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Abstract  

The biological membrane of an eukaryotic cell is a two-dimensional structure of mostly 

phospholipids with embedded proteins. This two-dimensional structure plays many key roles in 

the life of a cell. Transmembrane proteins, for example, play the role of a gate for different ions 

(such as Ca2+). Also found are peripheral proteins that are used as enzymes for different purposes 

in the inner leaflet of the plasma membrane. Phospholipids, in particular play three key roles. 

Firstly, some members of this group are used to store energy. Secondly, the hydrophobic and 

hydrophilic properties inherent to phospholipids enable them to be used as building blocks of the 

cell membrane by forming an asymmetric bilayer. This provides a shielding protection against the 

outer environment while at the same time keeping the organelles and cytosol from leaking out of 

the cell. Finally lipids are involved in regulating the aggregation of proteins in the membrane. In 

addition, some subspecies such as phosphatidylinositol (PtdIns) are second messenger molecules 

in their own right, thus playing an important role in cellular signaling events. In my work presented 

in this thesis, I am focusing on the role of some phospholipids as signaling molecules and in 

particular the physicochemical underpinnings that could be used in their spatiotemporal 

organization in the cellular plasma membrane. I am specifically concerned with the important 

family of phosphatidylinositol lipids. PtdIns are very well known for their role as signaling 

molecules in numerous cell events. They are located in the inner leaflet of the plasma membrane 

as well as part of the membrane of other organelles. Studies of these signaling molecules in their 

in vivo environment present many challenges: Firstly, the complexity of interactions due to the 

numerous entities present in eukaryotic cell membranes makes it difficult to establish clear cause 

and effect relationships. Secondly, due to their size, our inability to probe these biomolecules in a 

dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, 



 

 

biomimetic membrane models that rely on the amphiphilic properties of phospholipids are 

powerful tools that enable the study of these molecules in vitro. By having control over the 

different experimental parameters such as temperature and pH, reliable and repeatable 

experimental conditions can be created.  

One of the key questions I investigated in this thesis is related to the clustering mechanism 

of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species 

by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical 

causes is still a matter of debate. In the first part of this thesis I introduce the general information 

on lipid membranes with a special focus on the PtdIns family and their associated signaling events. 

In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid 

membranes and lipid interactions. In the second chapter, I describe my work on the lateral 

compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent 

ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that 

depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk 

was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid 

systems PtdIns(4, 5)P2 –POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. 

In the fourth part, I report on my foray in engineering a light-based system that relies on different 

dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. 

In the final chapter, I provide a general conclusion and present directions for future research that 

would build on my findings. 
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Chapter I : General Introduction and Background 

1.1. Motivation and Background  

A living, eukaryotic cell is a highly organized and compartmentalized biochemical system 

that is enclosed by a lipid bilayer that includes proteins. The plasma membrane (PM) is the largest 

membrane and is the site where numerous cell signaling events occur (Figure I-1). It is also a non-

equilibrium, dynamic medium where hundreds of lipids’ species and sterols interact in time and 

space with their associated proteins [1] to accomplish a large variety of cellular functions such as 

exocytosis, endocytosis, receptor mediated signaling, and transmembrane as well as lateral 

membrane transport [2]. It is also a primary target  for viral entry [3-5], drug delivery[6] and is 

implicated in the progression of cancers [7, 8]. The PM is an active site and an impermeable 

structure that selectively allows certain molecules to pass across it by special, transmembrane 

proteins called channels [9]. In terms of mass composition, the major components of the PM are 

lipids and proteins, each of which contribute about half of the total weight [10]. The discovery of 

the lipid raft domain has dramatically revolutionized the perception that held that lipids act solely 

as passive fluid solvents, attributing all the functionalities to the proteins [11]. Lipid membranes 

play a key role in living cells as they organize molecules in time and space. For one, they are 

formidable barriers to random transport across membranes and thus help to compartmentalize 

eukaryotic cells [9]. In addition, they are also quasi-two-dimensional, highly-structured fluids [12] 

[9, 13]. As such, they provide the ideal environment for dynamic rearrangement of molecules 

within the plane of the membrane [14]. This feature is paramount for both time-dependent 

assembly of molecules into larger membrane structures [15], as well as the proper execution of 

membrane-associated biochemical reactions [16-18]. Ultimately, these two, intimately-linked 

aspects directly impact the membrane structures on lateral transport and vice versa [19]. It also 
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appears that this interplay has an important role in the proper execution of cellular processes [20]. 

Figure I-1 is a visual representation of this interconnection of all three aspects of the eukaryotic 

cell membranes. 

 

 

 

Different approaches are being used to understand, both qualitatively and quantitatively, 

the different aspects of the plasma membrane at different length scales. Moreover, more techniques 

are currently being developed to probe the dynamics of the PMs in time and space. Among these 

more current techniques is super-resolution fluorescence microscopes which provide spatial 

resolutions down to a few nanometers and have revealed structures that had not been not observed 

with classic fluorescence microscopes [23, 24]. However, there is still not a single method that is 

capable of quantitatively accessing all three principle aspect of the plasma membrane. In addition, 

 

 
2010 Nature Education All rights reserved 

Figure I-1:  Dynamics, Function and Structure of Biological Membranes 

The schematic on the left represents the interconnection of the three principal aspects of 

biological, lipid-based membranes. On the right is a schematic showing the plasma (cell) 

membrane and other membrane enclosed organelles. Adopted from [21, 22]) 

Cell 

Membrane 

http://www.nature.com/nature_education
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the complexity of the PMs, arising from their rich, heterogeneous composition of interacting 

molecules, continues to present many challenges to a systematic study and a comprehensive 

understanding of this key biological system. Thus, despite recent technological advances, much is 

left to be desired in terms of our ability to conduct measurements on living cells that would permit 

the simultaneous, quantitative assessment of the main membrane aspects. This method would 

report on a molecules movement, how it is organized and what function it is executing. 

It follows that attempting to understand the inter-connection of these three aspects of 

biological cell membranes (or any supra-molecular cellular assembly for that matter) will require 

a systematic bottom-up approach. First, PM components are isolated and studied individually and 

then progressively reassembled into reconstituted biomimetic structures of ever increasing 

complexity. Certainly, this approach cannot be used in vivo as a minimum degree of complexity 

of the PM is required for a cell to be viable. Moreover, our ability to probe molecular compositions 

of live cell membranes is all but limited to rather crude approaches, such as cholesterol depletion. 

Thus, the function(s) and properties of many important lipids as synthesized by cells is (are) still 

unknown [12]. The field of membrane biophysics is at a stage where experimentation in well-

controlled artificial model systems are still very valuable and are often the only way to gain some 

basic understanding of lipidic molecules, their interactions and their physicochemical properties. 

In this thesis, I thus focus on one particular and very special family of glycophospholipids called 

Phosphatidylinositol (PtdIns) which are located at the PM and other organelles’ membranes. 

 Phosphatidylinositol and its derivatives, such as PIP2 which is an exceptionally 

extraordinary lipid,  play a crucial role in many aspects of cell physiology and cellular signaling 

[25, 26]. For example, PtdIns regulate the function of integral membrane proteins through their 

highly charged head groups or participate in the recruitment of proteins to the membrane [27-30]. 
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PtdIns also play a key role in the processes of endocytosis and exocytosis [2, 27, 31]. In its most 

predominant function as a messenger, PIP2 cleaved by phospholipase C (PLC) inside the 

cytoplasm, produces two messenger molecules, diacylglycerol (DAG) and inositol trisphosphate 

(IP3). IP3 diffuses through the cytosolic fluid until it binds to the IP3 receptor located in the 

membrane of the endoplasmic reticulum (ER). Since the IP3 receptor is part of the a ligand-gated 

Ca2+ channel assembly, IP3 binding causes the release of Ca2+ [29]. In fertilization, for example, 

PLCγ is released by the sperm once inside the cytoplasm of the ovule. There it cleaves PIP2 and 

the resulting calcium release from the ER triggers mitosis and puts growth in the cell into motion 

[32].  In order to avoid cross-talk, despite the multiple implications of PIP2 in different biological 

functions, it is likely that PtdIns are segregated into ‘pools’ along the plasma membrane that can 

be individually controlled. However, the mechanisms underlying the formation of such pools of 

PtdIns (and in particular its most common representative, PIP2) are not yet really understood. In 

addition, the associated mechanical properties of such pools during Ca2+ signaling have not been 

yet studied.  

As mentioned above, understanding the proposed pool formation of PtdIns in vivo presents 

a huge challenge due to the complexity of plasma membrane compositions and the possible 

interactions of its constituents. The numbers of entities that are present in a biological cell such as 

lipids, proteins, ions and other biomolecules and their interactions render such systems extremely 

difficult to model mathematically. 

  To our knowledge, there are no adequate tools to study this lipid in its cellular environment. 

Not only are lipids highly complex, they are unlike proteins that allow the utilization of 

fluorescence fusion proteins, the toolbox for studying the dynamics of lipids in vivo is much more 

limited. This is for two reasons: the much smaller size of lipid molecules and the much more 
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complex pathway of lipid synthesis. As well, there is a general lack of a “lipid code” analogous to 

the DNA-amino acid sequence correspondence in protein synthesis. Thus, lipid studies in 

particular benefit from the use of biomimetic systems, rely on self-assembly properties inherent in 

the amphiphilic nature of these phospholipids and offer the advantages that come with full control 

over parameters such as pH, temperature, and buffer composition.  

One of the ways that PtdIns interact with other molecules, and with those in the cytoplasm 

in particular, is through their head group. Based on an inositol ring, it allows for several degrees 

of phosphorylation which gives rise to a highly negatively charged lipid. Different models have 

been developed to describe the electrostatic potential generated by these charged lipids. To the 

best of my knowledge, there is no model as yet describing the mechanical properties associated 

with their lateral organization and their interactions with each other in these systems. I have 

developed a model that enables the probing of the mechanical properties of a monolayer of any 

charged lipids or molecules. By building on an electrostatic potential model, I am  able  to compute 

the compressibility as well as to deduce an approximate potential of the monolayer: the multiple-

charged PtdIns and the singly-charged lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(DOPG). In addition, I also investigated the energetics of these systems from a thermodynamic 

point of view and studied the excess Gibbs free energy associated with charged lipids in the 

presence of varying amounts of Ca2+
 ions. Lastly, I demonstrated the possibility of constructing a 

system that can be used to mimic the oscillation of calcium waves in the cytosol in vitro, thus 

enabling the study of the dynamic of biomimetic systems’ response to calcium fluctuations in vitro. 

. 
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1.2. Introduction to Cell Membranes : Structure and Organization 

A living, eukaryotic cell is highly compartmentalized and contains functionalized blocks 

called organelles, most of which are surrounded by membranes. These membranes –thin, almost 

quasi-2-dimensional sheets, are made of proteins, lipids and cholesterol. The particular 

compositions, however, are specific to each particular organelle, so that the lipidic and proteinous 

content differ for the membranes enclosing the endoplasmic reticulum, the Golgi apparatus or the 

cell as a whole. What is the same though, is that these cellular biomembranes  consist of  two layers 

of lipids ( as shown in Figure I-1) that embed the other molecules such as proteins.  

It has been now more than four decades since S. J. Singer and Garth L. Nicolson [11] have 

proposed the mosaic fluid membrane model that describes the basic structure and function of 

cellular lipid membranes. It is based on thermodynamic considerations and proposes  a liquid 

disordered phase for all the phospholipids due to  low melting temperature of their hydrophobic 

tails [33]. The discovery of distinct membrane domains by the end of the 1990s has modified this 

model due to the liquid ordered phase found in these so-called “lipid raft domains [33-35].The 

basic model is still in use as it provides a basic consensus of membrane organization, but has been 

increasingly modified over the years to reflect the experimental data and resulting insights. For 

example, the original model did not predict the constraints on rotational and lateral mobility of 

proteins as well as the dynamic lateral organization of lipids and lipid domains through diffusion 

of both the normal and anomalous types. Typical diffusion coefficients of domains  are 10 to 100 

times larger than those of membrane proteins and they can  occupy area of 0.1-1µm2 [36] while 

eukaryotic cells of multicellular species have typical surface areas in the order of -2000 µm2[37]. 

At this point the complexity of cellular signaling at membranes as well as the detailed nature of all 

the different interactions have not been included in the mosaic model. This includes, the local 
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mechanical properties and the electrostatic interaction of charged lipids and their contribution to 

membrane organization.  

A current illustration of the Fluid—Mosaic Membrane Model (F-MMM) of biological  

membrane that includes several updates to the original model is  as shown in Figure I-2[38]. The 

figure shows a basic biological membrane with its constituents. These constituents can be roughly 

divided into two groups: proteins and lipids.  Proteins have different shapes and structures which 

are directly linked to their different functions. Depending on their location and position, proteins 

are subdivided further into peripheral proteins and integral proteins. The second main component 

of biomembranes are lipids that represent about 50% of the total mass of the plasma membrane. 

Besides acting as the main building block of membranes, lipids play a crucial role in the life of 

cells as they associate with proteins and are often involved in their functional regulation and in 

recruiting or anchoring proteins to the plasma membrane. Lipids themselves can be grouped into 

three classes: sphingolipids, glycolipids and sterols (see Figure I-3). Sphingolipids and 

glycerophospholipids are amphiphilic biomolecules due to their hydrophobic hydrocarbon tail and 

hydrophilic head group. Thus, they combine different solvation preferences with respect to 

aqueous solutions on geometrically different parts of the same molecule. This property is central 

for the formation, structure and organization of biological cell membranes. The hydrophobic part 

of a lipid is made of two acyl chains of generally different lengths that can be either saturated or 

unsaturated. Specifically, the chain length can be varied in the number of carbon atom from 12:0 

to 22:6 (sn-1) for one chain and 12:0 to 22:6 (sn-2) for the other chain (the number behind the 

column indicates the number of unsaturated bonds) [36]. The glycerol group in 

glycerophospholipids itself can be modified by the substitution of ester, alkyl ether or alkenyl ether 

at the position 1, 2 or 3 as shown in Figure I-3. Another distinguishing property between different 
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lipids is the head group, i.e. the hydrophilic part of the lipid. In the case of glycerophospholipids, 

it can be modified to yield six classes of lipid. The most common head group is 

phosphatidylcholine (PC) which makes up approximately 50% of all lipids [39]. The others are 

phosphatidyl glycerol (PG), phosphatidyl-serine (PS), phosphatidyl-ethanolamine (PE), 

phosphatidic-acid (PA) and phosphatidyl-inositol (PI). In terms of abundance, the majority of 

membrane lipids belong to the glycerophospholipids, with sphingolipids being the second largest 

group. Due to possible permutations with respect to the length and degree of saturation of the acyl 

chains and the head group, there are up to 10,0000 different lipids species [40] that are used.  

 

 

 

 

Sphingolipids differ from glycerophospholipids by the substitution of the ester, alkyl ether 

and alkenyl groups by an amide group to form a ceramide (Cer). This modification together with 

different possible head groups (capital R in Figure I-3) yields seven classes of sphingolipid. These 

include sphingomyelin (SM), ethanolaminephosphoryl ceramide (EPC) and inositol phosphoryl 

ceramide (IPC) where the head group is respectively replaced by phosphocholine, ethanolamine 

 
 

Figure I-2: Basic organization and composition of eukaryotic cell membrane. Adopted 

from [41] 
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and phosphoinositol. In addition to these are glucosylceramide (GlcCer) for glucosphingolipids, 

galactosylceramide (GalCer) in the case of galactose. GalCer includes a wide variety of 

glycosphingolipids created by substituting the phosphate (orange oval in Figure I-3) and the head 

group with monosaccharides ( represented as a G Figure I-3 )[36]. 

In addition to the structural differences between the lipidic components of biomembranes, 

there are also distinct differences in their localization. The outer leaflet or extracellular leaflet is 

enriched with sphingolipids while the inner leaflet, or cytoplasmic leaflet is enriched with 

glycerophospholipids. The sterol cholesterol is found in both leaflets of the cell membranes but 

can spontaneously flip from one leaflet of plasma membrane to the other [42]. However, it is 

believed that it prefers to interact with sphingolipids. 
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Figure I-3: Structure of phospholipid family: glycophospholipids,(on left),  

sphingolipids (middle) and sterol (on right) 

 

Functionally, cholesterol is important as it facilitates membrane fluidity and permeability. 

The differences in membrane composition give rise to the asymmetric double layer of lipids 

membranes. In addition, sphingolipids are packed more tightly due to their long saturate acyl chain 

when compared to glycosphospholipid that are richer in unsaturated acyl chain [13, 43].  

A direct outcome of asymmetrical double layer membranes and the packing differences of 

its components is the potential to separate into two phases: a liquid-order phase (lo) and a liquid-

disordered (Id) phase. In general, cell membranes and their mimics can take up the different 

behaviors of fluid and solid phases. Sphingolipids and cholesterol are tightly packed in the plasma 
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membrane. The interactions between sphingolipids and cholesterol are mediated through hydrogen 

bonds involving their hydrophilic head group and Van der Waal interactions between the ceramide 

moiety of sphingolipid and the sterol  ring system [33]. As a result the Sphingolipid-cholesterol 

clusters can support more mechanical stress than glycerophospholipids [12] 

1.3.  Phosphatidylinositol Metabolism  

Since its incidental discovery in the 1970s and 1980s when scientists were investigating the 

pathway of G protein-coupled receptors (GPCRs) that lead to the activation of the enzyme 

phospholipase C by the receptor tyrosine kinases (RTKs) [44] phosphatidylinositol has fascinated 

scientists because of its numerous functions at the plasma membrane and other subcellular 

compartments and due to its unique ability to phosphorylate in seven species. This uniqueness of 

PtdIns makes this particular phospholipid the most important lipid in any cell membrane. 

Polyphosphoinositides are synthesized in different locations inside the cell by different Kinases 

and Phosphatases. The head group of all polyphosphoinositides is called the myo inositol ring and 

its spatial representation was introduced by Bernard William Agranoff in 1978 [45]. Bernard used 

the turtle as a representation for the inositol ring and the position of the phosphate groups are given 

by the head, legs and tail of the turtle. The parts are numbered counterclockwise starting from the 

right front leg as shown in Figure I-4. But not all the positions (hydroxyl group OH) can carry a 

phosphate group. In addition, position one is connected to the diacylglycerol ( DAG) through a 

phosphate group to form PtdIns. PtdIns is synthesized inside the endoplasmic reticulum (ER) and 

can be transported into the cytoplasm or other subcellular compartments by either cytosolic PtdIns 

transfer proteins or vesicles[1].  
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myo - inositol  

Agranoff’s turtle 

A b C 

 

 
 

Figure I-4: Structure and configuration of the inositol ring (left panel), the 

phosphatidylinositol lipid (middle) and the clear marking of the whole head group (right 

hand panel) 

 

Moreover PtdIns can phosphorylate only at the position 3,4 and 5 inositol rings to yield 

seven phosphoinositides as shown in Figure I-5 and Figure I-4 . The seven phosphoinositides are 

: PtdIns, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,4)P2, PtdIns(4,5)P2, PtdIns(3,4,5)P3. PtdIns 

range between ten to fifteen percent of the total amount of phospholipids depending on cell type 

whereas PtdIns(4)P and PtdIns(4,5)P2 represent only 0.2- 1% of all the phospholipids. 

PtdIns(4,5)P2 are now estimated to be around 5,000-20,000 molecules/µm2[46]. 

PtdIns 

 

PI (4,5)P2 
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The manufacturing of Polyphosphoinositides involves hundreds of isoforms of kinases and 

phosphatases distributed in different subcellular compartments and the plasma membrane of the 

cell as shown in Figure I-5 and Table I-1[1] [14].  

Kinases Phosphatases 

PI4KA, PI4KB,PI4K2A, PI4K2B 

(Stt4, Pik1, Lsb6) 

 PIP5K3/PIKfyve ?? 

 PI3KC3,(Vps34), PI3KC2A 

 PIP5K1A, PIP5K1B, PIP5K1C (Mss4) 

 PIP5K2A*, PIP5K2B*, PIP5K2C* 

 PIP5K3/PIKfyve (Fab1) 

 PI3KCA, PI3KCB, PI3KCG, PI3KCD 

SAC1M1L, (Sac1), SYNJ1/2 ?? 

 SYNJ1, SYNJ2, OCRL, INPP5B, 

INPP5E, 

INPP5F, (Inp51, Inp52, Inp53) 

TMEM55 ?? 

 MTMs, MTMRs 

 INPP4A, INPP4B 

SAC3  

 PTEN 

 SHIP1, SHIP2, INPP5E, INPP5J, 

INPP5K 

Table I-1 Phosphoinositol Kinases and Phosphatases 

 

Figure I-5: Phosphoinositide synthesis. Many isoforms of Kinases and Phosphatases 

are located on membranes that are involved in the synthesis of PtdIns and one 

phosphoinositide which can be converted to the other and vice versa. Adopted from 

[14] 
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1.4. Membrane Rafts  

Eukaryotic cells utilize 5% of their genes to synthesize all lipids and only the function of a 

very small amount of these are well known, such as Phosphatidylinositol (PtdIns or PI). There is 

not a clear answer regarding a variety and numerous lipids produced by cells and their functions 

are still ambiguous[12]. Phospholipids, in particular play three key roles. Firstly, some members 

of this group are used to store energy. Secondly, the hydrophobic and hydrophilic properties 

inherent to phospholipids enable them to be used as building blocks of the cell membrane by 

forming an asymmetric bilayer. This provides a shielding protection against the outer environment 

while at the same time keeping the organelles and cytosol from leaking out of the cell. Finally 

lipids are involved in regulating the aggregation of proteins in the membrane. In addition, some 

subspecies such as phosphatidylinositol (PtdIns) are second messenger molecules in their own 

right, thus play an important role in cellular signaling events All lipids are manufactured or 

synthesized in the inner leaflet of the endoplasmic reticulum or in the Golgi complex(sphingolipids 

or glycosphingolipids are manufactured in the Golgi complex) [40, 47]. Their synthesis depends 

on their functions which is directly connected to their local lateral segregation in either leaflet of 

the plasma membrane (PM) or other organelles. The outer leaflet or extracellular leaflet (sometime 

called exoplasmic) is enriched with unsaturated Phosphatidylcholine (PC), saturated 

sphingomyelin (SM) and cholesterol. The inner leaflet or cytoplasmic leaflet is populated by 

phosphatidylinositol (PI), Phosphatidylethanolamine (PE), Phosphatidylserine (PS), PC and 

cholesterol. The distribution of PC and cholesterol are equal in both leaflets[48]. The uneven lipids 

composition in both leaflets of the PM yields to an asymmetrical structure of the PM[13]. 

Cholesterol interacts more with sphingolipids to make it a fluid like membrane therefore its 

concentration is controlled or determined by that of the sphingolipids in the plasma membrane. 
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Lipids move from the ER to the plasma membrane either by free diffusion or by specialized 

proteins carrier or vesicles [14].  

The development of light based techniques has enhanced our understanding of biological 

cell membranes tremendously. These techniques have allow us to probe the dynamics of biological 

membranes to a few hundred nanometers and to discover the existence of lipid domains called 

rafts. They also help to obtain quantitative data [49]. The concept of lipid rafts found its root in the 

heterogeneity of cell membrane composition and function. It was proposed by Kai Simons & Elina 

Ikonen in 1997 from a study conducted on the interaction of sphingolipids and cholesterol[50]. 

They observed a formation of clusters that were dynamic in the bilayer and their role in the 

functionality of protein in the fluid bilayer. These observations have dramatically changed the 

perception that viewed lipids as passive fluid solvents and attributed all the functionalities to 

protein [11]. 

The transportation of glucosylceramide to the exoplasmic leaflet ( apical) of epithelial 

MDCK cells was also explained by taking into consideration the clustering of glycosphingolipid 

in the exoplasmic leaflet of the Golgi membrane[51]. Another argument that supports the above 

propositions comes from the role  played by glycol-lipid anchors as a factor determinant in the 

regulation of glycosylphosphatidylinositol(GPI)-anchored proteins[52]. Membrane rafts are 

divided into three groups depending on their size ( rafts are lipid domains of 250nm in size [49]): 

rafts, cluster rafts and a subset of cluster rafts called caveolae. The constituents of a membrane raft 

can be lipid-lipid, cholesterol-lipid , proteins-lipids and proteins-proteins. Membrane rafts are 

dynamic, nanoscale and they can cluster to form micro domain raft membrane. Lipid rafts have 

received more focus in the scientific community as more cellular events that occur at the plasma 
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membrane require membrane rafts. Lipid rafts are used by many viruses, toxins and microbial 

pathogens as a gate for the entry into and exit from the host cell [4, 53, 54]. 

 Viruses exploit membrane rafts for their intrusion or evasion(budding) in the host cell. 

One of the influenza virus family called the fowl plague virus (FPV) for example uses membrane 

rafts containing more detergent-insoluble complexes(glycoproteins) compared to other viruses 

such as vesicular stomatitis(VSV) and Smliki Forest virus(SFV). The depletion of cholesterol by 

methyl-beta-cyclodextrin in the envelope of the FPV virus has shown an increased solubility of 

glycoproteins and sphingomyelin in the envelope of the FPV virus[5]. The use of membrane rafts 

formed with protein-lipid interaction is seen in the budding of the FPV virus.  

1.5.  Phosphatidylinositol and Signal Transduction at the Cell Surface  

The most well known phosphoinositides involved in the regulation of a plethora of events 

or processes occurring at the plasma membrane of a eukaryotic cell is the PtdIns(4,5)P2 [55, 56] 

[2].Figure I-6 show the basic functionality of PtdIns(4,5)P2 in its regulatory function, enzyme 

interactions and pools formation. The cellular events associated with either one of the three aspects 

of PtdIns(4,5)P2 are represented in Figure I-7. 

 

 

 

 

 

Figure I-6: Pools of PIP2 in cytoplasm: Pools of PIP2 in interaction with actin protein (left), 

aggregation of PIP2(middle) and  hydrolyzation of PIP2 by phospholipase C (PLCγ) (right) 

     Pools of  
    PtdIns(4,5)P2 

Actin 
PLCγ-PtdIns(4,5)P2 
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 PtdIns(4,5)P2-Actin  

Polyphosphoinositides (PPI) regulate many cytoskeletal proteins and PPI recruits actin 

proteins to form a subcellular domain or restrain their function [57-59]. PtdIns (4, 5)P2 in particular 

has been found to regulate the polymerization of the actin proteins. In vitro experiments conducted 

on many non-muscle cells have shown the dissociation of the profiling/actin complex and the 

induction of actin polymerization by PtdIns (4, 5)P2 [57, 58] 

 PtdIns(4,5)P2-Cancer. The tumor-suppressor protein(PTEN) is at the center of many 

types of cancer such as prostate, kidney, breast tumors, leukemia or Lymphoma, Lung, liver, 

bladder and others[7, 8] [60]. PTEN contains a phosphate domain and Lipid membrane-binding 

domain that fulfill the role of a tumor suppressor. In addition, PTEN is mostly found at the plasma 

 

 

 

 

 

 

 

 

 

 

Figure I-7: Examples of signaling and processes regulated by PtdIns (4,5)P2 in the cytoplasm 

membrane 
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membrane where it acts as an enzyme to dephosphorylate phosphatidylinositol (3,4,5)-

triphosphate (PIP3) to phosphatidylinositol (4,5)-biphosphate (PIP2). The dephosphorylation of 

PIP3 induces a negative response in inhibiting the activity of class I phosphatidylinositol-3-OH 

kinase (PI3K) enzymes involved in cancer pathway signaling.  

 
 

Figure I-8: Endosomal PTEN inhibiting the phosphorylation of  PIP2 by 

the Kinase PI3K and triggering the mechanisms that lead to cancer  [7] 

 

 

This activity of PTEN on PIP3 has a negative regulatory function on the enzyme protein kinase B 

(PKB) and the mammalian target of rapamycin complex 1 (mTORC1). The membrane PTEN can 

also bind to the endosome via PI3P and interact in a similar way with PIP3 phosphorylate by 

another lipid phosphate INPP4P (Figure I-8). 

 

 

 

 PtdIns(4,5)P2-Fertilization 
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Figure I-9: PIP2 signaling molecule in fertilization. The activation of Oocyte after the 

PtdIns(4,5)P2 is cleaved by PLCξ  from sperm which triggers the release of Ca+2 from 

ER. [32] 
 

The mechanism of calcium-induced calcium release elaborated upon (see Chapter IV) in 

connection with PI(4,5)P2 is actively involved in oocyte activation and cell proliferation [19], 

calcium control chemotaxi (1),hyperactivation(2) and acrosomal exocytosis(3) of sperm[61] as 

shown in Figure I-9  
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Virus Cycle: Most budding of viruses from the host cell requires a formation of lipid raft-fluid. 

raft lipid membrane, HIV-1[4] and the influenza virus [5]  

 
 

 

Figure I-10: PIP2 mediates the budding process of human immunodeficiency virus 

type 1(HIV-1). [3] 

The microdomains are enriched in cholesterol, phosphatidylinositol-4,5-bisphosphate 

[PI(4,5)P2] and play an important place in the budding process of human immunodeficiency virus 

type 1 as shown in Figure I-10 above[3]. In the process of budding, the HHV-1 assembly 

glycoprotein and lipids form a membrane raft around its nucleocapsid that will constitute the viral 

envelope. The formation of the HIV-1 envelope is driven by the Gag protein of HIV and constitutes 

the platform that interacts with the glycoprotein in the cytoplasm. In addition, the process depends 

on cholesterol and sphingolipids but the viral envelope is highly enriched in cholesterol, 

ceramide[62], phosphatidylinositol-4,5-bisphosphate PI (4, 5) P2 ganglioside GM3[63].  
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Figure I-10 above shows how phosphoinositides phosphatidylinositol phosphate (PtdInsP) 

and [PI (4, 5) P2] are clustered as a matrix that interacts with Gag-HIV. During the interaction, 

scientists believe that there is a swapping of myristate fatty acids locate at the N-terminus of Gag 

with the polyunsaturated fatty acid from [PI (4, 5) P2]. The clustering of [PI (4, 5) P2] in raft 

membranes has been proposed to be facilitated by Protein myristoylated Ala-rich C-kinase 

substrate (MARCKS) and growth-associated protein 43 (GAP43) [2]. Moreover the two phosphate 

group from PI (4, 5) P2 interacts with an aggregation of amino acids that form the matrix domain. 

The later interaction has been proposed to be the one that mediates the clustering formation of PI 

(4, 5) P2 domain by Gag-HIV. During the budding process, Gag will multimerize at the N-terminus 

and bind to PI (4, 5) P2, the myristate fatty acid will move into the hydrophobic cleft and be buried 

while the polyunsaturated fatty acid chain from PI (4, 5) P2 will move into the pocket of the matrix 

domain of Gag due to its poor packing with cholesterol and its high flexibility and disordered 

structure. 

 PtdIns(4,5)P2-Membrane Targeting 

 

The growing interest in the study of this minor family of glycophospholipid are strongly 

linked with its multiple implication in cellular event that occur at the membrane and the role of 

PIP2 as a precursor of two messenger IP3 and DAP. PIP2 played a role of a recruiter of many 

different protein during specific cellular event such inflamtion,  

The distribution and formation of PIP in plasma membrane is still an active 

debate[ref3][64] 
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1.6. Imaging Techniques  

 Fluorescent Microscope Descriptions 

Imaging techniques have advanced the area of biophysics tremendously in terms of our 

understanding of cell biology, composition, structure and function. In the last few decades, 

however, the classic florescence microscope has experienced an important breakthrough with the 

development of super resolution fluorescence techniques. This fluorescent technique has overcome 

the limitations set by the law of diffraction due to the wavelength of light [24]. Hence achieving a 

high spatial resolution in the visualization of cell biology, composition and interaction. In addition, 

the dynamic of different biomolecules can be probed with good accuracy in time and space up to 

a few nanometers.  

Conventional Classic Fluorescence Microscope 

A conventional fluorescence microscope can be defined as a set of optical lenses that guides 

light to the sample and collects the emitted light from the fluorophore probe.  

The goal of all fluorescence microscopes is to magnify biological cell constituents by 

relying on the properties of light and optics. The basic functionalities of all fluorescence 

microscopes are presented in Figure I-11a. Light travels from the source (e.g., lasers) through a 

divergent lens and is redirected by a mirror to a dichroic mirror that selects a specific wavelength. 

The selected wavelength will go through another set of lenses into an objective to be focused on a 

small region of the specimen or sample. Three events can happen when the incident light comes 

into contact with the sample: reflection, absorption and transmission (emission). Based on these 

events, due to the behavior of light, different modes of operation of fluorescence microscopes have 

been developed. Among the modes that can be cited are total internal reflection (TIRF), force 

resonance microscopy (FRET) and fluorescence recovery after photobleaching (FRAP). 
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Figure I-11: Main features of Fluorescence microscopes: Abbe condenser optical pathway (top) 

and fluorophore absorption and emission profiles of Alexa Fluor 555(bottom). 

The emitted light and the transmitted light from the specimen are characterized by a 

spectrum. When the incident light spectrum (or absorption spectra) intercepts the emitted light 

spectrum (emission spectrum), the intersection or the overlapping region it called Stroke (Figure 

I-11c). This overlap causes a disturbance in the image captured by the observer. 
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1.7. Interactions in Biological Systems of Phospholipids 

Whenever there are at least two entities in contact (electrons, atoms, molecules, planets or 

stars) there is some sort of interaction that is involved. There are varieties of interactions (described 

by either a force or energy) that depend on the nature, distance and environment in which two or 

more entities interact. Based on these parameters, interactions are divided into four fundamental 

categories: strong, weak, gravitational, and electromagnetic interactions. Biological systems fall 

into the last category of interaction; almost all interactions in cell biology can be traced back to 

the electromagnetic interaction [65]. 

 Physical systems are divided into three groups based on the strength of the interactions 

that govern their constituents. A physical system (matter) in which the strength of the interaction 

between its constituents (atoms, molecule etc.) has an order of magnitude close to KBT is called 

the gas state (with KB the Boltzmann constant(J/K) and T: temperature(K)). There are two types 

of gas state: ideal gas and parfait gas. As the strength between atoms or molecules increases above 

KBT matter can change into two more states called liquid (sometimes called fluid depending on 

the viscosity) and solid. Many times in sciences such as condensed matter, researchers are more 

interested about the intermediate state or phase transition. Interactions that occur inside a cell 

biology can be classified in to three categories: Van der Waal, Hydrogen bonds and Electrostatic 

forces. These interactions regulate lipid organization in the plasma membrane, hence membrane 

structure, protein folding and cell signaling events [66].Interactions in a biological system can be 

grouped in two categories: long-range and short-range interactions [67]. In contrast with short-

range interaction or forces (interatomic, intermolecular), long range interactions in solids or liquids 

are those that appear at a distance greater than 5�̇� [68] 
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1.7.1.  Van der Waals Interaction  

Van de Waals interactions are interactions that result from fluctuating charges 

(electrodynamic ) and are classified as long-range interactions[67-70]. They play an important role 

in the organization of lipids or other biomolecules. These forces can appear between biological 

molecules (acyl chain of lipids) that are neutral (electrostatic). There are five types of Van der 

Waals interactions associated with fives isotherms [71]. A general formulation that includes all 

types has been proposed in the equation (I-1).  

 

with 𝑥 = 𝑝 𝑝0⁄  𝑣 and 𝑝 respectively the volume and pressure adsorbed, 𝑣𝑚 the volume of the 

monolayer of gas that covers the full surface, 𝑝0 the gas vapor pressure, 𝑐 = 𝑒(𝐸1−𝐸𝐿) 𝑅𝑇⁄  with 𝐸1 

and  𝐸𝐿 respectively the adsorbed and liquefaction heat of the gas; 𝑛 is the maximum number of 

layers of the adsorbed gas on the planes of the capillaries. For 𝑛 = 1 we recover type I or the 

Langmuir isotherm: 
𝑝

𝑣
=

𝑝0

𝑐𝑣𝑚
+

𝑝

𝑣𝑚
. 

All others are obtained by imposing different conditions on parameters 𝑛 and 𝑐  (e.g. type 

II 𝑛 = ∞ and 𝑐 ≫ 1). The values of 𝑣𝑚 and 𝑐 are given by the slope and intercept of the  plot of 
𝑝

𝑣
 

versus 𝑝. 

  

 
𝑣 =

𝑣𝑚𝑐𝑥

1 − 𝑥
 
1 − (𝑛 + 1)𝑥𝑛 + 𝑛𝑥𝑛+1

1 + (𝑐 − 1)𝑥 + 𝑐𝑥𝑛+1
 

(I-1) 
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1.7.2.  Monolayer technique and Langmuir Adsorption of phospholipids 

The impetus for constructing biomimetic membrane systems has been imposed first by our 

inability to study cell membrane constituents in vivo due to the complexity of their interactions. 

From the structure and composition of cell membranes, interactions can be classified in three 

groups: interactions within phospholipids, interactions between phospholipids and proteins [72], 

and interactions with ions and other biomolecules across the two dimensional structure of the cell 

membrane. The second reason is our limited ability to probe these biomolecules at nano scale as 

they interact in their environment. The intrinsic amphiphilic properties inherent to biomolecules 

in particular phospholipids to self-assemble into a bilayer that mimics a cell membrane have led 

to the development of many techniques that aim to answer different key questions about cell 

biology. In addition, these techniques are extensively used in nanobiotechnology for various 

applications. This section will discuss a few of them with a primary focus on Langmuir-Blodgett 

Films balance. LB offers many advantages that are not provided by other technologies or 

techniques such as full control over the packing density and easy manipulation of the buffer 

solution. 

1.7.3. Langmuir-Blodgett Films Balance 

The LB technique was introduced in 1917 by Irving Langmuir and his research assistant 

Katharine Blodgett[73]. In 1932 Langmuir received the Nobel Prize in chemistry for his work on 

intermolecular forces in the film monolayer. This section underlines the fundamental concepts of 

Langmuir-Blodgett films balance (LB). Organic molecules like lipids with their dual properties of 

hydrophobic tail and hydrophilic head groups self-assemble at an air/water interface by 

minimizing their free energy. Moreover they form a thin insoluble monolayer called a Langmuir 

film of one molecule thick (Figure I-12). The instrument used to produce the monolayer is called 
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a Langmuir trough. It is made with a Teflon trough which holds an aqueous subphase (water) and 

two movable barriers as shown in Figure I-12 below. In addition, the instrument is equipped with 

The Wilhelmy Plate (a grey rectangle), a sensor that measures the force, and another detector 

attached to the barrier to measure the area per lipid as the monolayer is compressed.  

 
Figure I-12: Langmuir Trough and Monolayer Formation. The packing density of the 

monolayer is controlled by the moveable and symmetrical barriers (gray rectangles) as the 

surface pressure is recorded through a force transducer (black). 

 

Surface Tension. The study of the Langmuir-Film or monolayer is based on the notion of 

thermodynamics. According to the thermodynamic properties of the air/liquid interface, the 

molecule in the bulk solution experiences a balance in interaction with all the neighboring 

molecules. However, the molecule at the interface experiences excess free energy due to the 

variation in the environment. The molecule at the interface experiences more inward attractive 

force than the gas phase; the result of unbalanced forces will spontaneously minimize its area and 

contact. A direct response to these changes is an increase in free energy due to the work done to 

extend the surface against the attractive force. Because of the attractive force, there will be more 

diffusion of molecules from the surface to the bulk and the equilibrium is attained when an equal 

amount of molecules leave the bulk to the surface [74] 
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Figure I-13: Surface tension description [74] 

 

The surface tension (γ) is defined as the linear force acting on the molecule and it is given by the 

partial derivative of the free energy with respect to the area per molecule (S) (I-2). 

 

 

The 

Helmholtz and Gibbs free energy are respectively represented by the letter F and G and the 

temperature (T), volume (V) , pressure (P) and the number of components (ni) are kept constant. 

For a pure liquid in equilibrium with the saturated vapor, the surface tension is only given by the 

excess Helmholtz free energy per unit area as in equation (I-3)  

 

The 

unit of the surface tension is J/ m2 or N∙m/m2 mN/m. For water, the surface tension is 72.8 mN/m. 

This high value is due to the fact that water is a polar liquid and the intermolecular interactions are 

strong. 

 
𝛾 = (

𝛿𝐹

𝛿𝑆
)

𝑇,𝑉,𝑛𝑖

= (
𝛿𝐺

𝛿𝑆
)

𝑇,𝑃,𝑛𝑖

 
(I-2) 

 𝛾 = 𝐹𝑠 𝐴⁄  (I-3) 
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Figure I-14: DPPC Isotherm and Phases. Different phases are observed in the monolayer of 

DPPC as the area occupied by the monolayer decreases. 

 

Surface Pressure. The free interface of air/water has a negative pressure due to the attraction of 

molecules (water or oil) in the bulk as described above. When adding or spreading an amphiphilic 

molecule at the interface of water/air , a spontaneous monolayer will form. The hydrophilic polar 

group will interact with the polar molecule ( water) that causes the reduction of surface tension 

and free energy. Different phases are distinguished based on the area covered by surfactants 

(amphiphilic molecules or lipids) to the area available. When the amount of lipids is not sufficient 

and the area is larger, the effect is negligible on surface tension and this phase is referred to as the 

gas phase. Moreover, when the area is being reduced by moving barriers, the hydrophobic regions 

start to interact repulsively on each other and the surface tension starts lowering more. The 

monolayer will go from the liquid expanded phase to the liquid expended and condensed phase, 
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then end in the crystalline phase (Figure I-14). The difference between the surface tension of a 

pure liquid or water (γ0) and the surface tension of the monolayer (γ) is called surface pressure (π). 

 

The 

surface tension of pure water at 20 C is known to be 72.8 mN/m. This value sets the upper limit of 

the surface pressure of any monolayer formed on the water surface. 

 
 

 

 

Figure I-15  Force  acting on the WIlhelmy Plate 

 

The Wilhelmy Plate. A Langmuir-Blodgett system is mounted by a force sensor that records the 

surface pressure as a function of an area per lipid on the aqueous subphase surface. A plot record 

is called an isotherm. A Wilhelmy plate is a force transducer that measures the force exerted by 

the monolayer due to variations in surface tension. For a rectangular Wilhelmy plate, downward 

force is a function of the rectangular dimensions (l=length, w=width, t=thickness, h=depth) and 

plate density ρp. 

 𝜋 = 𝛾0 − 𝛾 (I-4) 
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For a pure surface (without any surfactant), the downward force F0 is given by: 

 

 

For a surface cover with a monolayer, the downward force Fm is given by 

 

 

with θ0 and θm respectively the contact angle of the pure water and the monolayer at the interface, 

g and ρL are respectively the gravitational constant and the liquid density. 

The difference between (I-6)and (I-5) yields to the change in surface tension which is the 

variation of the surface tension of pure water with the surface pressure of the film monolayer. 

 

  

For a wet plate by the liquid, the contact angle can be approximated to zero and thickness 

can also be negligible compared to the width (t<<w). In these conditions the relation (I-7) is 

reduced to: 

 

By 

using the relations (I-4) and (I-8) the surface pressure is directly connected to the change in the 

force ∆F as in the relation (I-9)  

 

 

The Langmuir-Blodgett film balance used in our laboratory is equipped with a 

microstepping motor that drives barriers during the compressions and has a sensitive 

 𝐹0 = 𝜌𝑝𝑔𝑙𝑤𝑡 + 2𝛾0(𝑡 + 𝑤)𝑐𝑜𝑠𝜃0 − 𝜌𝐿𝑔𝑡𝑤ℎ (I-5) 

 𝐹𝑚 = 𝜌𝑝𝑔𝑙𝑤𝑡 + 2𝛾(𝑡 + 𝑤)𝑐𝑜𝑠𝜃𝑚 − 𝜌𝐿𝑔𝑡𝑤ℎ (I-6) 

 ∆𝐹 = 2(𝑡 + 𝑤)(𝛾𝑐𝑜𝑠𝜃𝑚 − 𝛾0𝑐𝑜𝑠𝜃0) (I-7) 

 ∆𝐹 = 2𝑤(𝛾 − 𝛾0) (I-8) 

 𝜋 = −Δ𝛾 = − ∆𝐹 2𝑤⁄  (I-9) 
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electrobalance directly coupled to the Wilhelmet plate as shown in Figure I-12 and Figure I-15. 

The ability of phospholipids to self-assemble has opened doors to other technologies, as mentioned 

above. In vivo study presents many challenges due the complexity of the biological membrane. 

These challenges have been the driving force behind all the technology developed and each has its 

own advantages. The LB studied above offer not only offer possibility of working with a 

monolayer system, but it also provides a way of forming a multilayer [75, 76]. In addition, other 

types of artificial membrane can be made, such as vesicles[77] 

1.7.4.  Hydrogen bonds in lipid monolayer and bilayer 

An anomalous property of water that presents great advantages in many biological 

molecules is its dipolar property that results from the hydrogen-oxygen-hydrogen interaction. The 

hydrogen bond is the underlying explanation of these anomalous behaviors observed in water 

molecules. The interaction of a hydrogen atom with an electro-negative atom leads to a polar 

molecule in which the hydrogen atom represent the positive pole. The resultant dipole can interact 

with another dipole that leads to what is called dipole induced dipole. Dipole- dipole interactions 

are classified as short-range interactions because the distances at which interactions occur are less 

than the Van der Waals interaction. The space that separates two dipole is 0.26 nm or 0.31 nm and 

the hydrogen atom that bridges the two dipoles belong to both dipoles. The energy related to a 

hydrogen bond varies between 13 and 25kJ/mol and this makes the hydrogen bond interaction 

weak and as such it can easily break under thermal variation in the environment (e.g. temperature 

in cellular biology). 

1.7.5.  Electrostatic Interaction in a Biological membrane  

The inner leaflet of the cell membrane is populated with charged (ionized or polar) 

molecules (proteins and lipids) that regulate the function, organization and structure of the 
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cytoplasmic membrane due to the electrostatic interaction. The Coulomb interaction as a result of 

these charged biomolecules and bivalent ions gives rise to surface electrostatic potential 𝜑0 that 

plays a crucial role in cell transport functions[78]. Since lipids and proteins that form the 

cytoplasmic membrane are negatively charged, the potential associated with these lipids and 

proteins is below the neutral point. This potential is cell type dependent. The potential is about -

60mV in erythrocytes [79] and -120 to -170mV in freshwater algae. For eukaryotic cells the resting 

potential varies between -60 to -75mV for tumor and neuron cells. These potentials are very 

sensitive to the environment, a change in ions, outer membrane or pH will dramatically affect the 

potential[78]. One can ask about the calculations or method used to determine these potentials and 

the accuracy of the models or techniques used.  

The Gouy-Chapman Model 

The Gouy-Chapmann theory on electrostatic surface potential is a good model that is still 

being used today. It was developed more than a century ago independently by Gouy and 

Chapmann. There are  assumptions made about the theory in relation to the inner leaflet layer of 

the cell membrane and ions in bulk solutions. The theory treats the charged lipids of the 

cytoplasmic membrane as fixed and forming a smear plane of semi-infinite monolayer and the 

counter ions or co-ions as a point charged massless particles and equally distributed 𝑔1 = 𝑔2 [80]. 

The interactions between the negatively charged lipids in the cytoplasmic surface and the ions(co-

ions or counter-ions) give rise to two layers. This creation of a double layer of charged molecules 

has been a focus of much scientific research for more than a century. Many formulations have been 

proposed base on Poisson and Boltzmann equations (PB) for different systems and conditions. The 

Gouy-Chapman model, formulated in 1910 by Gouy and 1937 by Chapman, is based on PB theory 
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and Langmuir adsorption isotherm theory[81]. Gouy-Chapman used two major concepts in physics 

and bridged them to form an elegant theory that describes the surface potential generated by 

charged molecules as a function of the charged density. The first concept comes from the Poisson 

equation that states that the Laplacian of the electrostatic potential is proportional to the charge 

density in a given system.  

 

 

For a system of two different ions in bulk solution the work required to move an ion i from 

|𝑟| = ∞ ⇔ 𝜑(𝑟) = 0 to the position where 𝜑(𝑟) ≠ 0 is given by 𝑧𝑖𝑒𝜑(𝑟) with 𝑧1 = −1 or   𝑧2 =

+1 the valence, with 𝑧𝑖 ∈ ℝ. The Boltzmann distribution law relates the concentration of ion i 

close to the membrane to its concentration in the bulk 𝐶𝑖 = 𝐶𝑒𝑧𝑖𝑒𝜑(𝑟) 𝐾𝐵𝑇⁄  . The total charge density 

is therefore given by: 

 

 After substituting (I-11) into (I-10) we obtain: 

 

 

where 𝜅 = (
8𝜋𝑁𝐴𝑒2

1000𝜀𝐾𝐵𝑇
)

1 2⁄

𝐽1 2⁄  Debye-Huckel length and 𝐽 =
1

2
∑ 𝑔𝑖𝑧𝑖

22
𝑖=1 =

1000𝐶

𝑁𝐴
 the ionic 

strength. Stern deduced a more general formulation of the equation (I-12) which is explained in 

section 2.4 

 

 

  

 ∇2𝜑 =
𝜎

𝜀0
 

(I-10) 

 
𝜎(𝑟) = 𝐶+𝑒 − 𝐶−𝑒 = −2𝐶𝑒 𝑠𝑖𝑛ℎ (

𝑒𝜑(𝑟)

𝐾𝐵𝑇
) 

(I-11) 

 
∇2𝜑(𝑟) = 𝜅2 (

𝐾𝐵𝑇

𝑒
) 𝑠𝑖𝑛ℎ (

𝑒𝜑(𝑟)

𝐾𝐵𝑇
) 

(I-12) 
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Chapter II : Modulation of Phosphoinositide Monolayer Compressibility by 

Physiological Levels of Ca+2 

2.1. Abstract 

In the cytoplasmic membrane, charged lipids play many key roles in the life of a cell, 

signaling and regulating the cytoskeleton proteins. Polyphosphoinositides (PIPs) are involved in 

most cells’ many complex signaling events that happen at the inner cytoplasmic leaflet of the cell 

membrane and other organelles’ membranes. These glycerophospholipids feature an inositol ring 

at their head group which provides potentially five locations for phosphorylation. The possible 

permutations that give rise to seven different PI subspecies with PI(4,5) P2 apparently omnipresent 

in many cellular events that occur at the plasma membrane. PI(4,5) P2 is a prevalent form 

representing the version with phosphate groups on carbon 4 and 5 (properly known as 

phosphatidylinositol (4,5)-bisphosphate). It only occupies 1% of all lipids. This class of lipids has 

attracted the attention of many researchers. Two main routes have been taken in an attempt to 

understand these complex lipids. One route examines the nature of the interaction of this lipid in 

the presence of bivalent ions (monolayer or bilayer system or vesicle containing PI(4,5) P2). The 

other route looks into the surface potential induced by charged lipids in general and PIPs in 

particular, in the presence of bivalent ions. Different models about the form of the surface potential 

have been proposed. In experimental results, the Gouy-Chapman-Stern model is most commonly 

used and its predictions match in most cases. There has been no study yet done about the elasticity 

properties of the monolayer and bilayer systems of ionic lipids in the presence of bivalent ions. 

We address this problem by studying the lateral isotherm compressibility in a monolayer system. 

We also developed a theoretical framework for the compressibility that depends on the electrostatic 

surface potential. Our experimental results for the compressibility of the monolayer are in 



36 

 

agreement with our theoretical framework for compressibility. We used the Gouy-Chapman-Stern 

(GCS) model. 

2.2. Introduction 

Lipid membranes play a key role in living cells as they organize molecules in time and 

space. For one, they are formidable barriers to random transport across membranes and thus help 

to compartmentalize eukaryotic cells [13, 33]. In addition, they are also quasi-two-dimensional, 

highly-structured fluids [9, 12]. As such, they provide the ideal environment for dynamic 

rearrangement of molecules within the plane of the membrane. This feature is paramount for both 

time-dependent assembly of molecules into larger membrane structures [15], as well as the proper 

execution of membrane-associated biochemical reactions [16-18]. Ultimately, these two aspects 

are intimately linked through the impact of membrane structures on lateral transport and vice versa 

[19]. It also appears that this interplay has an important role in the proper execution of cellular 

processes [20]. Underpinning these exceptional properties of biomembranes are the peculiar 

physicochemical characteristics of lipids, in particular their amphiphatic character.  

Although the structural importance of lipids and lipidic molecules for membranes is well 

established, it should be remembered that there are also many members of these species that are 

important because of their biological functions. Great examples of the roles that lipids play in 

cellular processes are exocytosis, fertilization, and gene transcription [16, 32, 82]. It is indisputable 

now that phosphoinositides (PIs) reign supreme in the realm of lipids with distinct biological 

functionality [2, 55]. These glycerophospholipids feature an inositol ring at their head group which 

provides potentially five locations for phosphorylation. The possible permutations that give rise to 

seven different PI subspecies with PI(4,5) P2 apparently omnipresent. PI (4,5) P2 is a prevalent 

form representing the version with phosphate groups on carbon 4 and 5 (properly known as 
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phosphatidylinositol (4,5)-bisphosphate). Given the multitude and diversity of processes in which 

even a single sub-species such as (4,5) PIP2 is involved [83, 84], one central question is inevitable: 

“How does the cell funnel these diverse functionalities through one particular molecule species 

while avoiding unwanted crosstalk between the different cellular processes involved?” One 

possible and arguably the most likely answer is: “Via spatial-temporal regulation”. In other words, 

spatially separated pools of, for example PIP2, that are, for the most part, regulated and controlled 

independently [85]. This would allow for specific PIP2-related functionality to be executed at one 

end of the cell, while at a different location, a separate pool of PIP2 is involved in another set of 

biochemical reactions.  

Experimental observations of distinct areas of (PtdIns(4,5)P2) enrichment in living cells 

support this idea [14, 86] . Yet, given the typical lateral fluidity of the lipid membranes such as the 

cellular plasma membrane, the question then becomes: “What physicochemical mechanisms might 

a cell exploit to form, maintain and regulate these ‘pools’ or domains of high PIP2 concentration?” 

Currently, a few different possibilities have been proposed. For one, phase separation mechanisms 

that rely on cholesterol dependent fluid–fluid de-mixing of lipids could play a role [87-89]. Others, 

however, might employ at least in part the fact that at physiological conditions, each phosphate 

group contributes about one negative charge, thus making highly phosphorylated PIs such as PIP2 

strongly anionic. For example, it has been shown that myristoylated alanine-rich C kinase substrate 

(MARCKS) does not rely on specific PIP2 binding sites but is able to organize the highly negative 

PIP2s by exploiting highly positively charged regions of the peptide [28][2]. 

Another intriguing avenue is the aggregation of phosphoinositides due to the action of 

bivalent ions [89-91]. This is in particular appealing as it directly couples biological functions such 

as calcium signaling to the spatial organization of membranes. Recent investigations have provided 
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some basic insight into the interactions of highly acidic lipids in the presence of bivalent ions such 

as calcium and magnesium. However, the range of ion concentrations in these studies lies mostly 

between 1µM and 1mM [89, 92]. These magnitudes are already interesting as they can be found 

during cellular signaling [93]. However, it is typical that calcium concentrations are mostly in the 

range of 200nM to ~1µM [94]. So, for example, the concentration of calcium in Xenopus oocyte 

is measured to be 1 µM [95], or in cardiac myocyte is found to be 170nM [92] or even 1000nM in 

hormonal activation[96].  

Thus, our work logically extends these previous studies to a range of ion concentrations 

that are most commonly found in eukaryotic cells. Therefore, we hope to illuminate to what extent 

ion-induced aggregation processes of, for example, PIP2 can indeed play a role in cellular signaling 

processes in those circumstances. We also investigate the elasticity properties of the monolayer of 

PIP2, PI and DOPG due to the interaction of bivalent ions. The negatives charges on monovalent 

or polyvalent lipids in the presence of counter ions in the buffer create a double layer that has 

attracted the attention of many [97-99], and is best described by the Gouy-Chapman Stern theory 

[65, 100, 101]. This theory states that the surface electrostatic potential is directly proportional to 

surface charge density. The electrostatic potential is a very important parameter in the study of ion 

channels and other processes in which cytoplasmic membranes are involved. Based on this theory, 

many experiments have been done which continue to confirm the theory by determining the 

surface potential [99]. We want to answer the question, “How do lateral reorganization and surface 

potential affect the elasticity properties of the bilayer/monolayer?” We found that there is a 

connection between local potential and isotherm compressibility, but also deduced a term that can 

be accounted as a term that contributes to surface potential. We believe that this term contributes 

to the stiffness or deformation of the structure as the surface potential increases or decreases. 
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Processes that occur at the cell membrane, such as endocytosis and exocytosis, involve changes in 

membrane elasticity which can be studied from the measurement of the lateral surface pressure of 

the monolayer when it is equivalent to that of the bilayer.[72, 102]. Studies have shown that these 

elasticity proprieties are functions of temperature, salinity, pH and lipid composition (acyl chain 

and head group) and type [103-105]. Different techniques have been developed [104, 106, 107] to 

measure the elasticity properties of bilayers. Some techniques present different challenges, such 

as the extrusion of solvents for the estimation of deformation in a bilayer[104, 106]. 

2.3. Materials and Methods  

Lipids and Reagent: L-α-phosphatidylinositol (Liver, Bovine) (PI), 1,2-dioleoyl-sn-glycero-3-phospho-

(1'-myo-inositol-4',5'-bisphosphate) (ammonium salt) (PIP2), 1,2-di-Dioleoyl-sn-glycero-3-[Phospho-rac-

(1-glycerol)] (DOPG) were purchased from Avanti Polar Lipids (Alabaster, Alabama; USA) in a desired 

concentration of 1mg/ml of Chloroform solution for (DOPG)and chloroform/methanol/water 20:9:1 for 

(PI(4,5)P2) and stored at -20º C without further purification and used within three month periods to avoid 

oxidation. Calcium Chloride CaCl2, Magnesium Chloride MgCl2, Sodium Chloride NaCl, Citric Acid, 

Sodium Citrate and HEPES were purchased from Sigma-Aldrich, (St. Louis, Missouri, USA) in powder 

form and kept at room temperature.  

All buffer solutions, calcium concentrations [Ca+2] and magnesium concentrations [Mg+2] 

were prepared in distilled and deionized water from a Milli-Q Apparatus (Millipore) and kept at 

low temperature (1ºC). 10mM of HEPES was used for the monolayer experiment at pH 7.4 and 

0.2M Sodium Citrate was used for all the monolayer experiments at low pH (pH 3.5).  

The monolayer surface pressure versus area per lipid (π-A) (Figure II-2) measurements 

were obtained from a computerized KSV Langmuir-Blodgett Minitrough (LB) at a constant 

compression rate (12 mm/min) after the deposition was completed and 10 minutes elapsed for the 
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evaporation of chloroform. To avoid contamination of the monolayer, the trough’s system was 

enclosed in a Plexiglas box. A constant temperature was maintained by circulating water through 

a tube attached to the base of the trough and to a monitoring heat reservoir system. Each 

experiment was repeated three times and data were processed by using Matlab and Igor-Pro. 

 
 

 

q = -3 or -5 q = -1 q = -1 

Figure II-1: Highly charged PI(4,5)P2, (left),  PI (middle)  and DOPG (right). 
 

 

Figure II-2: Isotherm of PIP2 in the absence of Ca+2(black curve) and in the presence of  

Ca+2(red curve). 
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2.4. Data Analysis and Discussion 

Most studies on compressibility were conducted between 1970 and 1981 by Evans and his 

co-workers by using micro pipette aspiration on the red blood cell. They reported a value of  

3.47∙10-3 m/mN  [108]. Previous work done by Losche [109] on the influence of bivalent ions on 

the compressibility of dimyristoylglycerophosphate (DMPA) yielded a value of ≥ 10 times 

magnitude compared to recent results, including our results. They also observed a deep decrease 

in compressibility under the influence of ions [109]. There has been no investigation to our 

knowledge on the effect of bivalent ions (Ca+2 and Mg+2) on the compressibility of anionic 

phospholipids, such as PIP2,DOPG and PI.   

The physical properties of lipid bilayers and lipid monolayers are similar for both systems 

at a lateral surface pressure of 30-35mN/m. Using a monolayer system gives more flexibility [110, 

111] to conduct studies that are difficult to do in vitro with a bilayer system. Additionally, we 

know that monolayers display a surface potential for zwitterionic and anionic lipids [112, 113]. 

The isotherm plots of most lipids exhibit different phase transitions, gel/liquid or 

liquid/crystalline, and different domain structures regulated by electrostatic interactions [109]. The 

dipole moments increase in the liquid/crystalline or in the condensed phase due to an excess of the 

repulsion force due to an excess of charges [113]. These have an influence on geometries (texture), 

nucleation, domain shape and size uniformity. It has been shown that ions binding to lipid head 

groups lower the monolayer surface charge, which in turn leads to a decrease in surface tension 

[114].  

Other results on the lateral isotherm compressibility of POPC show Cs
-1=122mN/m [115] 

which is significantly close to our result Cs
-1=112 ±4 mN/m in the liquid expanded phase. 

Studies have shown that the lateral isotherm compressibility of most phospholipids varies from 
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0.004 m/mN in the liquid phase to 0.002 m/mN in the crystal phase[105]. It has been shown that 

lateral isotherm compressibility is lesser in liquid-crystal than in the expanded phase, but the effect 

of bivalent ions on compressibility has not yet been investigated. Figure II-2 shows that bivalent 

ions have an important effect on lateral isotherm compressibility for charged anionic lipids. As 

demonstrated by Blank[116], the instantaneous surface pressure is proportional to the mean surface 

pressure 〈𝜋〉 and compressibility 𝐶𝐴, and the penetration of ions or others molecules is directly 

connected to the magnitude of 𝐶𝐴,     

                

where KB is the Boltzmann constant, T is the absolute temperature and A is the area per lipid. 

Lateral isothermal compressibility is determined by the expression below: 

 

 

By 

using the formula (II-2) to our isotherm of  PIP2, DOPG  and PI we were able to compute the 

compressibilities of PIP2, DOPG and PI at various physiological levels of bivalent ions with an 

uncertainty of ≈10% 

 
𝜋 ≅ 〈𝜋〉 [1 ± (𝐾𝐵𝑇𝐶𝐴 𝐴⁄ )

1
2] 

(II-1) 

 
𝐶𝐴 =

1

𝐴
(

∆𝐴

∆𝜋
)

𝑇
 

(II-2) 
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Figure II-3. Modulation of lateral isothermal compressibility of PIP2 by Ca+2ions  

 
 

Figure II-4 Modulation of lateral isothermal compressibility of PIP2 by Mg+2ions  
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CA is greater at lower surface pressures which means there is a greater fluctuation of lipids 

than at high surface pressures when there are lesser fluctuations of lipids. 𝐶𝐴 depicts the existence 

of interactions and structure formations at low surface pressure and the absence of bivalent ions as 

shown in figures, Figure II-3, Figure II-4, Figure II-7 and Figure II-8. These interactions and 

structure formations are not observed at other lateral isothermal compressibilities of DOPG, see 

Figure II-5 and Figure II-6. These observations support the theory that long range interactions for 

PIP2 in the presence or absence of Ca2+ and Mg2+ show that bivalent ions have a strong impact on 

the monolayer structure. DOPG behaves in a different and unusual manner, particularly in the 

absence of Ca2+. These behavior are most due to size of the head group of DOPG. 

A direct observation of compressibilities as depicted in figures, Figure II-3 through Figure 

II-8, shows a greater increase in local mean area per lipid, with PIP2 having the greatest increase, 

followed by DOPG then PI, which  leads to the relation PIP2>DOPG>PI. All of the compressibility 

results show an undisrupted curve due to isotherms that only exhibited the liquid phase. As we can 

observe from all the figures, the local relative change in mean area remains constant for a wide 

range of compressibility values.  

The dropping of the surface pressure when Ca2+ goes up suggests the insertion of 

phospholipase  c (PLC) inside the cytoplasmic membrane, as in the case with  PLCγ in the 

fertilization of an egg 
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Figure II-5. Modulation of lateral isothermal compressibility of DOPG by Ca+2ions  

 

 
 

Figure II-6:  Modulation of lateral isothermal compressibility of DOPG by Mg+2 ions 

.  

  



46 

 

In order to understand the difference in monolayers under the influence of Ca2+ and Mg2+, 

we need to include the notion of energy barriers [116] which depends on the size of the bivalent 

ions. In addition, the action of the hydration force on the electrostatic repulsion force at the distance 

< 2nm needs to be included [65]. It has been shown that large molecules pass through the 

membrane with high values of CA. This is also true for membranes with small values of CA only 

when in the presence of Ca2+ ions. By plugging different values of CA (Figure II-3) at a fixed value 

of the mean surface pressure of the monolayer of PIP2 (<π> = 30±1.2 mN/m) into the equation 

(II-1). We then computed using the equation (II-1) to determine the relative changes in the 

instantaneous surface pressure of the monolayer, as shown in Table II-1. 

 

 

 

 

 

 

 

 

 

 

The change induced by Ca2+ ions on the surface pressure is significant in magnitude and 

supports many hypotheses, such as inserting of PLC enzyme into the bilayer and other membrane 

signaling events when calcium ions interact with cytoplasmic charged lipids. The results shown in 

the Table II-1 indicates increases in PIP2 surface pressure that range from 28% to 34% as the 

[Ca2+] in nM CA (m/mN) 
(〈π〉(𝐾𝐵TCA A⁄ )

1
2) π⁄  

0 0.013254±0.0002 28.3% 

100 0.014757±0.0005 

 

31.9% 

300 0.014402±0.0006 

 

34.0% 

 

500 0.01266±0.0003 

 

33.9% 

1000 0.011554±0.0005 

 

33.6% 

Table II-1. The impact of  [Ca2+ ] on the compressibility and  on the 

relative change of surface pressure  of PIP2 at 30mN/m 
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concentration of Ca2+ ions increase. This increase shows the importance of surface modification 

due to electrostatic or lateral interaction in the monolayer.  

The aggregation of PIP2 is not affected by electrostatic repulsion due to the head group 

charge but is affected by electrostatic attraction which depends on the presence of bivalent ions 

[117]. Figure II-3 through Figure II-8 indicate that there is more to the electrostatic interaction; 

there are more interactions on the monolayer from which the compressibilities have been 

computed. The lateral compressibility of PIP2 suggests more explanation is needed beyond a 

simple electrostatic interaction with bivalent ions.  
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Figure II-7: Modulation of lateral isothermal compressibility of PI by Ca+2 ions 

 

 
 

Figure II-8: Modulation of lateral isothermal compressibility of PI by Mg+2 ions 
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Other studies that used high concentrations of Mg2+ and Ca2+ (~1mM) have suggested that 

Mg2+ does not induce more aggregation compare to Ca2+ in the monolayer of PIP2. This is because 

Mg2+ does not dehydrate while Ca2+ does dehydrate when interacting with PIP2 head group [87, 

89]. However, I used bivalent ions at physiological levels. The results on compressibility that I 

found require more explanations, in particular about bivalent ions. The activity of Ca2+ decreases 

as the molar concentration of Ca2+ increases in a bulk solution in the absence of any salt (NaCl); 

the value goes further down in the presence of salt [118]. The activity depends on the size of ions. 

The difference between Ca2+ and Mg2+ is evident, as depicted in Figure II-3 through Figure II-8. 

The differences found strongly suggest that the activities and size of these bivalent ions 

have a strong effect on their adsorbant properties. Compressibilities are also greatly impacted by 

the geometry and charge(s) of the head group. According to the Stern theory of stoichiometry of 

association, the interaction between bivalent ions and phospholipids can be 1:1 (ion: phospholipid) 

or 1:2 (ion with two phospholipids). The latter stoichiometry of association has been proposed by 

McLaughlin [65, 97]. It has been demonstrated more recently [87, 89] that Ca2+ causes less 

aggregation of PI(3,5) P2 than PI(4,5)P2 , in the monolayer. Another study on magic angle spinning 

31P-NMR or 1H-NMR spectroscopy  has revealed a difference in charges between PI(3,5) P2 and 

PI(4,5) P2 on the phosphate groups on the inositol ring. PI(4,5)P2 has -3.99±10 C and -3.96±10 C 

for PI(3,5)P2. The difference can be attributed both to the proximity of the phosphate group and to 

the oscillation of the proton between the phosphate groups at position 4- and 5- on the inositol ring 

[119]. In a study on the small unilamellar vesicle, the PC/PI(4,5)P2 99:1 yielded a value of pKa of 

6.5 and 7.7 respectively at the position 4- and 5- on the inositol ring. The pKa of PI(4)P is 6.1 

which is lower than the pKa of  PI(4,5)P2 [2, 119]. Calcium does induce structure even at low 

surface pressures (high compressibility) compared to Mg2+where there is negligible interaction 
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with PIP2 on the monolayer at a low surface pressure, see Figure II-4. The differences in 

compressibilities we observed were supported by all previously conducted studies. We also know 

that biological membranes carry an electrostatic surface potential which is attributed to the charge 

of the head group of a lipid and to ions in bulk. There are different forms of electrostatic surface 

potential that have been developed, but the one that is most commonly used is the Gouy-Chapman-

Stern (GCS) model. 

The Graham equation (II-3), as illustrated below, is based upon the Gouy-Chapman-Stern 

(GCS) theory which is based upon two theories, the Poisson  equation and the Boltzmann equation, 

but added a third theory, the Langmuir adsorption isotherm theory. Altogether these theories 

connect the electrostatic surface density(𝜎 ) to the surface potential(φ(0)) [120]. 

 

with 

e representing the charge of an electron; A, the mean area per molecule; KB, Boltzmann constant; 

T, the temperature; KM ,the binding constant for monovalent ions; KD, binding constant of bivalent 

ions; and KH representing the binding constant of a proton (KH = 60M-1). 

In instances where there is no salt (NaCl), the term 𝐾𝑀[𝑀+] exp (−
𝑒φ(0)

𝐾𝐵𝑇
) can be 

removed. Therefore, we can rewrite the equation (II-3) as follows: 

 

The concentration of [𝐻+] can also be replaced by 10−𝑝𝐻 

 

In the case of a system that is completely depleted of [𝐻+], the term, 𝐾𝐻[𝐻+] exp (−
𝑒φ(0)

𝑘𝑇
) can 

be neglected so the relation (II-4) becomes: 

 
𝜎 =

𝑒/𝐴

1 + (𝐾𝐻[𝐻+] + 𝐾𝑀[𝑀+]) exp (−
𝑒φ(0)
𝐾𝐵𝑇 ) + 𝐾𝐷[𝐷2+]exp (−

2𝑒φ(0)
𝐾𝐵𝑇 )

 
(II-3) 

 

( 𝐾𝑀[𝑀+] + 𝐾𝐻[𝐻+]) exp (−
𝑒φ(0)

𝐾𝐵𝑇
) + 𝐾𝐷[𝐷2+] exp (−

2𝑒φ(0)

𝐾𝐵𝑇
) =

𝑒
𝐴
𝜎

− 1 

(II-4) 
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We know that the surface potential is linked with surface pressure by the relation below, 

(II-6): The electrostatic free energy per area [111, 121] is given by: 

 

with 𝜑 representing the surface potential. 

With the assumption that the electrostatic interactions are the most predominant[91] and all other 

interactions can be neglected, we can used Lippmann equation [121, 122] which connects the 

electrostatic free energy to the interfacial tension, (II-7). 

 

With q representing the charge, and A represents the area. By integrating the relation 

(II-7) , the average surface tension is given below, (II-8)   

 

By 

combining the relation (II-8) and (II-1) we deduce (II-9): 

 

The term 〈𝜑〉(𝐾𝐵𝑇𝐶𝐴 𝐴⁄ )
1

2 can be regarded as a corrective term on the electrostatic surface 

potential and the answer to different values found by different authors in regards to surface 

potential. For example, another study using the well-known Gouy Chapman Stern (GCS) theory 

on membranes containing acidic lipids and peptides has presented some failure at high 

concentrations of the peptide: the result was twice the estimated potential [99]. Another feature of 

this term is that it includes the change related to the elasticity of the membranes since it depends 

 

φ(0) = −
𝐾𝐵𝑇

2𝑒
len [

1

𝐾𝐷[𝐷2+]
(

𝑒
𝐴
𝜎

− 1)] 

(II-5) 

 
∆𝐺 = −𝜎𝜑 + ∫ 𝜑′

𝜎

0

𝑑𝜎′ = − ∫ 𝜎′
𝜑

0

𝑑𝜑′ 
(II-6) 

 
(

𝜕𝜋

𝜕𝜑
)

𝐴,𝑇

= (
𝜕𝑞

𝜕𝐴
)

𝜑,𝑇
= −𝜎 

(II-7) 

 

∆𝐺 = ∆𝜋 = ∫ (
𝜕𝜋

𝜕𝜑
)

𝐴

𝑑𝜑 = ∫ −𝜎𝑑𝜑

𝜑

0

𝜑

0

 

(II-8) 

 
𝜑 ≅ 〈𝜑〉 [1 ± (𝐾𝐵𝑇𝐶𝐴 𝐴⁄ )

1
2] 

(II-9) 
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on the compressibility. Compressibility strongly depends on the presence of bivalent ions and other 

parameters.  

We know that we can write the surface potential in terms of a Taylor series, (II-10): 

By comparing (II-9) and (II-10), we get 𝜑(𝑥0) = 〈𝜑〉 then we found (II-11): 

 

We know that 𝜑(𝑥0) = 25𝑚𝑉 at room temperature. 

The relation (II-11) shows that the increase in temperature will result in a decrease of 

compressibility on a charged monolayer or bilayer system. The theoretical model of 

compressibility that I developed provides deeper insight into a range of surface potentials. 

We can rewrite (II-11) as follows: 

where 𝐶𝜑 is given by the relation below,(II-13) 

 

So by inserting (II-13) into (II-9), we obtain (II-14): 

where 𝐶𝜑 is the surface potential compressibility.  

The relation (II-14) show that the corrective term in the potential does not depend on the 

mean area per lipid, the corrective term in this case depend only on 𝐶𝜑 which has the same unit as 

𝜅2. 

 
𝜑(𝑥) = 𝜑(𝑥0) + (𝑥 − 𝑥0)

𝑑𝜑(𝑥)

𝑑𝑥
 

(II-10) 

   

 

𝐶𝐴 =
𝐴

𝐾𝐵𝑇𝜑(𝑥0)2 [(𝑥 − 𝑥0)
𝑑𝜑(𝑥)

𝑑𝑥
|

𝑥=𝑥0

]

2

 

(II-11) 

 
𝐶𝐴 =

𝐴

𝐾𝐵𝑇
(𝑥 − 𝑥0)2𝐶𝜑 

(II-12) 

 

𝐶𝜑 =
1

𝜑(𝑥0)2 [
𝑑𝜑(𝑥)

𝑑𝑥
|

𝑥=𝑥0

]

2

 

(II-13) 

: 
𝜑 ≅ 〈𝜑〉 [1 ± 𝑥𝐶𝜑

1
2] 

(II-14) 
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The membrane potential φ(x) is given by the GCS theory and is the same as the Zeta 

potential at 2Å from the surface, as shown in relation (II-15) [99]. 

 

The 

Debye length is given by 1 κ⁄  withκ = [2𝐾𝐵𝑇𝑒2𝑐 𝜀𝑟𝜀0⁄ ]1 2⁄ , with  𝜀0 = 8.9 × 10−12 𝐶 𝑁𝑚2⁄  and 

with 𝜀𝑟varying from 1 in air to 80 in water.  By taking the derivative of (II-15) we obtain (II-16): 

 

We can now insert (II-16) into (II-11) and (II-13) to get (II-17) and (II-18): 

 

 

The 

results from our theoretical model on the compressibility are shown in Figure II-9 and Figure II-10 

and indicate the same profile as in our experimental results which strongly suggests that there is 

an agreement between the theoretical framework we developed and the experimental results. 

 

 

 

 
φ(x) = 2ln (

1 + tanh(φ(0) 4⁄ )e−κx

1 − tanh(φ(0) 4⁄ )e−κx) 
(II-15) 

 
φ(x)′ =

𝑑φ(x)

𝑑𝑥
=

4κtanh(φ(0) 4⁄ )e−κx

1 − tanh2(φ(0) 4⁄ )e−2κx
 

(II-16) 

 
𝐶𝐴 =

Ax2

KBTφ(0)2 (
4κtanh(φ(0) 4⁄ )e−κx

1 − tanh2(φ(0) 4⁄ )e−2κx)

2

 
(II-17) 

 
𝐶𝜑 =

1

φ(0)2 (
4κtanh(φ(0) 4⁄ )e−κx

1 − tanh2(φ(0) 4⁄ )e−2κx)

2

 
(II-18) 
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Figure II-9: Theoretical compressibility as a function of electrostatic surface potential 

for various mean area per molecule  

 

 
Figure II-10:Theoretical compressibility as function of distance from membrane for 

various surface potential  
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As was expected, the compressibility vanished as the distance increased away from the 

monolayer. Membrane elasticity or mechanical properties are profoundly dependent on the surface 

electrostatic potential. We also posited and found that highly charged membrane will generate a 

large surface potential. Based upon our experiments on PIP2, we found that this highly charged 

lipid does induce a large surface potential, which indicates a smaller value of compressibility in 

the presence of bivalent ions. The theoretical compressibility does support this as observed in 

Figure II-9 and Figure II-10. 

The results of other studies on membrane potential [123] of asymmetrical leaflets 

composed with PS/PC and PS/PE have produced values of 198mV and 238mV which correspond 

respectively to 0.0095 m/mN and 0.0068 m/mN  at 55 A2 . The minimum value of compressibility 

obtained from the formula (II-17) is about 0.0001m/mN at 1475mV(40A) and 1959mV (70A). 

Beyond these values, the compressibility does not change for a wide range of surface potentials 

and becomes zero respectively at 2571mV and 3408mV. The theoretical model of compressibility 

sets a boundary upon the Gouy-Chapman Stern theory.  
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2.5. Conclusion 

The experimental results on PI(4,5)P2 and PI show structural formation in the presence and 

absence of bivalent ions. While there is a small amount of structure that exists when there are no 

bivalent ions, when PIP2 and PI are in the presence of bivalent ions, these structures become more 

ordered as the concentration of bivalent ions increases. Due to the size of the DOPG’s head group, 

observations of the monolayer suggest a lack of ordered structure in the absence of bivalent ions; 

but there appears to be an apparent structural formation that occurs as bivalent ions increase, as 

seen from the results of the compressibility. Our theoretical framework does capture all the 

parameters that can affect any monolayer/bilayer system, such as temperature, pH, physiological 

conditions, lipid composition, the area per molecule and the electrostatic potential. 
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Chapter III : Calcium Induced Change in Excess Gibbs Energy of Charged 

Monolayer System 

3.1 Abstract  

The role and importance of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in cell 

membrane signaling and its regulatory role in membrane trafficking are undisputable. Cellular 

process such as endoplasmic and exoplasmic require PI (4,5)P2 in their cycle. An important 

number of actin-protein are activated and bind to PI(4,5)P2. In addition, PI(4,5)P2 bind to more 

than 350 proteins in vivo[124] in the cell. Moreover, viruses, such as HIV-1, use PI(4,5)P2 in their 

budding process. A plausible explanation to many of these processes mediated by PI(4,5)P2 in the 

plasma membrane (PM) is the hypothesis that suggest a formation of Pools of PI(4,5)P2 in the 

cytoplasm. The mechanism underlying the aggregation of PI(4,5)P2 into pools is still not 

understood but different explanations have been proposed in the last few decades. The most 

convincing hypothesis is due to the electrostatic interaction between PI(4,5)P2 and Ca+2. More 

recent experiments have shown that Ca+2 mediates the formation of Pools of PI(4,5)P2 at high Ca+2 

concentrations. We have investigated the effect of the bivalent ions on excess Gibbs free energy 

from the monolayer of PI(4,5)P2 –POPC or pure PI(4,5)P2 at the physiological level. We found 

that excess Gibbs free energy does not yield a zero value as predicted by the formula for a pure 

monolayer. This gives a direct confirmation that bivalent ions induce segregation of PI (4, 5)P2 in 

the mixture PI(4,5)P2-POPC or pure monolayer of PI(4,5)P2. We have shown that the excess Gibbs 

energy is strongly dependent on temperature and the nature of bivalent ions. 
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3.2  Introduction 

Our understanding of Polyphosphoinositides (PPIs) has not yet reached its prime due in 

part to its multiple roles as a second messenger molecule and on the other hand it due to its binding 

role to more than 350 proteins in vivo [124]. These special phospholipids have attracted the 

attention of more and more scientific research due to its multi functionality in numerous cell 

events. The most predominant phosphorylate Polyphosphoinositides (PPIs) named 

phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) occupies only 1% of all the PPIs. As a second 

messenger, PI(4,5)P2 is the precursor of two messengers: Ins(1,4,5)P3 leads to the release of Ca+2 

from the ER and produces diacylglycerol (DAG) after its interaction with PLC[14, 28]. The 

number of biological processes associated with PI(4,5)P2 as second messenger are numerous. To 

cite only a few mechanisms that are regulated by PI(4,5)P2 : fertilization, a process that is triggered 

by Ins(1,4,5)P3 and Ca+2 oscillation which leads to egg activation and embryo development in 

mammal cell [125, 126]; ion-channel activation, synaptic vesicle trafficking (exocytosis) and 

recycling are regulated by PI(4,5)P2; cytoskeletal attachment, actin-binding proteins [28, 83]. 

Observations have shown the special presence of pools of PI(4,5)P2 in cytoplasmic leaflet of 

membrane[28, 83]. There is a generic question that has been addressed in relation to PPIs special 

PI(4,5)P2 -“ How does PI(4,5)P2 play so many crucial roles in cytoplasmic membranes and other 

locations, and what are the physicochemical mechanisms attached to this lipids that make the lipid 

unique among all the phospholipids ?”[28]. The debate about physicochemical mechanism  that 

leads to  PI(4,5)P2 enrich domain in the cytoplasmic membrane [49] is still an open subject. Various 

experiments provide different answers to underlying interactions that mediate PI(4,5)P2 clustering 

of these multi-valent lipids in cytoplasmic leaflet of cell membrane are: PIP2-protein interaction 
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[28]; hydrogen bond mediate PIP2 clustering; and Cholesterol enrich PIP2 raft-like domain [49]. 

Recent monolayer experiments on two different phosphorylate of PI,PI(4,5)P2 and PI(3,5)P2 have 

shown that the charged head group was not the only key player in the condensation effect of these 

monolayers under bivalent ion interactions but instead the special orientation of these charges are 

on the inositol ring. A more recent experiment shows a clustering of PIP2 by divalent cations and 

a difference in clustering of PI(4,5)P2 is due to changing enthalpy from the hydration of Ca+2 or 

Mg+2 [127]. Studies have not yet been done that address the energetic side associated with the 

PI(4,5)P2 monolayer in relation to electrostatic interactions with bivalent ions. All the literature 

focuses on either the interaction of peptides with lipids or on the mixture of lipids in different 

conditions [128].  

In investigating the energetic side of the PI(4,5)P2 monolayer as it relates to the electrostatic 

interactions with bivalent ions, I experimented on PI(4,5)P2 and various mixtures of PI(4,5)P2-

POPC at different temperatures and pH and physiological cations concentration to show that the 

excess Gibbs free energy is strongly dependent on temperature, pH and cations nature. 
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3.3  Material and Methods 

Lipids and Reagent:  

1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) (ammonium salt) 

(PIP2) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were purchased from 

Avanti Polar Lipids (Alabaster, Alabama;USA) in the desired concentration of 1mg/ml in 

Chloroform solution for (POPC) and chloroform/methanol/water 20:9:1 for (PI(4,5)P2). They were 

both stored at -20º C without further purification and were used within a three months period to 

avoid oxidation. Calcium Chloride CaCl2, Magnesium Chloride MgCl2, Sodium Chloride NaCl, 

Citric Acid, Sodium Citrate and HEPES were purchased from Sigma-Aldrich, (St. Louis, MO, 

USA) in powder and kept at room temperature.  

 All buffer solutions, calcium concentrations [Ca+2] and magnesium concentrations [Mg+2] 

were prepared in distilled, deionized water from a Milli-Q Apparatus (Millipore) and refrigerated 

at 1ºC. 10mM of HEPES was used for the monolayer experiments at pH 7.4 and 0.2M Sodium 

Citrate was used for all the monolayer experiments at low pH (pH 3.5).  

Lipid mixtures were prepared at three different concentrations 

([PI(4,5)P2]:[POPC]:10:90,25:75,35:65) and used directly after mixing for all the experiments 

done at 37 ºC. A pure concentration of PIP2 was used in all other conditions.  

The monolayer of surface pressure versus area per lipid (𝜋 − 𝐴) was obtained from a 

computerized KSV Minitrough Langmuir-Blodgett (KSV NIMA Biolin Scientific Tietäjäntie 2 

FIN–02130 Espoo, Finland) (LB) at Constant Compression (5 mm/min) after the deposition into 

the trough and the wait of 10 minutes necessary for the evaporation of chloroform. To minimize 

airflow and stabilize humidity and temperature of the monolayer, the trough’s system was enclosed 
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in a Plexiglass box. A constant temperature was maintained by circulating water through a tube 

attached to the base of the trough and to a monitoring heat reservoir system. Each experiment was 

repeated three times and the data were processed by using Matlab and Igor-pro. Figure III-1 shows 

a five isotherms plot showing the mixture of PI(4,5)P2 -POPC (25:75) at 37ºC and pH 7 for 

different calcium concentrations. 

3.4 Data Analysis and Results 

An early definition of surface pressure was directly related to the definition of the surface 

energy of a monolayer of benzene atom. It was found that the surface energy of benzene was 

significantly affected when a substitution of OH was made to the benzene by a factor of 15% as a 

result of a tilting of the benzene ring[129]. Another observation made by Irvin Langmuir was 

related to the unsaturated acyl chain. He observed an increase of approximately 30% for an 

unsaturated molecule. More recent studies on the energetics aspect related to the interaction of the 

peptide with biological membrane have shone some light on the free energy associated with the 

biological membrane [130]. The observations and simulations have shown that there are three 

different ways that the peptide affects the free energy associated to the membrane. The first way 

that the peptides affect the free energy comes from the interaction of the peptide to the hydrocarbon 

core or nonpolar core namely called hydrophobic interaction. The second contribution comes from 

the interaction with the head group of the phospholipid, the peptide is adsorbed into the head group 

of the lipid membrane. This category includes charged lipid membranes such as 

phosphatidylinositol 4 5-bisphosphate (PIP2). The third contribution to the free energy comes from 

the interactions of the peptides with the hydrocarbon core and the head group simultaneously. My 

investigation focused more on the second type of interaction in the monolayer system. In order to 

understand the contribution to the free energy, the buffer condition was modulated, by changing 
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the parameters such as the pH or ionic concentration of Ca2+ and Mg2+. These were made possible 

with the Langmuir trough.  

The surface charge density of a monolayer increases proportionally with the increase of 

surface pressure as the monovalent ions’ concentration increases. The surface pressure drops in 

the presence of bivalent ions due to the phenomena known due to charge screen effect[120]. The 

adsorption of these ions onto the lipid membranes is not well-defined by the Poisson-Boltzmann 

equation. This is partially due to a strong ion-ion interaction and is still an open question[131] 

These monovalent and bivalent ions have an important influence on the phase transition by 

shifting the isotherms [120]. In all the cases of the monolayers of PtdIn, PtdIn (4,5)P2 and POPC , 

there were no phase transitions observed, not in the absence of bivalent ions or in the presence of 

bivalent ions. Their isotherms are characterized by one phase, called the fluid phase.  

The surface charged density of eukaryotic cell membrane is approximately 0.025 C.m-2 

which corresponds to an electrostatic free energy of 1kJ mol-1 from the contribution of  electrostatic 

interaction. But in an artificial membrane, the surface charged density can be greater than 0.25 

C.m-2 which in theory results in a value that is less or equal to 10kJ mol-1 [78]. 
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Figure III-1: Isotherm of the mixture of PI(4,5)P2 -POPC (25:75) at 37C and pH 7.4 

 

From a thermodynamic point of view, the same formulation can be used for the surface 

pressure to calculate the Gibbs free energy of a monolayer as shown below. For variations that 

happen at the plane of a lipid monolayer, the Gibbs free energy is given by the following equation 

[132] [128, 133]  

 

Where Gex is the excess Gibbs free energy, Sex is the entropy, T is the temperature, π is the surface 

pressure, A is the area per lipids, 𝜇𝑖 is the chemical potential and ni
ex is the number of particles,. 

In an isothermal system with a constant ni
ex, the expression (III-1) becomes 

 

 𝑑𝐺𝑒𝑥 = −𝑆𝑒𝑥𝑑𝑇 + ∑ 𝜇𝑖𝑑𝑛𝑖
𝑒𝑥 + 𝜋𝑑𝐴 

(III-1) 

 𝑑𝐺𝑒𝑥 = 𝐴𝑑𝜋 (III-2) 



64 

 

 

with A given according to [134, 135] as in the following equation (III-3), 

 

with 𝐴12 as the mean area of the mixture monolayer of PI(4,5)P2-POPC, Xi  and Ai which 

represents, respectively, the molar fraction and area per lipid for each individual monolayer of 

lipid i. 

In the case of a two-lipid mixture, the excess Gibbs free energy must be given by 

substituting the relation (III-3) into the relation shown at (III-2) and integrating the relation (III-2) 

as shown below:  

 

 

∆Gex can be determined from the isotherm 𝜋 − 𝐴 shown in the Figure III-1 

 The excess free energy reveals the nature of the interaction between the lipids in the 

mixture. If ∆Gex >0, there is a repulsive interaction between the lipids. If ∆Gex < 0, there is an 

attractive interaction. In analyzing my data, I used the relation (III-4) to examine the action of 

bivalent ions in the mixture of PI(4,5)P2-POPC instead of looking at the interaction between 

PI(4,5)P2 and POPC. The relation (III-4) can be modified by examining the interaction of the 

mixture with the bivalent ions as shown in the equation below: 

 

With 

B+2 

 𝐴 = (𝐴12 − 𝑋1𝐴1 − 𝑋2𝐴2) (III-3) 

 
∆𝐺𝑒𝑥 = ∫ (𝐴12 − 𝑋1𝐴1 − 𝑋2𝐴2)

𝜋

0

𝑑𝜋 
(III-4) 

 ∆𝐺𝑒𝑥 = ∫ (𝐴12 − 𝑋1𝐴1 − 𝑋2𝐴2)
𝜋

0
𝑑𝜋= 𝜋(𝐴+𝐵+2 − 𝐴−𝐵+2) (III-5) 



65 

 

representing the bivalent ions (Ca2+ or Mg2+). From the relation (III-5), the Gibbs free energy can 

be defined by both the presence of bivalent ions: ∆G+=πA+B
2+and the absence of bivalent ions ∆G-

=πA-B
+2. The figures, Figure III-2 and Figure III-3, show how the bivalent ions regulate the Gibbs 

free energy of the mixture of PIP2-POPC and the pure monolayer of POPC. 

  



66 

 

a. 10% PI(4,5)P2 and 90% POPC 

 
b 25% PI(4,5)P2 and 75% POPC 

 
Figure III-2:  Graph (a) shows surface pressure versus Gibbs free energy in the mixture 

of 10% PI (4, 5) P2 and 90% POPC. Graph (b) shows the surface pressure versus Gibbs 

free energy in the mixture of 25% PI (4, 5) P2 and 75% POPC. Both are regulated by 

Ca2+ concentration at 37 ºC and pH 7.4.  
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a. 35% PI(4,5)P2 and 65% POPC 

 
b. Pure POPC 

 
Figure III-3: Graph (a) shows surface pressure versus Gibbs free energy in the mixture 

of 35% PI (4, 5) P2 and 65% POPC. Graph (b) shows the surface pressure versus Gibbs 

free energy of pure POPC. Both are regulated by Ca2+ concentration at 37 ºC and pH 7.4  
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The ideal mixing of Gibbs energy is given by the relation: 

where R represents the ideal gas constant and T the temperature in (Kelvin), and the Gibbs energy 

of mixture is given by: 

 

We can also determine the activity coefficient 𝛾𝑖and the interaction parameter 𝜔from the 

framework developed by Kodama[136] and Bordi [133]. 

 

 

 

Table III-1 Interaction Parameter 𝝎 (∙KBT/molecule) 

[𝑪𝒂+𝟐] (PIP2-POPC)10:90 (PIP2-POPC)25:75 (PIP2-POPC)35:65 

100 -4.33±0.3 -2.69±0.5 -3.04±0.2 

300 -7.60±0.4 -4.53±0.3 -7.09±0.6 

500 -10.95±0.3 -6.11±0.4 -9.35±0.5 

1000 -12.37±0.2 -8.44±0.5 -10.56±0.4 

 

  

 ∆𝐺𝑖𝑑𝑒𝑎𝑙 = 𝑅𝑇(𝑋𝑖𝑙𝑛𝑋𝑖) = 𝑅𝑇(𝑋𝑃𝐼𝑃2
𝑙𝑛𝑋𝑃𝐼𝑃2

+ 𝑋𝑃𝑂𝑃𝐶𝑙𝑛𝑋𝑃𝑂𝑃𝐶) (III-6) 

 ∆𝐺𝑚𝑖𝑥 = ∆𝐺𝑖𝑑𝑒𝑎𝑙 + ∆𝐺𝑒𝑥 (III-7) 

 𝑙𝑛 𝛾𝑖 = (
𝜔

𝑅𝑇
) (1 − 𝑋𝑖)2 

(III-8) 

 
𝜔 = (

∆𝐺𝑒𝑥

𝑋𝑃𝐼𝑃2
𝑋𝑃𝑂𝑃𝐶

) 
(III-9) 
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We need to see that the interaction parameter 𝜔 in this case is not only reflecting the 

interaction between PI (4,5)P2 and POPC, it is also showing a strong interaction between PI(4,5)P2 

and Ca+2 in the complex system of PI(4,5)P2-POPC- Ca+2. The Figure III-2(b) shows Ca2+ has less 

impact on the Gibbs free energy of POPC. As shown on Table II-1, 𝜔 increases as 𝑋𝑃𝐼𝑃2
 decreases, 

which allows an increased interaction between PI (4,5)P2-Ca+2 which then results in increasing the 

∆Gex. The more negative the ∆𝐺𝑒𝑥 becomes, the more interaction occurs between PI(4,5)P2 and 

Ca+2. The graphs shown in Figure III-4 and Figure III-5 reveals an interdependence between the 

Ca+2 concentration and the PI(4,5)P2 concentration in the magnitude of ∆Gex. It was found that any 

increase in Ca+2 significantly affects ∆Gex, but when there is also an increase in PI(4,5)P2 (decrease 

of POPC), there is an even greater increase in ∆Gex . There was no dramatic change in ∆Gex at 

100nM of Ca+2 which is the resting calcium level. The excess Gibbs free energy associated with 

different pools of PI(4,5)P2 is not affected by the Ca+2 in the cytosolic of a resting cell. Another 

very important parameter that greatly impacts the excess Gibbs free energy is the temperature. 

Observations show that ∆Gex has significant dependence on temperature. An increase in 

temperature causes an increase in thermal fluctuation in the monolayer which allows more 

interaction between PI(4,5)P2 in the presence of Ca+2 ions as shown in Figure III-4. It is also pH 

dependent as shown in Figure III-5 . 

The trend observed in Figure III-4 is not linear for the differing concentration levels of 

Ca+2 but each of them is quite similar and tends to increase above 500nM Ca+2. The one exception 

is found in the monolayer of 10:90 PI(4,5)P2-POPC which suggests saturation started to occur. 
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 Figure III-4: Excess Gibbs free energy (∆Gex ) from the mixture of PI(4,5)P2and  

POPC  at 37 ºC ,pH 7.4 and for different Ca+2at a surface pressure of 28mN/m. 

 
Figure III-5. Excess Gibbs free energy (∆𝐺𝑒𝑥 ) from PI(4,5)P2 at 37 C and 25 ºC 

pH 3.5 and for different bivalent ion concentrations at a surface pressure of 

28mN/m. 
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(a) (b) 

 
(c) (d) 

  

Figure III-6: Schematic of the monolayer of PI(4,5)P2 in various conditions 

(a) Hydrogen bond or hydration forces mediate interactions in the monolayer of 

PI(4,5)P2, at pH7.4 and room temperature; (b) Increase of temperature which breaks the 

hydrogen bond interaction and increases spacing in the monolayer of PI(4,5)P2, at 

pH7.4;(c) Electrostatic interaction and hydrogen bond mediates the interaction of 

PI(4,5)P2 molecules at the room temperature; (d) Electrostatic interaction increases 

significantly at 37C(310ºK) in PI(4,5)P2 monolayer. 

 

The strength of electrostatic interaction in cell membranes depends on the charges of the 

phospholipids and Bjerrum length (lB=7.1 ∙A). For the monovalent lipid, the energy associated 

with electrostatic interaction is slightly greater than thermal energy  𝑘𝐵𝑇 (~7.1 �̇� ) [87]. In these 

conditions, the monovalent lipids are compared to a point charge that generates an orthogonal field 

in the cytosolic membrane.  
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Figure III-7. Modulation of surface pressure versus Gibbs free energy of PI(4,5) P2 by Ca+2 at 

25ºC and pH 7.4 

 

 

 

 

 

 
Figure III-8: Modulation of surface pressure versus Gibbs free energy of PI(4,5) P2 

by Mg+2 at 25ºC and pH 7.4 
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In the case of multivalent lipids, such as PI(4,5)P2, the distance between adjacent lipids 

becomes less than Bjerrum length (lB). This has a tremendous impact on the electrostatic interaction 

on the plane of a cytoplasmic membrane. The result on the excess Gibbs free energy indicates that 

multivalent lipids such as PI(4,5)P2 cause an increase when there is increase of thermal energy in 

the membrane. The excess Gibbs free energy due to the electrostatic interactions and the thermal 

energy that depleted any hydrogen bond from the mixture of the monolayer of PI(4,5)P2-POPC 

above 100nM[𝐶𝑎+2] varies between 0.5 KBT to 5 KBT as shown in Figure III-6. These values are 

above the Bjerrum length and the Figure III-6 depicts the working combination of thermal energy 

with electrostatic interaction between adjacent lipids. I observed that before any changes were 

made in the monolayer of PI(4,5)P2-POPC, the Bjerrum length and hydrogen bonds regulate the 

interaction in the monolayer system, PIP2-POPC. As the temperature increases in the monolayer, 

the repulsion force dominates due to a depletion of hydrogen bonds and the charge on PIP2. These 

phenomena have been recently observed in the monolayer experiments of zwitterionic lipids, 

DOTAP and DPPC[133], where the surface tension increases with the increase of temperature 

leading to a positive ∆𝐺𝑒𝑥 > 0. Another work done on the monolayer of PI(4,5)P2-Ca+2  ([Ca+2] 

>>1𝜇𝑀 ) has also show that the electrostatic interaction plays a dominant role in the clustering of 

PI(4,5)P2 at room temperature and pH 7.4 [89].  

The difference observed in the surface pressure versus Gibbs free energy as depicted in 

Figure III-7 and Figure III-8 is primarily due by the nature of the bivalent ions. Calcium ions have 

more of an effect on the monolayer of PI(4,5)P2  than magnesium ions at room temperature and 

pH 7.4. This can be explained by taking in account the size of bivalent ions. The smaller the 

bivalent ions, the more readily its adsorption into the monolayer   
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But the observations shown in Figure III-9 and Figure III-10 the surface pressure versus 

Gibbs free energy on the monolayer of PIP2 at a low pH3.5 and high temperature (37ºC) show the 

opposite. Magnesium ions have more effect than calcium ions. This can be explained by taking 

into consideration the abundance of H+ that shields the PIP2. Also, the increase in temperature 

allows the adsorption of Mg+2 more than Ca+2 in the monolayer.  

However, the observations shown in Figure III-11 and Figure III-12 of the surface pressure 

versus Gibbs free energy on the monolayer of PIP2 at a low pH3.5 and room temperature indicate 

that magnesium ions and calcium ions have similar effect on the monolayer of PIP2. Not much 

difference was observed between these two bivalent ions.  
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Figure III-9. Modulation of surface pressure versus Gibbs free energy of PI(4,5) P2 

by Ca+2 at 37 ºC and pH 3.5 

 
Figure III-10. Modulation of surface pressure versus Gibbs free energy of PI(4,5) 

P2 by Mg+2 37 ºC at pH 3.5 
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Figure III-11. Modulation of surface pressure versus Gibbs free energy of PI(4,5) P2 by Ca+2  

25 ºC at pH 3.5 

 

 
Figure III-12. Modulation of surface pressure versus Gibbs free energy of PI(4,5) P2 by Mg+2 

25 ºC at pH 3.5 
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3.5 Conclusion 

The results presented here on the modulation of surface pressure and excess Gibbs free 

energy support our hypothesis. Bivalent ions induce the aggregation of PIP2 molecules at the 

monolayer due to electrostatic interaction. We also see that these aggregations depend on 

temperature, pH and the kind of bivalent ions at various physiological levels. 
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Chapter IV : NOVEL TECHNIQUE FOR CALCIUM OSCILLATION  

4.1 Abstract 

The intracellular Ca2+ ion signaling is a universal messenger that regulates a huge number 

of cellular processes such as muscle contractions, neurotransmitter releases, apoptosis and 

fertilization. In addition, Ca2+ signaling forms spatiotemporal microdomains [92]. More signaling 

events can be combined to form a large signaling wave or an increase of the intracellular Ca2+ 

concentration that invades the whole cell. This phenomenon is known as calcium induced calcium 

release (CICR) and can be stimulated by the coupling process of PLC-PIP2-Ca2+ or by calcium a 

spark through a stimulus [94, 137]. A long lasting concentration of Ca2+ can lead to a catastrophic 

failure in regulating of the process mentioned above, including the process of memory 

consolidation and memory erasure that occur during sleep in Alzheimer disease [138]. For example 

an irreversible damage of cardiac and cerebral ischaemia is in general a direct result of a persisting 

large concentration of Ca2+ ions[139]. Biological cells have developed a sophisticated mechanism 

to keep calcium concentrations at low levels between 20nM to 100nM. The influence of CICR on 

cytoplasmic PIP2-membrane lateral reorganization has not been investigated. We attempted to 

develop a technique that combines different calcium dyes to mimic the intracellular calcium induce 

calcium release (CICR). Our first data show a possibility of developing such technique relying on 

the emission and absorption spectral of florescence dyes. 
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4.2 Introduction  

The calcium ion,Ca2+ is a messenger that has been intensively studied in relation to a wide 

range of cellular processes or events [140]. A phenomenon known as Calcium Induced Calcium 

Release (CICR) was first observed  in muscle cells [93, 141] and then in many other  cell types 

[32, 93, 94, 142-145] for an incredible huge amount of cell process and the brain is a sea of this 

particular behavior of Ca2+ ions or signaling in its coupling mechanism with 

Inositol1,4,5trisphosphate(IP3) [32, 93, 94, 146] .  

The cytoplasm of eukaryotic cells is a highly active and heterogenic media where different 

cell events happen in different regions. Ca+2 ions happen to be involved in almost all the cell 

processes that occur inside or at the plasma membrane. When the cell is at rest, the concentration 

of Ca+2 lies between 20 and 100 nM [92, 140]. When excited the intracellular calcium can increase 

up to many micro molars depending on the cell type[92]. There are two ways the cytosol is supplied 

by Ca+2. The first way by which the cytosol is supplied is by the release of calcium from a finite 

storage such as the endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) through the 

calcium receptors (InsP3Rs/RYR). The second means of supply is from an infinite, external 

source, and Ca+2 enters into the cytosol through channels. There are three types of channels, 

voltage operated channels (VOC), receptor-operated channels (ROC) and store-operated channels 

(SOC).  

Therefore Ca+2 signaling regulates numerous cell functions such as muscle contraction, 

neurotransmitter release, apoptosis and fertilization. In addition, Ca+2 signaling forms 

spatiotemporal microdomains [92] and additional signaling events can combine to form a large 

signaling wave or an increase of the intracellular Ca+2 concentration.  
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Figure IV-1: Calcium microdomain. A global signal of calcium ions result in the 

summation of different microdomains. Calcium released from SR/ER(spark/puff) and 

calcium entering through channels (sparklet) [147] 

 

The microdomains are also defined as elementary calcium events that constitute the basic 

construct of calcium signaling. Depending on the origin of these microdomains different names 

are associated with each different microdomain. (Syntilla, Sparklet, puff, spark, Blink) [147] as 

shown in Figure IV-1. Two important elementary signaling events are released from the ER and 

SR. The ER and SR are not only the factory of lipids and proteins, but it also provide large calcium 

storage.  

The endoplasmic reticulum and sarcoplasmic reticulum receptors each have three isoforms 

that form a total molecular mass of 2.4 millions daltons and 1.2 millions daltons respectively and 

each share an equal amount between their isoforms. Moreover these receptors are ten times more 
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effective than the voltage gate Ca+2  and Na+ with a conductance of 100 pS: ten times more than 

that of a Ca+2 channel[148]. 

Puffs are calcium releases from inosito1,4,5-trisphosphate receptors (InsP3Rs) as shown in 

Figure IV-1 upon interaction with the intracellular messenger IP3 [149]. In fact, puffs and sparks 

are the basic building blocks that contribute to the formation of a large calcium signaling wave as 

shown in Figure IV-2 or a global Ca+2 wave as in  Figure IV-3. But less is known about the 

mechanism that reassembles these elementary calcium signaling events inside the cytosol. Puffs 

have been observed in the astrocyte ending of synapses and in HeLa cells after being stimulated 

by histamine. Puffs are characterized by the magnitude of the signal event during the release 

(≥50nM) and time interval (360ms). Release events that reach a maximum of ≤ 40nM during the 

time interval of 130ms are called blips [149]. In addition, puffs and sparks can combine together 

to form a large microdomain. In neocortical glutamatergic presynaptic Ca+2 release this 

phenomenon is known as calcium induced calcium release (CICR) which is the amplification of 

Ca+2 concentration in the cytosol due to the sensitivity of ryanodine RYRs and InsP3Rs receptors 

[150]. A dysfunction of these receptors can lead to many pathologies or diseases such as cardiac 

death [151] 
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Figure IV-2: Calcium puffs in Xenopus Oocyte : Transient opening of inositol 1,4 

,5-trisphopshate (InsP3) receptors and elementary events of Ca+2 signaling (red dots) 

from the endoplasmic reticulum (ER). A strong signaling of Ca+2 is released from few 

IP3 receptors  [92, 140]. 

 

The release of calcium inside the cytosol depends on the biphasic properties of calcium: 

the release of Ca+2 from InsP3R, and the induced release of Ca+2 due by the sensitivity of the 

receptor to Ca+2. Ca+2 cannot trigger the receptor to release more Ca+2 without first being released 

by InsP3R as InsP3 binds to InsP3R as shown in Figure IV-2c. The Ca+2 release from RyR is similar. 

In Xenopus oocytes, Ca+2 puffs are localized first due to their weak diffusibility within the cytosol, 

and IP3R sites are separated by 30µm2. But when more IP3R channels are open, there is an increase 
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in Ca+2 in the cytosol and this Ca+2 plays the role of a messenger to enhance the release of more 

Ca+2 that results in high frequency waves of  Ca+2 as seen in Figure IV-2. 

Sparks are calcium released from ryanodine receptors (RyRs) locate at SR/ER. Spark was 

first observed in the cardiac cells of idle rats [142] during the mechanism that lead to the excitation- 

contraction. The spontaneous increase of calcium release from the SR of heart cells into the cytosol 

was observed with a laser scanning confocal microscope and calcium indicator fluo-3.The 

elementary calcium sparks were observed in the cardiac cells of idle rats around 0.2µM, the macro 

spark observed has a maximum of 533nM and the propagating wave appeared at 900nM. The latter 

value has been restricted by the limitations of the optical system used and the diameter of the 

microdomain is around 2µm. The calcium sparks are responsible for the calcium cascade that 

induces the coupling event of excitation-contraction. This cascade increases calcium concentration 

in the cytosol. This particular type of calcium increase, called Calcium induced Calcium release 

(CICR), is found in many types of muscle cells and cells that have internal storage [142]. Calcium 

sparks are involved in many cellular events, in cell presynaptic terminals [152] and in smooth 

muscle cell spark activated calcium dependent potassium(BK) channels[153] during relaxation. In 

contrast with calcium Puffs, calcium sparks are triggered by voltage-operated channels (VOC) 

whereas Calcium puffs are released from IP3 receptors after their interaction with IP3.  
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Figure IV-3: Calcium Sparks and the Global response of Ca2+ in Myocyte. [92] 

 

The cell stochastically recruits VOC during membrane depolarization induced by the 

release of sparks and their localization is directly linked to the special location of calcium. Spark 

has a short duration compared to a depolarization that induces a global response as observed in 

cardiac myocytes (Figure IV-3) 

The intracellular Ca2+ ions are modulated by the phenomenon known as homeostasis which 

consists of keeping the intracellular Ca2+ ions at the lower level after the cell has accomplished a 

specific function. The first step to understanding the mechanism of homeostasis is to look at the 

two main sources of cytoplasmic Ca2+ ions entries. The plasma membrane contains three different 

calcium gates such as VOCs, receptor-operated channels(ROCs) and store-operated channels 

(SOCs) [140]. The calcium entry is denoted by Cao
2+ . The second source of cytoplasmic Ca2+ ions 
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is the calcium release from ER or SR through their calcium receptors InsP3R and RYR. The 

calcium release is denoted by Cas
2+ ( Figure IV-4) 

 
Figure IV-4 Calcium homeostasis mechanism[140] 

 

The biphasic aspect of intracellular Ca2+ plays the role of switching on and off, or positive 

feedback and negative feedback. The positive feedback is achieved by calcium induced calcium 

release (CICR) as explained above . After the concentration of Cai
2+( Cao

2++ Cas
2+) reaches a 

desired level through CICR, the positive feedback is switched to negative feedback by Ca2+ 

inhibiting the channel [154, 155]. Homeostasis is achieved by pumping calcium either by a set of  

plasma membrane Ca2+ -ATPase (PMCA) or by sarco (endo)plasmic reticulum Ca2+ -ATPase 

(SERCA) to maintain the cytoplasmic Ca2+ at its resting level. 
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4.2 Reagents and Procedures 

Calcium Chloride CaCl2, Magnesium Chloride MgCl2, Sodium Chloride NaCl, Diazo (salt 

form, with an excitation at 330nm) and MOPS were purchased from Sigma-Aldrich, (St. Louis, 

MO, USA) in powder and kept at room temperature. Calcium ion concentrations were adjusted by 

mixing a low calcium buffer solution (110 mM KCl, 20 mM MOPS, 20 mM NaCl and 10 mM 

K2H2EGTA) and a high calcium solution (110 mM KCl, 20 mM MOPS, 20 mM NaCl, and 10 

mM K2CaEGTA) in the appropriate proportions  [156]. All aqueous solutions were prepared using 

organic-free doubled-deionized (DI) water of high specific resistivity (approx. 18.0 m/cm). 

Asante Calcium Red (ACR) was purchased in salt form from TEFLabs, Inc9415 Capitol 

View Drive Austin, TX 78747 and 10uM was prepared stored. ACR was used in non-ratiometric 

mode with an excitation wave length of 540nm and an emission wave length of 650 nm and kd 

=400nM. 
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4.2 Preliminary Results 

The primary goal in this section is to be able to investigate the dynamics of membrane 

reorganization as calcium concentrations change over time. Figure IV-5 shows a schematic of 

calcium oscillation in membranes containing florescence labels of PIP2. As described earlier, the 

intracellular calcium wave is one of the most ubiquitous signaling events that accompanies or 

orchestrates a large scale cellular responses, e.g. T-cell activation, cell motility or neuronal 

signaling [157, 158]. 

. Calcium induced calcium release (CICR) in the cytoplasm has a profile that looks like a 

sinusoidal wave. Previous studies have demonstrated that Ca2+ strongly interacts with anionic 

lipids and has a profound effect on the spatial organization and dynamic properties of the charged 

lipid species [159]. Phosphatidylinositol 4,5-bisphosphate (PIP2) is an example of a negatively 

charged lipid that also plays an important role in cellular signaling. 

 

Figure IV-5: Calcium oscillation induced changes in membrane organization. In the 

absence of Ca2+, PIP2 is homogeneously distributed throughout the lipid bilayer (left). 

At heightened calcium levels, domains of high PIP2 concentration will form (right) 

r 

The combination of Asante Calcium Red dye and the scavenger (Diazo) dye shows the 

possibility of making a system that can mimic the oscillation behavior of the intracellular calcium, 

as seen in Figure IV-6, Figure IV-7 and Figure IV-8. 
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Figure IV-6 shows the fluorescent image of ACR at different calcium concentrations. With 

the addition of 650nM Diazo the intensity is reduced by nearly half. Figure IV-7 shows the mean 

intensity of all various calcium concentrations at a wavelength of 500 nm. However, in Figure 

IV-8 we see a plot of the mean intensity of ACR as a function of various calcium concentrations. 

(a) 0nM (b) 65nM (c) 100nM 

  
 

(d) 602nM (e) 1350nM (f) 1350nM +650nM Diazo 

   

Figure IV-6: Fluorescent images of Asante Calcium Red for different calcium concentrations (as 

shown from (a) to (f) and with the added effect of the scavenger (Diazo) on the [Ca+2] (f). 

10µm 
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We also see in Figure IV-8 that the scavenger reduces the concentration of calcium to 

approximately 700nM. 

 
Figure IV-7: Fluorescent Intensity of Asante Calcium Red for different calcium 

concentrations. All emissions for various of [Ca+2] occur at 500nm, even after adding 

the scavenger (Diazo). 
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Figure IV-8: Fluorescent images of Asante Calcium Red for different calcium 

concentrations. We first see an increase in the mean intensity as calcium concentrations 

increase(red), then we observe the impact of the scavenger (Diazo) as it was added to the 

system which reduced the calcium concentration by nearly in half(green).. 

 

 

  



91 

 

Chapter V: General Conclusion  

Our findings have shown that the physiological levels of bivalent ions induce cluster 

formations of anionic lipids, particularly phosphatidylinositol 3,4-bisphosphate (PI(4,5)P2). We 

also found from the compressibility computed from the isotherms that these clusters depend on the 

nature of bivalent ions and pH. Moreover, the condensation in the monolayer significantly depends 

on the charge and the kind of phospholipids. We have observed from the compressibility of 

phosphatidylglycerol (DOPG) that the head group does not show any long range interaction at low 

surface pressure in the absence of bivalent ions. In contrast, we do find compressibility of PIP2 

and phosphatidylinositol (PtdIns or PI) even at low surface pressure which indicates the action of 

a long range interaction mediated by a dual interaction of hydration forces and electrostatic 

interactions. I also developed a theoretical framework of the compressibility, which was supported 

by the results of the experiment. In addition, our theoretical framework of compressibility predicts 

a decrease in the compressibility as the temperature increases. It also depends on the electrostatic 

surface potential and the Debye length. Our investigation on Gibbs free energy and excess Gibbs 

free energy has shown and  revealed the nature of the interaction in the monolayer systems of PIP2-

POPC and PIP2 as they are modulated by the physiological level of Ca+2 ions. This confirms the 

aggregation of PIP2 observed from the compressibility results. The attraction in the monolayer 

increases significantly as the temperature increases, which suggests that the hydration force breaks 

down as the temperature increases; this observation has been supported by other research. This 

impact of temperature allows an important increase in the electrostatic interaction between PIP2 

molecules under bivalent ions’ modulations at various physiological levels. These findings are 

supported by the observations seen in the Gibbs free energy and the excess Gibbs free energy of 

the PIP2 monolayer at 25ºC and in the mixture of PIP2-POPC at 37ºC. 
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This attempt at developing a technique that mimics a calcium wave in the cytoplasm 

indicates that there is a real possibility of making such a system with Calcium Asante Red, the 

calcium scavenger, Diazo, and calcium release nitrophenyl-EGTA (NP-EGTA) dyes. As seen from 

our preliminary results, a careful combination of different dyes that have different excitation and 

emission spectra can lead to a system that can be turned on and off.  

Future Research 

Most monolayer experiments on polyphophoinositides (PPIs) are usually done with PI(4,5) 

P2 which is one of the seven phosphorylates of PtdIns. It is important to conduct similar 

experiments using either PI(3,5)P2, PI(3,4)P2 or PI(1,4,5)P3 to see how the geometry of the 

phosphates group on the myo-ring affects the compressibility and the excess Gibbs free energy of 

a mono or bilayer system. Moreover the experiment conducted here used few and highly controlled 

parameters, so further investigation is needed by including more parameters, such as PLC or other 

proteins that bind to PIP2. For example, PPIs interacts with more than 350 proteins. PIP2 is also a 

well-known precursor to two important second messengers, IP3 and DAG, after PIP2 is hydrolyzed 

by PLC. A further step would be to look at the behavior of the PIP2-PLC system as they are 

modulated by calcium ions. Another route would be to improve the system so that it can mimic 

the oscillation of calcium in the cytoplasm and use it in a bilayer system of PIP2-PLC. 
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