
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

8-2013

VERDICTS: Visual Exploratory Requirements Discovery and VERDICTS: Visual Exploratory Requirements Discovery and

Injection for Comprehension and Testing of Software Injection for Comprehension and Testing of Software

Sefik Kanat Bolazar

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bolazar, Sefik Kanat, "VERDICTS: Visual Exploratory Requirements Discovery and Injection for
Comprehension and Testing of Software" (2013). Electrical Engineering and Computer Science -
Dissertations. 335.
https://surface.syr.edu/eecs_etd/335

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_etd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/335?utm_source=surface.syr.edu%2Feecs_etd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

We introduce a methodology and research tools for visual exploratory software analysis.

VERDICTS combines exploratory testing, tracing, visualization, dynamic discovery and in-

jection of requirements speci�cations into a live quick-feedback cycle, without recompilation

or restart of the system under test. This supports discovery and veri�cation of software

dynamic behavior, software comprehension, testing, and locating the defect origin. At its

core, VERDICTS allows dynamic evolution and testing of hypotheses about requirements

and behavior, by using contracts as automated component veri�ers.

We introduce Semantic Mutation Testing as an approach to evaluate concordance of

automated veri�ers and the functional speci�cations they represent with respect to existing

implementation. Mutation testing has promise, but also has many known issues. In our

tests, both black-box and white-box variants of our Semantic Mutation Testing approach

performed better than traditional mutation testing as a measure of quality of automated

veri�ers.

VERDICTS:

Visual Exploratory Requirements Discovery and Injection

for Comprehension and Testing of Software

By

�e�k Kanat Bolazar

B.S. Middle East Technical University, 1990

M.S. Syracuse University, 1993

DISSERTATION

Submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

August 2013

Copyright© �e�k Kanat Bolazar 2013

All Rights Reserved

This thesis is dedicated to my parents, Günay Bolazar and Bedriye Bolazar,

who have shaped me in so many ways that I continue to discover to this day...

Contents

Abstract i

Contents v

List of Tables xiii

List of Figures xv

1 Partial Automation of Software Component Veri�cation 1

1.1 Contributions . 1

1.2 Partial Automation of Software Component Veri�cation 2

1.2.1 Automated Veri�cation of Undocumented Software Components . . . 2

1.2.2 Software Development Stages, Cycles, and Feedback 3

1.2.3 Software Component Testing and Analysis 4

1.2.4 Software Comprehension Theories, Importance of Hypotheses 5

1.2.5 Declaring Hypotheses . 7

1.3 Problem Scenarios . 8

1.3.1 Testing, Veri�cation . 9

1.3.2 Analysis and Comprehension . 10

1.3.3 Debugging . 11

1.3.4 Speci�cations Discovery . 13

1.3.5 Measuring Automated Veri�er Adequacy 14

v

1.4 Observations and Proposed Solution . 15

1.5 Method Description . 16

1.5.1 VERDICTS: Visual Exploratory Requirements Discovery and Injec-

tion for Comprehension and Testing of Software 16

1.5.2 Dynamically Generated and Evolved Requirements Speci�cations (Con-

tracts) . 18

1.5.3 Evaluating Requirements with Semantic Mutation Testing (SMT) . . 19

2 Problem Scenarios 22

2.1 Problem Scenarios . 22

2.1.1 Testing, Veri�cation . 23

2.1.2 Analysis and Comprehension . 25

2.1.3 Debugging, Fault Localization ("Find the Bug") 27

Debugging: Ignored in Software Engineering, Ine�cient, and Costly . 27

Fault Localization (Discovering Defect Origin) 29

Standard Debugging Paradigm, 1961-2013 31

Print Statements, Logging and Tracing 33

2.1.4 Speci�cations Discovery . 34

Speci�cations Discovery: Part of Reverse Engineering 34

Software That Works For End Users, But Not For Developers 35

Why Are Comments, Documentation, Speci�cations and Automated

Tests Missing in Many Open Source Software? 37

Communicating Comprehension: From Mental Models to Documenta-

tion . 38

Discovering Speci�cations for Test Automation 39

2.1.5 Measuring Automated Veri�er Adequacy 40

Relative and Absolute Adequacy Metrics 40

2.2 Problem Analysis . 42

vi

2.2.1 Actors: User and Developer's Mental Models vs. Software Behavior

and Implementation . 42

End User's and Developer's Mental Models and Expectations 42

2.2.2 Process: Stages, Cycles, and Feedback 44

Software Development Process, Stages of Development 44

Shrinking Software Development Cycles 44

Delayed versus Immediate Feedback 45

Comprehension Of Evolving Software 45

2.2.3 Complexity: Software Size and Strong Components 45

Black Box, White Box, Information Hiding 45

Complexity Analysis of Scenarios . 47

2.2.4 Contract: The Requirement Speci�cations Document 48

Ideal Contract . 48

Automated Veri�ers . 49

2.3 Debugging: Strategies, Innovative Techniques, E�ciency 50

2.3.1 Standard Debugging Strategies: Small vs. Large Steps 50

2.3.2 Standard Debugging For A Buggy Quicksort Function 53

2.3.3 Print Statements . 57

2.3.4 Some Innovative Debugging Techniques 60

2.3.5 Envisioning An Ideal Debugging Tool 63

3 Techniques and Technologies 65

3.1 VERDICTS: How DBC, AspectJ, Beanshell and Statistical Views Work To-

gether . 65

3.2 SMT: How ASM, Re�ection and Class Reloading Work Together for Semantic

Mutations . 67

3.3 Design by Contract (DBC) . 69

3.3.1 Human-Language Speci�cations vs. DBC 69

vii

3.3.2 Our Proposal: Selective Retro�tting of Contracts 71

3.3.3 Programmatic DBC using Java Statements 72

3.4 Aspect-Oriented Programming (AOP) With AspectJ 73

3.4.1 What is AOP? . 73

3.4.2 AspectJ and Dynamic AOP . 74

3.4.3 Testing Unit: Method . 76

3.5 Live Java Interpreter, Beanshell . 76

3.5.1 Compiled vs. Live Interpreted Java Code 76

3.5.2 Beanshell . 77

3.5.3 Beanshell Features, Examples . 78

3.6 Statistics & Visualizations . 79

3.6.1 Box Plot (Box and Whiskers Diagram) 80

3.6.2 Correlation Matrix . 82

3.7 Mutation Testing (Mutation Analysis) . 86

3.8 Java Re�ection . 87

3.9 ASM Library: Java Bytecode Manipulation and Data Flow Analysis 90

3.9.1 ASM Library for Java Bytecode Manipulation 90

3.9.2 ASM Library for Data Flow Analysis 91

3.10 Dynamic Replacement of Executing Code With Java Class Reloading 91

4 VERDICTS: Visual Exploratory Requirements Discovery and Injection for

Comprehension and Testing of Software 93

4.1 Overview of the VERDICTS Approach, Process Cycle 93

4.1.1 VERDICTS Process Cycle and Core Components 93

4.1.2 Views and Visualizations . 95

4.1.3 Step 1: Read Source Code . 97

4.2 Step 2: Run Target Program under VERDICTS Tracer & Veri�er 97

4.3 Step 3: Inspect (Using Trace and Debugger Views) 100

viii

4.4 Step 4. View The Aggregate Views (Visualizations): 104

4.5 Step 5. Discover/Improve Contract. 107

4.6 User-De�ned Variables: Observables and Contract Assertions 110

4.6.1 Object Clone (Copy): Advantages, Disadvantages, Finding a Good

Compromise . 112

4.6.2 Recording Partial Object State: Fields and Methods 114

4.6.3 Recording Partial Object State: Properties, More Complex Processing 116

4.6.4 Print Statements, Logging . 118

4.6.5 Patches (Throw-Away Quick Fixes) 118

4.6.6 Contract Assertions . 120

4.7 Types of Contracts and Requirements in VERDICTS 120

4.8 Review: How VERDICTS Supports Exploratory Contracts 123

4.9 VERDICTS Tests . 126

4.9.1 VERDICTS E�ciency and Earlier Tests 126

4.9.2 Testing Innovative Features of VERDICTS 128

4.9.3 A. Integrating Large Amounts Of Program Values In Comprehensive

But Useful Ways . 130

4.9.4 B. Using Novel Visualizations That Reveal Patterns In Control Flow

And Data Variations . 133

4.9.5 C. Dynamically Inserting Probes And Hypotheses About Program Be-

havior Using A Familiar Language 135

5 SMT: Semantic Mutation Testing 138

5.1 Speci�cation-Implementation Concordance and Measuring Veri�er Adequacy 138

5.1.1 Importance of Up-To-Date Speci�cations 138

5.1.2 Human-Language Speci�cations and Automated Veri�ers 140

5.1.3 Design by Contract . 141

5.1.4 Test Suite Adequacy . 142

ix

5.1.5 Speci�cation Adequacy . 143

5.1.6 Measuring Speci�cation Adequacy with Semantic Mutation Testing . 144

5.2 Functional Speci�cations and Veri�ers: A Subsumption Relation 145

5.2.1 Functional Speci�cation and Veri�er Adequacy 145

5.2.2 A Formal De�nition for Subsumption Relation Between Veri�ers . . . 146

5.2.3 Strict Subsumption of Veri�ers . 147

5.2.4 Least Upper Bound (Supremum) And Greatest Lower Bound (In�mum)148

5.2.5 Bottom Element, Top Element, and Complete Veri�er for a Program P 151

5.3 Measuring Veri�er Adequacy . 153

5.3.1 Can Veri�er Distinguish Between Correct and Faulty Implementations? 153

5.3.2 Veri�er Adequacy Score: Requirements 154

5.4 Traditional (Syntactic) Mutation Testing . 156

5.4.1 MT Injects Small Syntactic Faults . 156

5.4.2 MT Has High Computational Complexity 157

5.4.3 A Major Hurdle: Semantic Equivalence of Mutants 157

5.4.4 Are Mutation Operators Competent? 158

5.4.5 "All Mutants Are Equal" Myth and "Dumb Mutants" 159

5.4.6 Semantic versus Syntactic Faults . 161

5.4.7 Beyond "Dumb" Mutants: A Simple Example 162

5.5 Semantic Mutation Testing . 165

5.5.1 Semantic Mutation Testing (SMT) Injects Nondeterministic Semantic

Faults . 165

5.5.2 White-Box SMT . 167

5.5.3 Data Flow Analysis for Crash Prevention 168

5.5.4 Black-Box SMT . 169

5.5.5 Summary . 170

x

6 SMT Experiments 173

6.1 Introduction . 173

6.2 Experiments 1/2: One Method, Seven Alternative Veri�ers/Speci�cations . . 174

6.2.1 Sorting, Alternative Speci�cations . 174

6.2.2 Traditional (Syntactic) Mutation Testing 175

6.2.3 Black-Box Tests . 177

6.2.4 White-Box Tests . 178

6.2.5 Discussion . 180

6.3 Experiments 2/2: Four Methods, Five Alternative Veri�ers/Speci�cations Each180

6.3.1 Introduction . 180

6.3.2 Target Programs and Alternative Speci�cations 181

6.3.3 Test Inputs . 184

6.3.4 Black-Box SMT Implementation . 184

6.3.5 White-Box SMT Implementation . 185

6.3.6 Traditional MT With Jumble . 185

6.3.7 Results & Observations . 186

6.4 Conclusions and Future Work . 190

6.4.1 Conclusions . 190

6.4.2 Future Work . 190

7 Conclusions 192

7.1 VERDICTS . 192

7.2 Semantic Mutation Testing . 194

Appendices 200

A Software Comprehension Theories 200

A.1 Direction of Comprehension, Opportunistic Switching Strategy 200

A.2 Von Mayrhauser & Vans' Integrated Meta-Model 200

xi

B Software Comprehension Issues 202

B.1 Software Comprehension is Vital, Yet Rarely Studied and Never Measured . 202

B.2 Essential Incompleteness of Software Comprehension 203

B.2.1 Lines of Code, Years of Reading! . 203

B.2.2 Prior Knowledge and Expertise . 205

B.2.3 Simple Top-Down or Bottom-Up Traversal Continually Leaves Some

Comprehension Questions Unanswered 206

B.2.4 Bottom-Up Static Analysis and Top-Down Dynamic Analysis 206

C From Hoare Triple to DBC Contracts 208

D DBC Tools, Languages 213

D.1 DBC Tools, Languages . 213

D.2 What a Method Delivers: Postcondition Minus Precondition 217

D.3 DBC Examples . 218

E Types of DBC Contracts, and How to Read Them 223

E.1 Degenerate Contracts and Extreme Cases . 223

E.2 Categories of Everyday Contracts . 224

F ASM Library for Java Bytecode Manipulation 226

F.1 Event-Based Sequential Access Parser (Similar to SAX for XML) 226

F.2 ASM's Tree API . 231

F.3 Data Flow Analysis with ASM . 232

Bibliography 235

Vita 245

xii

List of Tables

1.1 Software testing, analysis, and hypotheses 7

2.1 Forty years of Intel CPU speed (1971-2011), Dhrystone benchmark 33

3.1 Data and corresponding box plots' boxes, whiskers and outliers 82

3.2 Four data sets with same basic statistics (modi�ed from Anscombe's quartet) 83

4.1 Types of contracts that can be used in VERDICTS for analysis and testing . 123

4.2 Examples for types of contracts that can be used in VERDICTS 123

4.3 VERDICTS method interception overhead 126

4.4 VERDICTS integrates large amounts of program values in comprehensive but

useful ways . 132

4.5 VERDICTS reveals patterns in control �ow and data variations, raw metrics 134

4.6 VERDICTS reveals patterns in control �ow and data variations 134

4.7 VERDICTS allows verifying hypotheses about program behavior using a fa-

miliar language . 136

5.1 Input, output and contract limits for sqr5(int n) 162

5.2 Traditional MT vs. black-box SMT and white-box SMT 167

6.1 Seven alternative contracts for sort method 175

6.2 Traditional (Syntactic) Mutation Test results 176

6.3 Black-Box Semantic Mutation Test results 178

xiii

6.4 White-Box Semantic Mutation Test results 179

6.5 Four target functions, �ve alternative contracts each. 183

6.6 Strict subsumption between our contracts for functions 184

6.7 An evaluation of traditional MT and SMT on requirements de�ned in chapter

5. 189

D.1 Four sample methods . 218

D.2 Preconditions and postconditions written as Java boolean expressions, with

helper functions . 218

D.3 Preconditions and postconditions in OCL syntax 219

D.4 Preconditions and postconditions written as Java boolean expressions 220

xiv

List of Figures

1.1 Software System Veri�cation and Validation 9

1.2 From defect in SW, to faulty state, to observed failure 12

2.1 Debugger on buggy quicksort, before defect 55

2.2 Debugger on buggy quicksort, after defect 56

2.3 Print statements to see the big picture. 58

3.1 VERDICT process is an analyse-hypothesize-test cycle 66

3.2 SMT techniques and technologies . 68

3.3 Expected box plot for (large) data set with normal distribution 80

3.4 Some data and corresponding box plots . 81

3.5 Four data sets with same basic statistics (modi�ed from Anscombe's quartet) 84

3.6 Correlation matrix with numbers and colors, and with only colors 85

4.1 VERDICTS core components (Tracer, Veri�er, and Visualizer) and process . 94

4.2 VERDICTS Control Center (main window) 96

4.3 VERDICTS Execution Con�guration window 96

4.4 VERDICTS Trace Session View . 99

4.5 VERDICTS Trace Details View . 100

4.6 VERDICTS Thread View . 101

4.7 VERDICTS Method Call View . 102

xv

4.8 VERDICTS Method Call View, with user-de�ned variables and contract as-

sertions . 102

4.9 VERDICTS Object Viewer . 103

4.10 VERDICTS GUI Recorder View . 104

4.11 VERDICTS Methods Graph View uses force-based layout 104

4.12 VERDICTS Statistics View . 105

4.13 VERDICTS X-Y Plot . 106

4.14 VERDICTS Method View . 107

4.15 VERDICTS Method Contract History . 108

4.16 VERDICTS Method Contract View, with statistics for user-de�ned variables

and contract assertions . 108

4.17 VERDICTS X-Y Plot after de�ning method contract 109

4.18 VERDICTS X-Y Plot, using a user-de�ned variable 110

4.19 VERDICTS test for Ant2: 451 method calls visible per screen 132

5.1 Automated tester, with decoupled veri�er . 141

5.2 sqr5(int n) method (n*n/5) and eight mutants vs. our contract (requirements) 163

5.3 sqr5(int n) method (n*n/5) and eight mutants, showing contract failures . . 163

5.4 Black-box SMT vs. white-box SMT . 165

6.1 Traditional (Syntactic) Mutation Testing results using Jumble 186

6.2 Black-Box Semantic Mutation Test results 186

6.3 White-Box Semantic Mutation Test results 186

xvi

Chapter 1

Partial Automation of Software

Component Veri�cation

1.1 Contributions

Our research contributions:

� Revealed some essential problems in traditonal debugging paradigm and traditional

mutation testing.

� Developed a method for real time exploration of complex software, supported by formal

contracts to record hypotheses.

� This work enables contracts to be speci�ed and edited in real time with support for

deep analysis of their consequences.

� Demonstrated how dynamic requirement and behavior contracts can be used for soft-

ware analysis and testing in various scenarios.

� Provided means to evaluate the e�ectiveness of contracts using mutation testing in a

way that, we believe, is superior to existing methods.

1

� Developed the VERDICTS tool to support the use of these explorations to better

understand complex software.

VERDICTS tool combines a number of innovative features:

� Integrating large amounts of program values in comprehensive but useful ways

� Using novel visualizations that reveal patterns in control �ow and data variations

� Seamlessly switching between modes of analysis and testing

� Dynamically inserting probes and hypotheses about program behavior using a familiar

language

� Tracking assertion results in space of source code and time of execution

1.2 Partial Automation of Software Component Veri�ca-

tion

"Everything should be as simple as possible, but no further." Albert Einstein

(attributed1) (1879 - 1955)

1.2.1 Automated Veri�cation of Undocumented Software Compo-

nents

Recently popularized Opportunistic Software Systems Development paradigm [64] proposes

reusing code that was not initially intended or designed for reuse. One source of reusable

code is the large body of open source software, including much free software with license

1"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as

simple and as few as possible without having to surrender the adequate representation of a single datum of

experience.", Albert Einstein (1879 - 1955), in "On the Method of Theoretical Physics" The Herbert Spencer
Lecture, delivered at Oxford (10 June 1933); also published in Philosophy of Science, Vol. 1, No. 2 (April
1934), pp. 163-169, p. 165

2

that allows reuse in commercial software. Reuse is made easier by the open source software

code search engines such as Koders [49] and Krugle [50].

Unfortunately, open source software that is veri�ed in the �eld by a large number of end

users may lack proper documentation or automated veri�cation, making comprehension and

reuse of any part of this software very di�cult.

For complex software without proper documentation or automated veri�cation, we pro-

pose a partial-automation approach that:

� Is designed for exploratory software and component veri�cation

� Allows quick switching between software veri�cation and analysis (for comprehension)

� Employs dynamically discovered component speci�cations for both veri�cation and

analysis

� Can evaluate the adequacy of discovered component speci�cations as they are evolved

� Can generate automated component testers based on discovered component speci�ca-

tions

Before we examine our proposed approach in more detail, let us examine potentially

desired features of such an approach.

1.2.2 Software Development Stages, Cycles, and Feedback

Winston W. Royce's structured approach to software development conceived in 1970 recom-

mended simple segregation of software development tasks and stages, followed once or twice

through, without cycles [72]. Royce's software development approach was later named �the

waterfall model�.

Royce also recognized that a running system reveals all the side e�ects, feasibility and

compatibility of desired features and design decisions. Even in 1970, Royce suggested that

3

one could �do it twice�, allowing what is learned from interaction with the �rst developed

system to inform all decisions in designing, implementing and testing the second system.

Today, agile software development methods [1] suggest rapid development and delivery

cycles (iterations) as short as one week. Within one iteration, agile software shrinks cycles

of feedback further with continuous integration and test automation (as well as on-site cus-

tomer), where implement-integrate-verify-learn cycle with valuable feedback is often shrunk

down to hours and even minutes.

Before we receive feedback from our observations, we do not know if the hypotheses

behind our actions are correct. No learning takes place before our actions (such as imple-

mentation of a feature) produce observable feedback. Faster feedback allows more cycles of

learning to be performed within a given time, which means that shorter delay in feedback

makes learning more e�cient. Shorter feedback delay also improves e�ciency of control.

Consider again the issue of opportunistic software reuse. Software that is widely deployed

may be veri�ed in the �eld with a large number of end users, even when good software

development practices are not followed. Such software and its components may have no

automated veri�cation mechanism, no requirements speci�cation document or any other

documentation.

1.2.3 Software Component Testing and Analysis

Much simple mechanical scripted testing can be o�-loaded to automated unit tests, leaving

test analyst free to perform testing tasks with higher conceptual complexity and critical

thinking. Without a predetermined path, the space of possible test cases can be explored

by individual decisions that allow perceived highest-remaining-risk test cases to be tested at

each next step.

Exploratory testing [9] recognizes and leverages the fact that when not following a simple

mechanical script, test analysts not only test, but also analyze; not only verify software, but

also generate, verify and modify their own hypotheses about how the software should behave.

4

To achieve this, exploratory testing proposes rapidly switching between testing and analysis

modes of operation to perform unscripted testing e�ciently.

Of interest to software reuse is software component analysis and veri�cation. How can we

assist these two tasks, to partially automate an unscripted, exploratory approach to software

component veri�cation?

1.2.4 Software Comprehension Theories, Importance of Hypotheses

The end goal of analysis is software comprehension. Even though not an explicit stage in

software development or maintenance, much time is spent on software comprehension.

After �rst deployed version, software must be maintained for the rest of its life, and this

maintenance includes added features (�perfective maintenance�) and adjustment to changed

environment (�adaptive maintenance�), not only �xing bugs (�corrective maintenance�).

Today, maintainers spend about 40% of time understanding software, and lack of docu-

mentation is one of the main reasons [46].

There are many competing and incompatible software comprehension theories. Short of

statistical analysis of a large user base with subjective exit survey about level of comprehen-

sion, there is no generally satisfactory way to quantify or prove claims about comprehension.

This has caused the �eld of software comprehension to shrink over the decades, and caused

most research on software analysis to avoid making any claims about comprehension.

Case in point: PCODA, the International Workshop on Program Comprehension

Through Dynamic Analysis has skipped years 2009, 2011 and 2012. Proceedings of PCODA

2010 [37] (available online at [68]) only has three papers, which mention comprehension only

in Introduction, Background and Related Work sections and never in any other section of

any paper. None of the papers refer to or suggest any comprehension model or theory, and

no paper makes any claim about improved comprehension or describes any experiment with

humans to assess in any way whether their technique improves comprehension.

Even though we had originally designed our approach with the end goal of improved

5

software comprehension, we will also avoid making any claims about comprehension at this

time. Still, we believe that it is important to learn from various software comprehension

theories.

Even though various software comprehension theories propose con�icting structures and

processes, practically all theories heavily emphasize the importance of hypotheses (also called

�conjectures�) and sub-hypotheses, their creation, evolution, veri�cation (for an accept/reject

decision), and possible abandonment.

Abandonment refers to unresolved hypotheses that are ignored, either because an ac-

cept/reject decision could not be made or due to lack of follow-up [59], possibly due to

forgetfulness. The truth is, not all hypotheses need to be resolved; there may be many par-

allel paths to test or prove a primary hypothesis. Some hypotheses and many supporting

sub-hypotheses may be non-essential and redundant, and need not all be resolved in order

to make decisions on essential hypotheses. If veri�cation tests are ine�cient or inconclusive,

an non-essential hypothesis may be abandoned in favor of other veri�able hypotheses.

Vessey [79] has observed that novice developers are more resistant to rejecting/changing

their hypotheses. Novice developers are more likely to state hypotheses, assume them correct,

and infer incorrect conclusions, whereas expert developers are more likely to accept the

unpleasant choice of rejecting their own hypotheses in the presence of contrary evidence.

It has also been observed that expert programmers abandon hypotheses more frequently

to look for other faster approaches to reach their goals [79] [59].

Just as software/component analysis can be conducted through initially uncon�rmed hy-

potheses of intended (desired/expected) program behavior, testing can be conducted through

hypotheses of actual program behavior (essentially, that the program behavior is as ex-

pected). A simple segregated view of these two tasks is shown in table 1.1.

In practice, debugging almost always, and testing often switches between these two modes

of operation, and some experiments actually combine testing and analysis, with aspects of

observed results verifying both types of hypotheses at the same time.

6

Table 1.1: Software testing, analysis, and hypotheses

Task Trusted Suspect Hypotheses of Failure Indicates
Test/Debug Tester Software Actual Behavior Bug in Software
Analyze Software Analyst Intended Behavior Faulty Mental Model

(Requirements)

To assist analysis and testing tasks, we need mechanisms to allow such hypotheses to be:

� generated, modi�ed,

� veri�ed against the software,

� accepted or rejected, and at times, abandoned.

1.2.5 Declaring Hypotheses

Automated unit testing promises full automation once a representative sample set of test

cases are gathered. Generally, the test cases are individual entities with memorized inputs

and expected outputs or side e�ects. Even though we can also create an automated tester

by combining a general-purpose veri�er with randomly generated or sampled test inputs,

this approach is practically never used because it is considered much more costly to generate

such a general-purpose veri�er for a component.

Full test automation has the goal of generating a simple scripted mechanical process.

A human could also follow this process mechanically and mindlessly without knowing or

learning anything about the component or its requirements. Our goal is instead to empower

a test analyst or a developer with tools that help explore, analyze and verify software. With

memorized test cases, an automated unit test suite:

� Does not explicitly declare hypotheses (predicates) of expected software or component

behavior

7

� Is not generalizable, and therefore cannot handle externally generated component or

program (test) inputs

In contrast, most speci�cation languages allow speci�cation of requirements that:

� Explicitly de�ne hypotheses (predicates) of expected software behavior

� Are designed to handle externally generated test inputs

We are speci�cally interested in object-oriented speci�cation languages which often de�ne

requirements for each class and its methods (member functions). Three commonly used types

of OO requirements are:

� Method preconditions: What the method expects from its inputs and object state.

� Method postconditions: What the method promises (in outputs, modi�ed object state,

modi�ed inputs)

� Class invariants: Object internal consistency requirements; what all methods promise

to preserve on each execution, upon completion of execution.

It seems reasonable to use an object-oriented speci�cation language as the primary means

of recording and testing hypotheses of expected and actual behavior. But this language

should be as familiar and as simple as possible for the developer; [10] reports that fourth-

year review of ADL has revealed that even after a few years of usage, a well-designed,

powerful but unfamiliar speci�cation language does not necessarily improve productivity due

to steep learning curve involved. What is more, as speci�cations grow, their maintenance

can become extremely di�cult [22], and keeping the speci�cation language simpler could

reduce the likelihood of harboring bugs in speci�cations.

1.3 Problem Scenarios

In the next few sections, we brie�y introduce �ve problem scenarios:

8

1. Testing, Veri�cation

2. Analysis and Comprehension

3. Debugging

4. Speci�cations Discovery

5. Measuring Automated Veri�er Adequacy

These scenarios will be examined in more detail and analyzed along various dimensions

in chapter 2, in sections 2.1.1 - 2.1.5.

Figure 1.1: Software System Veri�cation and Validation

1.3.1 Testing, Veri�cation

Veri�cation & Validation is the �nal software development stage 2 before software is deployed

to end users. This stage really consists of two stages (see �g.1.1):

2In the test-driven development and agile methods, di�erent from the waterfall and iterative methods,
automatic unit testing is required and actually must be coded before program component being tested is
implemented, so some veri�cation e�ort appears before implementation e�ort. Still, there is a need for
system veri�cation and validation before deployment.

9

� Veri�cation, with respect to speci�cations, agreed-upon documents, contracts

� Validation, with respect to end users' actual needs and desires

Veri�cation used to be mainly conducted after the implementation stage by test analysts

or other QA (Quality Assurance) personnel. Today, with the popularity of unit testing, prior

developer testing that is conducted during implementation stage often greatly augments the

veri�cation conducted by test analysts. Throughout, the developer and the test analysts put

themselves in the shoes of the end users, but their guesses to resolve ambiguous requirements

still need to be validated by end users.

Software is a conceptually complex entity. Feasibility, compatibility, and side e�ects of

a large set of requirements may not be apparent to end users from the start. Upon using

the �nished product, end user may realize some requirements could be dropped, others may

need to be added or clari�ed. It is not as safe for developers to make these decisions, so we

cannot skip the validation stage.

Expanding the reach and improving the quality and e�ciency of veri�cation can help

reduce some of the complexity and costs of software validation. To automate veri�cation, we

need to use a machine-understandable speci�cations language. But a speci�cations language

that is not familiar to end users, and that also cannot easily be interpreted by developers

or test analysts for the bene�t of the end users would make validation stage fraught with

confusion. Therefore, when picking a speci�cation language, a balance between familiarity,

comprehensibility and automatability must be struck.

1.3.2 Analysis and Comprehension

Even though many analysis tools aim to improve comprehension, as we noted earlier, re-

searchers rarely make claims, quantify, or attempt to prove improvement in comprehension.

Because the human mind is highly complex, nonlinear and plastic, it is very di�cult to

develop a universally acceptable objective metric of comprehension.

10

There are a large number of competing and incompatible software comprehension the-

ories. Some theories focus predominantly on a bottom-up traversal, others on a top-down

traversal, and yet others state both these strategies are employed during a comprehension

task.

Most software analysis tools that help developers use visualizations, feature location in

code, and tracking program state (held in data) during execution. If we could combine these

primary features of software analysis tools in a one-stop software analysis tool, we could:

� Reveal implementation-feature links through dynamic execution and white-box analy-

sis of internals

� Reveal links between code (static) and data (dynamic, program state)

� Aid analysis with well-designed informative visualizations

� Support both top-down and bottom-up strategies

As mentioned before, one other feature enables not only analysis but also testing:

� Support for hypothesis generation, modi�cation and veri�cation, for actual and ex-

pected component behaviors.

1.3.3 Debugging

Presence of bugs (defects) in software are revealed when they cause failure/fault (inaccurate

behavior; behavior that is inconsistent with requirements) that is observed by the user.

Often, a period passes before internal state corruption reveals itself as observable faulty

behavior, and user may not notice the failure for a while even after that point in time, as

shown in �g.1.2.

When a critical bug is discovered in deployed software, the turnaround time of a �x

for this bug re�ects greatly on the perceived quality of the software and the company that

produced the software.

11

Figure 1.2: From defect (fault) in software, to faulty state, to observed failure (faulty be-
havior).

Debugging really has two distinct steps:

� �nd the bug (discover fault origin; �fault localization�)

� �x the bug

The �rst step, �fault localization�, can be partially automated. If the bug is trivial, the

solution (step 2) may require a very small change in code. But not all bugs are caused by

simple typos, so the second step, ��x the bug�, cannot, in general, be automated. Fixing

the bug may require some redesign and reimplementation, which require creative input and

problem-solving by the developer. For nontrivial bugs �xing the defect involves cycles of

software development (implementation + testing).

The standard debugging paradigm attempts to support the �rst step, is 50 years old,

and has not changed much since 1961 (see section 2.1.3). It is also not conducive to an

exploratory mode of thinking; its basic mode of operation is a linear traversal of individual

instructions executed over time. But today's computers are more than a million times faster

when compared along average C program execution speeds by using Dhrystone benchmark

[41].

Due to this and various other reasons we will examine in the next chapter, debugging

remains ine�cient and is often reported to be a frustrating experience. In the next chapter,

12

we will examine some innovative approaches to debugging, as well as why and how a standard

debugger without memory of program state history may give us less useful information than

time honored low-tech practice of using print statements.

Our analysis in large part agrees with conclusions of Agitator [18], an industrial au-

tomated developer testing tool that implemented some research ideas out in the �eld. A

method/tool that helps with debugging should:

� Partially automate �rst step, discovering defect origin

� Use familiar and intuitively simple languages and forms of interaction

� Have wider focus than a standard debugger:

� Help see dynamic context of execution & program state

� Lead to exploratory rather than linear behavior

� Be e�cient, and apply recent methods

� Use e�cient heuristics to speed up algorithms with high time complexity

� Process software at certain points and times instead of at every instruction

1.3.4 Speci�cations Discovery

Both in preparing a component for reuse and in reverse engineering, an existing, �eld-tested

component may have to be retro�tted with requirements speci�cations document and/or

automated unit tests. Even when software has speci�cations, they may be faulty, old, or

obsolete, especially when they are not directly used or referred to in the development cycle.

By using a readable but also machine-interpretable speci�cations language, we can com-

bine automated veri�cation with requirements speci�cation discovery and documentation.

Ideally, such speci�cation languages can be used to declare two types of hypotheses

mentioned earlier:

13

� actual behavior hypotheses, for analysis, and ultimately, speci�cations discovery

� expected behavior hypotheses, for testing/veri�cation (the tester knows what is ex-

pected)

Speci�cations discovery is part of reverse engineering, and goes in the reverse direction

of implementation. During implementation, the requirement speci�cations are trusted and

the implementation (and therefore, the component behavior) is generated and modi�ed.

Speci�cations discovery is the reverse process, where the implementation and the component

behavior are trusted and the requirement speci�cations are generated and modi�ed.

1.3.5 Measuring Automated Veri�er Adequacy

For a component that does not have an automated veri�er, speci�cations discovery may

propose one or more veri�er candidates. For a component that has a veri�er, we may be

interested in �nding out if the veri�er is up-to-date and aligned with the current behavior

of the component.

One possible approach is to combine the veri�er with a rich set of test inputs to create

an automated tester (a test harness), and then to evaluate the adequacy of this automated

tester.

Various code coverage criteria can be used to evaluate the adequacy of an automated

tester. Unfortunately, code coverage criteria ignore the output of the component and

pass/fail judgment of the veri�er completely, and only measure test input set adequacy.

Our focus is the rather orthogonal task of measuring veri�er adequacy.

Mutation Testing (MT) can also be used to evaluate the adequacy of an automated

tester by using multiple modi�ed versions (�mutants�) of code. MT depends on the pass/fail

judgment of the veri�er, and therefore can be used to evaluate veri�er adequacy. But MT

has a number of shortcomings mostly stemming from focusing on single syntactic di�erence

mutants even though most such mutants generate large semantic/behavioral di�erences. We

14

examine these shortcomings in some detail and propose an alternative in section 1.5.3 below.

1.4 Observations and Proposed Solution

Here are some of our observations so far:

� Software testing and analysis tasks may bene�t from switching and mixing in real time

� Smaller cycles and faster feedback can improve e�ciency of learning and control

� Accurate up-to-date requirements speci�cation document would help with both anal-

ysis and testing of software

� Automated veri�ers and tests can improve e�ciency of some software development

tasks

� Focused visualizations can aid analysis (both static structure and dynamic behavior

analysis)

Even though we have mostly focused on testing and analysis tasks, we will see in chapter

2, through analysis of various scenarios along various dimensions that these observations are

generalizable to many other software development tasks.

These observations directly correspond to the features of our proposed solution:

� Allow quickly switching between software testing and analysis modes of operation

� Allow mixing software testing and analysis with dual-purpose hypotheses

� Minimize delay between implementation/modi�cation/declaration of speci�cations and

execution within integrated system; avoid need for full system recompilation and

restarting

� Record and gather discovered speci�cations as component veri�ers

15

� Automate comparison of component veri�ers using a veri�er adequacy metric

� Use various visualizations to aid various static and dynamic analysis tasks

� Automatically generate test harnesses (automated software/component testers) by

combining component veri�ers with input data from system trace

These features are provided through our VERDICTS (Visual Exploratory Requirements

Discovery and Injection for Comprehension and Testing of Software) approach and research

implementation. Our implementation uses method preconditions and postconditions to

record component speci�cations. We provide a relative adequacy metric for automated veri-

�ers using our Semantic Mutation Testing (SMT) approach. The next two sections describe

brie�y how VERDICTS and SMT work.

1.5 Method Description

1.5.1 VERDICTS: Visual Exploratory Requirements Discovery and

Injection for Comprehension and Testing of Software

VERDICTS is the name of both our new method and our research implementation for visual

exploratory software analysis. VERDICTS combines exploratory testing, tracing, visualiza-

tion, dynamic discovery and injection of requirements speci�cations into a live quick-feedback

cycle, without recompilation or restart of the system under test. This supports discovery

and veri�cation of software dynamic behavior, software analysis, testing, and locating the

defect origin. Our research implementation uses aspect-oriented method call interception,

functional speci�cation of requirements using dynamically injected method preconditions

and postconditions, statistical analysis and various forms of visualization.

Speci�cally, our research implementation of VERDICTS combines:

� Program trace visualization, with capability to zoom in to method call details (inputs,

outputs, �observables�)

16

� Interactive declaration of observables (watch expressions that are logged) for the in-

ternal state of the system

� Statistical and visual analysis of the collected observable data

� Programmatic declaration of expected behavior of the system de�ned through invariant

relationships and satisfaction of method preconditions and postconditions on these

observables

� Recording of any GUI component, for synchronous playback with trace visualization

� The ability to modify and repeat these steps without restarting the system under test

(SUT)

The rapid hypothesize-test cycle of VERDICTS provides feedback that is:

� Quick, allowing e�cient operation and ability to quickly discard faulty mental models

(conducive to e�cient learning and improved control)

� High in information content

� In a form that makes information and patterns easy to grasp

� Helpful in discovering the software component responsible from a feature or a certain

behavior

These features allow VERDICTS to provide a rich environment for dynamic (on-the-

�y) creation and evolution of method speci�cations that can be tested without restarting

the software under test. These method speci�cations can then collectively be used as a

component veri�er. Together with trace data collected during execution, VERDICTS can

generate an automated test harness for these methods.

Instrumentation necessary to collect trace data is feasible; large amounts of data can be

gathered without signi�cant performance penalty while the visualizer remains responsive to

17

tester interaction. Our personal experience is that the system is very quick to set up, faults

are discovered quickly, and ine�cient algorithms (which may produce correct results) become

glaringly obvious through our method trace visualization. We will examine VERDICTS in

full detail in chapter 4.

1.5.2 Dynamically Generated and Evolved Requirements Speci�ca-

tions (Contracts)

VERDICTS research implementation uses method preconditions and postconditions written

in Java (rather than use a speci�cation language). Even though many OO speci�cation

languages depend on pre- and postconditions, we consider our implementation to be pro-

grammatic Design by Contract (DBC) [60] in Java. Our methods can be applied to any

speci�cation language and any implementation language.

Bertrand Meyer's DBC is a lightweight, inlined object-oriented component speci�cation

approach. In DBC, classes declare contracts, specifying what each method (member func-

tion) expects (its precondition) and promises (its postcondition), while all methods, on exit,

preserve the object internal consistency requirements (class invariants).

In the waterfall model, every component that is to be implemented must have require-

ments documented before implementation of component begins. Similarly, traditional DBC

approach expects contracts to be written for each component, before implementation. Using

DBC pervasively for all components can add signi�cant implementation costs [62] Instead,

targeted selective application of DBC may still yield signi�cant improvements in software

quality.

To combine exploratory testing and analysis, we suggest generating DBC contracts �in

situ�, by discovering expected behavior for components that are already implemented and

integrated in a properly functioning software. Instead of full coverage, we propose a targeted

application of contracts that allows prioritizing components according to task at hand.

Beyond contracts for hypotheses of expected behavior (for component testing), we also

18

propose using contracts for hypotheses of actual behavior (for component analysis). This

uniform interface allows not only quickly switching between but also mixing testing and

analysis modes of operation.

1.5.3 Evaluating Requirements with Semantic Mutation Testing

(SMT)

VERDICTS can generate automated component testers (�test harnesses�) by combining

evolved component veri�ers with input data from system trace. The user can also add

other inputs, possibly by using test input generators.

We are interested in analyzing �eld-tested software with VERDICTS. Even when software

is not generated with good practices, it may be extensively �eld-tested and validated by end

users, with discovered bugs �xed by developers. Such software would not be in wide use if

it still had frequently manifested or critical bugs. In the testing-analysis spectrum, we will

use VERDICTS initially and more often for analysis, assuming software behavior essentially

correct, analysts' hypotheses to be suspect, when behavior does not match hypotheses.

A component integrated in such a system is also indirectly �eld-tested by end users.

Within an integrated system, a component's inputs can be constrained to a small input

domain, and not all outputs may be used. Still, for correct operation, the system demands

certain behavioral requirements to be satis�ed. Within the operating conditions of the

component integrated in this system, the component must also behave correctly for the

system to behave correctly. A component may have been intended to work correctly on a

more general set of inputs, but as long as we are only interested in verifying this system

rather than planning to reuse the component, we need not consider generalizability of the

component beyond the needs of the system within which it is integrated.

Because we assume that the component's current implementation produces desired be-

havior, our veri�ers must learn from the implementation in order to extract and declare the

requirements that are implicit in the implementation.

19

An adequate veri�er (contract) should check all aspects of the behavior of the compo-

nent. In order to measure the degree of match, we need a way to evaluate concordance

of the veri�er (and the functional speci�cation that it represents) with respect to existing

implementation. We need to measure the concordance between the component speci�ca-

tion/veri�er and implementation.

One idea is to evaluate the automated tester that contains the veri�er, using various

test adequacy metrics. Unfortunately, as we mentioned before, code coverage criteria ignore

veri�er completely and only measure test input adequacy.

Mutation Testing [65] (MT, �traditional MT�) subsumes code coverage criteria such as

statement coverage, branch coverage, and multiple condition coverage [66]. MT also depends

on the pass/fail judgment of the oracle/veri�er, so it may potentially be used to measure

the adequacy of test oracles (and the functional speci�cations they represent). Various

researchers report a number of problems with MT:

� MT has high computational complexity, mostly due to compilation of each mutant

program.

� Checking for semantic equivalence of mutants as compared to the original program is

a tedious, manual task [36]

� Many mutants are so di�erent in behavior that they may fail almost all tests ([44] had

about 41% of all mutants fail all tests, and called these �dumb mutants�)

� �Competent programmers write programs that have few defects� does not mean com-

petently written programs have small syntactic di�erences (Jia and Harman [44] call

this misconception �Syntactic-Semantic Size Myth�)

For a more detailed critique of traditional Mutation Testing, see section 5.4.

In order to answer these problems, we suggest creating mutants dynamically (without

recompilation) and focusing on generating and controlling semantic defects, by measuring

and quantifying di�erences in program state and component behavior.

20

We developed Semantic Mutation Testing (SMT) as an approach to evaluating concor-

dance of automated test oracles (veri�ers) and the functional speci�cations they represent

with respect to existing implementation. In the analysis of our small-scale tests, we com-

pared black-box and white-box variants of SMT against traditional MT and found SMT to

produce a better measure of the quality of automated test oracles [14].

For a detailed description of Semantic Mutation Testing, see section 5.5.

21

Chapter 2

Problem Scenarios

2.1 Problem Scenarios

Before presenting our proposed solution, we will examine some software development sce-

narios that are of interest to us:

� Testing, Veri�cation

� Analysis and Comprehension

� Debugging, Fault Localization (�Find the Bug�)

� Speci�cations Discovery

� Measuring Automated Veri�er Adequacy

These scenarios are sorted essentially in order of popular interest in the research �eld of

software development. Scenarios of popular interest often happen to be common scenarios

for an average software developer as well, as common problems are more widely studied. An

average software developer may more frequently encounter and work more towards scenarios

listed earlier as compared to those listed later.

Some but not all scenarios also correspond to waterfall software development stages,

even though in today's development, stages are not isolated. Continuous testing paradigm,

22

for example, proposes continuously cycling between coding/development and testing stages.

The last two scenarios are not necessarily common scenarios encountered by all software

developers; they are instead speci�c scenarios that de�ne our main area of research.

Scenarios of popular interest can be considered to be more important to the �eld of soft-

ware development. For example, testing is important because of its signi�cance in improving

overall quality of the software. When critical bugs appear after deployment, debugging be-

comes important due to the sense of urgency of the problem, but in terms of time spent,

debugging is a poor way to improve the overall quality of the software. Researchers focus

on and promote better software practices, so there is much more focus on improved and

alternative testing methods and relatively little focus on improved or alternative approaches

to debugging.

This order need not represent the order of critical importance of various problems for any

one software product at any one time. For example, when deployed software is discovered

to have a critical bug, debugging becomes the scenario of focus. In the long term, we need

to remember that even though there is no way to eliminate all bugs, we can reduce the

frequency of such incidents by discovering more bugs before deployment if we employ better

testing practices.

2.1.1 Testing, Veri�cation

As stated in chapter 1:

� Veri�cation can be automated by using machine-understandable speci�cations lan-

guage.

� Validation cannot be automated or skipped.

� Validation can be made shorter by expanding the reach and improving the quality of

veri�cation.

23

� Validation may be made easier by using a human-understandable speci�cations lan-

guage.

The contract between the software producer and consumer is the requirement speci�ca-

tion document. Developers and test analysts interpret the speci�cation document to conduct

veri�cation tasks that are aligned with the end users' needs. Speci�cation documents are

often written in unstructured or structured natural language statements, so they require

human interpretation.

Some researchers promote formal methods as an approach for full automation of software

veri�cation. But most developers and end users are not familiar with formal methods, and

�nd them di�cult to comprehend. When formal methods are employed, the speci�cations

and correctness proofs themselves may contain bugs that cannot be easily discovered. For-

mal speci�cations often use cross-cutting requirements speci�cations that cause non-local

dependencies which make speci�cations di�cult to maintain and modify [22]. To improve

our con�dence, automatic veri�cation should be implemented in a language that is not overly

complex or unfamiliar to the developers and/or test analysts.

The ideal automation we can hope to achieve would then require:

� Creating automated veri�ers

� Using a speci�cation language that is:

� machine-understandable

� understandable by (possibly already familiar to) developers and/or test analysts

In this document, for a given program or a component, we will use the term �veri�er�

1 to mean an automated system capable of verifying whether a given set of inputs and

1N.B. This author believes that the common software testing term �passive oracle� is a misnomer, and
�veri�er� is a much more accurate and descriptive term. Oracles predict. Oracles answer questions. Creating
an answer is almost always computationally much more complex than verifying the answer. What is more,
researchers rarely make a distinction between passive and active �oracles�, and �oracle� is used widely to mean
�passive oracle�. �Passive oracle� suggests, and �oracle� directly claims to have the complexity of an Oracle

24

outputs represent correct operation. Note that a veri�er need not be a predictor capable

of producing correct outputs. There may even be nondeterministic speci�cations that allow

multiple sets of correct outputs. For example, the heap property used in heapsort could

be satis�ed in various ways for a given array of input values, and all that we need for a

heapsort implementation to work is that heap property is preserved throughout once the

heap is constructed.

2.1.2 Analysis and Comprehension

As stated in chapter 1:

� There are a large number of competing and incompatible software comprehension the-

ories.

� Practically all major software comprehension theories emphasize the importance of

hypotheses (hypothesis formation, modi�cation, veri�cation, and at times, abandon-

ment).

� Human mind is highly complex, nonlinear and plastic, making it very di�cult to de-

velop a universally acceptable objective metric of comprehension.

Earlier software comprehension theories from 1970s and 1980s [74] [20] [69] were called

program understanding theories. These studies borrowed heavily from natural language

comprehension theories, they exhibited a heavy discourse focus, emphasized static code

analysis (reading the source code and documentation), and often completely ignored dynamic

analysis (running, observing, interacting with, and testing the software). This preference is

probably in part due to lacking an end-to-end compileable and running program during many

without actually containing such complexity. Therefore, these terms are in�ated and misleading compared
to the straightforward and clear functional term �veri�er�. If the veri�er actively and separately calculates
the expected values in parallel (using a di�erent algorithm and implementation), only then can it really be
called an oracle, or simply, a predictor.

25

stages of software development before the advent and practicality of continuous software

integration.

Most early comprehension models can be classi�ed into top-down and bottom-up models

[59]. Some models [74] [57] [59] are combined or opportunistic, where the developer is theo-

rized to switch between bottom-up and top-down strategies as needed. For further analysis

of software comprehension theories, see appendix A.

For many practical reasons, comprehension/recall of software cannot be complete with

today's large-scale software, because:

� Software is too large to comprehend in full in one sitting; actually, it may take years

to read the source code once through.

� Software (unlike a book) does not have a linear narrative; there might even be cyclic

dependencies [31].

� Our memory (recall) is imperfect.

� Complexity and recall problems also apply to:

� the domain (the vertical) of the application

� the tools used, including programming languages and libraries used

� the environment, including other executables, OS, and possibly hardware.

For a more detailed analysis, see appendix B.2.

In part due to these, and possibly due to the sensitive nature of evaluating individual

software developers' skills and knowledge, industry also ignores comprehension and does

not attempt to measure it during software development. For a more detailed discussion of

essential incompleteness of comprehension and how it is often ignored, see appendix B.

As software is too large to understand with full detail, visualizations that can reveal

high-level patterns can be of great help to comprehension. Such informative visualizations

can reveal:

26

� Hierarchies and structure, of functions, data, and call graphs

� Relationships between software's static (code) and dynamic (data, program state, and

behavior) aspects

� Code-code relationships through shared data (de�nition-use pairs, slicing, OOP encap-

sulation)

2.1.3 Debugging, Fault Localization ("Find the Bug")

In the next few sections, we will examine the standard debugging paradigm and alternatives,

to attempt to answer questions such as:

� Why do software researchers often ignore debugging?

� Can we automate fault localization?

� Why does the standard debugging paradigm often cause much frustration?

� Is there something inherent in the 50-year-old standard debugging paradigm that causes

a sense of lack of comprehension and control of software?

� What other common methods can we use to discover program behavior?

Later, in section 2.3, we will further analyze standard and innovative debugging tech-

niques as we work through a simple buggy quicksort example.

Debugging: Ignored in Software Engineering, Ine�cient, and Costly

Debugging is, at least in appearance, the least scienti�c part of software development. Both

the term and the study of debugging are often shunned by software developers and re-

searchers. �Debugging� does not exist in standard stages of software development except as

the much more positive sounding �corrective maintenance�. Unfortunately this term does

not help us understand at what stage of development or by what means debugging should

27

be performed, because maintenance stage contains within itself cycles of development that

go through almost all earlier stages of software development.

Why do researchers often avoid using the terms �bug� and �debugging�? �Bug� suggests

that our software has ingested a foreign unwelcome autonomous agent of disease. Naturally,

this can elicit disgust. Presence of �bug� suggests imperfection and incompetence, and can

instill distrust of any software development processes as well as any QA/inspection processes

employed. For any nontrivial software, no QA process (speci�cally, no amount of testing) can

promise to eliminate all bugs. Even in cases where formal methods can be used to automate

software construction, and prove software correct with respect to formal speci�cations, formal

speci�cations themselves may contain bugs [22].

Is debugging really important? Not always. If deployed software does not happen to

contain any critical bugs, there may be no urgency, and standard processes and release

cycles may instead be used, possibly replacing debugging with code review or rewrite of a

component. Unfortunately, we can never be certain that deployed software is free of critical

bugs. When a critical bug (including any security vulnerability) is discovered, debugging

takes on a great urgency and importance. The turnaround time to �x a bug can re�ect

on the perceived quality of the software and on the trustworthiness of the company that

produced the software.

Existence of bug reveals lack of control and comprehension of software behavior. Original

developer of software components may start a debugging session by assuming that most of

the software is comprehensible and controllable, except for a small portion which contains

one bug. Unfortunately, this often proves too optimistic and leads to much frustration as

debugging often reveals further lack of control and comprehension of parts of software, their

behavior, and their interconnectedness.

Very often debugging is performed by a developer who did not develop the software. In

this case, a high-level comprehension of only the relevant parts is hoped to be operationally

su�cient for the debugging task, and frustration may be caused by discovering counter-

28

intuitive behavior and connections between parts of software that require wider or deeper

comprehension of software.

Fault Localization (Discovering Defect Origin)

As stated in chapter 1, debugging consists of two distinct steps:

1. Find the defect origin (by tracing execution backwards from discovered observed fault)

2. Fix the defect, so that the software exhibits desired (correct, proper) behavior

As mentioned before, the second step of debugging, �xing the bug, cannot in general be

automated, as it may require creative input for a new design and implementation. Our main

focus is the �rst step, fault localization (discovering defect origin). Practically all debugging

tools and techniques are focused on locating the bug and discovering how the bug corrupts

the program state.

Fault localization (and therefore debugging) is not a manageable or predictable process

that can promise to deliver results within a reasonably well-known narrow window of time

and work. Some bugs are extremely di�cult to track down from observed failure to defect

origin; it may take several developers many months to replicate the conditions and discover

fault origin.

Consider the 2003 North American Blackout at GE Energy that cut o� electricity to 50

million people in eight states and Canada. This was caused by a race condition in about

four million lines of C code that had been online and appeared to be bug free for many years

[70]. Discovering the fault origin took six employees eight weeks; a cost of one person-year

of work just to �nd one bug.

In a paper examining a company's software problem reporting and resolution process,

Mira Kajko-Mattsson et al. report that merely replicating a buggy situation in lab conditions

may take several months of hard detective work [45].

29

What causes replicating the conditions and discovering fault origin to take a long time?

Some reasons reported in [70] and [45] are:

� There is not enough information about what types of inputs (and consequent program

state) cause the bug to be manifested (insu�cient logs, inappropriate bug reports).

� There is too much program state data that need to be entered or set up.

� Software runs too quickly to observe, may need to be slowed down.

Instead of running the software directly, we could use a debugger, but standard debugger

does not automate setting up the program state, and would run too slowly, possibly causing

program to run di�erently.

Not surprisingly, developers often consider debugging (and speci�cally, fault localization)

to be a very frustrating task.

Sometimes fault arises from miscommunication due to di�erent expectations of interact-

ing components. If the rest of the software does not prescribe either version of expectations

on either component we have incomplete/ambiguous implicit and explicit speci�cations, and

defect can be ascribed to either component, and �xed on either side. The choice modi�es

the interface and contracts between components (cross-component expectations). In such a

situation, even the �location of defect� need not be unique.

Fault localization may be partially automated using various approaches that system-

atically reduce the amount of code that needs to be reviewed to �nd defect origin, such

as algorithmic debugging [73], slicing [11], and causal chain delta debugging [23]. These ap-

proaches assist a maintenance person by reducing the number of lines of code to be examined,

rather than fully automate the discovery of fault origin for a given manifested faulty behav-

ior. Before we examine these and other innovative debugging approaches in more detail, let

us take a closer look at the much more widely used standard debugging paradigm.

30

Standard Debugging Paradigm, 1961-2013

Day-to-day software development and evolution can be performed somewhat linearly and

locally within one module or a class. In terms of nature of work and strategies used, testing

and debugging di�er signi�cantly from this low-level, linear, local and constructive imple-

mentation work. Testing and debugging are instead nonlinear, exploratory and destruc-

tive/contrarian. This requires a change from developer's linear mode of thinking. We need

to break and observe before we can �x and improve. Its open-ended exploratory nature

makes debugging more an art than a disciplined methodical engineering practice.

What happens when a linear approach is brought into debugging? The developer, think-

ing linearly may create a tool that linearly combs through every statement ever executed

during the lifetime of a program, putting each instruction under the microscope in order to

�nd that one instruction that should not have been run. This approach sounds reasonable if

you are thinking linearly, outrageous if you are in exploration mode of thinking. As we will

see in section section 2.3, this approach can quickly become excessively expensive.

Even though there has been research on various innovative debugging techniques over the

decades, the standard paradigm and techniques of debugging follow this extremely costly

linear combing idea, and have not changed much in the last 50 years.

Bil Lewis in his omniscient debugging paper published ten years ago (in 2003) [58] had

remarked:

Over the past forty years there has been little change in way commercial program

debuggers work. In 1961 a debugger called "DDT" existed on Digital machines

which allowed the programmer to examine, deposit, set break points, set trace

points, single step, etc. In 2003 the primary debuggers for Java allows one to

perform the identical functions with greater ease, but little more.

Such debuggers demand a microscopic focus on a single executable statement in a single

line of code and at a single point in execution time, revealing everything on demand for

31

a single program state. Nothing else (such as any previous value of a variable) is stored,

so everything else has to be kept in the mind of the developer while the developer takes

microscopic steps forward.

Execution can only go forward, and as earlier program state is not stored, we cannot

go backwards from observed failure to defect origin by traversing causal links backwards.

Following causal links backwards often requires multiple runs of the debugger with same

exact set-up. Fear of missing the fault origin event can cause developer to use microscopic

steps. In 1961, DDT debugger ran on DEC machines such as PDP-3, which according

to its speci�cations averaged 100,000 instructions per second [71]. Today, we still use the

same stepwise method, even though one second of program execution traverses billions of

instructions that have to be stepped through.

How many more instructions are run per second on today's systems compared to 50 years

ago? CPUs do much more work per clock cycle compared to 50 years ago, so we cannot just

compare clock cycles. We can compare the speed of running a C program that is designed

to have experimentally discovered average proportions of C program elements for programs

that do not do any �oating point operations. This is exactly what Dhrystone benchmark

does. Table 2.1 shows 40-years of manufacturer's speci�cations and benchmark test results

(1971 to 2011) for some Intel CPUs [41]. The Intel 4004 microprocessor's speed at 92,000

instructions per second in 1971 is very close to PDP-3's speed of 100,000 in 1961.

Today, an average software developer may not be able to examine and understand a line

of C code much faster than 40/50 years ago, but these numbers show that running C code

has gotten about 1.4 million times faster in the forty years between 1971-2011, so there is

that much more code to cover for one second of program execution. Compared to 100 x 103

instructions per second reported for PDP-3 used in 1961, Intel i7 2600K runs 128.3 x 109

Dhrystone instructions per second in 2011.

In section 2.3 below, we demonstrate on a small example the problems and ine�ciencies

of standard debugging paradigm.

32

Table 2.1: Forty years of Intel CPU speed (1971-2011) as speci�ed by manufacturers or
measured by Dhrystone benchmark. Table also shows that today's CPUs can do much in
each clock cycle. Dhrystone MIPS (million instructions per second) is standardized with
respect to IBM/370 from 1972, considered generally to run at about 1 MIPS with clock
speed of 8.69 MHz.

Intel CPU Year Clock (MHz) Dhrystone MIPS instructions/cycle
4004 1971 0.74 0.092 0.1
286 1982 12.5 2.66 0.2
486DX2 1992 66 54 0.8
Pentium III 1999 600 2,054 3.4
i7 2600K 2011 3,400 128,300 37.7
(quad-core)

Print Statements, Logging and Tracing

Even when a good IDE with debugging capability is available, a short �print� statement

that is inserted in the right place can reveal much more about the fault that has caused an

observed defect. A print statement can only reveal a small slice of the whole program state,

so the what is printed must be carefully chosen. Also, for compiled binaries, this method

requires recompilation. There are a few reasons print statements can be easier to work with

compared to debuggers:

� They reveal the history and change in some part of program state.

� Repetitive labor of entering an expression for evaluation or storing the result displayed

(as debuggers do not store history) is avoided.

� Developer need not use microscopic steps through the program; it can be just run to

completion.

� When the print statements collectively reveal the execution context, the developer need

not mentally hold the program code space and execution time context.

If the software already uses logging, logs could also be examined to aid in debugging.

33

Compared to print statements that focus on discovering reasons behind one defect, logging

focuses on revealing overall internal state of the software and/or report potentially signi�cant

events during software's execution. Logging requires predetermination of level of detail

needed in printing (logging) the program state. As logging is always on, level of information

customarily used in debugging is not practical in logging due to speed penalty on the program

and disk space overhead.

Tracing speci�cally tracks methods/functions called during program execution, usually

for discovering the execution time complexity of parts of a program. Unlike print statements

and logging, tracing can be used on any program without recompilation, as long as debugging

symbols were not stripped o� from the executable. Tracing can be expensive so it cannot

always be on. Main purpose of tracing is to �nd time spent on each function. Some tracing

tools also reveal memory usage to help discover largest objects, heap usage, or memory

leaks. A by-product of tracing the function calls is discovering the call hierarchy during one

execution. Note that in any one execution, some branches may never be taken and some

functions may never be called.

Unfortunately, as tracing ignores data (messages, variable values, function arguments,

etc), it does not reveal anything about program state, and is of comparatively little value to

the task of debugging.

In section 2.3 below, we will compare standard debugging paradigm to print statements

through a simple example, and examine some innovative debugging techniques.

2.1.4 Speci�cations Discovery

Speci�cations Discovery: Part of Reverse Engineering

Standard process of software development depends on preparing detailed, accurate speci�ca-

tions in the form of requirements speci�cation document before implementation of features

begins. The speci�cations direct design, implementation and testing. When such speci�-

cations are missing, implementation and testing tend towards informally stated targets or

34

developer's own targets.

In standard stages of software development, speci�cations discovery falls under reverse

engineering. Explicitly stated speci�cations are a record of knowledge/comprehension for a

piece of software, and can be used to communicate knowledge of software. Developers who

are working on their own well-understood code may not need to do much reverse engineering.

Developers maintaining or regularly reusing other developers' code (or their own partially-

forgotten code) may need to do some reverse engineering every day.

Documented speci�cations are central to software veri�cation and validation, and are

of great importance to the tasks of software analysis/comprehension, reuse, and various

maintenance tasks (such as �xing, improving, and porting software). When speci�cations

are missing and multiple developers (present or in the future) may need to work on these

tasks, discovery of speci�cations can be worth the e�ort.

Developers interested in maintenance or reuse are not only interested in high-level spec-

i�cations, but also in component/unit speci�cations, contracts, and assertions.

Software That Works For End Users, But Not For Developers

Our interest in this scenario started with our frustration while working on Azureus (now

Azureus/Vuze [8]) code base in 2006. Azureus is a peer-to-peer �le sharing client (peer)

distributed under GPL license. By February 20, 2013, Azureus/Vuze, at 538 million down-

loads is #3 most downloaded project of all time at SourceForge [76]. Since version 3.0 in

2006, it has been distributed with Vuze [81], a restrictive-license polished consumer interface

designed to push commercial content. Our focus instead has been on the content sharing

engine, Azureus, including its user interface. Even though very popular and veri�ed through

end-user �eld testing, Azureus has no requirements speci�cation document and no automated

testing.

Azureus is proof that software can be feature rich, extremely popular, complex, actively

maintained and developed, and yet without any documentation, tests, in-code comments

35

that could help newcomers understand existing code. Azureus handles a large number of

parallel network connections and open �les that are �lled in asynchronously at multiple

spots at once. It also uses innovative live animated interfaces to show state of �les and

communication with network connections to peers (see at [81]). Azureus shows how a piece

of software can work wonderfully for end users, and not at all for developers who are trying

to understand, improve, �x or reuse components. Each piece of source code in Azureus

appears to be owned and well understood by only one developer who works on it. Azureus

is actively maintained; it is not legacy code - not yet.

This is actually a very common open-source software scenario, especially for software

produced by a small team:

� Software already satis�es the end users; its behavior is satisfactory, and is generally

free of bugs.

� Software has almost no external documentation; there's no speci�cations or design

document, and no user manual.

� New developers therefore do not know the original requirements of the software and

the various problems it attempts to solve.

� Source code has almost no comments; there's no interface, package, �le, object, function

description or in-function comments.

� There are no automated unit tests, no integration tests, no system-wide tests.

Obviously, �generally free of bugs� does not mean the software does not have bugs. It may

actually contain some known noncritical bugs. It may also have a number of undiscovered

noncritical and critical bugs that do not manifest themselves in common patterns of usage.

Sometimes this situation is further complicated by other factors that are less frequent:

� We do not have access to current end users' discovered knowledge of the software

purpose and behavior.

36

� Code is very hard to follow due to use of cryptic names and inconsistent naming.

If the gained comprehension of software should be shared between multiple developers, it

would make sense to create documents that describe what was discovered about the software.

Here are some common types of documents we could aim to produce in this situation:

� A preliminary user manual, or some basic usage instructions, possibly with some use

cases

� Architecture/structure and design documents or notes

� Documentation through direct change to code, to add comments, change naming of

functions, variables, etc to improve code comprehensibility

� End-user speci�cations: Expected/desired (deduced from observed) behaviors and fea-

tures of software as a whole

� Detailed speci�cations (for developers): Expected/desired behaviors of units/modules

within software

Why Are Comments, Documentation, Speci�cations and Automated Tests Miss-

ing in Many Open Source Software?

The fact is any work on developer/unit testing and documentation takes time away from

implementation. Many developers who enjoy building software learn individually, starting

with small programs. They may not enjoy writing tests or documentation. Automated

testing is often more palatable as it is also programming, even though the exploratory and

destructive essence of testing remains, and this may not be understood, followed or enjoyed

by developers.

Most open-source software is built by individuals with varying levels of skills, styles,

communication skills and di�culties. Most open-source software does not make explicit the

overall design and architecture, the list of requirements. Source code style wars between

37

strict factions and ignorant developers may often be resolved by not requiring a uniform

style or even a naming scheme.

Many good software development practices require inspections, and critique of code devel-

oped to make sure standards and practices are followed. One social reason for not following

these practices is to avoid discouraging the developers who are very often volunteers that

may very easily leave the project.

Although common, this is not at all unavoidable in open source development. In fact,

the level of testing and quality of some widely used open source software can be better

than that developed professionally for other developers by the most prominent software

companies. Good practices and inspections of code by a few �committers� may discourage

some volunteers, but can also instill a higher degree of respect and trust towards the project

and the developers involved.

For example, consider the open source Jakarta Commons collections library. As of version

3.1, the unit tests included for this library achieve 77.7% code coverage by having test code

to application code ratio of 1.62:1 [18] (measured in KLOC). In this case, test code is 62%

larger than application code.

In [67], Pacheco has automatically created tens of thousands of �directed random test�

cases per library to �nd errors in a few classes from Java JDK, Jakarta Commons, and .NET

Framework, and discovered fewer errors per KLOC (0 - 0.09) in classes of Jakarta Commons

library compared to other commercially generated and distributed libraries tested.

Communicating Comprehension: From Mental Models to Documentation

Software comprehension is hard to study in part because it is internalized, personalized

knowledge by one individual. One developer's comprehension does not help a team when

that individual is not available. In what formal document can we hope to externalize com-

prehension of software?

This question is researched as part of reverse engineering, and among other types of

38

documentation, requirements speci�cation document is also suggested as a format for com-

munication of software comprehension.

It is easy to see that software comprehension is vital not only for reverse engineering,

but for any type of software development activity. Even for software which does not lack

high-level design speci�cations, it can be helpful to incrementally discover and document low-

level implementation speci�cations. The idea is that such documentation can be generated

by a developer after comprehension, and used by same and other developers later to aid in

communication as well as testing.

Implementation speci�cations are often de�ned through assertions, invariants, precondi-

tions and postconditions. Instead of analyzing the whole software, a task-oriented analysis

may document components involved and interactions observed for one use case. For software

without a requirements speci�cation document, this idea suggests opportunistic incremental

discovery of speci�cations by prioritizing source code according to importance of use cases

or exceptional/faulty behaviors observed.

Discovering Speci�cations for Test Automation

The goal of discovering end user and developer speci�cations depends on the target audience:

� Human-readable speci�cations document can help both end users and developers un-

derstand the software, but can be ambiguous, and cannot directly be used in automated

software veri�cation.

� Machine-understandable speci�cations can allow automation of software veri�cation,

but can be harder to follow or maintain [22].

Note that these two goals are not mutually exclusive. In our research, we are primarily

interested in test automation, so we focus primarily on the second goal, but also try to satisfy

the �rst goal as much as possible: We prefer to keep the machine-understandable language

simple and familiar to developers instead of using formal speci�cation languages, because a

39

document in a familiar language can help developers understand the software better as well.

Considered as a comprehension communication tool, a speci�cations discovery tool should

allow developer to generate, test, and ultimately accept or discard speci�cation hypotheses.

Accepted hypotheses become predicates of requirement speci�cations.

If the speci�cation language is machine-understandable, the discovered set of requirement

speci�cations constitutes an automated veri�er for the component in question. Note that

this veri�er veri�es correct operation for one execution of the component, so a �pass� means

component performs satisfactorily for one test case's inputs; it does not mean we know

component to be implemented correctly, and therefore to perform correctly for all inputs.

2.1.5 Measuring Automated Veri�er Adequacy

Relative and Absolute Adequacy Metrics

Consider Azureus mentioned before, which shares many features with legacy code. Azureus

has no requirements speci�cation document and no automated testing. It must have been

manually tested. It has been widely deployed, and therefore also stress tested in the �eld.

It handles complex multithreaded operations and communication. On the whole, it appears

to be implemented correctly; it has no critical bugs. Azureus does not have veri�ers for its

components. If a veri�er candidate were to be proposed for a component of Azureus, how

could we judge the adequacy of such a veri�er?

Much like test suite adequacy criteria, we need a way to measure adequacy of veri�ers,

in order to compare them, and in order to judge whether one is su�ciently adequate.

For a veri�er candidate, there may be two types of metrics that could be used to measure

the adequacy:

1. Relative adequacy as compared against an alternative veri�er

2. Absolute adequacy, to compare against another veri�er for another program. With

su�cient study, we may also discover a �practically su�cient adequacy score cuto��,

40

that �nds a good compromise between completeness and time spent.

The �rst type of metric de�nes a partial order between veri�er candidates for one com-

ponent, but does not produce an absolute measure that allows comparison between veri�ers

for di�erent components: With relative adequacy, we cannot compare degree of adequacy of

a veri�er for one component against a veri�er for another component.

Most test suite adequacy criteria use absolute measures, usually with 0.0 representing

complete inadequacy, and 1.0 representing complete adequacy.

Baseline desired features for a veri�er adequacy measure would be that it fully uses the

range 0.0 - 1.0, and gives better scores for better, more strict veri�ers:

� Worst, empty veri�er should get 0.0, and no other veri�er should get 0.0

� Best, maximally strict veri�er for a program should get 1.0, and nothing less should

get 1.0 (but there may be di�erent syntactic decompositions with same behavior)

� If a veri�er V1 is not worse than V2 it shouldn't get a lower score.

� Ideally, veri�er can help discriminate: If V1 is strictly better than V2, it should get a

higher score.

Later, in section 5.2, we will formally de�ne a subsumtion relationship that will help

us evaluate our own veri�er adequacy metric in our experiments, based on these baseline

desired features.

41

2.2 Problem Analysis

2.2.1 Actors: User and Developer's Mental Models vs. Software

Behavior and Implementation

End User's and Developer's Mental Models and Expectations

End user is mainly interested in overall black-box behavior of software whereas software

developer is also interested in the implementation details. The end user only needs to create

a mental model of how the software should behave.

The software developer needs to create a more involved mental model, that encompasses

not only how the software should behave (to the best of his/her knowledge), but also how it

is implemented.

Thus, the end user's mental model, restricted to this software's requirements, is struc-

turally simpler than that of the developer as it does not include the internal complexity of

the source code.

If the end user and developer agree completely on what is expected of the software, the

developer's mental model subsumes (can deduce everything about) the end user's mental

model. But it is not realistic to assume that the end user and the developer agree to this

degree.

Even though at times the developer acts as an end user to evaluate the software behavior,

in the �nal analysis, the developer is not the end user. As the developer may have expecta-

tions that do not completely overlap with those of the end user, the developer may fail to

notice a faulty behavior that the end user could have noticed easily.

The requirements speci�cation document is the contract of understanding between the

end user and the developer. Contractually, the developer can get away in any development

cycle with satisfying only what is documented. Unfortunately, speci�cations document is

often vague and incomplete, and it may even prescribe undesired or infeasible behaviors.

42

Between development cycles, the end user may have a chance to negotiate a better contract

by modifying the requirements speci�cation document to represent more closely the end

user's mental model, possibly after modifying his/her mental model to account for what is

learned about feasibility and cost of features.

Accurate up-to-date mental model of software is essential for a developer in these scenar-

ios:

� Testing, Veri�cation: Faulty model could ignore bugs, or mistake correct behavior as

a bug

� Analysis and Comprehension: Comprehension may start with a mental model that is

inaccurate, or may even start without a mental model, but should yield an accurate

model in the end. Note that our mental models cannot completely constrain any soft-

ware of substantial size; our mental models are bound to be incomplete, and therefore,

at times inaccurate (see appendix B.2).

� Debugging: Bugs are often caused by errors in comprehension/mental model or errors

in deduction and prediction of consequences of interconnected decisions made during

development. Debugging allows incremental localized improvements in mental model

of developer, and often, (but not always) incremental local changes in code.

� Speci�cations Discovery: Similar to comprehension, except, this should produce a

document.

� Measuring Automated Veri�er Adequacy: Without a mental model of what is expected

of software and how its components behave, a developer could not inspect an auto-

mated veri�er and be able to judge its completeness and accuracy. An accurate model

allows the developer to notice when there are errors in software's and its components'

behavior. By abstracting this knowledge and comparing this ability to judge against

how the automated veri�er judges the software allows the developer with an accurate

mental model decide how adequate the automated veri�er is.

43

2.2.2 Process: Stages, Cycles, and Feedback

Software Development Process, Stages of Development

In 1970, Winston W. Royce described his structured approach to software development

[72], in part to address the common problems of budget and schedule overruns, damage

to property and other risks (and later, damage to life, in Therac-25 incident, 1985-1987).

Royce's model was later named the waterfall model, and its clear separation of stages of

software development is conceptually easier to follow compared to other approaches.

Most recent approaches to software development observe the synergy between stages of

development and recommend going through cycles, to allow later stages of earlier cycles

to help make better decisions in earlier stages of later cycles. For example, feedback from

implementation in the �rst cycle can help improve design in the second cycle.

Although Royce's model worked best with few and small cycles that do not go beyond

supplying feedback to one earlier stage, even in 1970, Royce observed that there are cases

of dependencies that go farther than one earlier stage, and he even suggested �do it twice�:

Go through the whole cycle twice, and use what is learned from usage of the �rst developed

system to inform all decisions in designing, implementing and testing the second system.

Shrinking Software Development Cycles

Iterative software development (used as early as 1957 according to Gerald M. Weinberg [52])

and prototyping also allow what is learned from existing, running, feature-incomplete system

to inform decisions made to design and build the full system.

Agile software development [1] uses development cycles (iterations) as short as one week.

Actually, design-implement-test cycles in Agile Software Development are often much

smaller: Daily and continuous integration/testing paradigms shrink the full development

cycle to a day, an hour, and possibly shorter. Continuous integration suggests continuous

cycles of development and testing.

44

Delayed versus Immediate Feedback

For both optimum control and learning, �immediate feedback� is vital. Feedback from testing

is much delayed in the waterfall model of development, somewhat delayed for end user during

iterative cycles of development, and immediate for the developer in the continuous testing

and continuous integration models of software development.

What is more, �immediate feedback� is also important to psychological well-being of the

developer. Immediate feedback is a precondition for the �Flow� experience [26] that brings

about a sense of being in control, performance at optimum capacity and productivity, and

enjoyment that lasts through and beyond the duration of the activity.

Comprehension Of Evolving Software

Software comprehension is often considered to be part of reverse engineering and/or main-

tenance, and as such, not connected to testing. Exploratory testing is one testing paradigm

that suggests that comprehension and testing can be performed in parallel.

Exploratory testing is an unscripted testing approach where the tester creates hypotheses

and explores them with every tool that is in his/her arsenal. He/she may not only run the

program, but may also generate code (often for automated testing), modify existing code

(printouts or other), read code itself. The idea is that these tasks that are often segregated

to di�erent disconnected stages of software development actually work well together � in

other words, there is synergy between software development stages.

2.2.3 Complexity: Software Size and Strong Components

Black Box, White Box, Information Hiding

In any given software, there are libraries, packages, classes and functions that are linked but

happen to never be called from the software's executables. If the language allows dynamically

generated calls (such as those created by re�ection or dynamic linking), it may not be

45

safe to strip the executables to remove any entities not statically needed in the software's

executables.

Even in functions regularly called and needed, some branches may never execute due to

patterns of input arguments used in this program. This means that the code base prac-

tically always contains code for more types of behavior than is exercised by the software

during runtime. In fact, modularity, readability and reusability of packages, classes and

functions mandate higher code complexity than minimally required (as could be satis�ed

with a monolithic cryptic program), and produce more generally usable components than is

strictly necessary.

We consider complexity encountered during static analysis of the program �white-box

complexity�. As every allowed input for any function must be considered, this complexity is

often more than the term �static� in �static analysis� suggests. In fact, due to unmanifested

behaviors and unused functionality mentioned above, this white-box complexity is always

greater than the black-box complexity that is encountered by running the software and

interacting with it as end users do. For large code base, white-box complexity of the software

can easily become unmanageable for a single developer.

Fred Brooks, the author of Mythical Man Month (MMM) [19] used to promote the idea

of documenting the whole program (source code) and printing it and making it available to

every developer as reference. 20th anniversary edition of MMM (1995) is not very di�erent

from original 1975 edition, except, in 20th anniversary edition, Fred Brooks extracted 240

implicit assertions of 1975 edition of MMM, all of which he believed still stood. One stark

exception is information hiding. In a section titled �Parnas was right, and I was wrong about

information hiding� [19, pp 271-273], Brooks conceded that due to sheer size of code base,

his past practice of distributing all source code to every developer is not a feasible approach

any more, and encapsulation and information hiding make more practical sense.

46

Complexity Analysis of Scenarios

It would take years to just read some of today's software code base once through, and there

are various other issues of complexity that make complete comprehension of software as

well as expected prior knowledge incomplete, for domain/vertical, environment (including

OS and possibly hardware) and tools (including programming language and libraries). For

further analysis of essential incompleteness of comprehension, see appendix B.2.

For large-scale software where it is not feasible for any one developer to read the whole

source code even once, we can see that each task should be focused only on what is minimally

needed so as not to require full comprehension of the code base:

� Testing, Veri�cation: Unit tests and integration tests separate concerns. Modularity

and use of modules, subsystems and components allow each part to be independently

speci�ed, veri�ed and trusted. The standard structures of encapsulation and informa-

tion hiding allow making �trust�/�verify� decisions per component.

� Analysis and Comprehension: Software comprehension should not be a pure top-down

or a pure bottom-up process; comprehension of any function or object requires both

dependents and dependencies to be known. Also, for any software that runs, dynamic

behavior can greatly help comprehension task.

� Debugging: Has to focus on understanding a minimal slice of code su�cient to discover

the bug. If there is no up-to-date feature-to-code mapping, a top-down traversal may

be needed, especially in code not known to the developer, as proposed in Shapiro's

1983 thesis, �Algorithmic Program Debugging� [73].

� Speci�cations Discovery: Completeness of speci�cations should not be a goal. As this

scenario is closely related to comprehension, speci�cations discovery cannot use a pure

top-down or bottom-up traversal.

� Measuring Automated Veri�er Adequacy: Speci�cations and documentation may be

47

missing and not known by the developer. Best approach may be to use the source code

itself to verify the veri�er, if an approach similar to code coverage can be used.

2.2.4 Contract: The Requirement Speci�cations Document

In an ideal world, customers and end users would help shape, agree upon, and not demand

any changes to their contract with the developer team. This contract is the requirements

speci�cation document.

Ideal Contract

If this contract (the requirement speci�cations document) exists and actually satis�es the

end users, our scenarios become much simpler:

� Testing ≡ Veri�cation (Validation is unnecessary, or it is just a formality)

� Analysis and Comprehension: User-level whole-system comprehension can be achieved

by reading the speci�cations document. This still leaves out the developer's compre-

hension of implementation (including software architecture and design decisions).

� Debugging: Is made much simpler, and does not require trying to guess what behavior

the end user requires of the program. Debugging still has to be performed, but contract

is trusted, therefore comparing program behavior to contract is su�cient to verify

program and �nd fault.

� Speci�cations Discovery: High-level requirements are already speci�ed in the up-to-

date requirements speci�cation document (contract). Lower-level requirements speci-

�cation discovery is helped to a degree, by the need to conform to contract wherever

low-level implementation in�uences observable program behavior.

� Measuring Automated Veri�er Adequacy: Automated veri�er must minimally repre-

sent an automation of everything in the contract. This would be su�cient for end

48

users, but developers interested in reusability, maintainability, modi�ability, and other

qualities of software may also want to add veri�cation of design and implementation,

and veri�cation of behavior of various parts of the software.

Automated Veri�ers

If we could also create automated veri�ers and a test suite that can check for all speci�ed

requirements, we would have:

� Testing ≡ Running the automated veri�er on our test suite

� Analysis and Comprehension: All requirements can be learned by studying the contract

(speci�cations document), the automated veri�er, and the test suite.

� Debugging:

� Locating fault origin: If individual parts of the software have veri�ers, debugging

can be greatly aided by turning on veri�cation of parts during software execution,

to discover faulty behavior before it manifests itself to the user as a defect.

� Fixing the defect: Full veri�cation automation would greatly aid in preventing

introduction of secondary defects while eliminating the discovered defect.

� Speci�cations Discovery: Unnecessary at high level, as contract is correct. Necessary

at low-level if automated veri�ers at lower levelsof implementation are hard to follow

and understand; otherwise, unnecessary or trivial.

� Measuring Automated Veri�er Adequacy: This is still required, and would measure how

accurately the automated veri�er covers the requirements of the contract. If veri�er

must also cover behavior of parts, design and implementation as well, these must be

checked separately against developer's documentation/requirements from the software.

49

2.3 Debugging: Strategies, Innovative Techniques, E�-

ciency

We stated earlier in section 2.1.3 that standard debugging paradigm has not changed much

since 1961. In the meanwhile, program sizes and computer speeds have grown signi�cantly.

In the example we gave in that section, we saw a factor of 1.4 million more instructions per

second.

In the following, we analyze debugging further, by:

� Discovering how standard debugging approaches of �step� and �run until� are not very

reasonable in today's much bigger programs and faster machines as compared to those

in 1961.

� Looking at a simple example to see how simple print statements can help understand

program behavior and help locate fault origin much more than standard debugging

paradigm does.

� Doing a quick review of some innovative debugging techniques, and examining why

they are not widely used.

� Envisioning the features of an ideal debugging tool.

2.3.1 Standard Debugging Strategies: Small vs. Large Steps

There are a few strategies that can be followed within the standard debugging paradigm:

1. Step: Debug one instruction at a time, sometimes checking program state

2. Skip: Execute a loop or function without interrupting, then pause execution for in-

spection

50

3. Run To/Until: Try to catch execution at a high-level line of instruction or event (some

type of change in program state) In this case, the instruction may execute, or the event

may occur frequently or infrequently. We may interrupt:

� a. Somewhat regularly

� b. Rarely

� c. Never (wrong hypothesis about mechanism of failure)

4. A combination of the above strategies: Multiple breakpoints & registered tracked

events.

We will see below that the �rst strategy (�step�) cannot be sustained even for one second

of program execution. The second strategy (�skip�) may miss defect origin, and can only be

employed for short periods; if done inside a repeating loop, it becomes the third strategy. In

the third strategy (�run to/until�), cases a and b may miss defect origin, and case c would

cause debugged program to run free to completion or crash, de�nitely missing the defect

origin.

Unfortunately, stepwise nature of these strategies become more costly as computers run

faster.

As we mentioned earlier, in 1961, DDT debugger ran on DEC (Digital Equipment Cor-

poration) machines such as PDP-3, which could run 100,000 instructions per second [71]

whereas 50 years later, in 2011, Intel i7 2600K runs at a speed of 128.3 billion Dhrystone

instructions per second [41].

This means that on today's desktops, using the �rst strategy for one second of program

execution would require pausing the program execution billions of times. If one second went

through one billion steps, and we need to spend 5 seconds on average per step to check

program state, this would take 5 billion seconds = about 700 work years of debugging 2.

2Assumption: 40 hour work week and 50 work weeks per year. Then, 5 billion seconds = 694.4 work
years.

51

Scaling down, stepping through 1 milliseconds of program execution would take about 8.4

months. In one eight-hour work day, we can only step through 5.76 microseconds of program

execution.

Clearly, we cannot sustain the �rst strategy (�step�) of executing one instruction at a

time for even a few microseconds of program execution today.

Debugging with such microscopic steps takes much time, and the signi�cant feedback

delays introduced cause:

� Fault localization to be an ine�cient and slow process

� Learning/comprehension to su�er and be ine�cient:

� With longer delays between action and e�ect, it takes longer to learn from feed-

back, so learning/comprehension becomes less e�cient.

� Delays can cause errors in recall, making the developer unsure about any conclu-

sions drawn.

� Lack of a sense of control, as quick feedback is essential to smooth control.

Catching program at more or less regular intervals may be more feasible, but it is likely

that we will miss the execution of, and will not be able to infer the location of the defect

in the source code. Interrupting a program 1,000 times per second of execution would have

caught every 100th instruction in 1961, but would catch every one millionth instruction in the

above scenario for 2011 (every 128 millionth �Dhrystone� instructions) In one million instruc-

tions, the code is likely to traverse a very large number of libraries, classes and functions,

and it becomes very di�cult to understand what happened in the interim, often making it

impossible to guess the defect origin.

This means for both strategy 2 (�skip�) and strategy 3, case a (�run until�, with somewhat

regular events), discovering the defect origin may be quite di�cult. Note that the defect ori-

gin is a rare, singular event, and an event that occurs somewhat regularly cannot correspond

directly to the defect origin.

52

When a combination of these strategies is employed, the advantages and disadvantages

may be combined, but there may be too many pauses, and at each pause the developer has

to recognize which type of breakpoint or event has caused the program to pause.

The best situation is strategy 3, case b (�run until� with rare events) if the event tracked

corresponds to a correct guess (hypothesis) about mechanism of failure. A rare but unrelated

event would not help at all.

Ideally, the event catches the internal state corruption at a point close to defect origin in

the source code. If internal state corruption is discovered later in execution, this approach

may have to be repeated with fresh restarts. With good hypotheses about mechanisms of

failure, we may be able to go backwards in time, by restarting the debugger multiple times,

to follow causal links backwards between executed source code and discovered markers of

faulty system state.

Standard debugging paradigm does not support this case very well; it does not keep old

program state, requires many fresh restarts, does not record hypotheses, and does not recall

encountered events of interest in program execution.

2.3.2 Standard Debugging For A Buggy Quicksort Function

Consider this quicksort implementation in Java:

public class Sort {

/** Quicksort array ar in place. */

public static void quicksort(int[] ar) {

if (ar != null && ar.length > 1)

quicksort(ar, 0, ar.length - 1);

}

/** Quicksort numbers[low..high] recursively. */

public static void quicksort(int[] ar, int low, int high) {

53

int i = low, j = high;

int pivot = ar[low + (high-low)/2];

while (i <= j) {

while (ar[i] < pivot) i++;

while (ar[j] > pivot) j--;

if (i <= j) swap(ar, i, j);

i++; j--;

}

if (low < j) quicksort(ar, low, j);

if (i < high) quicksort(ar, i, high);

}

/** Swap ar[i] and ar[j] in place. */

private static void swap(int[] ar, int i, int j) {

int temp = ar[i];

ar[i] = ar[j];

ar[j] = temp;

}

}

This quicksort implementation has a small bug; instead of sorting the array {5, 1, 7, 4,

2} properly, it returns {1, 2, 5, 4, 7}. It does not always fail, and actually works well for

most arrays of this size, and many larger arrays as well. For example, this quicksort properly

sorts [14, 3, 19, 12, 2, 7, 10]. For arrays without duplicate values, this algorithm correctly

sorts 100% of arrays with three elements, 60% of arrays with �ve elements, and 15.4% of

arrays with 10 elements.

Fig.2.1 is a screenshot of a popular Java IDE, Eclipse, being used to debug this program,

at the start of the �rst loop, for values {5, 1, 7, 4, 2}. On this screen, after expanding �local

variables� view to see low, high, i, j, and pivot, there is not enough space to see the array

54

Figure 2.1: Debugger running on buggy quicksort algorithm, with ar = {5, 1, 7, 4, 2}, before
executing while loop the �rst time.

values as well (that are displayed vertically).

Debugging is exploratory. The place we know there is a problem is when we observe

failure, which is beyond the defect origin. As shown in the previous section, there is no easy

choice of strategy with a standard debugger. We can start by stepping or skipping the while

loop. If we cannot see the array, we cannot understand what is going on. On a standard

debugger, we can never see array values from two separate points of execution time together,

so we have to remember older values. Eclipse highlights changed array elements with yellow

background, which is helpful. But we still do not know what values these array elements

had before they changed, and we cannot rewind execution once change takes place. By the

time new value is highlighted with yellow background, the previous value is lost, and the

only way to discover the old value may be to restart the debugger and go through the same

steps we went until now.

55

Figure 2.2: Debugger running on buggy quicksort algorithm, with ar = {5, 1, 7, 4, 2}, after
defective instruction has run (internal state is now corrupted).

Fig.2.2 is a screenshot at the time of defect origin. Ordinarily, the developer does not

know where defect origin is, and would not know to pause program execution at this exact

point, out of hundreds or possibly thousands of points we could pause execution at during

the execution of this program with these inputs.

To see the array, we had to have fewer source code lines visible, and we collapsed console

output view completely as well. Last instruction changed i and j, so they are highlighted

in yellow. Their values are inconsistent with our quicksort implementation expectations, so

program internal state is now corrupt. But neither the program nor the debugger tell us

anything about this program's expectations (internal state consistency requirements). As

program state history is not revealed, it is also hard to know what the responsibility of this

function is during this call, and what falls outside this function's responsibility.

Even when we pause the program at the exact point it fails, right after the defective code

executes, it may still be very di�cult to see that the program has failed.

56

During stepwise debugging, this failure will likely not be noticed, and program execution

would be continued. If program state is found to be corrupt at a later time, program has to

be started again under the debugger to discover fault origin.

2.3.3 Print Statements

Many developers still prefer simple print statements because unlike stepwise debugging, print

statements:

� collectively display information about multiple points in execution, revealing a high-

level picture.

� can be followed backwards in time to go from revealed failure back to �rst case of

unusual program internal state.

Even though print statements often reveal a small portion of the program state, compared to

standard debuggers, they can be much easier to use and much more e�cient in discovering

mechanisms of failure and defect origin.

Let us now see in the previous quicksort example how print statements compare to using

the debugger.

Fig.2.3 shows program with print statements run to completion. As we did not start the

debugger, Eclipse uses standard Java editing view, which gives us more space for code even

when we view all print statements. In this case, we have used costly simple standard Java

functions rather than de�ning any helper functions; we create a new array just to print the

part of the array, each time. Compared to the overhead of debugging step-by-step, this cost

is insigni�cant on today's computers.

There is no need to guess when defect may occur, no need to pause execution or step

through. Printed values show program status on each quicksort entry and exit:

[5, 1, 7, 4, 2] -> [5, 1, 7, 4, 2] pivot=7

[5, 1, 2, 4, 7] -> [5, 1, 2] pivot=1

57

Figure 2.3: Print statements to see the big picture. We can traverse backwards from observed
failure, to understand the mechanism of failure, and to �nd the defect origin.

[1, 5, 2, 4, 7] -> [5, 2] pivot=5

[1, 2, 5, 4, 7] <- [2, 5]

[1, 2, 5, 4, 7] <- [1, 2, 5]

[1, 2, 5, 4, 7] <- [1, 2, 5, 4, 7]

[1, 2, 5, 4, 7]

We use �->� for entry to quicksort, and �<-� for exit from quicksort, which should ac-

company a sorted subarray. We print both the full array (easier to compare and follow) and

the part of the array that quicksort is focused on. We also print the pivot value � in our

implementation, this is always the element in the middle of the input subarray.

The �nal array {1, 2, 5, 4, 7} is not sorted because of the fourth element, 4. As we

see the program state history, we can see that this element never moved from its original

location. Ordinarily, we would go backwards to see who is responsible from having 4 in the

wrong place. In our simple example, this brings us all the way up to �rst printed line, which

58

corresponds to entry to �rst call of quicksort. From �rst to second line, we can see that

pivot operation is correctly performed for 7, but 4, which is less than 7, should have been

included on the left subarray to be sorted. Instead of the �rst four elements, only the �rst

three elements, {5, 1, 2}, are sorted.

Our left partition ends at index j (inclusive), which traverses array from the right until

the test condition i <= j fails. It appears that j is decremented more than it should be;

it travels too far to the left. Maybe the j − − statement (and by symmetry, probably also

the i++ statement) should be removed? That would change behavior of quicksort for any

input, which sounds like a somewhat radical change in implementation.

But we also know that our sort algorithm works on some other arrays. Actually, looking

at our printouts, we can see that both {5, 1, 2} and {5, 2} are sorted properly by our

quicksort. So the error must be conditional; j travels too far left under some conditions,

but travels the right amount under other conditions. We may suspect the only if statement

in the while loop, if(i <= j), and j − − is outside of that if statement. The bug is that

incrementing i and decrementing j at the end of while loop should be inside the if(i <= j)

branch, not outside:

while (i <= j) {

while (ar[i] < pivot) i++;

while (ar[j] > pivot) j--;

if (i <= j) {

swap(ar, i, j);

i++; j--; // bug fixed

}

// i++; j--; <-- bug location

}

Once the code is �instrumented� with useful print statements, running the program is

very quick, and the output can be quite informative. Using print statements is a low-tech

59

approach to the question of fault localization, and yet it has a number of advantages over

standard debugging methods.

2.3.4 Some Innovative Debugging Techniques

Various innovative techniques have been proposed that can improve the e�ciency of discov-

ering the defect origin. Reverse debugging techniques address the issue of locating defect

origin starting from the later point in program execution where the bug manifests itself as

an observed failure:

� Reversible/Bidirectional Debugging: Allows reverse-execution by regularly saving

the whole program state; disk-space intensive [17].

� Omniscient Debugging: Reverse execution and an event search query language [58].

� Whyline: Generates �Why . . . ?� and �Why not . . . ?� questions, and can answer

them, going backwards in execution [48].

Such reverse execution approaches use a method called �checkpointing� which captures

full program execution state at frequent intervals. Checkpointing has very high memory and

disk-space costs, and may slow down a program by a factor of 10 or more. For example,

Whyline for Java [48] reports overhead factors of 4.1 - 14.3 compared to normal program

execution, and this factor was observed when a very small program was loaded on a computer

with very large memory so that there would be no delays due disk swap space usage.

Except for �Whyline�, the interface remains low-level debugging, which can make it dif-

�cult to see patterns of program behavior. In bidirectional debugging, program history can

be changed after going backwards in time. This allows testing di�erent execution branches,

but can also be confusing after a few forward and backward executions with history change.

Other approaches (Omniscient Debugging and Whyline) do post-mortem analysis of pro-

gram state for one program execution, so program cannot be interacted with according to

60

knowledge gained by these debugging techniques � for example, a hypothesis about why

program has failed cannot be tested by entering di�erent inputs to running program (this

could be done in stepwise debugging).

There's no adoption in the industry for these approaches mainly due to various reasons

of ine�ciency and inadequacy:

� There's very high memory, disk space and CPU time overhead

� Most research tools are only demonstrated on very small target programs (mainly due

to memory overhead)

� Signi�cant change of timing can change program execution due to real-time timeouts

within code

� Reversible approaches cannot revert environment side-e�ects (such as deleting a �le,

writing to any stream, etc), so only self-contained programs can be reverse-executed.

Another innovative approach is Delta Debugging:

� Delta Debugging: Finds minimal input di�erence or internal variable value di�erence

that causes failure.

The original delta debugging focuses on the inputs to the program [82] [85]. Later, this

approach was extended to include analysis of internal variable values in the program [83]

[23], which allowed delta debugging to analyze internal causes of state change and program

failure.

Delta Debugging reruns program many times with di�erent inputs/values. This can take

much time, but does not need much disk space. It requires one good and one bad input,

ways to modify the inputs, and a veri�er. Delta Debugging keeps trimming the di�erence

between the inputs, and ends when it �nds the smallest possible change in input that makes

a di�erence between correct and failed execution. Even though this is called �debugging�,

61

the focus is on data, and combing through code is done manually by developer after Delta

Debugging returns minimal input di�erence.

In [83] and [23], the same idea is instead applied to variable values that make up the

internal program state (that is not usually visible to end user or even the caller of a function).

Causal chain delta debugging [23] attempts to automate discovering causal links, to �nd fault

origin from observed failue. Even though conceived as an approach for full automation, it

currently is an assistive technology that causes a reduction in the number of lines of code to

examine to �nd fault origin.

In tests, this method pinpointed the fault origin in 4.65% of tests. 30% of the time, the

developer needed to examine 10% of the code, whereas 55% of the time the developer needed

to examine 25% of the code. Even though this reduction is helpful, this can still be a lot of

code to examine, and human analysis of causal links and high-level structure of the program

can often also quickly eliminate large portions of code from need for further analysis.

Andreas Zeller summarizes these approaches in his 2005 book titled �Why Does My

Program Fail?� [84]. This book was mentioned as �soon to appear�, in 2002 [85] by the book

title �Automated Debugging,� and in 2005 [23] by the book title �Why does my program

fail? A guide to automated debugging.� It seems that Zeller had to drop the claim to have

automated and therefore solved the problem of debugging.

Some other innovative techniques that help indirectly are:

� Static Slicing: Finds lines of code potentially responsible from a variable's value [11].

� Dynamic Slicing: Finds lines of code responsible from a variable's value, during one

execution [3] [2].

� Query-Based Debugging: Uses queries to catch when program internal state be-

comes corrupt [56] [55] [39] [40] .

Slicing helps improve focus while examining code, but without reverse execution, it is

still possible to lose state and be unable to discover defect origin going only forward in

62

time. Query-based debugging requires planning ahead and compiling program with queries.

Queries help much only when they are custom-written for the bug in question. Going back-

wards through causal links to discover prior mechanisms of failure may require program to

be recompiled and rerun with di�erent di�erent queries.

2.3.5 Envisioning An Ideal Debugging Tool

Standard debugging paradigm runs e�ciently, but is ine�cient in use as it focuses on micro-

scopic steps compared with program execution time. Reverse execution techniques look very

promising when applied to very small target programs, but they are very ine�cient in both

memory and speed as they need to store very large amounts of program state data regularly

during program execution.

Not all researched approaches are practial to apply to large-scale software. Much can be

learned by attempting to convert a research technique to scale up to industrial-scale software

with a reasonable level of e�ciency and interactivity. Boshernitsan et al. discovered some

practical lessons while implementing Agitator [18], an experimental industrial implementa-

tion of some testing research ideas. Agitator team discovered by experience the requirements

for an automated testing tool intended for e�cient and relatively easy operation by an av-

erage developer, and we believe the same requirements also apply to an automated and

practical debugging tool. Such a tool should:

� partially automate �rst step of debugging, discovering defect origin

� be e�cient

� have wider focus:

� help see dynamic context of execution & program state

� lead to exploratory rather than linear behavior

Beyond these general requirements, an ideal debugging tool would also:

63

� use intuitive and/or familiar forms of interaction

� apply recent innovative methods of debugging

� may need to use e�cient heuristics that approximate results rather than use

original ine�cient algorithms

� may need to process software at certain points and times instead of complete

processing

� integrate with familiar tools (for example Eclipse or NetBeans for Java development)

64

Chapter 3

Techniques and Technologies

This chapter introduces the various techniques and technologies used in VERDICTS and

SMT. In the next few sections, after explaining how the di�erent techniques work together in

VERDICTS and in SMT, we will look at each technique and technology used in VERDICTS

and SMT.

3.1 VERDICTS: How DBC, AspectJ, Beanshell and Sta-

tistical Views Work Together

VERDICTS is an approach to testing and verifying software. It is designed to support dy-

namic exploration/investigation of a complex software system. VERDICTS research imple-

mentation accomplishes this by inserting contracts (class and method requirements/veri�ers)

using interception, interpreting contracts written in Java, while collecting statistics in a �ex-

ible way to provide multiple views of software dynamic behavior.

VERDICTS research implementation uses:

� Contracts: Design by Contract (DBC) using Java statements (3.3)

� Interception: Aspect-Oriented Programming (AOP) with AspectJ (3.4)

65

� Interpreter: Beanshell, a live Java interpreter (3.5)

� Statistics & Visualizations: Box plots, correlation matrix, etc (3.6)

Figure 3.1: VERDICTS process is an analyse-hypothesize-test cycle. Techniques and tech-
nologies used are the DBC Contracts, AOP (Aspect-Oriented Programming), Interpreter,
Statistics and Visualization (as Views above)

In VERDICTS, the unit of test is a method. To understand a method and discover its

contract (DBC contract), the user can read the source code of the method (if available) as

seen in step 1 of �g.3.1 for methodX, to discover contractX.

Reading source code is useful, but for nontrivial methods that depend on many other

methods which may also have to be understood, reading source code of all methods involved

is not an e�cient way to discover what one method attempts to deliver. Dynamic behavior

analysis provides an e�cient complementary approach to understanding a method.

As seen in �g.3.1, steps 2.1 - 2.6, VERDICTS adds the ability to run the program and

observe its dynamic behavior via direct inspection of trace data and contract status �ags

(step 3) as well as by viewing statistics and visualizations (steps 4.1 - 4.3). VERDICTS

Tracer uses AOP (AspectJ) to intercept the method entry/exit events and store trace data.

66

After the user hypothesizes an initial version of contractX for methodX, VERDICTS Tracer

calls the Veri�er, which in turn uses Java Interpreter (Beanshell) to evaluate the contract

and store more trace data (user-de�ned variables) and contract status �ags. All steps of this

process can be repeated in a cycle to improve the initial guess for method contract.

AspectJ allows dynamic load-time weaving, which means that any library or a jar �le

with many classes can be loaded and set up for event interception just before execution.

VERDICTS allows developers to create method veri�ers by writing method contracts in

the original programming language used in implementing the components (Java), because

this is the most familiar language for a developer to use. This code for veri�cation is then exe-

cuted live by using Beanshell Java interpreter. More powerful language features of Beanshell

and OCL (Object Constraint Language) need not be known to be able to use VERDICTS,

but can be used by experienced developers.

As DBC can be used as an automated testing oracle, contracts can also be used to

test parts of a system within the framework of the integrated system (tested �in situ�).

However, within a system, a component may not be tested fully, if its inputs do not span

the full breadth of allowable inputs for the component. For more thorough and focused

testing of a method in isolation, the interactively discovered contracts of that method can

be exported and combined with a richer set of test inputs. This richer set of test inputs can

combine inputs gathered during component runtime with manually generated and pattern-

based automatically generated inputs to the method. Inputs combined with contract can

then serve as an automated unit tester, and could replace use of test suites and manual tests.

3.2 SMT: How ASM, Re�ection and Class Reloading

Work Together for Semantic Mutations

SMT (Semantic Mutation Testing) is our technique to evaluate contract quality with respect

to a program component. In SMT, code is �rst analyzed for data �ows and dependencies

67

Figure 3.2: SMT techniques and technologies: Mutation Testing using Bytecode Ana-
lyzer/Manipulator (ASM), Class Reloader, and Re�ection (Java).

between method arguments, �elds, local variables and constants, then modi�ed (mutated)

to create small changes in program state while avoiding some common types of crashes.

SMT approach is based on traditional (syntactic) Mutation Testing (MT, also called

Mutation Analysis). Our implementation in Java uses:

� Error injection: Ideas from traditional MT (3.7)

� Analysis: Java re�ection (3.8)

� Modi�cation (Java bytecode manipulation): ASM library (3.9)

� Dynamic reloading: Java class reloading (3.10)

As seen in �g.3.2, bytecode analysis and manipulation library (ASM) allows us to generate

mutants (mutated versions of original bytecode) for a Java class that can be loaded with

a class reloader to use standard Java re�ection and our tester on each mutant. Important

points to note:

� ASM library allows us to make arbitrary modi�cations to Java classes (bytecode)

� Java class reloading gives us dynamic replacement of executing code.

Using Java class reloading and ASM, we can test various modi�cations to a Java class

with respect to some functional or nonfunctional requirements or metrics. Modi�cation of

bytecode and reloading can happen completely in memory rather than on the �lesystem,

and mutants can be generated and stored one at a time, making this process very e�cient.

68

3.3 Design by Contract (DBC)

3.3.1 Human-Language Speci�cations vs. DBC

Human-language speci�cations are pervasive, but also often incomplete, ambiguous, and in-

consistent. From a six-line requirements speci�cation by Naur that at �rst sight appears to

be clear, unambiguous and complete, even after two research publications where speci�ca-

tions were claimed to have been corrected and made complete ([34] and [35], by Goodenough

and Gerhart), Meyer [60] still shows errors of incompleteness, ambiguity, inconsistency and

incorrectness.

In object-oriented programming, Meyer suggests using �contracts� that formally declare

obligations between methods. Class and method contracts consist of:

� Method Precondition: What the method requires from any caller before starting exe-

cution.

� Method Postcondition: What the method ensures upon termination.

� Class (Object) Invariant: The object internal consistency conditions that must be

preserved (and can also be expected) by all nonstatic public methods.

Meyer calls pervasive use of contracts �Design by Contract� (DBC). In essence, the

method contract is postcondition minus precondition: The contract for a method is:

� IF the caller satis�es preconditions before call,

� THEN the method will satisfy postconditions upon termination,

Nonstatic public methods must also preserve the object invariant. This means, for those

methods, invariants are added to both the precondition and the postcondition.

For example, consider this method with description that can be used as human-language

speci�cation:

69

/** Returns truncated squareroot of n for n >= 0.

* For example, sqrt(15) == 3, sqrt(16) == 4.

*/

int sqrt(int n) { ... }

There's an assumed but unspeci�ed requirement: returned value is the nonnegative

squareroot. A good contract in Java language, using $r to hold return value from the

method, is 1:

pre: n >= 0

post: $r * $r <= n

post: ($r + 1) * ($r + 1) > n

With DBC, cross-method communication formats and expectations can be documented

unambiguously, even before implementing the methods. Both during integration testing,

and as components are added or modi�ed, DBC speeds up discovery of issues and breakage,

as these quickly appear as contract failures.

If a precondition fails, the responsible party is the caller. If the precondition does not fail

but the postcondition fails, the method itself is responsible and the method implementation

is faulty.

Separating these tests from the method implementation allows such method contracts to

be turned on/o� individually or en masse as needed. Meyer suggests that the contracts are:

� All turned on (always executed) for component testing

� Selectively turned on for integration testing (usually, preconditions are turned on,

postconditions and invariants are turned o�)

� All turned o� for deployment (after having had much testing)

1Note that even though $r ≥ 0 is not explicitly stated, it is still required by the combination of the two
postconditions stated here; for integer $r, ($r + 1)2 > $r2 implies $r ≥ 0.

70

As preconditions usually contain much simpler tests, this approach allows fast integration

testing to discover inter-component miscommunication. Ability to turn all contracts o� easily

allows fast execution after deployment. Meyer is against writing input data validity checks

in method code. This practice can add too much validity checking, and can slow down a

system. Putting this instead in precondition for a method allows quick global switching of

validity checks.

A few languages support DBC natively, most notably, Ei�el (by Meyer himself) and

D. Most popular programming languages have third-party tools that provide DBC support

[30]. In Java alone, [30] lists 18 third party tools that provide DBC support. Appendix D

compares three relatively popular DBC speci�cation languages, Ei�el, OCL (Object Con-

straint Language, part of UML), and JML (Java Modeling Language). In this document, we

use OCL keywords �pre� and �post� for brevity, combined with Java language declarations

(instead of OCL) for familiarity.

3.3.2 Our Proposal: Selective Retro�tting of Contracts

The idea of using speci�cations and speci�cally DBC contracts, in the creation of auto-

mated test oracles has been studied before [24]. Our approach di�ers in proposing selective

retro�tting of discovered and/or evolved contracts.

Standard DBC paradigm suggests using contracts from the start and to use them in all

components. But this is not necessarily an e�cient method. In two controlled experiments,

Mueller et al. discovered that DBC improved cross-developer code reuse, reliability, and

maintenance e�ciency, but the initial development phase took longer [62]. But delaying

the initial development has the disadvantage of delaying user feedback that can be used to

improve the system quality and usability.

Instead of starting with full-coverage and pervasive contracts even before implementation,

we suggest an approach that allows selective retro�tting of contracts onto a system developed

(or otherwise acquired) with no contracts. Similar to use of pro�ling to improve e�ciency

71

of selected functions, our approach can be used to focus �rst on the classes most central to

program's operation. This way, important gains in maintainability may be achieved without

signi�cant start-up costs.

3.3.3 Programmatic DBC using Java Statements

In research implementation of VERDICTS, we use DBC to specify requirements. Adding the

ability to use other forms of executable (and therefore automatically veri�able) speci�cation

would not require major changes to the design of VERDICTS. If there is an existing converter

from a speci�cation language to Java, the Java code can be interpreted live by VERDICTS,

and we would only need to add a small amount of code for integration with VERDICTS.

Ei�el, OCL and JML are three popular declarative and partially-declarative languages

for DBC mentioned earlier in section 3.3.1 (see examples given in appendix D).

The problem with these languages is that most programmers are not familiar with them,

and there is often a steep learning curve before being able to declare anything beyond the

simplest contracts. VERDICTS instead starts with programmatic DBC with Java statements

that are executed to verify method preconditions and postconditions.

Programmatic syntax has the advantage of being familiar to developers; no new formal

speci�cation language has to be learned. Gary Leavens who worked on Larch, a formal

language with algebraic declarative syntax, later headed the more programmatically speci-

�ed JML (Java Modeling Language) [53] [54] mainly because of developers' familiarity and

comfort with the programming languages as opposed to algebraic speci�cations.

Programmatic syntax also has the obvious advantage of being directly executable, and

as such, has unambigious semantics to any developer when compared to a higher level spec-

i�cation language.

Programmatic syntax may, in certain cases, have the disadvantage of being more verbose.

For example, standard for loops are often more verbose than �forall� and �exists� speci�ca-

tions, especially when nested. Verbosity may hinder clarity. Allowing a set of common

72

macros and common functions can quickly improve the readability of programmatic DBC,

and make it very close in power to declarative DBC.

In the future, we would like to experiment with usability of OCL (Object Constraint

Language), JML (Java Modeling Language), and other DBC speci�cation languages that

allow more concise speci�cation of expected behavior. Often, these speci�cations are con-

vertible to executable Java code, so these can be implemented as a layer on top of current

functionality.

3.4 Aspect-Oriented Programming (AOP) With AspectJ

3.4.1 What is AOP?

Aspect-Oriented Programming (AOP) is a programming paradigm that increases modularity

by separation of �cross-cutting concerns�. Cross-cutting concerns often go across layers of

abstraction, so they cannot in general be modularly implemented at any layer. AOP allows

quickly attaching, enabling and disabling an action to common events and situations that

appear in a large number of locations in the source code. A simple example is logging.

Gregor Kiczales and colleagues at Xerox PARC developed the concept of AOP [47], as well

as the AOP framework AspectJ [7] for Java, which remains the best known AOP framework

today. Today, most popular languages (Java, C, C++, .Net languages, Ruby) have either

native implementations or external libraries for AOP. Even some non-programming languages

have external libraries to implement AOP: MAKAO for make, Motorola WEAVER for UML

2.0, and AspectXML for XML [6].

In order to separate cross-cutting concerns, we need a way to declare points of interception

in program, and what to do at these points of interception. This depends on:

� join points: Places in code to intercept execution; events of interest

� pointcuts: Expressions that de�ne sets of join points, often by using regular-expressions

73

and wildcards on names, locations (package/module) and signatures (function call

signature, �eld declaration signature, etc)

� advice (name used in AspectJ): Statements to execute at join points

Most commonly used join point type is for method entry, exit, or both. With �around�

advice for a method, for example, the whole method can be intercepted and its behavior

changed: Method body may be skipped under some conditions, any other code can be

executed, and return values can be changed. Some other events of common interest are

object creation and destruction, access or modi�cation of a �eld, and exceptions (when a

Throwable gets thrown in Java).

3.4.2 AspectJ and Dynamic AOP

Our implementation uses AspectJ to intercept method calls.

In AspectJ, pointcuts and advice are combined into aspects that resemble Java classes.

Each aspect may a�ect bytecode of every class, except for security-protected standard Java

library code. This is accomplished by �weaving�, which inserts calls to advice code (as source

code or bytecode) into the program at every matching join point that the advice applies.

Static weaving happens at compile-time. The more powerful �dynamic load-time weaving�

(LTW) can directly manipulate bytecodes of any class loaded into memory. Through LTW,

AspectJ aspects can intercept and a�ect the behavior of any class in a third-party library

for which we only have class �les (often compiled into JAR �les), and no source code. Even

calls between methods in the library can be intercepted.

AspectJ does not allow the aspects or pointcuts to be modi�ed during runtime. This

feature, called �dynamic AOP�, would require either:

1. using tie-in code that allows switching from one instrumented version of the class to

another version, or,

2. unloading and reloading the class.

74

The �rst approach requires that client code be written from the start for such instrumen-

tation. This is used by some dynamic AOP frameworks through the use of Java dynamic

proxies which are re�ection-based proxies that multiplex all method calls of a class through

a single method. These frameworks require that client code use the framework's interfaces

and create objects that may be instrumented using only the framework's factories. This

approach cannot instrument third party code.

The second approach is the most generally applicable approach. Unfortunately, no Java

AOP framework today uses class reloading. As the �rst approach limits clients and the

second approach is not available today, no Java AOP framework today supports dynamic

AOP on any given client class. There is one way to emulate dynamic AOP on any given

class:

1. User speci�es at the start the superset of methods that may be intercepted.

2. During runtime, user can switch interception of any of these methods on or o�.

3. During runtime, user can also switch which/what advice applies to each method.

4. A common advice is used for the superset of methods. This tie-in code does the

necessary demultiplexing (like a switchboard):

� It discovers quickly if interception for this method is currently on.

� If on, it delegates to proper advice speci�c for this method.

For VERDICTS, this approach has proven to be e�cient, without imposing a signi�cant

performance penalty or degradation in responsiveness for the client code [13].

There is an alternative to AOP frameworks for a commercial tool that is interested in

dynamic interception of method entry/exit events: The Java Virtual Machine Tool Interface

(JVMTI).

JVMTI is a low-level programming interface that combines Java's historically separate

pro�ling and debugging interfaces. JVMTI allows very detailed registry of events of interest

75

with a JVM, and its use would allow e�cient dynamic instrumentation of Java code. With

JVMTI, tracing and data collection must be done with C or C++ code. Presentation/view

layer could still be written in Java, possibly with communication to the C/C++ back-end

(data layer) through a socket connection.

3.4.3 Testing Unit: Method

In OOP, methods are usually the smallest unit of interest for testing. For example, JUnit

considers each tested method xyz(. . .) as a black box, with only the inputs and outputs

visible to test method. In JUnit naming convention, Abc.xyz(. . .) method is usually tested

with AbcTest.testXyz() method. In JUnit, as the tested method is considered a black-box,

its calls to any helper methods are not intercepted. If those helper methods must also be

tested, they are tested separately, elsewhere, in separate test methods.

In our work, we are also interested in methods as units of test. For DBC precondition and

postcondition evaluation, we need to store information and verify internal state of program

before and after execution of methods of interest. With AOP, this means that we are mainly

interested in method call entry and exit join points. One di�erence from JUnit is that AOP

does not consider intercepted method as black-box: From an intercepted method, calls made

to other methods of interest will also be intercepted, and helper method behavior will also

be veri�ed. As AOP intercepts methods of interest independently, multiple method entry

events can be intercepted before the �rst method exits. AOP can also intercept private

methods. All this matches very well with what is expected from a DBC framework.

3.5 Live Java Interpreter, Beanshell

3.5.1 Compiled vs. Live Interpreted Java Code

Java started its life as an interpreted language. JVM is a stack-based machine, and Java

programs are distributed as Java bytecode, which contains instructions that run on this stack

76

machine.

For a given architecture, it makes more sense to convert these instructions to system-

native instructions. To keep Java programs portable, Java programs are still distributed as

architecture-agnostic Java bytecode, but bytecode is compiled just-in-time (JIT compilation)

before it is executed the �rst time.

To make VERDICTS dynamically usable, we need to be able to insert Java statements

(or statements in another language for speci�cations and operations) while a program is

running. In order to be able to do this, we use interpreted Java, using Beanshell interpreter.

For each method tested with preconditions and postconditions, we use a separate Beanshell

interpreter object, to e�ciently set and segregate method contexts.

Alternatively, we could use Java class source code or bytecode generation and dynamic

loading/reloading. This type of Java watch expressions and evaluation expressions are used

in probably all IDEs and debuggers, and a similar non-Java implementation (possibly reuse

of open source Eclipse or Netbeans implementation) may prove more e�cient in a commercial

version of VERDICTS.

3.5.2 Beanshell

Beanshell is a small, embeddable Java source interpreter that also allows common scripting

language features beyond standard Java syntax. It can be used as an interpreted Java shell

console. In VERDICTS, we use Beanshell to interpret programmatic DBC method contracts

made up of precondition and postcondition declarations written in Java.

Unfortunately, Beanshell is not actively maintained, and so it does not allow any re-

cently added Java language capabilities. The latest version of beanshell, dated 5/23/2005,

can be downloaded at the Beanshell download page. Thanks to Java remaining backwards

compatible, Beanshell still works well with the latest version of Java.

77

http://www.beanshell.org/download.html

3.5.3 Beanshell Features, Examples

Beanshell can evaluate standard java declarations, expressions and statements, including

code blocks, loops, method calls, and object creation. Beanshell extends Java language with

language features of scripting languages, most notably, loosely typed variables, and ability

to de�ne global functions. These features make Beanshell more convenient as they reduce

the amount of typing required for an action.

In standard Java, we may use this code to display a button in a frame using Swing classes

JButton and JFrame:

String label = "Click Here";

JButton button = new JButton(label);

JFrame frame = new JFrame("Actionless Button");

frame.getContentPane().add(button, "Center");

frame.pack();

frame.setVisible(true);

In Beanshell, we can skip the declarations; types will be discovered from values:

label = "Click Here";

button = new JButton(label);

frame = new JFrame("Actionless Button");

frame.getContentPane().add(button, "Center");

frame.pack();

frame.setVisible(true);

Beanshell also has a few global helper functions as Beanshell commands, which are really

prede�ned Beanshell scripts. For example, frame() displays a GUI component in a frame

(JInternalFrame, JFrame or a Frame, as available and applicable), so the code above can be

further shortened (if we can ignore the frame title) to:

78

label = "Click Here";

button = new JButton(label);

frame = frame(button);

Some other bsh commands are pwd, cd, cp, mv, rm, cat, editor, exec, eval, super,

print, run, save, load, setFont, show, javap, source, exit. Beanshell also allows users to

extend this command set by de�ning other Beanshell scripts and placing these user-de�ned

Beanshell scripts in the class path.

Even though Beanshell has a number of other scripting features, the main reason we

have chosen to use Beanshell is that it allows live evaluation in a language that is familiar to

the end users. For the most part, the end users never need to know that Beanshell has any

features beyond Java. All that matters is that the familiar syntax of Java language allows

users to write any Java code and have it interpreted and evaluated.

Behind the scenes, VERDICTS is free to use extended features of Beanshell interpreter,

to make life easier for the end user. This allows VERDICTS to support OCL, which can be

used by more experienced/advanced users.

3.6 Statistics & Visualizations

We gather program behavior data by saving values held in variables in the program as well as

user-de�ned �observables� that are very similar to �watched expressions� used in debuggers.

As we use methods as unit of testing, variables and data gathered also have one method as

their declaration context. Over time, a population of data 2 is gathered for each variable of

each method.

To visually depict data and statistics, we use some standard statistical descriptive meth-

ods:

2Note that as Java uses pass-by-reference, object state is not preserved unless a clone is explicitly created
by the user � this would be executed each time the method is called. As this can get very expensive, making
copies of some �elds will often be preferable.

79

� X-Y plot, to see relationship between any two variables

� Correlation matrix, to notice relationships between all pairs of variables

� Box plot, to see degree of dispersion (spread) and skewness for individual variable

Other than these, VERDICTS also uses a large number of types of OO and GUI visualiza-

tions; we will describe these in detail later as part of VERDICTS.

Any reader should already be familiar with X-Y plots. Readers familiar with statistics are

probably also familiar with the concepts of correlation matrix and box plot as well. These

descriptive statistics approaches are easy to follow even for novice readers. For example,

exact de�nition of boxes and whiskers need not be known to intuit that it represents disper-

sion/spread of data. The next two subsections de�ne and give examples of box plots and

correlation matrices.

3.6.1 Box Plot (Box and Whiskers Diagram)

Figure 3.3: Expected box plot for (large) data set with normal distribution, without the
outliers. Number of outliers is expected to be proportional to population size, which is not
speci�ed here.

80

A box plot (also called box and whiskers diagram) graphically depicts the dispersion of

numerical data including the �ve-number summary (min, max, and the three quartiles) and

outliers (unexpectedly high or low values). Fig.3.3 shows expected box plot for large data

set with normal distribution without the outliers.

Two �whiskers� that are depicted as terminated line segments that extend from the boxes

show the spread of data. In a �nite population, the whiskers are often farther in from the

cuto� values shown in �g.3.3; they instead show the lowest value (in the data) ≥ Q1− 1.5×

IQR and the highest value ≤ Q3 + 1.5× IQR.

Any value in the data that does not �t within the whiskers is considered an outlier, and

is separately depicted in the box plot (not shown in �g.3.3), usually with an open circle or a

cross mark. For large data set where a wider spread is more likely by chance, wider whiskers

are sometimes used to only consider and highlight unexpectedly far values as outliers.

Figure 3.4: Some data shown with X marks and corresponding box plots (using empty circles
for outliers).

Fig.3.4 shows box plots for some data sets. Data sets are shown with cross marks, and

outliers for box plots are shown with empty circles in this �gure. Note that whiskers are

sometimes missing (often, terminated on the box), because there is no data within 1.5 IQR

distance from the box. The same data and corresponding box plot parameters are also shown

81

numerically in table 3.1.

Table 3.1: Data and corresponding box plots' boxes (Q1, Q2, Q3), whiskers (W1, W2) and
outliers.

Data Data W1 Q1 Q2 Q3 W2 IQR outliers
1 2 3 1 1.5 2 2.5 3 1
0 2 3 0 1 2 2.5 3 2
0 1 2 3 4 0 1 2 3 4 2
-2 1 2 3 7 -2 1 2 3 3 2 7
0 3 3.5 4.5 6 3 3 3.5 4.5 6 1.5 0
1 3 4 4.5 7 1 3 4 4.5 4.5 1.5 7

0, 0.5 1, 1.5 2, 2.5 3 6.5, 7 0 1 2 3 3 2 6.5, 7
1, 1 1, 1 2, 2 3 6, 7 1 1 2 3 6 2 7

For any method of interest, after one tracing session of data collection, VERDICTS uses

a compact horizontal representation of box plot for each variable/observable of interest.

Instead of the customary vertical alignment, VERDICTS uses horizontal alignment as

seen earlier for normal distribution in �g.3.3. This allows VERDICTS to �t a box plot to

same height as one line of text that describes the variable. VERDICTS uses a color-coded

distribution density visualization as background for the box plot. Outliers are shown with

vertical lines to allow for a more compact representation.

3.6.2 Correlation Matrix

We show correlations between pairs of variables/observables (probe variables, arguments,

return values, etc) of interest using a color-coded correlation matrix visualization.

A correlation matrix of random variables X1, X2, . . . Xn is the symmetric table of cor-

relation coe�cients between pairs of these variables. We use Pearson correlation coe�cient,

which is the standard deviation-normalized covariance of two variables X and Y , where co-

variance is the expected value of joint deviation of X and Y from their mean, as seen in

equation 3.1:

82

ρX,Y = corr(X, Y) =
cov(X, Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY
(3.1)

In essence, correlation coe�cient normalizes the covariance by individual variances, and

therefore ignores the spread of data. Correlation coe�cient is always within -1.0 and 1.0.

As correlation coe�cient is a single real-valued number with a limited range, it cannot

reveal the type of nonlinearity of relationship between two variables, but merely that two

variables are not completely linear in their relationship.

A correlation matrix is simply a table of correlation coe�cients, between all pairs of vari-

ables. As this table is always symmetric and the main diagonal is �lled with the correlation

coe�cient 1.0 (corr(X, X) is always 1.0), it is su�cient to only show one half of the matrix.

Table 3.2: Four data sets with same basic statistics (modi�ed from Anscombe's quartet; y0
is the regression line).

x 4 5 6 7 8 9 10 11 12 13 14
y0 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
y1 5.39 5.73 6.08 6.42 6.77 7.11 7.46 7.81 8.15 12.74 8.84
y2 3.10 4.74 6.13 7.26 8.14 8.77 9.14 9.26 9.13 8.74 8.10
y3 6.90 6.26 5.87 5.74 5.86 6.23 6.86 7.74 8.87 10.26 11.90

Consider the four data sets with same set of X values in table 3.2 and �g.3.5. We

generated these sets from �Anscombe's quartet�, the four data sets created by statistician

Francis Anscombe in 1973 [5] to have the same statistics but di�erent behavior. Our four

data sets, y0 . . . y3, each have:

� mean(yi) = µyi = 7.50

� stddev(yi) = σyi = 2.03

� the regression line y = 0.5x+ 3.0

Even though they have same/similar statistics, these data sets behave di�erently:

83

Figure 3.5: Four data sets with same basic statistics (modi�ed from Anscombe's quartet).

� y0 = 0.5x+ 3.0 has linear relationship with x. This is the regression line for y0 . . . y3.

� y1 is linear except for one high-valued outlier

� y2 appears like a hill plus incline, and is Anscombe's nonlinear curve example.

� y3 appears like a valley plus incline, and has y values of y2 re�ected around y0; y3(x) =

2y0(x)− y2(x)

y0 has perfect linear relationship with x, and therefore, has correlation coe�cient

corr(x, y0) = 1.0. The others (y1, y2, y3) have corr(x, yi) = 0.82.

Correlation matrix can be represented visually using color and/or saturation to show

correlation, on a two-dimensional grid. In visualization, converting numbers to colors and

therefore converting a numerical table to a grid of colors in this way is known as using a �heat

map�. For a correlation matrix, each grid box has uniform color, the grid is symmetric around

84

the main diagonal, and the main diagonal shows strongest color, for correlation coe�cient

= 1.0.

Figure 3.6: Correlation matrix shown with numbers and colors, and with only colors.

Fig.3.6 shows the correlation matrix for the four data sets shown above (x with y0...y3),

using background color (still showing correlation coe�cients numerically) and with uniform

�ll colors, using lightness of blue to represent lack of correlation. This example does not have

negative correlation. A di�erent color, for example red or green, could be used to depict

negative correlation.

Note that y3, which is a re�ection of y2 around regression line y0 has the least correlation

with y2. Re�ection adds some negative correlation (when y2 goes down, y3 goes up, etc), but

shared regression line with y2 still keeps some positive correlation (when y2 is min, y3 is not

max, etc).

In VERDICTS, beyond color, the correlation matrix is also be overlaid with representa-

tions of constancy, along x, y or both dimensions. If x is constant, x vs. y plot will be a

vertical line. If both x and y are constant, the plot is simply a single point. If x ≡ y, the

plot is a simple 45-degree line, and the correlation coe�cient is 1.0. This case happens along

the diagonal of the correlation matrix as each Xi ≡ Xi.

As a �nal note, we would like to remind that correlation does not imply causation.

Correlation is symmetric, so the direction of causation could never be deduced. There might

also be interim variables that form a causal chain or a common cause for both x and y. Still,

correlation is one of the best indicators of deterministic dependence between variables.

85

3.7 Mutation Testing (Mutation Analysis)

Our SMT approach to measure contract adequacy depends on mutation testing, Java re�ec-

tion, bytecode manipulation and class reloading. This and the next three sections will go

through these techniques and technologies. Please refer back to section 3.2 to see how they

work together in SMT.

We consider the traditional mutation testing (MT) as per [65] to be syntactic mutation

testing. More appropriately called �mutation analysis� (of test suites), this method does not

test software, but rather provides a test criterion to evaluate test suite adequacy (quality),

similar to various code coverage criteria.

For an original program P which passes test cases T1, T2, . . . , mutation testing uses

a prede�ned set of mutation operators (such as `/' � `+') to create �mutants� M1, M2,

. . . which are all possible single-mutation versions of P. Mutants are compiled and checked

against the test suite. If mutant Mi does not pass the test suite (if any test case Tj fails),

we consider mutant Mi killed. Otherwise mutant Mi remains �live�.

A mutant is semantically equivalent to P if it always behaves the same way as P for any

input. No test case (that passes P) could kill an equivalent mutant. Mutation adequacy

score is the number of killed mutants divided by the number of non-equivalent mutants. If

this score is 1.0, all non-equivalent mutants are killed by our test suite, and the test suite is

called �mutation adequate�.

As we mentioned earlier, researchers report a number of problems with MT (quoted from

section 5.5):

� MT has high computational complexity, mostly due to compilation of each mutant

program.

� Semantic equivalence of mutants to original program is a tedious, manual task [36]

� Many mutants are so di�erent in behavior that they may fail almost all tests. [44] had

about 41% of all mutants fail all tests, and called these �dumb mutants�.

86

� �Competent programmers write programs that have few defects� does not mean com-

petently written programs have small syntactic di�erences. Jia and Harman [44] call

this misconception �Syntactic-Semantic Size Myth�.

For a more detailed critique of MT, see section 5.4.

Because of these issues, we propose Semantic Mutation Testing, which focuses and limits

semantic di�erence from original (unmutated) program.

3.8 Java Re�ection

Java re�ection allows Java programs to introspect themselves. Classes can examine them-

selves or each other, to discover and access �elds, methods, attributes, annotations,

The �rst step in using re�ection is getting a Class object that represents the class we are

interested in. Then we can look at its �elds, methods, constructors, annotations, and inner

classes:

import java.lang.reflect.*;

...

String className = "java.lang.Integer";

Class cls = Class.forName(className); // or cls = Integer.class

for(Field fld : cls.getDeclaredFields()) ...

for(Method mtd : cls.getDeclaredMethods()) ...

for(Constructor ctor: cls.getDeclaredConstructors()) ...

for(Annotation ann : cls.getAnnotations()) ...

for(Class innerCls: cls.getClasses()) ...

Re�ection can cause various Throwables/Exceptions to be thrown due to illegal access

or lack of element with desired name or structure (such as method signature), so the code

above and below should ideally be put in a try-catch block.

87

There are four ways to access class substructures (�elds, methods, constructors, and

annotations). Two methods take no arguments and return the whole arrays of substructures:

� getDeclared. . . s(): Gets all . . . (�elds/methods/constructors/annotations) declared

directly in this class, including not only public but also protected, package-visible and

private substructure elements.

� get. . . s(): Gets all publicly visible . . . whether they are de�ned in this class or inherited

from superclasses or implemented interfaces.

Two other methods are very similar but not pluralized in name, and require arguments (such

as name and signature) to help identify a single substructure of the class:

� getDeclared. . . (. . .): Gets one uniquely identi�ed substructure (possibly not public)

that is de�ned in this class (either not inherited, or overwritten).

� get. . . (. . .): Gets one uniquely identi�ed, publicly visible, possibly inherited substruc-

ture.

To get all non-public substructures of some type, we need to use getDeclared. . . s() meth-

ods for all superclasses (direct and indirect ancestors) and possibly all interfaces/superinterfaces

if the class substructure we are interested in may be declared in an interface.

Using re�ection, a constructor can be invoked to create an instance of the class under

re�ection. The following code snippet creates an object using a constructor that uses a single

int argument:

Class cls = ...

Constructor ctor = cls.getConstructor(new Class[] { int.class });

Object o = ctor.newInstance(new Object[] { 3 }); // auto-boxed

We can check to see if an object is an instance of the class cls. If it is, we can call (invoke)

its methods, read and modify its �elds. The following code snippet increments by 1 values

88

of all integer-valued �elds declared in this class, and then calls all no-argument methods

declared in this class, including all private methods, but excluding inherited methods that

are not overwritten.

Class cls = ...

Object o = ...

if (cls.isInstance(o)) {

for(Field fld: cls.getDeclaredFields())

if (fld.getType() == int.class)

fld.setInt(o, fld.getInt(o) + 1);

for(Method mtd: cls.getDeclaredMethods())

if (mtd.getParameterTypes().length == 0)

mtd.invoke(o, new Object[] { });

By default, re�ection respects visibility modi�ers, but this restriction can be relaxed for

programs executing locally. If the restriction is not relaxed, any private method and �eld

access in the code snippet above would cause a SecurityException to be thrown due to illegal

visibility-ignoring access to object internals.

For more information on re�ection, please see The Re�ection API Trail [43] in Java

Tutorials.

Compared to ASM bytecode manipulation, re�ection is a lightweight approach that can

be used to get some information about loaded classes, and get information and modify

objects. Re�ection cannot be used to modify the class itself, whereas ASM library can

change the class arbitrarily; it can change instructions that make up a method, and it can

add or remove methods, �elds, and internal classes.

89

3.9 ASM Library: Java Bytecode Manipulation and

Data Flow Analysis

3.9.1 ASM Library for Java Bytecode Manipulation

We use ASM library in SMT to discover and logically prevent mutations that may cause

program to crash such as ArrayIndexOutOfBoundsException. A small problem in single-

mutation mutants, such crashes can debilitate multiple-mutation mutants generated by SMT.

To this end, we use ASM to perform data �ow analysis to �nd risky and safe variables to

mutate.

ASM library is a Java bytecode engineering library that is embedded in a number of

popular Java development tools. It can be used to parse and modify Java bytecode using

two APIs:

1. Core API: An event-based sequential access parser API (similar in operation to SAX

parser for XML)

2. Tree API: A memory-resident parse tree API (similar to DOM for XML)

ASM also supplies classes based on Tree API that help perform:

� data �ow analysis (forward or backward analysis)

� control �ow analysis

Similar to SAX parser for XML, event-based parser provided by Core API is lightweight,

e�cient, but requires forward processing. Any methods, declarations and instructions en-

countered later in the bytecode cannot in�uence processing of earlier methods, declarations

and instructions, unless parsing is done in multiple passes.

Tree API produces a memory-resident parse tree in the memory, which allows for much

more complicated analysis and processing of the bytecode, but also takes more CPU time

and memory.

90

The next section explains data �ow analysis by ASM as used in SMT. See appendix F

for more details on ASM Core API, Tree API, and data �ow analysis.

3.9.2 ASM Library for Data Flow Analysis

ASM data �ow analysis is built atop Tree API, and allows our own �Value� objects to hold

symbolic representations of all possible values that may be held by a variable, a �eld or a

position in the stack.

As a forward data analysis example, consider this static slicing question: �Which lines

may a�ect this variable's value at this line?� We can use Value objects to record and

accumulate line numbers of all value sources that a�ect any value in any variable, �eld or

stack position. The Value object for our variable at our target line will be the union of all

possible line numbers that can a�ect this variable's value at this line.

Backward data analysis requires an extra processing step. Consider this question: �Is

this local variable's value ever directly or indirectly used as array index?� This is indeed

the question that SMT must answer to avoid array index out-of-bound crashes. In this case,

we need to do backward analysis from array index use(s) back to local variable declaration,

possibly indirectly through assignments and operations that pass and modify the value orig-

inally held in the local variable. To achieve this, we use Value objects in a forward pass

provided by ASM to discover sources of in�uence, then process these Value objects in a

second pass to �nd all uses that relate to declarations.

3.10 Dynamic Replacement of Executing Code With

Java Class Reloading

Another interesting feature of the Java language is that the code that executes always belongs

to a class, and classes can be loaded into memory using standard system class loader or our

own class loaders.

91

This allows de�nition of a class loader that can unload and reload di�erent implementa-

tions (compiled into di�erent bytecodes) for a class any number of times during a program's

execution. The just-in-time (JIT) compiler allows any compiler optimizations such as inlined

linking between classes to be broken and recreated with a new de�nition of a class.

This is a very powerful feature. JUnit, for example, uses class reloading to reload and

retest modi�ed classes without restarting the JUnit GUI. This ability also allows Java to

be used more easily for mutation testing. Many mutated variants (�mutants�) of a class can

be generated either by recompilation of changed source code, or by direct manipulation of

bytecode to insert mutations. Mutants do not have to rename the class; they can be loaded

one at a time, tested, and unloaded, as seen in �g.3.2.

92

Chapter 4

VERDICTS: Visual Exploratory

Requirements Discovery and Injection

for Comprehension and Testing of

Software

4.1 Overview of the VERDICTS Approach, Process Cy-

cle

4.1.1 VERDICTS Process Cycle and Core Components

VERDICTS is our research tool designed to test and demonstrate the value of using ex-

ploratory contracts in software analysis and testing. It combines software dynamic analysis

and automated testing into a single dynamic rapid-feedback cycle that allows veri�cation of

hypotheses about software requirements and behavior.

VERDICTS proposes using contracts for both analysis and automated testing, and is

designed to support contract discovery, creation, evolution, revisioning and evaluation. These

93

Figure 4.1: VERDICTS core components (Tracer, Veri�er, and Visualizer) and process;
�gure copied from chapter 3. VERDICTS process is an analyze-hypothesize-test cycle.

contracts can be dynamically discovered and evolved in cycles of observation of behavior and

modi�cation of contracts as seen in �g.4.1 (�gure copied from chapter 3).

Steps 1 - 5 form VERDICTS analyze-hypothesize-test cycle. If software source code is

available, a developer can perform step 1, �read source code� without using any developer

tools. If a debugger is available, we can also perform limited dynamic analysis.1

Steps 2 - 5 of VERDICTS, seen in �g.4.1 will be explained in more detail in sections 2

- 5 of this chapter. Before there are any contracts, steps 2-5 allow a user of VERDICTS to

discover software dynamic behavior, and to record hypotheses of requirements and behavior

of methods of interest. Once the user creates a contract, the same steps allow the user to

test contracts and hypotheses against methods of interest. When a method's contract fails

a method call, the fault may be in the method's implementation or in the contract. Further

analysis and testing can reveal fault origin when it is ambiguous from the context. More

1As mentioned before in sec 2.1.3, a debugger gives a very limited view into the dynamic behavior of a
program. As debugger does not record or recall program state over the execution, it cannot be readily used
to discern patterns of behavior by comparing behavior at di�erent times of execution. Debugger does not
make unusual behavior stand out.

94

often, either the software or the user is trusted (for analysis and testing tasks, respectively),

and blame is assigned by default to the other party; user's hypotheses and contracts during

analysis, and software itself during testing.

Fig.4.1 also shows that VERDICTS achieves these goals through its three core compo-

nents:

� Tracer: Interception, program state data collection

� Veri�er: Contract evaluation

� Visualizer: Presentation of program state data and contract pass/fail status using

various visualizations (�views�)

4.1.2 Views and Visualizations

One simpli�cation we have used in this �gure is considering all views as visualizations.

VERDICTS actually uses three types of views to inspect the program state data collected

during one tracing session:

� Trace views : These views show method calls over time, possibly visually marking

caller-callee relationships.

� Standard debugger views (Individual views): These views show values of variables at

one method call entry and exit. The variables recorded are the arguments, the �$this�

object, the return value, and any user-de�ned variables for the method.

� Aggregate views : These views are visualizations of data gathered across multiple

method calls, to see patterns of behavior.

The �rst two types of views are covered in section 3, as we consider these to be part

of step 3, inspecting tracing session, program state, and contract status �ags. Only the

third type of view is covered under section 4, as visualizations, for step 4.2, viewing the

visualizations.

95

Figure 4.2: VERDICTS Control Center (main window) shows tracing con�gurations, tracing
sessions, methods and memory usage (used/free/max).

VERDICTS eliminates the need to recompile or restart the target system between ver-

sions of contracts. This approach supports quick feedback from hypotheses to tests, improv-

ing the comprehension and testing task e�ciency. One execution of VERDICTS allows for

multiple tracing sessions to be run. Fig.4.2 shows VERDICTS Control Center before and

after the �rst tracing session is run.

Figure 4.3: VERDICTS Execution Con�guration window controls list of methods to be
traced, GUI components to be recorded, and execution trace to be started/stopped (on the
right).

List of methods traced and GUI components followed can be changed between tracing ses-

sions by de�ning execution con�gurations. Fig.4.2 lists two execution con�gurations named

96

�Trace All� and �paint methods�.

Fig.4.3 shows the Execution Con�guration window for �paint methods� con�guration.

This was created by cloning the original �Trace All� con�guration of VERDICTS, modifying

it to only trace paintXYZ methods, making it track a GUI component and renaming the

con�guration to �paint methods�. In this case, the target program is a Treepie/Sunburst

type visualization of disk space usage of a directory, and the GUI component tracked is the

full GUI of the target program. Original �Trace All� con�guration and this con�guration are

listed in VERDICTS Control Center, and can be reached from there.

The second Execution Con�guration window screenshot in �g.4.3 is taken after selecting

the GUI component and clicking the �Start� button to start the tracing session. 1303 calls

for three methods have been traced at the time of this screenshot. The tracing session has

not been stopped yet.

4.1.3 Step 1: Read Source Code

The �nal word on what software does, and how it works is always the source code. If source

code is available, it is the �rst step in VERDICTS cycle as well. But as this is not the

only step for VERDICTS, test/analysis task can move on to use of VERDICTS as soon as

the developer is curious to examine or test one method's dynamic behavior, possibly along

certain inputs and outputs, possibly with a theory about how the method functions.

4.2 Step 2: Run Target Program under VERDICTS

Tracer & Veri�er

Step 2 of �g.4.1 is �run�. The user starts VERDICTS, and runs executables of the target

software under VERDICTS by creating and starting an execution con�guration as shown

above. The user can then interact normally with the target software while VERDICTS

accumulates runtime behavior data and compares behavior against contracts for methods of

97

interest.

Tracer in VERDICTS goes beyond a traditional tracer that is only focused on recording

function execution times to discover performance bottlenecks. It is also used to collect

program state information by recording values of inter-method communication and user-

de�ned contract variables at method entry and exit points. As Java is pass-by-reference,

and does not allow every object to be cloned (does not allow creating copies of objects),

VERDICTS tracer only records references. As we will see later, where cloning/copying

is allowed by the language, user-de�ned variables can be used to create copies of objects.

Excessive use of copies for low level frequently used methods that share large objects would

obviously cause signi�cant memory and speed penalties. VERDICTS allows users to decide

how much data should be recorded in a tracing session. For further discussion on this topic,

please see section 4.6 below.

As seen in �g.4.1, step 2 (�run�) consists of six smaller steps:

� 2.1. User runs and interacts with the target Program

� 2.2. Tracer intercepts the target Program

� 2.3. Tracer generates Trace Data

� 2.4. Tracer calls the Veri�er (delegates veri�cation tasks)

� 2.5. Veri�er evaluates the contract for each method called (contract contains user-

de�ned variables and assertions)

� 2.6. Veri�er generates more Trace Data (values of user-de�ned variables and contract

status �ags)

Before contracts are added, only steps 2.1 - 2.3 (Tracer) run, and trace data about

execution time and inter-method communication variables (method arguments, �$this� and

the return value) are recorded. After contracts are added, steps 2.4 - 2.6 (Veri�er) also run.

This adds values of user-de�ned variables and status of assertions in user-de�ned contracts.

98

A tracing session is started and stopped from its Execution Con�guration window. Once

stopped, the session will appear in the VERDICTS Control Center (main window) as seen

previously in �g.4.2 with �paint methods� con�guration. Clicking on the tracing session

opens a session summary and view control window such as the one seen in �g.4.4.

Figure 4.4: VERDICTS Trace Session View gives a summary and can open other views
(windows, visualizations).

In this �gure:

� The trace session summary shows the number of user-de�ned variables and assertions

in method contracts, and how many assertions, calls and methods have failed. Any

failed assertion fails the call, and any failed call fails the method.

� Graph button opens a window that shows �Methods Graph� which displays methods

traced showing the call direction and frequency, using a force-based layout algorithm

(see section 4).

� Details button opens a Trace Details View showing methods traced and calls over

time (see section 3).

� GUI button opens GUI playback controls. This button is only available if a GUI

component was selected to be recorded (see section 4).

99

� X-delete-X button deletes this trace session in order to recoup memory to use in new

trace sessions.

4.3 Step 3: Inspect (Using Trace and Debugger Views)

In �g.4.1, step 3 is �inspect trace data�. Trace data is program state data held in values

of variables, and include user-de�ned variables and contract status �ags (Veri�er data) in

VERDICTS.

Figure 4.5: VERDICTS Trace Details View shows methods, execution time, and calls, as
well as thread status.

As mentioned before, VERDICTS uses three types of views:

� Trace views : Show method calls over time, possibly visually marking caller-callee re-

lationships.

� Standard debugger views (Individual views): Standard debugger views, showing values

of variables at method call entry and exit.

� Aggregate views : Visualizations of data gathered across multiple method calls, to see

patterns of behavior.

This section will cover �rst two types of views, as these are basic means for inspecting tracing

session, program state and contract status �ags in VERDICTS. Even though trace views and

aggregate views both show multiple method calls, trace views only show when method calls

100

start and end whereas aggregate views process accumulated data (values of variables) from

multiple method calls.

Figure 4.6: VERDICTS Thread View shows thread information and box-inside-box views of
method calls, where the smaller boxes show the calls made during this call.

There are two types of trace views in VERDICTS:

� Trace Details View (�g.4.5) shows method-versus-time chart with boxes to show

method calls. Also shows threads and thread states over time.

� Thread View (�g.4.6) is similar to Trace Details View, but shows one thread instead

of all threads. Thread View also uses box-inside-box views to visually signal calls made

from this call (method calls that are below in the method call hierarchy).

Trace views only show method call start and end times for all methods and calls that are

traced. After contracts are added, failed calls (calls with failed contracts) are highlighted in

these views in red. Other than this case, trace views do not show or reveal any data collected

during tracing, whereas standard debugger views (individual method call views) we will see

next and the aggregate visualizations we will see in the next section both depend heavily

101

on the data collected during tracing session. We will make a few observations on this data,

which will also better prepare us for our later discussion of adding contracts in VERDICTS.

Figure 4.7: VERDICTS Method Call View shows the interface, variables (including argu-
ments and return value), callers and called methods (other Method Call windows). In this
call, the "$this" object happens to be a GUI component, and is therefore shown visually.

Figure 4.8: VERDICTS Method Call View after user has de�ned some (pre- & post-
condition) variables and has made some contract assertions. One post-condition assertion
and therefore the call has failed on the right. This failed call and method would be high-
lighted in red in trace and thread views as well.

There are two types of views to inspect program status for an individual method call in

VERDICTS:

� Method Call View (�g.4.7, �g.4.8) displays the values of arguments to the method

call, the �$this� object, the caller object if known (�$that�), and the return value.

Simple values are directly visible, GUI components are shown visually, and objects can

102

Figure 4.9: VERDICTS Object Viewer shows names, types and values of �elds for an object,
using collapsible boxes.

be clicked on to be examined further. If the user de�nes some variables and makes

contract assertions, this view will also show the values and status for these, as seen in

�g.4.8. A single failed assertion fails the call and the method, and this is highlighted

in red in every view that shows the method or the call.

� ObjectViewer (�g.4.9) allows viewing �elds of individual objects using collapsible

GUI components.

Whenever an object appears in a Method Call View or as value of a �eld of another object

in the ObjectViewer, it is depicted with a hyperlink (or an image for GUI component objects)

that can be clicked. Clicking this link (or image) pops open an ObjectViewer for that object.

In Java, arrays are special types of objects. An array-value in a �eld is handled specially in

ObjectViewer as well: Rather than generate a generic object hyperlink, ObjectViewer shows

arrays as expandable/collapsible lists of elements.

103

Figure 4.10: VERDICTS GUI Recorder View allows forward/reverse playback of program
execution during tracing session, through DVD player type controls (plus �ne-control for
speed) for a GUI component's recording.

Figure 4.11: VERDICTS Methods Graph View shows degree of association between meth-
ods (according to number of times one method calls the other) using a force-based layout
algorithm.

4.4 Step 4. View The Aggregate Views (Visualizations):

As stated before, aggregate views are visualizations of data gathered across multiple method

calls. These help us see patterns of behavior over time. Such visualizations are not available

in standard debuggers as debuggers do not record past program state, and are therefore

woefully inadequate in helping us see patterns in behavior.

104

There are four types of aggregate views in VERDICTS:

� GUI Recorder (�g.4.10) plays back (forward/reverse, with speed control) a GUI

component that was recorded earlier during a tracing session. During playback, point

of execution time is also highlighted in all open trace views (trace details view and

thread views) for this tracing session.

� Methods Graph (�g.4.11) uses a force-based layout algorithm 2 on a directional graph

of methods. The attraction force betwen the method nodes depends on the number of

times one method calls the other. Strongly associated methods have more calls, and

pull each other in more. In steady-state, such methods appear closer unless they are

pushed apart by repelling forces of their neighboring nodes.

Figure 4.12: VERDICTS Statistics View is part of Method Contract View that we will see
in the next section, and contains Boxplot and Correlation Matrix described earlier, in ch.3.
Boxplots depict spread of individual variables. Correlation matrix shows degree of linear
correlation between variables, and highlights some trivial relationships.

2This is equivalent to a physical system of nodes (here, methods) with the same electrical charge (naturally
repelling each other), with each edge corresponding to a spring (of equilibrium length 0) where the spring
constant depends on some property of the pairs of nodes (here, the number of calls between methods).

105

Figure 4.13: A VERDICTS X-Y Plot shows relationship between any two traced (possibly
user-de�ned) variables. The plot above is for variables centerX and centerY. Repeated values
of (x,y) across calls can be expanded into packed circles as seen in these plots. Clicking on
a circle opens up the Method Call View for that call.

� Statistics View (�g.4.12 and �g.4.16) is part of the Method Contract View that

will be explained in the next section. Before a contract is de�ned, this view only con-

tains method interface variables as seen in �g.4.12. Statistics View depicts population

statistics for values of local & user-de�ned variables gathered across method calls of one

method. This view shows some statistics numerically for each variable, and contains

two types of VERDICTS visualizations that were explained in some detail earlier, in

chapter 3:

� Boxplot: A horizontal boxplot view on top of a smoothed population density

background.

106

� Correlation Matrix: A view that uses color to depict Pearson's correlation

coe�cients between pairs of variables, and also checks for and reveals some trivial

relationships (x=y, x constant, y constant, both x & y constant).

� X-Y Plots (�g.4.13) plot one variable against another for all calls of one method.

This allows seeing patterns between related variables.

4.5 Step 5. Discover/Improve Contract.

Figure 4.14: VERDICTS Method View shows method signature and allows user to enter
and see the current revision of the contract (variables & assertions).

For software testing, the VERDICTS user knows what is expected of a method, and can

codify this in the form of a method contract. For software analysis, VERDICTS user must

perform various inspection and visualization tasks before creating a hypothesis of method

requirements. Such hypotheses can then be converted to candidate method contracts.

Method contracts are created on the Method View (see �g.4.14) that shows method

signature and the current version of the contract, allowing editing such contract. Contract

is made up of user-de�ned variables. Boolean variables can be marked as �asserted�, which

promotes those variables to be part of the method contract's requirements. If an asserted

107

variable is false in a method call, that call and the method (or method contract) have failed.

Other helper variables can also be de�ned to make the assertion expressions easier to follow.

Figure 4.15: VERDICTS Method Contract History at the bottom of Method View shows
revisions of contracts (user-de�ned variables and their de�nitions). Revisions are immutable
copies of contracts that are automatically generated when a tracing session is run after a
contract is de�ned/modi�ed. A "+" marks an assertion.

Figure 4.16: VERDICTS Method Contract View. This is the same combined view with
statistics, seen before in �g.4.12. Now, the contract is a real contract, with user-de�ned
variables and assertions.

A contract created or modi�ed and used in a tracing session is saved as a frozen contract,

a revision in this method's contract history, as seen in �g.4.15. In this �gure, revision 1 is

empty contract, with only method's own interface variables, with no user-de�ned variables

or assertions. Revision 2 has one pre-condition variable and three post-condition variables,

and except for scaleX, all other variables are boolean variables that are asserted to be true.

Clicking on this revision opens up the Method Contract View seen in �g.4.16.

108

We have seen Method Contract View for empty contract earlier, in �g.4.12 while ex-

amining the Statistics View, with boxplot and correlation matrix. One di�erence is that,

now, we have user-de�ned variables as well (everything below �scale� in �g.4.16). Boxplot

and univariate statistics highlight the constant-valued �variables� toX, toY, scaleNotZero,

sameScale and correctScaleX. For these variables, the names and standard deviations are

highlighted in red whereas minimum and maximum values (which equal to mean) are faded

out in gray. The last three constant-valued variables are actually our three asserted boolean

variables, and it is desirable to have them always return true as they do here (�oating point

value 1.0 represents true in this case).

The correlation matrix in this �gure also shows:

� strength of correlation with darker and more saturated blue.

� negative correlation with a red-line around the blue box

� constant-valued variables (horizontal or vertical line, or a single point when both X

and Y are constant)

� the diagonal (around which correlation matrix is always symmetric)

� cases outside the diagonal where X == Y at all times, with an �=� symbol�

Figure 4.17: VERDICTS X-Y Plot after declaring our method contract. Compare with
�g.4.13.

109

Figure 4.18: VERDICTS X-Y Plot using a user-de�ned variable from method contract
(scaleX), showing a trivial relationship, scale == scaleX.

As before, user can click on any box in the correlation matrix to see a plot of values.

Fig.4.17 shows plot of centerX vs. centerY, and �g.4.18 plots scale against scaleX. From

correlation matrix view where there is an �=� symbol, we already know that scale = scaleX.

The many controls and interfaces VERDICTS provides can be used in di�erent combi-

nations for various analysis and testing scenarios.

4.6 User-De�ned Variables: Observables and Contract

Assertions

Compared to debugging, which allows access to full internal state of the program, VER-

DICTS allows a much more limited view. But debuggers do not record program state data

over its execution, whereas VERDICTS does. This allows going backwards in execution, and

aggregate analysis of such data.

As a program's execution goes through a large number of debug step points (millions per

second in today's computer speeds), keeping all program state information causes a serious

execution time penalty; even the most e�cient algorithms researched report multiple orders

of magnitude di�erence in software execution speed [58] [48].

110

VERDICTS allows recording any amount of data over program state by dynamically

changing decisions over what to record while evolving hypotheses about software require-

ments and behavior. This is achieved by user-de�ned variables (�observables�) whose de�ni-

tions can change without the need to stop and recompile the target program.

The default level of recording is at function interactions rather than individual statements:

Inputs to and outputs from a function are recorded for all functions of interest.

Compared to traditional tracing, VERDICTS Tracer collects much more data, as it

records all interface variables used in inter-method communication.

At method entry, VERDICTS records:

� values of all arguments

� this object reference if applicable (held in special variable called �$this� in VERDICTS)

� the caller object if known (�$that� in VERDICTS; holds reference to the object whose

method called this method),

At method exit, VERDICTS records the return value, if one exists (�$result� in VER-

DICTS).

Note that as we mentioned before Java does not allow any object to be copied, and all

objects are passed by reference. By default, VERDICTS makes copies of primitive values,

but only records the references for reference types. Note that in the special case of Strings,

which are immutable, it is su�cient to only keep references as the object referred to (the

string) is unmodi�able.

Beyond these standard variables which are recorded during method entry and exit, the

user can also de�ne variables to be evaluated and recorded at method entry and exit points.

In VERDICTS, we think of such variables as probes into the otherwise closed program's

internal state, and these variables are called user-de�ned �observables�. Even though such

observables were only mentioned as part of contracts earlier, it is quite possible that many

111

cycles of creating observables and running VERDICTS Tracer-Veri�er may pass before ob-

servables evolve and patterns between observables are noticed and coded into contract as-

sertions.

In the following subsections, we will examine di�erent types of observables that can be

used in VERDICTS.

4.6.1 Object Clone (Copy): Advantages, Disadvantages, Finding a

Good Compromise

For any array or other type of object in Java, recording just the reference may not be

enough as the object may have changed since its reference was recorded. If the language

allows copying/cloning the object in question, the user can de�ne a variable that holds a

clone of such an object. Shallow or deep copies can be created if the objects to clone are

instances of classes that allow these.

Consider a merge method used in mergesort:

/** Merges sorted (in nondecreasing order) subsequences

* source[i0..i1-1] and source[i1..i2-1] into dest[i0..i2-1].

* After return, dest[i0..i2-1] is sorted in nondecreasing order.

*/

void merge(int[] source, int[] dest, int i0, int i1, int i2)

Here, VERDICTS will only record the references of the arrays source and dest. Mergesort

can be e�ciently implemented by swapping source and dest array references at each call

depth. In this way, the states of these arrays will continually change during mergesort.

After many calls to merge, it is not possible to understand an earlier call as we did not save

the state of the array at the time of the call. To store more data, the user can de�ne two

observables which copy (clone) the source and dest arrays:

Precondition declarations (execute at method entry):

112

int[] src = (int[])source.clone();

Postcondition declarations (execute at method exit):

int[] dst = (int[])dest.clone();

Now, as these user-de�ned expressions will be evaluated at the time of method call entry

and exit, they will make full copies of arrays of interest, and we can examine earlier calls to

merge without worrying about loss of program state.

But there is a problem with creating too many clones. If mergesort was used for an array

of 1024 integers, and merge was used for merging single elements up to full array, then this

merge function would be called 512 times to merge 1-element arrays, 256 times to merge

2-elements arrays. . . for a total of 512+256+128+. . . 1 = 1023 times. For each call, we are

making clones of two 1024-element arrays, so we use 2046 arrays of size 1024 integers to track

one call to mergesort, whereas mergesort itself needs just one more 1024-element array other

than the original array to be sorted. Compared to recording two reference values per call to

merge (and assuming integers and references are same size), this represents an overhead of

1024 times, which is three orders of magnitude larger. Obviously this much array cloning

would also cause signi�cant speed overhead as well. Also, this memory usage and speed

complexity is O(N�2) for array size N, whereas mergesort has speed complexity of O(N x

log(N)) and memory complexity of O(N), so the overhead is signi�cantly higher for larger

arrays.

But as VERDICTS allows the user to decide what level of data recording overhead and

speed overhead is needed and is su�cient, we can �nd a more e�cient compromise between

storing su�cient state and overheads (both memory and speed).

What would be better in the case of merge is to assume that merge does not corrupt

anything beyond the range it claims to change, speci�cally, dest[i0..i2-1]. In that case, the

only data that needs to be recorded are source[i0..i2-1] and dest[i0..i2-1]:

Precondition declarations:

int size = i2 - i0; // number of elements

113

if (size < 0) size = 0; // truncate to 0 if needed

int[] src = new int[size];

if (size != 0) System.arraycopy(source, i0, src, 0, size);

Postcondition declarations:

int[] dst = new int[size];

if (size != 0) System.arraycopy(dest, i0, dst, 0, size);

In this case, the previous situation would still require 2046 arrays to be recorded, but

most arrays will be much smaller than 1024 elements. The bottom 512 calls to merge would

be merging 1-element arrays into 2-element arrays, so both src and dst would be 2-element

arrays. Ignoring the array object overhead, the memory needed would be for 512*4 + 256*8

+ . . . 1*2048 integers = 10*2048 = 20,480 integers instead of for 512*2048 + 256*2048 +

. . . 1*2048 = 1023*2048 = 2,095,104 integers.

In this case, the memory complexity is O(N x log(N)), and speed complexity is the same

if we ignore the array creation overheads.

4.6.2 Recording Partial Object State: Fields and Methods

For some large objects, an alternative to full cloning is to record partial object state. Often

only a few �elds of an object are of interest, and recording those �elds may su�ce to be

able to understand the behavior of the method. Consider a method that adds a person to a

hashtable called phoneBook:

void addPerson(Hashtable<String,String> phoneBook,

String name, String phone);

Even though the phoneBook may have potentially millions of entries and other object

state, we are unlikely to be interested in making copies of the whole phoneBook or any

signi�cant portion of its state.

114

To understand the behavior of this method, we may be interested in whether the name

already existed in the phoneBook as a key before this call, what phone number or string it

mapped to if it existed, whether the name exists upon exit from method and what phone

number or string it has at that time. Here's how we could achieve this:

Precondition declarations:

String phone1_pre = phoneBook.get(name); // may be null

Postcondition declarations:

String phone1 = phoneBook.get(name);

boolean correct = phone.equals(phone1);

// more strict == comparison (phone == phone1) may

// be required as well

Passing a hash table to a public method is not a good encapsulation practice. A bet-

ter approach is to have phoneBook as a �eld of the �this� object. Consider a Java class,

PhoneBook:

public class PhoneBook {

private Hashtable<String,String> phoneBook;

public void clear() { ... }

public void addPerson(String name, String phone) { ... }

}

In this case, the same exact user-de�ned (precondition and postcondition) variable decla-

rations above would still work, to record partial object state information for a �eld of �this�

object.

A postcondition for the clear() method may be:

Postcondition declarations:

int size = phoneBook.size();

boolean isEmpty = size == 0;

115

Here recording the size value as well could help us diagnose faulty behavior patterns when

there are problems.

4.6.3 Recording Partial Object State: Properties, More Complex

Processing

In the previous section we looked at simple object state that is held in �elds and getter

methods. Getter methods are side-e�ect-free methods that return some information about

object state that is held in its �elds. Beyond such basic partial state data, we can also gather

and process much more information about the object, accumulated over multiple accesses to

object internal state.

Looking back at the merge(. . .) example we saw earlier, if we only want to know when

or if a merge fails without knowing speci�cs about array elements, we could merely record

some checksums that are somewhat orthogonal to observable features of the function. In

the case of sorted arrays, developer can examine array for sortedness by looking at elements

of dest[i0..i2-1] and seeing they are sorted. But this does not make sure that the sorted

array actually contains the same elements are the two subarrays that merge is required to

merge. The expensive solution is to check that output is a permutation of the input (same

bag/multiset of values). But this is costly to check. For lower memory and processing costs,

we could use a simple checksum approach, and compare total of elements in source[i0..i2-1]

and compare this with totals of dest[i0..i2-1] at method exit:

Precondition declarations:

int sumSrc = 0;

for(int i = i0; i < i2; i++)

sumSrc += source[i];

Postcondition declarations:

int sumDst = 0;

116

for(int i = i0; i < i2; i++)

sumDst += dest[i];

boolean sameSum = sumSrc == sumDst;

// and assert sameSum

Equivalently, we can use the prede�ned �$sum� function in VERDICTS:

Precondition declarations:

int sumSrc = $sum(source, i0, i2);

Postcondition declarations:

int sumDst = $sum(dest, i0, i2);

As with parity checking, a single-element error will always cause checksum test to fail, and

as checksum holds much more information than a single bit, it is also unlikely for multiple

errors to cancel each other to give the same checksum.

If instead of this checksum, we want to �nd out is whether dest[i0..i2-1] is sorted at

method exit, we can examine this with:

Postcondition declarations:

boolean sorted = true;

for(int i = i0; i < i2 - 1 && sorted; i++)

if (dest[i] > dest[i+1])

sorted = false;

// and assert sorted

Equivalently, we can use the prede�ned �$sorted� function of VERDICTS:

Postcondition declarations:

boolean sorted = $sorted(dest, i0, i2);

The �sameSum� and �sorted� �ags can both be calculated and asserted. As these look at

orthogonal features of the merge function, combining these assertions will yield much better

results compared to using either assertion.

117

4.6.4 Print Statements, Logging

VERDICTS also allows any existing logging infrastructure to be used as well. VERDICTS

interception + evaluation allows calling a logging function upon a method entry or exit

point, possibly based on some condition about the call. Any method call information can be

gathered and recorded with this log. As opposed to standard approaches, this allows logging

to be dynamically added to any program running under VERDICTS without stopping or

recompiling it.

Even without a logging system in place, with VERDICTS, print statements can be quickly

added to or removed from method entry and exit points without the need for recompilation

of the target program. As we have seen in chapter 2, print statements can reveal much more

information about a program compared to standard debuggers that do not record history.

For example, instead of recording all array values during merge, if we notice that it is

implemented incorrectly, we can add print statements to print the array-to-be-sorted and

returned supposedly sorted array at each call. Alternatively, these values could be printed

only when the returned array is not sorted even though the input arrays were sorted. This

is very similar to the print statements used for quicksort function example in chapter 2.

4.6.5 Patches (Throw-Away Quick Fixes)

As Java does not declare or track whether a method called may change an object's state,

VERDICTS cannot promise to be side-e�ect-free either. Even though most user-de�ned

observables and contracts should be side-e�ect-free, there are also cases when VERDICTS

can be intentionally used to modify program behavior.

If a method examined with VERDICTS is found to be buggy in a certain way, it may be

possible to circumvent (have a �quick �x� for) the faulty behavior. Such quick �xes are called

�patches� and are not intended to be kept in place as originally created. If a patch works,

it is often replaced with proper rewrite of the method that �xes the same fault properly,

without extraneous unnecessary code.

118

Still, a patch can be quite useful as it allows us to continue testing this and other parts

of the system. With a patch in place, we can discover whether:

� our hypotheses about the mechanism of failure is correct

� our hypothesis about how to circumvent/�x the faulty behavior is correct in the use

case we are studying

� the program has other buggy methods related to this behavior (�xing one method is

insu�cient for examined use case)

� our �x breaks other behavior (discovered by testing other use cases)

Other than unconditional patching, we can also use �recovery assertions�. A recovery

assertion is a fault tolerance mechanism that not only discovers but also �xes faulty internal

state. Unlike in standard assertions, there is no need to halt the program, as internal state

is �xed and execution can continue.

As an example, consider an object, Y, that can be fully generated from another object,

X. Y may be incrementally modi�ed to stay in sync with X over time while X changes state.

If a bug causes Y to fall out of sync with X, a recovery assertion that discovers this situation

can be used to recreate Y object from scratch using X. Although this can be ine�cient if

done frequently, this allows program to continue to run correctly.

Recovery assertions can neutralize e�ects of bugs before they can manifest as failures.

They can be used to recover from one error to discover if any other errors exist in the

program, similar to how a compiler reports multiple errors. As they can hide the existence

of errors, they must be used carefully. The user must be attentive and notice failed assertion

to realize there was a bug and a faulty program state, even though recovery assertion has

�xed the program state and program otherwise appears to be bug-free.

119

4.6.6 Contract Assertions

We have seen a number of boolean variables in previous sections for observations on method

behavior. We have de�ned most boolean variables in a way that would make them true when-

ever the method behaved as per our expectations. Such booleans can be directly declared

as assertions in VERDICTS. Unlike the assert keyword in various languages, VERDICTS

assertions are more often like boolean variable declarations, with name and value:

assert sorted = $sorted(dest, i0, i2);

This is similar to Java language statements:

boolean sorted = ...

assert sorted;

One important distinction is that VERDICTS records failed assertions without stopping

the running program. For state-corrupting bugs, this could cause many other assertions to

fail. But note that VERDICTS allows experimenting with potentially incorrect assertion

candidates, and an assertion may fail because assertion itself rather than the program be-

havior is faulty. If the user wants to stop the running program, VERDICTS can be used to

add dynamic code that conditionally throws an exception. In Java, an unchecked Runtime-

Exception such as IllegalArgumentException can be thrown at any time from any method

without the need to declare that the method may throw such an exception.

In the next section, we will look at various types of assertions we may be interested in

declaring in VERDICTS.

4.7 Types of Contracts and Requirements in VERDICTS

As mentioned before, VERDICTS uses DBC contracts to state requirements. If we know

the requirements, failure of contract marks software faulty behavior. In this situation, the

120

correct response is to try to understand details of software behavior to �nd where and how

software fails.

A second situation arises with software in widespread use, without documentation of

requirements. To discover requirements, we must guess requirements, create contracts that

represent our hypotheses, and evolve such contracts till we discover the correct require-

ments. If software is generally believed to have been implemented correctly, failure of such

a hypothetical requirement contract marks error in our hypotheses.

A third situation is when we are not sure if software is implemented correctly with respect

to its requirements. For software without proper documentation, it is quite understandable

that two developers may have informally agreed on an interface or expected behavior, but

di�erently understood and implemented their halves around this interface. Common errors

are easily discovered by testing, but some conditionally arising situations may not have been

properly tested. In this case we cannot be certain that there is a uniform set of requirements

that both a caller of a method and the method implementation itself agree upon. The most

we can attempt to understand is the actual behavior of the method.

In this third situation, we can still create hypotheses, but this time of actual behavior

rather than requirements. Behavior hypotheses can similarly be converted to contracts,

tested, and evolved. The goal is to understand and state how the program actually works,

whether this behavior corresponds to desired behavior or not.

In VERDICTS, therefore, we have these two main types of contracts:

� Requirement Contracts are based on what callers expect

� Behavior Contracts are based on the actual implementation

In the use case of discovering fault origin, instead of fully specifying the requirements

or the current behavior, we might be interested in only specifying the one requirement that

we believe is not followed, or the one buggy behavior that we believe causes program to not

conform to its requirements. For example, a buggy implementation of sortAscending(int[]

121

ar) method may have:

� Requirement: Array ar is sorted in nondecreasing order upon exit from method

� Behavior: ar[0] is never modi�ed from entry to exit

These contracts are con�icting in general for most arrays; the only situation they will not

con�ict is when ar[0] is always the minimum element in array when the method is called.

Failure of a requirement contract would mark faulty requirement hypotheses (callers did

not require this, in this case). Failure of a behavior contract would mark faulty understanding

of the method implementation; this method does not behave in this way. In the above

example, �ar[0] is never modi�ed� is a speci�c behavior that contrasts required behavior.

Failure of this contract does not mark faulty implementation. Actually, nonfailure of this

contract with a wide range of inputs suggests faulty implementation, and a correct hypothesis

for mechanism of failure. A sorting method does not always have to modify �rst element of

the array, but it also should not be implemented so that it never modi�es the �rst element.

If this contract passes our tests, we have discovered a fault origin. Note that there may be

other faults in implementation as well.

Beyond full and partial functional requirements contracts and behavior (actual imple-

mentation) contracts, we can also use fuzzy contracts that are expected to often but not

necessarily always hold. These can be used to visually highlight exceptions to observed

pattern of behavior, and could be used to discover behavior trends.

Table 4.1 compares these various types of contracts, and table 4.2 shows examples of

contracts for the sortAscending(int[] ar) method mentioned above. In these tables, R rep-

resents requirements, P represents behavior. R may allow various decompositions into par-

tial requirements Ri, and P may similarly allow various decompositions into partial be-

havior speci�cations Pj. A defect causes program behavior to contradict a requirement;

∃i, j : Pj =⇒ ¬Ri (equivalently, ∃i, j : Ri =⇒ ¬Pj, and also, ∃i, j : ¬(Pj ∧Ri)).

122

Table 4.1: Types of contracts that can be used in VERDICTS for analysis and testing

Contract Type Predicates Failure Marks
Requirements R = R1∧ R2∧ . . . faulty implementation

(there may be multiple or
decompositions of R faulty requirement
with di�erent Ri)

Behavior P = R1∧ R2∧ . . . wrong comprehension
(actual implementation) (of implementation)
Failure mechanism (pro) Pj (with ∃i : Ri =⇒ ¬Pj) wrong comprehension
Failure mechanism (con) Ri (with ∃j : Ri =⇒ ¬Pj) correct comprehension,
partial requirement and a case of failure
General pattern; fuzzy S (where S �often� holds) exception to the pattern

Table 4.2: Examples for types of contracts that can be used in VERDICTS for analysis and
testing, for a sortAscending method given integer array ar with length n.

Contract Type Example for sortAscending(int[] ar)
R: Requirements R1: Array ar is sorted on exit

i=1..n-1: ar[i-1] <= ar[i]
R2: ar contains same elements
(is permuted; no is element lost)

P: Behavior Can be very speci�c (Pi: one test case),
(actual implementation) very general (P1: ar is sorted on exit),

or inbetween (P1: n < 4 =⇒ ar is sorted)
Pj: Failure mechanism (pro) ar[0] == 0 on exit (contradicts R1, R2)
Ri: Failure mechanism (con) for n > 1, ar[0] <= ar[1] (hypothesis: ar[0]
(a partial requirement) is not sorted, so this contract will sometimes fail)
S: General pattern; fuzzy ar[0] > 0 (observed usage pattern)

4.8 Review: How VERDICTS Supports Exploratory

Contracts

Let us review how various features of VERDICTS support discovering, creating and using

exploratory contracts. User can create requirements contracts as well as behavior contracts.

VERDICTS supports:

� Testing and debugging (user is trusted, program is suspect/faulty):

123

� by creating requirement contracts to test program against

� by �xing and evolving such contracts

� by testing hypotheses of program fault mechanism by applying temporary patch

code through VERDICTS

� Analysis (program is trusted, user's hypotheses and contracts may be faulty):

� by creating behavior contracts

� by guessing, testing and evolving �candidate� requirement contracts

The three primary components of VERDICTS are designed around contract evolution

and testing (see section 4.1):

� Tracer:

� Records data beyond standard tracers, to observe historical program state data

� Intercepts program to allow dynamic addition and modi�cation of contracts

� Veri�er:

� Records user-de�ned data

� Evaluates contracts

� Visualizer:

� Helps user see patterns of program behavior

As mentioned above in sections 4.1 and 4.3, there are three types of views:

� Trace views: Help user notice patterns of method calls

� Standard debugger views: Help user examine a single method call and the objects

involved in detail

124

� Aggregate views: Help user notice general patterns of behavior through relationships

between data collected

VERDICTS can help user notice patterns in program behavior and state, through its

various aggregate views (see section 4.3) of recorded variables that collectively make up part

of program state that the user is interested in:

� GUI Recorder: Allows playback of any recorded target program GUI behavior

execution-time synchronized with other views.

� Methods Graph: Shows method associations on a graph (how frequently methods call

each other).

� Statistical Views:

� BoxPlot: Shows univariate spread (quartiles, median, outliers)

� Correlation Matrix: Shows bivariate linear relationship strengths

� X-Y Plots: Shows bivariate relationship. If a regularity is observed, this could be coded

as a candidate contract assertion.

Standard debugger views, statistical views and X-Y plots depends on values of variables.

Other than interface variables, VERDICTS allows de�nition of user-de�ned variables. This

is also the mechanism to de�ne contracts in VERDICTS: Contracts are made up of assertions

of boolean variables. Automatic versioning of contracts (upon starting VERDICTS trace)

allows seeing how variable declarations in contracts have evolved over time. VERDICTS

variables support exploratory contracts by giving dynamic (without need to stop target

program or recompile it) and full access to objects and the programming language. As we

saw in section 4.6, this includes cloning objects, loops, throwing exceptions, print statements,

and access to some useful prede�ned functions/macros.

These features of VERDICTS provides user with a rich environment and quick feedback

when using exploratory contracts for software analysis and testing.

125

4.9 VERDICTS Tests

In this section, we will:

� Examine earlier tests of VERDICTS mentioned in our published work

� Show results from a new set of tests for three of the innovative features of VERDICTS,

comparing VERDICTS to Eclipse IDE.

4.9.1 VERDICTS E�ciency and Earlier Tests

In [13], we ran an an earlier version of VERDICTS (that uses the same interception code

as current version) on a Mac Mini with G4 1.25 GHz PPC processor and 512 MB memory.

We observed that the performance degradation is not signi�cant and the system remains

interactive, even when we record 2783 method calls per second, as seen in table 4.3. Recording

2783 method calls per second caused a performance degradation of 35.5%. In comparison,

on this system, moving the mouse slowly to traverse the diagonal span of the screen over

two seconds caused about 30% performance degradation.

Table 4.3: VERDICTS method interception overhead

Time Method Calls Calls / sec Performance Degradation
(sec) (%)
20.8 11,728 564 19.2
19.9 55,385 2,783 35.5

As we mentioned before, fully recording program state by using checkpointing, as is

done in reversible and bidirectional execution methods, would generate a signi�cantly higher

performance degradation. Whyline [48] reports overhead factors of 4.1 - 14.3, which are 20

to 40 times larger than VERDICTS overhead.

In [13], we also reported that trace details view allowed us to notice ine�cient imple-

mentation for a component which performed correctly, in that it did not have any noticeable

126

faults in behavior. Viewing internal state of the program allowed us to notice problems

even when we were not intentionally trying to discover any bugs. Even though our program

appeared fast, it was very ine�cient, and would not scale up very well.

In [15], we demonstrate how we have used VERDICTS to discover fault origins in two non-

vital components of VERDICTS. In those cases, the dual nature of VERDICTS allowed us

to have a wider perspective and observe patterns of method calls with visual exploration, and

discover the component responsible from faulty behavior by dynamically added observables

and contracts.

In the �rst case, we noticed an unexpected pattern, quickly focused on problematic

methods, created general-purpose observables and discovered fault origin in a matter of

minutes. The aggregate views allowed us to notice patterns and behavior that failed to

follow common patterns. This would not be possible with a debugger. Interestingly, we

discovered that the fault origin was in a publicly available library rather than our own code.

The standard Java library method to �nd current memory usage used a coarse-grain update

instead of real-time update with each memory allocation. This was not at all implied in any

way by the library API documentation.

In the second case, we used dynamic analysis to discover faulty method, and code review

to �nd exact fault origin. In accordance with our observation that GUI component is not

being updated properly, we added a requirement assertion that we expected to always fail.

Speci�cally, our contract stated internal state should change with each call to a certain

method. This was a �fuzzy� requirement contract; we expected it to be satis�ed �most of

the time� (but not always) in a correctly running program, and to always fail in our buggy

program. Infrequent failure of this contract would not signify a bug. The dynamic analysis

quickly showed us that we were wrong; our contract rarely failed, and our hypothesis about

mechanism of failure was wrong. Quick negative feedback helped us not go down farther

along the path we had expected to �nd the bug. A debugger can help discover when a

condition is true or false, but cannot show us whether a condition is satis�ed some of the

127

time, most of the time, or rarely (and under which conditions), so it does not help with fuzzy

requirements like the one we used in this case.

For more details, please see [15] and [13], both available online at [16].

4.9.2 Testing Innovative Features of VERDICTS

For these tests, we compare VERDICTS (version 1.0) to a modern Java IDE, Eclipse (version

3.7.2). Our test system is a quad-core Dell Vostro intel i5-2410 laptop running at 2.3 GHz,

with Ubuntu 11.04 (with Linux kernel 2.6.38-15-generic).

We aim to prove three innovative features of VERDICTS:

� A. Integrating large amounts of program values in comprehensive but useful ways

� B. Using novel visualizations that reveal patterns in control �ow and data variations

� C. Dynamically inserting probes and hypotheses about program behavior using a fa-

miliar language

As Eclipse doesn't provide visualizations, we will use all other available tools in Eclipse

to accomplish the same tasks.

We ran tests on four targets:

� JUnit: JUnit 4.8.2

� Ant: Apache Ant 1.9.2

� Commons: Apache Commons Collections 3.2.1

� VERDICTS: VERDICTS 1.0

For each target, we selected two parts of the project with similar size source code. Our

eight experiment targets are:

128

� JUnit1: org.junit.runner package 3

� JUnit2: org.junit.runner.noti�cation and org.junit.runner.manipulation packages

� Ant1: Java and ExecuteJava classes in org.apache.tools.ant.taskdefs package

� Ant2: org.apache.tools.ant.types.Path class and its inner class, Path.PathElement.

� Commons1: org.apache.commons.collections.PredicateUtils class

� Commons2: org.apache.commons.collections.MultiHashMap class

� VERDICTS1: ZoomPanComponent and Painter classes in net.kanat.gui package

� VERDICTS2: net.kanat.gui.XYPlot class and its two inner classes, XYPlot.Controller

and XYPlot.RangePosAndNeg.

In the �rst test for each target project, we tested VERDICTS �rst, and Eclipse second.

In the second test for the target project, we tested Eclipse �rst and VERDICTS second.

These pairs of tests were not conducted right after one another, but other tests were ran in

the interim to forget knowledge gleaned from one tool, to reduce bias. This has generally

worked very well; most of what was learned was forgotten between tests, in part also because

of VERDICTS and Eclipse having very di�erent interfaces, and Eclipse providing only a

depth-�rst traversal through the method calls.

Di�erent main programs in di�erent environments were run for these tests.

JUnit is a unit testing framework. For JUnit1, we used a simple test class with four

simple methods tested (helloWorld(), hello(String), addition(int,int), gcd(int,int)). A few

of our test cases are intentionally wrong, so that two of our four tests fail even though

implementation is correct. JUnit2 tests were actually conducted earlier, and used an earlier

3This would not include any org.junit.runner.* packages such as those used in JUnit2. In Java, package
name similarity doesn't provide any special access. Java packages don't have a scope hierarchy.

129

version of simple test class with only two simple methods tested (helloWorld and addition),

where both tests pass. 4

Ant is a portable Java build tool. Both Ant1 and Ant2 use the same set-up. The steps

for build are de�ned in our �build.xml�:

� Delete all generated (compiled) �les and their directories

� Recreate directories

� Compile depended-upon project's source code (net.kanat.commons, 22 classes)

� Compile this project's source code (net.kanat.gui, 108 classes)

� Run three GUI demo programs without forking, then run them with forking (using

separate Java Virtual Machine).

Apache Commons Collections comes with a full suite of unit tests. We just run all tests.

This is wasteful when targeting a single class, but is a simpler and �exible setup.

For VERDICTS, we just ran demo programs, XYPlot.main(.) in VERDICTS1, and

ZoomPanComponent.main(.) in VERDICTS2 tests.

In the next three subsections, we will go through each innovative feature tested, metrics

gathered, and our observations.

4.9.3 A. Integrating Large Amounts Of Program Values In Com-

prehensive But Useful Ways

This is really about richness of outputs of VERDICTS, mainly in its visualizations. VER-

DICTS is:

� Comprehensive, as it doesn't only track, record and reveal a subset, but rather all calls

of all methods of interest;

4As there weren't su�cient number of method calls to verify contracts, for the contract tests we converted
a JUnit3 type unit test from Apache Commons Collections (org.apache.commons.collections.TestMapUtil)
to JUnit4 type test and used that instead, while tracking and verifying same method calls as before.

130

� Useful, as it allows:

� zooming in and focusing on a subset of calls to observe local behavior,

� examining all calls of the method through univariate and bivariate statistical

measures and plots.

We used four metrics:

� ST: Statements: How many distinct (non-overlapping) general statements about con-

trol �ow and data variations can we make after using tool for two minutes.

� CTRL: Control �ow density: For how many methods do we understand the control

�ow by looking at once screen. 5

� DATA: Data density: For how many methods do we understand the input and output

data by looking at one screen. 10

� PXL: Pixel size su�cient? Is any information lost or hard to identify due to being

displayed in just one pixel or less in width or height?

Even though sometimes the data can't be readily seen in a single screen in Eclipse, we

will generally consider debugger to be able to display all input/output information about

one method call on a single screen. Screen resolution on the system tested was 1366x768.

As we can very quickly change zoom and pan in VERDICTS, we have adjusted the zoom

to satisfy PXL (�pixel size su�cient�) in each test, and measured the corresponding density.

As Eclipse doesn't use visualizations it also always satis�es this requirement, so we do not

report this metric, which would always be �yes� throughout the table. Table 4.4 shows our

results. Most signi�cant di�erence is observable in control �ow density. For observing control

�ow, VERDICTS, on average, revealed 236 times more method calls per page viewed!

5If hovering by mouse reveals more information, we will only count what can be gleaned in 4-5 seconds.

131

Table 4.4: VERDICTS integrates large amounts of program values in comprehensive but
useful ways

VERDICTS ST CTRL DATA Eclipse ST CTRL DATA
Tests Tests
JUnit1 4 106 1 0 1 1
JUnit2 1 112 3 1 1 1
Ant1 2 167 1 0 1 1
Ant2 1 451 2 0 1 1
Commons1 3 200 1 2 1 1
Commons2 8 380 15 2 1 1
VERDICTS1 2 142 1 0 1 1
VERDICTS2 1 330 4.5 0 1 1
Average 2.8 236 3.6 0.6 1 1

Figure 4.19: VERDICTS test for Ant2 had an average of about 451 method calls visible
clearly per screen

Fig.4.19 shows a VERDICTS screenshot from Ant2 test, which had an average of 451

method calls visible per screen without any method call shown below single pixel width or

height. This is the highest value we have observed in our experiments.

132

For data density, we observed a large variation. The highest value was in Commons2,

because these unit tests often use very simple short argument values such as:

coll.add("A"); coll.add("AA");

coll.add("B"); coll.add("BB"); coll.add("BA"); ...

Lower values in data density were observed when methods didn't have primitive or string

arguments, or when string arguments were too long to view easily (such as full path to library

JAR �le). When objects passed as arguments had a standard string representation (Java's

toString() method), if the string representation was useful and not too long, the data density

could be higher than 1 call per screen.

4.9.4 B. Using Novel Visualizations That Reveal Patterns In Con-

trol Flow And Data Variations

For this feature, we measured time and output. We used three original metrics, and two

derived metrics:

� T: Time (mins): Time spent to analyze and discover control �ow patterns and varia-

tions in data (in minutes; 40 minutes max).

� PAT: Patterns: Number of control �ow and data variation patterns observed in this

time.

� CALL: Method Calls: Number of method calls examined/observed/analyzed in this

time.

� PAT/min: Patterns per minute = PAT/T

� CALL/min: Method calls per minute = CALL/T

Original raw metrics for these tests are shown in table 4.5, and derived metrics are shown

in table 4.6.

133

Table 4.5: Raw metrics from tests to prove VERDICTS reveals patterns in control �ow and
data variations.

VERDICTS T PAT CALL Eclipse T PAT CALL
Tests Tests
JUnit1 6.2 12 106 7.8 9 73
JUnit2 8.2 10 56 38.9 5 27
Ant1 3.9 13 167 12.5 10 74
Ant2 17.2 20 2708 20.8 17 112
Commons1 7.6 8 40 16.8 6 55
Commons2 9.8 10 1887 20.6 4 62
VERDICTS1 9.3 20 2704 40.1 18 87
VERDICTS2 13.1 13 404 40.2 21 188
Average 9.4 13.3 1054 24.7 11.3 84.8

Table 4.6: VERDICTS uses novel visualizations that reveal patterns in control �ow and data
variations.

VERDICTS PAT CALL Eclipse PAT CALL
Tests /min /min Tests /min /min
JUnit1 1.9 17.1 1.2 9.4
JUnit2 1.2 6.8 0.1 0.7
Ant1 3.3 42.8 0.8 5.9
Ant2 1.2 157.4 0.8 5.4
Commons1 1.1 52.8 0.4 3.3
Commons2 1.0 192.6 0.2 3.0
VERDICTS1 2.2 290.8 0.4 2.2
VERDICTS2 1.0 30.8 0.5 4.7
Average 1.6 98.9 0.6 4.3

Of most interest are the derived metrics shown in 4.6, patterns per minute and calls per

minute. VERDICTS averaged 1.6 patterns observed per minute, and these patterns were

observed over an average of 98.9 calls per minute. Eclipse averaged 0.6 patterns observed

per minute, and these patterns were only observed over an average of 4.3 calls per minute.

In terms of calls observed per minute, VERDICTS was, on average, 23 times faster than

Eclipse.

134

As Eclipse traversal was too slow at times, we had to remove some breakpoints at times

after seeing a general pattern. But this caused some patterns to be partial patterns as some

of the calls were missing in the pattern. We counted partial patterns as half a pattern.

The patterns that are readily visible in VERDICTS are not readily visible in Eclipse as

we have to go through depth-�rst traversal of method calls in Eclipse when trying to observe

all patterns between all method calls. Even though recording the patterns is not included

in this time, Eclipse without recording the partial patterns does not really allow one to see

the patterns because of many other lower level calls seen mid-pattern.

4.9.5 C. Dynamically Inserting Probes And Hypotheses About Pro-

gram Behavior Using A Familiar Language

For this feature, we used four metrics:

� TV: Time to verify: Time taken to verify one hypothesis/observation (in VERDICTS:

one contract assertion).

� CLK: Clicks: Number of mouse clicks per hypothesis

� L: Lines: Number of lines of code written per hypothesis

� CALL: Method Calls: Number of method calls that this hypothesis was veri�ed on

Our results are shown in table 4.7.

In these experiments, an e�ort was made to use similar complexity hypotheses, and

sometimes equivalent hypotheses in VERDICTS and Eclipse. Di�erent hypotheses can be

arbitrarily di�erent in complexity so lines should not be compared with each other. The

values reported are quite often averages of two tests (two hypotheses veri�ed).

In these tests, VERDICTS required, on average, 25% more lines of code. VERDICTS

tests almost always took less time and needed fewer mouse clicks compared to Eclipse. The

135

Table 4.7: VERDICTS allows verifying hypotheses about program behavior using a familiar
language

VERDICTS TV CLK L CALL Eclipse TV CLK L CALL
Tests Tests
JUnit1 8.9 58 3.5 5 5.4 82.5 1 5
JUnit2 2.4 52 0 31 1.3 23 0.5 31
Ant1 2.1 33 0.5 4.5 3.5 28 0 4.5
Ant2 6.1 35.7 3.7 34 13.4 161 4 21
Commons1 2.7 14.5 1 5 2.8 28.5 0 4
Commons2 1.8 21 1 286 5.9 53 1.5 23
VERDICTS1 2.1 7 0.3 559 3.6 41 1 9
VERDICTS2 6.7 33.5 3.5 21 9.3 36.5 2.5 21
Average 4.1 31.8 1.7 118.2 5.7 56.7 1.3 14.8

most signi�cant di�erence appeared again when there were more method calls to observe.

VERDICTS could on average verify the hypothesis in eight times more calls, in shorter time.

In these three subsections, we have seen how VERDICTS performs signi�cantly better

than Eclipse on three important features of VERDICTS:

� A. Integrating large amounts of program values in comprehensive but useful ways

� B. Using novel visualizations that reveal patterns in control �ow and data variations

� C. Dynamically inserting probes and hypotheses about program behavior using a fa-

miliar language

VERDICTS provides automation through contracts, high-level view of the software

through its visualizations, and numerical and statistical aggregate analysis and viewing

through boxplots, correlation matrix, and X-Y plots. Our tests show that when analyz-

ing a large number of method calls, there is a very pronounced di�erence between manual

drudgery of using a modern IDE and using VERDICTS.

VERDICTS was able to show, on average, 236 times more method calls per screen for

control �ow analysis, and data from about 3.5 times more method calls per screen for data

analysis. VERDICTS was on average 23 times faster in helping us analyze method calls, and

136

helped us observe almost three times as many dependable control �ow and data patterns. For

hypothesis veri�cation, VERDICTS required signi�cantly fewer mouse clicks, and veri�ed

our hypotheses against eight times more method calls while taking 28% less time than using

Eclipse.

The advantages of VERDICTS are most pronounced when the program analyzed or

tested has a very high number of method calls. Our experiments show that VERDICTS is

a very e�cient tool to help a developer make sense of and verify dynamic behavior of large

software.

137

Chapter 5

SMT: Semantic Mutation Testing

5.1 Speci�cation-Implementation Concordance andMea-

suring Veri�er Adequacy

5.1.1 Importance of Up-To-Date Speci�cations

Software development is a structured creative process of human-machine communication and

control. The contract between the end user and the software developers is the requirements

speci�cation document, without which, the end users would have to manually verify every

aspect of the implementation. As we stated before, documented speci�cations are central

to software veri�cation and validation, and are of great importance to the tasks of software

comprehension, maintenance and reuse. Software and component functional requirements

often constitutes the main bulk of any requirements speci�cation document. In our research

we also focus on functional requirements, software and component inputs and outputs.

Often, software performs as expected but the documented speci�cations have fallen out

of sync with respect to evolving implementation. Both discovery of missing speci�cations

and corrective maintenance of incorrect speci�cations require measuring the quality of spec-

i�cations, not in terms of accurately representing end user needs, but rather, to answer this

138

question of concordance:

"How faithfully (accurately) does this speci�cation represent the behavior of this

implementation?"

Such a measure can help us discover incompleteness in existing speci�cations with respect

to actively maintained evolving implementation. If implementation exists and works as

expected but the speci�cations are missing and need to be discovered, alternative versions

of (hypotheses for) speci�cations can be compared by this same measure.

Speci�cation-implementation concordance measures adequacy of speci�cation against the

implementation, and can only represent actual end-user need to the degree that the program

is already known to perform correctly as judged by the end user. For component reuse, this

is exactly the quality that we need to measure and improve.

Can we measure speci�cation-implementation concordance just by using these speci�-

cations to verify the software as it is implementated? Although this approach can quickly

reveal false negatives, it cannot reveal false positives:

� False negative (incorrect fail): Software is correctly implemented, but speci�cations

are too strict, and fail software.

� False positive (incorrect pass): Software is incorrectly implemented, but speci�cations

are too lax and pass software.

Even if program under test is validated by users, and the program passes all tests, this

still says nothing about the strictness of functional speci�cations and the adequacy of the cor-

responding oracle. False oracles generated from weak functional speci�cations can generate

false positives and instill a false sense of trust in the program.

This point is easy to observe when we consider the extreme case of maximally incomplete

(maximally lax) empty speci�cation that passes (veri�es as correct) any implementation.

Passing such a speci�cation obviously does not mean the software as implementated is ade-

quate for any purpose, and therefore, this speci�cation is inadequate in verifying any program

139

as well. At the ideal extreme, a strict veri�er would only accept correct outputs from the

program, and would not accept even minor faults that cause small perturbations in the target

program's outputs.

Incompleteness due to missing speci�cations can be a problem even when speci�cations

are recorded as automatic veri�ers for the software, and these veri�ers continue to validate

the implementation. Researchers report that incompleteness of speci�cations can create

subtle change in behavior [12] 1 and can be hard to discover [60].

5.1.2 Human-Language Speci�cations and Automated Veri�ers

Use of human languages in requirements speci�cations documents have caused speci�cation

quality research to put more emphasis on human-centric criteria, mainly for comprehension

and implementation of speci�cations [12] Traditionally, human testers interpret this docu-

ment to verify the program through manual tests or automated tests. The interpretation

stage often reveals shortcomings of human language, such as ambiguity and inconsistency.

Today's full suites of automated tests replace much manual testing, allow agility in soft-

ware development (developer can change code without fear of undetected breakage), and

enable the continuous integration paradigm.

It is practically impossible to evaluate and measure adequacy of speci�cations written in

an ambiguous language. We can eliminate ambiguity if we can convert such speci�cations to

automated veri�ers (passive Oracles). Sometimes, automated veri�ers are in fact the primary

form in which the speci�cations are recorded and maintained. If formal speci�cations are

used instead, they can be used to generate automated veri�ers as well.

Fig.5.1 shows how an automated veri�er checks a program. Instead of memorized test

input-output tuples that constitute a test suite, a veri�er depends on a test input generator.

In this case, the veri�er, together with a set of inputs, is equivalent to a test suite in purpose

and function, except for the possibility that a veri�er may accept multiple outputs for the

1Black, et al [12] show this indirectly, by noting that missing boolean condition mutants of speci�cations
are not easily discovered to behave di�erently from original program by most tests.

140

Figure 5.1: Automated tester, with decoupled veri�er

same input (and therefore may allow nondeterministic behavior).

Compared to a test suite, a veri�er is more generally applicable as it can work with any

input. With a veri�er, we can change the number of test cases quickly by using random

or feedback-directed random [67] input set generation. The veri�er can also be left in the

program for in-�eld veri�cation of the program or component.

5.1.3 Design by Contract

As we have seen in section 3.3.1, Design by Contract (DBC) is a method of speci�cation

and automated (inlined, executable) veri�cation of object-oriented components. DBC is

Bertrand Meyer's answer to the questions and issues of ambiguity and inconsistency that

are prevalent in human language speci�cations [60].

Meyer's DBC speci�cations (called �contracts�) add executable side-e�ect-free checks be-

fore each method to require valid inputs (�preconditions�) and after, to ensure correct func-

tional operation (�postconditions�). Every method must also preserve, upon termination,

the object internal consistency conditions (�object invariants�).

Preconditions and postconditions are popular constructions outside DBC as well. In

UML modeling of object-oriented classes, method behavior can be speci�ed by using object

constraint language (OCL), which also depends on pre- and post-conditions. Z language

for formal speci�cations also declares preconditions and postconditions to abstractly de�ne

operations.

141

Consider this div method, with a human-readable but not automatically testable API

documentation:

/** Divides n by m; m should not be 0. */

int div(int n, int m) { return n/m; }

A partial contract for div may only allow operation with nonnegative n and positive m

values. This is a contract for a partial domain (input value set). We mark preconditions

with @pre and postconditions with @post:

@pre n >= 0 && m > 0

@post $result * m >= n

@post ($result - 1) * m < n

A more general complete contract can easily be derived by requiring these conditions on

absolute values of n and m (leaving only m != 0 as the precondition), as well as requiring

consistency of sign in $result. Di�erent syntaxes and languages can be used for DBC; for

example, UML diagrams use OCL (Object Constraint Language) for such speci�cations.

We use DBC in our experiments, but this can easily be switched with any other form of

automatically veri�able speci�cation.

5.1.4 Test Suite Adequacy

Roman poet Juvenal's latin phrase �Quis custodiet ipsos custodes?�, best translated as �who

watches the watchmen?�, expresses that it may be naive to assume that judges and enforcers

themselves are good.

In software testing, this corresponds to the question �who tests the tester?� For auto-

mated software testing with test suites, the general question becomes �who tests the test

suite?�. This is a question of test suite adequacy, and various test suite adequacy criteria

are proposed to answer this question.

142

Test suite adequacy criteria do not depend on an outside third-party arbiter. Instead, all

test suite adequacy criteria answer this question with �the program (its speci�c implemen-

tation) tests the test suite�. An important distinction is that test suite adequacy criteria

depend on the program's instructions, not only its black-box behavior. Di�erently imple-

mented equivalent-behavior programs may produce di�erent test suite adequacy scores for

the same test suite. Merely using the compiler for the programming language of implemen-

tation is not su�cient; we need to use a separate source code analysis tool speci�c to the

test suite adequacy criterion used.

5.1.5 Speci�cation Adequacy

Speci�cation-implementation concordance is a measure of speci�cation adequacy. Can we

use test suite adequacy criteria to measure speci�cation-implementation concordance as well?

Two popular approaches for test suite adequacy are:

� Code coverage criteria (various criteria)

� Mutation Testing (Mutation Analysis)

Code coverage criteria (such as statement coverage, branch coverage, and multiple con-

dition coverage) only reveal input variability and how inputs exercise various statements,

decisions, branches and blocks of the program, but they completely ignore program's out-

puts and veri�er's pass/fail verdict. In fact, code coverage criteria does not fully evaluate

any test suite either; they only evaluate the set of test inputs, while completely ignoring the

corresponding expected outputs.

In �g.5.1, code coverage criteria would evaluate the test input generator with respect to

the target program while completely ignoring both the program's output and the veri�er.

Code coverage criteria scores would not change at all if we replaced the veri�er with an

empty veri�er that passes any implementation. Code coverage criteria therefore cannot be

used to expose false oracles, weak functional speci�cations and veri�ers.

143

Mutation Testing [65] (MT, �traditional MT�) subsumes many types of code coverage

criteria [66] MT also depends on the pass/fail judgment of the veri�er, so it may potentially

be used to measure the adequacy of veri�ers and the functional speci�cations they represent.

Various researchers report a number of serious shortcomings of MT. In section 5.4, we

will examine some of their �ndings, as well demonstrate some of the problems with a small

example.

5.1.6 Measuring Speci�cation Adequacy with Semantic Mutation

Testing

Mutation testing traditionally mutates keywords and symbols of the source code, often with-

out considering how dramatically such a mutation may change behavior. We consider tradi-

tional mutation testing �syntactic� mutation testing.

In [14] , we introduced Semantic Mutation Testing (SMT) to measure component

speci�cation-implementation concordance. SMT borrows ideas from traditional MT but

controls and limits the perturbation of variable values that collectively hold the program

dynamic state, so that mutations generate a small variation in the overall program behav-

ior. In black-box SMT, error is injected only to the inputs and outputs of the program. In

white-box SMT, error can be injected in any expression that evaluates a value that can be

mutated so long as such a mutation cannot cause the program to crash.

As we do not introduce human validation, the adequacy we can measure represents

veri�er-implementation concordance. When automated veri�ers are used as the primary

form of speci�cation, or when primary speci�cation is correctly converted to a veri�er, SMT

adequacy score also measures the adequacy of the speci�cations.

In section 5.2, we de�ne a subsumption relation (a partial order) for functional speci-

�cations and veri�ers. In section 5.3, we use this subsumtion relation to express desired

requirements for a proper speci�cation/veri�er adequacy score. Section 5.4 introduces tra-

ditional MT and examines its shortcomings. In section 5.5, we introduce our Semantic MT

144

approach, explain the black-box and white-box SMT, and discuss why and how we proac-

tively use data �ow analysis to avoid crashes due to corrupted internal state.

5.2 Functional Speci�cations and Veri�ers: A Subsump-

tion Relation

5.2.1 Functional Speci�cation and Veri�er Adequacy

Consider program P : I → O, de�ned as a function from the set of all possible valid inputs

I, to the set of all possible valid outputs O. For the same set of inputs and outputs, there

can be multiple programs (implementations). Multiple such programs may have the correct

behavior with respect to a given set of requirements.

A veri�er for functional requirement speci�cations, as seen in �g.5.1, con�rms that for

given inputs, program's outputs represent expected behavior.

Mathematically, a veri�er is a predicate, a Boolean-valued function from the set I × O

to {true, false}, where true represents verifying that the outputs conform to functional

requirements for the given inputs. Everything we de�ne below for veri�ers also holds for the

functional speci�cations that the veri�ers represent.

For given input and output sets I and O, we will denote the set of all possible veri�ers

with VI×O. In the following, we are only concerned with comparing veri�ers from the same

set VI×O.

As an example, consider a function that returns the double-valued average of values

(output: avg) for an integer array (input: ar), implemented in a programming language L.

I is the set of all possible integer arrays for L (depends on the integer type for L), O is all

possible double values that averages of such integer arrays could produce. For input array

ar and returned value avg, we can have alternative veri�ers V1 and V2 which implement and

imply alternative functional speci�cations:

145

� V1: avg is the average of values in ar

� V2: avg is no less than the minimum value in ar

In this case, V1 and V2 are comparable as average value cannot be less than the minimum

value for a data set. V1 is a more strict veri�er compared to V2. In the following, we will de�ne

a strict ordering where we formalize this as �strict subsumption� relation. In this example,

we observe that �V1 strictly subsumes V2" (and the functional speci�cation implemented by

V1 strictly subsumes the functional speci�cation implemented by V2). Mathematically we

will express this as V1 > V2.

The concept of a subsumption relation is also used to compare test adequacy criteria

[66] and both subsumption and strict subsumption relations were de�ned in [44] to compare

mutants of a program.

5.2.2 A Formal De�nition for Subsumption Relation Between Ver-

i�ers

De�nition: Where P: I → O is a program and V: I × O → {true, false} is a veri�er, we

de�ne �V accepts/passes P� as:

pass(V, P) := ∀x ∈ I : V (x, P (x)) = true

If the veri�er V does not pass program P, we will express this with fail(V, P):

fail(V, P) := ∃x ∈ I : V (x, P (x)) = false

De�nition: Veri�er V1 is subsumed by veri�er V2 (expressed as V1 ≤ V2) i� ∀x ∈ I, y ∈

O : V2(x, y) =⇒ V1(x, y). Equivalently, we can also use V2 ≥ V1, which can be read V2

subsumes V1.

146

Even though we will conform to the traditional use of the symbol ≤ to de�ne an �is

subsumed by� partial order (and later, a lattice) on veri�ers, the dual, ≥ is conceptually

simpler and easier to read as seen in the de�nition above.

For V2 ≥ V1, we have:

(∀x ∈ I, V2(x, P (x)) = true) =⇒ (∀x ∈ I, V1(x, P (x)) = true)

Therefore:

pass(V2, P) ∧ V2 ≥ V1 =⇒ pass(V1, P)

V2 is more strict than, or at least as strict as V1, and the ≥ symbol represents that V2 is a

better (or at least equivalent) veri�er for a program P as long as we have pass(V2, P).

De�nition: Veri�er V1 = V2 if V1 ≤ V2 and V2 ≤ V1.

Note that this de�nition of equivalence depends on evaluation of V1 and V2 for all possi-

ble inputs and outputs. There may be di�erent but equivalent expressions of speci�cations

and di�erent but equivalent implementations of veri�ers. We are not concerned with sym-

bolic construction, syntax and internal structure of speci�cations and veri�ers; we are only

concerned with the semantics, evaluation and behavior.

5.2.3 Strict Subsumption of Veri�ers

De�nition: Veri�er V1 is strictly subsumed by veri�er V2 (expressed as V1 < V2) i� V1 ≤

V2 ∧ V1 6= V2. Equivalently, we can express this with V2 > V1 and state that V2 strictly

subsumes V1.

As V1 ≤ V2, the only way to have V1 6= V2 is to have V2 � V1. This implies that:

∃z0 ∈ I×O : ¬(V1(z0) =⇒ V2(z0))

∃z0 ∈ I×O : V1(z0) ∧ ¬V2(z0)

147

In terms of the program's inputs and outputs, this means that there is at least an input x0,

and an output y0 for which V1(x0, y0) is true but V2(x0, y0) is false.

Consider the case V1 < V2 for a program P with pass(V1, P). There must be some input

x0, and output y0 for which V1(x0, y0) is true and V2(x0, y0) is false. We can create a program

P' that corresponds to:

P'(input):

if (input == x0)

then return y0;

else return P(input);

This program only di�ers from P in returning y0 for x0. We will now have pass(V1, P'),

but fail(V2, P').

Can there be another P� that causes the reverse; fail(V1, P�) and pass(V2, P�)? As V1 ≤ V2,

pass(V2, P�) =⇒ pass(V1, P�) for any program P�, so there is no example to the contrary.

Therefore V1 < V2 implies that V1 is strictly less discriminating than V2, as it cannot detect

that a program P' behaves di�erently from P whereas V2 can.

5.2.4 Least Upper Bound (Supremum) And Greatest Lower Bound

(In�mum)

Next, we would like to show that in the set of veri�ers VI×O, any two veri�ers have a least

upper bound (supremum) and a greatest lower bound (in�mum).

We will �rst de�ne our join and meet operators, ∧ and ∨ 2, then show that these operators

actually give us the supremum and in�mum for our partial order. In mathematical terms,

this would allow us to declare that our partial order is a lattice.

2Traditionally, partial order, join and meet symbols are (≤, ∨, ∧). We instead use (≤, ∧, ∨) here, and
the dual lattice with reverse partial order is (≥, ∨, ∧). Use of reverse symbols stems from our desire to place
more strict veri�ers higher in the partial order and the lattice.

148

De�nition: Given V1, V2 ∈ VI×O, we de�ne join operator for veri�ers, ∧, as universally

quanti�ed logical and:

V = V1 ∧ V2 ⇐⇒ ∀z ∈ I×O : V (z) = V1(z) ∧ V2(z)

To prove that our join operator indeed conforms to what is expected of a join operator

for the partial order ≤, we need to prove that, for V3 = V1 ∧ V2, we have:

� V1 ≤ V3

� V2 ≤ V3

� ∀V ∈ VI×O : (V1 ≤ V) ∧ (V2 ≤ V) =⇒ V3 ≤ V

From P ∧Q =⇒ P , we have:

∀z ∈ I×O : V1(z) ∧ V2(z) =⇒ V1(z)

∀z ∈ I×O : V3(z) =⇒ V1(z)

V1 ≤ V3

As ∧ is commutative, the same holds for V2:

V2 ≤ V3

For the last requirement of being a join (that this is actually the least upper bound),

note that, in general, we have:

(P =⇒ Q) ∧ (P =⇒ R) =⇒ (P =⇒ (Q ∧R))

149

Speci�cally, for any V ∈ VI×O, we have:

∀z ∈ I×O : (V (z) =⇒ V1(z)) ∧ (V (z) =⇒ V2(z)) =⇒ (V (z) =⇒ (V1(z) ∧ V2(z))

∀z ∈ I×O : (V (z) =⇒ V1(z)) ∧ (V (z) =⇒ V2(z)) =⇒ (V (z) =⇒ V3(z))

(V1 ≤ V) ∧ (V2 ≤ V) =⇒ (V3 ≤ V)

De�nition: Given V1, V2 ∈ VI×O, we de�ne meet operator for veri�ers, ∨, as universally

quanti�ed logical or:

V = V1 ∨ V2 ⇐⇒ ∀z ∈ I×O : V (z) = V1(z) ∨ V2(z)

To prove that our meet operator indeed conforms to what is expected of a meet operator

for the partial order ≤, we need to prove that, for V4 = V1 ∨ V2, we have:

� V4 ≤ V1

� V4 ≤ V2

� ∀V ∈ VI×O : (V ≤ V1) ∧ (V ≤ V2) =⇒ V ≤ V4

From P =⇒ (P ∨Q), we have:

∀z ∈ I×O : V1(z) =⇒ (V1(z) ∨ V2(z))

∀z ∈ I×O : V1(z) =⇒ V4(z)

V4 ≤ V1

As ∨ is commutative, the same holds for V2:

V4 ≤ V2

150

The third requirement for meet is that it indeed gives us the greatest lower bound.

Observe that logical operator ∨ distributes over ∧:

(P ∨R) ∧ (Q ∨R) ≡ (P ∧Q) ∨R

Using P' = ¬ P and Q' = ¬ Q, and using P =⇒ Q ≡ ¬P ∨Q we have:

(P ′ =⇒ R) ∧ (Q′ =⇒ R) ≡ (P ′ ∨Q′) =⇒ R

Speci�cally, ∀V ∈ VI×O , we have:

∀z ∈ I×O : (V1(z) =⇒ V (z)) ∧ (V2(z) =⇒ V (z)) =⇒ ((V1(z) ∨ V2(z)) =⇒ V (z))

∀z ∈ I×O : (V1(z) =⇒ V (z)) ∧ (V2(z) =⇒ V (z)) =⇒ (V4(z) =⇒ V (z))

(V ≤ V1) ∧ (V ≤ V2) =⇒ V ≤ V4

Therefore:

� Partial order ≤, de�ned over veri�ers is a lattice with the join operator ∧ and the meet

operator ∨ de�ned above

� Any two veri�ers V1 and V2 have:

� A supremum (least upper bound) V3 = V1 ∧ V2

� An in�mum (greatest lower bound) V4 = V1 ∨ V2

5.2.5 Bottom Element, Top Element, and Complete Veri�er for a

Program P

Next, we will de�ne and examine bottom and top elements in our set of veri�ers VI×O, with

respect to partial order ≤; these are the least and most strict veri�ers compared to all other

151

veri�ers.

De�nition: Let us de�ne two veri�ers >I×O that is always false, and ⊥I×O that is always

true, for any program input and output:

∀z ∈ I×O : >I×O(z) = false,⊥I×O(z) = true

For any proposition P, we have false =⇒ P and P =⇒ true. By universally quantifying

these for any z in I × O, we can easily show that these two veri�ers, >I×O and ⊥I×O , are

the top and bottom elements of the lattice (VI×O, ≤) with partial order ≤, and the join and

meet operations de�ned earlier:

∀V ∈ VI×O : ⊥I×O ≤ V ∧ V ≤ >I×O

The top and bottom element conceptually correspond to most strict and most lax veri�ers

and speci�cations. Speci�cally:

� >I×O is always false. For any program P, we have fail(>I×O, P). Program P is not

allowed to do anything.

� ⊥I×O is always true. For any program P, we have pass(⊥I×O, P). Program P is allowed

to do anything; it is not required to do anything speci�c.

Neither top nor bottom element is useful for verifying an actual program. For any program

P, the least strict valid veri�er (one that passes P) is the bottom element. But top is not the

counterpart; it is not the most strict valid veri�er as it does not pass any program P. What

then, is the most strict veri�er for a given program?

De�nition: For a given program P, consider the set of all veri�ers that pass P. We de�ne

VP , the complete veri�er for P as the supremum (least upper bound, join) of all veri�ers

152

that pass P. Then, any veri�er V that passes P must have V ≤ VP :

∀V ∈ VI×O : pass(V, P) =⇒ V ≤ VP

5.3 Measuring Veri�er Adequacy

5.3.1 Can Veri�er Distinguish Between Correct and Faulty Imple-

mentations?

A veri�er for a program can often be written in the same programming language as the

program. For example, consider a function fn that takes one object of type Cls, and returns

an integer value, written in a C-like object-oriented language such as Java or C++:

int fn(Cls obj) {

int n = obj.length();

return n * n;

}

A veri�er for such a function would take both the inputs and the return value to give a

pass/fail judgement:

boolean verify_fn(Cls obj, int ret) { ... }

Consider these three variants of fn that are improperly implemented:

int fn1(Cls obj) { int n = obj.length(); return 0; }

int fn2(Cls obj) { int n = obj.length(); return n; }

int fn3(Cls obj) { int n = obj.length(); return n + 3; }

A good veri�er should pass fn, but fail fn1, fn2 and fn3.

This example shows clearly what we stated before: Code coverage criteria cannot be

used to compare veri�ers. The source code of improper implementations is the same as

153

properly implemented function except for the returned value. In any function, even when

the same exact decisions are made, same branches are taken and code blocks and same set

of instructions are evaluated, the data, and the value returned can be di�erent.

Traditional MT can be used to evaluate verify_fn by creating mutants of fn that verify_fn

should not pass. We will show in section 5.4.7 that MT may create mutants that di�er wildly

from the original program. This makes it hard to discover whether our veri�er can detect

subtle changes in program behavior. In section 5.5, we will explain our technique for creating

subtly mutated test runs for fn. In our tests, we found two variants of SMT to be better

than MT in comparatively evaluating adequacy of competing veri�ers for a program.

To be able to compare MT and SMT, we need to �rst examine the more general question:

How can we evaluate quality of approaches to create a veri�er adequacy score? Next section

tries to create a very basic set of baseline requirements for veri�er adequacy score.

5.3.2 Veri�er Adequacy Score: Requirements

Veri�er adequacy score depends on the program P0 that is being veri�ed. With respect to

the ≤ ordering of veri�ers, the bottom element ⊥I×O is always true for any program input

and output, checks nothing, and accepts any program. Compared to all other veri�ers that

pass the program, bottom element is the least discriminating veri�er for any program P0,

and should get a score 0.0.

As we saw before, no program has as its best veri�er the top element >I×O, which fails

any program. As an over-zealous veri�er that fails the program, >I×O should probably also

get a score of 0.0. This is a fail fast scheme, that allows quick realization when veri�er is

evolved to be too strict for the program at hand.

The most strict veri�er that passes P0 is the complete veri�er de�ned earlier, VP0 , which

is the supremum of all veri�ers that pass P0. VP0 should get adequacy score 1.0.

Now we can state what we expect from a good veri�er adequacy score with respect to

a given program P0 (score(P0, V)). We can only compare veri�ers that are compatible with

154

this program, so if P0 is de�ned from I to O, then we can compare scores for veri�ers de�ned

in VI×O. The core requirements are:

1. Adequacy score should fully use range 0.0 - 1.0, so the bottom element (the empty

veri�er) ⊥I×O should get score 0.0: score(P0, ⊥I×O) = 0.0

2. Most strict veri�er that still passes P0, the complete veri�er VP0 de�ned earlier, should

get 1.0:

pass(VP0 , P0) ∧ ¬∃V : (V > VP0 ∧ pass(V, P0)) =⇒ score(P0, VP0) = 1.0

3. More strict veri�ers that pass P0 should get higher scores; strict subsumption implies

strictly better score:

V1 > V2 ∧ pass(V1, P0) =⇒ score(P0, V1) > score(P0, V2)

4. Any veri�er V that fails P0 (and this includes the top element >I×O) should get the

score 0.0 (or fail with an error message):

fail(V, P0) =⇒ score(P0, V) = 0.0

The third requirement that strict subsumption implies strictly better score, together with

�rst and second requirements also means that if a veri�er that passes the program is not

the bottom element (not always true), and not equivalent to complete veri�er in behavior,

it should get a score in the open range (0.0, 1.0):

� V 6= VP0 ∧ pass(V, P0) =⇒ score(P0, V) < 1.0

� V 6= ⊥I×O ∧ pass(V, P0) =⇒ score(P0, V) > 0.0

155

As is common with various test suite adequacy scores, veri�er adequacy scores also are

not comparable across metrics (or even, between programs with di�erent I×O), and a single

score of 0.1 or 0.9 in one method of scoring does not mean anything. Any strictly monotonic

mapping of [0,1] to [0,1] would preserve all these requirements. Speci�cally, distance of

adequacy score from 1.0 need not correlate linearly with e�ort that remains in improving

the veri�er to get a score of 1.0.

Beyond strict subsumption, we may also like to require that a veri�er that is harder

to satisfy get a higher score, but this requirement is not easy to de�ne as it depends on

what we consider to be important. We can consider all of I×O equally important, consider

use cases (or trace actual behavior) to create probability distribution for I × O, or de�ne

input domains and consider values near domain boundaries as more important to verify by

our veri�er. Each approach gives di�erent weight to di�erent values in I × O, and would

produce di�erent orders for veri�ers. Although we attempt to order the veri�ers in our

experiments in perceived strictness, our order presumes all of I × O to be equally likely /

equally important, which need not be implicitly assumed/followed by the methods we test

(MT and SMT methods).

5.4 Traditional (Syntactic) Mutation Testing

5.4.1 MT Injects Small Syntactic Faults

We consider the traditional Mutation Testing (MT) as per [65] to be syntactic MT. More

appropriately called �mutation analysis� (of test suites), this method does not test software,

but rather provides a test criterion to evaluate test suite adequacy (quality), similar to

various code coverage criteria.

For an original program, P with test cases T1, T2, T3, . . . , MT uses a prede�ned set of

mutation operators (such as `/' → `+') to create �mutants� M1, M2, M3, . . . which are

all possible single-mutation mutated versions of P. Mutants are then compiled and checked

156

against the test suite. If mutant Mi does not pass the test suite (if any test case Tj fails),

we consider mutant Mi killed. Otherwise mutant remains �live�.

A mutant is semantically equivalent to P if it always behaves the same way as P for any

input. No proper test (that passes correctly implemented program) could kill an equivalent

mutant. Mutation adequacy score of a test suite is the number of mutants killed by the test

suite divided by the number of mutants not equivalent to original program P. If this score is

1.0 (all non-equivalent mutants are killed) the test suite is called �mutation adequate�.

5.4.2 MT Has High Computational Complexity

Due to the need for compilation of each mutant, MT has been prohibitively expensive. O�utt

and Untch [65] state that suggested solutions to time complexity problem of MT falls under

the general categories of �do fewer, do smarter, and do faster�. So far, there is no universally

agreed-upon solution to the time complexity problem of MT.

As a smarter approach to compiling mutants, Untch's �Mutant Schema Generation� ap-

proach [78] generates a single meta-mutant program that contains all mutants and is compiled

only once. In white-box SMT (see section 4.2), we also do a single transformation to generate

a meta-mutant containing all mutations. In our current implementation, we use bytecode

manipulation and avoid compilation altogether.

5.4.3 A Major Hurdle: Semantic Equivalence of Mutants

As an example of semantic equivalence, these two loops behave the same way so long as i is

not varied unpredictably from within the loop:

for(i=0; i < 10; i++) ...

for(i=0; i != 10; i++) ...

Semantic equivalence of arbitrarily complex programs is undecidable; we cannot generally

know if Mi ≡ P. Proving that a mutant behaves the same exact way as the program under

157

all circumstances is a tedious and error-prone manual task. Grün et al [36] report that for

one target program they examined, 40% of the mutations turned out to be equivalent, and

detecting equivalence for a single mutant took 15 minutes. In order to automate MT, O�utt

and Untch suggest skipping mutant equivalence testing for some hard-to-analyze mutants

[65]. But inadequacy of test suite is only discovered by mutants that pass all existing tests,

and so, are suspected to be equivalent. If we skip equivalence testing, any test suite is

�mutation adequate�.

Most researchers quote seminal work by DeMillo in 1978 [28] as having started the �eld

of MT. Even though programs mutated were orders of magnitude smaller, DeMillo, suggests

but does not state that he did the manual equivalence checking of live mutants for the short

example of Hoare's FIND function. The numbers show that DeMillo did not really check

for semantic equivalence: He postulates at one point that the 14 live mutants for the �nal

reduced test suite may be equivalent, but there cannot be more than 10 equivalent mutants

because an earlier full test suite had only 10 live mutants left.

As equivalence is in general undecidable, and prohibitive in practice even for short pro-

grams, in traditional MT of nontrivial programs:

� Actual number of non-equivalent mutants is never truly known.

� Mutation adequacy score can only be approximated; it cannot be calculated.

5.4.4 Are Mutation Operators Competent?

There is a general acceptance in MT research that MT mutations represent potentially

possible errors competent programmers may make. At the same time, MT researchers do

not try to make mutation operators represent possible errors a competent developer may

make, but rather try to use a large enough set of simple syntactic mutations to have a good

battery of tests, ignoring the question whether some mutation operators may almost always

produce dumb mutants.

158

For example, replacing one arithmetic operator with another or negating the whole con-

dition in an if statement may change behavior for every possible input, whereas replacing

< with <= or removing a subcondition within branching condition often keeps behavior

unchanged for a large subset of inputs.

What is more, many mutation operators that are speci�cally designed to emulate and

subsume various code coverage criteria have no place in normal programs. Consider, for

example, a �fail� statement used merely to check statement coverage.

There is one way to measure whether a mutant generated by using one of the mutation

operators can be considered relatively �competent� compared to the original program: If a

mutant fails a signi�cant number of test cases in our test suite, it di�ers too much in behavior

compared to the original program, and therefore the mutation does not represent an error

a competent programmer would miss, especially with today's availability of automated unit

testing tools. But MT adequacy metric does not require measuring how much mutants di�er

in behavior compared to the original program.

If a mutant fails most of the test cases, its use in adequacy measure falsely in�ates the

metric. MT researchers never report (and in fact, never measure and never know) what

proportion of mutants fail a majority of the test cases, so they do not know how competent

a mutation operator or a mutant is.

As we will see in the next section, a rather large percentage of mutants (generated for

programs with di�erent sizes using common MT mutation operators) actually fail all tests,

and are therefore maximally incompetent.

5.4.5 "All Mutants Are Equal" Myth and "Dumb Mutants"

Jia and Harman [44] highlight and argue against some serious faulty assumptions (�myths�)

of MT, as well as analyze and observe some problems with traditional MT in their higher

order mutations (multiple syntactic mutations per mutant program) paper. These faulty

assumptions are rarely stated, but often presumed correct in MT research.

159

Jia and Harman's �All Mutants Are Equal (AME) Myth� states that all mutated versions

of a program are equally useful. This is easy to disprove: Many mutants fail 100% of the

test cases. Jia and Harman call these �dumb mutants�.

How prevalent are such dumb mutants? Jia and Harman tested MT for 10 programs of

very di�erent sizes, from 50 - 6,000 LOC, with 60 - 13,498 test cases. For these programs,

6% - 75% of all mutants generated were dumb mutants. Considering all mutants generated

for all programs, 39,058 of 94,493 3 mutants generated were dumb mutants; an average ratio

of 41% of all mutants failed all tests.

For dumb mutants, any one test case (instead of 60 - 13,498 test cases used in Jia &

Harman's test programs) is a mutation-adequate test suite all by itself! By appearing in

both the numerator and the denominator, dumb mutants in�ate the mutation adequacy

score towards 1.0 and give a false sense of test suite adequacy.

Each mutant contributes equally to MT adequacy score, but many other researchers also

suggest not every mutant is created equal.

Two recent papers [63] [77] use sampling from the population of all mutants (a �do

fewer� approach) to both reduce the computational complexity and discover the most useful

mutation operators with respect to a�ecting mutation adequacy score. [77] shows that good

mutation operators introduce subtle or small changes, and for some values may evaluate to

the same result (do not cause a state change for every input that reaches the mutation site).

[63] shows that di�erent mutation operators have very di�erent level of correlation with the

overall MT adequacy score, and clearly, should not be considered equivalent.

Clearly not every mutation operator and not every mutant should be considered equal.

Best mutants do not always change program internal state, and change program state by

a small amount when they do. Such mutants better highlight limitations of the unit tests

3Jia & Harman have a typo in their table 2. The last plot of �g 5, shows that the largest program they
tested, �space�, actually has 26,401 dumb mutants rather than 26,401 potentially equivalent mutants and
5,378 dumb mutants. Our totals are consistent with their �g 6, which shows totals across all programs. If
we disqualify and skip �space�, which has 13,498 test cases and 68,843 mutants, we instead get a rate of 49%
dumb mutants.

160

(and the limitations of the veri�er within the unit test). Our alternative method speci�cally

focuses on keeping the disruptions to program state held in program variables to a minimum.

5.4.6 Semantic versus Syntactic Faults

Another myth de�ned by Jia and Harman is the �Syntactic Semantic Size (SSS) Myth,� which

states that programs generally have relatively few minor syntactic di�erences from a correct

version. This is falsely derived from DeMillo's �Competent Programmer Hypothesis� [29]

which states that a program written by a competent programmer will di�er from a correct

version by relatively few faults. But semantic di�erences from correct behavior (faults) are

not necessarily caused by few syntactic di�erences; di�erent algorithms, data structures and

much refactoring may be needed for a small change in behavior.

Jia and Harman strongly argue that �few faults� (attributed to competent programmers

and almost-correct programs) should refer to semantic operation/behavior similarity, and

cannot be emulated by single-syntactic-change mutants. They show, through their experi-

ments, that some multiple-syntactic-mutation mutants change behavior of the program more

subtly than their constituent mutations do (�strict subsumption�). Such �higher order� mu-

tants improve the quality of MT as compared to having each mutation in a separate mutant.

When MT was �rst proposed in 1978 [28] programs were signi�cantly shorter, and were

often written in a language that is intended to be at least partially readable by end users. The

software development practices and computing machinery added signi�cant delays between

development and testing of a program. Because of these reasons, code reviews conducted by

developers and end users were an important part of program veri�cation.

Today, the computing machinery and the �eld have changed signi�cantly, and faster

machines now allow dynamic testing to often be a major component of testing. A large pro-

portion of single-syntactic-di�erence mutants dramatically change program state for almost

any input. Such mutants would not survive even a small amount of testing, and could not

survive in competently written programs today.

161

5.4.7 Beyond "Dumb" Mutants: A Simple Example

SSS myth and �mutation operators are competent� assumption can be dispelled with a simple

example 4. Consider this method and its partial (incomplete) contract:

/* int n0 = abs(n);

* @post $result <= 2*n0

* @post (abs(n) > 10 ||

* $result >= max(n0-2, 4*n0-20))

*/

int sqr5(int n) {

if (abs(n) < 10) return n * n / 5;

else return 20;

}

This is a somewhat strict speci�cation that only allows values within [max(|n|-2, 4|n|-20),

2|n|] while |n| ≤ 10. The actual outputs from this function compared to our contract's min

and max requirements is shown in table 5.1.

Table 5.1: Input, output and contract limits for sqr5(int n)

| n | 0 1 2 3 4 5 6 7 8 9 10
sqr5(n) 0 0 0 1 3 5 7 9 12 16 20
max 0 2 4 6 8 10 12 14 16 18 20
min -2 -1 0 1 2 3 4 8 12 16 20

Consider the very commonly used MT mutation operation of replacing an arithmetic

operator in {*, /, %, +, -} with another. Fig.5.2 shows original function and eight mutants

together with our requirements (contract). In �g.5.3, we see the values tabulated, and failure

of contract highlighted in reverse video (black background). Of the eight mutants, only one

4Even though there are advantages to applying MT to large programs, it is much harder to examine and
understand the utility and quality of mutants used by traditional MT in a large program. Larger programs
have nonlinear behaviors and too many mutants to be examined closely.

162

(12.5%), n*n+5, fails all tests and is a dumb mutant. Even the two mutants that are always

0 do not fail all tests.

Figure 5.2: sqr5(int n) method (n*n/5) and eight mutants, compared to our somewhat strict
requirements speci�cations (our contract, in white background)

Figure 5.3: sqr5(int n) method (n*n/5) and eight mutants, showing contract failures in
reverse video (black background). Dumb Mutants and the low rate of mutants passing tests
is shown as well.

Mutants perform very poorly, and almost none of the mutants look like �a program

written by a competent programmer that di�ers from a correct version by relatively few

faults�. For n=10 where the correct output is 20, the output error for eight mutants are {-8,

-12, -20, -20, -20, +75, +85, +480}.

A competently written program with few faults should pass most of the tests. Instead,

for nontrivial test cases with n in 3..10, our mutants, on average, pass only 17.2% of the

tests each, and for n in 4..10, pass only 12.5% of the tests. For n in {8, 9, 10}, there is

no mutant that passes our contract. Any one of these three test cases kills all mutants, so

163

MT would consider a test suite with a single test case (for n = 8, n = 9 or n = 10), to

be a mutation-adequate test suite, able to fully test this function, even though sqr5 is an

integer-truncated quadratic function in n = -10..10.

Jia & Harman [44] de�ne dumb mutants as those mutants that fail all tests. Averaged

over a wide range of experiments, Jia and Harman have 41% dumb mutants. This is an

extremely high number, and yet, the remaining 59% of mutants may still be quite dumb.

Consider these questions:

� How many mutants are constant-valued or otherwise essentially dumb, yet are not

considered dumb because they pass a trivial baseline test?

� How many more of Jia & Harman's single-mutation mutants fail all but one test, or

all but a few tests?

� What percentage of nontrivial tests (tests excluding trivial tests) do mutants pass on

average?

If mutants are similar to programs written by competent programmers, and they di�er from

correct version by relatively few faults, on average, they should pass a high percentage of

nontrivial tests.

In our test, we have only one dumb mutant out of eight mutants (12.5%). But our

mutants are not very bright on average: Any mutant, on average, fails 69% of all tests (n

= 0..10), and 82.8% of nontrivial tests n = 3..10 (where output = 0 is not a pass). Two of

the eight single-mutation mutants always return 0, and yet, they pass the test case of (0, 0)

and so are not �dumb mutants� as per Jia & Harman. Two-mutation mutants are worse; 10

of 16 are constant-valued. Clearly, few syntactic di�erences do not produce programs with

�relatively few faults.�

The presence of constant-valued and dumb mutants is a strong argument against consid-

ering each mutant equal in calculating (and therefore in�ating, through dumb mutants) the

mutation adequacy score. In�ated adequacy score gives a false sense of security.

164

Most importantly, MT adequacy score should never be 1.0 for an inadequate test suite.

For sqr5, some test suites with a single test case each (for example, sqr5(10) == 20) were

found mutation-adequate for sqr5. Clearly, a single point cannot possibly start to explain,

predict, thoroughly test or fully exercise a function that is quadratic for n in -10..10. Any

line or curve that passes through (10,20) would be considered correctly implemented by this

MT-adequate test suite.

5.5 Semantic Mutation Testing

5.5.1 Semantic Mutation Testing (SMT) Injects Nondeterministic

Semantic Faults

Figure 5.4: Black-box SMT only changes inputs and outputs, while white-box SMT may
change the program or component at multiple sites.

Semantic mutation testing (SMT) is a fault injection method that introduces in-

put/output (black-box) or internal (white-box) semantic state faults while a program P is

being tested or veri�ed against speci�cations. While the black-box variant does not change

the program, white-box variant may change the program at multiple sites, as seen in �g.5.4.

To make the faults small, we use nondeterministic random errors with a controlled standard

deviation. To check issues of dependency on multiple errors, we inject faults in multiple

locations, each with a very small probability, while assuring the behavior observed from out-

puts has changed. Compared to Untch's [78] meta-mutant mentioned above, we also create

only one mutated program, but we do not selectively toggle mutation sites to leave only

165

one active. During a single execution, each mutated location in our mutated program may

introduce a small fault.

Analysis of syntactic MT examines e�ects of mutation on dynamic behavior of the pro-

gram. DeMillo and O�utt's �necessity� condition [29] (and �infection�, in Voas's PIE analysis

[80]) holds when mutation/syntactic change causes a program state/data change. In SMT,

we focus on necessity/infection caused by multiple mutations, but also attempt to limit the

magnitude of program state change to have small semantic defects in our mutants.

For SMT, a mutant is not a mutated program, but rather, one recorded execution of the

mutated program. Instead of verifying against a test suite as done in MT, we verify the

mutant execution using the veri�er. As we have a single randomized mutant with possibility

of multiple concurrent mutations, each execution can be quite di�erent in behavior.

SMT adequacy score of a veri�er that passes P is the number of mutants (mutated

executions; mutant test cases) not killed by the veri�er divided by the number of non-

equivalent mutants. Veri�ers that fail P are disquali�ed, and get a score of 0.0. Due to

randomized nature of mutated program, we need to run a large number of tests (multiple

times per test input) to get a stable adequacy score.

Table 5.2 compares MT against two variants of SMT, black-box SMT (SMTb) and white-

box SMT (SMTw). Note that, SMTb does not mutate the program at all, and SMTw creates

a single mutated version of the program. SMT creates a score based on number of mutant

test cases that the veri�er passes.

Even though equivalence of arbitrary programs for all possible inputs is undecidable,

equivalence for one mutated execution (mutant) is easy to check: If the output of mutant

Mi for the test case Tj is the same as the output of P, mutant is equivalent, and could not

possibly be killed by any speci�cation/veri�er. This means, unlike syntactic MT adequacy

score, SMT adequacy score can always be calculated.

166

Table 5.2: Comparison of traditional Mutation Testing (MT) against black-box SMT (SMTb)
and white-box SMT (SMTw). Here, we use == comparison for data, but equivalence of
programs under all inputs is shown with ≡, and is generally undecidable.

Method MT SMTb SMTw
Mutated Prog Mi (mutant) P (original prog) M (composite)
Passed Case P(Ij) = Oj V(Ij, Oj) V(Ij, Oj)
Mutant Case Oj' = Mi(Ij) Ij' = mutated Ij Oj' = M(Ij)

Oj' = P(Ij') <Ij, Oj'> is mutant
Oj� = mutated Oj

<Ij, Oj�> is mutant
Test Oj == Oj' ? V(Ij, Oj�) ? V(Ij, Oj') ?
Equivalent? Mi ≡ P ? Oj� == P(Ij) ? Oj' == P(Ij) ?

(undecidable)

5.5.2 White-Box SMT

In white-box semantic mutation testing, errors can be introduced at any place where Java

stack machine has values in its stack (expression stack). For example, the simple expression

a + b - c has �ve spots for mutation: When local variables a, b, and c are read, and when

expressions (a+b) and (a+b-c) are calculated. All �ve of these values may be mutated at

the same time, but the probability of each mutation being nonzero is quite small.

In white-box SMT, a single composite mutated program (�meta-mutant�) is generated

to introduce random errors in program dynamic state. In our current implementation, this

is done by Java bytecode manipulation (done only once per class), and does not require

recompilation of class. Each execution with the same inputs gives us a slightly di�erent test

case. Our mutated program is nondeterministic, and cannot be equivalent to the original

program so long as it contains at least one reachable mutation. In SMT, we do not talk

about mutant programs, but rather, mutant test cases. A mutant test case is de�ned by

inputs and the mutation decisions made in one execution of the program.

As there are many sites for mutation, if the probability of state change per mutation site

is not very small, even a short program can quickly accumulate a large number of mutations

(especially within loops) and deviate signi�cantly from the original program's semantics.

167

We control the standard deviation of our random value generator to limit the deviation in

program state space.

5.5.3 Data Flow Analysis for Crash Prevention

Sometimes, even though mutations keep the syntax of the program intact, they may cause

signi�cant semantic problems. Our experiments revealed that program crash caused by array

index out of bounds exception is a common problem when random errors are introduced in

integer values in programs. Similar to deadlock handling, we can logically prevent, dynami-

cally avoid, or detect and recover from such critical faults.

We currently use crash prevention, which requires some static data �ow analysis. Even

though data �ow analysis is a white-box approach, there are advantages to using it even while

doing black-box fault injection. Alternatively, to dynamically avoid or recover properly, we

would need to instrument the implementation (to check and �x every array index access, for

example). Traditional MT employs what could be termed the �ostrich approach�, of ignoring

the problem, letting mutants cause crashes.

Using Java bytecode manipulation library ASM, we perform a data �ow analysis, to

discover when an int type data source (variable or value) is used directly or indirectly for

indexing in an array. We discover all possible execution paths and track de�nition-use paths

that may pass through various positions of the JVM expression stack. We refrain from

mutating values from data sources that a�ect array indexing, to prevent array index crashes.

In the example below, we will not mutate n and k as a single extra increment of k could

cause a crash:

for(int i = 0; i < n + k; i++)

sum += a[i];

Prevention is a static analysis approach, keeping execution safe without dependence on

actual runtime values. This is more e�cient compared to dynamic detect-and-recover ap-

proaches, but may be overly cautious at times. While preventing crash, this also eliminates

168

potentially safe array size and cross-element mutations within the array. As we have done in

our experiments, such mutations can separately be added with array-size-aware array muta-

tion operators. Our approach can also be extended to handle other less-frequent causes of

crash and state corruption, such as division by zero and using a type beyond its valid range.

5.5.4 Black-Box SMT

Black-box SMT only introduces errors to the inputs and the outputs of the program. To

make sure this introduces a semantic change, the ideal approach is to mutate inputs, run

program P with some form of crash-handling, and mutate outputs (possibly generate multiple

variants for the same inputs). This time, the mutated inputs and outputs de�ne a mutant;

they represent the mutated execution. A veri�er with a very high degree of concordance

with implementation should kill (fail) most mutants.

Black-box SMT is closely related to interface MT [27] which deterministically and syn-

tactically changes the interface elements, for example, by always incrementing one argument

before method call. The main distinction from interface MT is that mutations in black-box

SMT are nondeterministic, error is equal to 0 with some/high probability, and when nonzero,

error is small in magnitude with high probability.

Speci�cation mutation testing [12] also considers program as a black box, but instead

of mutating program's outputs, it mutates the speci�cations themselves. If our veri�ers are

directly generated from speci�cations, this would correspond to mutating the veri�er.

Black-box error injection is also used in fuzz testing [61] . Fuzz testing focuses only

on stress-testing the implementation for robustness (avoiding crashes) whereas black-box

SMT does not test the target program itself, but rather attempts to measure functional

speci�cation adequacy. We want to avoid, not discover, cases that cause crash.

Even in black-box SMT testing, if inputs are being mutated, we still recommend where

code or bytecode is available, a data �ow analysis to prevent array index crashes. In the

example from the previous section, if n and k are program inputs, we should not mutate

169

them.

5.5.5 Summary

For �eld-tested software that is evolving, speci�cations may be missing or outdated, and may

need to be discovered or compared against the implementation. Incompleteness of speci�-

cations is a common problem that is hard to discover or �x. This can cause speci�cations

and automated veri�ers based on them to continually verify an incorrect implementation.

Not having up-to-date speci�cations hinders productivity and quality of common software

development tasks such as veri�cation, maintenance, comprehension and reuse.

The central question of speci�cation-implementation concordance is �How faithfully (ac-

curately) does this speci�cation represent the behavior of this implementation?� An auto-

mated veri�er is really a machine language form of requirements speci�cation, so this is also

the central question of veri�er-implementation concordance.

In section 5.2, we have de�ned a subsumption relation for functional speci�cations and

veri�ers. We have shown that subsumption relation we have de�ned forms a lattice, a

partially ordered set where any two elements have a supremum (least upper bound, �join�)

and an in�mum (greatest lower bound, �meet�). After considering the two extremes, top and

bottom elements that are always false and always true, we de�ned complete veri�er VP for

a program P that completely speci�es its behavior.

Using our subsumption relation, we stated our requirements for a good veri�er adequacy

score:

1. score(P0,⊥I×O) = 0.0

2. pass(VP0 , P0) ∧ ¬∃V : (V > VP0 ∧ pass(V, P0)) =⇒ score(P0, VP0) = 1.0

3. V1 > V2 ∧ pass(V1, P0) =⇒ score(P0, V1) > score(P0, V2)

4. fail(V, P0) =⇒ score(P0, V) = 0.0

170

Note that we do not have a requirement about how high or low the adequacy score values

need to be so long as an improvement in veri�er (more strict veri�er that fails a larger

number of candidate programs while passing our program P0) causes an improvement in the

adequacy score. Any strictly monotonic mapping would preserve these qualities.

Even though our speci�cation adequacy metric resembles test suite adequacy metric, we

cannot use any of the code coverage metrics as stated earlier and shown with an example in

section 5.3.

In section 5.4, we have shown that traditional mutation testing (MT) has a number of

serious shortcomings:

� Detecting equivalence of mutants is in general undecidable, and in practice prohibitively

time consuming, and even DeMillo in his seminal work in 1978 quietly skipped this

step.

� Without knowing which mutants are equivalent, mutation adequacy score cannot be

calculated.

� MT has high computational complexity.

� MT injects small syntactic faults that are hard to notice in code review, but which

often cause major semantic di�erences that are easy to notice in program behavior.

� Many mutants (single syntactic change) fail all test cases (41% of all mutants in 10

programs Jia & Harman tested in [44]).

� Very small syntactic error in source code may cause major semantic di�erence in be-

havior; mutants that do not fail all test cases may still fail a large percentage of test

cases.

To address these problems, we recommend controlling the magnitude of semantic errors

introduced. Our semantic mutation testing (SMT) approach introduces small-probability

171

small-magnitude random error in the values of program's variables that collectively constitute

program state.

SMT has two variants, white-box SMT and black-box SMT. White-box SMT injects

errors in multiple sites of program code by using a single composite mutant program that

introduces nondeterministic small-probability small-magnitude error terms in the statements

and expressions of program code. Black-box SMT only introduces errors in inputs and

outputs, and does not need program code to be mutated.

SMT introduces random errors, the behavior is nondeterministic, and repeated runs with

same inputs may behave quite di�erently. To prevent error injection from causing a crash,

we perform data �ow analysis and avoid injecting errors that may cause crashes.

Unlike MT, for SMT we consider one recorded �mutated run� with error to be one �mu-

tant�. This makes equivalence very decidable: If original unmutated program also gives the

same output as our mutated run, for the same inputs, the mutated run is equivalent and

should not be considered in the calculation of mutation adequacy score. This equivalance

test can be performed automatically, and therefore, unlike in MT, SMT adequacy score can

always be calculated, and can be calculated without human intervention.

In the next chapter we will evaluate our method on a number of test programs with

alternative speci�cation/veri�er candidates.

172

Chapter 6

SMT Experiments

6.1 Introduction

As introduced in the previous chapter, Semantic Mutation Testing (SMT) is suggested as a

fault-injection method that avoids some of the problems we observe with traditional muta-

tion testing, by controlling the magnitude and frequency of errors. SMT has two variants,

Black-Box SMT and White-Box SMT. In this chapter, through some short functions and al-

ternative speci�cations, we demonstrate use of SMT adequacy metric for a speci�cation (and

corresponding automated veri�er). Note that this is performed without human intervention,

by using mutated versions of the program to �nd out if alternative veri�ers can distinguish

between correct and faulty behaviors.

Our implementation uses intermediate language (Java bytecode) manipulation to avoid

need for recompilation. In our earlier tests, we quickly discovered that mutants (mutated

versions of the programs) often crash due to �array index out of bounds� exception. We

use automated data �ow analysis to avoid most cases of array index out of bounds by not

mutating values used in indexing.

We describe alternative speci�cations using Design by Contract (DBC) [60]. In our ex-

periments we avoid the need for preconditions by allowing any non-null value to be valid

173

at input. This leaves only the postconditions, which fully specify what each method must

accomplish.

Our DBC speci�cations do not need to check for preserving object invariants because our

target components are side-e�ect-free static methods, and there is no �this� object. 1

Even though we use DBC, our results do not depend on this choice of veri�er implemen-

tation. For each alternative speci�cation of each method, the postcondition really de�nes

what the method is expected to accomplish. Any type of veri�er that correctly implements

these speci�cations would produce the same set of adequacy score values.

6.2 Experiments 1/2: One Method, Seven Alternative

Veri�ers/Speci�cations

6.2.1 Sorting, Alternative Speci�cations

In our �rst set of experiments, we tested traditional syntactic mutation testing, white-box

and black-box semantic mutation testing on a sorting function with seven alternative speci�-

cations. The sort method, sort(int[] ar), takes an integer array, and returns a nondecreasing

sorted version of the integer array.

Seven alternative contracts (our DBC speci�cations) are ordered in our approximate

completeness/strictness order in table 6.1; actual order depends on input pattern frequencies.

Here, bag(.) converts the collection (array) to a bag/multiset.

CX is too strict: It will not allow duplicate elements in the returned array, so it fails

even correctly implemented sort method for 54% of our test cases. Due to this, its killed

mutants score is erroneously in�ated. Mutation testing disquali�es CX for failing unmutated

1As far as SMT is concerned, a �this� object is just another input to a function that may be mutated.
Even though hidden in OO programming languages, this �rst argument would be explicit in a C program
that uses an Abstract Data Type (ADT). For example, in our second set of tests, the four functions that
each take an integer array could instead be four no-argument methods in an ArrayAnalyzer class that takes
an integer array in its constructor.

174

Table 6.1: Seven alternative contracts for sort method

Contract Postcondition
C0. NO_TEST true
C1. SAME_LEN $result.length == ar.length
C2. SORTED ∀ i: $result[i] <= $result[i+1]
C3. SAME_VALUES bag($result).equals(bag(ar))
C4. SORTED_LEN SAME_LEN && SORTED
C5. SORTED_VALUES SAME_VALUES && SORTED
CX . SORTED_NOTEQ ∀ i: $result[i] < $result[i+1]

program.

6.2.2 Traditional (Syntactic) Mutation Testing

We used Jumble [42] to run traditional mutation tests on this method. Jumble uses Java

bytecode rather than source code manipulation to eliminate the need for recompilation per

mutation. By using its own classloader, Jumble can reload mutated versions of classes that

are being tested, without need to restart or spawn a new JVM for each class that must be

tested. Jumble can be used with Java versions 1.4, 1.5, 1.6, and it can analyze JUnit 3 and

JUnit 4 test classes to detect and run individual test cases separately. Jumble was being

used in 2007 in a continuous-test of a 370,000-line Java software every 15 minutes [42] . We

ran Jumble with standard settings.

Unfortunately, traditional MT with Jumble did very poorly on the original code, as

seen in table 6.2, due to �nding many mutation points in the unrelated debugging/logging

print statements. Even though debug option was turned o� and these statements never ran

in unmutated original program, adequacy scores were very poor due to our unit test not

discovering changes in the debug/log code. Of the 17 mutation points found, 11 mutation

points were in debugging code that never got executed.

In order to prove MT method can subsume code coverage criteria, MT researchers have

added and continue to use degenerate �mutation� operators ([66] [4]) that deviate from

175

the original purpose of making mutation operators represent reasonable errors competent

programmer may make. One such example is �reachability� test that passes an MT test

unconditionally when a point in code is reached. These degenerate mutation operators that

fail or pass without considering the veri�er cannot measure veri�er adequacy, and therefore

they degrade the MT score when MT is used for veri�er adequacy.

In our experiments, two mutation points out of eleven were supposedly even caught by

no-test unit test, probably due to such reachability test mutation operators. This left a

compressed and misleading range of adequacy score values that gave 0.11 to the no-contract

worst case and 0.35 to the best contract, instead of using the full range of 0.0 to 1.0.

After we edited our code to manually remove all debugging/logging code, we were left

with only six mutation points, of which two again were supposedly caught by the no-test

contract. The adequacy score is erroneously nonzero for C0. Actually, in both original and

edited code, there are only two possible adequacy scores (minimum and maximum possible

scores). As no interim values exist, the contracts are not really distinguished by their scores.

Table 6.2: Traditional (Syntactic) Mutation Test results. CX gave error "test class is broken",
and was disquali�ed, as it failed the original program.

Contract Mutant Adequacy Score
Original Code Edited Code

C0. NO_TEST 0.11 0.33
C1. SAME_LEN 0.11 0.33
C2. SORTED 0.35 1.00
C3. SAME_VALUES 0.11 0.33
C4. SORTED_LEN 0.35 1.00
C5. SORTED_VALUES 0.35 1.00
CX . SORTED_NOTEQ � �

In traditional syntactic mutation testing, any mutation is considered equivalent, regard-

less of whether it is reachable or how many times it gets executed. These tests demonstrate

that considering every mutation point equal gives misleading adequacy scores.

176

6.2.3 Black-Box Tests

We randomly produced 1000 input-output sets using our correct implementation of sort

method. After skipping trivial cases of arrays of size 0 and 1, we were left with 803 input-

output sets. We mutated the returned sorted array using four array mutation operations:

� swap: swaps two elements of array ar

� replace: replaces an element of array ar with a randomly picked element from another

array of similar values

� resize: either duplicates an element of array to grow the array by one element, or

removes one element to shrink the array by one element.

� random: replaces an element of array ar with a random int value

For each of the 803 input-output sets, we produced 200 mutated versions of the output

array using 1 to 30 mutations per mutant, for a total of 160,600 mutant test cases. Comparing

with correct output from unmutated program, we found 146,179 of these to be non-equivalent

mutant test cases. Table 6.3 shows our test results.

This may sound like a large number of test cases, but considering a large number of test

cases allows us to fully exercise the program and the veri�er. In SMT, we are not trying to

evaluate the test input generator or the richness of inputs, which is the only focus of code

coverage, and partial focus of MT. Using a rich set of inputs makes our score evaluate only

the adequacy of the veri�er. Unlike in mutation tests where the number of test cases is

decided by the program code, SMT also allows us to decide how many tests we prefer to run.

In SMT, we have the choice to adjust the number of test cases to provide better coverage or

faster completion of tests.

Recall that CX is too strict to even accept correct implementation; this behavior in�ates

the number of mutants killed by CX , as it even kills some equivalent mutants. In this case,

the ordering of semantic mutation adequacy scores is as we expect; it corresponds to our

177

prior belief of how complete each speci�cation is. As C5 is a complete speci�cation (modulo

invariants), its mutation adequacy score is 1.0.

Table 6.3: Black-Box Semantic Mutation Test results. CX is again disquali�ed.

Contract Mutants Killed Adequacy Score (Proportion)
C0. NO_TEST 0 0.00
C1. SAME_LEN 82,245 0.56
C2. SORTED 103,385 0.71
C3. SAME_VALUES 125,597 0.86
C4. SORTED_LEN 132,531 0.91
C5. SORTED_VALUES 146,179 1.00
CX . SORTED_NOTEQ 141,838 � (0.00)

6.2.4 White-Box Tests

We ran our data �ow analysis to prevent mutation of values that may cause array index

out of bounds exception, using any array access and new array creation operations as our

targets. For example, whatever value or variable reaches top of the JVM expression stack for

an IALOAD (int array load) instruction should never be mutated. At all remaining sites of

integer value operation in the JVM stack machine, we modi�ed the compiled Java bytecode

to insert a call to our stateless mutater method to inject error to the int value on top of the

expression stack. We did not need access to source code or recompilation to produce this

composite randomized mutant.

The amplitude and frequency of mutations can be numerically adjusted in semantic

mutation testing. We used integer-rounded Gaussian distributions as our additive error

terms, with two di�erent standard deviations; σ = 0.2 and σ = 0.5. Values in (-0.5, 0.5) get

rounded to 0 and do not cause any state change. This happens 98.76% of the time with σ

= 0.2, and 68.27% of the time with σ = 0.5. These two tests are signi�cantly di�erent; the

σ = 0.5 case has nonzero error added about 25.6 times more often than the σ = 0.2 case.

The results for both values of standard deviations are shown in table 6.4. For tests with

178

σ = 0.2, 812 non-trivial cases with 200 mutant runs each gave us 162,400 test cases, of which

only 7,095 were non-equivalent. For tests with σ = 0.5, 787 non-trivial input-output sets

each with 200 mutant runs gave us 157,400 test cases, of which 102,868 were non-equivalent.

In both cases, the faulty contract CX failed more mutants than there were non-equivalent

mutants.

As we do not mutate int values that are directly or indirectly used in array indexing,

the length of the array never changes, and two pairs of contracts that di�er only in checking

array length produce exactly the same values: C0 and C1 both kill (fail) no mutants, and C2

and C4 always kill the same number of mutants.

Our metric suggests that sortedness of output (C2) is easier to satisfy than preserving

the bag of values from the input array (C3). This is understandable, as any one mutation

to any of the values during the execution will always change the bag of values, but small

enough changes in values may not change the ordering of values, causing the output array

to remain sorted while having a di�erent bag of values.

Table 6.4: White-Box Semantic Mutation Test results. CX is once again disquali�ed.

Contract Mutant Adequacy Score
σ = 0.2 σ = 0.5

(7,095 Mi 6≡ P) (102,868 Mi 6≡ P)
C0. NO_TEST 0.00 0.00
C1. SAME_LEN 0.00 0.00
C2. SORTED 0.37 0.47
C3. SAME_VALUES 0.86 0.92
C4. SORTED_LEN 0.37 0.47
C5. SORTED_VALUES 1.00 1.00
CX . SORTED_NOTEQ � �

(117,442 killed) (109,729 killed)

179

6.2.5 Discussion

We have shown feasibility of measuring speci�cation quality by how often speci�cation fails

programs with small semantic errors. Compared to traditional (syntactic) mutation testing,

both our white-box and black-box semantic mutation testing approaches produce adequacy

scores that better represent the concordance of the speci�cation with our correct implementa-

tion. Our data-structure-aware black-box mutation operations gave better results compared

to primitive-value-aware single mutation operator for integer values injected into method

implementation (white-box).

Our crash prevention avoids any mutations that could have an e�ect in array sizes and

which element is accessed. Other mutation operators such as the array-mutation operators

used for black box testing can also be introduced to accessed arrays, after proper data �ow

analysis to prevent array index crashes. As always, the mutation operators will be most

useful if they represent common types and patterns of faults.

Our experiments show that both variants of our method (white-box and black-box SMT)

perform better than traditional (syntactic) MT in evaluating quality of speci�cations as

compared to an implementation.

6.3 Experiments 2/2: Four Methods, Five Alternative

Veri�ers/Speci�cations Each

6.3.1 Introduction

Using four simple target programs, with �ve alternative veri�ers each, we compare MT,

white-box SMT and black-box SMT. In our experiments, SMT performs to our expecta-

tions for an adequacy measure of automated test veri�ers, and adequacy of the functional

speci�cations implemented by these veri�ers.

We used the �rst three of our four requirements for veri�er adequacy score listed in

180

section 2.3 to judge the quality of di�erent adequacy measures. As we do not have any

veri�ers that fail the original program, we did not use the fourth requirement that such

veri�ers get adequacy score of 0.0 (or terminate with an error message), even though all

methods used do this, so long as there is at least one test input that causes veri�er to fail

the original program.

6.3.2 Target Programs and Alternative Speci�cations

We conducted three types of mutation testing experiments, on four small target functions,

each with �ve alternative veri�ers in the form of DBC contracts.

Three types of mutation testing we used were:

� J. MT: Jumble (traditional, syntactic MT)

� B. SMT-B: Black-box SMT (changes inputs/outputs only)

� W. SMT-W: White-box SMT (changes bytecode)

Our four target methods (functions) each take an integer array. The integer array ar-

guments can be any size, including empty (new int[0]), but should not be null. The four

target methods are:

� F1: �ndFirstDuplicate Returns the �rst duplicate element's index, or -1

� F2: �ndRange Finds the min and max values in the array; returns {0,0} for {} (empty

array).

� F3: getIntStats Calculates number of elements, their sum, and sum of squares.

� F4: getStats Calculates the mean and standard deviation of values in the array.

F2-F4 return multiple values. In the following, these functions return primitive values

and arrays instead of value objects, so as not to introduce more classes and structures. Our

181

implementation can analyze and process both arrays and value objects, so composite types

with di�erent values can also be returned.

� F1: int : index

� F2: int[2] : <min, max>

� F3: int[3] : <n, sum, sumOfSquares>

� F4: double[2]: <mean, stdDev>

For F3, n holds the array length, and for F4, stdDev holds the standard deviation.

The �ve contracts (our veri�ers) are ordered in our opinion of how strict they are, for

each function:

� C0: Empty contract

� . . .

� C4: Full, complete contract

First contract C0 always returns true, and accepts any result returned by these methods.

The four methods and the 16 non-trivial contracts for them are shown in table 6.5. We will

use dotted notation to talk about a speci�c contract; for example, F1.C3 refers to the isDup

contract for �ndFirstDuplicate method. Contracts are not comparable between functions;

so we cannot say F1.C3 is similar to F2.C3 in strictness, and therefore, their scores need not

be similar in value either.

Notes, observations:

1. Our contracts are in perceived order of strictness; for average nontrivial arrays, we

expect earlier contracts to be easier to satisfy than later ones.

2. Some contracts strictly subsume others. Table 6.6 shows that of 16 possible compar-

isons of Ci+1 versus Ci, 11 of them are strictly ordered. For F2, we have C4 > C3 >

C2 > C1 > C0.

182

3. Whatever is not strictly ordered is ordered by the probability of accidentally getting

the value correct, which is generally harder for values selected from a larger set of

possible values. Thus, in F3, sumOfSquares (C3) is harder to get correct compared

to sum (C2), which in turn is harder to get correct compared to size (C1). As stated

before, the actual order discovered by a method may di�er from this.

Table 6.5: Four target functions, �ve alternative contracts each.

Functions & Contracts Description
C0. true (all fns) accepts any result; always returns true

F1. �ndFirstDuplicate Returns �ind�, the �rst duplicate element's index,
or -1 if there are no duplicates.

C1. validIndex ind is a valid index for array, or ind is -1
C2. noDupsBefore There is no duplicate in ar before index ind
C3. isDup ind is -1, or ar[ind] is actually a duplicate
C4. isFirstDup ar[ind] is the �rst duplicate in array ar

(C4 ≡ C2 && C3)
F2. �ndRange Returns the min and max values in the array;

returns {0,0} for empty array.
C1. min_LE_max min ≤ max
C2. �rst ar[0] is in min..max
C3. �rstLast ar[0] and ar[len-1] are in min..max
C4. range_correct (min, max) are correct min & max values for ar.

F3. getIntStats Returns array size n, sum & sumOfSquares for array ar.
C1. size n is correct; n ≡ the actual size of the array (len).
C2. sum sum is correct; sum ≡ ar[0] + . . . ar[len-1]

C3. sumOfSquares sumOfSquares is correct; it is the sum of all ar[i]*ar[i]
C4. all_correct n, sum and sumOfSquares are correct

(C4 ≡ C1 && C2 && C3)
F4. getStats Returns double-valued mean and stdDev for ar.

C1. mean_GE_min mean ≥ min value in array ar
C2. mean mean is correct; mean ≡ sum(ar)/len
C3. stdDev stdDev is the actual standard deviation of ar.
C4. both_correct Both mean & stdDev are correct (C4 = C2 && C3).

183

Table 6.6: Strict subsumption between our contracts for functions

Function C1 > C0 C2 > C1 C3 > C2 C4 > C3

F1 T F F T
F2 T T T T
F3 T F F T
F4 T T F T

6.3.3 Test Inputs

Our four functions each take one integer array as input. To test every method with the

same set of inputs, we generated 100 input arrays with sizes from 0 to 49 elements (with

median size 15, to have various smaller tests), where the values in the arrays were randomly

selected from -10 to 20, so that negative values are also tested and there is a nonzero chance

of duplicates even in smaller arrays.

6.3.4 Black-Box SMT Implementation

Our inputs are randomly generated. We focused only on output mutations in our black-

box mutation experiments. For each output term (dimension), we used the same standard

deviation value equal to 3.0 divided by the number of output terms. For each integer output,

we used added error terms using integer-rounded Gaussian distribution in our tests. This

makes sure that there is a large probability (68.27%) of adding no error at a given time. We

repeatedly generated error term vectors for outputs and discarded nonzero vectors for our

tests. For F4 with two double-valued outputs, we used a prior probability of 50% (as there

are only two outputs) of any output error term being 0.0. Again, we discarded the zero error

term vectors.

184

6.3.5 White-Box SMT Implementation

We also tested these methods and contracts with white-box SMT, as we have done in 6.2.4.

Our white-box mutater implementation currently only mutates integer values. Even though

the last function, F4 (getStats), returns two double values, these values are calculated from

integer values in an integer array, so mutating only integers will still cause output to be

mutated.

As we do not have whole array mutation operators, array size cannot change. As we

avoid changing index variables, the return value of F1 (�ndFirstDuplicate) is only changed

indirectly, by changing integer values read in array, which can change the �rst index of a

duplicated value in the array. But because the array size does not change and index cannot

become valid, we cannot expect F1.C1, which checks for valid index value, to ever fail under

SMT-W, and therefore this contract should get score 0.0 and appear to be equivalent to

empty contract F1.C0 that also never fails.

A similar situation arises with F3 (intStats) where C1 checks whether size is correct. As

array size cannot change, and a variable that holds array index or size should not be mutated

to avoid crashes, F3.C1 should never fail under SMT-W, and should therefore get score 0.0

and appear equivalent to empty contract C0 which also never fails.

6.3.6 Traditional MT With Jumble

As before, we used Jumble with standard settings to run traditional mutation tests.

For Jumble, the granularity of adequacy score depends on the number of mutants for

the program. Each mutant is run against each test. We did not observe any di�erence in

adequacy scores when we used 1000 or 10000 similarly generated tests instead of the 100 we

have used.

185

Figure 6.1: Traditional (Syntactic) Mutation Testing results using Jumble

Figure 6.2: Black-Box Semantic Mutation Test results

6.3.7 Results & Observations

Fig.6.1 shows the traditional mutation testing results. We notice some problems:

Figure 6.3: White-Box Semantic Mutation Test results

186

� C0 (always true) checks nothing, should get score 0.0, but it never gets 0.0 (probably

due to code-coverage emulation in mutation testing, with �trap_on_statement� and

similar mutations, which verify the test input generator, but not the veri�er)

� For all functions, C1 > C0, but for F1 & F3, they get the same MT adequacy scores.

According to this, F1.C1 and F3.C1 are equivalent to having no checks.

� For all functions, C4 > Cj, for any j < 4, so no other contract should get 1.0 (and be

considered a mutation-adequate test suite). But for F1, C3 gets 1.0, and for F2, both

C2 and C3 get 1.0. F2.C2 only checks if �rst element of the array is in [min, max]. Any

values of min and max with min ≤ ar[0] ≤ max would satisfy C2.

� For F4, C2 > C1, yet C1 and C2 get the same score. C1 only checks mean ≥ min(ar),

which would be satis�ed for any wrong value of mean with ∃i : mean ≥ ar[i]. C2

checks that mean holds the correct value, which is much more strict than C1.

Fig.6.2 shows the black-box semantic mutation testing results. We notice that C0 always

gets score 0.0, C4 always gets score 1.0, and no other contract is considered equivalent in

strength to these extremes. We do notice a few problems, though:

� For F1, C2 gets a lower (almost same) score compared to C1.

� For F3, C1, C2 and C3 seem just as easy to satisfy, because in black-box semantic

mutation testing, it is just as likely to mutate n (=size), sum and sumOfSquares values

returned, but these are increasingly more informative, and should be harder to satisfy.

� For F4, C2 and C3 get same score, similar to F3, with mean and stdDev values as

likely to be mutated but stdDev (due to squared values) holding more information and

harder to get correct. In practice, both are quite hard to randomly get correct, and

the di�erence is small.

187

These are perceived order of strictness; there is no strict subsumption relation between

these contracts/veri�ers, the order can change with implicitly presumed probability distri-

butions and importance/weight of di�erent possible input values.

Fig.6.3 shows the white-box semantic mutation testing results. We notice that most

contracts are ordered properly. We also notice the shortcomings of not having array mutation

(therefore never changing array size) in our implementation of white-box semantic mutation

testing. Because of not changing array size and not mutating array index (and array size)

values and variables, we have:

� For F1, C1 = C0 with score 0.0. Index returned by �ndFirstDuplicate is always valid

even in mutated program. We cannot make array index variable not have a valid index

as this is exactly how our preliminary tests have crashed with ArrayIndexOutOfBound-

sException.

� For F3, C1 = C0 with score 0.0 again, as array size values and variables are never

mutated.

� There are also reversed ordering in some other scores, but these are, as before, always

for contracts with perceived order of strictness rather then actual subsumption.

We can see that black-box mutation testing, because it does not have access to com-

putational complexity or statistical knowledge that could be gathered over time, considers

elements of output with same interface complexity (held in type structures of similar com-

plexity) to be equivalent in value.

We believe black-box mutation testing can be further improved in the case of these

not strictly comparable contracts, by using stateful mutation operators that depend on the

universe of observed/possible values generated by methods. In this way, we hope to overcome

its shortcoming of considering any output element to be as informative (and as hard to get

correct) as any other output element.

188

Traditional mutation testing produces sets of mutants of size approximately proportional

to code size. More complex computations generally have large impact on adequacy score,

except computational complexity of loops are often not represented. Most sets of mutation

operators do not contain the rather complex stateful mutation operators that check for num-

ber of times a loop executes (the SMTT and SMTC �multiple trip trap/continue� operators

de�ned in [4]). Consequently, the number of times a loop executes does not change the score

so long as test suite exercises every branch.

Table 6.7 compares traditional MT against black-box and white-box SMT on the �rst

three of the four requirements for proper veri�er adequacy score mentioned in previous chap-

ter . We see that MT never produced 0.0 for empty contract, and rewarded strictly better

(subsuming) next contract with higher adequacy score less than half the time in our experi-

ments. In comparison, Black-box SMT got a perfect score: It always gave 0.0 to C0, always

gave 1.0 to C1, and always caused strict subsumption between contracts to be noticeable by

a di�erence in adequacy score: Strictly better contracts always got better adequacy scores.

Our implementation of white-box SMT does not use array mutation operators, and this

causes in two cases (F1 and F2) the �rst contract C1 to get score 0.0 and be indistinguish-

able from C0. In all other cases of strict subsumption, SMT-W has produced a strictly better

score.

Table 6.7: An evaluation of traditional MT and SMT on requirements de�ned in chapter 5.

Method C0 → 0 C4 → 1 Ci+1 > Ci =⇒ Average
score(Ci+1) > score(Ci) Score

MT 0/4 4/4 5/11
0.0 1.0 0.4545 0.4848

Black-Box SMT 4/4 4/4 11/11
1.0 1.0 1.0 1.0000

White-Box SMT 4/4 4/4 9/11
1.0 1.0 0.8182 0.9394

189

6.4 Conclusions and Future Work

6.4.1 Conclusions

We have introduced a method, semantic mutation testing (SMT), to evaluate the quality of

automated test veri�ers (oracles) and to measure veri�er-implementation concordance. To

the degree that the implementation itself is tested and known to conform to user's needs,

our semantic mutation speci�cation adequacy score also measures how well the speci�cations

match actual user requirements.

None of the existing code coverage criteria can be used for this problem, as input variation

that fully exercises any code coverage may be coupled with an empty contract that checks

nothing, but would get full code coverage score. In our experiments, we found that semantic

mutation testing gives results that mostly conform to our expectations of how contracts (our

executable speci�cations) are ordered.

Using four functions and �ve alternative DBC contracts each, we analyzed the strengths

and weaknesses of SMT, and compared black-box and white-box variants of SMT against

traditional mutation testing, MT. We found MT to be inadequate, and both variants of SMT

to be very adequate in:

� Discovering when a contract is equivalent to empty contract that passes any program;

such contracts get score = 0.0.

� Discovering when a contract is correct and complete; such contracts get score = 1.0.

� Discovering when one contract strictly subsumes (and is therefore better than) another

contract, by producing a better adequacy score.

6.4.2 Future Work

As an alternative to randomly created test cases as seen in our experiments, we can use

any existing test suites, or consider gathering test data in situ, by saving input-output sets

190

(using serialization for reference types, objects) from a component while the software system

is running.

We believe this simple-to-compute measure of speci�cation-implementation concordance

can help automate measuring quality of suspected-to-be-outdated as well as rediscovered

or competing speci�cations. We will use this speci�cation evaluation method in guiding

testers in discovering lost speci�cations and maintaining/evolving outdated speci�cations

through live sessions with our VERDICTS (�Visual Exploratory Requirements Discovery

and Injection for Comprehension and Testing of Software�) research implementation.

Source code and data from these experiments are available at our research page [16].

191

Chapter 7

Conclusions

7.1 VERDICTS

In the preceding chapters, starting from some common problem scenarios of software de-

velopment, we have envisioned and implemented a tool to help partial automation in some

software development tasks. We also proposed and tested a method to evaluate veri�er

adequacy.

Speci�cally, we have considered the common problems in areas of testing, veri�cation,

comprehension, debugging, speci�cations discovery and last but not least measuring auto-

mated veri�er adequacy. We looked at standard debugging paradigm, and the many ways

that it fails to support exploratory e�orts, and how and why it may be worse than old-

fashioned print statements. We also examined some innovative debugging methods, as well

as other common approaches that help with program dynamic behavior analysis such as

logging and tracing.

Our proposed method is VERDICTS, Visual Exploratory Requirements Discovery and

Injections for Comprehension and Testing of Software. This method allows for rapid interac-

tion with the target software, switching between veri�cation/testing and analysis/discovery

modes of operation. To automate testing we used contracts that allow for rapidly specifying

192

the requirements of the program's components. Various methods, technologies and tech-

niques have been used to implement VERDICTS. These technologies and techniques were

listed in Chapter 3, and how they work in VERDICTS has been explained in both chapters

3 and 4.

VERDICTS uses Design by Contract, aspect-oriented programming with AspectJ, inter-

preted Java with Beanshell and various statistical views to help the discovery of features and

behaviors of the target program. One of the most important features of VERDICTS is that

the target program does not have to be recompiled and its source code need not be modi�ed

(or even be available) for the user to add new tests and veri�ers. Eliminating compilation

delays allows the user to develop a mental model of how the program works using a rapid

feedback cycle. This rapid feedback cycle also introduces new approaches for discovering

requirements. Speci�cally, instead of having to discover the �nal complete version of the re-

quirements, the user can evolve requirements speci�cations, mix requirements speci�cations

with actual behavior speci�cations, and also add veri�ers that are intended to fail merely in

order to discover the requirements and program behavior.

Full-program-state-recording approaches such as Omniscient Debugging [58], Reversible

and Bidirectional Debugging [17] and Whyline [48] often introduce a very large performance

penalty, need for disk and memory space, and inability to naturally interact with the target

program. In our tests, we found VERDICTS to be e�cient, capable of recording thousands

of method calls in a few seconds while allowing target program to remain interactive [13].

As we stated in the �rst chapter, we will avoid making any claims about improved

comprehension at this time, mainly because comprehension tests and many other end-user

tests of VERDICTS would best be performed with a large number of test subjects with

varying levels of software development experience. Similar to researchers who create new

types of visualizations, we present our VERDICTS method and leave it to readers to judge

the utility.

Through various tests, we demonstrated that VERDICTS compares very favorably to a

193

modern Java IDE that would likely be used for these tasks. For three innovative features

of VERDICTS, on almost all metrics, in almost all tests, VERDICTS performs better or

signi�cantly better than Eclipse. On average, with VERDICTS, we could analyze 23 times

more method calls per minute, and could verify our hypotheses for 11 times more method

calls per minute (verify eight times more method calls in 28% shorter time).

7.2 Semantic Mutation Testing

Even though VERDICTS is a platform that is designed to allow for requirements discovery

and rapid veri�cation of software, it is not a fully automated system. Rather, it is a partially

automated system that aims to help a user verify and discover behavior of programs while ap-

plying human intelligence and professional experience. While using VERDICTS, there may

be multiple versions of veri�ers and requirements for a program component. One situation

arises when a veri�er is evolved over time. Another situation may arise when documentation

and behavior seem to con�ict and two veri�ers, one created to align with the documentation,

and another created to align with the current behavior, may have to be compared against

the program itself.

As we do not have a third-party arbiter that can decide whether the veri�ers and re-

quirements speci�cations adequately represent what the end uses require, the only way we

can compare the quality of veri�ers is by using the target program. What we are really

measuring is �speci�cation-implementation concordance� (and veri�er-implementation con-

cordance). Even though end users are not involved, this adequacy measure is of great

importance for veri�cation, comprehension, and various maintenance tasks. For component

reuse, this is exactly the measure we need, to make sure the component delivers exactly what

it promises.

For this purpose we have introduced a method called Semantic Mutation Testing (SMT).

After brie�y introducing the method in chapter 1 and stating that this method is an approach

194

to measure automated veri�er adequacy, in chapter 5 we have considered in detail whether

existing methods can be used for this purpose.

The idea of using the program itself to measure adequacy of a veri�cation method is not

a new one. Various code coverage criteria exist for this purpose when test suites are used

for veri�cation. But as we have seen in �g.5.1, using a veri�er requires a di�erent approach

from using a test suite; speci�cally we need a test input generator as a �rst stage and veri�er

as a second stage of veri�cation. One way that this approach is di�erent is that a test suite

is a memorized set of inputs and outputs and merely represents a sample in the space of

program inputs and outputs that collectively represent the program behavior. In contrast,

a veri�er can allow for a very �exible test input generator and the number of samples can

be changed at the time of testing, allowing for a focus on higher coverage or more e�cient

veri�cation.

When we looked at code coverage criteria, we quickly realized that all code coverage

criteria completely ignore outputs and pass/fail judgement of test cases and veri�ers. Code

coverage criteria therefore only measure the adequacy of test inputs in terms of how inputs

exercise the program. Another approach for measuring test suite adequacy, Mutation Test-

ing (MT), is more promising, as it also considers and evaluates the program outputs. Even

though all of these approaches use the program itself to measure the adequacy of testing,

this does not mean that the test is merely run against the program. Both the code coverage

criteria and traditional MT instead use source code analyzers and at times execution inter-

ception in order to examine the program instructions, to track execution of each instruction,

or possibly to even modify the instructions to introduce an error in the program.

In chapter 5, after examining some serious shortcomings of traditional MT, we described

our approach, SMT, in some detail.

The biggest problems of traditional MT have also been observed by other researchers.

One problem that we have looked at in chapter 5 is concerned with one of the original

observations of MT: �Programs developed by competent programmers vary from correctly

195

implemented programs by only a few faults�. Unfortunately, MT researchers generally accept

this to mean that programs have only few syntactic errors, even though a small syntactic

error in code often causes major semantic di�erence in behavior. In chapter 5 we have shown

this to be true in a small example. Beyond our simple example, researchers have observed

that there are many mutants that pass no test cases in the test suite. This means a single

syntactic variation has modi�ed the program from passing all test cases to passing none of

the test cases. Such mutants are dubbed �dumb mutants�, and they are rather prevalent in

traditional mutation testing (41% in a large series of tests by Jia & Harman [44]). Beyond

such dumb mutants, we have also observed in our small example that many mutants fail a

large percentage of test cases.

Another signi�cant problem with MT is that MT requires that we check semantic equiv-

alence of mutants with respect to original programs. As we have noted in chapter 5, even

in his seminal work on MT in 1978 when programs were much shorter than today, DeMillo

quietly skipped semantic equivalence checking for mutants, even though there is no mention

in his paper of this signi�cant omission [28].

Without checking for semantic equivalence of mutants, MT adequacy score cannot be

evaluated. This is compounded with the fact that MT generates poor mutants and considers

every mutant to be equally valuable in calculating the adequacy score, which causes an

in�ated adequacy score.

SMT, in contrast, focuses either on modifying the inputs and outputs of the program, or

modifying the values in expressions within the program. The error magnitude is controlled,

and as variable values collectively represent the state of the program, state and program

behavior is often modi�ed only in a small way rather than changed signi�cantly. SMT

aims to ensure that small faults are introduced in the behavior of the program. We record

individual mutated runs as mutants rather than consider modi�ed programs as mutants,

and therefore the semantic mutation adequacy score can always be calculated. We also

use random sampling and mutations weighted by likelihood, rather than considering every

196

mutant equal. SMT uses data �ow analysis of Java bytecode to avoid program crashes caused

by mutating array indices outside array index range.

In chapter 6, we ran experiments to compare MT against SMT, and found SMT, in

both white-box and black-box variants, to be better at comparing quality of veri�ers (DBC

contracts). We also observed that a number of shortcomings of traditional MT do not apply

to SMT. Most signi�cantly:

� SMT produces mutants that have small behavioral di�erence compared to original

program.

� SMT mutation adequacy score can actually be calculated, and can be calculated with-

out human intervention.

� SMT adequacy score uses the full range of 0.0 - 1.0

� SMT is much more likely to give strictly higher scores to more strict veri�ers that pass

the original program.

Our black-box mutation operators were richer than our white-box mutation operators in

these experiments, and black-box SMT (SMTb) performed better, and actually got a perfect

score on desired features:

� SMTb gave 0.0 only to empty contract, and 1.0 only to complete contract

� SMTb always gave strictly higher scores to strictly better veri�ers

As compared with SMTb, white-box SMT (SMTw) did not have any array-size changing

mutation operation, and therefore failed to distinguish any two veri�ers that di�er only in

measuring array length. Other than two such cases, SMTw also gave strictly better scores

to strictly better veri�ers. Traditional MT failed to give empty contract 0.0, and failed to

give strictly better score in 6 out of 11 cases of strict subsumption.

SMT has been designed to be integrated within VERDICTS, to measure and compare

veri�ers and assign adequacy scores so that the user can be sure that veri�er evolution better

197

represents the current behavior of the component being tested. We believe this quality

feedback can greatly speed discovery of speci�cations, in the form of contracts that can also

be used as automated veri�ers. We believe that this interaction would also improve both the

quality and the e�ciency of software analysis/comprehension and testing.

198

Appendices

199

Appendix A

Software Comprehension Theories

A.1 Direction of Comprehension, Opportunistic Switch-

ing Strategy

Earlier theories of program understanding from 1970s and 1980s can be classi�ed by direction

of comprehension, into:

� Top-down models such as those by Brooks [20], by Soloway & Ehrlich's [75]),

� Bottom-up models like Pennington's model [69],

� Combined/opportunistic models that switch between these two strategies, such as

Shneiderman's model [74] and Letovsky's model [57].

A.2 Von Mayrhauser & Vans' Integrated Meta-Model

Von Mayrhauser and Vans' well-researched integrated meta-model [59] combines elements

of various top-down and bottom-up models and the concept of opportunistically switching

between top-down and bottom-up processes. Studies based on observations often reveal a

200

mixture of top-down and bottom-up activity as well in both procedural and object-oriented

programming tasks performed by expert developers [59] [25].

201

Appendix B

Software Comprehension Issues

B.1 Software Comprehension is Vital, Yet Rarely Stud-

ied and Never Measured

Comprehension of software is vital in all software development, maintenance and reverse

engineering tasks. Still, there is a general avoidance of studying software comprehension by

software engineers, which may be in part due to software developers' distrust of theories and

conclusions of �soft sciences�.

Recall from chapter 1 the example of PCODA 2010 (International Workshop on Program

Comprehension Through Dynamic Analysis), where no paper claims or tries to prove any

improvement in comprehension. Even though the automatic data processing aspect is easier

to evaluate, it is rather the soft science of actual software comprehension by individuals that

we need to understand better.

Industry also ignores software comprehension. New developers have to catch up, and

existing developers may often have to continually refresh their understanding of the system

they are working on, to keep their mental models of the system aligned with the evolving

system. Still, there is practically no practice of even attempting to measure a developer's

level of comprehension of a particular piece of software.

202

Interested parties often presume that developers generally or completely comprehend the

inner workings of software, and consider it o�ensive to ask to measure any developer's level

of comprehension during software development as it questions developer competency.

Evaluating a software engineer is understandably a sensitive issue. But even though code

ownership has also been a similar sensitive topic, industry has picked up the practice of code

reviews which pierce through code ownership in open public debate of peers, to discover

shortcomings of a piece of code that is often written by one developer.

Code reviews are often conducted carefully to avoid using results to judge any individual

developer's level of comprehension or competency. There's often a promise of personal im-

munity so that question-answer sessions are not perceived as attack-defense, and criticisms

about code are not later used to judge individual developers.

Code reviews publicly evaluate quality of code, with the goal of improving quality of

software. There's no similar public or private evaluation of developers to judge level of

software comprehension, with the ultimate goal of improving software quality.

B.2 Essential Incompleteness of Software Comprehen-

sion

B.2.1 Lines of Code, Years of Reading!

KLOC, kilo-lines-of-code, is a relatively simple measure of program complexity that has

repeatedly been shown to be predictive of various measures of interest to software developers.

How feasible is it to ask a developer to know everything about the software they are working

on? As source code is the �nal word on all behavior under all conditions, the developer

would have had to read all of source code to know everything about the software they are

working on. How does this reading compare to other types of reading, such as a book?

One way to compare the size of the task is to just compare the number of lines of text

203

that must be read. Here are some approximate numbers for one small and one large book,

calculated by counting the lines on a few sample pages and multiplying out with the number

of pages (using sample pages and information online):

� Animal Farm - 144 pp, about 5000 lines total; 5 KL (kilo-lines)

� Da Vinci Code - 454 pp, about 18000 lines total; 18 KL

Compare this with the statistics from 2001 for some open-source software:

� Apache: 80 KLOC (kilo-lines of code)

� Linux: 800 KLOC

� Mozilla: 2100 KLOC (2.1 million lines)

Humans average about 240 words per minute on text such as a book. At about 12 words

per line, this corresponds to 20 lines per minute. At this rate, our books would take:

� Animal Farm: 250 minutes (4 hours)

� Da Vinci Code: 900 minutes (15 hours)

A book is designed to be consumed as a linear text whereas software is never implemented

with that intention, and source code often consists of directories/packages/modules, and

structured as a tree rather than a single linear text. What is more, nodes in the tree have

cross-dependencies, and it is best to study software components as a highly interconnected

graph, and such graph may even contain cyclic dependencies and strong components 1 [31].

Let us assume the speed is same as what was observed in a study of comprehension of

a COBOL program [32], about 188 lines/hour, 1200 lines/day (assuming 6.4 hours/day).

Then the software mentioned above would take:

� Apache: 67 work days ≈ 13 work weeks ≈ 3 months

1Whereever there are cyclic dependencies in a graph, there are sets of nodes called strong components
where every node depends directly or indirectly on every other node in the set.

204

� Linux: 667 work days ≈ 133 work weeks ≈ 2.5 years

� Mozilla: 1750 work days ≈ 350 work weeks ≈ 7 years

Even though these are unmanageably impractical numbers for start-up time for a new

developer on a project, these estimates are lower than what we should expect, as there are

limits to how much we can remember, and in fact, if reading takes longer than a few weeks,

much of what is read may be forgotten.

B.2.2 Prior Knowledge and Expertise

Beyond the impracticality of reading and knowing application source code in full, there are

similar issues around expected prior knowledge and expertise for a developer.

Software development tasks and stages presume having a competent level of compre-

hension of the behavior/domain, programming context, and software-speci�c information.

Beyond the software architecture, design, and implementation, the developer is expected to

also know:

� Behavior & Domain: Required behavior of the program, domain/vertical knowledge.

� Context/Environment: Programming languages and libraries used, any executables

that this software will interact with, and possibly, underlying operating system and

hardware behavior and limitations.

A misunderstanding of any of these can cause reality to be misrepresented in the devel-

oper's mental models, and can cause software to contain a bug. Software veri�cation by a

second party, and later, validation by end user acceptance testing is vital because our mental

models may be incomplete or faulty.

Today, most of this context also contains relatively large software whose behavior cannot

be fully known without studying the source code, as documentation and speci�cations may

not be correct or up to date. Therefore, similarly, for any nontrivial behavior, domain and

context, prior knowledge cannot be complete either.

205

B.2.3 Simple Top-Down or Bottom-Up Traversal Continually Leaves

Some Comprehension Questions Unanswered

There are actually various reasons why a part of program cannot be su�ciently compre-

hended in full without examining both top-down and bottom-up connections.

Comprehension proceeds with the �what�, �how� and �why� questions that developers ask

themselves and try to answer while performing comprehension tasks [ref proposal]. Some

questions, especially �how� a function works, can only be answered by examining context

below the function, looking at functions called. These lower functions make up the smaller

branches of the call hierarchy below current function. Other questions, especially �why� a

function exists at all, can only be answered by looking at callers that are higher up in the

call hierarchy. Some questions such as �what does this function do?� can best be answered

by looking both up and down to understand why and how.

Therefore, no function can be understood completely in isolation; partial comprehen-

sion and hypotheses about other functions surround and sustain comprehension of any one

function.

B.2.4 Bottom-Up Static Analysis and Top-Down Dynamic Analysis

Earlier �program understanding� models were restricted to static analysis, reading the source

code, rather than executing the program. When observations from dynamic analysis are

added (and especially when it can quickly be performed for modi�ed program), the program

behavior observed helps form high-level hypotheses while source code helps form low-level

hypotheses, often without interconnecting links. Therefore, both top-down strategies from

behavior/domain knowledge and bottom-up strategies from source code/programming lan-

guage knowledge are useful and are often employed in comprehension tasks.

Developers regularly switch between top-down and bottom-up orientations for analysis

and comprehension [59]. OO (OOP) comprehension has been observed to use more top-down

206

than procedural programming, and both OOP and procedural programming are more likely

to use more top-down (analysis and comprehension) early on and more bottom-up later, but

generally employ both orientations throughout [25].

Conclusions:

� As recall is not 100%, it makes sense to not just traverse top-down or bottom-up

exclusively, but rather go back and forth to refresh memory.

� Going only top-down, questions of implementation (operational details) will remain

unanswered at each step, whereas going only bottom-up, the question of purpose and

need will remain unanswered at each step.

� Comprehension cannot be performed by traversing one component at a time, with the

goal of complete comprehension before analyzing related components.

� Partial speci�cations of related components must sometimes be su�cient in verifying

complete speci�cation for a component (otherwise comprehension could never converge

for any component).

� As comprehension must often be partial, for task-oriented comprehension (say, of one

component), it may be best to focus on the one component and its neighbors (up and

down), and start with partial, evolving mental models and discovered speci�cations.

207

Appendix C

From Hoare Triple to DBC Contracts

Floyd-Hoare logic proposed by Hoare in 1969 [38] applies earlier work done by Floyd on �ow

charts [33] to create a formal system that can be used to prove the correctness of computer

programs.

To formally declare the e�ect of executing a statement S in an imperative language, we

need to de�ne how this changes the program state. We can use two predicate logic assertions

P and Q (called precondition and postcondition) to write the �Hoare triple�:

{P} S {Q}

This Hoare triple states that, if precondition P holds before statement S executes, post-

condition Q will hold after S has executed. P and Q can refer to any variable in scope of

S.

Such a triple can often fully de�ne the operation of a simple statement in an impera-

tive programming language. Using Floyd-Hoare logic inference rules, we can discover Hoare

triples for compound statements built out of simple statements and looping and block con-

structs. In the case of loops, it is often helpful to discover a loop invariant that is preserved

by execution of the loop body:

{I} B {I}

208

Here, B is the statement block that makes up the loop body, and I is the invariant.

To extend this idea to procedural languages, we only need to note that statement S could

just as well represent a procedure, and a function could be analyzed by storing the result in

a meta-variable, in order to represent behavior of a function F formally:

{P} result = F {Q(result)}

We assume that result is declared to be of the same type as the return value of function

F. In this case, postcondition Q can state requirements for result as well as any other side

e�ects. Often, the same meta-variable name (such as �result�, here) is used for any function,

and assignment for result and Q's dependence on result are not explicitly stated. We simply

write:

{P} F {Q}

Here, Q can refer to result but P cannot. Both P and Q can refer to any arguments this

function accepts, by using the argument names in the function signature. Using the OCL

syntax that we will soon see, the same DBC speci�cations look like:

pre: P

method F

post: Q

To extend this idea further to object-oriented languages, we need to add the idea of

class invariant (also called object invariant), which states the internal state consistency

requirements for the object. Obviously this only applies when there is a �this� object. When

an invariant-preserving method is called, it may temporarily allow invariants not to hold

during its execution, but must clean everything up before termination so that all invariants

hold. Usually, there are private helper methods that the class's public methods can use

even when class invariants do not hold. For this reason, invariants are often considered

preserved only by the public instance methods of the class; private/protected and static

209

methods are not required to preserve the invariants. For a method M that must preserve

the class invariant, the combined requirement can be written as a Hoare triple as:

{I & P} M {I & Q}

This states that Method M will preserve class invariant I while satisfying postcondition

Q, if invariant I and precondition P are satis�ed before the method call. Class invariants

should be preserved by all public instance methods, so class invariant declaration is usually

associated with the class rather than its methods.

In OOP, all predicates (invariants, pre- and post-conditions) can:

� refer to object �elds,

� use side-e�ect-free methods of any class, and

� create and manipulate contract-local variables and objects.

Beyond this, preconditions and postconditions can access method interface:

� Preconditions and postconditions can refer to method arguments.

� Postconditions can refer to result.

� Postconditions can also refer to state of a variable (or possibly any expression) before

the method call, as we will see next.

To be able to compare state before and after method invocation easily, postcondition

predicates may need to refer to older value of some variable x (argument or �eld) from

before the method invocation, often using a syntax such as x' or x@pre. In a Hoare triple,

this syntax would allow us to write:

{} x++; {x == x@pre + 1}

By using contract-local variables, same feat could be achieved for an int x with:

210

{int xpre = x} x++; {x == xpre + 1}

Even though we used a single-operation statement here instead of a method that incre-

ments a variable's value, it is clear how the same idea applies to any method with possibly

modi�ed values. These two contracts for plusOneLetterGrade() method in Grade class are

equivalent (and use the object �eld �double grade� in Grade class, so grade := this.grade):

{} Grade.plusOneLetterGrade() { grade = grade@pre + 1.0; }

{ double gradepre = grade; }

Grade.plusOneLetterGrade() { grade = gradepre + 1.0; }

There is a change in focus as we move from Hoare triples to DBC contracts. Floyd-Hoare

logic:

� Focuses on individual statements

� Is designed to prove programs correct, by analyzing all statements

� Is a white-box approach that must have access to all code

In contrast, DBC:

� Focuses on individual methods

� Is designed to post monitors/gatekeepers/veri�ers for inter-method communication, at

method entry and exit points.

� Barring recursion, is not a white-box approach, and can be applied to a method without

knowing its code; method may even be called by remote invocation, and may execute

in another system.

� Cannot formally prove a method implementation to be correct

� Is instead used as a monitoring mechanism during component testing and integration

testing.

211

Method focus makes DBC much more lightweight and e�cient compared to analyzing

and formally proving every statement correct.

212

Appendix D

DBC Tools, Languages

D.1 DBC Tools, Languages

This section brie�y compares three DBC languages before stating why we prefer to use the

Object Constraint Language (OCL) syntax:

� Ei�el: Meyer's own language that is designed to be DBC-capable

� OCL: Object Constraint Language, part of UML standard, used in UML static class

diagrams and in model-driven engineering.

� JML: Java Modeling Language; has more advanced features and the concept of model

objects that are only used to verify contracts. Also de�nes a large set of side-e�ect-free

collections classes for Java, in the style of functional programming.

In Meyer's Ei�el language with native DBC support, the syntax to declare a method uses

�require/ensure� pair to declare preconditions and postconditions:

method(arg:Type) is

require

P -- precondition

do

213

... -- method implementation goes here

ensure

Q -- postcondition

end

In OCL, designed to accompany UML diagrams to help specify behavior through con-

straints, the preconditions and postconditions are listed with �pre:� and �post:�, after speci-

fying the method context:

context Class::method(arg:type)

pre: P

post: Q

OCL syntax for class invariants speci�es class context:

context Class

inv: I

In almost any language used to declare DBC contracts, multiple conditions can be listed

one by one. This is equivalent to AND-ing these conditions. This:

pre: P1

pre: P2

is equivalent to:

pre: P1 and P2

Most languages also allow for handling exception cases, which de�ne what types of invalid

inputs would cause which types of exceptions to be thrown.

Java Modeling Languge (JML) borrows algebraic speci�cation language ideas from Larch,

and allows keeping model objects that are created and maintained through the life cycle of

a modeled object. Such objects are created only if DBC veri�cation is turned on These

214

objects can only be accessed in JML speci�cations; they are not visible to any method's

implementation. For many everyday classes with side e�ects, the states and operations are

often modeled in JML through compositions of objects that instantiate JML's side-e�ect-free

classes. These side-e�ect-free classes (�algebras� in Larch) can only create immutable objects,

in e�ect allowing functional OO programming. For example, Set.remove(Element) creates

another immutable Set, with the element removed. Immutability allows sharing collections

to create other collections, which allows for reasonably e�cient implementation that does

not require incessant cloning.

JML also allows for multiple speci�cation cases to be separately declared with precondi-

tions and postconditions, such as:

requires sign > 0

ensures result == arg

also

requires sign < 0

ensures result == -arg

also

requires sign == 0

signals_only ArithmeticException

Ignoring the error condition with sign == 0, the other two cases could be combined into

a single case in other languages such as OCL: (if sign value may change, replace sign with

sign@pre everywhere)

pre: sign != 0

post: (sign > 0 && result = arg) || (sign < 0 && result = -arg)

In JML, declarations are embedded inline within Java code. All JML declarations are

wrapped in �/@ . . . @/�, resembling, but di�erent in syntax from multi-line comments (the

lined-up vertical column of `@' symbols are not required below):

215

/@

@ requires sign > 0

...

@ signals_only ArithmeticException

@/

public int negate(int arg, int sign) throws ArithmeticException {

// method declaration goes here

...

}

As DBC expressions must be side-e�ect-free, `=' is used in OCL as equality comparison,

rather than assignment. A local variable can be declared, assigned, and used in an OCL

expression (with the syntax �let a = . . . in <contract>�), but its value cannot change, and

non-local external entities cannot be assigned new values.

DBC tools also have to declare which methods in the class are side-e�ect-free, and there-

fore could be safely called from DBC contracts. Some commonly used side-e�ect-free methods

in Java classes are:

� getters: get. . . () methods, length() and size() methods

� substructure access: such as charAt(int index)

� query methods: isEmpty(), endsWith(String str), . . .

OCL calls all side-e�ect-free methods �query� methods, and requires them to be marked

with �query� to declare them safe for use in OCL expressions. JML calls these methods

�pure� methods, and also requires that they be declared, with �pure�:

/*@ pure @*/

public char charAt(int index) {

return chars[index];

}

216

We mostly use OCL's �pre:� and �post:� for reasons of brevity, but we often skip the

context declaration. Often, the contract is a general example that applies to multiple classes

and methods (multiple contexts). At other times, the context is obvious from the preceding

text. Even though we use OCL's tags, we do not use OCL's types, but rather stay with

standard Java types (int instead of Integer, double instead of Real, etc).

D.2 What a Method Delivers: Postcondition Minus Pre-

condition

The contract for a method is:

� IF the caller satis�es preconditions before call,

� THEN, the method will satisfy postconditions upon termination.

In essence, the work promised by the method through a contract is in the di�erence

between postcondition Q and precondition P; it is in what Q promises above and beyond P.

An empty method would satisfy any contract with P ≡ Q:

pre: X

post: X

For both P and Q, the least restrictive condition is �true�, which is readily satis�ed by

any program state, and the most restrictive condition is �false�, which cannot be satis�ed

by any program state. The �true� case never needs to be stated, as it adds nothing. This

contract is equivalent to empty/missing contract (no precondition or postcondition) as it

does not really require or promise to deliver anything:

pre: true

post: true

Beyond these two trivial cases, appendix E examines various types and patterns of con-

tracts, noting some degenerate cases as well as some commonly useful patterns.

217

D.3 DBC Examples

Let us look at some examples of contracts. Consider the four methods shown in table D.1.

Table D.1: Four sample methods

Method Signature Description
int sqrt (int n) �nds integer (truncated) squareroot
int �ndNth (int[] ar, int n) �nds (n+1)-th highest value in array

(n is 0-relative; n=0 �nds max value)
int div (int num, int denom) performs integer division
int �ndInd (double[] sAr, double d) �nds index of d in sAr, a sorted array

(d must be in sAr; sAr is sorted up)

The corresponding preconditions and postconditions for these methods can be written in

Java as seen in table D.2.

Table D.2: Preconditions and postconditions for four methods written as Java boolean ex-
pressions using helper functions "sortDesc", "isSorted" and "asSet".

Method Precondition Postcondition
sqrt n >= 0 result == (int)Math.sqrt(n)
�ndNth 0 <= n && n < ar.length result == sortDesc(ar)[n]
div denom != 0 result == num / denom
�ndInd isSorted(sAr) sAr[result] == d

&& asSet(sAr).contains(d)

In de�ning these, we presumed some helper functions to have been de�ned:

� boolean isSorted(double[] ar): true if ar is sorted up (in nondescending order); ar[i+1]

>= ar[i].

� int[] sortDesc(int[] ar): Returns a permutation of ar with elements sorted down (in

non-ascending order); result[i+1] <= result[i].

� Set<double> asSet(double[] ar): Returns a set that contains all elements in ar.

218

Note that it is not as important for speci�cations to be e�ciently computable 1; it is often

more preferable to use simple, short, easy to read speci�cations. The best time complexity

for �ndNth method above (to �nd the n-th element in array ar) is O(log m) where m is the

size of the array. But the postcondition for �ndNth refers to a sorted version of the array,

which would minimally take O(m * log m) time. Time complexity of postconditions is not

very important as they are often turned o� after component testing.

Let us see how we can use OCL syntax to state these same preconditions and postcondi-

tions. In OCL, the method signatures are de�ned as:

sqrt(n:Integer):Integer

findNth(ar:Integer[], n:Integer): Integer

div(num:Integer, denom:Integer): Integer

findInd(sAr:Real[], d:Real): Integer

Table D.3 shows the preconditions and postconditions in OCL syntax.

Table D.3: Preconditions and postconditions for four methods written in OCL syntax

Method Precondition Postcondition
sqrt n >= 0 (result*result <= n)

and (n < (result+1)*(result+1)))
�ndNth 0 <= n and n < ar.length let nGrtr: Integer =

ar->select(x | x>result)->size in
(n >= nGrtr)
and (n < nGrtr + ar->count(result))

div denom <> 0 result = num / denom
�ndInd sAr->count(d)>0 and sAr[result] = d

for i:Integer in 2..sAr->size |
sAr[i-1] <= sAr[i];

1There are still exceptional cases where ine�ciency can make component testing impractical, and should
be addressed. Consider, for example, a class invariant that requires all objects of some type C2 to be
checked for some property. Invariants are evaluated often, and if there are too many objects of type C2,
the time complexity penalty becomes too large to be ignored. As a practical example, in a college's student
registration system, a StudentID class should not state as a class invariant that there is one and only one
Student object that uses this StudentID.

219

Note that for �ndNth, we did not need to assert separately that result exists in the

array (with ar->count(result) > 0), because if this result does not exist, the two statements

about n and nGrtr become contradictory and unsatis�able together ((n >= nGrtr) and (n

< nGrtr), when ar->count(result) is 0).

One way to verify a Java program against an OCL speci�cation is to convert OCL dec-

larations to Java method veri�ers. Starting from OCL, this can be done manually or by an

OCL tool.

Even without the knowledge of the declarative OCL language, we can directly use the

programmatic syntax of the Java language itself to create method veri�ers. Table D.4 shows

same methods and contracts as above, this time written in full in Java, without helper

methods. For space e�ciency, we use $r to represent result in this table.

Table D.4: Preconditions and postconditions for four methods written as Java boolean ex-
pressions using only Java instructions and assert statements

Method Precondition Postcondition
sqrt assert n >= 0; assert ($r*$r <= n)

&& (n < ($r+1)*($r+1)));
�ndNth assert (0<=n) && (n<ar.length); int nGrtr = 0; int nEq = 0;

// n is a 0-relative index for(int val: ar)
if (val > $r) nGrtr++;
else if (val == $r) nEq++;
assert (n >= nGrtr)
&& (n < nGrtr + nEq);

div assert denom != 0 assert $r == num / denom;
�ndInd for(int i=1; i<sAr.length; i++) assert sAr[$r] == d;

assert sAr[i-1] <= sAr[i];
int j = 0;
while(j<sAr.length && sAr[j]!=d)
j++;
assert j<sAr.length; // sAr[j]==d

For simplicity, we have the somewhat circular de�nition of using integer division to de�ne

the postcondition of integer division. A better postcondition would just use multiplication

to de�ne integer division, handling di�erent cases of signs of numerator and denominator

220

as needed. For this div method, a human-readable but not automatically testable API

documentation may look like this:

/** Divides n by m; m should not be 0. */

int div(int n, int m) { return n/m; }

Even though integer division is de�ned for negative values of n and m as well, it is easier

to describe the behavior for positive n and m. A partial contract for div may only allow

operation with nonnegative n and positive m values. Here, we mark preconditions with @pre

and postconditions with @post:

pre : n >= 0 && m > 0

post: result * m >= n

post: (result - 1) * m < n

Integer division satis�es this contract, but this contract does not allow negative values

of n and m. Integer division can operate in conditions not allowed by this contract; it works

on all four quadrants, not only one.

A more general complete contract can easily be derived by requiring these conditions on

absolute values of n and m (leaving only m != 0 as the precondition), as well as requiring

consistency of sign in result whenever result is not 0. Using traditional absolute value

function `abs', and a signum function `sign' that returns -1 for negative integers, +1 for

positive values, and 0 for 0 (actually, using +1 or -1 for 0 also works for our contract):

pre : m != 0

post: result == 0 || (sign(result) == sign(n) * sign(m))

post: abs(result) * abs(m) >= abs(n)

post: (abs(result) - 1) * abs(m) < abs(n)

The sign consistency line states that result is negative if n or m is negative, but not

when both n and m are negative. This line could also be written using simpler binary valued

221

comparison operators and boolean value comparison instead of ternary signum operator and

multiplication:

post: result == 0 || ((result < 0) == ((n < 0) != (m < 0)))

Alternatively, we can use the logical XOR operator, ^:

post: result == 0 || ((result < 0) == ((n < 0) ^ (m < 0)))

222

Appendix E

Types of DBC Contracts, and How to

Read Them

E.1 Degenerate Contracts and Extreme Cases

Let us �rst consider some degenerate and extreme contracts. Here's the weakest possible

contract:

pre: false

(This can be combined with any postcondition Q, even "post: false"!

Method may crash every time, and will still pass this contract!)

This contract does not require the method to do nothing. The method may even crash

every time it is called, and yet it still trivially satis�es this contract.

Next weakest possible contract requires normal termination, but not anything else from

a method:

post: true

(When combined with any precondition except false:

Method must terminate, but promises nothing else)

223

The following method contract promises to deliver nothing except for not destroying a

precondition I (which is in essence an invariant):

pre: I

post: I

(Method only promises to preserve I;

empty method body would satisfy this)

The following method contract promises to deliver less than nothing (it requires more

than it delivers); it suggests that it may actually do some harm:

pre: I and P

post: I

(Method must preserve I, but may cause ! P;

it need not deliver anything else)

E.2 Categories of Everyday Contracts

Now we're ready to consider some categories of reasonable contracts we are likely to come

across in DBC. These may appear syntactically similar to degenerate cases, but are actually

categories of practical contracts we may use everyday in DBC.

This method contract promises to deliver Q without a�ecting I:

pre: I

post: I and Q

(method must deliver Q while preserving I)

If I is merely the object invariant, it is already implicitly considered to be part of both

precondition and postcondition, and need not be spelled out. In this case, we merely use:

post: Q

(method must deliver Q while preserving object invariants)

224

The explicit repetition of I in both precondition and postcondition is only needed for

method-speci�c invariants (that are required and preserved by this method) beyond the

implicit object invariant (that are required and preserved by all public methods).

This method contract promises Q while destroying (consuming) P:

pre: P

post: Q

(method must deliver Q, may cause ! P)

In this case, we are interested in anything that does not already fall under any of the

simpler categories seen above (neither P ==> Q nor Q ==> P).

This type of contract is often used when delivering Q would naturally cause ! P because

P and Q cannot be satis�ed together:

Q ==> ! P

! (P and Q)

225

Appendix F

ASM Library for Java Bytecode

Manipulation

What follows in the next few sections is a brief introduction to ASM. For a quick introduction

that goes into a little more detail, we recommend ASM tutorial at ASM site [51]. For more

examples and topics, please refer to the ASM Guide [21], which is very readable, but a little

long at 138 pages.

F.1 Event-Based Sequential Access Parser (Similar to

SAX for XML)

This type of parsing, code generation and manipulation is de�ned in ASM's Core package.

It uses the Visitor design pattern's push approach; visitXyz methods you de�ne (override

from empty de�nition) for structural elements of Java bytecode will be called as ASM comes

across each element.

A ClassReader can be used to read a class �le (bytecode). A ClassVisitor can be associ-

ated with the ClassReader so that ClassReader will call ClassVisitor for whole and parts of

the structure. There are four Visitor classes and various visit methods that can be used to

226

traverse various structures that make up a class:

� ClassVisitor: visit{, Source, OuterClass, Attribute, Annotation, EndField,

Method, InnerClass, End}()

� AnnotationVisitor: visit{Xyz, End}()

� FieldVisitor: visit{Attribute, Annotation, End}()

� MethodVisitor: visit{AnnotationDefault, Attribute, Annotation, Parameter-

Annotation, Code, Xyz, End}()

Note: Xyz above is a place holder for various items that can be visited with the corre-

sponding visit. . . methods in the visitor. For example, for visiting statements in a method,

we have local variable access instruction, �eld access instruction, load constant instruction,

jump instruction, label (for jump), . . . , which can be visited with the visit{VarInsn,

FieldInsn, LdcInsn, JumpInsn, Label, ...}() methods.

Code that visits every part of a class may look like the following:

ClassVisitor cv = ...

cv.visit(): Informs visitor of top-level class declaration information:

version, access rights, name of class, superclass name, interfaces

cv.visitSource();

cv.visitOuterClass();

for each class attribute:

cv.visitAttribute();

for each class annotation:

AnnotationVisitor av;

= cv.visitAnnotation(description, isVisible);

for each part of the annotation:

av.visitXyz(); // Xyz: various parts of annotations

227

av.visitEnd()

for each field:

FieldVisitor fv

= cv.visitField(access, name, description, signature, value);

for each field attribute:

fv.visitAttribute();

for each field annotation:

fv.visitAnnotation();

fv.visitEnd();

for each method:

MethodVisitor mv

= cv.visitMethod(access, name, description, signature, exceptions);

mv.visitAnnotationDefault();

for each method attribute:

mv.visitAttribute();

for each method annotation:

mv.visitAnnotation();

for each method parameter annotation:

mv.visitParameterAnnotation();

mv.visitCode();

for each statement in method body:

mv.visitXyz(); // Xyz: to visit various code structures

mv.visitEnd();

for each inner class:

cv.visitInnerClass(name, outername, innername, access);

cv.visitEnd();

Here, the visitor is a bytecode observer or consumer. Multiple visitors can delegate part

228

or whole task to a next level visitor, by using the Chain of Responsibility pattern, using

visitors derived from ClassAdapter and MethodAdapter.

This allows creation of a chain with a ClassWriter at the end of the chain. For example,

if we have created an InstrumentingVisitor and a MutatingVisitor that are derived from

ClassAdapter, we can read, mutate class, instrument it, and write it to a class �le, by

creating the responsibility chain from the end backwards like this:

// read our class bytes (bytecode) for input

byte[] inbytes = ...;

// this will hold the bytecode for transformed class

byte[] outbytes;

// Desired chain:

// read(inbytes[]) -> mutate() -> instrument()

// -> write(outbytes[])

ClassWriter cw = new ClassWriter();

// instrument -> write link of the chain

ClassVisitor ci = new InstrumentingVisitor(cw);

// mutate -> instrument link of the chain

ClassVisitor cm = new MutatingVisitor(ci);

// read

ClassReader cr = new ClassReader(inbytes);

// Chain is ready, processing can start now;

// ClassReader -> (accept as visitor)

// MutatingVisitor -> InstrumentingVisitor -> ClassWriter

cr.accept(cm, 0);

// convert bytecode from ASM structures to byte[]

outbytes = cw.toByteArray();

229

For e�ciency purposes, ASM actually prefers if you let ClassWriter know the Class-

Reader, so that in cases of unmodi�ed method bytecode, writer can just use reader's byte-

code for method. This optimization can be used by declaring the reader �rst and passing its

reference to the writer (other declarations remain the same):

...

ClassReader cr = new ClassReader(inbytes);

ClassWriter cw = new ClassWriter(cr, 0);

...

Instead of supplying the bytes, one can also supply an input stream as in:

InputStream in = new FileInputStream("Mutater.class");

ClassReader cr = new ClassReader(in);

...

Just like SAX parser for XML, the event-based Java bytecode manipulation that the

ASM Core package has speed and memory advantages, but cannot be used as easily for

some types of analysis and transformations. Compared to the tree-based (DOM-like) parser

in the next section, ASM Core package, used as-is (without creating a memory-resident parse

tree), with a single pass:

� is faster

� has smaller memory footprint (as document parse tree is never held in the memory)

� is less powerful; allows fewer types of analyses and transformations

� can only be used for order-preserving manipulations of the bytecode

� can only be used if knowledge gained from a later portion of the bytecode (for

example, �is this private method ever called in this class?�) need not be used to

transform an earlier portion of the bytecode.

230

In the next section, we will see ASM's Tree API that creates a memory-resident parse

tree structure which allows more complicated types of analysis and transformations. Similar

to common practice with DOM parsers for XML built on top of SAX parsers, ASM's Tree

Parser is built on top of e�cient event-based parser that we saw in this section.

F.2 ASM's Tree API

As with SAX/DOM distinction for XML document parsing and manipulation, as compared

with ASM Core API that provides an event-based sequential access parser, ASM's Tree API:

� Uses more memory to hold the whole class �le parse tree in memory.

� Keeps substructures in a form that is easy to access, analyze and manipulate.

� Allows repeated access to substructures in any order.

� Therefore accomodates many types of structural manipulations that are much harder

to perform with ASM Core API.

In our projects, we initially used the event-based manipulation, but had to move later to

Tree API as we needed more complex analysis and manipulation of the Java classes.

To generate new structures in ASM's Tree API, we can create new nodes that correspond

to various structural elements of the Java bytecode (and therefore, of Java class), such as:

ClassNode, FieldNode, MethodNode

XyzInsnNode: {Abstract, Field, Ldc, Method, Var, Jump, Type, }InsnNode

InsnList

The last one, InsnList holds all instructions of a method. All the instruction nodes are

subclasses of AbstractInsnNode, and each instruction node object can only belong to one

InsnList (where it can appear only once), in one Method. To copy an instruction, we have

231

to clone/copy the object. We can also move an instruction (remove from �rst list, add to

the second).

The Tree API is built on top of the event-based parser API. In fact, ClassNode is a

ClassVisitor. To read a class into memory to create the parse tree for the class, we only need

to create an empty ClassNode and let it visit a ClassReader, as in:

ClassReader cr = new ClassReader(inbytes);

ClassNode cls = new ClassNode();

cr.accept(cls, 0);

F.3 Data Flow Analysis with ASM

As part of ASM's tree API, the org.objectweb.asm.tree.analysis package provides func-

tionality to help perform static code analysis on the memory resident parse tree of the Java

class, for:

� data �ow analysis (forward and backward analysis)

� control �ow analysis

We focus below on data �ow analysis. Please refer to ASM guide and Javadocs for

more information on control �ow analysis, which can, for example, be used for cyclomatic

complexity analysis.

As JVM is a stack-based machine, data �ow analysis has to use a stack, with proper

positions in the stack accessed by each instruction that uses the stack. ASM's data �ow

analysis basically performs a symbolic execution of all the instructions of the method, and

uses �Value� objects to represent all possible values:

� for any �eld, method argument, method return value, and local variable

232

� at any place in the stack during any bytecode instruction (note: stack is empty between

Java statements, but may hold data between JVM instructions that collectively make

up each Java statement)

Instead of single values, these Value objects are data structures that represent all possible

values at a given point in the code. This is a major di�erence between JVM and data �ow

analysis: JVM would use individual value, for example one integer, for value of an integer

variable. Data �ow analysis instead may hold a set of integers that to list all possible

values this integer variable may have at any given point in Java bytecode execution. Our

analysis goals may not make distinctions between some values, and holding the set of all

possible values at any given point in execution may become too complicated. Therefore, an

important aspect of all possible values, rather than the set of all possible values, will usually

be held in the data structures that represent values used in data �ow analysis.

The �Value� objects used in data �ow analysis cannot hold any actual integer, double

or pointer values; for example, local variable i's value cannot be represented with just Inte-

ger(10), as this would mean:

� the variable is not varying, so it is not really a variable, it is a constant

� we have chosen to represent the single-element set by the single element itself instead

of a uniform structure that would allow any number of values as elements; this requires

a switch-case statement in any processing method.

As a simple example of data �ow analysis, consider the task of discovering the minimum

and maximum values of integer and double-valued variables and �elds. A possible data

structure that can be used to handle some basic arithmetic operations is:

public class IntRange implements Value { int min, max; }

public class DoubleRange implements Value { double min, max; }

Now, for any integer-valued variable, we can use an IntRange value to discover and use

its minimum and maximum possible value. Note that this approach is relatively crude and

233

may produce relatively large ranges. For example, if n can only have the values 0 and 1024,

we have to record this as n having any value in the range 0 - 1024. Then, all we can say

about m = n % 100 is that it is in range 0 - 99 rather than that it may only be 0 or 24.

Data �ow analysis proceeds by taking all paths, executing each jump once.

The loops are not run multiple times (as variables do not have values, we would not know

how many times to run the loops). The switch-case statements are executed by going to all

possible cases. Both if and else branches run. Jump instructions to jump backwards in code

can cause various other values to be in the stack at the jump-to location in the bytecode.

One way to mix forward and backward data �ow analysis is to use ASM API for forward

data �ow analysis, with complex Value structures that record accumulative history of values,

and do further analysis on these Value structures to track causal links backwards.

We have used ASM's data �ow analysis classes with values that represent origin of value

(a bytecode instruction that creates the value, an argument to method, a �eld, or a local

variable). As we need to hold the union of all possible values, we use sets of origins of values

that may be held at any point during the instruction. This allows us to go backwards and

�nd responsible parties and modify code to limit their value variability, to make sure that

the value used at a point during the instruction conforms to what is acceptable.

For more information about using ASM Tree API, please refer to ASM Guide and this

article: Manipulating Java Class Files with ASM 4 - Part Two: Tree API.

234

http://www.geekyarticles.com/2011/10/manipulating-java-class-files-with-asm_13.html

Bibliography

[1] Pekka Abrahamsson et al. Agile software development methods. Tech. rep. VTT Pub-

lications, 2002.

[2] Hiralal Agrawal. �Towards automatic debugging of computer programs�. UMI Order

No. GAX92-01293. PhD thesis. West Lafayette, IN, USA, 1992.

[3] Hiralal Agrawal and Joseph Robert Horgan. �Dynamic Program Slicing�. In: Proc.

ACM SIGPLAN 1990 Conference on Programming Language Design and Implemen-

tation (PLDI '90). 1990, pp. 246�256.

[4] Hiralal Agrawal et al. Design of Mutant Operators for the C Programming Language.

Tech. rep. SERC-TR41-P. West Lafayette, IN: Software Engineering Research Center,

Purdue University, 1989.

[5] Francis J. Anscombe. �Graphs in statistical analysis�. In: American Statistician (1973),

pp. 17�21.

[6] Aspect-Oriented Programming: Implementations. Wikipedia, url: http : / / en .

wikipedia.org/wiki/Aspect-oriented_programming#Implementations (visited

on 02/08/2013).

[7] AspectJ Project. The Eclipse Foundation, url: http://www.eclipse.org/aspectj/

(visited on 02/08/2013).

[8] Azureus/Vuze: Free Communications software downloads at SourceForge.net. Source-

Forge, url: http://sourceforge.net/projects/azureus/ (visited on 02/21/2013).

235

http://en.wikipedia.org/wiki/Aspect-oriented_programming#Implementations
http://en.wikipedia.org/wiki/Aspect-oriented_programming#Implementations
http://www.eclipse.org/aspectj/
http://sourceforge.net/projects/azureus/

[9] J. Bach. Exploratory Testing Explained. Tech. rep. Satis�ce, Inc., 2003. url: http:

//www.satisfice.com/articles/et-article.pdf.

[10] Luciano Baresi and Michal Young. Test Oracles. Tech. rep. 2001.

[11] David W. Binkley and Keith B. Gallagher. �Program slicing�. In: Advances in Com-

puters 43 (1996), pp. 1�50.

[12] Paul E. Black, Vadim Okun, and Yaacov Yesha. �Mutation Operators for Speci�ca-

tions�. In: Proceedings of the 15th IEEE international conference on Automated soft-

ware engineering. ASE '00. Washington, DC, USA: IEEE Computer Society, 2000,

pp. 81�. isbn: 0-7695-0710-7. url: http://dl.acm.org/citation.cfm?id=786768.

786981.

[13] S. Kanat Bolazar and James W. Fawcett. �Debugging with Software Visualization and

Contract Discovery�. In: SEDE. Ed. by Walter Dosch and William Perrizo. ISCA, 2006,

pp. 47�50.

[14] S. Kanat Bolazar and James W. Fawcett. �Measuring Component Speci�cation-

Implementation Concordance with Semantic Mutation Testing�. In: CATA. Ed. by

Wei Li. ISCA, 2011, pp. 102�107. isbn: 978-1-880843-80-2.

[15] S. Kanat Bolazar and James W. Fawcett. �VERDICTS : Visual Exploratory Require-

ments Discovery and Injection for Comprehension and Testing of Software�. In: Soft-

ware Engineering Research and Practice. Ed. by Hamid R. Arabnia et al. CSREA

Press, 2010, pp. 233�239. isbn: 1-60132-167-8.

[16] Bolazar's Research Page. Syracuse University, May 2013. url: http://www.ecs.syr.

edu/faculty/fawcett/handouts/research/Bolazar/index.html.

[17] Bob Boothe. �E�cient algorithms for bidirectional debugging�. In: PLDI. Ed. by Mon-

ica S. Lam. ACM, 2000, pp. 299�310. isbn: 1-58113-199-2.

236

http://www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/articles/et-article.pdf
http://dl.acm.org/citation.cfm?id=786768.786981
http://dl.acm.org/citation.cfm?id=786768.786981
http://www.ecs.syr.edu/faculty/fawcett/handouts/research/Bolazar/index.html
http://www.ecs.syr.edu/faculty/fawcett/handouts/research/Bolazar/index.html

[18] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. �From Daikon to Agitator:

lessons and challenges in building a commercial tool for developer testing�. In: In

ISSTA '06: Proceedings of the 2006 International Symposium on Software Testing and

Analysis. ACM Press, 2006, pp. 169�180.

[19] Frederick P. Brooks Jr. The mythical man-month (anniversary ed.) Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1995. isbn: 0-201-83595-9.

[20] Ruven E. Brooks. �Towards a Theory of the Comprehension of Computer Programs�.

In: International Journal of Man-Machine Studies 18.6 (1983), pp. 543�554.

[21] Eric Bruneton. ASM 4.0: A Java bytecode engineering library. Sept. 2011. url: http:

//download.forge.objectweb.org/asm/asm4-guide.pdf.

[22] David W. Bustard and Adam C. Winstanley. �Making Changes to Formal Speci�ca-

tions: Requirements and an Example�. In: IEEE Trans. Software Eng. 20.8 (1994),

pp. 562�568.

[23] Holger Cleve and Andreas Zeller. �Locating causes of program failures�. In: ICSE. Ed.

by Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh. ACM, 2005,

pp. 342�351.

[24] David Coppit and Jennifer M. Haddox-Schatz. �On the Use of Speci�cation-Based

Assertions as Test Oracles�. In: SEW. IEEE Computer Society, 2005, pp. 305�314.

isbn: 0-7695-2306-4.

[25] Cynthia L. Corritore and Susan Wiedenbeck. �An exploratory study of program com-

prehension strategies of procedural and object-oriented programmers�. In: Int. J. Hum.-

Comput. Stud. 54.1 (2001), pp. 1�23.

[26] M. Csíkszentmihályi. Finding Flow: The Psychology of Engagement With Everyday

Life. MasterMinds Series. BasicBooks, 1997. isbn: 9780465024117. url: http://

books.google.com/books?id=HBod-fUzmBcC.

237

http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://books.google.com/books?id=HBod-fUzmBcC
http://books.google.com/books?id=HBod-fUzmBcC

[27] Márcio E. Delamaro, José; C. Maldonado, and Aditya P. Mathur. �Interface Mutation:

An Approach for Integration Testing�. In: IEEE Transactions on Software Engineering

27 (2001), pp. 228�247. issn: 0098-5589. doi: http://doi.ieeecomputersociety.

org/10.1109/32.910859.

[28] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. �Hints on Test Data Selection: Help

for the Practicing Programmer�. In: Computer 11.4 (Apr. 1978), pp. 34�41. issn: 0018-

9162.

[29] Richard A. DeMillo and A. Je�erson O�utt. �Constraint-Based Automatic Test Data

Generation�. In: IEEE Trans. Softw. Eng. 17.9 (Sept. 1991), pp. 900�910. issn: 0098-

5589. doi: 10.1109/32.92910. url: http://dx.doi.org/10.1109/32.92910.

[30] Design By Contract: Language Support. Wikipedia, url: http://en.wikipedia.org/

wiki/Design_by_contract#Language_support (visited on 02/08/2013).

[31] James W. Fawcett, Murat K. Gungor, and Arun V. Iyer. �Analyzing Static Structure

of Large Software Systems�. In: Software Engineering Research and Practice. Ed. by

Hamid R. Arabnia and Hassan Reza. CSREA Press, 2005, pp. 491�496. isbn: 1-932415-

50-5.

[32] P. Fiore, F. Lanubile, and G. Visaggio. �E�ort Estimation for Program Comprehen-

sion�. In: Proceedings of the 4th International Workshop on Program Comprehension

(WPC '96). WPC '96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 78�.

isbn: 0-8186-7283-8. url: http://dl.acm.org/citation.cfm?id=525394.837837.

[33] R. W. Floyd. �Assigning Meaning to Programs�. In: Proceedings of the Symposium on

Applied Maths. Vol. 19. AMS, 1967, pp. 19�32.

[34] John B. Goodenough and Susan L. Gerhart. �Toward a Theory of Test Data Selection�.

In: IEEE Trans. Software Eng. 1.2 (1975), pp. 156�173.

238

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/32.910859
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/32.910859
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1109/32.92910
http://en.wikipedia.org/wiki/Design_by_contract#Language_support
http://en.wikipedia.org/wiki/Design_by_contract#Language_support
http://dl.acm.org/citation.cfm?id=525394.837837

[35] John B. Goodenough and Susan L. Gerhart. �Toward a Theory of Testing: Data Se-

lection Criteria�. In: Current Trends in Programming Methodology 2 (1977). Ed. by

Raymond T. Yeh, pp. 44�79.

[36] B. J. M. Grun, D. Schuler, and A. Zeller. �The impact of equivalent mutants�. In: Soft-

ware Testing, Veri�cation and Validation Workshops, 2009. ICSTW'09. International

Conference on. IEEE. 2009, pp. 192�199.

[37] Abdelwahab Hamou-Lhadj et al. �Workshop on Program Comprehension through Dy-

namic Analysis (PCODA10).� In: WCRE. Ed. by Giuliano Antoniol, Martin Pinzger,

and Elliot J. Chikofsky. IEEE Computer Society, 2010, pp. 279�280.

[38] C. A. R. Hoare. �An axiomatic basis for computer programming�. In: Commun. ACM

12.10 (Oct. 1969), pp. 576�580. issn: 0001-0782. doi: 10.1145/363235.363259. url:

http://doi.acm.org/10.1145/363235.363259.

[39] Chanika Hobatr and Brian A. Malloy. �The design of an OCL query-based debugger

for C++�. In: SAC. ACM, 2001, pp. 658�662.

[40] Chanika Hobatr and Brian A. Malloy. �Using OCL-Queries for Debugging C++�. In:

ICSE. Ed. by Hausi A. Müller, Mary Jean Harrold, and Wilhelm Schäfer. IEEE Com-

puter Society, 2001, pp. 839�840. isbn: 0-7695-1050-7.

[41] Instructions Per Second. Wikipedia, url: http : / / en . wikipedia . org / wiki /

Instructions_per_second (visited on 02/21/2013).

[42] S. A. Irvine et al. �Jumble Java byte code to measure the e�ectiveness of unit tests�.

In: Testing: Academic and Industrial Conference Practice and Research Techniques-

MUTATION, 2007. TAICPART-MUTATION 2007. IEEE. 2007, pp. 169�175.

[43] Java Tutorials - Re�ection API Trail. Oracle, url: http://docs.oracle.com/

javase/tutorial/reflect/index.html (visited on 02/08/2013).

[44] Yue Jia and Mark Harman. �Higher Order Mutation Testing�. In: Journal of Informa-

tion and Software Technology 51.10 (2009), pp. 1379�1393.

239

http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html

[45] Mira Kajko-Mattsson, Stefan Forssander, and Gunnar Andersson. �Software problem

reporting and resolution process at ABB Robotics AB: state of practice�. In: Journal

of Software Maintenance: Research and Practice 12.5 (2000), pp. 255�285. issn: 1096-

908X. doi: 10.1002/1096-908X(200009/10)12:5<255::AID-SMR216>3.0.CO;2-

L. url: http://dx.doi.org/10.1002/1096-908X(200009/10)12:5<255::AID-

SMR216>3.0.CO;2-L.

[46] Mira Kajko-Mattsson, Stefan Forssander, and Ulf Olsson. �Corrective maintenance

maturity model (CM3): maintainer's education and training�. In: Proceedings of the

23rd International Conference on Software Engineering. ICSE '01. Toronto, Ontario,

Canada: IEEE Computer Society, 2001, pp. 610�619. isbn: 0-7695-1050-7. url: http:

//dl.acm.org.libezproxy2.syr.edu/citation.cfm?id=381473.381543.

[47] Gregor Kiczales et al. �Aspect-Oriented Programming�. In: ECOOP. 1997, pp. 220�

242.

[48] Andrew J. Ko and Brad A. Myers. �Debugging reinvented: asking and answering why

and why not questions about program behavior�. In: Proceedings of the 30th interna-

tional conference on Software engineering. ICSE '08. Leipzig, Germany: ACM, 2008,

pp. 301�310. isbn: 978-1-60558-079-1. doi: 10.1145/1368088.1368130. url: http:

//doi.acm.org/10.1145/1368088.1368130.

[49] Koders.com. Black Duck Software, Inc., url: http://www.koders.com/ (visited on

02/08/2013).

[50] Krugle.org. Aragon Consulting Group, Inc., url: http://www.krugle.org/ (visited

on 02/08/2013).

[51] Eugene Kuleshov. Introduction to the ASM 2.0 Bytecode Framework. Aug. 2005. url:

http://asm.ow2.org/doc/tutorial-asm-2.0.html (visited on 02/08/2013).

[52] C. Larman and V.R. Basili. �Iterative and Incremental Development: A Brief History�.

In: IEEE Computer 36.6 (2003), pp. 47�56.

240

http://dx.doi.org/10.1002/1096-908X(200009/10)12:5<255::AID-SMR216>3.0.CO;2-L
http://dx.doi.org/10.1002/1096-908X(200009/10)12:5<255::AID-SMR216>3.0.CO;2-L
http://dx.doi.org/10.1002/1096-908X(200009/10)12:5<255::AID-SMR216>3.0.CO;2-L
http://dx.doi.org/10.1002/1096-908X(200009/10)12:5<255::AID-SMR216>3.0.CO;2-L
http://dl.acm.org.libezproxy2.syr.edu/citation.cfm?id=381473.381543
http://dl.acm.org.libezproxy2.syr.edu/citation.cfm?id=381473.381543
http://dx.doi.org/10.1145/1368088.1368130
http://doi.acm.org/10.1145/1368088.1368130
http://doi.acm.org/10.1145/1368088.1368130
http://www.koders.com/
http://www.krugle.org/
http://asm.ow2.org/doc/tutorial-asm-2.0.html

[53] Gary T. Leavens and Albert L. Baker. �Enhancing the Pre- and Postcondition Tech-

nique for More Expressive Speci�cations.� In: World Congress on Formal Methods.

Ed. by Jeannette M. Wing, Jim Woodcock, and Jim Davies. Vol. 1709. Lecture Notes

in Computer Science. Springer, 1999, pp. 1087�1106. isbn: 3-540-66588-9. url: http:

//dblp.uni-trier.de/db/conf/fm/fm1999-2.html#LeavensB99.

[54] Gary T. Leavens et al. �JML (poster session): notations and tools supporting detailed

design in Java�. In: Addendum to the 2000 proceedings of the conference on Object-

oriented programming, systems, languages, and applications (Addendum). OOPSLA

'00. Minneapolis, Minnesota, USA: ACM, 2000, pp. 105�106. isbn: 1-58113-307-3. doi:

10.1145/367845.367996. url: http://doi.acm.org/10.1145/367845.367996.

[55] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. �Dynamic Query-Based De-

bugging�. In: ECOOP. Ed. by Rachid Guerraoui. Vol. 1628. Lecture Notes in Computer

Science. Springer, 1999, pp. 135�160. isbn: 3-540-66156-5.

[56] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. �Query-Based Debugging of

Object-Oriented Programs�. In: OOPSLA. Ed. by Mary E. S. Loomis, Toby Bloom,

and A. Michael Berman. ACM, 1997, pp. 304�317. isbn: 0-89791-908-4.

[57] Stanley Letovsky. �Cognitive processes in program comprehension�. In: Journal of Sys-

tems and Software 7.4 (1987), pp. 325�339.

[58] Bil Lewis. �Debugging Backwards in Time�. In: CoRR cs.SE/0310016 (2003).

[59] Anneliese von Mayrhauser and A. Marie Vans. �Program Comprehension During Soft-

ware Maintenance and Evolution�. In: IEEE Computer 28.8 (1995), pp. 44�55.

[60] B. Meyer. �On formalism in speci�cations�. In: IEEE software 2.1 (1985), pp. 6�26.

[61] B. P. Miller, L. Fredriksen, and B. So. �An empirical study of the reliability of UNIX

utilities�. In: Communications of the ACM 33.12 (1990), pp. 32�44.

241

http://dblp.uni-trier.de/db/conf/fm/fm1999-2.html#LeavensB99
http://dblp.uni-trier.de/db/conf/fm/fm1999-2.html#LeavensB99
http://dx.doi.org/10.1145/367845.367996
http://doi.acm.org/10.1145/367845.367996

[62] Matthias M. Müller, Rainer Typke, and Oliver Hagner. �Two Controlled Experiments

Concerning the Usefulness of Assertions as a Means for Programming�. In: ICSM. IEEE

Computer Society, 2002, pp. 84�92. isbn: 0-7695-1819-2.

[63] A. S. Namin, J. H. Andrews, and D. J. Murdoch. �Su�cient mutation operators for

measuring test e�ectiveness�. In: Proceedings of the 30th international conference on

Software engineering. ACM. 2008, pp. 351�360.

[64] Cornelius Ncube, Patricia Oberndorf, and Anatol W. Kark. �Opportunistic Software

Systems Development: Making Systems from What's Available�. In: IEEE Softw. 25.6

(Nov. 2008), pp. 38�41.

[65] A. Je�erson O�utt and Roland H. Untch. �Mutation 2000: Uniting the Orthogonal�.

In: Proceedings of the 1st Workshop on Mutation Analysis (MUTATION'00). San Jose,

California, 2001, pp. 34�44.

[66] A. Je�erson O�utt and Je�rey M. Voas. Subsumption of Condition Coverage Tech-

niques by Mutation Testing. Tech. rep. ISSE-TR-96-01. 4400 University Drive MS 4A5,

Fairfax, VA 22030-4444 USA: Department of Information and Software Engineering,

George Mason University, 1996.

[67] C. Pacheco et al. �Feedback-directed random test generation�. In: Software Engineer-

ing, 2007. ICSE 2007. 29th International Conference on. IEEE. 2007, pp. 75�84.

[68] PCODA 2010 Proceedings. Software Evolution Research Lab (SWERL) at Delft Uni-

versity of Technology, Delft, The Netherlands, Oct. 2010. url: http://swerl.

tudelft.nl/bin/view/PCODA/PCODA2010#Proceedings.

[69] Nancy Pennington. �Stimulus structures and mental representations in expert com-

prehension of computer programs�. In: Cognitive Psychology 19.3 (1987), pp. 295�341.

url: http://dx.doi.org/10.1016/0010-0285(87)90007-7.

242

http://swerl.tudelft.nl/bin/view/PCODA/PCODA2010#Proceedings
http://swerl.tudelft.nl/bin/view/PCODA/PCODA2010#Proceedings
http://dx.doi.org/10.1016/0010-0285(87)90007-7

[70] Kevin Poulsen. Tracking the Blackout Bug: Buried in four million lines of C code.

The Register, url: http://www.theregister.co.uk/2004/04/08/blackout_bug_

report/ (visited on 04/20/2013).

[71] Preliminary Speci�cations: Programmed Data Processor Model Three (PDP-3), by Dig-

ital Equipment Corporation. Gutenberg, url: http://www.gutenberg.org/files/

29461/29461-h/29461-h.htm (visited on 02/21/2013).

[72] Winston W. Royce. �Managing the development of large software systems: concepts

and techniques�. In: Proc. IEEE WESTCON. Reprinted in Proc. Int'l Conf. Software

Engineering (ICSE) 1989, ACM Press, pp. 328-338. IEEE Press, 1970.

[73] Ehud Y. Shapiro. Algorithmic Program DeBugging. Cambridge, MA, USA: MIT Press,

1983. isbn: 0262192187.

[74] Ben Shneiderman and Richard E. Mayer. �Syntactic/semantic interactions in program-

mer behavior: A model and experimental results.� In: International Journal of Par-

allel Programming 8.3 (1979), pp. 219�238. url: http://dblp.uni-trier.de/db/

journals/ijpp/ijpp8.html#ShneidermanM79.

[75] Elliot Soloway and Kate Ehrlich. �Empirical Studies of Programming Knowledge�. En-

glish. In: IEEE Transactions on Software Engineering 10.5 (1984). Copyright - Copy-

right Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 1984; Last

updated - 2011-07-20; CODEN - IESEDJ; DOI - 7091025; 49101; 17010; IESEDJ; ISO;

00257501; 84-36064, pp. 595�595. url: http://search.proquest.com/docview/

195578283?accountid=14214.

[76] SourceForge: Most downloads over all time. SourceForge, url: http://sourceforge.

net/top (visited on 02/21/2013).

[77] M. Sridharan and A. S. Namin. �Prioritizing Mutation Operators Based on Importance

Sampling�. In: Proc. 21st Intl. Symp. of Software Reliability Engineering. 2010, pp. 378�

387.

243

http://www.theregister.co.uk/2004/04/08/blackout_bug_report/
http://www.theregister.co.uk/2004/04/08/blackout_bug_report/
http://www.gutenberg.org/files/29461/29461-h/29461-h.htm
http://www.gutenberg.org/files/29461/29461-h/29461-h.htm
http://dblp.uni-trier.de/db/journals/ijpp/ijpp8.html#ShneidermanM79
http://dblp.uni-trier.de/db/journals/ijpp/ijpp8.html#ShneidermanM79
http://search.proquest.com/docview/195578283?accountid=14214
http://search.proquest.com/docview/195578283?accountid=14214
http://sourceforge.net/top
http://sourceforge.net/top

[78] R. H. Untch, A. J. O�utt, and M. J. Harrold. �Mutation analysis using mutant

schemata�. In: ACM SIGSOFT Software Engineering Notes. Vol. 18. 3. ACM. 1993,

pp. 139�148.

[79] Iris Vessey. �Expertise in Debugging Computer Programs: A Process Analysis.� In:

International Journal of Man-Machine Studies 23.5 (1985), pp. 459�494. url: http:

//dblp.uni-trier.de/db/journals/ijmms/ijmms23.html#Vessey85.

[80] J. M. Voas. �PIE: A dynamic failure-based technique�. In: Software Engineering, IEEE

Transactions on 18.8 (1992), pp. 717�727.

[81] Vuze - Wikipedia. Wikipedia, url: http://en.wikipedia.org/wiki/Vuze (visited

on 02/21/2013).

[82] Andreas Zeller. �Automated Debugging: Are We Close�. In: IEEE Computer 34.11

(2001), pp. 26�31.

[83] Andreas Zeller. �Isolating cause-e�ect chains from computer programs�. In: SIGSOFT

FSE. 2002, pp. 1�10.

[84] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann, Oct. 2005. isbn: 1558608664.

[85] Andreas Zeller and Ralf Hildebrandt. �Simplifying and Isolating Failure-Inducing In-

put�. In: IEEE Trans. Software Eng. 28.2 (2002), pp. 183�200.

244

http://dblp.uni-trier.de/db/journals/ijmms/ijmms23.html#Vessey85
http://dblp.uni-trier.de/db/journals/ijmms/ijmms23.html#Vessey85
http://en.wikipedia.org/wiki/Vuze

VITA

NAME OF AUTHOR: �e�k Kanat Bolazar

PLACE OF BIRTH: Ankara, Turkey

DATE OF BIRTH: 17 July 1969

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Syracuse University, Syracuse, New York

Middle Eastern Technical University, Ankara, Turkey

DEGREES AWARDED:

M.S. in Computer and Information Science, 1993, Syracuse University

B.S. in Computer Engineering, 1990, Middle Eastern Technical University

PROFESSIONAL EXPERIENCE:

Control Systems Programmer, Landis & Gyr, Zug, Switzerland, 1988

Manager, Software Development, Cagdas Bilgisayar (Computer),

Ankara, Turkey, 1988 - 1990

Teaching Assistant, Syracuse University, 1991 - 1997

Software Engineer, MNIS-Textwise Labs, Syracuse, NY, 1998 - 2002

Teaching Assistant, Syracuse University, 2003 - 2013 (intermittent)

245

	VERDICTS: Visual Exploratory Requirements Discovery and Injection for Comprehension and Testing of Software
	Recommended Citation

	Abstract
	Contents
	List of Tables
	List of Figures
	Partial Automation of Software Component Verification
	Contributions
	Partial Automation of Software Component Verification
	Automated Verification of Undocumented Software Components
	Software Development Stages, Cycles, and Feedback
	Software Component Testing and Analysis
	Software Comprehension Theories, Importance of Hypotheses
	Declaring Hypotheses

	Problem Scenarios
	Testing, Verification
	Analysis and Comprehension
	Debugging
	Specifications Discovery
	Measuring Automated Verifier Adequacy

	Observations and Proposed Solution
	Method Description
	VERDICTS: Visual Exploratory Requirements Discovery and Injection for Comprehension and Testing of Software
	Dynamically Generated and Evolved Requirements Specifications (Contracts)
	Evaluating Requirements with Semantic Mutation Testing (SMT)

	Problem Scenarios
	Problem Scenarios
	Testing, Verification
	Analysis and Comprehension
	Debugging, Fault Localization ("Find the Bug")
	Debugging: Ignored in Software Engineering, Inefficient, and Costly
	Fault Localization (Discovering Defect Origin)
	Standard Debugging Paradigm, 1961-2013
	Print Statements, Logging and Tracing

	Specifications Discovery
	Specifications Discovery: Part of Reverse Engineering
	Software That Works For End Users, But Not For Developers
	Why Are Comments, Documentation, Specifications and Automated Tests Missing in Many Open Source Software?
	Communicating Comprehension: From Mental Models to Documentation
	Discovering Specifications for Test Automation

	Measuring Automated Verifier Adequacy
	Relative and Absolute Adequacy Metrics

	Problem Analysis
	Actors: User and Developer's Mental Models vs. Software Behavior and Implementation
	End User's and Developer's Mental Models and Expectations

	Process: Stages, Cycles, and Feedback
	Software Development Process, Stages of Development
	Shrinking Software Development Cycles
	Delayed versus Immediate Feedback
	Comprehension Of Evolving Software

	Complexity: Software Size and Strong Components
	Black Box, White Box, Information Hiding
	Complexity Analysis of Scenarios

	Contract: The Requirement Specifications Document
	Ideal Contract
	Automated Verifiers

	Debugging: Strategies, Innovative Techniques, Efficiency
	Standard Debugging Strategies: Small vs. Large Steps
	Standard Debugging For A Buggy Quicksort Function
	Print Statements
	Some Innovative Debugging Techniques
	Envisioning An Ideal Debugging Tool

	Techniques and Technologies
	VERDICTS: How DBC, AspectJ, Beanshell and Statistical Views Work Together
	SMT: How ASM, Reflection and Class Reloading Work Together for Semantic Mutations
	Design by Contract (DBC)
	Human-Language Specifications vs. DBC
	Our Proposal: Selective Retrofitting of Contracts
	Programmatic DBC using Java Statements

	Aspect-Oriented Programming (AOP) With AspectJ
	What is AOP?
	AspectJ and Dynamic AOP
	Testing Unit: Method

	Live Java Interpreter, Beanshell
	Compiled vs. Live Interpreted Java Code
	Beanshell
	Beanshell Features, Examples

	Statistics & Visualizations
	Box Plot (Box and Whiskers Diagram)
	Correlation Matrix

	Mutation Testing (Mutation Analysis)
	Java Reflection
	ASM Library: Java Bytecode Manipulation and Data Flow Analysis
	ASM Library for Java Bytecode Manipulation
	ASM Library for Data Flow Analysis

	Dynamic Replacement of Executing Code With Java Class Reloading

	VERDICTS: Visual Exploratory Requirements Discovery and Injection for Comprehension and Testing of Software
	Overview of the VERDICTS Approach, Process Cycle
	VERDICTS Process Cycle and Core Components
	Views and Visualizations
	Step 1: Read Source Code

	Step 2: Run Target Program under VERDICTS Tracer & Verifier
	Step 3: Inspect (Using Trace and Debugger Views)
	Step 4. View The Aggregate Views (Visualizations):
	Step 5. Discover/Improve Contract.
	User-Defined Variables: Observables and Contract Assertions
	Object Clone (Copy): Advantages, Disadvantages, Finding a Good Compromise
	Recording Partial Object State: Fields and Methods
	Recording Partial Object State: Properties, More Complex Processing
	Print Statements, Logging
	Patches (Throw-Away Quick Fixes)
	Contract Assertions

	Types of Contracts and Requirements in VERDICTS
	Review: How VERDICTS Supports Exploratory Contracts
	VERDICTS Tests
	VERDICTS Efficiency and Earlier Tests
	Testing Innovative Features of VERDICTS
	A. Integrating Large Amounts Of Program Values In Comprehensive But Useful Ways
	B. Using Novel Visualizations That Reveal Patterns In Control Flow And Data Variations
	C. Dynamically Inserting Probes And Hypotheses About Program Behavior Using A Familiar Language

	SMT: Semantic Mutation Testing
	Specification-Implementation Concordance and Measuring Verifier Adequacy
	Importance of Up-To-Date Specifications
	Human-Language Specifications and Automated Verifiers
	Design by Contract
	Test Suite Adequacy
	Specification Adequacy
	Measuring Specification Adequacy with Semantic Mutation Testing

	Functional Specifications and Verifiers: A Subsumption Relation
	Functional Specification and Verifier Adequacy
	A Formal Definition for Subsumption Relation Between Verifiers
	Strict Subsumption of Verifiers
	Least Upper Bound (Supremum) And Greatest Lower Bound (Infimum)
	Bottom Element, Top Element, and Complete Verifier for a Program P

	Measuring Verifier Adequacy
	Can Verifier Distinguish Between Correct and Faulty Implementations?
	Verifier Adequacy Score: Requirements

	Traditional (Syntactic) Mutation Testing
	MT Injects Small Syntactic Faults
	MT Has High Computational Complexity
	A Major Hurdle: Semantic Equivalence of Mutants
	Are Mutation Operators Competent?
	"All Mutants Are Equal" Myth and "Dumb Mutants"
	Semantic versus Syntactic Faults
	Beyond "Dumb" Mutants: A Simple Example

	Semantic Mutation Testing
	Semantic Mutation Testing (SMT) Injects Nondeterministic Semantic Faults
	White-Box SMT
	Data Flow Analysis for Crash Prevention
	Black-Box SMT
	Summary

	SMT Experiments
	Introduction
	Experiments 1/2: One Method, Seven Alternative Verifiers/Specifications
	Sorting, Alternative Specifications
	Traditional (Syntactic) Mutation Testing
	Black-Box Tests
	White-Box Tests
	Discussion

	Experiments 2/2: Four Methods, Five Alternative Verifiers/Specifications Each
	Introduction
	Target Programs and Alternative Specifications
	Test Inputs
	Black-Box SMT Implementation
	White-Box SMT Implementation
	Traditional MT With Jumble
	Results & Observations

	Conclusions and Future Work
	Conclusions
	Future Work

	Conclusions
	VERDICTS
	Semantic Mutation Testing

	Appendices
	Software Comprehension Theories
	Direction of Comprehension, Opportunistic Switching Strategy
	Von Mayrhauser & Vans' Integrated Meta-Model

	Software Comprehension Issues
	Software Comprehension is Vital, Yet Rarely Studied and Never Measured
	Essential Incompleteness of Software Comprehension
	Lines of Code, Years of Reading!
	Prior Knowledge and Expertise
	Simple Top-Down or Bottom-Up Traversal Continually Leaves Some Comprehension Questions Unanswered
	Bottom-Up Static Analysis and Top-Down Dynamic Analysis

	From Hoare Triple to DBC Contracts
	DBC Tools, Languages
	DBC Tools, Languages
	What a Method Delivers: Postcondition Minus Precondition
	DBC Examples

	Types of DBC Contracts, and How to Read Them
	Degenerate Contracts and Extreme Cases
	Categories of Everyday Contracts

	ASM Library for Java Bytecode Manipulation
	Event-Based Sequential Access Parser (Similar to SAX for XML)
	ASM's Tree API
	Data Flow Analysis with ASM

	Bibliography
	Vita

