)

After successfully decoding?, find the unique paifw , l]) such that
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(Un(ﬁ’za ZQ)? U"(l@l, Zl),y?) € Ten(PVUY1)~

If no or more than one such pairs with differant can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if

Ry + R, < I(U;VY). (A.4)

. Decoder 2: Giveny, find the unique paifw;, l}) such that

(u" (i, ), y5) € T (Poy,).-

If no or more than one such paifg, l]) can be found, then declare error. One can

show that for sufficiently large, decoding is correct with high probability if

Ry + R, < I(U: Ya). (A.5)

After successfully decoding®, find the unique paifs, l}) such that

(un<w17 Zl>7vn(w27 52)7yg) S Ten(PUVYg)-

If no or more than one such pairs with differemt can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if

Ro+ R, < I(V;UYa). (A.6)
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Proposition 2.1 is thus proved by combining (A.1)-(A.6).

A.2 Proof of Proposition 2.2

The coding scheme for the very strong Z-IC is similar to tlatthe regular IC. More
specifically, codebook generation, encoding and decodinglécoder 1 are the same as
those in Appendix A.1. We next describe decoding for dec@dses follows.

Decoding for decoder 2:

Giveny?, find the unique paifi,, I;) such that

(V" (02, I2), y3) € T (Pyy,).

If no or more than one such pairs with different can be found, then declare error.

One can show that for sufficiently large decoding is correct with high probability if
Ry + R, < I(V;Ys).

If 1(V;Ys) < I(V; Y1), then the bound?, + R, < I(V;Y;) obtained in decoding for
decoder 1 (see (A.3)) is redundant. Hence, the correspgidimievable region is as given

in Proposition 2.2.

A.3 Proof of Proposition 2.3

The achievable scheme applies rate splitting, superpasaind Gel’fand-Pinsker binning.
In particular, we split the messagg; into two component$l;; and Wi, and splitil;

into two components$Vy; and W,,. We use random codes and fix the following joint
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distribution:

Pst v, xivivexaviYe = PsPuivs15Px1 100025 Pviva | s Pxo|viva s Py va X1 XaS -

Code Construction:
1. Generate@"Fu+fu) codewords} (w1, ;) with i.i.d. components based o, .

Index these codewords by, = 1,---, 2" [y =1,2,-.., 2",

2. Foreach/?(wyy, I11), generat@™(fiz+712) codewordd/y (w1, 11, wig, L12) With i.i.d.
components based di,;,. Index these codewords by, = 1,-- S onfz Ly =
1,2,---, 2",

3. Generat@"f21+721) codewordsV; (wsr, l1) with i.i.d. components based o .

Index these codewords by, = 1,---, 2721 [y =1,2,. .. 2™,

4. Foreach?(wa, ly1), generat@™(f22+722) codewordd/y (way, la1, was, lo) With i.i.d.
components based ah,,y,, Index these codewords by, = 1,---, onka 1, =
1,2, -, 200,

Encoding:

1. Encoder 1: Givem;, ands”, selectu” (w1, ;) such that

(u} (w1, 111), s™) € T (Puy s).

Otherwise, sefll = 1. It can be shown that for large, suchu! exists with high
probability if
R}, > I(Uy; S). (A.7)

GivenUJ12, w11, l~11, ands™, SeleCt’ng(’wll, l~11, W12, l~12) such that

(u;‘(wn, l~11, W12, l~12), U’f(wll, l~11), Sn) S TE"(PUQSUl)-
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Otherwise, set;, = 1. It can be shown that for large, suchuf exists with high
probability if
Ry > I(Uy; S|Uh). (A.8)

Givenu? (wiy, ly1), ul (w11, L1, wia, l12), ands”, generater? with i.i.d. components

based orPy, i, v, for transmission.

2. Encoder 2: Givemy;, ands™, select? (ws, igl) such that

(v (war, I1), s™) € T (Prys).

Otherwise, set,; = 1. It can be shown that for large, sucho} exists with high
probability if
Ry > I1(V1;9). (A.9)

Givenw22, Wa1, l~21 ands", SeleCtUg(wgl, l~21, Waa, [22) such that

(05 (way, 221710227 Z22), v (way, l~21)7 s") € T(Pv,s,)-

Otherwise, set,, = 1. It can be shown that for large, suchovl exists with high
probability if
Ry, > I(Va; S|Wh). (A.10)

Given ’U{L(’LU21, Zgl), 'U;L('UJQ:[, ZZl,'UJQQ, 522) ands”, generatery with i.i.d. components
based orPx, v, 1,5 for transmission.
Decoding:

1. Decoder 1: Giveny?, find the unique paifw;;, 211) such that

(u?(wllv le)v y?) S Ten<PU1Y1)'
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If no or more than one such pairs with different; can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if
R11 + R/ll < I(Ul; Yi)

After successfully decodingy, find the unique tupléw,;, Zgl, Waa, l}g) such that

(U?(l@zh 521),v§(w21, 521, Waa, 522), U?(l@ll, 511), y’f)

€ T (Pvyvatnvi )-

If no or more than one such tuples with different rate péirg , w»2) can be found,
then declare error. One can show that for sufficiently largeecoding is correct

with high probability if

Ry + Ry < I(Vi; UiYh)

Ros + Ryy < I(Vo; Up Y| V1)

After successfully decoding”, v™ andv?, we find the unique paii;», [12) such

that

(Ug(wn, lAn, W12, 512), U?<UA]217 Z21)7U§L(7f121, 5217 Waa, 222)7 U?(Uhl, 211)7 y?)

S Ten<PU2U1V1V2Y1)'

If no or more than one such pair with differemt, can be found, then declare error.

One can show that for sufficiently large decoding is correct with high probability
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Ris + Ry < I(Uy; VIVRY1|U) (A.11)

. Decoder 2: Given?, find the unique paifiy , I, ) such that

(V] (a1, 121), ¥5) € T (Purys)-

If no or more than one such pairs with different; can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if

Roy + Ry, < I(V1;Y5).

After successfully decoding, find the unique tupléu,y, [1, i1, [15) such that

(U?(wu, [11)>U3(7~511, 51177@12, 512)711?(1@21, 521), y;‘) € TE"(PUlleYg)-

If no or more than one such tuples with different rate gair;, w,2) can be found,
then declare error. One can show that for sufficiently largeecoding is correct

with high probability if

Ryy + R}y < I(Uy; V1Y)

Ris + R}y < I(Uy; V1Y5|UY)

After successfully decoding], v andu}, we find the unique paifi,,, l»;) such
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that

(vS(wzl, 5217 Waa, 522)7 U?(Uhl; 211)7113(117117 211, W12, 512), U{L(wzh 521)7 yS)

S TZL<PV2V1U1U2Y2)'

If no or more than one such pair with differemt, can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if
Rao + Ryy < I(Vo; U1 UL Y| V1) (A.12)

The corresponding achievable region is thus charactehyed

Ry < min{I(Uy; Y1), [(U; ViYa)} — I(Uy; 9)
Ria < min{I(Us; ViVaY1|Uy), I(Uz; ViYa|Ur)} — 1(Us; S|Uy)
Ror < min{I(Vi;Y2), I(Vi; UiY1)} — I(V4;.5)

Roy < min{I(Va; U1 UsYa|VA), I(Va; Ui Y1 V1) } — I(Va; S|VA)

Proposition 6.2 follows by setting; = Ri; + Ri2 and Ry = Ry + Ra, and applying

Fourier-Motzkin elimination to the above region.

A.4 Proof of Proposition 2.4

The coding scheme for the strong Z-IC is similar to that fa tbgular IC. More specifi-
cally, codebook generation and encoding for the strong Z+kCthe same as those for the
regular IC provided in Appendix A.3. We next describe dengdis follows.

Decoding:
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1. Decoder 1: Giveny, find the unique paifws;, l}l) such that

(U?@D?l? Z21)7 y?) S TEn(Pvlyl)'

If no or more than one such pairs with different; can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if
Roy + Ry, < I(Vy; 7).

After successfully decoding, find the unique paifw, 511) such that

(v (Way, 521),U?(71J11, le)yy?) e T (Pyyuyyy)-

If no or more than one such rate pairs with different can be found, then declare
error. One can show that for sufficiently largedecoding is correct with high prob-

ability if

Ry + Ry, < I(Up; ViYL).

After successfully decoding; andv] we find the unique paifwss, [22) such that

(Ug(wm, 521, Waa, 522),?1711(117217 Z21), U?(wn’ Z11)7 3/11)

S T?(PU1V1V2Y1)'

If no or more than one such pairs with different, can be found, then declare error.

One can show that for sufficiently large decoding is correct with high probability
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Ry + Ry < I(Va; Ui Y1| V1) (A.13)

After successfully decoding?, v} and vy, we find the unique paifw;s, 512) such

that

(ug(ﬁm, le, W2, le), U?(wm, 521),1)3(1@21, Z21> W2, 522% U?(ﬁflb 511)> y?)

€ T (Pu,u,vivevs )-

If no or more than one such pairs with different, can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if

Rz + Ry < I(Uy; ViVRYA|UY). (A.14)

. Decoder 2: Given?, find the unique paifis;, I, ) such that

(0] (a1, Ia1), ¥3) € T (Pirys,)-

If no or more than one such pairs with different; can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if

R21 + R/21 < ](Vl, Yé)
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After successfully decoding), find the unique paifwss, Zgg) such that
(Ug(wa Z217 UA)227 522)7 U{L(UAJZD Z21)7 yg) € Ten<PV2V1Y2)-

If no or more than one such pairs with different, can be found, then declare error.
One can show that for sufficiently large decoding is correct with high probability

if
Ry + Ry < I(Va; Ya| V7). (A.15)

The corresponding achievable region is thus charactebyed

Ry, < I(Uy; Y'aVh) — I(Uy; S)
Ry < I(Uy; ViVaY1|Uv) — 1(Uy; S|UY)
Roy <min{I(V1;Ys), [(Vi; Y1)} — 1(Vi;9)

Roo < min{[1(Va; Ya|Vh), I(Va; Ur Y1 |VA)} — I(Va; S|VA).

Proposition 2.4 then follows by setting;, = Ri; + R and Ry = Ry + Rao, and

applying Fourier-Motzkin elimination to the above region.

A.5 Proof of Proposition 2.5

AssumeP|,, P/, Py and Py, are power allocation parameters corresponding to the
given pointB’ under which the conditions in (2.24a) and (2.24b) are setisfin order to
prove that the poinB is also achievable, we design the following coding scheme sjlit

Wy into Wy, andWi,, and splitiV; into W5, andW,,. We then encode the messagigs,

Wi, Woy and Wy, into auxiliary random variabless, Us, Vi, and Vs, respectively. Then

receiver 1 decodes in the orderlgf, V5, U; andU,, and receiver 2 decodes in the order of
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V1 andVs. It can be shown thatR;, Rs) is achievable if it satisfies

Ry < I(U; YiViVa) + I(Us; ViVaYa|Uy) — I(Uy, U S)
Ry < min{I(V;Y5), 1(Vi; Y1)}

+min{7(Va; Ya| Vi), I(Va; Y1[V1)} — I(ViV5; ) (A.16)

for some distributiorPsy, 1, v, v, x. X, vavi = PsPuivy1s Pviva|s Pxy 01025 Pxavives Prijsx xa
Py,sx,- We now compute (A.16) by setting the auxiliary random Jalga as in (2.19),
with the power allocation$’ 5/, Py, Pyg and Py, for X1, X{, X; and XJ in Uy, Us,
V1 andVj;, respectively. It can be verified that due to (2.24a) and4(®.2hat the power
allocation parameters satisfy, the two mutual informatemnms/(V;; Ys) and(Vz; Ys|V))
in R, become redundant. It can then be verified that the rate paesmonding to the point
B satisfies the resulting (A.16), and is hence achievables;Tthe lineB — B’ is achievable

by time sharing.

A.6 Proof of Corollary 2.2

It is sufficient to show that the poin®’ satisfies Theorem 2.4, i.e., it is on the capacity
region boundary. Then following Proposition 2.5, the lifie- B’ is on the capacity region
boundary. It can be verified that the poiitis characterized by (2.17) by settifj = 0,

Py = Py, P/ to satisfy

1+ a2P2 < a2P2(P2+b2Q+1)
Pl +1 = PQ(ab— B)2 + a2+ 2Q’

(A.17)

andP] = P,—P/'. Then it can be verified that the condition (2.24a) and (2 2#bheorem

2.4 are satisfied by the poiit'.
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A.7 Proof of Theorem 2.5

Similarly to [4], [5] and [6], to achieve the sum capacity fhie state-dependent Gaus-
sian IC, we apply dirty paper coding foY; treatinga X, + N; as noise and apply dirty
paper coding fotX, treatingb.X; + NN, as noise. Thus, the poiifz;, R,) = (5 log(1 +

=17), 3 10g(1 + £45)) can be achieved.

For the outer bound, applying Fano’s inequality, we have

nRy < I(Wy;Y]") + ne,
< I(W Y7'S™) + nep
= I(W; Y"'|S™) + ne,
< (WL XT3 Y7|S™) + e,
— I(XPYPIS™) + H(Wis YPISTXT) + ey
— I(XT3 YIS + e
= I(X®; X7+ aX? + 5™ + NP|S™) + ne,,
= [(X{; XT' + aX3 + N'[S") + ne,

—Zp I(X7 XD+ aXD + NP S™ = s™) + ne,. (A.18)
Similarly, we have

nRy < Zp I(X;bXT + X7 + NP|S™ = s) + ne. (A.19)
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Combining (A.18) and (A.19), we obtain

n(R1 + Rg)

<STp(st=s") max  [I(XP5XT A+ aXy + NP|ST = s")

PXIL‘S”LPX%L‘S"

+ I(X3; X + X5 + NJ|S™ = s")] + 2ne,

Pxen Pxyn
X1 X5

= p(S"=5s") max [I(X]3X] +aX} + NJ') + I(X3;:bX] + XJ + N3)] + 2ne,,

= max [[(X7; X{ +aX] + N7) + I(X3;bXT + X3 4+ NJ')| + 2ne,.

PxnP
xXpixy

If |a(1 + b?Py)| + |b(1 + a®P,)| < 1, following the results in [5, Section IV.C], we

further obtain

1 P 1 Py
<zlog | 1+ 55— —log (1+ ——— 2€,.
Ry + Ry 2og( +a2P2+1)+20g(+b2P1+1)+6

Hence, the rate pointR;, Ry) = (3log(1 + =h), 5 10g(1 + pig)) is sum-rate

optimal. Thus, the sum capacity is obtained.
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APPENDIX B

PROOF FOR CHAPTER 3

B.1 Proof of the Outer Bound (3.8a}(3.8d)

Consider a2"f1, 2Rz 1) code with an average error probabilifff™. The probability

distribution onW; x Wy x 8™ x X' x AJ' x V7' x Vi is given by

n

17

1=1

Pw,wysnxp xpypyvy = Pw, Pw,

n
PX{“|W1PX§’|W1W25’” H PYliY2i|X1iX2iSi'
i=1

By Fano’s inequality, we have

H(WH|Y?) < nRyP™ +1 =néy,

H(WiWs|S"Yy") < n(Ry + Ro)P™ + 1 = néa, (B.1)

whereéy,,, 02, — 0 asn — +oo. Letd,, = 01, + o, Which also satisfies that, — 0 as

n — +0o0.
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We define the following auxiliary random variables:

K; = (W17 ;L+17X1n7Y1i_1)

T; = Y5 (B.2)
which satisfies the Markov chain condition:
KT, < X1, X9;S; <> Y1;Y5; (B-3)

fori=1,--,n.

We first boundR; based on the Fano’s inequality as follows:

nRy < I(Wy;Y]") + ndy,

a

= > (WS} YY) = IWAST V)] + ndy,

—
=

<.
I
—_

(]

[IWASE 3 Y0) + I(WA ST YY)
1
— IS YY) = I(S5 Y (WSt )] + ndy

n

= [TWASE: YulYi™h) = I(Si: Y WA ST, )] + nd,,

.
Il

=1
= [H(Yy|Yi™") = H(Yu|WiSP, Y
=1
— H(S;[W1Sly) + H(Si|WhSP YT )] + né,
> [H(Vi) — H(Yu|WiSE YT XT) — (H (S| X1:)

=1

INZ

+ H(S;|WiSEL Y THXT))] + nd,
(d)
<Y (KX Vi) — I(K;; Sif X)) + nd, (B.4)

=1

where(a) follows due to cancellation of the terms in the sum, and thetfatY,? = ¢, (b)
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follows from the chain rule of mutual informatio(y;) follows becauseX7 is a function of

Wi, and(d) follows from the definition ofK;. The single letter characterization follows

standard steps and is hence omitted.

We next bound?, as follows:

(a)
nRy < I(Wa; Y5'S™) + nd,

< ](WQ; )/2”|W15n) + n5n

Z (Was Yoy | Y3ty 10) S"WLXT) + nd,

Z (Yai SiX1i) = H (Yail Wa Yyl 1y S" Wi X[ Xoi)] + 1

n

Z (Yol SiX1) — H(Yai| SiX1,X0)] + nd,

Z (Xoi; Y2i| i X15) + nbn. (B.5)

where(a) follows from Fano’s inequality (B.1)(b) follows from chain rule and the fact
thatW, and (1, S™) are independent¢) follows because conditioning does not increase
entropy, andd) follows from the Markov chair;T; <+ X1, X5;5; <> Y1;Ya.

We further bound?, + R, based on Fano’s inequality as follows:

n(R1 —|- RQ)

< I(WhiWo; Y5'S™) + ndy,

= I(WalWy; Yau| Yoy 1) S™) + 1

i=1

&
3

/

[H (Y] Si) — H(Yoi| WaYo(;1)S" W1 X1: X0:)] + ndy,
1

b
<Y [H(YailS)) — H(Yai] SiX1:Xa:)] + nd,

1=1

3

—
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n

i=1
where(a) follows because conditioning does not increase entrogl(f@grfollows because
Y5; is independent of other variables giv&n;, X,; ands;.

We introduce a lemma which is useful in the proof.

LemmaB.1l. : [53, Lemma 7] For a set of random variabl€¢®, Y ..., Y, Z1,..., Z,),

Y IV 27T =Y IV ZITZ. (B.7)
i=1

1=1

We proceed to derive an alternative boundrfon+ R, as follows:

n(Ry + Ry) < T(Wis YY) + I(Wo; Y5'S™) 4 ndy,

(a)

where(a) follows becausél; andiV, are independent.

The first term in (B.8) can be bounded as follows:

I(Wy YY) =D T(Wy Yy ™)
=1
(a) & )
<) I(WAYvy)
=1
(b) - 71— n n n n 71—
= (WY S Y3y Yag) — T(SP Yoty Ya WA YT )]

i=1
141 i+1 L 23i41) L14 124, Iy 190414 23i41)
i=1
(_) - i—1 on n . Vgt ! n n
= WY TS Yty Vi) — T(SiVai Vi~ WAST Vi)

1=1

+ I(WiSE1Y5(i41); SiYai)]
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n

DN W Y80 Vit Yio) — 1053 YT WSt Vo)
i=1

+ L(WS? Yoty SiYai) — 1(Yai; Vi WS Yol 1]50)]

i+17 2(i41)
DN I(TK X0 Vi) — I(TK X1 S))
=1
+ I(W1SE, 2(i11)> SiYa) — I(Yai; }qi_1W15?+1}/ér(Li+l)|Si)] (B.9)

where(a) follows from chain rule and the fact that mutual informatiemonnegative(b)
follows from chain rule{c) follows from Lemma B.1(d) and(e) follows from chain rule,
and( f) follows from the definition forT; and K;.

We next consider the last two terms in (B.9) together withgbeond term in (B.8) as

follows:

W Yy i) + 3 {f(wls:;l s SiYar) — (Ve Yo WASE Y 0 S0)
=1

@ Z |iI(W27 }/225 ‘Wl +1}/é(z+l ) + I(WIS +1}/é(z+l SZYéz)

i=1
— I(Yas; Y 'WLS] 27(Li+1)|Si):|

n

b
DN WA Wa ST Yatisnys SiVas) + 1(S7: S, Yau | WiWa ST Yot )
=1

(Szn+1Y2(z+1 Si ‘W1W2SZ 1) (Y%Yf 1W152"+1Y2 i+1) |S)]

< I (W1W2S+1SZ 1Y2 i+1) 3 SiYa;) — 1(SY: LYy (i+1)) Si|W1W2Si_1)

=1

— I(Yoi; Y{'W ST 1Yo(i1)15i)]

3

—
=

= [I(W1W2 z+1SZ 1Y2 i+1)> ;S Y%) - I(SZ‘+1Y2’ZZ-+1)W1W2SH; Si)

1

— I(Yo;; Y{ "W S, 1Yo (1) |S0)]

(2

3

é |i W1W2 H_lSZ 1}/2 i+1)> }/2@|S) (}éi;}qi_lwls+ln i+1) |SZ)

=1
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fH & , _ _
<> [H%|SM—1W1X?S?M@-H)> — H (Yol SV Wy X W ST, S71 z’ziH)Xm)}

9) ) )
<> [H(Ym|SM*W1X?S?+1%H>> —~ H(Ym|Sz-Yf—lWlX?S?HYﬁm)Xz»]

=3 I(Xai; Yai X1 T K S)) (B.10)

i=1

where (a) follows from chain rule,(b) follows from chain rule to combine the first two
terms in the previous step and Lemma Bd), follows from chain rule(d) follows from
chain rule and becausg;, 1V, andS*~! are independent fror;, (e) follows from chain
rule, (f) follows becauseX} is a function ofl¥; and conditioning does not increase en-
tropy, (¢) follows becausés; is independent of other variables giv&h;, X,; ands;, and
(h) follows from the definition of/; and K.

Therefore, substituting (B.9) and (B.10) into (B.8), weaibt

n(Ry + Ry) <Y [H(TK Xy Vi) — (LK S| Xq,)

1=1

+ I(Xoi; Yoi| X1 T K;.S;)| + ndy,. (B.11)

B.2 Proof of the Converse for Theorem 3.2

For the Gaussian channeldf] < 1, it satisfies the condition (3.2). For these channels, we

first prove the following bounds.

n

nRy <Y [1(UX15 Vi) — 1(Us; 85| Xi)] + nd, (B.12a)
i=1

nRy <Y I(Xoi; YoilUiX1:S;) + nd, (B.12b)
=1

n(Ry+ Ry) <Y I(X1:Xa5; Vil Si) + nd, (B.12c)
i=1

The bound (B.12a) follows from (B.4) by setting = K; = (WS¢, XY™ for
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t=1,...,n. The bound (B.12c) follows from (B.6).

We then bound?, as follows and obtain (B.12b):

nRy =1(Wa; Y5'S™) + nd,

(a)
ST (Wa YU S™ W) + ndy,
O 1 (Wy: Y2 W,S™) + 16,

= I(Wy; Yoi[W1S"Y5 ™) + né,

1=1

= [H Y2 WiS"Y5 ™) — H(Yau WiW25"Y5 )] + nd,
i=1

< Z[H(}/?AWlSnX?Ki_lY;_I) — H(Yy|[WiWoS™Yy XY H)] + nd,,

i=1

(d) & . .
<) [H(YauWiSP L X7Y78) — H(Yai| WS}y, S XY Xo:)] + nd,

i=1
(€) &

< Z[H(Y2i|5iX1iUz’) — H(Y%|Si X1Usi Xo;)| + nd,
=1
<Z](X2i;yzi|Uz’X1iSi) + ndy, (B.13)
1=1
where(a) follows becausél; andWW, are independent)) follows becausél, andS are
independent(c) follows from the degradedness condition (3.2) so thdtand Y, can
be added into the conditioning{) follows from the fact that giverX;, Xs;, andsS;, Ys; is

independent of all other variables, afid follows from the definition of;.

We further derive the bounds (B.12a)-(B.12c) for Gausslkanaels. We first consider
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the bound ok, as follows:

n

1
R < o ;[I(XuUi;Yu) — I(U;; Si| X15)]

1 n
= =D [h(V) = AYul X0is) = h(Si|X0i) + h(Si| X1.U7)]
1=1

0 1 —
i=1

1 n
1=1

) 1 —
<= > [h(Yi) = h(Yul XuUS:) = h(S;) + (S| X1;Y7:)] (B.14)
i=1

where(a) follows because addition of the second and third terms egbhal second term
in the previous step, an@) follows because&; and X;; are independent and conditioning
does not increase entropy.

We then derive bound for each term in (B.14) respectivelydews. The first term in

(B.14) can be derived as:

< o Z log 2me( E(Xy; + aXy; + Si + N;)?)

1 2 2 2
< o Zlog 2re| E[X7] + 2aE(X1;X9;) + a” E[X3]
+ 2aE(XS;) + E[S7] + E[NZZ])>

®) 1 1 < ol 20 a* < 2
< 3 log 2me - ZE[XM] + o ZE(XliXZi) + Y ZE[Xm]

i=1 1=1 i=1
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-2 B + 3 Bl + L Y )

() 1 2a 2a
< glog2me| Pt a® P+ Q14— > B(X1uXy) + — > B(Xy8))

i=1 i=1

1
< 5 log2me| Py + a’Py 4+ Q + 1 + 2apy \/ Pi Ps + 2apas/ P2Q> (B.15)

15 X o 15 .S . .
wherep,; = = lelffl(;i“xﬁ) andp,, = "Z%\/i_gzzsz). In the above derivationg) follows

from the fact that the Gaussian distribution maximizes titeopy given the variance of the
random variable(b) follows from the concavity of the logarithm function and den’s
inequality, and ¢) follows from the power constraints.

We next quantify the tern% S h(Y1| X1;U;S;) via its upper and lower bounds. We

first have

1 n
~ D h(V| X1 X))
i=1
@1§n:h(y X US)<1§:h(Y 1X1:55) (B.16)
\ni:l 17 1:Yir4 \ni:l 13 1iX4 .
where(a) follows because conditioning does not increase entropygareh X;, X,;, and
S;, Y1; is independent of all other variables.

For the left-hand side, we have

I 1
n
=1
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For the right-hand side, by setting= aps1 /2 andS = apg4/ 2
Py

1 n
=3 h(Yuil X1:S)
n -
=1
1 n
n;:1(1+a 9i + Si + Ny |9 X1;)

1 n
:E Z h(aXa; + N1 — aXy; — 8S:]5:iX1:)
i=1

(@) ]
g—g h(aXs; + Ny; — aXy; — 5S;
n (aXq; + Ny — aXy; — 5S;)

®) 1
S% ; 10g(27T6E[(CLX2i + Nh‘ - OKXM‘ - 551)2])

1 2 2 2
<510g27re a“Py+14a°P + 5°Q

1< 1<
~ 200~ > E[XuXa] - 20— > E[XS]]

i=1 i=1

1
=5 log 2me (14 a*(1 — p3g — p31) ) -
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we have

(B.18)

where(a) follows because conditioning does not increase entri@pypllows because the
Gaussian distribution maximizes the entropy for variabléh certain variance, an(r)

follows from the concavity of thé&g function and Jensen’s inequality.

Therefore, combining (B.17) and (B.18), we conclude tharehexists) < P, <

(1 — p3s — p3,) P> such that

1 & 1
n Z h(Y1:| X1:UsS;) = 2 log 2me(1 + a*Py)) .
=1

(B.19)
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The third term in (B.14) is given by

— E h(S, log 2me( . (B.20)
Finally, for the fourth term in (B.14), we first definé = G (;“Zgl)vppi’gfgtﬂj%ﬂ)})
a —Pa1 )42 ap2s 2 1
/
andg’ = apm/Wo‘ and then have

1 n
= " h(Si]X1iY5)
n“

=1

1 n
:g Z h(SZ|X1“ XM' -+ CLXQZ' + SZ -+ NM)

i=1

1 n
:g Z h(SZ — O/Xu — ﬁ,(aXQi -+ SZ + Nh‘)|X1i, Xli + aXQi + SZ + Nh)
()] «
<E Z h(SZ — O/Xli - 5’(&X2i + SZ + le))
®)1

<= Z log (27reE(S — o' Xy — B(aXe + S; + N1i>>2>

(01 , , : 01 o :
<§ log2me | Q + P, + a*B2P;, + 32Q + 2af3 25 ZE(X%SZ-) + B
i=1

I Q! 1 - ! 1 - /

(a*(1—p3 — p3) P +1)Q
: (B.21)
a?(1 — p5,) Pa + 2apas/PoQ + Q + 1

1
=3 log 2me

where(a) follows because conditioning does not increase entr@pypllows because the
Gaussian distribution maximizes the entropy for variabléh certain variance, anr)

follows from the concavity of thég function and Jensen’s inequality.
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Substituting (B.15), (B.17), (B.20) and (B.21) into (B.14)e obtain

Py + 2aps1v/PiPs + o p3y Ps
a2(1 — p%l)PQ -+ 2ap23 V PQQ + Q +1

1
R, éﬁlog 1+

1 a’P}
+3 log | 1+ W’il (B.22)

whereP; = (1 — p3; — p5,) P> — Py’
We then boundR, by further deriving (B.12b). When < 1, we haveY;; = aYs; +
(1—ab)Xy; + (1 —ac)S; + N/, whereN! ~ N(0,1 — a?) and is independent frofi;", X'

andsS™. By applying the conditional entropy power inequality [5de have

22h(Y1i ‘U,L'SZ‘XM) :22h(aY2i+(1—ab)X1i+(1—ac)Si+NZ-’\UiSiX1i)
:22h(aY2i+NZ-I‘U7;SiX1i)

>02h(@V2ilUiSiX1i) | 92h(N{|UiSiX1:)

:22h(Y2i|UiSiX1i)+10g(a2) + 271'6(1 — a2). (823)
Thus,
1 n
- Z h(Y2i|UsSi X15)
i=1
1 n 1 22h(Y1i|UiSiX1i) _ 27T€(1 — (L2)
<— —1
D
@1 925 i h(Y1ilUiSiX1s) 2mre(1 — a?)
< log 2
9 a
=3 og(2me(1+ Py)) (B.24)

where(a) follows from the concavity of the functiaog (2* — b) for b > 0, and(b) follows
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from (B.19).
Therefore, we have
1 n
Ry < o Z; T(Xoi; Yai| X155:U;)

1 n

= ; [A(Yas | X10SiU;) — h(Yai] X155 X))

(@ 1 " 1

=3 log(2me(1 + Py))) — 5 log(2me)

1
= S log(1+ 7). (B.25)

where(a) follows from (B.19).

We finally boundR; + R by further deriving (B.12c). We set” = pa, /%, and have

Ry + Ry

1 n
g;ZI(XIiX%;Yéi‘Si)

i=1

1 n
—1Zn:h(bX + Xoi + ¢S; + Nyi|S:) Llog2
_n — Li 2 Co 124 5 og zme
:l Zn:h(bX + Xo + Ny — "' Si|S;) — 1log27re

n i1 li % Li i |1 9

(@) ] — 1
< i Z h(bX1; + Xo; + Ny — &' S;) — B log 27e

i=1

)1 & 1
<= log(2meE(bX1; + Xoi + Ny — o'5;)%) — = log 2
n;og(we( 10+ Xo; + Ny, — a"'S;)?) 2og7re

()1 p 1< 1<
<§ IOg 2re b2P1 + P2 + 1 +« 2@ + 2bg ;E[XlZXQZ] — 20//5 ;E[XQZSZ]

11 2m
_Z
2og e
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1
:5 10g(b2P1 + P2 + 1+ 2bp21\/ P1P2 — PgsPQ) (826)

where(a) follows because conditioning does not increase entr@pypllows because the
Gaussian distribution maximizes the entropy for variabléh certain variance, an(r)

follows from the concavity of thég function and Jensen’s inequality.

B.3 Proof of Lemma 3.1

Following (B.5) and (B.6), we obtain

nRy <Y I(Xo;; Yoi|SiX;) + né,, (B.27a)

i=1

n(Ry + Ry) <) I(X1;Xa; Vil Si) + . (B.27b)

i=1

We then prove an alternative bound &n + R, as in (B.28) on the top of next page,
where(a) follows due to the chain rule and the fact th&t and 1V, are independentp)
follows because conditioning does not increase entrogyfollows from degradedness
condition (3.3),(d) follows because the teri (Y7;| X;) is added and subtracte@, fol-
lows because conditioning does not increase entrgfyfollows because giveX;;, X»;,
ands;, Yy; is independent of all other variables, afyd follows becauseX is a function

of W1 and conditioning does not increase entropy.

B.4 Proof of the Converse for Theorem 3.3

Based on the outer bound derived in Appendix B.3, we furtleeivd an outer bound for

the Gaussian channel. We first derive a boundkgbased on (B.27a). We set= po; 4 /%
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n(R1 + Rg)
<I(Wi YT) + T(Wa; Y'[S™) + ndy,
(a)
SIWL YD) + I(Wa: YIS + 16,
=I(Wy; YT") + H(W,|S"Wy) — H(W,|S"W1Y5') + nd,

INE
P

Wi Y1") + H(Wo|S"Wy) — H(W,|S"Wh Y'Y XT') + nd,

Wl; }/1”) -+ H(Wg\S"Wl) — H(Wg\S"WlYln) + nén
Wi Yi") + T(Wa; Y{'|S"Wh) 4 nd,

[
~ ~
—~~

[H(YulY{™") = HYu[WY{™) + H(Yy|S"WhY{ ™) — H(Yy| S"WAW2Y )] + né,

.

s
I
—_

[H(YulY{™h) = H(YulXu) + H(Yu|Xy) — H(Yu[WY™)

=
-

-
Il
—

+ H (Y| S"WhY{ ™) — H(Yy] S"WAWLY! )] 4 né,

NS
3

[H (Y1) — H(Y1| X1) + H(Y| X)) — 1(S™ Y1i|W1Y1i_1)

~
Il
—

— H(le“S"Xquz‘W1W2Y1i_l)] + néd,

3

~
=

[([(Xqi; Y1) + H(Y1| Xq) — H(Y1]9: X1 X)) — 1(S™; Y" |Wh) 4+ ndy,

.
Il
—

[[( X5 Y) + H(Yu| X)) — H(Y|9: X1 X)) — H(S™) + H(S™|Y*"W1) + nd,

s

-
Il
—

.

s
I
—_

[1(X1i5 Yig) + H (V1| X1s) — H (Y19 X1: X0s) — H(S;) + H(Si|Y"W15 )] + ndy,

—~
Q
~

N

s
Il
—_

[I(Xqi; Yi) + H(Y1| Xqs) — H(Y|9: X1 X)) — H(S;) + H(Si|Y1:.X1:)] + ndy,

o

.
Il
—

[I(Xqi; Y1) + H(Y1| Xq:) — H(Y1|9:X1:X9) — 1(Si; Y| Xq:)] + néd,,

(X4 Y1) — H(Y14] 8 X0 X o) + H(Y13]5:X15)] + nd,

.

-
Il
—

.

-
Il
—

(X5 Y1) + 1(Xas; Y1i]Si X14)] + ndy, (B.28)
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15 X o 1lstn .S .
andg = pa, %, wherepy, = = le]]fl(;i“xm) andp,, = "Z%\/EQ_S(M. We then obtain:

1 n
Ry =) h(Yai| X138;) — h(Yai| X1, X2;5;)
n =1

1 & 1
=— Z h(bX1; + Xo; 4 ¢S; + Nyi| S X1;) — 5 log 2me
n

1=1

1 & 1
— E h(Xa; + Ny — aXy; — BS]S:i X)) — B log 2me
n
i=1

(@) ] & 1
<E ; h(Xoi + Ny; — aXy; — 5S;) — B log 2me

0) 1 & 1
<3 ; log (2meE(Xi + Ny; — 0X; — 38;)?) — S log 2me

©1 1 & 1 &
<§ IOg P2 —+ 1 + OK2P1 + B2Q — 20[5 ZE[X12X2Z] — 2ﬁg ZE[X2ZSZ]

i=1 i=1
1
=5 log(1+ (1= p3, = p31) P2) (B.29)
where(a) follows because conditioning does not increase entr@pypllows because the
Gaussian distribution maximizes the entropy for variablét certain variance, antr)

follows from the concavity of thég function and Jensen’s inequality.

Following (B.26), we obtain the following bound a& + R, based on (B.27b)

1
Ry + Ry < 5 log <62P1 4 Pyt 14 2bpy\/PiPs — pgspz) . (B.30)
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We further derive (B.28) for the Gaussian channel as follows

n

1
Ry + Ry < o Z[I(Xu‘; Y1) + 1(Xai; Y1i| X1:5)]

i=1

1 n
= D [h(Yi) = h(Yail X1i) + h(Yn3| X138;) — h(Y1i]S: X1: X2:)]
i=1

1 n
== [h(Yi) = 1S5 Yul Xui) = (Vi S:X1:Xa)] (8.31)
1=1

—

o
D2 S B(Y) — (S:) + B(SiXiY) — A(YiilSiX1:Xa0)]

1=1

where(a) follows because; and X;; are independent.

Following (B.15), (B.17), (B.20), and (B.21) in AppendixBwe obtain

1 & 1

E E h(Yi,) < 5 10g27T6(P1 + 0,2P2 + Q + 1+ 2a,021\/ P1P2 + 2ap28\/ PQQ)
i=1

1 « 1

— E h(Y1;| X1:X2:5;) = 2 log 2me

n
i=1

1 1
=3 h(S) = - log?2
"2 (S:) 5 log e

(@*(1 = p3 — p3,) P2 +1)Q
a2(1 — p%l)PQ + 2ap28\/ PQQ + Q + 1

1 & 1
= " h(Si| X1Y1i) < 5 log 2me
n 2

i=1

Substituting the above bounds into (B.31), we obtain

Ry + Ry

<1 lo <1 n Pl + 2ap21\/m + a2p§1P2 )
S % a?(1 — p31) Py + 2ap25/PoQ + Q + 1

1
+ 5 log (1+a*(1 = pi, = p3) P2) (B.32)

which concludes the proof.
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B.5 Proof of Lemma 3.2

The achievable scheme applies rate splitting, superpastithding and Gel'fand-Pinsker

binning scheme. We use random codes and fix the following gbgtribution:

PSXlTUVX2Y1Y2 =

Px, Ps Prix,s Puix,7s Pvitux,s Px, muvx, s Pyiva|x: 05

Let 77" (Psx,Tuvx,v,v,) denote the strongly jointtypical set based on the above distribu-
tion. For a given sequencé, let 77 ( Py x|z™) denote the set of sequencgssuch that
(u™, z™) is jointly typical based on the distributiaPy ;.

Code Construction:

1. Generate"™ codewordsr?(w;) with i.i.d. components based afy,. Index these

codewords byv; =1, - -, 2",

2. Foreach}(w,), generate” (wy, v1) with i.i.d. components based @ x, . Index these

codewords by, = 1,- - -, 2nf1,

3. For eache}(w;) andt™(wy,vq), generate:” (w,
U1, Wa1, V91) With i.i.d. components based dny x,r. Index these codewords hy,;, =

1+, 2"R2 andyy, = 1, - -, 2nd,

4. For eachey(wy), t" (w1, vy1), andu”(wy, vy, wa,
va1), generatev™ (wy, vy, way, Va1, Waz, Va2) With i.i.d. components based o, x, 7y
Index these codewords by, = 1,---,2"%22 andvyy = 1,- - -, onkaz

Encoding:

1. Encoder 1: Givem;, mapw; into x} (w;) for transmission.

2. Encoder 2:
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— Givenwy, z}(w;) ands™, selectt™ (wy, 0;) such that

(" (w, 0), 8", 27 (wn)) € T (Px, Ps Prix,s).

Otherwise, set; = 1. It can be shown that for large, sucht™ exists with high
probability if
Ry > I(T;S|X,). (B.33)

— Givenwy; and selected’ (wy, v;), selectu™(wy,

’(71, Wa1, 1721) such that

(u" (w1, Dy, war, Vo1), t" (wy, 01), 8™, 27 (wr))

€ T7(Px, PsPrix,s Pu|x,sr)-

Otherwise, setiy; = 1. It can be shown that for large, suchu™ exists with high
probability if
Roy > I(U; S| X,T). (B.34)

— Givenw22 and SeleCted"(wl, ’(71, Wa1, 1721), SeleCtU"(wl, 171, Wa1, 1721, Waa, 1722) such

that

(Un<w17 U1, Way, Va1, Wa2, 1722),
un<w17 1717 Wa1, @21)7 tn(wh 61)7 Snv .CL’?(U)l))

€ T (Px, Ps Prix,sPuix,st Pviux,sT)- (B.35)

Otherwise, setys, = 1. It can be shown that for large, suchv™ exists with high
probability if
Roy > I(V; S|UX,T). (B.36)
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— Given selected?’ (wy), t" (w1, 01), u"™(wy, 01,

W1, @21), v"(wl, U1, Wa1, Va1, Wag, ’[122) and s™, generatE):Q with i.i.d. components
based orPy, v x, s for transmission.
Decoding:

1. Decoder 1: Given?, find the unique tupléw, vy, s, 091) SUCh that

(] (W), t" (W1, 01), u" (W1, U1, War, V1), yi')

€ T'(Px,ruv, )-

If no or more than one such tuples with different can be found, then declare error.

One can show that for sufficiently large decoding is correct with high probability if

Ri+ Ry + Ry + Ry < I(TUX,; Y1) (B.37)

We note that since receiver 1 is not required to decdde correctly by the channel

model, the corresponding error events do not need to be zathly
2. Decoder 2: Given?, find a tuple(w;, vy,

'LZJ21, @21, 'I.ZJQQ, @22) such that

(x?(wl)v tn(wla @1)7 un(wly @17 1[]21, @21)7

0" (W1, U1, Way, Va1, Waz, Va2), Y5 ) € T (Pxyruvys)-

If no or more than one such tuples can be found, then decleye ércan be shown that
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for sufficiently largen, decoding is correct with high probability if

Rgg 4 Ryy < I(V;Y,|UX,T) (B.38a)
Ryt + Ro1 + Ros + Ry < I(UV; Y, X, T) (B.38b)
Ry + Ryy + Roy + Ryg + Ry < I(TUV; Yy | X)) (B.38c)
Ry + Ry + Ry + Ro1 + Ry + Roo < I(TUV X1; Y5) (B.38d)

Lemma 3.2 is thus proved by combining (B.33)-(B.38d).

B.6 Proof of Theorem 3.5

Consider a2+, 272 p) code with an average error probabilif”. The probability

distribution onW; x Wy x 8™ x AT x A x V' x V5 is given by

[

i=1

n
PX{L‘Wleén‘Wl‘/VQSn H PYliYQZ“X]_iXQiSi‘ (Bsg)
=1

Pwywysexpxpyryy = P, P,

By Fano’s inequality, we have

H(WH|Y?) < nRyP™ +1 =néy, (B.40a)

H(W Ws|Y) < n(Ry 4 Ry)P™ + 1 = ndy, (B.40b)

whereéy,,, 2, — 0 asn — +oo. Letd,, = 01, + o, Which also satisfies that, — 0 as

n — +o0.
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We define the following auxiliary random variables:

T; = (W1, Sy, XT)
Ui = (T27 }qi_1>
Vi = (T27 W27 }/;_1) (B41)

which satisfy the Markov chain conditions:

fori=1,--,n.
The following bound o, follows the same steps as in (B.4) in Appendix B.1, and we

have

nRy <Y [I(TUiX1; Yay) — HTU; Si| X)) + nd,. (B.43)

=1
l.e.we definel; = (W4, S, X7) andU; = (T;,Y{™1)

We next bound?, and obtain

nRg

=1(W5;,Y3") + nd,, < I(Wa; Y3 |Wh) + né,

DN U (WaSFs Y3 IW) — T(WaSP; Y3 W) + nd,
=1

O S I(WoS s Vi W) + T(WaST ;s Yail W1 Y5

1=1

— I(WaST; Yy~ Wh) — I(S3; Y5~ Wi WaSE )] + nd,

= Z[I(W2S?+1§ YZ:’|W1Y2i_1) — I(S;; Yzi_1|W1WZSZL+1)] + non

=1

= [H (Yo |W1Y3™h) = H(Yor|[ Wi WaSE, Y5 )
=1
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— H(S;|[WiWoSP ) + H (S| WiWaSE L, Yy~ + nd, (B.44)
DS H Yl Wi Y37 X ) — H (Yol WAWa ST X7V
=1

— H(S;|WiWoSI  X1i) + H (S| WiWaSE, X1Ye ™ )] + nd,

n

INE

[H (Yo;| X1:) — H(Yo| X0, T3Vi) — H(S:| X1:) + H(S:| X1 T V;)] + nd,

1

(2

L (T3Vi; Yail Xi) — I(T3Vi; Si| X14)] + nn. (B.45)

M-

i=1

where (a) follows due to cancellation of the terms in the sum and bezails= ¢, ()
follows from chain rule,(c) follows becauseX} is a function of}¥;, and (d) follows
because conditionning does not increase entropy, and frerddfinition of7; andV;.

We then bound the sum rafg + Rz, as follows.

n(Ry + Ry) = I(W W3 Y3") + néy,

N IWLSE, Y5) — IVWLS Y3 )] + nd,

1=1

S IWAWLST, 3 Y3 + T(WiWa ST, 5 Vil V3 )

=1

— I(WAW2SE Y ) — (S Yy~ [WaWa Sy )] + ndy

= ZU(W1W2S?+1; You Y3 7) — 1(S5; Yy 7 [SE WiWa)] + nd,

=1

—Z (YailY371) = H(Yo:| Wi W, ST, Y57

— H(S;|SEAWiWa) + H(S| SI WiWeYs ™ ] + nd,
) n

<Z (Yai) — H(Yas Wi W87, X7Y5 )

— H(Si|X1) + H(Si|WiWaSE XY~ + nd,

DN (XT3 Vi Yar) — I(T3Vis Sil X)) + (B.46)

i=1



160

where (a) follows due to cancellation of the terms in the sum and bezaiis= ¢, ()
follows due to chain rule(c) follows because™ is independent of X', Wy, Ws), S™ is

i.i.d. and becaus&} is a function ofi¥;, and(d) follows from the definition off; andV;.

B.7 Proof of the Outer Bound for Theorem 3.6

We define the following auxiliary random variables:

,Tz' = <W17 Szn+17 X{Lu }Gi_l)

Vi = (T, W, Y5 Y) (B.47)
which satisfy the Markov chain conditions:
T, +— V,+— X1, X9,5;, «— Y, «— Y5 (B.48)

fori=1,---,n.

By following the step similar to those in (B.4), we obtain fbé#owing bound onR;:

nRky < Z[I(TiXu‘; Y1) — (T35 Si| X1:)] + ndy,. (B.49)

i=1

We next derive a bound oR, by continuing to derive the bound (B.44) as follows:

TLRQ
< Z[H()@AWlY;_l) — H(Yo|[WiWoSPL Yo )

i=1
— H(S;[WiW,SP,) + H(Si|WiWa Sy, Yo~ )] + nd,

s Z[H(EﬂWlYQi_lei) — H (Yo, Wi WS XTY{ Y5
=1

— H(S;[WiWoSE X1;) + H(S;|[WiWaSE XTY{ Y] + nd,
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< [H(Yai| X1i) — H(Yoi| X1,T3V5)

i=1

— H(S;| X1:) + H(S;| X1 T;Vi)] + nd,

Z [I(T3Vi; Yail Xi) — I(T,Vis; Si| X13)] + 1. (B.50)

where(a) follows due to the degradedness condition (3.2), and bec&usis a function

of ;.

B.8 Proof of the Converse for Theorem 3.7

We define the auxiliary random varialle= (W57, X7Y; '), which satisfies the Markov
chain:

T; < X1:X9;S; <» Y1;Ys;, fori=1,-- n. (B.51)

Following (B.49), we obtain

n

nRy <Y [H(T:X0; Vi) — I(T; Sif X1,)] + nd,.

i=1

We next boundR, as follows.

(a)
- Z[I(Wg; Yai[ WS XY Y] + nd,
i=1

<> H(Yy[WiS" X7V ™) + nd,

i=1

DN H(YuWiS" X7 Y5 ) + né,

i=1
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() & .
< HYalWiSE XTYi'S,) + nd,
i=1
=D H(
i=1

H(Y5| X1, T;S;) + ndy (B.52)

where(a) follows becausél, is independent oflV;, S™, X7'), (b) follows due to the de-
gradedness condition (3.1), afd follows because conditioning does not increase entropy.
We then derive another bound @ty by continuing to derive the bound (B.44) as fol-

lows:

TLRQ
<D H YWY = H(Yar|WiWaS7 Y5

i=1

— H(S;|[WiWo ST ) + H(Si| Wi WaSP Vi) + né,,
< D HYail Wi XPY5™Y) — H(You[WiWaSE, Vs ™h) = H(Si Wi X7 )

i=1
+ H (S WiWo X7 S Y Y Yay) + T(Yau; Si|WiWaSEL Yo ™) + nd,

(b)
< Z (Yo;| X1i) — H(Si| X1:) + H(Si| X1:T;Ys;)] + ndy,

n

—Z (Yol X15) = I(TYa55 S5 X13)] + . (B.53)

where(a) follows becauseX] is a function ofi¥; and from the degradedness condition
(3.1), and(b) follows becauses; is independent ofiV;, W5, X7'), and conditioning does

not increase entropy, and follows from the definitiori of
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APPENDIX C

PROOF FOR CHAPTER 5

C.1 Proof of Proposition 5.1

The first bound follows easily from the single-user rate lwbahreceiver 1 as follows.

nly < I(WiY") + ne,
< I(WiY"STXQ) + ney
= I(Wy; Y'|STXE) + ne,
< (YT |STXG) = h(YWASTXTXE) + ney
= h(X{ + NT') — h(NY') + ne,

< glog(l + P) (C.1)

We then bound the sum rate as follows. For the mes8ggédased on Fano’s inequality,

we have

nRy < I(Wo; Yg') + ney, (C.2)

= h(Yg") = h(Y5'[Wo) + nen,
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wheree,, — 0 asn — oc.

For the messag®@’;, based on Fano’s inequality, we have

nRy < I(Wy; YY) + ne, (C.3)
— B(YP) — RO [W3) + e,
<R(YD) = hOPIWAXT) + e,
BT — h(XP + S} + N + e

< h(Y)") = h(Xg + 57 + N [WoYG') + ne,

Summation of (C.2) and (C.3) yields

n(Ry + Ry) < h(Yy) + h(YY") — (YY), X3 + ST + NI'|Wo) + ne,

= h(Y]) + h(Y") = h(X{ + N, X5+ ST+ NT W) + ne, (C.4)

Since the two receivers perform decoding independently,ceipacity region of the
channel depends on only the marginal distribution§f, ;) and (Xo, X3, S,Y7). Itis
clear that settingV; = N, does not change the two marginal distributions respegtivel

involving Y; andY;, and hence does not affect the capacity region. Thus,

n(Ro + Ry) < h(YS") + h(YT") = h(Xg + NT', Xg' + ST + N{'[Wo) + ney
< h(YP') + h(YT") = h(ST, Xo' + N{'[Wo) + nen
< h(YG) +h(YT") = h(ST) = h(NY) + nen

Py+2VBQ; + P+ 1
1

< glog(l + Py) + glog (1 + ) +ne, (C.5)

As (); — oo, the second term of the above bound goes tand we have

1
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C.2 Proof of Proposition 5.2

We use random codes and fix the following joint distribution:

Ps, xiuxoxivovi = Psy Pxy Puisy xy Pxojus: x; Pxy Pyl xo Pya 1 x0x1 81 -

Let T7*(Ps, x;ux,x,v0v:) denote the strongly joint-typical set (see, e.g., [55, Sec. 10.6]
and [56, Sec. 1.3] for definition) based on the above disiobu For a given sequencé,
let T ( Py x|2™) denote the set of sequencessuch that(u™, z™) is jointly typical based

on the distributionPx;.
1. Codebook Generation

e Generat@"?i.i.d. codewords."(t) according toP(u") = [T, Pu(w) for the

fixed marginal probability?; as defined, in which € |1, Q”R].

o Generate"™ i.i.d codewordsr"(wy) according toP (") = [, Px;(x(;)

for the fixed marginal probability’s; as defined, in whichy, € [1, onho],

e Generate"™ j.i.d. codewordse}(w;) according toP(z}) = [, Px, (%1:)

for the fixed marginal probability’y, as defined, in whichv, € [1,2"F].
2. Encoding

e Encoder at the helper: Given,, mapw, into z;"(w,). For eachr(w), Se-
lect ¢ such that(u"(f), s7, zJ"(wo)) € T7(Ps, Px; Puys,x;)- If u () cannot be
found, sef = 1. Then mag(s”, u™(?), 2 (wo)) intoa? = £ (x (wo), 57, u" (7).
Based on the rate distortion type of argument [55, Sec. 1d).Hje Covering
Lemma [57, Sec. 3.7], it can be shown that suél¥) exists with high proba-
bility for large n if

R>I(U;5X)). (C.7)
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e Encoder 1: Givenw;, mapw; into 7 (wy).
3. Decoding

e Decoder 0: Givenyy, find @y such that(z" (i), y3) € T7*(Pxsy,)- If no or
more than oneu, can be found, declare an error. It can be shown that the

decoding error is small for sufficient largeif
Ry < I(X{: Yo). (C.8)

The proof for the above bound (and the similar bounds in tlop@el¢ follows

the standard techniques as given in [55, Sec. 7.7], and heooeitted.

e Decoder 1: Giveny?, find a pair(Z, w,) such thatu”(t), =7 (i), y})
€ T"(Pyx,v,). If no or more than one such pair can be found, then declare
an error. It can be shown that decoding is successful withl grabability of

error for sufficiently large: if the following conditions are satisfied

Ry <I(Xy;1|U), (C.9)
R <I(U:;Y1|Xy), (C.10)
R+ R <I(UX; V7). (C.11)

We note that (C.10) corresponds to the decoding error foinithex ¢, which is not the
message of interest. Hence, the bound (C.10) can be reméigrtte, combining (C.7),

(C.8), (C.9), and (C.11), and eliminatitt) we obtain the desired achievable region.
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C.3 Proof of Proposition 5.4

The single rate bounds follow from Proposition 5.1 and timglei-user channel capacity.

For the sum rate bound, based on Fano’s inequality, we have

n(Ry+ Ry) <I(Wh; Y7°) + 1(Wa: Y3') + ney

=h(Y?") — h(Y7[W0) + h(Y3) — h(Y'|Wa) + ne,

Dh(Yy) — YT WAXT) + h(Y3) — h(Y3 [ WaX3) + ne,
=h(Y?") = h(XJ + 57+ NP) + h(Y3) — h(X§ + N3) + ne,
SH(YY) — h(X§ + 57+ NP|Xg + N7)

(V) — (X + N3) + ne,

where (@) follows from the fact that{ is a function ofi/;, and X7 is a function ofiV5,
and they are independent froiy', state and noise. As argued in Appendix C.1, setting

N7 = NI does not change the capacity region. Thus,

n(Ry + Ra) <h(Y]") — h(X{ + ST + N, X3+ Ny + h(Y3") + ne,
=h(Y") — h(ST, Xg + N{') + h(Y3') + ney
=h(Y") = h(S]) = h(Xg + N{'[ST) + h(Y3') + ney
<h(YY") = h(SY) — h(Xg + NY'|ST, Xg) + h(Y5'") + ne,
Dn(Xy + X7+ S5+ N7) = h(S7) — h(NT) + h(X§ + X5 + N}') + ne,
<g log 2me(P; + Py + 2/ PoQ1 + Q1 + 1) — g log(2meQ1)
+ g log2me(Py + Py + 1) — glog@ﬂe) + ne,

_ﬁlog<P1+P0+2VPOQ1+Q1+1
B 1

2
—>g log(Po+ P +1) as Q1 — o0

+ g log(Py + P>+ 1) + ne,
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where (b) follows from the fact thaX' andST are independent fronvy".

C.4 Proof of Proposition 5.5

We use random codes and fix the following joint distribution:

Ps,uvxox: xavive = Pvus, Pxovus, Px, Px, Pyi)x0x151 Pya) x0 X -

Let 77" (Ps,uv x,x, X271 v, ) denote the strongly joirt-typical set based on the above distri-

bution.
1. Codebook Generation
e Generate"™ ii.d. codewords."(t) according toP(u") = [T, Pu(u;) for
the fixed marginal probability; as defined, in which € |1, 2"R1].

e Generate2"?: j.d. codewords"(k) according toP(v") = [T, Pv(v;) for

the fixed marginal probability?,, as defined, in whiclk € [1, 2”R2].

e Generate"™ i.i.d. codewordse?(w,) according toP(z}) = [, Px, (%1:)

for the fixed marginal probability’y, as defined, in whichv, € [1,2"71].

e Generate" i.i.d. codewordse} (wy) according toP(z3) = [, Px,(w2:)

for the fixed marginal probability’y, as defined, in whichu, € [1,2772].
2. Encoding

e Encoder at the helper: Givefi, findZ, such thatu"(t), s7) € T*(Ps, ;). Such

u"(t) exists with high probability for large if

Ry > I(U;S)). (C.12)
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e For each selected, seledt, such that(v”(k), u" (%), s7) € T"(Pyys,). Such

v™(k) exists with high probability for large if

Ry > I(V; S,U). (C.13)

o Map (s}, u", v") into zy = f§"” (u" (1), v" (k), 57).
e Encoder 1: Givenw;, mapw; into % (wy).

e Encoder 2: Givenw,, mapw, into 24 (w,).
3. Decoding

e Decoder 1: Given?, find (i, ) such thatz} (in), u™(t), y}) € T"(Px,uy,)-
If no or more than on@; can be found, declare an error. One can show that the

decoding error is small for sufficient largef

Ry < I(X;;YiU) (C.14)

Ry + Ry < I(X U; V7). (C.15)

e Decoder 2: Giveny, find (i, k) such thata? (i), v"(k), y3) € T™(Px,vy, )-
If no or more than on@, can be found, declare an error. One can show that the

decoding error is small for sufficient largef

Ry < I(Xy; Y5V), (C.16)

Ry + Ry < I(X,V;Y5). (C.17)

Combining (C.12)-(C.17), and eliminatirf§y and R, we have
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Ry < I(X;YiU) (C.18a)
Ry < (X U3 Y1) — I(U; Sy) (C.18b)
Ry < I(Xy, YaV) (C.18c)
Ry < I(XoV3Ya) — I(V;US)) (C.18d)

When conditions (5.21a) and (5.21b) are satisfied, (C.188)&.18d) are redundant,

and hence, we have the desired achievable region.

C.5 Proof of Proposition 5.7

The bounds ok, and R, follow from the single-user channel capacity. For the sute ra

bound, based on the Fano’s inequality, we have

n(Ry + Re) <I(Wy; YT') + T(Wa; Y3') + ne,
=h(Y{") — h(Y7'[Wh) + h(Y3) — h(Y3'|Wa) + ne,
Dh(Y) — h(YPIWXT) + h(Y3) — h(YWaX5) + ne,
=h(Y{") = W(XP + Sf + NJ) + h(Y3") — h(Xg + S5 + Ny) + ne,
Sh(YP") = W(XE + S} + NJ|X5 + N7
+ h(YJ) — h(XE + S5 + NJ|X§ + Ny, X§ + ST+ N

+ h(XJ + NT) — h(X{ + NJ) + ne,

where (@) follows from the fact that} is a function ofi¥;, X7 is a function ofli¥/;, and
they are independent frotd ', ST, S5, N and N3'. Since receivers 1 and 2 decode based

on the marginal distributions only, settifg® = N;' does not affect the channel capacity.
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Therefore,

n(Ry + Rs)
<h(Y?') = (X + ST + N, X0+ S5+ NT', X+ NTY)
+ h(Y3) + h(X§ + NT') + ne,
=h(Y)") = h(ST, 53, Xg + N{') + h(Yy") + h(X§ + NY') + ne,
=h(Y{") = h(ST) = h(S) — h(Xg + NT'[ST, 53)
+ h(Y3) + h(X§ + NT') + ne,
<Sh(YY") = h(ST) = h(S) — h(Xg + NT'[ST, 53, X¢)
+ h(YP) 4+ h(XE 4+ N + ne,

=h(Y") = h(5T) = h(S3) = h(NT') + h(YY") + h(Xg + NT) + ne,

=3 (Yl YiT) = h(S1:) = h(Sa) — h(Ny;)
=1
+ h(Yai Y3 ~1) + h(Xo: + Nl X0~ + NiT1) + e,
<D h(Yai) = h(S1:) = h(Sa:) — h(N1;) + h(Yas) + h(Xoi + Nii) + ney

1=1
n

= Z[h(XOi + Xii + St + Nig) — h(S1) — h(S2i) — h(Nyi)

=1

We then derive the items respectively. The first term in (EcE be derived as

Z h(Xo; + X1; + S1i + Nuj)

=1

<5 Z log 2me(E (X + X1; + Si + N;)?)

<= Zlog 2me <E[X§Z] + E(X0:S;) + E[S}] + E[X})] + E[Nz2]))
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(6) n n n

1 L2
< 5 log 2me - Z E[Xg] + - Z E(X:S;)

4
<

|3

9 n
10g2ﬂ'€ P0+Q+P1+1+E;E(X1252)

< g log 27e (PO +P+Q+1+ 2«/P0Q> (C.20)

where (d) follows from the fact that the Gaussian distrititinaximizes the entropy given
the variance of the random variable) follows from the concavity of the logarithm func-

tion and Jensen’s inequality, aridl) follows from the power constraints. Similarly, we
have

Zh(XQZ—FXQZ—i‘SM—i‘NM) < glog27T6(P2+P0+2\/POQ2+Q2+1)

i=1

i=1

And hence, we have

n(Rl + Rg)

<

o3

log 2me(Py + Py + 2/ Py@Q1 + Q1+ 1) — glog(Qwte) - glog(%rng)

— glog(27re) + g log 2me(Py + Py 4+ 21/ PyQ2 + Q2 + 1) + glog 2re(Py + 1) + ney,

n P+ By + 2y PyQ1+ Q1+ 1 n P+ Py + 2/ PyQ2 + Q2 + 1
<= log + - log
2 Q1 2 Q2
n
+ 5 log(Fo + 1) +ney

—>g log(Ph+1) as @1 — 00,Q2 — o0
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where (b) follows from the fact thaX (', ST andS3 are independent frony;'.

C.6 Proof of Theorem 5.5

The proof contains two parts: 1. we first show thaPif+ P, > P, + 1, then the sum
capacity can be obtained; 2. we further characterize the @illocation parametersthat
achieves the sum capacity.

1. For a givenP,, we consider the following two cases.

a). If the power constraint satisfié$ + P, = P, + 1, by applying Proposition 5.8, and

by settingy = & +P , the point(Ry, Rs) = (5515 +P2) log(1+ Fy), 37 P1+P2) log(1+ Fy)) is
achievable, which achieves the sum rate outer bound in Bitipo5.7.

b). If P, + P, > P, + 1, we set the actual transmission pow#rand P, of transmitters
1 and 2 to satisfy?, + P, = Py + 1, P, < P, andP, < P,. Then following a), the sum
capacity is obtained.

2. In order for each transmitter to achieve the sum capaaiting its own transmission

slot, (5.30) together with (5.31a) and (5.31b) imply that

ep+i1 (C.21)

P
L=y

> P+ 1. (C.22)

It is clear that (C.21) implies

and (C.22) implies

Py
Py+1

y=21-

Considering) < v < 1, we obtain the desired bounds on
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APPENDIX D

PROOF FOR CHAPTER 6

D.1 Proof of Proposition 6.1

We show the outer bound that involves the impact of the helpgrarticular, we focus on
he sum rate bound. The single rate bounds follow from thelairsieps.

For the sum rate bound, based on Fano’s inequality , we have

n(Ry + Rs)
<I(WiWa; Y™ + ne,,
=h(Y™) = h(Y"|W1Wa) + ne,
Sh(Y™) = h( Xy + X7 + X5 + 5" + N"\W XTWoXY) + ne,
Dh(y™) — h(XD + S™ + N™) + ne,
<h(Y™) — h(XD + S™ + N"| XD + N™) + néy
—h(Y™) — h(XJ + 5™ + N"| X + N™) + h(XJ + N") — h(X] + N") + ne,
—h(Y™) — h(XP + 5" + N", X} + N") + h(XJ + N") + ne,

—h(Y™) — R(S™, X2+ N™) + h(XD + N") + ne,
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—h(Y™) — h(S™) — h(XD + N"|S™) + h(XD + N™) + ne,

<h(Y™) = R(S™) — h(XD + N"|S"X?) + h(XD + N™) + ne,

—

Dn(y™) — h(S™) = h(N™) + h(Xg + N™) + ne,

<5 log2me(Py + P+ Po + 2posy/ PoQ + Q + 1)

o3

— glog(QﬂeQ) + glog 2re(Py + 1) — glog@ﬁe)
< log(Py+ 1)

P0+P1+P2+2005\/m+69+1)
Q

+ WIS

g log(

wheree, — 0 asn — oo, pos = % (a) follows becauséXx?, 5™, N") are

independent frontVy, X7, W5, X7), and (b) follows becaus& andS™ are independent

from N™.

D.2 Proof of Lemma 6.2

We design the following scheme for the discrete memorylasstate noncausally known

at the helper.

We use random codes and fix the following joint distribution:
PSUX0X1X2Y - PSPUISPXOIUSPX1PXQPYIX()X1X2S

Let 7™ (Psux,x, x,v) denote the strongly jointtypical set based on the above distribution.
For a given sequencé, let7"( Py x |+") denote the set of sequenagssuch thatu”, 2™)

is jointly typical based on the distributiaPy ;.
1. Codebook Generation

e Generat@"" codewords/" (t) with the probability ofP,;, in whicht € [1, 275,
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e Generate" codewordsX?(w;) with the probability of Py, , in whichw, €

1,208,
e Generate" codewordsX? (w,) with the probability ofPy,, in whichw, €
1,201,

2. Encoding

e Encoder O: For giver", selectt such thatu”(?), s") € T"(Psy). If u™(t) can

be found, mags”, u"(f)) into 27, else,x? = f*(s™, u™(1)).

It is easy to show that suali'(¢) exists with high probability for large if

R>I(U;S). (D.1)

e Encoder 1: Givenw;, mapw; into % (wy).
e Encoder 2: Givenw,, mapw, into 24 (w,).
3. Decoding: Given™,

(a) Findf such thatu”(t),y") € T"(Pyy). One can show that the decoding error

is small for sufficient large: if

R<I(U:Y). (D.2)

(b) For selected.”, find w; andw, such that(z, (@, ), (x2 (), u™(t), y™)
€ T} (Px;uy). One can show that the decoding error is small for sufficient

largen if

Ry <I(X3; Y|UXs) (D.3)
Ry <I(Xy; Y|UX)) (D.4)

Ri+ Ry <I(X:1 X2, Y|U) (D.5)
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According to (D.1)- (D.5), exploit the Foriour-Mozkin elimation to eliminateR, we

have the achievable region as in Lemma 6.2.
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APPENDIX E

PROOF FOR CHAPTER 7

E.1 Proof of Proposition 7.5

We use random codes and fix the following joint distribution:

Psuxovxvive = PsPuisPxojusPv Px v Py xox s Pyz xox5-

Let 7" (Psux,vxy,y,) denote the strongly joint-typical set based on the above distribu-

tion.
1. Code Construction:
(@) Generate"® codewordsy™(w,) with i.i.d. components based af,. Index

these codewords by, = 1,---, 2",

(b) For eachy”(w,), generate"2 codewordse™ (w,, w,) with i.i.d. components

based orPy, . Index these codewords by, = 1, - -, 2",

(c) Generate codewordg$/" (/) with i.i.d. components based d#y. Index these

codewords by = 1,2,- - -, 2",

2. Encoding:
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(a) Encoder: Givemw,, map itintov™(w, ). Givenv™ andws, map it intox™ (w;, ws).

(b) Encoder at the helper: Givefi, select such that
(u"(i), Sn) S T:(PUS).

Otherwise, set = 1. It can be shown that for large suchu™ exists with high

probability if
R>I(U;S). (E.1)

(c) Givenselected” (/) ands", generateg withi.i.d. components based &t s

for transmission.
3. Decoding: Given™,

(a) Decoder 1:
i. Find such thatu"(l),y7) € T"(Pyy,). One can show that the decoding

error is small for sufficient large if

R<I(U: YY), (E-2)

~

ii. For selectedu™, find «w; such that(v(w,),u"(1),y?) € T (Pyyy,). One

can show that the decoding error is small for sufficient largfe

R, <I(V:Yi|U). (E-3)

(b) Decoder 2:
i. Find such thatu"(l),y3) € T"(Pyy,). One can show that the decoding

error is small for sufficient large if

R<I(U:Y)). (E.4)
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A

ii. Forselected:”, find w, such that(v(w,), x(wq, ws), u" (1), y4)
€ T"(Pyxuy, ). One can show that the decoding error is small for sufficient

largen if

Ry <I(X;Y3|VU) (E.5)

Ry + Ry <I(X;Y5|U) (E.6)

According to (E.1)- (E.6), exploit the Foriour-Mozkin elimation to eliminateR, we have

the achievable region as in Proposition 7.5.
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