
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

5-2013

Transparent and Precise Malware Analysis Using Virtualization: Transparent and Precise Malware Analysis Using Virtualization:

From Theory to Practice From Theory to Practice

Lok Kwong Yan
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yan, Lok Kwong, "Transparent and Precise Malware Analysis Using Virtualization: From Theory to
Practice" (2013). Electrical Engineering and Computer Science - Dissertations. 332.
https://surface.syr.edu/eecs_etd/332

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_etd%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/332?utm_source=surface.syr.edu%2Feecs_etd%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Dynamic analysis is an important technique used in malware analysis and is

complementary to static analysis. Thus far, virtualization has been widely adopted for

building fine-grained dynamic analysis tools and this trend is expected to continue. Unlike

User/Kernel space malware analysis platforms that essentially co-exist with malware,

virtualization based platforms benefit from isolation and fine-grained instrumentation

support. Isolation makes it more difficult for malware samples to disrupt analysis and

fine-grained instrumentation provides analysts with low level details, such as those at the

machine instruction level. This in turn supports the development of advanced analysis tools

such as dynamic taint analysis and symbolic execution for automatic path exploration.

The major disadvantage of virtualization based malware analysis is the loss of semantic

information, also known as the semantic gap problem. To put it differently, since analysis

takes place at the virtual machine monitor where only the raw system state (e.g., CPU and

memory) is visible, higher level constructs such as processes and files must be

reconstructed using the low level information. The collection of techniques used to bridge

semantic gaps is known as Virtual Machine Introspection.

Virtualization based analysis platforms can be further separated into emulation and

hardware virtualization. Emulators have the advantages of flexibility of analysis tool

development and efficiency for fine-grained analysis; however, emulators suffer from the

transparency problem. That is, malware can employ methods to determine whether it is

executing in an emulated environment versus real hardware and cease operations to disrupt

analysis if the machine is emulated. In brief, emulation based dynamic analysis has

advantages over User/Kernel space and hardware virtualization based techniques, but it

suffers from semantic gap and transparency problems.

These problems have been exacerbated by recent discoveries of anti-emulation malware

that detects emulators and Android malware with two semantic gaps, Java and native.

Also, it is foreseeable that malware authors will have a similar response to taint analysis.

In other words, once taint analysis becomes widely used to understand how malware

operates, the authors will create new malware that attacks the imprecisions in taint

analysis implementations and induce false-positives and false-negatives in an effort to

frustrate analysts.

This dissertation addresses these problems by presenting concepts, methods and

techniques that can be used to transparently and precisely analyze both desktop and

mobile malware using virtualization. This is achieved in three parts. First, precise

heterogeneous record and replay is presented as a means to help emulators benefit from the

transparency characteristics of hardware virtualization. This technique is implemented in a

tool called V2E that uses KVM for recording and TEMU for replaying and analysis. It was

successfully used to analyze real-world anti-emulation malware that evaded analysis using

TEMU alone. Second, the design of an emulation based Android malware analysis

platform that uses virtual machine introspection to bridge both the Java and native level

semantic gaps as well as seamlessly bind the two views together into a single view is

presented. The core introspection and instrumentation techniques were implemented in a

new analysis platform called DroidScope that is based on the Android emulator. It was

successfully used to analyze two real-world Android malware samples that have

cooperating Java and native level components. Taint analysis was also used to study their

information ex-filtration behaviors. Third, formal methods for studying the sources of

false-positives and false-negatives in dynamic taint analysis designs and for verifying the

correctness of manually defined taint propagation rules are presented. These definitions

and methods were successfully used to analyze and compare previously published taint

analysis platforms in terms of false-positives and false-negatives.

TRANSPARENT AND PRECISE MALWARE ANALYSIS USING VIRTUALIZATION:
FROM THEORY TO PRACTICE

by

Lok Kwong Yan

B.S. Polytechnic University, 2004
M.S. Polytechnic University, 2004

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer & Information Science and Engineering

Syracuse University
May 2013

c© Copyright 2013

Lok Kwong Yan

All Rights Reserved

To my grandfather, my parents, my wife, son and daughter.

vi

ACKNOWLEDGMENTS

I would like to express my sincerest gratitute to the people who made this dissertation

possible.

To my advisor, Dr. Heng Yin, whose vision, expertise and attention to detail not only

guided my research and kept me on track, but also showed me the importance of being a

balanced researcher. You taught me that communication is just as important as the

research work itself and that I should strive to do my best in both areas.

To my Master’s advisor and friend, Dr. Nasir Memon. You introduced me to computer

security and planted the seed that has grown into this dissertation. My career would have

been completely different without your initial and continued support and encouragement.

To my labmates, Aravind, Mu, Manju, Eknath, Qian, Andrew and Xunchao. Not to

undermine your help in refining my ideas, conducting research and gathering data, but

what I appreciate most are the social interactions with you. Our more mundane,

non-technical conversations helped relieve the many stresses of working in an academic

research lab.

To my previous supervisor at the Air Force Research Laboratory, Information

Directorate, Mr. Duane Gilmour, who understood the importance of dedicating time

towards research and was instrumental in ensuring that I had the time to do so.

Most important of all, to my wife Victoria. This dissertation would not have been

possible without your behind-the-scenes support. Taking care of our infant son while

vii

balancing all of your other responsibilities must have been more difficult and stressful than

my research. For that, I am forever indebted to you.

viii

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

1 Introduction . 1

2 Background . 8

2.1 Virtualization . 8

2.1.1 Hardware Virtualization . 11

2.1.2 The QEMU Emulator . 14

2.1.3 The Kernel Based Virtual Machine (KVM) 17

2.2 Dynamic Malware Analysis . 19

2.2.1 Transparency . 22

2.3 Android . 23

2.3.1 Android Malware Analysis . 26

2.4 Taint Analysis . 29

2.4.1 Challenges . 32

2.4.2 Noninterference . 35

2.5 Summary . 37

3 Making Emulators Transparent . 39

3.1 Introduction . 39

3.2 Design Goals & Approach . 41

3.2.1 Design Goals . 42

3.2.2 Architecture . 43

3.2.3 Precise Heterogeneous Record and Replay 44

3.3 Transparent Recorder . 48

ix

Page

3.3.1 Mediating Recording Realm . 48

3.3.2 Basic Scheme . 50

3.3.3 Other Inputs . 53

3.3.4 Optimizations . 54

3.3.5 Bridging the Semantic Gap . 56

3.3.6 Shadow Time Stamp Counter . 56

3.3.7 Implementation . 57

3.4 Precise Replayer . 60

3.4.1 Dynamic Binary Translation and QEMU 61

3.4.2 Changes for Precise Replay . 61

3.4.3 Example Walk-through . 64

3.4.4 Implementation . 65

3.5 Evaluation . 66

3.5.1 Study of Existing Anti-emulation Attacks 66

3.5.2 Analyzing Malware on Existing Malware Analysis Platforms 69

3.5.3 Analyzing Real world Malware with V2E 69

3.5.4 Recorder Performance . 73

3.6 Discussion . 74

3.7 Conclusion . 75

4 Emulation-based Android Malware Analysis . 77

4.1 Introduction . 77

4.2 Architecture . 78

4.3 Instrumentation Interface . 81

4.3.1 Basic Instrumentation . 81

4.3.2 Application Programming Interfaces 83

4.3.3 Instrumentation Optimization . 85

4.3.4 Taint Analysis . 86

4.4 Bridging the Semantic Gaps . 87

4.4.1 Reconstructing the OS-level View 87

x

Page

4.4.2 Reconstructing the Dalvik View . 91

4.4.3 Symbol Information . 100

4.5 Plugins . 101

4.5.1 Sample Plugin . 101

4.5.2 Analysis Plugins . 102

4.6 Evaluation . 104

4.6.1 Performance . 105

4.6.2 Analysis of DroidKungFu . 108

4.6.3 Analysis of DroidDream . 114

4.7 Discussion . 117

4.8 Conclusion . 118

5 Understanding Dynamic Taint Analysis . 119

5.1 Introduction . 119

5.2 Formal Foundation . 121

5.2.1 Noninterference . 122

5.2.2 Taint Propagation Policies . 130

5.2.3 Over- and Under-tainting . 131

5.3 Sources of Over- and Under-tainting . 132

5.3.1 Over-tainting Due to Taint-granularity: Observation 5.2.1 133

5.3.2 Analysis-granularity and Over-tainting: Observation 5.2.2 135

5.3.3 Other Sources of Over- and Under-tainting 138

5.4 Generating an Accurate Policy for x86 . 142

5.4.1 Stage 1: Behavioral Definitions . 143

5.4.2 Stage 2: General Information Flow 145

5.5 Results . 146

5.5.1 Interpretation of Results . 148

5.5.2 Comparing With Previously Published Policies 152

5.5.3 Refining Memcheck’s Special Rules 154

5.5.4 Taint- and Analysis-granularity . 158

xi

Page

5.5.5 ARM and Dalvik Level Tainting in DroidScope 159

5.6 Discussion . 162

5.7 Conclusion . 164

6 Summary . 165

LIST OF REFERENCES . 167

VITA . 177

xii

LIST OF TABLES

Table Page

3.1 Operations and Corresponding Solutions. 48

3.2 Survey of Emulation Detection Techniques. 67

3.3 Analyzing Real-world Emulation-Resistant Malware with V2E 70

4.1 Summary of DroidScope APIs . 84

5.1 Flow Type Results for x86 Instructions Flow Types: (U)p, (D)own, (I)n-place, (A)ll-around,

(S)pecial, (N)ot-Supported, (S)pecial, (E)ax is tainted in cmpxchg, * - Zeroing Idiom, Boldface - Generated

Policy is more precise . 147

5.2 Summary of refined policies . 156

5.3 Summary of new rules using SMT2 prefix notation 158

xiii

LIST OF FIGURES

Figure Page

1.1 A high level architectural diagram of an emulation based dynamic malware anal-
ysis platform. 3

2.1 Computer System Architecture [21] . 8

2.2 Process VM [21] . 9

2.3 System VM [21] . 10

2.4 System Virtual Machine using KVM and QEMU 17

2.5 Memory translation in QEMU without KVM (a) and with KVM and TDP (b) 18

2.6 Overview of Android System . 24

2.7 Control-flow tainting example. 33

3.1 Architecture Overview . 44

3.2 adore root filldir . 49

3.3 TDP snapshots for adore root fill. The two columns represent two guest
physical memory spaces for the main realm and the recording realm respectively.
A shaded block represents a present page, while a blank block indicates an absent
page. The arrow on top signifies which realm is active. 52

4.1 DroidScope Overview . 79

4.2 Dalvik Opcode Emulation Layout in mterp . 92

4.3 High Level Flowchart of mterp and JIT . 94

4.4 Dalvik Virtual Machine State . 97

4.5 String Object Example . 98

4.6 Sample code for Dalvik Instruction Tracer . 102

4.7 Benchmark Results . 106

4.8 getPermission Pseudocode . 109

4.9 Annotated adbd trace . 112

4.10 Taint Graph for Droid Kung Fu . 113

xiv

Figure Page

4.11 Taint Graph for DroidDream . 115

4.12 Excerpt of Dalvik Instruction Trace for DroidDream. A Dalvik instruction

entry shows the location of the current instruction in square brackets, the decoded

instruction plus the values of the virtual registers in parenthesis. A taint log entry is

indented and shows tainted memory being read or written to. The memory’s physical

address is shown in parenthesis and the total bytes tainted is represented by “len.” 116

5.1 SMT2 Definition for ror dst, imm8 . 144

5.2 BAP IL for ror %eax, $0x2 . 144

5.3 SMT2 Definition and Test for add dst, src 145

5.4 Information flows of dst in the or instruction 148

5.5 Information flow of bits 7, 20 and 31 of dst in sbb 149

5.6 Comparison between bsf and bsr . 150

5.7 Pseudocode for cmpxchg (flags are omitted) 151

5.8 Comparison between Memcheck logic and SMT2 code for verifying AND . . . 155

5.9 ARM Emulation code for basic mterp operations (binop.S) 160

xv

1

1. INTRODUCTION

It is estimated that malware (malicious software) costs United States consumers $2.3

billion and led to the replacement of 1.3 million personal computers (PCs) in 2010 [1].

Cybercrime, fueled by malware, was also estimated to have had a world-wide financial

impact of $118 billion [2] in the same year. As adoption of mobile platforms increased, so

has the prevalence of mobile malware. According to McAfee, approximately 450 mobile

malware samples, 400 of which target the Android platform, were identified in the 4th

quarter of 2011 [3]. This is a 3.5x increase from the 3rd quarter and is expected to grow in

2012 [4]. The increase in the number of malware samples is also accompanied with new

forms of fraud. lookout, a mobile security firm, has pointed out that “the most prevalent

Toll Fraud malware family [FakeInst] has netted an approximate $10 million for its

makers” from September 2011 to June 2012 [5].

To mitigate the impacts of malware, anti-virus companies and researchers have used

static and dynamic analysis tools to understand malware behavior so that countermeasures

can be developed. In a survey of dynamic malware analysis techniques and tools, Egele et

al. described the differences between static and dynamic analysis tools and outlined five

dynamic analysis techniques (Function Call Monitoring, Function Parameter Analysis,

Information Flow Tracking, Instruction Trace and Autostart Extensibility Points) that

have been implemented using three different strategies (User/Kernel Space, Emulator and

Virtual Machine) [6]. Of the techniques, taint analysis and instruction tracing provide the

2

most detailed information; however, there are limitations. The effectiveness of taint

analysis is limited by the precision of taint propagation rules and while it is trivial to

generate an instruction trace in an emulator, emulators lack transparency (and thus can be

detected and evaded), and introduce semantic gaps.

This dissertation addresses these limitations and shows a fine-grained dynamic malware

analysis platform that is transparent and supports precise taint analysis is feasible. The

thesis is transparent malware analysis platforms with precise taint tracking rules can be

realized using virtualization technologies. Three arguments are used to support this

hypothesis: hardware virtualization can be used to make emulation transparent, semantic

gaps can be bridged and the precision of taint propagation rules can be formally analyzed.

Transparency Emulators are designed to imitate the behavior of another system. For

example, the CPU emulator in QEMU [7,8] is capable of emulating x86, ARM and other

CPU architectures on top of different host architectures (e.g., x86 on x86 and x86 on

ARM). If the CPU emulator is perfect, then the imitated behavior exactly mirrors that of a

real hardware CPU and the emulator is considered transparent. However, transparency is

difficult to achieve in practice due to emulation bugs, different CPU models and

errata [9–12].

This dissertation proposes precise heterogeneous record and replay (PHRR) as a new

technique to make emulation based dynamic analysis more transparent. The key idea is to

separate a malware’s execution from the analysis task. The malware is allowed to execute

in a hardware virtualized environment where the above mentioned transparency issues due

to emulation do not exist since execution takes place on a real CPU. The execution is

3

Guest Operating System
(Linux)

DiskMemory

Process
1

Process
n...

CPU

System Calls

x86 Instructions

QEMU x86 Emulator
(Dynamic Analyzer)

Fig. 1.1.: A high level architectural diagram of an emulation based dynamic malware
analysis platform.

recorded such that all inputs and any potentially deviant behavior between the emulator

and the real CPU are logged. In this manner, the emulator can better imitate the real

CPU during analysis. Precise heterogeneous record and replay is implemented in a tool

called V2E that uses the Kernel Based Virtual Machine (KVM) [13] as the recorder and

TEMU [14–16] as the replayer. The details are presented in Chapter 3.

Semantic Gaps The semantic gap problem arises when analysis takes place at a lower

abstraction layer than the analysis target resulting in a loss of higher level details. Take

the emulation based dynamic analysis platform depicted in Figure 1.1 as an example. The

solid arrows in the figure represent the interfaces between the different abstraction layers.

Processes use system calls to interact with the operating system and the operating system

uses x86 instructions to access hardware resources. These x86 instructions are emulated,

4

meaning the emulator mediates all accesses to hardware resources by the guest operating

system and executes the guest instructions on its behalf. If emulation was not used, then

the operating system will have direct access to the resources (dashed arrows).

It is clear from the figure that system calls are the interfaces between processes and the

operating system, and not between the operating system and the emulator. Hence, an

analyzer situated at the emulator that seeks to log all system calls made by “Process 1”

will have difficulties. Since the emulation layer can only access the raw CPU and memory

states, the concept of a process (an operating system construct) is limited to the value of

the CR3 register, which contains the physical address of the top level page table. Also,the

concept of Linux system calls is limited to the int 0x80 instruction that is used to invoke

system calls. Additionally, while the CR3 values can be used to distinguish between

different processes, specific information such as which CR3 value represents “Process 1” is

not available at the emulation layer. To retrieve this information, and thus bridge the

semantic gap, researchers have proposed Virtual Machine Introspection (VMI) techniques

that can identify and interpret specific data structures from raw memory [17–19]. While

these techniques have proven useful for bridging the semantic gap between the emulator

and the guest operating system, Android, a mobile platform, has multiple gaps that must

be bridged.

Unlike traditional desktop systems where applications run directly on top of the

operating system, Android applications run in a Java Virtual Machine - known as the

Dalvik Virtual Machine - and use JNI (Java Native Interface) to interface with native

libraries. Consequently, Android malware can contain Java and native components that

cooperate to achieve a common goal. Therefore, there are two levels of semantic

5

information that must be reconstructed in order to adequately analyze Android malware.

First is the native level that includes the Linux kernel and second is the Java level that is

interpreted using the DVM.

Bridging these two gaps involves understanding the different kernel data structures used

to store pertinent information (e.g., processes) and the data structures and logic of the

DVM (e.g., Java objects). These details along with the design of a new emulation analysis

platform that seamlessly binds the two views together so that a sample’s Java execution,

native execution and interactions between them can be studied are presented in Chapter 4.

These ideas are implemented in a new analysis tool name DroidScope, which is also

discussed in the same chapter.

Precise Taint Analysis Dynamic taint analysis is designed to track information flows

through data items of interest and is a key binary analysis technique [6]. In taint analysis,

data items are labeled as “tainted” or “untainted” and this taint (label) is propagated from

data item to data item as the program being analyzed is executed. The rules that

determine when and how taint is to propagate are defined in a taint propagation policy.

Taint analysis is supported by both V2E, through TEMU, and DroidScope.

The propagation policies have been widely researched with different design patterns

that vary taint-granularity (e.g., byte versus bit tainting [both TEMU and DroidScope

labels taint per byte of data]), analysis-granularity, (e.g., propagating through ARM

instructions like DroidScope or an Intermediate Representation [IR] like TEMU), and

special case support (e.g., TEMU has a special rule to propagate taint through the bit shift

operations without introducing false-positives while DroidScope does not). The

6

relationships between these design parameters and the accuracy (a measure of

false-negatives) and precision (a measure of false-positives) of taint analysis are analyzed in

Chapter 5 using formal methods.

In particular, a formal model of dynamic taint analysis is defined based on the concept

of information flow or noninterference [20]. The model is then used to prove that

propagating taint at the byte-level can introduce false-positives when compared to

propagating taint at the bit-level and similarly, propagating taint through an IR can

introduce false-positives when compared to propagating taint through the native

instruction the IR is used to emulate. Methods for automatically generating a default

policy without false-negatives and for determining the accuracy and precision of manually

defined taint propagation rule are also presented.

Summary In short, this dissertation presents concepts, techniques, methods and proofs

that can be used to design and build transparent and precise malware analysis platforms.

DroidScope illustrates that emulation based fine-grained binary analysis can be performed

on both mobile and desktop malware by bridging the two semantic gaps in Android, V2E

shows that emulators can be made more transparency using hardware virtualization, and

Chapter 5 provides insights into the fundamental sources of imprecision in dynamic taint

analysis designs and methods for building and verifying precise taint propagation rules and

taint analysis platforms.

The rest of the dissertation is organized as follows. Background information on malware

analysis, virtualization, and taint analysis is presented in Chapter 2. V2E and DroidScope

are presented in Chapters 3 and 4 respectively. The formal model for understanding the

7

relationship between dynamic taint analysis implementations and precision, and its

application towards analyzing the precision of previously published taint analysis

implementations are presented in Chapter 5. Chapter 6 summarizes the results. Future

work is discussed throughout the dissertation.

8

2. BACKGROUND

2.1 Virtualization

Virtualization is a computing concept where a device, component, or system is

simulated for use by another device, component or system. To clarify the concept, Smith

and Nair [21] state that “a discussion of [Virtual Machines] is also a discussion about

computer architecture in the pure sense of the term.” Then “architecture, as applied to

computer systems, refers to a formal specification of an interface in the system” that can

be implemented using multiple abstraction layers, each with its own interface (i.e.,

sub-architecture).

Fig. 2.1.: Computer System Architecture [21]

9

Fig. 2.2.: Process VM [21]

For example, a notional computer system architecture is depicted in Figure 2.1 [21].

While the computer system architecture consists of many different interfaces, four are

notable. The Instruction Set Architecture (ISA) divides the hardware and software layers.

It is further separated into the privileged system ISA (3) and unprivileged user ISA (4).

The Application Binary Interface (ABI) is used by user programs to access system

resources directly using the user ISA and indirectly using the system call interface (2).

Finally, the Application Programming Interface (API) (1) abstracts away some details of

the ABI through the use of libraries.

Given the multiple abstraction layers, a virtual machine for a particular abstraction

layer is defined as the simulation of the interface beneath it. This definition is shown in

Figure 2.2 [21] where a process virtual machine uses the “virtualization software” to

simulate the ABI or API layers that the process uses. The figure also shows the

virtualization software separating the host from the guest. More specifically, the

virtualization software runs on top of the host and the guest runs on top of the

virtualization software.

Special consideration is given to system virtual machines (Figure 2.3) that virtualize

the ISA because they have been heavily researched since the 1960’s and are used in this

10

Fig. 2.3.: System VM [21]

dissertation. In this case, the virtualization software is known as a the Virtual Machine

Monitor or VMM; it is also known as a hypervisor. There are two research directions,

emulators and virtual machines. Goldberg [22] defined emulators as efficient “simulators

for dissimilar machines” and virtual machines as “efficient simulators for multiple copies of

a machine on itself”. Therefore, what distinguishes an emulator from a virtual machine is

the fact that virtual machines simulate themselves, while emulators simulate other

machines.

This distinction between emulators and virtual machines is important; however, the

definitions have not been universally applied. For example, the Java Virtual Machine [23]

and Dalvik Virtual Machine [24] are emulators according to the definitions, but are known

as virtual machines. Since emulators can be considered as a special type of virtual

machine [25], virtual machine will henceforth be used to describe the generic concept.

Hardware virtualization and hardware virtual machines will be used to describe virtual

machines that simulate themselves. In short, emulators and hardware virtual machines are

two different types of virtual machines.

11

2.1.1 Hardware Virtualization

There are three properties of hardware virtualization: efficiency, resource control and

equivalence [26]. Efficiency requires the guest-issued instructions in the user ISA (interface

(4) in Figure 2.1) to be executed directly on hardware and resource control dictates that

the guest-issued instructions in the system ISA (3) must be mediated by the VMM.

Equivalence requires that any program should have the same execution behavior in the

virtual machine as it would on real hardware1; this is also known as transparency.

Machines with these properties have been developed in the past [22], but it was only until

recently that hardware virtualization for the x86 and ARM architectures became available.

The x86 architecture uses a ring-based access control model to separate the user ISA

from the system ISA. Since the system ISA is associated with the most privileged ring

(Ring 0), the resource control property requires the VMM to either run at Ring 0 while the

guest executes at a lower protection level or the VMM to reside in a more privileged

ring [27]. The first solution is not ideal since privileged guest instructions must be trapped

and emulated [28], which reduces performance. The second solution is realized by

introducing a new guest execution mode (non-root mode in Intel platforms [29] and guest

mode in AMD platforms [30]) with its own distinct set of protection rings and CPU

states [27]. A similar technology has been introduced for the ARM architecture [31]. Intel

nomenclature will be used in the rest of this dissertation for consistency; however, the

concepts apply to AMD and ARM as well.

1Timing and resource availability problems are assumed not to exist

12

The relationship between root mdoe and non-root mode is similar to the one between

the Operating System (OS) and a process. In order to execute a guest, the VMM

(executing in root mode) first instantiates a Virtual Machine Control Structure (VMCS)

(one per guest) that is used to maintain the state of the guest CPU (i.e., the non-root

mode state) as well as control guest access to resources. Once instantiated and loaded, the

VMM can use the vmlaunch instruction to enter non-root mode for the first time.

The guest continues to execute in non-root mode until an access violation (as

configured in the VMCS) occurs which leads to a VMExit. As part of the VMExit event,

the non-root mode CPU state and exit reason(s) are saved into the VMCS and the CPU is

transitioned back into root mode. The VMM can then read the exit reason using the new

vmread instruction, address the violation, update the guest CPU state (in the VMCS)

using the new vmwrite instruction as necessary and continue executing the guest using the

vmresume instruction. vmresume will load the guest CPU state from the VMCS and

transition back into non-root mode. More detailed information can be found in Intel’s

Software Developer’s Manual, Volume 3C [32].

Two-Dimensional Paging Virtual memory is a virtualization technique that exposes a

consistent representation of memory to processes [21] and even to guests in virtual

machines [25]. Paging and segmentation are two virtual memory implementations that are

supported by the x86 architecture in a hardware Memory Management Unit (MMU).

Segmentation is controlled through special registers, which have been virtualized as part of

the Intel VT [27,29] and AMDV [30] hardware virtualization extensions.

13

Paging is implemented using memory-resident page tables that map virtual addresses to

physical addresses. Since physical memory is shared between the guest and the host, access

to the page tables by the guest must be mediated by the VMM (the resource control

property), which can degrade performance. The concept of Two-Dimensional Paging

(TDP) was introduced to reduce the number of transitions from non-root mode to root

mode due to guest page faults [33].

Two page tables are used in TDP, one for the host and one for the guest. A first level

page table is used by the guest to maintain mappings between its virtual addresses (guest

virtual addresses or GVA) to its physical addresses (guest physical addresses or GPA). The

guest has full control over this page table and handles the corresponding page faults. A

second level page table is used to translate the guest physical addresses to host physical

addresses (HPA). Page faults at this level (TDP faults) are handled by the VMM in root

mode. In a way, the guest physical addresses are host virtual addresses (HVA).

During execution in non-root mode, a GVA will first be translated into a GPA using

the first level page table. If a page fault occurs, then the guest OS’s page fault handler will

be invoked to handle the fault. If the translation is successful, then the GPA will be

translated into a HPA using the second level page table. If a TDP fault occurs, then the

CPU will automatically transition from non-root mode into root mode where the VMM

can handle the fault. Once handled, the VMM will transition the CPU back into non-root

mode to continue executing the guest.

TDP has been implemented as Extended Page Tables in Intel [29], Nested Page Tables

in AMD [34] and System MMU in ARM v7-A architectures [31].

14

2.1.2 The QEMU Emulator

QEMU [7,8] is a whole-system emulator that includes a number of subsystems: CPU

emulator, emulated devices, generic devices, machine descriptions, debugger and user

interface. Its many subsystems have been used as the basis for a number of commercial

virtualization software products including KVM, Xen [35,36], VirtualBox [37], and the

Android emulator [38]. Hence, QEMU is considered to be mature; emulation bugs are rare.

The full documentation can be found on the project’s webpage at http://www.qemu.org.

Further discussions on QEMU will be focused on the CPU emulator subsystem. For

brevity, QEMU will refer to the CPU emulator unless otherwise noted.

QEMU uses Dynamic Binary Translation (DBT) to emulate different instruction set

architectures (e.g., x86, ARM and PowerPC). In brief, software emulation based on DBT

works as follows. When the emulator is about to execute a block of guest code for the first

time, it translates that code block into a piece of translated code in the host’s ISA. The

translated block is also stored into a code cache to improve performance. When the same

code block needs to be emulated in the future, the emulator skips the translation

procedure, directly fetches the translated code from the code cache and executes it. Older

versions of QEMU (version 0.9.1 and older) used a target-specific translator called

DynGen [7] that directly translates guest instructions into host instructions. Newer

versions use TCG (Tiny Code Generator), which first translates guest instructions into an

intermediate representation (TCG-IR), then compiles the TCG-IR blocks into host

instructions for execution.

http://www.qemu.org

15

In either case, special care is needed to emulate memory accesses. The softmmu is a

software implementation of the Memory Management Unit, which uses the guest’s page

tables to translate guest virtual addresses to guest physical addresses. To speed up the

address translation, the software Translation Look-aside Buffer (TLB) is implemented as a

cache for the address translation results. Since QEMU is a user-space program, the guest’s

physical memory is mapped into the QEMU process’ virtual memory space. Thus, as an

optimization, QEMU’s software TLB caches GVA to HVA (in the QEMU process’ context)

translations instead of GVA to GPA translations.

QEMU is designed to be fast. Consequently it deviates from a real CPU in at least the

following ways. First, a block-by-block translation procedure is introduced; this is in

contrast to the instruction-by-instruction procedure used in real hardware. This translation

procedure is normally invisible to the emulated execution, except when the block being

translated crosses the page boundary and the following page is not present in the page

table. This naturally leads to a page fault; however, there is a timing difference. The page

fault occurs at the first instruction of the block in QEMU instead of at the instruction that

crosses the page boundary - the expected behavior - in real hardware.

Second, for efficiency, QEMU performs a lazy calculation of flags: a flag is calculated

only when it is needed. Take the following x86 instructions for example: “cmpl $1, %eax;

jz 0x401020;”. On real hardware, the zero flag will be set or cleared after the cmpl

instruction is executed. That is, if the eax register is 1 then the ZF bit in the EFLAGS

register will be set. If eax is not 1 then ZF will be cleared. In QEMU, EFLAGS is not

calculated when the first instruction executes. Additionally, on the second instruction, only

ZF is calculated to determine which branch to take, the other flags are not calculated until

16

they are needed or at the end of a block. This lazy approach is good for efficiency but can

be exploited to detect emulation.

Third, again for efficiency, interrupts are checked and served only at the block boundary.

In contrast, on real hardware, interrupts may happen at any time. As a result, timing

differences due to interrupt handling can be observed using a sequence like “rdtsc; mov

%eax, %ebx; rdtsc;.” Since the rdtsc instruction stores the current time stamp counter

(a count of the number of clock cycles since the CPU has been reset) into the eax register,

the sequence effectively stores the before and after counts into the ebx and eax registers

respectively. By looping the sequence until the number of CPU cycles is greater than a

relatively large threshold (e.g., the number of cycles to execute an interrupt handler), the

presence of an interrupt in between the instructions can be detected. An emulator that

only issues interrupts at the block boundary will remain in the loop endlessly, whereas a

real CPU will eventually exit when an interrupt occurs within the sequence.

In addition to the above discrepancies that are unique to dynamic binary translation,

several more are common due to emulation difficulties. First of all, some special-purpose

instructions (e.g., System Management Mode and Trusted Execution Technology

instructions) are hard to emulate and thus have not been implemented in software. As an

example, QEMU 0.9.1 did not simulate the privileged “Resume from System Management

Mode” instruction rsm. As a result, a malware sample that execute an rsm instruction will

receive an illegal instruction exception, which is incorrect.

Accurate CPU timestamp emulation is difficult as well. For simplicity, QEMU fetches

the timestamps from the host. On the one hand it will address the interrupt detection

example discussed above, but on the other hand it introduces a different detection

17

technique. Since guest instructions are translated into one or more host instructions,

emulation consumes more CPU cycles than real hardware. The slowdown can also be used

for emulation detection.

Finally, the logic of checking for and raising exceptions in the hardware is fairly

complex and thus the software emulation of this logic is often error-prone [9].

2.1.3 The Kernel Based Virtual Machine (KVM)

KVM is a virtual machine monitor that has been integrated into the Linux Kernel since

version 2.6.20 and supports a number of hardware virtualized architectures including Intel

VT, AMDV and ARM virtualization. Unlike other VMMs (such as VirtualBox and Xen),

KVM is more of an accelerator than a full fledge virtualization solution. It abstracts away

the details of the different virtualization extensions and exports a uniform interface

through the “/dev/kvm” device. It is up to a user-space application to manage the guest

resources. In this way, user-space virtualization solutions such as QEMU can use KVM to

attain efficiency, resource control and equivalence. The notional architecture is depicted in

Figure 2.4.

Fig. 2.4.: System Virtual Machine using KVM and QEMU

18

Fig. 2.5.: Memory translation in QEMU without KVM (a) and with KVM and TDP (b)

When KVM is paired with QEMU (the system emulator), the CPU emulator, software

MMU and soft TLB are effectively disabled. The CPU emulator is no longer needed

because guest instructions execute natively on real hardware in non-root mode and the

software MMU and TLB are replaced with TDP. Using TDP with QEMU introduces a

complication though.

Since the guest’s physical memory space is mapped into the QEMU process’ virtual

memory space (i.e., GPA to HVA), it is incompatible with the EPT tables that translates

GPA to HPA. The multi-stage process depicted in Figure 2.5 is used to address this issue.

First, the QEMU process reports the mappings (the table with solid lines) between GPAs

and HVAs to KVM (the table with dotted lines). Then, when a TDP fault occurs, KVM

takes the TDP faulting address (a GPA) and translates it into the corresponding HVA (2).

The HVA is subsequently translated into a HPA using the QEMU process’ page table and

the new GPA to HPA entry is added to the EPT table (3).

19

MMU-Notifiers Since QEMU runs as a user level process, its memory can be remapped

and swapped to disk by the kernel. Consequently, this leads to inconsistencies in the EPT

tables since they continue to the old physical page frame until updated. KVM uses

MMU-Notifiers to prevent these kinds of problems. MMU-notifiers are callback functions

that kernel modules (such as KVM) can register with the Linux MMU subsystem. In this

way, the registered modules are notified of any changes to the page tables before the

changes are committed. In the case of KVM, the MMU-notifier callback functions ensure

that the EPT tables are consistent with QEMU’s page tables.

2.2 Dynamic Malware Analysis

Malware analysis is an important step towards defending against malware. Given a

piece of unknown malware, the objective of malware analysis is to reverse engineer it and

quickly reveal its inner workings so that countermeasures can be implemented. Malware

analysis techniques can be separated into two categories depending on whether the sample

is executed during analysis. It is not executed in static analysis and is executed in dynamic

analysis. Egele et al. [6] outlined the differences between static and dynamic analysis and

provided motivations for the latter.

In general, static analysis has the advantage of code coverage, but obfuscation

techniques can be used to hide the code and thus make static analysis less productive. On

the other hand, dynamic analysis has the advantage of being unaffected by obfuscation

since the code must be de-obfuscated during execution. However, it has the disadvantage

of only being able to analyze the execution path taken - that is, it lacks code coverage.

20

Researchers have presented techniques for exploring multiple execution paths at runtime,

but they are not perfect solutions [39–41]. In the end, static and dynamic analysis are

complementary techniques that are used together. This dissertation focuses on dynamic

analysis.

There are three different implementation strategies, User/Kernel Space, Emulator and

Hardware Virtualization2, each with their advantages and disadvantages [6].

DynamoRIO [42], Pin [43,44], Valgrind [45] and SR-Dyninst [46] are powerful dynamic

instrumentation tools for analyzing user-level programs. They cannot be used to analyze

kernel malware. Cobra [47] is a malware analysis platform implemented in a Windows

kernel module. It uses a technique called localized execution to instrument and inspect

malware behavior. The localized execution technique is, in spirit, similar to dynamic

binary translation.

The advantage of virtualization based analysis over User/Kernel Space implementations

is isolation. Since the analysis tools are implemented at the VMM and the samples execute

in the less privileged guest, virtualization isolates the tools from the samples. This allows

the tools to analyze privileged malware (ones that execute in the guest kernel) while at the

same time making it difficult for the malware to disrupt analysis [6].

The main disadvantage is the loss of semantic contextual information since the analysis

component is moved out of the box. Virtual Machine Introspection [17–19] has been used

to bridge the semantic gap. Many virtualization based analysis platforms have been

implemented using emulation [41,48–59] and hardware virtualization [60,61]. These

platforms provide the basic functionality to introspect (i.e., read and interpret the guest

2“Virtual Machine” is replaced with “Hardware Virtualization” as discussed in Section 2.1

21

state) and instrument (i.e., intercept and write the guest state) the malware samples

executing within the virtual machine. Analysis plugins that implement different dynamic

analysis techniques (e.g., Function Call Monitoring, Function Parameter Analysis,

Information Flow Tracking, Instruction Trace and Autostart Extensibility Points) are

loaded onto the platforms to perform the desired analysis function.

Between the two virtualization based implementation strategies, emulation has the

additional benefits of flexibility for analysis plugin development and efficiency for

fine-grained analysis. In hardware virtualization, the VMM is required to be a privileged

program so it can manage privileged system resources such as the TDP page table.

Emulators such as QEMU can be implemented in user-space. Thus, the analysis plugins

built on top of emulators can benefit from user-space libraries making them more flexible.

As an example, the Linux kernel does not have an interface to read and write files from

kernel [62,63]. In V2E, the log is written to disk by a user-space program through the use

of a shared memory buffer between the VMM’s (kernel’s) memory space and the program’s

memory space.

Emulators are also more efficient for fine-grained analysis such as instruction tracing [6].

Tracing an instruction using hardware virtualization requires a transition from non-root

mode to root mode and then back for every single instruction - a technique known as single

stepping - which can degrade performance. A test of single stepping in KVM showed an

approximately 3000 times slowdown in performance.

There is a major disadvantage of emulation though. Emulators lack transparency.

22

2.2.1 Transparency

Since it is extremely difficult (if not completely infeasible) to emulate every aspect of

real hardware, malware can take advantage of these discrepancies to detect the emulated

environment and stay dormant to avoid analysis. Some of the problems were raised in the

QEMU section, but the general problem of emulation detection and mitigation techniques

has been investigated extensively [9–12].

EmuFuzzer [10] and PokeEmu [9] are two noteworthy projects that sought to discover

emulation bugs. EmuFuzzer discovered bugs in a randomized fashion using fuzz testing and

PokeEmu is a follow-on work that discovers them systematically. PokeEmu uses symbolic

execution [64] to explore all instruction emulation paths in two different emulators and

generate a set of input-output behaviors that covers 95% of x86 instructions emulated. The

set was then used to automatically generate a collection of programs that, given the same

input, produces different output when executed on different emulators and real hardware.

Over sixty thousand such programs were generated to identify differences between QEMU

and real hardware. The differences were found in registers, memory, floating point registers

and exception behavior; however, it is unknown whether all of the differences can be

corrected in QEMU. It follows that the transparency problem remains unless all of these

differences can be patched.

To tackle the problem of transparency from a different perspective, Dinaburg et al. [60]

formally defined transparency/equivalence, proved that, except for timing differences,

hardware virtualization achieves perfect transparency and implemented a new analysis

23

platform called Ether. However, Ether, being a hardware virtualization based

implementation, is not as flexible or efficient as emulation based implementations.

In order to successfully emulate anti-emulation malware, Balzarotti et al. [65] used an

automatic method to detect the anti-emulation behavior by comparing how a piece of

malware behaves on real hardware and how it behaves in an emulated environment.

Similarly, Kang et al. [66] used a differential analysis method that compares two execution

traces, one from Ether and the other one from QEMU. By performing trace alignment, this

technique is able to automatically detect the root cause for the divergence and generate a

patch (e.g., disable the emulation-detection code) for the malware. The iterative nature of

this approach limits its scalability though. New traces and patches must be generated for

each and every anti-emulation check.

2.3 Android

Android is a popular mobile system that is installed in millions of devices and

accounted for more than 50% of all smart phone sales in the third quarter of 2011 [67]. It

has been the target of most mobile malware [3] and recent research has shown that

malicious applications exist in both the official and unofficial marketplaces with a rate of

0.02% and 0.2% respectively [68].

Figure 2.6 illustrates the architecture of the Android system from the perspective of a

system programmer. At the lowest level, the Android system uses a customized Linux

kernel to manage various system resources and hardware devices. System services, native

applications and Apps (short for applications) run as Linux processes. In particular,

24

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

Fig. 2.6.: Overview of Android System

“Zygote” is the parent process for all Android Apps. Each App is assigned its own unique

user ID (uid) at installation time and group IDs (gids) corresponding to requested

permissions. These uids and gids are used to control access to system resources (e.g.,

network and file system) like on a normal Linux system.

All Apps can contain both Java and native components. Native components are simply

shared libraries that are dynamically loaded at runtime. The Dalvik virtual machine

(DVM), part of a shared library named libdvm.so, is then used to provide a Java-level

abstraction for the App’s Java components. At the same time, the Java Native Interface

(JNI) is used to facilitate communications between the native and Java sides. As an aside,

multiple layers of abstraction for Apps is not limited to Android. Windows Store

applications have a similar structure. Those applications can be implemented in C++, C#

or other languages in the .NET Framework [69]. C++ programs are compiled into native

code while C# programs are interpretted using the Common Language Runtime (a virtual

machine similar to JVM [70,71]).

25

To create a Java component, an App developer first implements it in Java, compiles it

into Java bytecode, and then converts it into Dalvik bytecode. The result is a Dalvik

executable called a dex file. The developer can also compile native code into shared

libraries (.so files) with JNI support. The dex file, the shared libraries and any other

resources, including the AndroidManifest.xml file that describes the App and its requested

permissions, are packaged together into an apk file for distribution.

For instance, DroidKungFu is a malicious puzzle game found in alternative

marketplaces that has both native and Java components [72]. Its Java component

exfiltrates sensitive information and awaits commands from the bot master. Its native

component is used as a shell to execute those commands and it also includes three resource

files that are encrypted exploits targeting known vulnerabilities - adb setuid exhaustion and

udev [73] - in certain versions of Android.

Android Software Development Kit (SDK) Like Linux, there are Android ports for

both the ARM and x86 ISAs. Android Apps that only have Java components do not have

to worry about the underlying architecture since all Java code is interpreted using the

Dalvik Virtual Machine. Native components must be compiled for use on the target ISA

though.

The entire process of developing, targeting and testing Android applications is

supported by the Android Software Development Kit or SDK [74]. Noteworthy components

of the SDK are the Android emulator and prebuilt virtual Android devices. Cross compilers

for compiling the native components into their respective target ISAs are included as well.

The Android emulator is based on newer versions of QEMU that use the TCG. A virtual

26

Android device is a virtual machine configured with virtual sensor devices (e.g., GPS) and

a build of the Android software platform. The prebuilt virtual devices represent generic

phone configurations based on the ARM and x86 ISAs. A software developer can always

create virtual Android devices with different profiles such as one for an ARM based tablet.

Nonetheless, the Android emulator is used to emulate different virtual Android devices to

facilitate application testing and debugging. In short, emulation based Android analysis is

already provided as part of the SDK. What is missing is the ability to analyze malware.

2.3.1 Android Malware Analysis

Like malware analysis on the desktop environment, Android malware analysis

techniques can fall into two categories: static and dynamic. For static analysis, the

sample’s dex file can be analyzed by itself or it can be disassembled and further decompiled

into Java using tools like dex2jar and ded [75]. Standard static program analysis techniques

(such as control and data flow analysis) can then be performed. As static analysis can give

a complete picture, researchers have demonstrated this approach to be effective for many

malware samples [68,76].

However, static analysis is known to be vulnerable to code obfuscation techniques. In

fact, the Android SDK includes a tool named Proguard [77] for obfuscating Apps and so

obfuscated Apps should be common. Android malware may also generate or decrypt native

components or Dalvik bytecode at runtime making static analysis of these dynamic

components difficult. Indeed, DroidKungFu dynamically decrypts the exploit payloads and

executes them to root the device. Moreover, researchers have demonstrated that bytecode

27

randomization techniques can be used to completely hide the internal logic of a Dalvik

bytecode program [78]. Static analysis also falls short for exploit diagnosis, because a

vulnerable runtime execution environment is needed to observe and analyze an exploit

attack, and pinpoint the vulnerability. All in all, like for analyzing desktop malware, static

analysis is insufficient by itself.

The Android SDK includes a set of tools, such as adb and logcat, to help developers

debug their Apps. With JDWP (Java Debug Wire Protocol) support, the debugger can

even exist outside of the device. However, just like how desktop malware detects and

disables debuggers, malicious Android Apps can also detect the presence of these tools, and

then either evade or disable the analysis. The fundamental reason is that the debugging

components and malware reside in the same execution environment with the same

privileges. Once again, virtualization based malware analysis has the advantage of isolation.

Despite the fact that Android is based on Linux, it is not straightforward to take the

same desktop analysis approach used for Linux and apply it to Android malware due to the

semantic gap problem. In Android, there are two levels of semantic information that must

be rebuilt. In the lower level, Android is a Linux operating system where each App is

encapsulated into a process. These processes can execute native code and this level is

called the native level. Within each App process, a virtual machine (known as the Dalvik

Virtual Machine) provides a runtime environment for the App’s Java components. This

second level is called the Java level.

Previous Virtual Machine Introspection research [17–19] only supports introspecting the

native level but not the Java level components. Therefore, an emulation based dynamic

analysis platform for Android malware must reconstruct semantic knowledge at two levels:

28

1) native level semantics that understand the activities of the malware process and its

native components; and 2) Java level semantics that comprehend the behaviors in the Java

components.

TaintDroid [79] and DroidBox [80] (based on TaintDroid) are examples of dynamic

analysis tools for analyzing the Java components of Android Apps. TaintDroid is

implemented as a modified Dalvik Virtual Machine. When installed onto a virtual Android

device, it can be used to complement currently available emulation based analysis

platforms for desktop malware. In this way, both the Java and native executions can be

analyzed. The limitation is that they must be analyzed separately. Neither tool has

information about the other and thus cannot collaborate. There are two approaches to

surmount this limitation. Either a new messaging infrastructure is created between

TaintDroid and the emulator or a single platform is introduced to not only bridge the two

semantic gaps but also seamlessly bind the two views with the execution context so that

malware with cooperating native and Java components can be analyzed at once.

Bouncer [81] is a recently announced dynamic analysis tool used by Google to test

Android Apps prior to accepting them into the official Android Market. Oberheide et

al. [82] determined that Bouncer is based on the Android emulator, but the details on what

it is capable of (e.g., whether it seamlessly binds the Java and native contexts together for

analysis) remains unknown. Bouncer is proprietary.

29

2.4 Taint Analysis

Taint analysis is one of the fundamental dynamic analysis techniques [6] and has been

demonstrated to be crucial in many malware analysis projects [49,51,66,83]. It is also

known as dynamic information flow tracking, taint tracking, definedness tracking, and data

flow and control flow tracking. The technique is based on noninterference [20] and has been

used in many different research areas such as policy enforcement, exploit diagnosis,

malware analysis, vulnerability analysis, test case generation [64], memory analysis [84,85]

and information flow quantification [86].

In taint analysis, data is labeled as either tainted or untainted and taint propagates

from one data item to the next if information flows from a tainted source to the destination

data item. Taint analysis has been implemented as a source translator [87–90] (e.g.,

compiler), a library [91–93] (e.g., Java String), in an instrumentation library [84,94–97]

(e.g., PIN), in a virtual machine or interpreter [79,98–101] (e.g., Dalvik VM), in processor

emulators [16,56,59,102–104] (e.g., QEMU), and even in hardware [105–111]. Common to

all of these taint propagation tools is the use of a taint propagation policy that governs

what data is tainted, how the labels are represented and when data should be tainted. In

other words, a taint propagation policy is a set of rules that define when and how taint

should be propagated.

Taint propagation policies have been heavily researched. There are three common

design considerations: analysis-granularity, taint-granularity and special case support.

Analysis-granularity determines which type of operations propagates taint. One taint

analysis implementation might propagate taint at the C statement level while another

30

propagates taint at the x86 instruction level. The advantage of the x86 instruction level

implementation is it can track taint through all x86 programs (including those compiled

from C programs); however, the disadvantage is the loss of high level semantic information

(i.e., the semantic gap problem).

The range of analysis-granularity designs in the literature matches well with the

different levels of programming languages. Researchers have defined propagation policies

for high-level languages such as C [87] and Java [91–93,99], scripting languages such as

PHP [89], PERL [101] and JavaScript [90,100], low level languages such as x86

assembly [56,84,94,103,104] and even at the gate level [108].

It is also common practice to implement taint propagation through an intermediate

language [56,59,84,94,104] with simpler semantics and a reduced instruction set than

through the language or instruction set (e.g., x86 and ARM) the IR emulates. The

emulation code can range from a single instruction, to a basic block of instructions, to

functions and beyond.

Taint-granularity determines the kind of data that is labeled. For example, in x86

tainting, data can be labeled at the 32-bit word-level, the byte-level or bit-level among

others. While labeling taint at the 32-bit word-level will decrease label storage

requirements, it is insufficient for distinguishing taints between the 32-bit eax register and

the two 16-bit sub-registers ah and al that compose eax. In the literature, policies have

been defined at the operand level [87,105], 32-bit word-level [59, 111],

byte-level [56,59,88,95–97,106,107,109,110], and bit-level [84,108].

Other taint analysis applications, such as the ones on Java String objects, apply

different taint-granularities as well. Like how the eax register consists of the ah and al

31

sub-registers, Java Strings consist of UTF-16 characters. Consequently, Java String

propagation policies have been defined at the character level [91,92] and at the object

level [93,99], similar to the 16-bit versus 32-bit levels mentioned above.

Not all implemenations are equal. Some implemenations might have support for

floating point operations while others do not or some might have special rules for

propagating taint through the bit shift operations while otheres do not. These special

considerations are instances of the special case support design parameter. Of particular

interest is whether the taint propagation rules are state aware. State awareness is a

measure of how much state information is used to determine the taint propagation rules.

For example, the rules in a state agnostic taint tracker are functions of the operations - as

defined by the analysis-granularity - only and not the operand values. The benefit of state

agnostic policies is the rules can be defined off-line which in turn reduces the need to

calculate taint at runtime, improving performance. However, the drawback is it can lead to

false-positives. While dynamic taint analysis implementations are rarely state aware, many

previously published trackers do implement special rules for handling special cases to

reduce false-positives (see Section 5.5.2).

False-positives, false-negatives, over-tainting, under-tainting, accuracy and precision are

different metrics that have been used to analyze and compare the effectiveness of different

taint analysis platforms. These terms are informally defined below. It should be clear from

the definitions that controlling false-positives and false-negatives is a goal of taint analysis.

In this regard, previous research have only focused on reducing these metrics on a

case-by-case basis using empirical studies. Therefore, a challenge of taint analysis is how to

systematically control false-positives and false-negatives.

32

Over-tainting Given two taint propagation policies TA and TB, TA over-taints TB if there

is a rule that propagates taint in TA but not in TB.

Under-tainting Given two taint propagation policies TA and TB, TA under-taints TB if

there is a rule that propagates taint in TB but not in TA.

False-positive A rule is a false-positive if it propagates taint when taint should not be

propagated.

False-negative A rule is a false-negative if it does not propagate taint when taint should

be propagated.

Accurate A taint propagation policy is accurate if it does not contain any false-negatives.

Precise A taint propagation policy is precise if it is accurate and does not contain any

false-positives (i.e., it does not contain false-positives or false-negatives).

2.4.1 Challenges

In addition to false-positives and false-negatives, two other major challenges of taint

analysis are sanitization and control-flow tainting [64]. Sanitization uses specially defined

rules to remove taint labels (i.e., label them as untainted) in certain special cases and is

necessary to reduce over-tainting due to false-positives. These rules are either introduced

for practicality (i.e., the analyst decides to ignore certain tainted data) or as means to

reduce false-positives due to imprecise policies. Schwartz et al. [64] used the b = a⊕ a

statement that exclusive-ors a with itself and stores the result into b as a common example

of sanitization for reducing false-positives. In the example, b should be sanitized even if a

33

1. if (x == 0) // 1a. if (x == 0)

2. y = 0; // 2a. y = 0;

3. else // 3a. else

4. y = 1; // 4a. y = 0;

Fig. 2.7.: Control-flow tainting example.

was labeled as tainted, because no matter what the value of a is, b will always be 0. Thus a

policy that propagated taint from a to b will require an additional sanitization step to

handle this special case. A state agnostic policy with a simple propagation rule that states

“the output operand of ⊕ is tainted if either of the input operands are tainted” is an

example of such a policy.

Control-flow tainting Information flows can be separated into explicit flows that result

from data dependencies and implicit flows that result from control dependencies. Take the

C source code in Figure 2.7 as an example. It is clear that the final value of y depends on

the value of x, meaning there is information flow from x to y. Furthermore, the flow is

implicit since there are no direct data dependencies between x and y. It is also clear that

there is no information flow from x to y (not even implicit flow) in the commented source

code since y always equals to 0, irrespective of the value of x. While the difference in

information flow behavior between the un-commented and commented code are clear using

static analysis, it is not clear during dynamic analysis.

Dynamic analysis is limited to the single path that is executed; there is incomplete

information about the program. Hence, either statements 1 and 2 are executed or

statements 1 and 4 are executed. If the “if” path (statements 1 and 2) was taken, then it

remains unknown whether the “else” path contains statement 4 or 4a. Similarly, if the

34

“else” path was taken, then it remains unknown whether the “if” path contains statement

2, 2a or even 2b: y = 1;. All in all, control flow tainting is a fundamental limitation of

dynamic taint analysis and has been proven. Volpano [112] proved that “there is no

monitor-enforced policy that is sound and complete for secrecy.” Soundness and

completeness are measures of false-negatives and false-positives respectively, and dynamic

taint analysis platforms are monitors that enforce the noninterference policy. Therefore,

dynamic taint analysis will either have false-positives or have false-negatives.

Given this result, a number of taint analysis platforms that support control flow

tainting relies on static analysis to reduce false-positives. Bao et al. [113] used static

analysis to first identify “strict control dependence” relationships , and then used them to

reduce false-positives due to control flow tainting. A method to approximate strict control

dependence using dynamic instrumentation was also presented. Chang et al. [88] first

conducted general data flow analysis on a program statically and used the results to direct

information flow tracking at runtime. In DTA++, Kang et al. [104] used off-line analysis to

identify “culprit” branches and limit control flow propagation to those branches. This

increased the precision of implicit flow tracking as compared to Dytan [94] which used a

purely dynamic approach.

This dissertation studies purely dynamic taint analysis, but it does not imply that

control flow tainting is no longer a challenge. Control flow issues can still arise depending

on the analysis-granularity. Take x86 level taint analysis for example. The bsf

(Bit-Scan-Forward) x86 instruction is a simple ALU (Arithmetic Logic Unit) instruction

that uses a while loop to iterate through the bit positions (0 to 31) of a 32-bit register to

35

find the position of the first ‘1’ bit. This results in potential implicit flows that must be

identified when defining the propagation rule for bsf.

Tainting and Noninterference While this dissertation focuses on monitors that

enforce the noninterference policy (i.e., information flow), not all taint analysis platforms

strictly adhere to this policy. Of the taint trackers surveyed in Chapter 5, nineteen enforce

noninterference and only a handful use specially designed policies that do not. In

Leakpoint, Clause et al. [85] defined a taint propagation policy for pointer arithmetic that

is only loosely based on information flow. In empirical testing, Leakpoint was shown to be

just as effective in identifying memory errors as Memcheck [84] which is based on

information flow. Furthermore, researchers have used mixed taint- and

analysis-granularities in a single implementation in an attempt to address over-tainting as

a result of imprecise taint propagation rules. For example, Zhu et al. used a byte-level

taint granularity for data in user-space and an object-level granularity for the same data in

the kernel [96]. Chin and Wagner defined special propagation rules when dealing with Java

String specific issues such as encoding and locales [92] and function summaries are widely

used to summarize the taint propagation behavior within commonly used functions (e.g.

libraries [56,96]) and effectively sanitize taints. Slowinska and Bos discussed the sources of

false-positives and false-negatives in pointer tainting [114].

2.4.2 Noninterference

The noninterference property was first described by Goguen and Meseguer [20] to

analyze the information flows between users in a multi-user system. In the simple form of

36

noninterference used in this dissertation, there are two users in a shared system, sender and

receiver that can issue commands. Since the system is shared, both the sender’s commands

and the receiver’s commands can alter the system state. Thus, there is an opportunity for

the sender to send information to the receiver through the shared system state. The

noninterference property states that given an initial state and a sequence of commands

that is an interleaving of the sender’s and receiver’s commands, sender is noninterfering

with receiver if and only if the output seen by the receiver at the end of executing the

sequence is the same if an alternate sequence that only contains the receivers commands

was executed instead. In other words, the commands issued by the sender do not affect the

output seen by the receiver. There is information flow from the sender to the receiver if

and only if the sender interferes with the receiver.

Since taint tracking is designed to analyze the information flow between two data items

and not users in a multi-user system, the noninterfering data problem can be mapped into

a noninterfering users problem by coupling data-items to users. Analogously, given an

initial state and a sequence of commands, there is information flow from the sending data

item in the system state to the receiving data item in the system state if and only if

changing the value of the sending data item results in a change in the value of the receiving

data item after the sequence of commands are executed. It is the value of the data item

that changed, not teh commands.

Design Considerations and Information Flow Analysis-granularity, taint-granularity

and state awareness are the three common design considerations discussed in the previous

section. The same parameters can be linked to the noninterference model above. A taint

37

propagation policy consists of a set of rules that enforce the noninterference property.

Then, given a chosen analysis-granularity, the rules correspond to the different operations.

Using the x86 instruction granularity as an example, each x86 instruction will have a

corresponding rule in the policy. Then, since the instructions are independent from each

other, each rule will enforce the noninterference property. In other words the rules are in

the form of “the output operand(s) is tainted if and only if there is information flow from a

tainted input to the output operand(s).” This in turn means that sequence of commands

consists of only the instruction itself. In the case of the b = a⊕ a example above, the

corresponding 32-bit x86 instruction is xor dst,src. There will be a rule that states “dst

is tainted if and only if there is information flow from src to dst and src is tainted or

from dst to dst and dst was tainted.”

This rule assumes that the taint-granularity has been set at the 32-bit word-level which

is not necessarily the case. If taint was labeled per byte, then there might be four rules of

the form “the lowest byte of dst is tainted if an only if there is information flow from any

tainted bytes of src to the lowest byte of dst or from any tainted bytes of dst to the

lowest byte of dst.” Similarly, none of these rules were functions of the initial state and are

thus state agnostic rules. A state aware rule might state “if src and dst refer to the same

data item then dst should be untainted, else follow the normal rules.”

2.5 Summary

In summary, virtualization can be separated into emulation and hardware

virtualization, where the latter has three distinct properties, efficiency, resource control and

38

equivalence. Implementing a dynamic malware analysis platform using virtualization

benefits from the isolation property where it is difficult for the malware sample to disrupt

analysis, even privileged kernel malware. The main disadvantage is the semantic gap

problem where higher level abstractions, such as processes and threads, are lost. The

semantic gaps can be bridged using virtual machine introspection techniques; however, the

Android platform contains two levels of semantic information, native and Java, that must

be rebuilt prior to analyzing Android malware.

Between emulation and hardware virtualization, the main advantages of emulation are

flexibility and efficiency. As a result it is simple to implement an instruction tracer using

emulation whereas it is more difficult using hardware virtualization. The main

disadvantage is the lack of transparency.

Taint analysis is a fundamental dynamic analysis technique with three main challenges,

false-positives and negatives, sanitization and tracking implicit flows. There are three

common design parameters, taint-granularity, analysis-granularity and special case support

that contribute to the problems.

39

3. MAKING EMULATORS TRANSPARENT

3.1 Introduction

The main advantages of emulation based dynamic binary analysis are flexibility and

efficiency for code instrumentation, but the main disadvantage is the lack of transparency.

It is extremely difficult (if not completely infeasible) to emulate every aspect of real

hardware and thus malware can take advantage of these discrepancies to detect the

emulated environment and stay dormant to avoid analysis. Researchers have investigated

this problem extensively and identified a large number of different detection

methods [10–12]. Furthermore, the measurement study in Section 3.5.2 shows that

anti-emulation malware have become a prevalent threat in the wild.

To address the transparency issue, Dinaburg et al. used hardware virtualization to

develope a system called Ether [60]. Since the malicious code is executed on real hardware,

this approach can achieve ideal transparency. However, Ether is not the ultimate solution.

Being a hardware virtualization based analysis platform, it lacks the benefits of efficiency

and flexibility.

This chapter proposes precise heterogeneous record and replay (PHRR) as an

alternative method for addressing the transparency issue. The method involves recording

malware execution using hardware virtualization and then replaying the executing on an

40

emulation based malware analysis platform so as to attain the advantages of flexibility,

efficiency and transparency.

Regular record and replay systems targeted at the execution of a single user-level

process [115–119] and a whole virtual machine [120,121] can be found in the literature.

However, they cannot be directly used for malware analysis. In most cases, record and

replay take place on the same type of system. In the case of emulator based record and

emulator based replay, transparency is still an issue. Alternatively, if hardware

virtualization is used for both record and replay, then the advantages of emulation based

analysis are lost.

The idea of heterogeneous replay was first proposed and implemented in

Aftersight [122], which records virtual machine execution from VMware and replays it in

QEMU for heavyweight analyses (such as bug detection) on production workloads. In

contrast to Aftersight, the record and replay method presented in this Chapter needs to

work under the malicious context: malware tries to detect every possible heterogeneous

property between the recorder and replayer.

One challenge of precise heterogeneous replay is in striking a balance between the

recorder and the replayer. On one hand, if the recorder does not record enough events and

states, the replayer cannot precisely reconstruct the execution. On the other hand, if the

recorder gathers complete information for every single instruction or event and leave an

easy task to the replayer, the recording performance would degrade. To strike the right

balance, various operations and instructions are classified into different categories according

to the technique used to ensure precise replay without sacrificing too much performance.

41

Precise heterogeneous record and replay was implemented in a prototype system called

V2E. The recorder has been implemented in KVM [13], and TEMU (a dynamic binary

analysis platform [15]) has been modified to precisely replay the execution. With minor

changes, the existing analysis plugins (such as taint analysis, unpacker, and tracing) work

as designed, achieving the advantages of transparency and greater analysis efficiency. Since

analysis is separated from execution, the same scheme can be applied to other emulation

based binary analysis platforms as well. Recording is not limited to KVM and replaying is

not limited to TEMU.

To determine the effectiveness of PHRR, V2E was evaluated using both synthetic and

real world anti-emulation malware samples. These same samples were successfully recorded

and replayed on the modified TEMU revealing behavior hidden from the original TEMU

platform.

The rest of the chapter is organized as follows. The next section lists the design goals

that are essential for in-depth malware analysis and gives an overview of the approach.

Section 3.3 and Section 3.4 describe the design and implementation of the recording

component and replay component respectively. Section 3.5 presents the experimental

results. Section 3.6 discusses the limitations of the current implementation. Finally, some

intermediary conclusions are drawn in Section 3.7.

3.2 Design Goals & Approach

The design goals for in-depth malware analysis and approach to address them are

presented in this section.

42

3.2.1 Design Goals

As discussed previously, the following design goals are essential for in-depth malware

analysis:

• G1: Transparency. The presence of the analysis environment should remain

invisible to malware, voiding its intent to escape investigation. This will be provided

by precise heterogeneous record and replay.

• G2: Flexibility. It should be relatively simple to add custom instrumentation on

malicious code execution. In many cases, this instrumentation can be heavyweight,

such as dynamic taint analysis and instruction-level tracing. This is a characteristic

of emulation based analysis platforms.

• G3: Efficiency. The efficiency for malware analysis is two-fold: 1) it should be

efficient enough to monitor computation intensive and highly interactive malware;

and 2) performance overhead for heavy code instrumentation should be acceptable.

This is another advantage of emulation based analysis.

• G4: Adjustable View. A benefit of record and replay is one can be selective about

what to record and therefore control what is replayed and analyzed. This can

improve performance. Given that malware can present itself in various forms, such as

user process, shared library, dynamically injected code, kernel module, etc., this goal

expresses the desire to be able to adjust the analysis focus to concentrate on

malware’s behavior instead of the execution of the rest of the system.

43

3.2.2 Architecture

The overall architecture is depicted in Figure 3.1. The malware sample under

investigation is loaded into and executed in the guest system using hardware virtualization

to achieve transparency (G1). Although hardware virtualization may still be detected

under certain circumstances [11] and a remote time source can be used to measure real

timing differences [123], as hardware virtualization has been widely deployed on production

systems, detecting hardware virtualization environments becomes increasingly irrelevant.

Ether demonstrated that hardware virtualization can achieve transparency in a practical

sense [60].

The guest system is partitioned into two realms or domains. The malware resides in the

recording realm and the rest of the guest system (such as the guest OS and the other

applications) remains in the main realm. Depending on where the malware is present, a

user process, a shared library, a kernel module, or any combination of them can be put into

the recording realm for a closer look at the malware’s behavior. Such a separation fulfills

the adjustable view design goal (G4). It also partially addresses the efficiency issue (G3)

because irrelevant system execution is excluded from the recording realm and consequently

from the log. Some analysis techniques (such as Panorama [56] and HookFinder [54]) do

need to observe the entire system execution. In this case, the recording realm includes the

entire guest system, falling back to whole-system recording. The design is not optimized

for whole-system recording though and this support is left as future work.

The log obtained from the recorder is fed into the replayer. Using dynamic binary

translation, the replayer is able to offer acceptable performance for fine-grained code

44

Main

Domain

HVM Recorder

Recording

Domain

Record

Log

Guest

DBT Replayer

Analysis

Plugin

I

Analysis

Plugin

II

Analysis

Plugin

III

Precise ReplayTransparent Recording

Fig. 3.1.: Architecture Overview

instrumentation and thus achieves analysis efficiency (the second part of G3). The replayer

design facilitates any existing malware analysis platforms that are based on dynamic

binary translation. Therefore, the existing analysis plugins on these analysis platforms can

continue to work with minimum changes. It addresses the instrumentation support goal

(G2).

3.2.3 Precise Heterogeneous Record and Replay

The claim is: malware execution can be recorded in a transparent and efficient manner

using hardware virtualization, and the recorded execution can be precisely replayed using

dynamic binary translation. That is, at every single execution time-step, the program state

in replay is exactly the same as in recording in spite of the fact that the malware execution

is trying to detect various discrepancies between real hardware and the emulated system.

Semi-Formal Definition Let S be the set of all program states (including CPU

registers and memory). Then, at each time t, St represents the state at that time and S0 is

45

the initial state. Let I be the set of all possible inputs and thus It specifies the input at

time t and may be null to indicate no input occurs at that time.

A transition function f : S × I → S is used to characterize the real hardware machine:

St = f(St−1, It−1). Similarly, there is a transition function f ′ for the emulated machine:

S ′t = f ′(St−1, It−1). Suppose that f ′ = f , then given S0 and the inputs I the whole

execution can be replayed precisely as recorded. However, according to automata theory,

determining if f ′ = f is equivalent to the problem of determining whether two Turing

machines are equal, which is known to be undecidable [124]. It then follows that in

practice, they are assumed not to be equal, that is f ′ 6= f , because it is nearly impossible

to correctly emulate some aspects of hardware.

Given that the transition functions are different, the states St and S ′t are also expected

to be different given the same input and previous state. Therefore, in addition to recording

S0 and inputs I, for any moment in time u where Su 6= S ′u, the state change

∆u = Su − Su−1 is recorded as well. Note that the state change is not defined as

∆u = Su − S ′u because recording and replaying are done separately. This means that it is

not necessarily possible to calculate S ′u while the program’s execution is being recorded.

The new transition function f ′r is defined as:

S ′t = f ′r(S
′
t−1, It−1,∆t) =


S ′t−1 + ∆t if ∆t 6= null

f ′(S ′t−1, It−1) Otherwise

In other words, during replay, whenever a state change ∆t has been recorded for time i, the

state is directly updated such that S ′t = S ′t−1 + ∆t. There is no need to apply the transition

46

function. It is important to note that the references to S ′t−1 can be replaced by St−1 since

they are equal. The claim is: with (S0, I,∆) and f ′r, S
′
t = St always holds true for all time t

until the program ends. The induction proof is outlined below.

Basis: The base case is clear since S ′0 = S0.

Induction: For the induction case, assume that the relationship holds at time t:

S ′t = St. It remains to be shown that S ′t+1 = St+1. There are two cases. In the first case

where ∆t+1 6= null, S ′t+1 = S ′t + ∆t+1, which can be rewritten as S ′t+1 = S ′t + St+1 − St.

Given that S ′t = St, S
′
t+1 = St+1. In the second case where ∆t+1 = null, then by definition

of f ′r, S
′
t+1 = f ′(S ′t, It). By designing the recorder such that ∆t+1 = null implies

f(St, It) = f ′(St, Tt), St+1 = S ′t+1. Details on how this can be achieved are presented next.

From Theory to Practice. The previous discussion shows that the key to successful

record and replay is to determine when to use f ′ and when to apply ∆. In other words, if

one is confident that certain instructions and events can be correctly emulated in software,

then simply emulate them. Otherwise, the state changes should be recorded and then

applied during replay.

Fortunately, for general instructions like data transfer (e.g., mov, push, pop), control

transfer (e.g., call, ret, jz, jmp), and integer arithmetic (e.g., add, shl), it is fairly easy

to emulate them correctly in software because their semantics are simple and remain the

same across processor series.1 Moreover, these instructions are the vast majority in

program execution. As a result, the efficiency of both recorder and replayer can be ensured.

1Note that these common instructions may still cause discrepancies in exceptions, which are handled sepa-
rately.

47

This is a valid assumption for the mature QEMU emulator, because these common

instructions are tested over and over again in many different application contexts.

External interrupts, memory-mapped I/O (MMIO), port I/O, direct memory access

(DMA), and timestamp counter are inputs I to the guest system. Like other deterministic

replay systems [118,120,122], these events are recorded if they occur in the recording realm

only.

Software exceptions, model-specific registers, and the cpuid instruction are not

generally treated as inputs in previous replay systems. However, it is extremely difficult to

emulate them correctly. Software exceptions are triggered when certain condition checks

fail in the processor. It is fairly complicated to emulate all these condition checks in the

exact same way as in the real processor, not to mention that a specific processor may have

CPU bugs that raise incorrect exceptions [9, 10]. The behaviors of model-specific registers

and the cpuid instruction are processor specific as well. Overall, it is a daunting task to

correctly emulate all the specifics of just the common CPU series. Therefore, exceptions,

model-specific registers and cpuid are recorded as state changes ∆.

Floating point instructions and SIMD (Single Instruction Multiple Data) instructions

(e.g., MMX and SSE) are generally difficult to emulate correctly as well. It is possible to

also record the results of these instructions as ∆. However, for programs that heavily

perform these operations, the performance for both record and replay may greatly degrade

(one ∆ event is needed per instruction). Alternatively, these instructions are directly

passed to the hardware processor during replay. This solution assumes that the replayer is

running on a machine supporting the same set of floating point and SIMD instructions.

48

Operation Type Solution

Data Transfer / Control Transfer / Emulate
Integer Arithmetic

Interrupts / MMIO / Port I/O / DMA / TSC Replay as I
Exceptions / System Registers / CPUID Replay as ∆
Floating Point / SIMD Instructions Pass through

Table 3.1: Operations and Corresponding Solutions.

This assumption can easily hold by running the recorder and the replayer on the same kind

of machines or even the same machine.

As a summary, Table 3.1 lists the special operations and their corresponding solutions:

emulate, replay, or pass-through. It needs to be emphasized that a platform following this

design principle does not immediately become completely transparent. Emulation bugs or

missing inputs and state changes cannot be precluded. Once identified though, these bugs

can be fixed and the transparency of the platform will be further improved.

3.3 Transparent Recorder

For successful replay, S0, I and ∆ need to be captured in a transparent and efficient

manner. How this is goal is achieved using hardware virtualization is described in this

section.

3.3.1 Mediating Recording Realm

In order to monitor malware in various forms, including kernel modules, shared libraries

and processes, the recording realm is defined at the page-level granularity and the

interaction between the recording realm and the rest of the system needs to be mediated.

49

In hardware virtualization, Two Dimensional Paging (TDP) is a memory virtualization

mechanism. While the conventional page table pointed by CR3 in the guest is used to

translate a Guest Virtual Address (GVA) into its Guest Physical Address (GPA), the

second-layer page table maintained by the hypervisor translates the Guest Physical

Address into the Host Physical Address (HPA). The maintenance of the second-layer page

table is invisible to the guest and is used to mediate the recording realm.

Specifically, two TDP tables are created to partition the guest physical memory into two

memory spaces, one for the recording realm and the other for the rest of the guest system -

the main realm. The code pages that belong to the monitored malware will be loaded into

the recording realm, such that the interactions between the monitored malware and the rest

of the system can be mediated by TDP page faults and other VMExit (transitions from the

guest to the hypervisor) events. These VMExit events are invisible to the guest system.

This TDP-based recorder design is flexible enough to monitor a small code module, a

full user process, and even the entire guest system, depending on what pages are loaded

into the recording realm.

3.3.2 Basic Scheme

In the basic design, the two guest physical memory spaces are mutually exclusive. That

is, each individual guest physical page can only be present in either the recording realm or

the main realm, but not both. This basic design ensures mediating all the inputs and

events for the recording realm is simple.

50

1. int adore_root_filldir(void *buf,

char *name, int nlen, loff_t off,

ino_t ino, unsigned x)

2. {

3. struct inode *inode = NULL;

4. int r = 0;

5. uid_t uid;

6. gid_t gid;

7.

8. if ((inode=iget(

root_sb[current->pid% 1024],

ino)) == NULL)

9. return 0;

//lines 10 to 20 are

omitted for brevity

21. }

d88888550 <adore_root_filldir>:

550: push %ebp

551...56C: //set up stack,

//%eax = current @L8

56C: mov 0x6c(%eax),%edx

//%edx=pid @L8

56F: xor %edi,%edi

571: test %edx,%edx

573: mov %edx,%eax

575: jns 57d <adore_root_filldir+0x2d>

577: lea 0x3ff(%edx),%eax

57D: push $0x0

57F: push $0x0

581: and $0xfffffc00,%eax

586: sub %eax,%edx

588: pushl 0x1c(%ebp) //push ino @L8

58B: pushl x0(,%edx,4)

//push root_sb[...] @L8

// call iget @ line 8

592: call 593 <adore_root_filldir+0x43>

//The rest is omitted for brevity.

(a) C source (b) disassembly

Fig. 3.2.: adore root filldir

A simplified adore-ng rootkit [125] is used as an example to illustrate this basic scheme.

The C source code and the corresponding disassembly are shown in Figure 3.2. In brief,

the original pointer to root filldir has been replaced by a pointer to

adore root filldir to hide certain files. Suppose the execution of this kernel rootkit is to

be recorded. Initially the code page of this kernel module is moved from the main realm to

the recording realm. It may be treated as S0. Figure 3.3 (A) illustrates this situation.

When the guest system is about to call root filldir, the execution is redirected to

adore root filldir, with virtual address 0xd88888550 and physical address 0x16876550.

Since the physical page 0x16876000 is not present in the main realm any more, this control

flow transition will trigger a TDP page fault which results in a VMExit. The recorder

located in the hypervisor captures this TDP page fault and switches the memory space to

the recording realm, which is shown in Figure 3.3 (B). In addition, the current CPU state

(all the registers and flags) is recorded, as input I0.

51

On fetching the first instruction in adore root filldir, two more TDP page faults are

triggered for the page table directory page (PD) and the page table entry page (PTc)

respectively. This is because the TLB has been flushed during the realm switch, and the

CPU needs to look up the physical address of the first instruction using the page tables.

These two pages are also moved into the recording realm and their contents recorded as

another input. This is the desired behavior, because the replayer will need the page table

pages for address translation. Moreover, by including the page table pages, the problem of

page swapping and re-mapping in the guest is automatically handled in both recorder and

replayer. Figure 3.3 (C) shows this moment.

This first instruction (push %ebp) writes onto the stack. As the stack page is absent in

the recording realm, this operation triggers TDP page faults for the stack page (MS) and

the corresponding page table pages (PD and PTs). as shown in Figure 3.3 (D). In this

example, PD has already been moved into the recording realm, so no TDP page fault

happens for PD.

Then the execution continues without causing any VMExits until 0xd888856c. This

instruction (mov 0x6c(%eax), %edx) reads from a data page (D), which is not present in

the recording realm. Similarly, this data page (D) and its corresponding page table page

(PTd) are moved into the recording realm and recorded (see Figure 3.3 (E)).

The execution further proceeds to the instruction located at 0x169f7592. It calls iget,

a kernel function. A TDP page fault is raised because the jump target is absent in the

recording realm. The faulting EIP shows that it does not belong to the malware module.

So, the recorder switches back to the main realm (see Figure 3.3 (F)). In addition, a

52

M
S

M
C

(A
)

(B
)

(C
)

(D
)

(E
)

0
x
1
6
8
7
6
0
0
0

0
x
1
6
9
f
7
0
0
0

D
0
x
1
2
3
4
5
0
0
0

M
S

M
C

D

M
S

M
C

D

M
S

M
C

D

0
x
1
3
4
5
6
0
0
0

C
C

C
C

M
S

M
C

D

C

(F
)

(G
)

0
x
1
6
8
9
f
0
0
0

P
D

0
x
0
1
f
d
1
0
0
0

P
D

P
D

P
D

P
D

P
T
d

P
T
s

0
x
0
1
f
d
2
0
0
0

0
x
0
1
f
e
0
0
0
0

P
T
d

P
T
d

P
T
d

P
T
d

P
T
c

P
T
s

P
T
c

P
T
c

P
T
s

P
T
s

P
T
c

P
T
s

P
T
c

M
S

M
C

D

C

P
D

P
T
d

P
T
s

P
T
c

M
S

M
C

D

CP
D

P
T
d

P
T
s

P
T
c

(H
)

M
S

M
C

D

CP
D

P
T
d

P
T
s

P
T
c

F
ig

.
3.

3.
:

T
D

P
sn

a
p

sh
o
ts

fo
r

a
d

o
re

ro
o
t

fi
ll

.
T

h
e

tw
o

co
lu

m
n
s

re
p
re

se
n
t

tw
o

gu
es

t
p
h
y
si

ca
l

m
em

or
y

sp
ac

es
fo

r
th

e
m

ai
n

re
al

m
an

d
th

e
re

co
rd

in
g

re
al

m
re

sp
ec

ti
ve

ly
.

A
sh

ad
ed

b
lo

ck
re

p
re

se
n
ts

a
p
re

se
n
t

p
ag

e,
w

h
il
e

a
b
la

n
k

b
lo

ck
in

d
ic

at
es

an
ab

se
n
t

p
ag

e.
T

h
e

ar
ro

w
on

to
p

si
gn

ifi
es

w
h
ic

h
re

al
m

is
ac

ti
ve

.

53

“JumpOut” event is recorded at this point, indicating that the execution has transferred

out of the recording realm.

The iget kernel function now resumes its execution in the main realm. While it

accesses the parameters, another TDP page fault occurs because the stack page (MS) has

been moved to the recording realm. So the stack page (MS) and the corresponding page

table pages (PD and PTs) are moved back into the main realm. This behavior is also

desired, because the next time when the recording realm reads one of these pages, it will be

captured and the new page content recorded as a new input. Figure 3.3 (G) illustrates this

situation.

When iget finishes and returns, a TDP page fault occurs because the jump target is

not present in the main realm. Thus, the memory space is switched back to the recording

realm, which is shown in Figure 3.3 (H). The CPU state is recorded and execution resumes

in the recording realm. The subsequent execution of adore root filldir follows a similar

cycle.

3.3.3 Other Inputs

The previous example only shows how to capture inputs from CPU states and memory.

Other kinds of inputs need to be handled as well. To handle control transitions such as

interrupts and exceptions using the same basic scheme, the Interrupt Descriptor Table

(IDT) is prevented from being present in the recording realm. Any interrupt or exception

will force a lookup into the IDT which will in turn trigger a TDP page fault. This fault is

treated as a control transition and a new CPU state is recorded when the execution returns

54

to the recording realm. When executing in the recording realm, instructions like cpuid,

rdmsr, in and rdtsc need to be recorded as inputs I and state changes ∆ as well. With

hardware virtualization support, the VMCS is configured to trap these instructions back

into the hypervisor where their results are recorded. DMA transfers may change memory

pages in the recording realm without CPU intervention. When DMA writes into a page

resident in the recording realm, that page needs to be recorded as a new input. The DMA

controller is emulated in software. So this DMA write can be intercepted and recorded as

input.

3.3.4 Optimizations

The basic scheme enforces two mutually exclusive realms. In many cases, this is

unnecessarily expensive. If the two realms alternately reads a shared page, then the basic

scheme will repeatedly remove that page from the recording realm, and later move it back

and record it even if the page contents have not changed. Several optimizations are

employed to allow these two realms to share pages.

Sharing Data Pages. To enable sharing of data pages, a ”Remove-On-Write” (ROW)

principle, which is similar to Copy-On-Write, is used. More specifically, the two realms are

allowed to share pages, but these pages are set to be read-only. When one realm attempts

to write to a page, a TDP write violation will be triggered and that page is then removed

from the other realm. This optimization works especially well for the page table pages,

because both realms need these pages for address translation, and these pages seldom

change.

55

Sharing Code Pages. When recording a full process, a problem that can arise is when

both realms need to access shared library code pages. These code pages will be moved back

and forth between the main realm and the recording realm, according to the basic scheme.

Similar to sharing data pages, these code pages are present in the both realms and are

initially marked to be read and execute only. While it improves performance, this

optimization can disrupt the realm transition detection logic outlined above during context

switches. That is, if shared library pages are executable in both the main and recording

realms, the kernel is executing in the main realm (process level recording), there is a

context switch to the recorded process and the process resumes at one of the shared

libraries, then the TDP page fault will not occur. This results in the monitored program

executing in the main and not the recording realm. To prevent this problem, the NX

(Non-Executable) bits for these code pages are manipulated to capture the moment when

execution transitions into these code pages in the monitored process.

More specifically, context switches are monitored by intercepting CR3 writes (once

again by configuring the VMCS). When the execution context switches to the recorded

process, the main realm is switched to the recording realm as normal. However, there is a

gap between this context switch and the user-level execution, because the context switch is

performed in the kernel space and the execution will continue in the kernel space for a

while before it transitions to the user space. In order to capture the entry point to the user

space, all of the pages in the recording realm are marked as Non-Executable. Although the

kernel execution will trigger TDP page faults and in turn these pages will be loaded into

the recording realm, these pages are not recorded. Essentially nothing is recorded until a

TDP execute violation with the faulting EIP in the user space is detected. This is the

56

entry point back into the recorded program. The pages loaded during the kernel execution

are removed so transitions back into the kernel can be detected later. The pages marked

NX will be restored as well.

3.3.5 Bridging the Semantic Gap

Analysts usually specify which malware to monitor by its executable name, whereas the

recording realm operates directly on guest physical pages. Therefore,there exists a

semantic gap, which is bridged using VMI. More specifically, system calls are intercepted

and kernel data structures in the guest system are parsed to extract the OS-level

semantics, such as the process list and the module memory map. By this way, the process

name is mapped to the corresponding CR3 value, and module names to their virtual

memory ranges. Then guest virtual addresses can be translated into guest physical

addresses using the guest page tables.

The mapping from guest virtual to guest physical address may change over time due to

page swapping. The newly mapped physical page will be captured and recorded when it is

accessed later, but the physical page that is no longer mapped needs to be removed from

the recording realm immediately. To do so, page table changes that affect the pages in the

recording realm are captured and recorded. According to the data page sharing

mechanism, the page table pages associated to the recording realm are shared in both

realms and set to be read-only. Therefore, any changes to these page table pages will be

trapped to the hypervisor. Checking which page table entry has been modified reveals

which guest physical page needs to be removed from the recording realm.

57

3.3.6 Shadow Time Stamp Counter

As extra TDP page faults and other VMExits are needed for recording malware

execution, malware may detect the underlying recording behavior by examining the

advance of the Time Stamp Counter (TSC). This can be done by using the rdtsc

instruction to read the TSC model-specific register. A shadow TSC is used to hide this

artifact.

The shadow TSC is an estimate of how much time the guest actually runs. It is not

perfect. It is calculated as follows: Let ti be the value of the host TSC before vmresume is

executed. Let ti be the value of the host TSC right before the transition into non-root

mode, and to be the value of the host TSC right after the CPU returns to the host. Then,

let te and tx be the time it takes to enter the guest and exit to the host and tg be the actual

execution time for the guest, then to − ti = te + tx + tg. To approximate te + tx, the VMCS

is configured to enable rdtsc exiting (i.e, a VMExit occurs whenever the guest executes

rdtsc. A guest program that loops rdtsc is then executed to obtain the average of te + tx.

This estimate of the total entry and exit times is then used to calculate the time spent

executing the guest while recording. More specifically, ti and to are captured and tg is

calculated as tg = to − ti − (te + tx). tg is added tot he shadow TSC, which is returned to

the guest whenever the guest queries the TSC. Due to unnecessary TLB flushes when

transitioning between the guest and host modes, te + tx must be adjusted to account for

TLB misses. This includes the misses due to the page table, code and data pages access,

plus interrupts. Effectively, there are different te + tx averages for the different conditions.

58

3.3.7 Implementation

The recording component is implemented in the KVM module in Linux Kernel version

2.6.32. The code base of KVM is well organized. While vmx.c and svm.c contain the

hardware specific code for Intel and AMD virtualization extensions respectively, mmu.c

contains the memory management unit code that is common to both architectures. Within

mmu.c is the tdp page fault function that is called by both VMX and SVM, and is where

the realm control and enforcement logic is implemented. All memory based inputs are

handled at this location. All non-memory based inputs to the recording realm are handled

in the architecture specific implementation files.

Memory Management. KVM uses MMU-notifiers to learn of changes to the host

process’ (e.g., QEMU’s) page table. Once a change is detected, KVM determines whether

the old physical page (e.g., the one that has been swapped out) is pointed to by the current

TDP page table and if so, make the necessary changes. Similarly, the recorder registers its

own MMU-notifiers so changes to the page table are reflected in both the main and

recording realm TDP page tables.

Logging. Being a kernel module, KVM should not directly write to files. To enable

logging, a user-level program is used to commit the changes to a log file. KVM and the

user-level program communicate using a shared memory queue that is mapped into the

user-level program’s virtual memory space. More specifically, the recorder exposes a

filed-based interface through the “/proc” file system. The user-level program opens the file

and writes to and reads from it to send and receive messages to and from the recorder.

59

Given a new log entry (e.g., a new page input), the recorder will first copy the contents

into the shared queue in the user-level program’s memory space and then send a message

to the user-level program using the file interface. Since file reads and writes by the

user-level program are blocking, the file based scheme is self-synchronizing.

In V2E, a page that has been loaded into the recording realm is fully and completely

recorded. Obviously, this is only necessary when the page is recorded for the first time.

When the page is modified in the main realm and loaded back again, it is possible that

only a small portion of the page has changed (e.g., the stack should not change much

through function calls). At first glance, a simple optimization such as recording only the

differences or “diff” of the old and new pages is desireable, however, evaluations showed

that this is unnecessary. The I/O bandwidth available on the test system was not

saturated. Thus, to improve performance, the recorder does not calculate the differences at

runtime. The log file is simply compressed after the fact to reduce storage requirements.

Event Landmark. Synchronization is an important aspect of record and replay systems.

Nondeterministic events, such as interrupts, must be replayed at exactly the same moment

in the program’s execution during replay otherwise the two executions will diverge. The

problem is exacerbated in precise heterogeneous record and replay, because previously

deterministic events are now nondeterministic. Take exceptions as an example. In PHRR,

the replayer is required to exhibit the same exception behavior as the recorder. If there is

an error where the emulator does not throw an exception while real hardware does, the

recorded exception must still be replayed at the right moment. In effect, this exception is

nondeterministic.

60

Previous systems used the branch counter as a landmark. The branch counter

increments when a branch instruction is committed (i.e., actually taken and not

speculatively taken). By recording the number of branches committed thus far and the

current EIP value for an important event that must be replayed (e.g., an external

interrupt), the replayer can replay the same event at the same point during the program’s

execution.

In V2E, only the CPU state (including the EIP, registers and flags) is used as the

landmark. It is a simple scheme and is not as accurate as the branch counter, because two

execution points may happen to have the same CPU state. It has been sufficient in

practice though. There are a large number of events (e.g., memory accesses and control

transitions from and to the recording realm) that need to be recorded in precise

heterogeneous record and replay. Each event serves as a synchronization point and so the

role of the landmark not as important as in the other replay systems that synchronizes

more seldomly. To put it differently, the landmark only needs to be accurate between two

synchronization points, because the synchronization points themselves serve as landmarks.

In the end, branch counter based landmarks is left as future work.

3.4 Precise Replayer

The purpose of the replayer is twofold: precisely replay the execution and events as

recorded using hardware virtualization, and support emulation based malware analysis.

61

3.4.1 Dynamic Binary Translation and QEMU

In brief, QEMU uses dynamic binary translation to emulate one instruction set

architecture (e.g., x86) on top of another (e.g., ARM). In DBT, a block of guest code is

translated prior to being executed. The translated blocks can be cached for efficiency. The

hardware memory management unit is emulated in software as is the translation look aside

buffer.

While QEMU uses different techniques, such as lazy flags calculation, to improve

efficiency, the same techniques can be used for emulation detection. The recorder was

designed to capture all of the important events during the program’s execution and the

replayer must not only replay the events precisely as recorded, but some of the

optimizations must also be disabled to facilitate precise replay.

3.4.2 Changes for Precise Replay

Considering the challenges in software emulation and dynamic binary translation,

several design changes in the work flow of software emulation are used to ensure precise

replay. Particularly, the dynamic binary translator in QEMU is modified to comply with

the following design changes.

New Translation Logic. Instructions are classified into three categories during dynamic

translation: general-purpose, FPU, and others. General-purpose instructions include data

transfer, control transfer, and integer arithmetic. They are translated according to their

simple semantics. To avoid discrepancies in flag calculations, lazy flag calculation is

62

disabled. That is, the EFLAGS register is immediately calculated after each instruction.

Since exceptions are recorded and will be replayed, the logic for checking and raising

exceptions is unnecessary and is completely removed except for page faults. Page faults are

used for synchronization.

Floating point and SIMD instructions execute directly on the hardware FPU. To ensure

correctness, these instructions are translated into wrapper functions that pass the

operations directly to the real FPU using the state from the emulated virtual machine. For

example, in QEMU’s software emulation approach, a floating point instruction fadd %st1,

%st0 would be translated to call a helper function helper fadd ST0 STN to emulate this

instruction in software. In the pass through approach, a piece of assembly code

(asm ("fadd %st(1), %st(0)")) is directly inserted instead of the call to the helper

function. As this instruction takes two FPU registers, the instruction can be passed directly

to the FPU. On the other hand if the instruction takes any operands from memory or the

general-purpose registers, the operands need to be copied from the guest environment to

the host and vice versa. For example, the instruction fadds %0xc(%ebp) adds a memory

operand with st(0) and stores the result back into st(0). Since this memory operand is

located in guest memory, it is first copied into a temporary location on the host before the

floating point operation executes natively on the host. This behavior is shown in the

following code snippet where ldl(A0) is a function that returns the contents of the guest

memory located at the GVA within A0 (i.e., A0 = %0xc(%ebp) in the example).

unsigned long temp = ldl(A0);

__asm__("fadds %0;" : : "m" (float)temp));

63

These natively executed FPU instructions may raise exceptions - host exceptions and

not guest exception - as well. To prevent the exceptions from disrupting the host QEMU

process, exception handlers are registered to catch and ignore them. Any exceptions that

should be handled by the guest would have been recorded. The goal of the replayer is to

replay the events, including exceptions, precisely as dictated by the log.

All remaining instructions are translated into “nop”, expecting that the results of these

instructions are correctly replayed from the log. That is, no translated code will be

generated except to advance the program counter to the next instruction.

To address the page boundary issue described in Section 2.1.2, the DBT translation

logic is altered slightly. Translation never crosses the page boundary. If the program

counter crosses a page boundary during translation, then the current code block is ended

and the instruction starts the next block. In this manner, the first instruction of the next

block is guaranteed to be the instruction that crosses the page boundary. As a result, the

page fault that results due to DBT (emulation) and the page fault that results during

instruction fetch (real hardware) occur at the same location. Note that this increments the

branch counter and needs to be taken into account if the branch counter based event

landmark is used.

Replay Logic. As page-level recording is based on TDP, the same second level page

table mechanism is needed in software emulation to correctly replay logged events on

demand. A physical page container is introduced for this purpose. This physical page

container indicates if a physical page has been loaded from the log and thus is present. In

essence, the physical page container replicates the TDP page table of the recording realm

64

during replay. When the replayed execution accesses a page that is absent in the physical

page container, it implies that there was a TDP page fault during recording. Consequently,

the missing memory page is loaded from the log and the CPU state updated at the right

moment.

In addition, the current CPU state is compared with the landmark of the next log event

at the end of every instruction. If the landmark matches, the logged event is replayed. This

event may be a control transition caused by interrupts or exceptions, a state change made

by special-purpose instructions, or a realm change. These were captured as “JumpOut”

events.

3.4.3 Example Walk-through

The same adore-ng example is used to walk through the replay logic. As the first log

event, the code page MC is loaded in the physical page container. This initial state is the

same as that of the right column in Figure 3.3(A).

Then the second event is the CPU state for the entry point of adore root filldir.

The replayer updates the CPU state accordingly. The code block starting with the EIP at

0xd8888550 needs to be translated and put into the translated code cache before it is

executed. This translation triggers a page table lookup to translate the EIP virtual address

into a physical address. Consequently, the page table pages (PD and PTm) are loaded

from the log on demand, because they are not present in the physical page container.

When the translated code executes, the first instruction pushes onto the stack. At this

moment, the page fault triggers the page table page PTs to be loaded from the log during

65

address translation and then the stack page MS is loaded for the memory write. Similarly,

the page table page PTd and the data page D are loaded at the right moments.

At the end of the call instruction at 0xd8888592, which jumps to the kernel function

iget, a control transition happens. This JumpOut log event is followed by several events

for removing pages (MS, PD, PTs) and culminates with a CPU update event. The page

removal events in conjunction with the CPU update event represents the execution of iget

in the main realm, which has been skipped. Consequently, the current program state is

that of the instruction at 0xd888885a7, when iget just returned back into the recording

realm (the right column of Figure 3.3 (H)). As this point, the software TLB is also flushed,

because changes may have been made to the page table during the skipped execution.

Replay continues until all entries in the log are consumed. As this example describes

the basic scheme, quite a few pages (such as page table pages) are removed and then

loaded back later. Given a log recorded using the optimizations discussed in Section 3.3.4,

the replay will proceed more efficiently.

3.4.4 Implementation

The replayer is implemented on TEMU, a dynamic analysis platform in the BitBlaze

binary analysis infrastructure [15]. TEMU is based on QEMU version 0.9.1 and the

changes described above were integrated into TEMU as well.

With the modifications to TEMU, existing analysis plugins should work automatically,

except for a small change. Each regular TEMU plugin needs to check if the current

execution is within the context of interest (e.g., if the current process is the malware’s

66

process). However, for a plugin that works with replay, all execution is of interest. This is

ensured by the recorder, so context checking in plugins is removed.

Two plugins were modified for experimentation. The first plugin is an unpacker, which

is the implementation of Renovo [55]. The second is an instruction tracing tool called

tracecap, which performs taint analysis and dumps detailed information for each

instruction.

3.5 Evaluation

In order to assess the effectiveness of PHRR, V2E was evaluated in two ways. First,

existing emulation detection techniques in the literature were studied and the effectiveness

of V2E against these methods was examined. This test is focused on verifying

transparency. Second, real-world malware samples were gathered, anti-emulation ones

identified and subsequently studied using the two TEMU plugins. This latter test is

focused on ensuring that transparent emulation based malware analysis is indeed feasible.

Experimental setup. The host machine has a Core i7 860 Quad Core processor with

4 GB of memory running Ubuntu 10.04 and kernel version 2.6.32.29 modified with the

recorder logic. The guest systems are Windows XP SP2, Ubuntu 9.04 and Redhat 7.

3.5.1 Study of Existing Anti-emulation Attacks

To evaluate if V2E can defeat published anti-emulation methods, a list of such

techniques was found in the literature [11, 12,66] and then categorized based on how

emulation differs from real hardware. Descriptions of these methods are listed in Table 3.2.

67

Description Defeated?

cpuid returns processor specific information. QEMU returns generic in-
formation. [12]

X

rdtsc returns the contents of the TSC, and can be used to measure elapsed
time. [11,12,66].

X

cmpxch8b conditionally writes to the memory operand, but a #GP excep-
tion is always generated if the memory operand is not writable. QEMU
only raises #GP when the memory is written indeed. [12]

X

A double fault exception is generated if the #GP handler can’t be re-
trieved from the IDT when a #GP occurs. QEMU generates #GPs re-
peatedly. [12]

X

Writing to reserved MSRs should generate #GP, but QEMU does not. [11] X
A #GP is generated if the instruction length is more than 15 bytes, but
certain prefixes like rep can break this rule in QEMU. [11,66]

X

If the alignment check flag is set, then an alignment exception is thrown
when an unaligned memory address is accessed. This exception is not
thrown in QEMU. [11]

X

CPU bugs or errata results in behavior that are either unexpected or does
not follow the published logic, thus the emulator does not handle these
like specific hardware would. [11]

X∗

MSR fingerprinting uses the rdmsr safe macro to find the MSRs sup-
ported by the CPU. The list of MSRs can be used to help determine the
CPU model. [11]

X

The fnstcw instruction pushes the FPU Control Word register onto the
stack. As it turns out, bit 3 of this register is reserved in Intel’s imple-
mentation but is always 1. QEMU always returns 0. [66].

X

icebp is an undocumented instruction that simply raises an exception. In
QEMU this instruction hangs the emulator. [66]

X

rep stosb can be used to overwrite a range of memory with nop. When
paired with a jmp to nowhere, QEMU and single stepping will throw a
segmentation fault. Hardware executes successfully. [12]

N/A

Table 3.2: Survey of Emulation Detection Techniques.

68

Among these detection methods, six of them, including “cmpxch8b”, “double fault”,

“reserved MSR”, “instruction length”, “alignment checking” and “invalid opcode”, cause

aberrant exception behavior. As V2E replays the exceptions from real hardware, these

detection methods should be defeated. Defeating exception based emulation-detection was

verified using synthetic sample programs of the instruction length and invalid opcode

methods. The sample programs simply implement the methods as published. They were

executed in QEMU, real hardware and V2E, and the expected exception behavior in V2E

was verified manually.

“cpuid”, “MSR fingerprinting” and “rdtsc” return deviated values. These values are

hardware specific and thus hard to emulate correctly and completely. PHRR defeats these

methods by recording the values the real hardware. These methods were also verified using

synthetic samples and real-world malware samples.

“fnstcw” causes a deviated state in the FPU. V2E passes FPU/MMX/SIMD

instructions directly onto hardware, so these deviations disappear in V2E. This was verified

using several real-world samples.

The “CPU errata” method needs special consideration. If a CPU bug causes a totally

unpredictable result, then it would be extremely hard to handle. However, the CPU bugs

used for emulation detection in the literature [11] all cause incorrect exceptions. These

CPU bugs can be handled correctly by PHRR, because exceptions are recorded and

replayed. It is difficult to ascertain how prevalent non-exception based CPU bugs are. In

general, the effectiveness of this detection method is limited, since CPU bugs are specific to

a CPU family.

69

The “rep stosb” detection method exploits a cache coherency bug for self-modifying

code in earlier Intel processors. This bug has been fixed in all current Intel processors.

Therefore, this method is no longer relevant.

3.5.2 Analyzing Malware on Existing Malware Analysis Platforms

To determine how effective existing malware analysis platforms are at handling

real-world malware, 150 real-world malware samples were collected from a live malware

repository (http://malc0de.com/database) and security researchers. These samples were

then tested on three malware analysis platforms: Anubis [126], CWSandbox [127], and

TEMU [15]. While Anubis and TEMU are based on software emulation, CWSandbox uses

API hooking.

Of the 150 samples, 51, 88, and 14 crashed or exhibited no behaviors in Anubis,

CWSandbox, and TEMU respectively. Note that all these samples run properly in KVM,

which means that they intended to escape from either of these analysis platforms.

Interestingly enough, the 14 samples that are resistant to TEMU also evaded Anubis and

CWSandbox. Evidently, anti-emulation malware has already become a prevalent threat.

3.5.3 Analyzing Real world Malware with V2E

To evaluate how well V2E handles real-world malware, the 14 anti-emulation samples

were executed and recorded using V2E. A time-out threshold of 2 minutes was chosen to be

consistent with the settings of Anubis and CWSandbox. For each sample, V2E was

http://malc0de.com/database

70

N
u
ll

T
ra

ci
n
g

U
n
p
a
ck

in
g

M
D

5
S
U

M
e
x
e

sz
lo

g
sz

ru
n
ti

m
e

ru
n
ti

m
e

#
in

s
ru

n
ti

m
e

d
u
m

p
s

2
7
e
b
8
1
5
f
1
0
1
a
9
2
9
5
f
b
b
6
0
1
9
8
6
f
3
9
3
d
0
1

10
5K

B
29

.0
7M

B
76

.7
6s

2h
19

m
13

47
M

96
.5

s
78

4
3
d
e
1
6
1
8
7
6
4
d
a
f
7
e
5
8
8
7
b
d
8
a
c
9
c
a
d
b
5
2

10
5K

B
28

.4
6M

B
76

.6
9s

2h
18

m
13

46
M

96
.0

9s
79

0
3
f
3
2
2
3
6
5
b
8
4
4
d
8
f
a
f
9
2
3
6
a
a
b
3
4
b
4
2
1
4

10
6K

B
30

.7
5M

B
77

.0
9s

2h
19

m
13

49
M

97
.0

2s
79

4
f
1
2
d
f
b
4
b
6
1
3
a
b
c
4
d
d
f
5
6
d
0
8
7
2
2
3
a
8
6
8

11
5K

B
35

.9
3M

B
78

.8
7s

2h
20

m
13

66
M

98
.8

s
57

f
0
1
c
d
f
6
e
5
0
5
2
a
e
b
5
c
6
5
1
0
b
d
8
f
8
d
8
8
6
3
6

10
3K

B
29

.9
5M

B
77

.2
1s

2h
19

m
13

48
M

98
.9

4s
81

f
0
6
8
b
4
3
6
2
c
6
4
6
d
a
e
4
2
c
c
3
b
1
b
8
f
e
2
0
c
1
2

11
0K

B
30

.1
3M

B
77

.2
s

2h
19

m
13

50
M

97
.1

7s
77

1
6
8
6
7
3
9
b
c
8
1
a
4
0
7
d
d
9
9
4
4
e
2
d
9
b
b
c
f
2
e
1

23
K

B
2.

44
M

B
0.

65
s

46
.8

s
7.

73
M

0.
71

s
8

0
b
8
b
2
c
0
9
2
6
6
3
0
c
6
9
a
6
c
7
5
b
b
a
6
7
b
2
4
a
3
e

39
K

B
3.

25
M

B
0.

97
s

99
.7

s
16

.8
M

1.
2s

55
c
5
f
f
7
2
3
2
8
6
8
3
3
3
1
0
7
f
a
3
e
f
e
8
9
5
f
1
2
3
6
1

24
5K

B
55

.3
6M

B
29

s
27

m
15

s
24

8M
39

.3
3s

39
3
6
e
5
f
d
c
d
b
e
0
b
c
d
c
5
9
e
a
0
0
1
b
1
6
2
b
f
b
9
7
d

24
3K

B
37

.4
8M

B
20

.9
1s

11
50

s
17

5M
30

.5
6s

22
c
1
a
6
6
6
9
9
8
2
0
f
d
e
b
7
2
4
2
e
8
8
4
e
6
d
2
f
8
b
c
b

11
9K

B
67

6K
B

0.
57

s
55

.7
s

9.
55

M
0.

66
s

10
d
a
b
e
c
7
8
d
4
8
9
f
1
e
7
8
3
f
b
2
3
d
6
e
7
2
6
b
d
1
a
4

10
8K

B
2.

00
M

B
0.

19
s

23
.2

s
4.

09
M

0.
22

s
1

e
f
0
4
5
8
e
1
9
6
f
b
d
1
b
4
c
c
1
6
1
3
b
a
2
c
a
3
c
4
3
b

28
0K

B
3.

30
M

B
0.

36
s

54
.8

s
9.

51
M

0.
46

s
1

7
c
e
6
c
d
9
8
3
7
e
1
a
7
8
3
7
c
2
b
4
9
1
c
2
1
f
f
5
b
6
9

10
1K

B
7.

10
M

B
34

.3
5s

29
4.

4s
43

M
35

.4
s

30

T
ab

le
3.

3:
A

n
al

y
zi

n
g

R
ea

l-
w

or
ld

E
m

u
la

ti
on

-R
es

is
ta

n
t

M
al

w
ar

e
w

it
h

V
2E

71

configured to record the entire user-level process and spawned child processes if any.

Networking was also disabled to prevent malicious behavior from escaping the virtual

machine sandbox.

V2E was able to record and replay the malicious behaviors of all these samples. In

particular, three settings were used to test replay: 1) replay with no plugin provides a

baseline for the replay performance; 2) replay with tracing produces a complete and

detailed instruction trace for the recorded execution; and 3) replay with unpacking extracts

hidden code and data from the packed malware. A summary of the results is presented in

Table 3.3. For each sample, the MD5 hash, executable size, and size of the recorded

execution log are listed first followed by the runtime for replay with no plugins. With

regards to tracing, the instruction count and the runtime for tracing are listed in separate

columns. As for unpacking, the number of memory dump files and the runtime for

unpacking are shown.

The following observations can be made from Table 3.3. First, the execution logs (after

compression) are fairly small (up to 55MB). It is worth noting that unlike the logs in the

other execution replay systems, these logs are self contained with all necessary code and

data included. They can be directly fed into the replayer for in-depth malware

investigation and no other environmental setup (e.g., virtual machine images and

configurations) is needed.

Second, due to the efficiency of dynamic binary translation, the baseline performance of

the replayer (with no plugin) ranges from less than 1 second to 79 seconds. This is

satisfactory since the malware sample was allowed to execute for 120 seconds (2 minutes)

on real hardware. The very short replay runtime (less than 1 second) on some samples

72

indicates that these samples are mostly idle. This is reasonable because many of the

samples are bots and networking is disabled during recording. Note that some samples are

very computation-intensive with over 1.3 billion instructions executed within 2 minutes.

Third, the unpacker built on top of the replayer demonstrated good efficiency. It was

able to finish replaying 2-minute execution logs in up to 99 seconds, and at the same time

successfully extract hidden code and data from the packed malware samples. Interestingly

enough, all of the samples are packed. Without V2E’s support, it was not possible to

unpack them successfully using TEMU. Finally, tracing is substantially more heavyweight

than unpacking, because it has to disassemble each instruction, fetch instruction raw bytes

and operands, and write these details into a file. The instruction traces completed within a

reasonably short period (from tens of seconds to a couple of hours).

It is reasonable, because it is possible to configure the tracer to skip over certain

instructions. To do so, the analyst can first replay a sample with the unpacker and

determine the instruction at which unpacking finishes. Given that emulation detection

methods are employed prior to unpacking (otherwise it will not serve its purpose of evading

analysis), this can be considered the start of interesting behavior that should be further

analyzed. The replayer can then be configured to only trace the instructions beyond that

point. Applying this method to the six large samples resulted in a 99% reduction in the

instruction trace size.

73

3.5.4 Recorder Performance

The malware evaluation provided some insights into the replayer’s performance.

Without ground knowledge about the real-world malware, it is difficult to accurately

measure the performance of the recorder. Instead, the performance is estimated using

controlled and synthetic experiments.

Recording adore-ng. The adore-ng rootkit is used to estimate recorder performance

under frequent realm switches. The rootkit was installed into the Redhat 7 guest and

exercised by decompressing the Linux kernel source with about 17,000 files. Since adore-ng

intercepts file based system calls, there is at least one realm change per file. The workload

took 3s without recording and 52s when recording was enabled, generating a 14MB

execution log. A roughly 17x slowdown seems high, but is reasonable for this workload

with frequent context switch between the rootkit and the rest of the kernel.

Recording Internet Explorer. Internet explorer was used to test how well V2E

performs while recording a highly complex, computation-intensive, and interactive

application. The load time of IE with and without recording was measured in this

experiment. Without recording, IE started up and loaded the MSN homepage in 2.5s. With

recording, it took 13.8s (about a 5x slowdown) and resulted in a 52MB execution log. The

recording performance impact is expected to decrease as IE continues to run, because more

pages (e.g., shared libraries) should remain stable in the recording realm. Despite this, a 5x

slowdown is reasonable, since IE was still very responsive to user inputs while recording. It

is worthwhile to note that the IE log did not replay successfully. This could be due to the

74

CPU based landmark or unknown emulation bugs, but the real reason remains unknown.

Since the malware recorded and replayed correctly, fixing the error is left as future work.

Comparing with Single Stepping. Single stepping was implemented in KVM and a

synthetic program that executes a loop with 8 million instructions were used to assess

performance overhead. On KVM, it took approximately .008s vs. 25s when single stepping

was disabled and enabled respectively. That is more than a 3000x slowdown. In contrast,

the same 8 million instructions were recorded with negligible performance penalty (i.e., the

recording time was approximately .008s). The baseline replay runtime was 0.3s, and it took

only 0.8s to perform unpacking analysis and 48s to obtain the complete instruction trace.

3.6 Discussion

The limitations and potential evasion techniques are discussed in this section.

Bugs in Common Instructions. To achieve transparency, common instructions are

assumed to emulate correctly. This assumption does not necessarily have to hold. If

malware exploits a previously unknown emulation bug in common instructions, then replay

will not be successful. Once the replay failure is found; however, the bug can be identified

and its emulation code fixed.

Attacking the Landmarks. As mentioned in Section 3.3.7, the landmark mechanism is

not perfect because the CPU state is not a unique identifier of an execution point. A

malware author may take advantage of this limitation to force an imprecise replay.

Resolving the issue by implementing a branch counter landmark is left as future work.

75

Multi-core Support. The current implementation of V2E only supports a single-core

guest environment. Newer versions of QEMU supports multi-core guests and emulation

based malware analysis platforms that support multi-core guests are expected in the

future. Since TDP is used to separate the main and recording realms and each virtualized

core has its own VMCS and TDP page table, recording malware execution on multi-core

environments is feasible by design. Implementation is left as future work as well.

Denial-of-Service Attack. It is feasible for malware to induce a large number of exits

(e.g., TDP page faults and exceptions) to the hypervisor, so as to launch a denial-of-service

attack on the recorder. In addition, malware could detect the analysis environment by

measuring this slowdown using an external clock. In general, this kind of limitation is not

unique to V2E; it is also shared by other platforms (like Ether). Analysts will have to

implement case-by-case solutions once they actually arise.

3.7 Conclusion

Precise heterogeneous record and replay and its implementation in V2E were presented

in this chapter. In PHRR, a malware sample is allowed to execute under hardware

virtualization where its actions are recorded for replay and further analysis. By analyzing

and categorizing the expected differences between emulation and hardware virtualization, a

recorder that not only captures all inputs, but also all deviant behaviors was designed. A

corresponding dynamic binary translation based replayer that precisely replays the

recorded events was also designed to ensure that, despite being emulated, the sample will

execute exactly as it did under hardware virtualization.

76

In V2E, the recorder was implemented in KVM and the replayer in TEMU.

Subsequently, a number of synthetic and real-world samples were used to determine

whether PHRR as implemented in V2E is sufficient to help TEMU become transparent

while maintaining its emulation based malware analysis advantages of efficiency and

flexibility. V2E was successful in defeating previously published emulation detection

techniques as well as 14 real-world malware samples that have previously evaded emulation

based analysis. Furthermore, tests on recorder and replayer performance returned

acceptable results. The recorder exhibited an approximately 17x performance degradation

for a rootkit sample that caused many realm switches.

In summary, V2E showed that precise heterogeneous record and replay can help

currently available emulation based dynamic binary analysis tools achieve transparency.

The next focus of this dissertation is to ensure that emulation based dynamic binary

analysis of mobile platforms is also feasible. Techniques for bridging the two semantic gaps

for Android malware analysis and their implementation in DroidScope are presented in the

next chapter.

77

4. EMULATION-BASED ANDROID MALWARE ANALYSIS

4.1 Introduction

Emulation based malware analysis has the advantages of isolation over user/kernel

space based implementations, and flexibility and efficiency over hardware virtualization

based ones. The major disadvantages are transparency and semantic gaps.

The previous chapter showed that precise heterogeneous record and replay is a viable

technique to help emulators become more transparent, and therefore, the disadvantage due

to transparency is reduced. Furthermore, virtual machine introspection techniques have

proven to be effective in bridging the semantic gap between the emulator (or virtual

machine monitor) and the guest operating system. This also lessens the disadvantage due

to semantic gaps.

The semantic gap problem has resurfaced with the advent of mobile, and Android in

particular, malware. There are two levels of semantic information that must be rebuilt.

Android applications can contain native and Java components that cooperate in order to

achieve a common goal; the Java components are interpreted by the Dalvik Virtual

Machine, a Java Virtual Machine.

While traditional VMI techniques can successfully bridge the native level semantic gap

(e.g., identify processes), new methods are needed to reconstruct the Java level semantic

information (e.g., which Java method is being executed). Ideally, the two levels of semantic

78

information are also bound together so that the native and Java components’ execution

and interactions between them can be analyzed using one single tool. The details on how

this is achieved are presented in this chapter.

The general architecture of a new emulation-based Android malware analysis platform

is described in Section 4.2. This architecture is implemented in a tool named DroidScope.

The architecture includes an Instrumentation Interface that analysts can use for plugin

development. The details on how the interface maintains efficiency and flexibility are

presented in Section 4.3. The architecture also includes two virtual machine introspection

libraries, one for the native context and one for the Java context. The details on the

different data structures needed for VMI are presented in Sections 4.4.1 and 4.4.2 for the

native and Java contexts respectively. The techniques are implemented in DroidScope and

several plugins were also implemented to evaluate the effectiveness of this new analysis

platform. These plugins are also evaluated in terms of performance and ability to analyze

real-world Android malware with cooperating Java and native components. The plugins

and results are presented in Sections 4.5 and 4.6. Limitations are discussed in Section 4.7

and an intermediary conclusion drawn in Section 4.8.

4.2 Architecture

Figure 4.1 depicts the architecture of an emulation based analysis platform for Android

malware. The design is implemented as a tool named DroidScope and thus for brevity,

DroidScope will be used to refer to both the architecture and the implementation.

79

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

OS-level
View

Java-level
View

DroidScope
Instrum

entation Interface

API
Tracer

Native
Insn. Tracer

Dalvik
Insn. Tracer

Taint
Tracker

Java
Component

Java
Component

Fig. 4.1.: DroidScope Overview

Like other emulation based malware analysis architectures, the entire Android system

(including the malware) runs on top of an emulator - the Android emulator in this case -;

the analysis is completely performed from the outside. In this case, DroidScope is built on

top of the QEMU based Android emulator that ships with the Android SDK (Software

Development Kit) to ensure the best compatibility with virtual Android devices. There are

important components to the architecture: native-level view, Java-level view and the

Instrumentation Interface (II).

The native-level view includes a machine-level view that exposes low level information

such as instructions and raw memory access to the analyst and an OS-level view that

rebuilds OS constructs such as processes and system calls. The Java-level view uses VMI to

interpret the internal state of Java components including Java objects in memory and the

state of the Dalvik Virtual Machine (a Java Virtual Machine). The Instrumentation

Interface abstracts away the details of how intrumentation (i.e., the technique used to

execute analysis code alongside guest code) takes place so the analyst can focus on what to

80

do with instrumentation (e.g., implement an instruction tracer). The interface also includes

access to a library of VMI related functions so the analyst can readily access the two

reconstructed views.

To complete the overall emulation-based analysis platform, the figure also depicts a

number of plugins that can be built on this new architecture. An API tracer can be

implemented to monitor the malware’s activities at the API level. This can then be used to

reason about how the malware interacts with the Android runtime environment. Since

Android envrionment includes both the Java framework as well a native libraries, the API

tracer should not only monitor how the malware’s Java components communicate with the

Android Java framework and how the native components interact with the Linux system

but also how Java components and native components communicate through the JNI

interface. This is possible since the native and Java level views are available to the API

plugin at all times. This plugin can be used to illustrate VMI as well as the flexibility

aspect of emulation based malware analysis.

The native instruction tracer and Dalvik instruction tracer are plugins for looking into

how a malicious App behaves internally by recording detailed instruction traces. The

Dalvik instruction tracer records Dalvik bytecode instructions for the malware’s Java

components and the native instruction tracer records machine-level instructions for the

native components (if they exist). The instruction tracers can be used to illustrate how

efficient emulation based analysis is.

Taint analysis is one of the other fine-grained analysis techniques that are suitable for

implementation in an emulation based analysis platform. The taint tracker plugin is an

implementation of this technique. Since taint analysis is an important dynamic analysis

81

technique, the core taint propagation logic is implemented as an internal-plugin that is part

of the Instrumentation Interface. The taint tracker plugin is simply a wrapper. This means

that other plugins, such as the Dalvik Instruction Tracer can also use taint analysis to

enrich the traces. It is worth noting that, by design, dynamic taint analysis is implemented

at the machine code level only. It is assumed that with semantic knowledge at both native

and Java levels, information leakage in Java components, native components, or even

collusive Java and native components and be revealed. This assertion is verified to be true

for arithmetic operations in the next Chapter.

4.3 Instrumentation Interface

The Instrumentation Interface serves as the interface between plugins and DroidScope’s

internal logic and the analysis plugins. It serves two main purposes, export the virtual

machine introspection functions and methods to the plugins and allow plugins to easily

instrument or intercept the malware sample’s execution. Virtual machine introspection

requires instrumentation support so important points of a guest’s execution can be

detected and analysis can be conducted. The changes made to the Android emulator for

instrumentation is discussed next.

4.3.1 Basic Instrumentation

Recent versions of QEMU, like the one the Android emulator is based on, use the Tiny

Code Generator (TCG) to compile guest code blocks into host code blocks. The execution

flow is as follows: 1) a basic block of guest instructions is disassembled and translated into

82

an intermediate representation called TCG-IR; 2) the TCG-IR code block is then compiled

down to a block of host instructions and stored in a code cache; and 3) control jumps into

the translated code block and guest execution begins. Subsequent execution of the same

guest basic blocks will skip the translation phase and directly jump into the translated

code block in the cache.

The crux of code instrumentation lies in the technique used to ensure that the program

analysis code executes alongside the guest’s code. This implies that there must be a way

insert program analysis code into the translated code blocks used in step 3 above. To do

so, extra TCG-IR instructions are inserted during the code translation phase (step 1), such

that this extra analysis code is executed in the execution phase (step 3). For example. in

order to monitor context switches, several TCG-IR instructions are inserted to call a helper

function whenever the translation table registers (ARM system control co-processor

c2 base0 and c2 base1 in QEMU) are written to. The logic for identifying the switched-out

process or switched-in process can then be implemented in the helper function.

Instrumentation Callbacks The problem with directly inserting analysis code into

helper functions is it limits the flexibility of analysis plugins. This can be better illustrated

using instruction level instrumentation where a helper function is called whenever a guest

instruction is executed. It is conceivable that two different analysis plugins will require

instruction level instrumentation. For example, an instruction tracer plugin will have logic

that disassembles each instruction and writes the contents to a log. Whereas, a control flow

graph generator plugin will have logic that checks whether the instruction is a branch

instruction and if so, add an extra node and/or edge to the control flow graph. In the basic

83

scheme, the logic for both plugins will be implemented in the same helper function

coupling their functionalities. A bug in one plugin will affect the other.

A better solution is to abstract away the details of adding the instrumentation code and

export an event based callback interface. In this design, the plugin logic is implemented in

separate and distinct functions. Each plugin can then register a callback such that their

respective functions are called whenever an instruction is executed. The plugins can also

unregister the callbacks when their jobs are complete. Thus, the purpose of the helper

function is to search through the registered callback functions and issue the appropriate

calls. This is a role of the Instrumentation Interface.

4.3.2 Application Programming Interfaces

Abstracting away the details of inserting instrumentation code is only one function of

the II. The other functions are to expose the native and Java level views to analysis

plugins. All of the different functions can be categorized into three different Application

Programming Interfaces (APIs) to mirror the different context levels of an Android device:

the native or machine API, the OS or Linux API and the Java or Dalvik API. These APIs

can also be further separated into two sub-categories. Analysts can register event based

callbacks using the Events sub-API so they are notified of when certain events of interest

take place. They can then use the Query and Set sub-APIs to interpret and potentially

change the guest’s state using VMI. Table 4.1 summarizes these APIs. The details are

presented in Sections 4.4.1 and 4.4.2. A short description is provided below.

84

E
vents

instruction begin/end context switch
register read/write system call method begin
memory read/write task begin/end
block begin/end task updated

memory map updated

Q
uery &

 S
et

memory read/write query symbol database query symbol database
get current context interpret Java object

register read/write get task list get/set DVM state
taint set/check taint set/check objects

disable JIT

NativeAPI LinuxAPI DalvikAPI
Dalvik instruction begin

memory r/w with pgd

Table 4.1: Summary of DroidScope APIs

At the native level, one can register callbacks for instruction start and end, basic block

start and end, memory read and write, and register read and write. One can also read and

write memory and register content. As taint analysis is implemented at the machine code

level, one can also set and check taint in memory and registers.

At the OS level, one can register callbacks for context switch, system call, task start,

update (such as process name), and end, and memory map update. One can also query

symbols, obtain the task list, and get the current execution context (e.g., current process

and thread).

At the Dalvik level, one can instrument at the granularity of Dalvik instructions and

methods. One can query the Dalvik symbols, parse and interpret Java objects, read and

modify DVM state, and selectively disable the Just-In-Time (JIT) compiler in the DVM for

certain memory regions. Through the Dalvik-view, one can also set and check taint in Java

Objects as well.

85

4.3.3 Instrumentation Optimization

A general guideline for performance optimization in dynamic binary translation is to

shift computation from the execution phase to the translation phase. For instance, if the

analyst one needs to instrument a function call at address x using basic blocks, then one

should insert the instrumentation code for the block at x when it is being translated

instead of instrumenting every basic block and look for x at execution time.

This guideline is followed as part of the new analysis platform. Consequently, the

instrumentation logic becomes more complex. When registering for an event callback, one

can specify a specific location (such as a function entry) or a memory range (to trace

instructions or functions within a particular module). Therefore, the instrumentation logic

and the APIs support single value comparisons and range checks for controlling when and

where event callbacks are inserted during the translation phase.

The instrumentation logic is also dynamic, because analysts can register and unregister

a callback at execution time. For example, when the virtual device starts, only the

OS-view instrumentation is enabled so the Android system can start quickly as usual.

When the analyst starts analyzing an App, instrumentation code is inserted to reconstruct

the Dalvik view and to perform analysis as requested by the plugin. When instrumenting a

function return, the return address will be captured from the ARM link register, r14, at

the function entry during execution, and a callback registered at the return address. After

the function returns, this callback is removed since it has served its purpose. Then when

the analysis has finished, other instrumentation code is removed as well.

86

In order to support dynamic instrumentation, QEMU’s translated code cache must be

flushed whenenver a new callback is registered or un-registered. However, flushing the

whole cache means that all previously translated code blocks, even ones that are unaffected

by the changes in callback registration, will need to be translated again. This introduces

unnecessary performance overhead. Thus, by design, the instrumentation logic should only

flush (i.e., invalidate) the translated blocks that are affected by the change. For example,

when the analyst removes the callback for the function return, only the translated block

that starts at the return address and blocks that point to it are invalidated. The rest of the

cache is left intact.

4.3.4 Taint Analysis

Taint analysis is an important dynamic analysis technique and has been implemented

as part of many different analysis platforms. Therefore, support for taint analysis is

included as part of the Instrumentation Interface. A simple taint analysis design is used. In

this design, each byte of data is labeled either as tainted or untainted and taint propagates

through native instructions only. It is assumed that since native instructions are used

emulate Dalvik bytecode, tracking taint through native instructions should be sufficient for

tracking taint trough the bytecode. This assumption needs to be verified. Furthermore, the

design is simple since the taint propagation policy uses a simple “or” rule. That is, the

result of an operation is tainted as long as any of the operands are tainted.

While setting and checking the taint of native objects is straight forward, setting and

checking Java objects involves some understanding of how Java objects are represented in

87

memory (see Section 4.4.2). Briefly, tainting an object involves first separating the real

data (e.g., an objects fields) from the metadata (e.g., a field’s name) and then labeling the

real data as tainted. Checking taint is done in a similar manner.

4.4 Bridging the Semantic Gaps

This section discusses the methodology for rebuilding the two levels of semantic views.

Details for rebuilding information about processes, threads, memory mappings and system

calls at runtime are described first (the OS-level view) followed by details about the Dalvik

Virtual Machine and rebuilding the Java or Dalvik-level view.

4.4.1 Reconstructing the OS-level View

The native-level view is essential for analyzing native components. The machine-level

view provides insight into low-level execution details such as the native instructions being

executed. Since the details are defined as part of the Application Binary Interface and

Instruction Set Architecture documentation, it will not be elaborated further here. The

focus is on the OS-level view.

The basic techniques for reconstructing the OS-level view have been well studied for the

x86 architecture and are generally known as virtual machine introspection [17–19]. The

core idea is to understand which data structures contain pertinent information and how the

data structures can be reached and interpreted from the low level, raw, view of the virtual

machine’s state. This section focuses on the kind of information that is made available to

analysts through the II either in the form of new events or query and set functions.

88

System Calls A user-level process has to make system calls to access various system

resources and thus obtaining its system call behavior is essential for understanding

malicious Apps. On the ARM architecture, the service zero instruction svc #0 (also known

as swi #0) is used to make system calls with the system call number in register r7. This is

similar to x86 where the int 0x80 instruction is used to transition into privileged mode

and the system call number is passed through the eax register.

To obtain system call information, additional TCG-IR instructions are inserted to call a

helper function whenever the special instructions above are translated (i.e., the special

instructions are instrumented). This helper function then dispatches the system call event

to functions that registered for the even using the II.

For example, a plugin that logs system calls can simply register for the event and when

notified, log the program counter of the caller and the system call number. For important

system calls (e.g., open, close, read, write and connect), the system call parameters and

return values can also be retrieved as well. The parameters are read them from the general

purpose registers and/or the stack and interpreted based on the published system call

interface. Block begin events are registered for the return address of the system call and

the return value is retrieved when the event callback function is notified.

Shadow Task List From the operating system perspective, Android Apps are user-level

processes. Therefore, it is important to know what processes are active and which one is

currently running. A shadow task list with select information about each task is

maintained to make this information readily available to analysis tools. The shadow task

89

list can be accessed through the II. Analysts can also register for events based on whether a

new task has been added, removed or the details have changed.

The basic executable unit in the Linux kernel is the task, which is represented by the

task struct structure. A list of active tasks is maintained in a task struct list which is

pointed to by init task. To distinguish between a thread and a process, a task’s process

identifier pid as well as its thread group identifier tgid is retrieved from the guest’s

memory space. The pgd (the page global directory that specifies the memory space of a

process), uid (the unique user ID associated with each App), and the process’ name are

also maintained as part of the shadow task list. Additionally, experience has shown that

malware often escalates its privileges or spawns child processes to perform additional

duties. Thus, the shadow task list also contains the task’s credentials (i.e., uid, gid,

euid, egid as well as the process’ parent pid).

Special attention is paid to a task’s name since the comm field in task struct can only

store up to 15 characters. This is often insufficient to store the App’s full name, making it

difficult to pinpoint a specific App. This is also a simple example of how malware analysis

in desktops differs from mobile systems. To address this issue, the complete application

name is obtained from the command line string cmdline, which is pointed to by the

mm struct structure pointed to by task struct. Note that the command line string is

located in user-space memory, which is not shared like kernel-space memory where all the

other structures and fields reside. To put it differently, the guest virtual addresses in all

other structures and fields can be translated into guest physical addresses using the page

tables of any guest process. In contrast, the GVA for cmdline can only be translated into

the correct GPA using that process’ page table.

90

According to the design of the Linux kernel, the task struct for the current process

can be easily located. The current thread info structure is always located at the (stack

pointer & 0x1fff), and thread info has a pointer pointing to the current task struct.

All active tasks are identified by iterating through the doubly linked task struct list. To

ensure that the shadow list is up to date, it is updated whenever the sys fork, sys execve,

sys clone and sys prctl system calls are executed.

Process Logger. Experience has shown that a history of all the threads and processes

in a system is useful for quickly understanding the parent and child relationships between

the different processes over time. Thus, a plugin that registers for the task begin and end

events and logs the detailed information about the process is implemented as part of the

OS-level view.

Memory Map A process’ memory map reveals how a process’ virtual memory space is

segmented and the intended purpose of each segment. This information is useful for

analysts and is needed for reconstructing the Java-level view. This is especially true for

newer versions of Android, such as Ice Cream Sandwich, with address space layout

randomization enabled by default. The virtual address of a library can be directly retrieved

from the memory map, even if the virtual address changes with each execution of a

program.

Similar to the shadow task list, a shadow memory map is built and made available to

analysts as part of the OS-level view. Plugins can also register for the memory map

updated event.

91

The shadow memory map is buit by iterating through the list of virtual memory areas

by following the mmap pointer in the mm struct pointed to by the task struct. The

information gathered includes the address range, the permissions and the name of the file if

it is mapped. Also like the shadow task list, the shadow memory map information is

updated when a system call (sys mmap2) returns. Note that each process has its own

shadow memory map. Due to this, only the memory map for the currently executing

process is updated.

4.4.2 Reconstructing the Dalvik View

Reconstructing the Java or Dalvik view requires knowledge of how the DVM operates

as well as the shadow lists in the OS-level view. The goal of the Dalvik view is to allow

analysts to interpret Dalvik instructions, the current DVM machine state and even Java

Objects. The pertinent details are presented in this section. Note that the following

descriptions are primarily based on the ARM architecture. Some details on the x86

architecture are provided as needed. Furthermore, the descriptions are for Android

Gingerbread. While the concepts should remain the same, some details might differ from

version to version. This in turn means that the introspection implementations will need to

updated to match the changes in the future.

Dalvik Instructions and mterp The DVM’s main task is to execute Dalvik bytecode

instructions. In Gingerbread and thereafter, it does so in two ways: interpretation and

Just-In-Time compilation (JIT) [128].

92

rIBase:dvmAsmInstructionStart

array-length

instance-of

move/from16

move

nop

ldrh r7, [r4, #2]!
and ip, r7, #255
add pc, r8, ip, lsl #6
push{r4,r5,r6,r7,r8,r9,sl,fp,lr}
sub sp, sp, #4
.
.
nop
nop
nop

lsr r3, r7, #12
lsr r9, r7, #8
ldr r0, [r5, r3, lsl #2]
and r9, r9, #15
cmp r0, #0
.
.
cmp r0, r1
beq<dvmAsmSisterStart+0xe4>
b<dvmAsmSisterStart+0xd0>

Opcode * 0x40

 0x0

0x40

0x80

0x800

0x840

Fig. 4.2.: Dalvik Opcode Emulation Layout in mterp

The interpreter, named mterp, uses an offset-addressing method to map Dalvik opcodes

to machine code blocks as shown in Figure 4.2. Each opcode has 64 bytes of memory to

store the corresponding emulation code, and any emulation code that does not fit within

the 64 bytes use an overflow area, dvmAsmSisterStart, (see instance-of in Figure 4.2).

This design simplifies the emulation of Dalvik instructions. mterp simply calculates the

offset (opcode ∗ 64) and jumps to the corresponding emulation block.

This design also simplifies the reverse conversion from native to Dalvik instructions as

well: when the program counter (R15) points to any of these code regions, the DVM is

interpreting a Dalvik bytecode instruction. Furthermore, it is trivial to determine the

opcode of the currently executing Dalvik instruction. The formula is (R15− rIBase)/64,

where rIBase is the virtual address of the beginning of the emulation code region. rIBase is

93

dynamically calculated as the virtual address of libdvm.so (obtained from the shadow

memory map in the OS-level view) plus the offset of dvmAsmInstructionStart (a debug

symbol). The emulation code for Dalvik opcode number 0 (nop) can be used as a signature

to search for the start of the emulation section if the debug symbol is not available.

The Dalvik view registers for the block begin events in order to determine when a

Dalvik bytecode instruction begins and issue the corresponding Dalvik Instruction Begin

event that is part of the II. Since there are only 256 possible opcodes and each opcode takes

only 64 bytes, only the block begin events for the pages that contain the emulation code

are registered for. In other words, the instrumentation logic described previously will not

insert the TCG-IR to call the helper function for any other basic blocks except the ones

that contains Dalvik emulation code or were requested by other plugins. Furthermore, the

Dalvik view only registers for these events if there are plugins that registed for the Dalvik

instruction begin event. Once again, the event based callback interface is very dynamic.

Detecting the beginning of a method involves keeping track of whether the previous

Dalvik instruction was one of the invoke* instructions along with making consistency

checks (e.g., making sure it is in the same thread). Optimized block begin callbacks are

also used for this purpose.

Selectively Disabling JIT The Just-In-Time compiler was introduced to improve

performance by compiling heavily used, or “hot”, Dalvik instruction traces (consisting of

multiple code blocks) directly into native machine code. While each translated trace has a

single entry point, there can be multiple exits known as chaining cells. These chaining cells

either chain to other translated traces or to default entry points of the mterp interpreter.

94

Update
Program Counter(PC)

Is Code in JIT
code cache?

Execute JIT
 code block

Emulate Code
Using mterp

Yes

No

Decrement block
Counter

Is Counter 0?
Request JIT

Compilation for
Code block and

reset Counter

Yes

No

Fig. 4.3.: High Level Flowchart of mterp and JIT

Overall, JIT provides an excellent performance boost for programs that contain many hot

code regions, although it makes fine-grained instrumentation more difficult. This is because

JIT performs optimization on one or more Dalvik code blocks and thus blurs the Dalvik

instruction boundaries.

An easy solution would be to completely disable JIT at build time, but it could incur a

heavy performance penalty and more importantly it requires changes to the virtual device,

which can lead to transparency problems. Considering that analysts are often only

interested in the behavior of a particular section of Dalvik bytecode (such as the main

program but not the rest of system libraries), an alternative solution is to selectively

disable JIT at runtime. Analysis plugins specify the code regions for which to disable JIT

using the II and as a result only the Dalvik blocks in those regions incur the performance

penalty. All other regions and Apps still benefit from JIT.

Figure 4.3 shows the general flow of the DVM. It is similar to the dynamic binary

translation steps taken by QEMU. When a basic block of Dalvik bytecode needs to be

95

emulated, the Dalvik program counter is updated to reflect the new block’s address. That

address is then checked against the translation cache to determine if a translated trace for

the block already exists. If it does, the trace is executed. If it does not then the profiler

will decrement a counter for that block. When this counter reaches 0, the block is

considered hot and a JIT compilation requested. Compilation takes place in another

thread. To prevent thrashing, the counter is reset to a higher value and emulation using

mterp commences. As can be seen in the flow chart, as long as the requested code is not in

the code cache, then mterp will be used to emulate the code.

The dvmGetCodeAddr function is used to determine whether a translated trace exists. It

returns NULL if a trace does not exist and the address of the corresponding trace if it does.

Thus, to selectively disable JIT, the DVM is instrumented to set the return value of

dvmGetCodeAddr to NULL for any translated trace that needs to be disabled. In this case,

instrumentation involves registering a callback for when the function returns, and when it

does, alter the return value to NULL. This process is the same as the one used to update the

shadow lists in the OS-level view, except for the fact that the return value is changed in

this case.

It is imperative that changing the return value does not change the program’s original

flow. The following arguments are used to show that this is indeed true. They are based on

the source code for Android Gingerbread and so the validity of these arguments might have

to be revisited for other Android versions if the JIT logic changed.

First, if the original return value was NULL then the change will not have any side

effects. Second, if the return value was a valid address, then by setting it to NULL, the

profile counter is decremented and if 0 (i.e., the code region deemed hot again) another

96

compilation request is issued for the block. In this case, the code will be recompiled taking

up space in the code cache. This can be prevented by not instrumenting the

dvmGetCodeAddr call from the compiler. In addition to preventing the translated trace

from being executed, setting the value to NULL also prevents it from being chained to other

traces. This is the desired behavior.

For the special case where a translated trace has already been chained and thus

dvmGetCodeAddr is not called, the JIT cache should be flushed whenever the disabled JIT

configuration changes (e.g., JIT for a new code region needs to be disabled). This can be

done by marking the JIT cache as full during the next garbage collection event, which

leads to a cache flush. Once again these changes are made from the VMM through

instrumentation. While this is not a perfect solution, it has been sufficient for the

evaluations. Full JIT support is left as future work.

In all cases, the only side effect is wasted CPU cycles due to compilation; the execution

logic is unaffected. Therefore, the side effects are inconsequential.

DVM State Figure 4.4 illustrates how the DVM maintains the virtual machine state.

When mterp is emulating Dalvik instructions, the ARM registers r4 through r8 store the

current DVM execution context. More specifically, r4 is the Dalvik program counter,

pointing to the current Dalvik instruction. r5 is the Dalvik stack frame pointer, pointing

to the beginning of the current stack frame. r6 points to the InterpState data structure,

called glue. r7 contains the first two bytes of the current Dalvik instruction, including the

opcode. Finally r8 stores the base address of the mterp emulation code for the current

DVM instruction. In x86, edx, esi, edi and ebx are used to store the program counter,

97

V4 (In 2)
V3 (In 1)
V2 (In 0)

V1
V0

R0:
R1:
R2:
R3:
R4: rPC
R5: rFP
R6: rGLUE
R7: rINST
R8: rIBASE
R9:
R10:
R11:
R12:
R13:
R14:
R15: PC+4

framework.jar@
classes.dex

mterp

InterpState

InterpState
{
 …
 Jvalue retval;
 ...
 Thread* self;
 …
}

android.app.ContextImpl.SharedPreferencesImpl.getInt:(Ljava/lang/String;I)I:

lib
d

vm
.s

o

String
Integer

“this”

S
ta

ck
 g

ro
w

s

low address

Fig. 4.4.: Dalvik Virtual Machine State

frame pointer, mterp base address and the first two bytes of the instruction respectively.

The glue object can be found on the stack at a predefined offset. Dalvik virtual registers

are 32 bits and are stored in reverse order on the stack. They are referenced relative to the

frame pointer r5. Hence, the virtual register v0 is located at the top of the stack (pointed

to by the ARM register r5,) and the virtual register v1 sits on top of v0 in memory, and so

forth. All other Dalvik state information (such as return value and thread information) is

obtained through the glue data structure pointed to by r6.

By understanding how the DVM state is represented in the CPU registers and memory,

detailed information such as the current DVM program counter, frame pointer and all

virtual registers can be retrieved at runtime. The only requirement is knowing when the

mterp interpreter is executing. In the minimum, this is true whenever the instruction

pointer is pointing to the Dalvik bytecode emulation section.

98

ClassObject*

lock

ArrayObject*

hashcode

offset (0)

count (5)in
st

an
ce

D
at

a

struct StringObject {
 Object obj;
 u4 instanceData[1];
};

struct ArrayObject {
 Object obj;
 u4 length;
 u8 contents[1];
};

ClassObject*

lock

align_pad

0x0048 'H', 0x0045 'e'

0x006c 'l', 0x006c 'l'

0x006f 'o', 0x0000

co
nt

en
t s

V3 (In 1)

0x0000, 0x0000

java.lang.String ClassObject

struct Object {
 ClassObject* clazz;
 u4 lock;
};

char[] ClassObject

Fig. 4.5.: String Object Example

Java Objects Java Objects are described using two data structures. Firstly, ClassObject

describes a class type and contains important information about that class: the class name,

where it is defined in a dex file, the size of the object, the methods, and the location of the

member fields within the object instances. To standardize class representations, Dalvik

creates a ClassObject for each defined class type and implicit class type (e.g., arrays). For

example, there is a ClassObject that describes a char[] which is used by

java.lang.String. Moreover, if the App has a two dimensional array (e.g., String[][]),

then Dalvik creates a ClassObject to describe the String[] and another to describe the

array of the previously described String[] class.

Secondly, as an abstract type, Object describes a runtime object instance (i.e., the

member fields). Each Object has a pointer to the ClassObject that it is an instance of plus

a tail accumulator array for storing all member fields. Dalvik defines three types of Objects,

99

DataObject, StringObject and ArrayObject that are all pointed to by generic Object*s. The

correct interpretation of any Object* fully depends on the ClassObject that it points to.

A simple String (“Hello”) is used to illustrate the interpretation process. Figure 4.5

depicts the different data structures involved as well as the struct definitions on top. The

String is referenced by the virtual register v3. Since Java references are simply Object*s,

v3 points to an Object. To determine the type of the object, the first 4 bytes of the object

is used to reach the ClassObject structure. This ClassObject instance describes the

java.lang.String class. Internally, Dalvik does not store the String data inside the

StringObject and instead use a char[]. Consequently, instanceData[0] is used to store

the reference to the corresponding char[] object and instanceData[3] is used to store

the number of characters in the String, 5 in this case.

Then, the String’s data is obtained by following instanceData[0] to the character

array. Once again the Object* within the new object must be used to correctly interpret it

as an ArrayObject. Note that since ARM EABI (Embedded Application Binary Interface)

requires all arrays to be aligned to its element size and u8 is 8 bytes in length, an implicit 4

byte align pad was inserted into the ArrayObject to ensure that the contents array is

properly aligned. Given the length of the String from the StringObject and the

corroborating length in the ArrayObject, the “Hello” String is found in the contents array

encoded in UTF-16.

100

4.4.3 Symbol Information

Symbols (such as function name, class name, field name, etc.) provide valuable

information for human analysts to understand program execution. Thus, a symbol

database is maintained for access through the II. For portability and ASLR support, a

single database of offsets to symbols is used per module. At runtime, finding a symbol by a

virtual address requires first identifying the containing module using the shadow memory

map, and then calculating the offset to search the database.

Native library symbols are retrieved statically through objdump and are usually limited

to Android libraries since malware libraries are often stripped of all symbol information.

On the other hand, Dalvik or Java symbols are retrieved dynamically and static symbol

information through dexdump is used as a fallback. This has the advantage of ensuring the

best symbol coverage for optimized dex files and even dynamically generated Dalvik

bytecode.

More DVM data structures are used to retrieve symbols at runtime. For example, the

Method structure contains two pointers of interest. insns points to the symbol address (in

other words, the start of the method’s bytecode) and name points to the method’s name

(this field is located in the memory mapped dex file). Conveniently, the glue structure

pointed to by R6 has a field, method, that points to the Method structure for the currently

executing method.

There are times when this procedure fails though, e.g., if the corresponding page of the

dex file has not been loaded into memory yet. In these cases, the offset into the dex file can

be calculated using the shadow memory map and the information retrieved from a local

101

copy of the corresponding dex file. If this fails as well, then the static symbol information

from dexdump is used as a last resort. This same basic method of relying on the DVM’s

data structures is used to dynamically retrieve class and field names as well.

4.5 Plugins

The architecture including the Instrumentation Interface, the OS-level view and Java or

Dalvik-level views were implemented in a tool named DroidScope. DroidScope is built on

top of the Android emulator that ships with the Android Gingerbread source. The Android

emulator is in turn based on QEMU version 0.10.50. This section discusses the plugins that

were implemented to illustrate the flexibility of analysis tool development.

4.5.1 Sample Plugin

Figure 4.6 presents sample code for implementing a simple Dalvik instruction tracer.

This is not a real plugin and the functions prototypes are not the ones found in the actual

DroidScope implementation. The init function at L19 will be called once this plugin is

loaded in DroidScope. The init function specifies which program to analyze by calling the

setTargetByName function. It also registers a callback module callback to be called when

module information is updated. module callback will check if the DVM is loaded and if so,

disable JIT for the entire memory space (L9 and L11.) It also registers a callback,

opcode callback, for Dalvik instructions. When called, opcode callback prints the opcode

information.

102

 1. void opcode_callback(uint32_t opcode) {
 2. printf("[%x] %s\n", GET_RPC, opcodeToStr(opcode));
 3. }
 4.
 5. void module_callback(int pid) {
 6. if (bInitialized || (getIBase(pid) == 0))
 7. return;
 8.
 9. gva_t startAddr = 0, endAddr = 0xFFFFFFFF;
10.
11. addDisableJITRange(pid, startAddr, endAddr);
12. disableJITInit(getGetCodeAddrAddress(pid));
13. addMterpOpcodesRange(pid, startAddr, endAddr);
14. dalvikMterpInit(getIBase(pid));
15. registerDalvikInsnBeginCb(&opcode_callback);
16. bInitialized = 1;
17. }
18.
19. void _init() {
20. setTargetByName("com.andhuhu.fengyinchuanshuo");
21. registerTargetModulesUpdatedCb(&module_callback);
22. }

Fig. 4.6.: Sample code for Dalvik Instruction Tracer

This sample code will print all Dalvik instructions for the specified App, including the

main program and all libraries. If the analyst is only interested in the execution of the

main program, he or she can add call the II function getModAddr(”example@classes.dex”,

&startAddr, &endAddr) at L10. This function locates the dex file in the shadow memory

map and stores its start and end addresses in the appropriate variables. The rest of the

code can be left untouched.

4.5.2 Analysis Plugins

To demonstrate the flexibility of analysis plugin development as well as DroidScope’s

ability to analyze Android malware, four analysis plugins have been implemented: API

tracer, native instruction tracer, Dalvik instruction tracer, and taint tracker.

103

API tracer monitors how an App (including Java and native components) interacts

with the rest of the system through system and library calls. First all of the App’s system

calls are logged by registering for system call events. A whitelist of the virtual device’s

built-in native and Java libraries is then created to list all of the libraries that should not

be traced. As modules are loaded into memory, any library not in the whitelist is marked

for analysis. The invoke* and execute* Dalvik bytecodes are used to identify and log

method invocations, including those of the sample. Since this is a small number of

instructions, block begin events at the start of the instructions’ emulation code are used to

determine when these Dalvik bytecode instructions are being emulated instead of the

Dalvik instruction begin events. This improves performance.

The log contains the currently executing Java thread, the calling address, the method

being invoked as well as a dump of its input parameters. Since Java Strings are heavily

used, all Strings are converted into native strings before logging when possible. Then, the

move-result* bytecode instructions are instrumented to detect when system methods return

and gather the return values. Once again, block begin events are used in lieu of Dalvik

instruction begin events.

To log library calls from the App’s native components, block end events for blocks that

are located in the App’s native components are used. When the callback for a block end

event is invoked, the address of the next block is check to see whether it is within the

App’s native components. If not, then it signals a control flow transition from the App to

the system libraries, and so the event is logged.

104

Native instruction tracer registers ARM or x86 instruction callbacks to gather

information about each instruction including the raw instruction, its operands (register and

memory) and their values. These are logged into files.

Dalvik instruction tracer follows the basic logic of the above example and logs the

decoded instruction to a file in the dexdump format. The operands, their values and all

available symbol information (e.g., class, field and method names), are logged as well.

Taint tracker utilizes the dynamic taint analysis APIs to analyze information leakage

in an Android App. It specifies sensitive information sources (such as IMEI, IMSI, and

contact information) as tainted and keeps track of taint propagation at the machine code

level until they reach sinks, e.g. sys write and sys send.

With the OS and Dalvik views, it further creates a graphical representation to visualize

how sensitive information has leaked out. Whenever taint is propagated, a node that

represents the currently executing function or method and nodes for the tainted memory

locations are added. Since methods operate on Java Objects, an attempt is made to

identify the containing Object and a node created for it instead of the simple memory

location. This is done for a method’s input parameters, the current object (i.e., “this”) and

returned objects.

4.6 Evaluation

The simplicity of the event based instrumentation interface and the analysis plugins

that were built using the Instrumentation Interface showed that DroidScope, like other

emulation based malware analysis platforms, is flexible for analysis plugin development.

105

What remains to be show is that the infrastructure and plugins do not impose too much of

a performance overhead (i.e., is efficient) and that the plugins are capable of analyzing real

world Android malware with both Java and native components.

Seven benchmark Apps from the official Android Market are used to evaluate

introspection and plugin performance. The Apps are: AnTuTu Benchmark (ABenchMark)

by AnTuTu, CaffeineMark by Ravi Reddy, CF-Bench by Chainfire, Mobile processor

benchmark (Multicore) by Andrei Karpushonak, Benchmark by Softweg, and Linpack by

GreeneComputing. The results are presented in Section 4.6.1.

Two real world Android malware samples, DroidKungFu and DroidDream, are analyzed

using the developed plugins to evaluate capability. The detailed analysis results are

presented in Sections 4.6.2 and 4.6.3 respectively.

Experimental Setup All experiments were conducted on an Acer 4830TG with a Core

i5 @ 2.40GHz and 3GB of RAM running Xubuntu 11.10. The Android guest is a

Gingerbread build configured as “user-eng” for ARM with the Linux 2.6.29 kernel and uses

the QEMU default memory size of 96 MB. No changes were made to the Android source

unless otherwise noted.

4.6.1 Performance

To measure the performance impact of instrumentation, the analysis plugins were used

to analyze the various benchmark Apps while the Apps performed their tests. This was

repeated 5 times. The default Android emulator without any instrumentation is used as a

baseline. Also, since DroidScope selectively disables JIT on the Apps, the Android source

106

ABenchMark

CaffieneMark

CFBench/Native

CFBench/Java

CFBench/Overall

CPUBench (ms)

Multicore (ms)

Softweg/CPU

Softweg/Graphics

Softweg/Memory

Linpack/Singlethread

Linpack/Multithread

0% 20% 40% 60% 80% 100% 120%

0% 20% 40% 60% 80% 100% 120%

NOJIT Baseline Context Only API Tracer
Dalvik
Instruction
Tracer

Taint Tracker

Percent of Baseline

Percent of Baseline

Fig. 4.7.: Benchmark Results

107

was configured to completely disable JIT to establish a NOJIT baseline. This is the only set

of performance tests that required changes to the Android source. The results are

summarized in the bar chart in Figure 4.7. Each tool is associated with a set of bars that

shows its averaged benchmark results (y-axis) relative to the baseline as a percentage. The

ARM Instruction Tracer results are excluded as they are similar to the taint tracker results.

Please note that the benchmarks are not perfect representations of performance as

evidenced by the > 100% results. For example, in CPUBenchmark the standard deviation,

σ, for Baseline, Dalvik tracer and Context Only is only 1%. This means that the results

are consistent for each plugin, but might not be across plugins. Furthermore, the Softweg

filesystem benchmarking results were removed due to high variability, σ > 27%.

It can be seen from Figure 4.7 that the overhead (Context Only) of reconstructing the

OS-level view is very small, up to 7% degradation. The taint tracker has the worst

performance as expected, because it registers for instruction level events. The taint tracker

incurs 11x to 34x slowdown, which is comparable to other taint analysis tools [56,94] on

the x86 architecture. A special case is seen in the Dalvik instruction tracer result for

CaffeineMark. This result is attributed to the fact that the tracer dynamically retrieves

symbol information from guest memory for logging.

The benefits of dynamically disabling JIT is evident in some Java based benchmarks

such as Linpack, CFBench/Java and CaffeineMark. For those benchmarks, the API

tracer’s performance is greater than that of the NOJIT Baseline, despite the fact that

instrumentation is taking place. This difference is due to Java libraries, such as String

methods, still benefiting from JIT in the API tracer.

108

4.6.2 Analysis of DroidKungFu

The DroidKungFu (DKF) malware contains three components. First, the core logic is

implemented in Java and is contained within the com.google.ssearch package. This is

the main target of the investigation. Second are the exploit binaries which are encrypted in

the apk, decrypted by the Java component and then subsequently executed. Third is a

native library that is used as a shell. It contains JNI exported functions that can run shell

commands and is the main interface for command and control. Unfortunately the

command and control server was unavailable and thus this feature was not analyzed.

Discovering the Internal Logic The investigation began with the API tracer plugin.

The plugin provides a high level view of how DKF interacts with the rest of the system.

Behavior analysis started with a search for system calls of interest in the log. One such call

is a sys open for a file named “gjsvro”. There was also a subsequent sys write to the file

from a byte array. Further analysis showed that this array is actually part of a Java

ArrayObject which was populated by the Utils.decrypt method, which is part of

DroidKungFu. Since decrypt takes a byte array as the parameter, a backwards search

through the log revealed that this particular array was read from an asset inside the App’s

package file called “gjsvro”. It means that during execution, DroidKungFu decrypts an

asset from its package and generates the “gjsvro” file.

Subsequent entries in the log showed DroidKungFu invoking Runtime.exec with

parameters “chmod 4755” and the name of the file, making “gjsvro” executable and setting

the setuid bit. After that, Runtime.exec is invoked again for “su” which led to a sys fork.

Furthermore, the file path for “gjsvro” was then written to a ProcessImpl OutputStream,

109

getPermission {
 if checkPermission() then doSearchReport(); return
 if !isVersion221() then
 if getPermission1() then return
 if exists("bin/su" or "xbin/su") then
 getPermission2(); return
 if !isVersion221() then getPermission3(); return
}

Fig. 4.8.: getPermission Pseudocode

followed immediately by “exit”. Since this stream is piped to the child’s stdin, it is

evidence that the intention of “su” was to open a shell which is then used to execute

“gjsvro” followed by “exit” to close the shell. This did not work though since “su” did not

execute successfully.

Given the high level view provided by the API tracer, a more detailed analysis was

conducted using the Dalvik instruction tracer. The resulting trace showed that the decrypt

and Runtime.exec methods were invoked from a method called getPermission2, which was

called from getPermission following a comparison using the result of isVersion221 and

some file existence checks. To get a more complete picture of the getPermission method,

dexdump was used to disassemble the class file. The overview pseudocode is shown in

Figure 4.8 . The pseudocode shows that the different method invocations must be

instrumented and their return values changed in order to explore the getPermission1 and

getPermission3 methods.

With the Dalvik view support, the return values of the isVersion221 and exist methods

were modified and the remaining methods explored. They are essentially different ways to

obtain the root privilege on different Android configurations. getPermission1 and

getPermission2 only uses the “gjsvro” exploit. The main difference is that getPermission1

110

uses Runtime.exec to execute the exploit while the other uses the “su” shell. On the other

hand, getPermission3 decrypts “ratc”, “killall” (a wrapper for “ratc”) and “gjsvro” and

executes them using its own native library. The native library’s behavior can be observed

from the API tracer log. The log showed the library using sys vfork and sys execve to

execute both the “udev” and “rage against the cage” (ratc) exploits.

Analyzing Root Exploits Since Gingerbread has already been patched against these

exploits, they never executed correctly. The patches were removed from the Android source

and a vulnerable virtual device created to further analyze the exploits. The steps used to

understanding ratc is described here, udev is analyzed in the same manner and its analysis

is therefore skipped.

Once again, analysis started with the API tracer. However, no malicious behavior was

evident in the log. There was some suspicious behavior in the process log provided as part

of the OS-view reconstruction though. In particular, the process log showed numerous ratc

processes (descendants of the original ratc process) being spawned, the adbd process with

uid 2000 ending, followed by more ratc processes and then by an adbd process with uid 0

or root. This signifies that the attack was successful. It is worth noting that the traditional

adb based dynamic analysis would fail to observe the entire exploiting process, because

adbd is killed at the beginning.

Further analysis of the logs and descendent processes showed that there are in fact

three types of ratc processes. The first is the original ratc process that simply iterates

through the /proc directory looking for the pid of the adbd process. Its child then forked

itself until sys fork returned -11 or EAGAIN. At this point it wrote some data to a pipe

111

and resumed forking. In the grandchild process a call to sys kill is used to kill the adbd

process followed by attempts to locate the adbd process after it re-spawns.

Trace-Based Exploit Diagnosis of “ratc” An example of exploit diagnosis using the

ARM instruction tracer on ratc is presented in this section. These results corroborate with

publicly available information on ratc and the setuid exhaustion vulnerability.

By design, adbd is supposed to downgrade its privileges by setting its uid to

AID SHELL (2000), and yet adbd retained its root privileges after the attack. Thus, in an

effort to identify the root cause of the vulnerability, DroidScope was used to gather an

ARM instruction trace that includes both user and kernel code.

A simplified and annotated log is shown in Figure 4.9. In the log, the instruction’s

address comes first followed by a colon, the decoded instruction and then the operands.

The instructions are also indented to illustrate the relative stack depth.

The log begins when setgid returns from the kernel space and returns back to adb main

at address 0x0000c3a4. Almost immediately, the log shows setuid being called. After

transitioning into kernel mode, sys setuid is called followed by a call to set user. Later an

entry shows set user returning an error code 0xfffffff5 which is (-11 in 2’s complement or

-EAGAIN).

Tracing backwards in the log revealed that this error code was the result of the

RLIMIT NPROC check in set user. This reveals why setuid failed to downgrade adbd’s

privileges. Further analysis of the log showed that the return value from setuid was not

used by adbd nor was a call to getuid seen. The same applies to setgid. This indicates that

adbd failed to ensure that it was no longer running as root. Thus, the analysis shows that

112

;;;setgid returns from kernel back to adbd

0000813c: pop {r4, r7}

00008140: movs r0, r0

00008144: bxpl lr : Read Oper[0]. R14, Val = 0xc3a5

;; Return back to 0xc3a4 (caller) in Thumb mode

;;;adbd_main sets up for setuid

0000c3a4: movs r0, #250

0000c3a6: lsls r0, r0, #3 : Write Oper[0]. R0, Val = 0x7d0

;; 250 * 8 = 0x7d0 = 2000 = AID_SHELL

...

;;;Start of setuid section

;;; 213 is syscall number for sys_setuid

00008be0: push {r4, r7} : Write Oper[0]. M@be910bb8, Val = 0x7d0

;; push AID_SHELL onto the stack

00008be4: mov r7, #213

00008be8: svc 0x00000000

;; Make sys call

;;; === TRANSITION TO KERNEL SPACE ===

;;;sys_setuid then calls set_user in kernel mode

;;;inside sys_setuid

;; Has rlimit been reached?

c0048944: cmp r2, r3 : Read Oper[0]. R3, Val = 300 Read Oper[1]. R2, Val = 300

;;; RLIMIT(300) is reached and !init_user so return -11

c0048960: mvn r0, #10 : Write Oper[0]. R0, Val = 0xfffffff5

;; the return value is now -11 or -EAGAIN

c0048964: ldmib sp, {r4, r5, r6, fp, sp, pc}

;;;Return back to sys_setuid which returns back to userspace

;;; === RETURN TO USERSPACE ===

;;;setuid continues

00008bec: pop {r4, r7}

00008bf0: movs r0, r0 : Read Oper[0]. R0, Val = 0xfffffff5

;; -11 is still here

;;;Return back to adb_main at 0xc3ac (the return address) above

;;; Immediately starts other work, does not check return code

0000c3ac: ldr r7, [pc, #356] : Read Oper[0]. M@0000c514, Val = 0x19980330

Write Oper[0]. R7, Val = 0x19980330

;; 0x19980330 is _LINUX_CAPABILITY_VERSION

Fig. 4.9.: Annotated adbd trace

113

the vulnerability is due to two factors, RLIMIT NPROC and failure to verify successful

privilege downgrading.

Triggering Data leakage Reverting back to the default unchanged Gingerbread build,

the Dalvik instruction tracer and taint tracker were used to understand the information

leakage behavior in doSearchReport. As depicted in Figure 4.8, this involved instrumenting

checkPermission during execution of getPermission. The Dalvik instruction trace showed

doSearchReport invoking updateInfo, which obtained sensitive information about the device

including the device model, build version and IMEI amongst other things. Outgoing HTTP

requests, which failed because the server was down, were also observed. These HTTP

requests were then redirected to a specially created HTTP server by adding a new entry

into /etc/hosts.

UrlEncodedFormEntity.<init>

AbstractHttpClient.execute()

sys_write(34, 0x405967d0, 397)

String @ 0x4056a448
“imei=123456789012345&ostype=...”

byte[] @ 405967c0 / void* @ 405967d0
“POST /search/sayhi.php HTTP/1.1...”

String @ 0x40524e80
“123456789012345”

getDeviceId()

Fig. 4.10.: Taint Graph for Droid Kung Fu

114

The taint tracker was used to further analyze this information leakage. A simplified

taint propagation graph is shown in Figure 4.10. Objects, both Java and native, are

represented by rectangular nodes while methods are represented by oval nodes. The figure

shows UrlEncodedFormEntity (the constructor) propagating the original tainted IMEI

number in the String @ 0x40524e80 to a second String that looks like an HTTP request.

The taint then propagated to a byte array at 0x405967c0 by AbstractHttpClient.execute. It

finally arrived at the sink at sys write. Note that sys write used a void* at 0x405967d0,

which is the contents array of the byte array Object (see the StringObject example in

Section 4.4.2). This is expected since JNI provides direct access to arrays to save on the

cost of a memory copy.

4.6.3 Analysis of DroidDream

Like analyzing DroidKungFu, the API tracer was used to get a basic understanding of

DroidDream, and then instruction traces were obtained and information leakage analyzed.

The logs generated by the API tracer and the OS-view, showed two DroidDream

processes. “com.droiddream.lovePositions,” the main process, does not exhibit any

malicious behavior except using Runtime.exec to execute “logcat -c” which clears Android’s

internal log. Again, this behavior indicates that traditional Android debugging tools fall

short for malware analysis.

“com.droiddream.lovePositions:remote,” the other process, is the malicious one. The

logs showed DroidDream retrieving the IMSI number along with other sensitive information

like IMEI, and encoded them into an XML String. Next, a failed attempt to open a

115

String @ 0x40522a10
“310260000000000”

getSubscriberId()

Formatter.format()

byte[] @ 0x405232a8

String @ 0x40523288
“<?xml version="1.0" ...”

getBytes()

crypt()

sys_write(33, 405261a8, 257)

API Native Memory

ByteArrayInputStream

Fig. 4.11.: Taint Graph for DroidDream

network connection to 184.105.245.17:8080 was seen. This time, a different approach was

used to observe the networking behavior. The return values of sys connect and sys write

were instrumented to make DroidDream believe these network operations were successful.

Using the taint tracker, the IMSI was marked tainted and a taint propagation graphs

was obtained, which confirm that DroidDream did leak sensitive information from these

sources to a remote HTTP server. The simplified graph for leaking IMSI information is

illustrated in Figure 4.11. The graph was also annotated to include crypt which is the

DroidDream method used to xor-encrypt the byte array. The graph shows that

getSubscriberId was used to obtain the IMSI from the system as a String @ 0x40522a10.

The IMSI String, along with other information, were then encoded into an XML format

116

[0x43328f40] aget-byte v2(0x01), v4(0x405232a8), v0(186)

Getting Tainted Memory: 0x40523372(0x2401372)

Adding M@0x410accec(0x42c5cec) len = 4

[0x43328f44] sget-object v3(0x0000005e), KEYVALUE// field@0003

[0x43328f48] aget-byte v3(88), v3(0x4051e288), v1(58)

[0x43328f4c] xor-int/2addr v2(62), v3(41)

Getting Tainted Memory: 0x410accec(0x42c5cec)

Adding M@0x410accec(0x42c5cec) len = 4

[0x43328f4e] int-to-byte v2(0x17), v2(23)

Getting Tainted Memory: 0x410accec(0x42c5cec)

Adding M@0x410accec(0x42c5cec) len = 4

[0x43328f50] aput-byte v2(17), v4(0x405232a8), v0(186)

Getting Tainted Memory: 0x410accec(0x42c5cec)

Adding M@0x40523372(0x2401372) len = 1

Fig. 4.12.: Excerpt of Dalvik Instruction Trace for DroidDream. A Dalvik

instruction entry shows the location of the current instruction in square brackets, the decoded

instruction plus the values of the virtual registers in parenthesis. A taint log entry is indented and

shows tainted memory being read or written to. The memory’s physical address is shown in

parenthesis and the total bytes tainted is represented by “len.”

using format. The resulting String was then converted into a byte[] @ 0x405232a8 for

encryption by crypt. The encrypted version was used to create a ByteArrayInputStream.

For brevity, a generic “API Native Memory” node is used to illustrate the taint further

propagating through memory until the eventual sink at sys write.

The crypt method was further investigated by augmenting the Dalvik instruction tracer

to track taint propagation and generate a taint-annotated Dalvik instruction trace. Not

only did the log entries show the byte array being xor-ed with a static field named

“KEYVALUE,” they also showed that the encryption was conducted on the byte[] in-place.

A snippet of the trace log is depicted in Figure 4.12.

DroidDream also includes the udev and ratc exploits (unencrypted), plus the native

library terminal like DroidKungFu. They were not further analyzed.

117

4.7 Discussion

Limited Code Coverage Dynamic analysis is known to have limited code coverage, as

it only explores a single execution path at a time. To increase code coverage, one may

explore multiple execution paths as demonstrated in previous work [39–41]. Alternatively,

the experiments demonstrated that different paths can be explored by manipulating the

return values of system calls, native APIs and even internal Dalvik methods of the App.

This simple approach worked well, although a more systematic approach is desirable. One

method is to perform symbolic execution to compute path constraints and then

automatically explore other feasible paths. DroidScope does not yet support symbolic

execution and it is left as future work.

Detecting and Evading DroidScope As with other emulation based malware

analysis platforms, transparency is an issue with DroidScope. More troubling are the

intrinsic differences between the emulated environment and mobile systems. Mobile devices

contain numerous sensors (e.g., GPS, motion and audio), with performance profiles which

might be difficult to emulate. While exploring multiple execution paths may be used to

bypass these types of tests, they might still not be sufficient. For example it was observed

that Android, as an interactive system, can be sensitive to the performance overhead due

to analysis. If the analysis takes too long, certain timeout events are triggered leading to

different execution paths or even the killing of the process being analyzed. The analyst

must be aware of these new challenges. Heterogeneous record and replay might be a

potential solution to this new class of transparency problems, but further investigation in

this area is needed.

118

4.8 Conclusion

This chapter showed that the two levels of semantic information in Android platforms

can be effectively reconstructed from outside the virtual machine and seamlessly bound to

the execution so that cooperating Java and native components can be analyzed using one

single platform. Not only that, but this chapter also discussed the techniques used to build

a new, highly dynamic, emulation based malware analysis platform for analyzing Android

malware so that the advantages of flexibility and efficiency are preserved. The techniques

were implemented in DroidScope and verified by analyzing real-world malware. In short,

emulation based Android malware analysis is feasible.

With the results discussed in V2E and new ARM architectures supporting hardware

virtualization, it is foreseeable that DroidScope can achieve the same transparency

properties afforded by V2E. What remains of this dissertation is a fundamental

understanding of dynamic taint analysis so that its precision can be improved.

Additionally, the new found understanding will be used to determine whether DroidScope’s

assumption of tracking taint at the native instruction level, (e.g., ARM), is sufficient for

tracking information flows in both native and Java code is true.

119

5. UNDERSTANDING DYNAMIC TAINT ANALYSIS

5.1 Introduction

Both V2E and DroidScope support dynamic taint analysis, albeit with slightly different

designs. What remains unknown is whether the propagation policies of these and other

taint analysis implementations are accurate and, if so, how precise. This chapter presents

results towards a better understanding of how the different design parameters of

taint-granularity, analysis-granularity and special case support affect false-positives and

false-negatives. Furthermore, methods for verifying the accuracy and precision of

implementations are also presented.

In an effort to focus the discussion, the models, definitions and examples will be framed

around taint analysis for bitvector machines. That is, the data items that are labeled

tainted or untainted can be represented as bitvectors, and the operations that propagate

the taints have bitvector operands. Both x86 and ARM are bitvector machines. While the

discussions are limited to bitvectors, the general concepts and observations are not.

Applications of the results to other machines, such as Java, are discussed briefly.

This chapter starts with the derivation of a model for analyzing the accuracy and

precision of taint propagation policies from the formal model of noninterference. The

commonly used terms of over-taint, under-taint, false-positive, false-negative, accurate and

precise are also defined against this model. These details are presented in Section 5.2. The

120

relationship between the design parameters of taint-granularity, analysis-granularity and

special cases support and information flow is also discussed in the same section.

The sources of false-positives and false-negatives in practice, including the fundamental

relationships between the design parameters and false-positives, are discussed in Section

5.2.2. In brief, a taint analysis implementation with a coarser taint-granularity (e.g., 32 bit

word-level) can have more false-positives than an implementation with a finer

taint-granularity (e.g., byte-level). Similarly, propagating taint using an IR might also have

more false-positives than propagating taint through the native instructions. The methods

presented in this chapter can be used to verify that there are no false-positives.

To illustrate the benefits of a formal based approach, the information flow and

verification problems are formulated as satisfiability problems that can be solved using

Satisfiability Modulo Theory (SMT) solvers. The Z3 SMT solver [129] is then used to

automatically generate a taint propagation policy that is guaranteed not to have any

false-negatives. This is done by first defining the behavioral semantics of 23 x86

instructions, and then using Z3 to calculate the information flows from input operands to

output operands at the bit level. The details are presented in Section 5.4.

In order the assess the quality of the automatically generated policy, it is scrutinized by

itself and then compared to the policies used in previously published taint analysis

platforms in terms of false-positives and false-negatives. Additionally, since some

implementations have special rules for reducing false-positives, they are verified for

correctness using the formal model. Comparison and verification are discussed in Section

5.5. Also discussed in the same section is DroidScope’s assumption that Dalvik-level

121

tainting is unnecessary(Section 5.5.5). Finally, limitations are presented in Section 5.6 and

conclusions drawn in Section 5.7.

5.2 Formal Foundation

This section begins with the derivation of the formal model used to analyze taint

propagation policies. This model is used to analyze the information flows between data

items (e.g., input and output operands), and is based on noninterference. Once the model

is established, observations on how the design parameters of taint-granularity,

analysis-granularity and special cases support can be mapped to model are made.

Additionally, the taint analysis challenges outlined in the Background Chapter -

false-positives, false-negatives, sanitization, and implicit flows - are also mapped to the

formal model. In short, these challenges arise from the definition of noninterference; there

are fundamental limits to how precise a taint propagation policy can be.

This section concludes with a description of what a taint policy is and what it should

be. In particular, a “golden policy” is defined to enforce the noninterference property

exactly. This golden policy is then used to define the common terms of over-tainting,

false-positives, etc.

122

5.2.1 Noninterference

Noninterference was first described by Goguen and Meseguer [20] to analyze the

information flows between users in a multi-user system. They defined a machine M that

consists of:

S : the set of machine states

s0 : the initial state

U : the set of users

C : the set of commands

(U × C) : the set of inputs

(U × C)∗ : the set of input sequences

For simplicity, (U × C)∗ is called a program and a sequence w ∈ (U × C)∗ an execution

path through the program. A sequence w is executed through the repeated application of

the state transition function do: S × U × C → S until all commands are processed.

Intuitively, there is no information flow from a sending user us to a receiving user ur (i.e.,

the sending user is noninterfering with the receiving user), if and only if the outputs

observed by ur are not affected by the actions of user us after executing the program

starting from an initial state s0.

Goguen and Meseguer expressed this formally by defining [[w]]u as the output seen by

the user u ∈ U after w has been processed using the do function and PX(w) as the

subsequence of w where all commands by users X ⊆ U have been purged (removed).

123

Hence, for an initial state s0, a set of users G is noninterfering with a second set of users G′

if and only if for all w in (U × C)∗ and all u in G′, [[w]]u = [[PG(w)]]u.

Since taint tracking is designed to analyze the information flow between two data items

and not users in the system, the noninterfering data problem is mapped into a

noninterfering users problem by coupling data items to users. M ′ is used to represent the

noninterfering data machine. Also, the 32-bit x86 instruction add dst, src, is used as an

example to illustrate the core concepts. That machine will be signified by the +

superscript and framed for emphasis.

First, S ′ is defined as the Cartesian product of the set of states for each individual data

item Si. Thus, S ′ is a bitvector that is composed of other bitvectors. “Data item” is used

as a generic term for the machine’s memory and registers. Hence, given n data items:

S ′ = S = S1 × S2 × S3 × ...× Sn

For brevity, a set of aliases Ŝ = {1..n} such that i ∈ Ŝ will be used to refer to the ith data

item is used. Alias sets Ŝ1..Ŝn are used to refer to the individual bits of the data items.

That is, j ∈ Ŝi is used to refer to the jth bit of the ith data item.

The add instruction only has two operands, dst and src, with dst being both an input

and an output. The rest of the state is ignored since those data items are independent of

the add instruction (i.e., they do not affect the operation of the instruction). Thus, for the

example, S+ can be simplified as:

S+ = Sdst × Ssrc

124

This item based definition can be used to determine if there is information flow between

data items s, r ∈ Ŝ. This is done by coupling s with a sending user us, r with a receiving

user ur and the processing of the program with a processing user up. In essence, us

communicates with ur, who can only observe the output value of r, by manipulating the

initial value of s. Thus, there is information flow from s to r in M if and only if there is

information flow from us to ur in M ′. Consequently, there are three users with all

commands assigned to up:

U ′ = {us, ur, up}

(U × C) = (up × C)

(U × C)∗ = (up × C)∗

The example consists of a single command, add, and in instruction-level tainting (the

current focus) add is a simple operation. If an IR was used to emulate the instruction, then

the commands will contain the full IR instruction set and there will be longer and more

input sequences as well. Informally, ← is used as an operator that updates the state of the

left operand with the value of the right, and add(dst, src) is used to represent the function

that sums dst and src. Subsequently, the commands and sequences can be defined as:

C+ = {dst← add(dst, src)}

(U × C+) = {(up, dst← add(dst, src))}

(U × C+)∗ = {(up, dst← add(dst, src))}

125

To allow the sending user to manipulate the initial state or value of the sending data

item s, a value setting command, v ∈ V , is prepended to (U × C)∗ as represented by the ·

operator. Purging the sending user’s commands results in the original program.

V : the set of commands to assign values to Ss

C ′ : V ∪ C

(U × C ′) = (us × V) ∪ (up × C)

(U × C ′)∗ = {(us, v) · w|v ∈ V,w ∈ (U × C)∗}

In the example, assume that the information flows from src to dst are to be

determined. In this case, the receiving user will monitor the output of the operation (i.e.,

dst), and the sending user will manipulate the src operand.

[[w]]+ur
= [[w]]dst,s0

V + = {src← i | i ∈ {0..232 − 1}}

(U × C+) = {(us, src← 0), (us, src← 1), ...

, (up, dst← add(dst, src))}

(U × C+)∗ = {(us, src← 0) · (up, dst← add(dst, src))

, (us, src← 1) · (up, dst← add(dst, src))

, ...}

Consequently, by prepending inputs (us, v) to (U × C)∗, (U × C ′)∗ is the set of new

sequences of inputs where the initial value of s is different in each case. Then, by defining

G = us and G′ = ur, the purge PG(w ∈ (U × C ′)∗) results in the original sequences of

126

commands (U × C)∗ in M . Given this setup and by the definition of noninterference, us is

noninterfering with ur if and only if

∀w ∈ (U × C ′)∗, [[w]]ur = [[PG(w)]]ur

Since there is a v ∈ V that assigns the initial value of s back into s (i.e., the value of s

was not changed by the input (us, v)), purging this value setting input has no effect on the

output value of r. Thus, the condition above simplifies into:

∀w,w′ ∈ (U × C ′)∗, [[w]]ur = [[w′]]ur

If the condition is satisfied, then the final value of r is independent of the initial value

of s. This is the definition for noninterfering data items. Consequently, the inverse

relationship is used to determine if there is information flow between two data items.

There is information flow from s ∈ Ŝ to r ∈ Ŝ by the sequence of inputs (U × C)∗ with

initial state s0 if and only if ∃w,w′ ∈ (U × C ′)∗ such that [[w]]ur 6= [[w′]]ur .

For the bitvector machine, information flow can be further refined as a function of the

initial and end values of the sending and receiving data items and thus arriving at

Definition 5.2.1. The definition uses some additional notation which are introduce first.

The following description uses C-style bitvector operators. First V al(x, y) is a function

that maps the data item x ∈ Ŝ and value y ∈ Sx to a bitvector of the same length as s0

with bits corresponding to item x set to y. All other bits are 0. For the example,

V al(src, 0x00001234)→ 0x0000000000001234. Then, Mask(x) = V al(x,Ones(x)) where

127

Ones(x) is a bitvector of the same length as x with all bits assigned to 1. For the example,

Mask(src)→ 0x00000000ffffffff. Finally s0(x, y) denotes (s0&(̃Mask(x)))|V al(x, y), where

the value of x has been changed to y in s0.

The notation [[w]]r,s0(s,x), with s, r ∈ Ŝ and x ∈ Ss, is used as the output value of data

item r after processing a sequence w with initial state s0 where the value of data item s has

been changed to x. For example if S = S1 × S2, with S1 = S2 = {0, 1} and s0 = (0, 0), then

s0(1, 1) = (1, 0) and s0(2, 1) = (0, 1).

Definition 5.2.1. For s, r ∈ Ŝ, there is information flow from s to r, represented by

sB0 r, if and only if ∃w ∈ C∗, [∃i, j ∈ Ss s.t. [[w]]r,s0(s,i) 6= [[w]]r,s0(s,j)]

Definition 5.2.1 can be read as: for an initial state s0 there is information flow from s to

r if and only if there exists two values of s such that the values of r differ after processing

any path of the program. The users us and ur have been conveniently removed and as a

result the machine model for taint analysis only consists of S, s0, C and C∗ from the

original information flow machine model M . This shorter notation will be used in this rest

of this chapter.

In the example, given s0 = (dst0, src0), [[w]]r,s0(s,i) = add(dst0, i). Then by Definition

5.2.1, it is obvious that there is information flow from src to dst since one can choose

i = 0x00000000 and j = 0x00000001 so that add(dst0, i) 6= add(dst0, j). This relationship is

not always so simple in practice though. Dynamic information trackers often have to make

certain design trade-offs to achieve different goals such as performance, storage overhead

and general applicability. Four major design parameters are highlighted in the observations

below.

128

Observation 5.2.1. The data items were defined as the operands dst and src; however,

they can be defined as small as a single bit. This design parameter of choosing the data

item size is known as the taint-granularity and has implications on storage overhead and

performance.

For example, if byte-level tainting was used, then the set of states for dst will be a

product of four smaller sets, one for each byte: Sdst = Sdst3 × Sdst2 × Sdst1 × Sdst0 . The

same applies to Ssrc. In this case, there is no information flow from src0 to dst1 if the

initial state was s0 = (sdst3 , sdst2 , sdst1 ,0x0000, ssrc3 , ssrc2 , ssrc1 , ssrc0).

Observation 5.2.2. In the example, add is a basic or atomic instruction. What if the

instruction was more complex such as Bit-Scan-Forward (bsf)? Since bsf iterates through

the bit positions in search of the first 1-bit, C∗ is expected to contain multiple sequences of

basic instructions. In this case, how is taint to be analyzed? Should bsf be analyzed as an

atomic instruction or should its taint propagation behavior be composed using those of the

basic instructions? This design parameter of choosing the smallest executable unit to

analyze is the analysis-granularity.

By definition, information flow is analyzed for the program as a whole; however, most

taint analysis implementations analyze information flow for each command in C and then

sequentially apply them to the individual inputs of the sequences in C∗. IR based tainting

is an application of this concept. For example TEMU [16] propagates taint through

QEMU’s internal IR instead of the native x86 instructions. Thus, one or more IR

instructions is used to emulate an x86 instruction. The taint propagation policy for x86

instructions are effectively simple compositions of the taint propagation policy for IR

129

instructions. Tiwari et al. pointed out that false-positives can result from simple

composition in gate-level tainting [108].

Observation 5.2.3. Definition 5.2.1 is initial state aware, that is, information flow must

be analyzed for each and every initial state separately, an unlikely possibility in dynamic

taint analysis due to performance constraints. In practice, taint propagation rules are

initial state agnostic or state agnostic for short.

Due to the desire to minimize runtime overhead, taint propagation policies are

commonly defined off-line with one rule summarizing the flows for all initial states. This is

one fundamental source of the need for sanitization. For the b = a⊕ a example, initial

state aware analysis will reveal that there is no information flow from a to b for this

particular set of initial states. Reflecting the state of practice, SB is used to denote the set

of initial state agnostic flows for C∗ and is defined below. State awareness is a part of the

special cases design parameter described previously.

Definition 5.2.2. Using SBi
as the set of all information flows for a program with an

initial state s0i - i.e., for a program C∗, SBi
= {(s, r)|s, r ∈ Ŝ and sB0 r with initial state

s0 = i ∈ S} - SB =
⋃
SBi

. That is, SB is the set of all information flows.

Since SB is initial state agnostic, it specifies that there is information flow from s to r

as long as there is an initial state such that there is information flow from s to r. It is clear

that the set union can be overly conservative and introduce false-positives.

Observation 5.2.4. The conservative nature of noninterference states that there is

information flow through a program as long as there is flow through one of its paths.

130

As dynamic taint analysis can only “see” the path that is executed, this is a

fundamental problem that can’t be addressed through pure dynamic taint analysis.

5.2.2 Taint Propagation Policies

A taint propagation policy is a set of rules that determine when and how a data item

should be labeled or tainted. Since taint analysis is only concerned with information flows

from tainted data items, the rules are predicated on the fact that the flow source is tainted.

This section begins with the definition for a “golden” policy and then delves deeper into

the sources of over- and under-tainting.

Definition 5.2.3. For a particular choice of taint- and analysis-granularity, a “golden”

taint propagation policy TG is one that propagates taint exactly when there is information

flow from a tainted source and clears the taint otherwise. For s, r ∈ Ŝ, (s, r) ∈ TG if and

only if s is tainted and sB0 r

Ideally, taint analysis platforms will use the golden policy that is defined at the most

descriptive taint- and analysis-granularities. Jif [130], based on the JFlow language [131],

and FlowCaml [132] are examples of tools that analyzes information flow through whole

Java and ML programs respectively and applies the most appropriate golden policies. They

are both static analysis tools though. Using the perfect golden policy is impractical for

dynamic analysis. First, dynamic analysis is limited to analyzing the single path that is

actually executed. This leads to the loss of implicit control flow information since they are

due to paths that are not executed (a problem related to Observation 5.2.4). Second, the

taint-granularity is set to balance precision and performance in practice.

131

Third, and perhaps more importantly, information flow is often tracked based on a

common set of low level commands (e.g., x86 instructions), and not the operations in which

the program’s logic was expressed. This decision is likely dictated by the need to analyze

programs whose components are written in different languages. For example, none of the

implementations surveyed propagates taint at the C++ level for a C++ program, at the C

level for standard libraries and at the x86 level for assembly code at the same time. As will

be discussed next, these practical choices in taint- and analysis-granularity can lead to

false-positives. Furthermore, the problem can surface in both dynamic and static analysis

tools if information flow is analyzed using an IR.

5.2.3 Over- and Under-tainting

In practice, taint propagation policies are only approximations of the corresponding

golden policy (i.e., the if and only if relationship is relaxed). Thus, there is a need to

objectively compare different policies. To this extent, the terms false-positive,

false-negative, accuracy, precision and over-taint are defined against a common standard.

For the purposes described in this chapter, the golden policy TG is used as the standard.

This implies that two policies compared using the definitions have the same taint- and

analysis-granularities or are at least comparable. Given the spirit of definitions, the golden

policy can also be defined based on an enumeration of all the acceptable false-positive and

false-negative cases. Effectively, this is the approach taken by most implementations.

However, this type of standard is fragile since what is acceptable can change.

132

Definition 5.2.4. Given a policy T , (s, r) is a false-positive if ((s, r) ∈ T ∧ (s, r) /∈ TG)

and (s, r) is a false-negative if ((s, r) /∈ T ∧ (s, r) ∈ TG).

Definition 5.2.5. A policy T is accurate if it does not contain any false-negatives and it is

precise if it is accurate and does not contain any false-negatives.

Definition 5.2.6. Given two policies, TA and TB, TA over-taints TB if

∃ (s, r), (s, r) ∈ TA ∧ (s, r) /∈ TB.

Definition 5.2.7. Given two policies, TA and TB, TA strictly over-taints TB if TA ⊇ TB.

Under-tainting is defined similarly to over-tainting and strictly over-taints is a new term

introduced to emphasize a special relationship. If neither TA nor TB contain any

false-negatives (i.e., are accurate), then TA over-taints TB means TA has false-positives that

TB does not. Furthermore, if TA strictly over-taints TB, then TB is more precise than TA

unless they are equal. In this case, the terms over-taints, more precise, and more

false-positives than can be used interchangeably.

Additionally, the pessimistic nature of noninterference ensures that if the policies are

based on or are verified against Definition 5.2.1 (i.e., (s, r) ∈ SB0 =⇒ (s, r) ∈ T), then

there are no false-negatives. This concept is used as the basis for analyzing the precision of

previously published taint analysis platforms. The golden policy is also used as the basis

for discussing sources of over- and under-tainting in the next section.

5.3 Sources of Over- and Under-tainting

The observations made in the previous section suggested some fundamental sources of

false-positives and negatives in dynamic taint analysis platforms. This section focuses on

133

showing how the design choices of taint-granularity, analysis-granularity and special cases

can impact precision.

5.3.1 Over-tainting Due to Taint-granularity: Observation 5.2.1

The minimum data item that can be labeled as tainted is known as the

taint-granularity. In many applications, the taint granularity is set at the byte-level to

match byte-level memory addressing. This provides good coverage for memory data and

has been effective as evidenced by the numerous published applications of byte-level

tainting. On the other hand, bit-level tainting has also been used. In Memcheck [84] for

example, bit-level tainting is used because the additional precision reduces the false

positive rate for detecting memory errors.

This additional precision can be illustrated using the shift left instruction shl dst,

imm8 that shifts the dst register imm8 positions to the left. In byte-wise tainting, if the

least significant byte of dst is tainted, and imm8 is 1 then the second least significant byte

of dst is subsequently tainted. Alternatively, if only bit 0 of the least significant byte is

tainted, then only bit 1 is tainted under the bit-wise policy. In the byte-wise policy, the

second byte must also be tainted to ensure accuracy.

While there are many more examples and the relationship seems intuitive, a proof for

the general case is provided below. Theorem 5.3.1 states that given two machines M byte

and M bit with the only difference being the composition of the state S, the byte-level

golden policy will strictly over-taint the bit-level golden policy.

134

Theorem 5.3.1. Tbit ⊆ Tbyte, i.e., the golden policy for byte-wise tainting strictly

over-taints the golden policy for bit-wise tainting.

Proof The details of the two machines are skipped over for brevity. It is simply assumed

that the commands, inputs and initial states of the two machines are equivalent. Also,

subscripts are used to distinguish between the two machines only when necessary. For

example, they are not used for C∗ since the set is common to both machines.

To prove that Tbyte strictly over-taints Tbit, two functions are defined first: a function

bits(x) that maps a byte x ∈ Ŝbyte to the corresponding set of bits X ′ ⊆ Ŝbit and the reverse

function byte(x′) that maps a bit x′ ∈ Ŝbit to its corresponding byte x ∈ Ŝbyte such that

x′ ∈ bits(x). It then follows that given s = byte(s′) and r = byte(r′), to show Tbit ⊆ Tbyte, it

must be shown that

∀s′, r′ ∈ Ŝbit, (s
′, r′) ∈ Tbit =⇒ (s, r) ∈ Tbyte (5.1)

By Definitions 5.2.1 and 5.2.3, (s, r) ∈ Tbyte if and only if ∃w ∈ C∗ s.t. ∃i, j ∈ Ssbyte

where [[w]]r,s0(i) 6= [[w]]r,s0(j). Then, since bytes x and y are different if and only if at least

one of their bit values differ, the inequality can be rewritten and Equation 5.1 becomes:

∀w′ ∈ C∗,∃w ∈ C∗ s.t.

[∃i′, j′ ∈ Ss′ , [[w′]]r′,s0(s′,i′) 6= [[w′]]r′,s0(s′,j′)] =⇒

[∃i, j ∈ Ss , ∃b′ ∈ bits(byte(r)) s.t.

[[w]]b′,s0(s,i) 6= [[w]]b′,s0(s,j)] (5.2)

135

Equation 5.2 is true since one can always choose w = w′, b′ = r′ and i and j where the

s′ bit of the byte s is assigned values of i′ and j′.

The same logic can be used to prove that, in general, coarse-grained taint policies will

strictly over-taint finer-grained policies. The underlying intuition is similar to Observation

5.2.3. In order to maintain accuracy, the coarse-grained policy must propagate taint if any

of its finer-grained counterparts propagate taint. Once again, the union and existential

quantifiers are over-cautious and lead to false-positives.

5.3.2 Analysis-granularity and Over-tainting: Observation 5.2.2

Similar to taint-granularity above, there is also evidence that suggests

analysis-granularity affects false-positives. Take the following C statement for example: y

= x & ˜x;. It is evident that there is no information flow from x to y since y is always

equal to 0. This result is reflected if the statement is analyzed as a whole. On the other

hand, if the ˜ and & operations were analyzed sequentially, then y becomes tainted if x is

tainted, a false-positive.

Understanding the fundamental over-tainting relationship between instruction-level and

basic-block-level information flow tracking is the focus of the following discussion. By

definition, a basic block is a block of instructions with a single entry and a single exit. It is

a single linear sequence of inputs c1, c2, c3, ..., cn.

In the per-instruction case, s0 is defined as the initial state before the sequence of

inputs is processed, si as the intermediate state of the machine after inputs c1 through ci

are processed, sn as the final state after it is processed and Tci as the taint propagation

136

policy for instruction ci. To analyze the information flow between s and r using

intermediary data items ri assume that there is information flow between s and r if and

only if there is a sequence of intermediary flows through ri.

(s, r) ∈ Tc ⇐⇒ ∃(r1, r2, r3, ..., r) s.t.

(s, r1) ∈ Tc1 ∧ (r1, r2) ∈ Tc2

∧ (r2, r3) ∈ Tc3 ∧ ... ∧ (rn−1, r) ∈ Tcn (5.3)

Intuitively, this is true since the taint must propagate from data item s to data item r

through intermediary data items ri. Furthermore, since there are ni different paths through

different intermediary items, with n being the number of data items in S, there is

information flow as long as a single path exists. Once again, information flow can be

over-cautious. The following theorem states that the golden policy based on per-instruction

tainting strictly over-taints the one based on basic block tainting.

Theorem 5.3.2. Tbb ⊆ Tc, i.e., per-instruction tainting strictly over-taints basic block

tainting.

Proof Induction is used to prove this theorem.

Basis: The base case with only one single instruction is clear since the two policies are

equal.

Induction: For the induction case, assume that the relationship holds for i instructions -

i.e., (s, ri) ∈ Tbb and Equation 5.3 is true. What is left is to show that it also holds for i+ 1

instructions by contradiction.

137

The i+ 1 case being false means that (s, ri+1) ∈ Tbb but there is no sequence such that

Equation 5.3 is satisfied. Given that the i case is true, this means that for all possible

sequences, only the final case of (ri, ri+1) ∈ Tci+1
is false. It being false means that ri+1 is a

constant, and thus (s, ri+1) /∈ Tbb since Definition 5.2.1 is no longer satisfied. This is a

contradiction and therefore the original implication must hold. In general, analyzing

information flow at the instruction-level will strictly over-taint as compared to analyzing at

the basic block level.

Since in the best case scenario, a single basic block of IR is used to emulate a single

instruction, this theorem also implies that propagating taint through the IR strictly

over-taints propagating taint through the basic block and equivalently the instructions

being emulated. Thus, if the IR level policy is accurate, there will only be false-positives.

In the case where the emulation code includes control flows (e.g., the bsf instruction),

Theorem 5.3.2 together with Volpano’s result [112] indicate that IR level tainting not only

contains false-positives, but it can also contain false-negatives as summarized in Lemma

5.3.1.

Lemma 5.3.1. IR level tainting both over-taints and under-taints instruction level

tainting.

As a result, if precision is desired, care must be taken to verify that the information flow

patterns of the two different designs are the same (at least for the operations of interest).

In other words, TA and TB are tainting equivalent if TA = TB. Verification is discussed next.

138

5.3.3 Other Sources of Over- and Under-tainting

The previous section presented fundamental results on how the design decisions of

taint- and analysis-granularity affect precision. Unfortunately over-tainting can still be a

problem even between policies using the same taint- and analysis-granularities due to the

initial state agnostic nature of dynamic taint analysis. These are commonly identified as

special cases and handled by defining special taint propagation or sanitization rules.

There are two types of special cases: concrete values and identity relationships.

Concrete value special cases were outlined in Observation 5.2.3 and result from the practice

of pre-calculating the initial state agnostic taint propagation policy SB (Definition 5.2.2).

Whereas identify relationships are special cases due to specific relationships between

operands for a particular operation irrespective of the value assignments themselves.

Identity relationships are sets of concrete values with special properties.

The mul rm32 instruction, where edx:eax = eax * rm32, can be used to illustrate

over-tainting due to a concrete value. In general, both eax and edx will be tainted after

execution if eax was tainted before. Thus, this is likely to be the generalized taint

propagation rule. An exception to this generalization is if rm32 = 0 though. That is, if the

initial state s0 has rm32 = 0 then the condition in Definition 5.2.1 will be unsatisfiable for

s ∈ Ŝeax and r ∈ Ŝeax. eax always equals 0. This special case is only valid for this

particular value assignment of rm32. On the other hand, xor eax, eax will always result

in eax being 0 irregardless of what the initial value of eax is. It is an example of an

identity relationship.

139

Verifying Special Cases Special cases are often identified manually and then

incorporated into taint propagation policies as special rules (e.g., sanitization rules) to

reduce over-tainting as the need arises. These rules are then verified manually or simply

left unverified due to the difficulties of manual verification. For example, Memcheck has

the most special case rules, but according to its project suggestions webpage, formal

verification of the rules is still needed [133]. The concepts for formal verification are

introduced in this section.

The special rules in Memcheck, like many others, are defined as functions on shadow

taint variables and thus verification is discussed in this specific context. These shadow taint

variables are encapsulated in a shadow state S t (with a corresponding alias set Ŝ t = Ŝ)

that is used to label whether the data items in S are tainted. In this way, S t is a bitvector

with length equal to the number of data items in S. The taint propagation policies can

then be thought of as rules or functions that transform the shadow state. A rule is therefore

a relation rule : S × S t× C∗ → S t. Effectively, these rules summarize the set SB.

For r ∈ Ŝ, the transformation can be defined as:

S tr =


1 ∃s ∈ Ŝ s.t. S ts = 1 ∧ (s, r) ∈ T

0 otherwise

The above equation states that data item Sr tainted if and only if information flowed

from a tainted data item Ss to it. It then follows that special case analysis based on the

transformations of the shadow taint variables can be formally verified by ensuring that for

every bit r of S t that is zero after the transformation, the value of Sr must be a constant

140

for all assignments of tainted data items Ss without changing the non-tainted items. In

other words, if a data item r is not tainted after processing a sequence, then all of the

tainted items before processing the sequence are noninterfering with Sr.

Based on this logic, the condition for checking for false-negatives is presented in

Equation 5.4 and the definition in Definition 5.3.1. Similarly Definition 5.3.2 and Equation

5.5 can be used to check for false-positives. The notation in these definitions are changed

so they are closer to instruction level taint analysis, which is discussed in the next section.

x ∈ S and y ∈ S are used as the machine states before and after processing an instruction

or operation, op, where y = op(x). x t and y t represent the corresponding shadow taint

states and y t = rule(x, x t, op) is the transformation function.

Definition 5.3.1. A rule y t = rule(x, x t, op) is accurate (i.e., does not contain

false-negatives), if for all assignments of x and x t the following condition is true.

∀ r ∈ Ŝ t, [(y tr = 0) =⇒

∀ j, k ∈ S, [op((x & (∼ x t))|(j & x t))r =

op((x & (∼ x t))|(k & x t))r]] (5.4)

141

Definition 5.3.2. A rule y t = rule(x, x t, op) does not contain false-positives if for all

assignments of x and x t the following condition is false.

∃ s ∈ Ŝ t, [(y tr = 1) ∧

∀ j, k ∈ S[op((x & (∼ x t))|(j & x t))r =

op((x & (∼ x t))|(k & x t))r]] (5.5)

Definition 5.3.3. The transformation function y t = rule(x, x t, op) is precise if for all

assignments of x and x t Equation 5.4 is true and Equation 5.5 is false (i.e., Definitions

5.3.1 and 5.3.2 are both satisfied).

It follows that given two rule transformations, y t1 = rule1(x, x t, op) and y t2=

rule2(x, x t, op), that do not have any false-negatives, rule1 over-taints rule2 if there is a

bit in y t1 that is 1, but 0 in y t2 (Equation 5.6).

Definition 5.3.4. Given two accurate rules y t2 = rule1(x, x t, op) and

y t2 = rule2(x, x t, op), rule1 over-taints rule2 if the following condition is true.

(y t1 & (y t1⊕ y t2)) 6= 0 (5.6)

Note that these rules are initial state agnostic. They can be changed to support

analyzing the flows between data items (i.e., a subset of the initial states), xi and yj by

142

assuming that only the bits in the state that corresponds to xi can be tainted. All other

bits are not tainted.

5.4 Generating an Accurate Policy for x86

In this section, a case study is used to illustrate how the foundation set in the previous

sections can be applied. The case study involves first using the definitions to generate an

accurate policy for x86 and then comparing it to previously published taint trackers with

regards to accuracy and precision. While the focus is on x86, the results are applicable to

all bitvector based implementations. The methodology for generating the policy is

presented in this section and interpretation of the results is left to the next.

The implication, sB0 r =⇒ (s, r) ∈ T , is used to ensure that the generated policy is

accurate. That is, the policy is defined by analyzing the information flows. As discussed in

Section 5.2.3, applying this implication ensures that every (s, r) ∈ TG must also ∈ T and

thus the policy T does not contain any false-negatives (Definition 5.2.4).

A two-step process is used to identify the information flows in common x86

instructions. First, the behavior of each instruction is specified using bitvector semantics.

The output of this stage is a collection of SMT-LIB Version 2 [134] or SMT2 files. Second,

the condition in Definition 5.2.1 is tested on the behavioral definitions to obtain a general

portrait of the bit-wise information flow relationships between the instruction operands.

The output of this stage is a collection of directed graphs depicting the bit-wise

information flows, which are subsequently interpreted manually to obtain the conservative

accurate taint propagation policy.

143

5.4.1 Stage 1: Behavioral Definitions

Similar to previously published information flow trackers, the case study target the

general purpose x86 instructions that fall into the data transfer, arithmetic and logical

categories. Data transfer instructions have simple semantics with obvious bit-wise

information flow relationships. Thus, only the arithmetic and logical instructions are

studied. Then, in an effort to reduce redundancy, the analysis is limited to the 32 bit

instruction formats. The different mnemonics (e.g., add eax,imm32 vs. add r/m32, imm32

vs. add r32, r/m32) where the only difference between them are the operand types, are

ignored. The bsf, bsr and cmpxchg instructions are included since they include conditional

behavior and will be used to illustrate over-tainting when propagating taint through an IR.

The first step is to determine all of the input and output parameters, including flags by

referring to the developer’s manuals. This is done for each instruction. These parameters

constitute the state S. Only flags whose behaviors are well defined are included. Flags that

are unchanged or undefined are assumed not to exhibit information flow and are excluded

from the state.

Since the accuracy of the behavioral definitions is paramount, the definitions are cross

referenced with both BAP [135] and the developer’s manuals. Given an instruction,

assembly code to exercise different aspects of the it are written and compiled into an

executable. BAP 0.4 was then used to translate the executable into BAP’s internal IR. The

generalized behavior, expressed in SMT2, was then extrapolated from the IR for different

instruction instantiations as well as the manuals. Godefroid and Taly [136] presented

144

(define-fun f_ror_32 ((S STATE)) (_ BitVec 32)

(bvor

((_ extract 31 0) (bvlshr (concat (rm32 S) #x00000000)

(concat #x00000000 (f_shiftcount S))))

((_ extract 63 32) (bvlshr (concat (rm32 S) #x00000000)

(concat #x00000000 (f_shiftcount S))))

)

)

(declare-const f_cf_const (_ BitVec 1))

(define-fun f_cf ((S STATE)) (_ BitVec 1)

(ite (= (f_shiftcount S) #x00000000)

f_cf_const ; undefined or unchanged

((_ extract 31 31) (f_ror_32 S))

)

)

(declare-const f_of_const (_ BitVec 1))

(define-fun f_of ((S STATE)) (_ BitVec 1)

(ite (= (f_shiftcount S) #x00000001)

(bvxor ((_ extract 31 31) (f_ror_32 S))

((_ extract 30 30) (f_ror_32 S)))

f_of_const; undefined or unchanged

)

)

Fig. 5.1.: SMT2 Definition for ror dst, imm8

T_32t0_250:u32} = R_EAX:u32

T_32t6_256:u32 = T_32t0_250:u32 << pad:u32(0x1e:u8)

T_32t8_258:u32 = T_32t0_250:u32 >> pad:u32(2:u8)

T_32t5_255:u32 = T_32t8_258:u32 | T_32t6_256:u32

R_CF:bool = low:bool(T_32t5_255:u32 >> 0x1f:u32)

R_OF:bool = R_CF:bool ^ low:bool(T_32t5_255:u32 >> 0x1e:u32)

Fig. 5.2.: BAP IL for ror %eax, $0x2

algorithms to automatically generate these behavioral specifications. Implementation of the

algorithms is left as future work.

The ror dst, imm8 instruction is used as an example. According to the manual, ror

has two operands, dst (the 32-bit operand to right rotate) and imm8 (the number of bit

positions to rotate). Since ror affects the overflow and carry flags, S is 42 bits in length.

Figure 5.1 shows the SMT2 definitions for the ror %eax, $0x2 instruction and Figure 5.2

shows the corresponding BAP IL; output for other instantiations are not shown. Note that

f ror 32 uses an alternative logic but the flags calculations are based on BAP and the

documentation.

145

(define-sort STATE () (_ BitVec 70))

(define-fun dst ((S STATE)) (_ BitVec 32)

((_ extract 69 38) S)

)

(define-fun f_add ((S STATE)) (_ BitVec 32)

(bvadd (dst S) (src S))

)

(define-fun f_of ((S STATE)) (_ BitVec 1)

((_ extract 31 31)

(bvand (bvxor (dst S) (src S) #xFFFFFFFF)

(bvxor (dst S) (f_add S))

)))

;;;Other function definitions

(declare-const DST (_ BitVec 32))

(declare-const SRC (_ BitVec 32))

(declare-const ZF (_ BitVec 1))

;;;Other declarations

(assert (exists ((i (_ BitVec 32)) (j (_ BitVec 32)))

(not (= (dst (add (concat DST i ZF OF SF AF CF PF)))

(dst (add (concat DST j ZF OF SF AF CF PF)))

))))

(check-sat)

Fig. 5.3.: SMT2 Definition and Test for add dst, src

As another quick example, a portion of the SMT2 definition for add is shown in Figure

5.3. The figure shows that add has an SMT2 equivalent operation bvadd meaning it is a

basic operation. The flags calculation logic was extracted from BAP.

5.4.2 Stage 2: General Information Flow

The goal of this stage is to take the SMT2 files from stage 1 and obtain a base set of

taint propagation policies. For each file and for each possible combination of input and

output bits of the state S, Z3 3.2 was queried for the satisfiability of the condition in

Definition 5.2.1. An example query can be found at the bottom of Figure 5.3. The query is

used to determine whether there are two values i and j of src such that the values of dst

are different after add. The bit-wise query is more involved, however, it follows the same

146

pattern. For example, ror has dst and imm8 as inputs totaling 40 bits and dst, imm8, of,

cf as outputs, totaling 42 bits. This results in 1680 separate queries.

The resulting statistics for all the instructions are summarized in the first five columns

of Table 5.1. The instructions are presented in the first column, the input operands, both

implicit and explicit, in the second, output operands, both implicit and explicit, in the

third, the total number of input-bit to output-bit combinations in column four and the

time it took for Z3 to return “sat” or “unsat” results for the condition in Definition 5.2.1 is

shown in column five. A new instance of Z3 is used for each test case and thus the results

include process creation overhead.

As expected, logical operations return results extremely quickly whereas signed

multiply and divide takes the most time. Overall, it took less than 14 hours on an Intel

Core-i7 860 to automatically identify all information flow relationships for 26 arithmetic

and logical instructions. However, the multiply and divide operations, especially the signed

versions, took the longest time by far. This indicates that the same technique will have

limited use for FPU and MMX instructions unless theorem provers improve. Further

analysis is left as future work.

5.5 Results

This results section is separated into four parts that illustrate the different aspects of

the formal foundations laid out in Sections 5.2 and 5.3: 1) the sat/unsat results generated

from stage 2, as described in the previous section, are interpreted; 2) previously published

taint analysis platforms are compared against the automatically generated policy; 3) the

147

P
r
e
v
io

u
sl

y
P

u
b

li
sh

e
d

T
a
in

t
T

r
a
c
k
e
r
s

In
st

r
u

c
ti

o
n

In
p

u
ts

O
u

tp
u

ts
#

C
a
se

s
R

u
n
ti

m
e

FlowType

DroidScope

Cat1

libdft[95]

Minemu[103]

Cat2

TEMU[16]

Cat3

Memcheck[84]

Refined

a
d

c
d
st
,
sr
c

d
st

,s
rc

,c
f

d
sr

,s
rc

,z
f,

o
f,

sf
,a

f,
cf

,p
f

4
5
5
0

1
m

1
9
s

U
A

A
I

A
A

S
S

U
S

a
d

d
d
st
,
sr
c

d
st

,s
rc

d
st

,s
rc

,z
f,

o
f,

sf
,a

f,
cf

,p
f

4
4
8
0

1
m

1
3
s

U
A

A
I

A
A

A
A

S
S

a
n

d
d
st
,
sr
c

d
st

,s
rc

d
st

,s
rc

,z
f,

sf
,p

f
4
2
8
8

1
m

0
5
s

I
A

I
I

A
I

I
S

S
S

d
ec

d
st

d
st

d
st

,z
f,

o
f,

sf
,a

f,
p

f
1
1
8
4

2
0
s

U
A

A
I

A
A

A
A

U
U

d
iv

rm
3
2

ed
x
,e

a
x
,r

m
3
2

ed
x
,e

a
x
,r

m
3
2

9
2
1
6

9
5
m

4
8
s

D
A

A
I

N
A

A
A

A
D

id
iv

rm
3
2

ed
x
,e

a
x
,r

m
3
2

ed
x
,e

a
x
,r

m
3
2

9
2
1
6

3
0
7
m

0
4

A
A

A
I

N
A

A
A

A
A

im
u

l1
rm

3
2

ea
x
,r

m
3
2

ed
x
,e

a
x
,r

m
3
2
,o

f,
cf

6
2
7
2

2
8
9
m

5
1
s

U
A

A
I

N
A

A
A

U
U

im
u

l2
d
st
,
rm

3
2

d
st

,r
m

3
2

d
st

,r
m

3
2
,o

f,
cf

4
2
2
4

5
2
m

3
7
s

U
A

A
I

N
A

A
A

U
U

im
u

l3
d
st
,
rm

3
2
,
im

m
3
2

rm
3
2
,i
m

m
3
2

d
st

,r
m

3
2
,i
m

m
3
2
,o

f,
cf

6
2
7
2

5
3
m

5
6
s

U
A

A
I

N
A

A
A

U
U

in
c
d
st

d
st

d
st

,z
f,

o
f,

sf
,a

f,
p

f
1
1
8
4

1
9
s

U
A

A
I

A
A

A
A

U
U

m
u

l
rm

3
2

ea
x
,r

m
3
2

ed
x
,e

a
x
,r

m
3
2
,o

f,
cf

6
2
7
2

1
6
m

0
2
s

U
A

A
I

N
A

A
A

U
U

n
o
t
d
st

d
st

d
st

1
0
2
4

1
5
s

I
A

I
I

A
I

I
I

I
I

o
r
d
st
,
sr
c

d
st

,s
rc

d
st

,s
rc

,z
f,

sf
,p

f
4
2
8
8

1
m

0
5
s

I
A

I
I

A
I

I
S

S
S

rc
l
d
st
,
im

m
8

d
st

,i
m

m
8
,c

f
d

st
,i
m

m
8
,o

f,
cf

1
7
2
2

4
2
s

A
A

A
N

A
A

A
A

A
S

rc
r
d
st
,
im

m
8

d
st

,i
m

m
8
,c

f
d

st
,i
m

m
8
,o

f,
cf

1
7
2
2

4
2
s

A
A

A
N

A
A

A
A

A
S

ro
l
d
st
,
im

m
8

d
st

,i
m

m
8

d
st

,i
m

m
8
,o

f,
cf

1
6
8
0

4
1
s

A
A

A
N

A
A

A
A

S
S

ro
r
d
st
,
im

m
8

d
st

,i
m

m
8

d
st

,i
m

m
8
,o

f,
cf

1
6
8
0

4
1
s

A
A

A
N

A
A

A
A

S
S

sa
l
d
st
,
im

m
8

d
st

,i
m

m
8

d
st

,i
m

m
8
,z

f,
o
f,

sf
,a

f,
cf

,p
f

1
8
4
0

3
5
s

U
A

A
N

A
A

S
S

S
S

sa
r
d
st
,
im

m
8

d
st

,i
m

m
8

d
st

,i
m

m
8
,z

f,
o
f,

sf
,a

f,
cf

,p
f

1
8
4
0

3
4
s

D
A

A
N

A
A

S
S

S
S

sb
b
d
st
,
sr
c

d
st

,s
rc

,c
f

d
st

,s
rc

,z
f,

o
f,

sf
,a

f,
cf

,p
f

4
5
5
0

1
m

2
1
s

U
A

A
I*

A
*

A
A

A
*

A
S

sh
r
d
st
,
im

m
8

d
st

,i
m

m
8

d
st

,i
m

m
8
,z

f,
o
f,

sf
,a

f,
cf

,p
f

1
8
4
0

3
5
s

D
A

A
N

A
A

S
S

S
S

su
b
d
st
,
sr
c

d
st

,s
rc

d
st

,s
rc

,z
f,

o
f,

sf
,a

f,
cf

,p
f

4
4
8
0

1
m

1
7
s

U
A

A
I*

A
*

A
*

A
*

A
*

S
S

x
o
r
d
st
,
sr
c

d
st

,s
rc

d
sr

,s
rc

,z
f,

sf
,p

f
4
2
8
8

1
m

0
5
s

I
A

I
I*

A
*

A
*

A
*

A
*

I
I

b
sf

d
st
,
sr
c

sr
c

d
st

,s
rc

,z
f

2
0
8
0

3
1
s

A
N

A
I

N
A

A
A

A
S

b
sr

d
st
,
sr
c

sr
c

d
st

,s
rc

,z
f

2
0
8
0

3
1
s

S
N

A
I

N
A

A
A

A
S

cm
p
x
ch

g
rm

3
2
,
r3

2
ea

x
,r

m
3
2
,r

3
2

ea
x
,r

m
3
2
,r

3
2
,z

f,
o
f,

sf
,a

f,
cf

,p
f

9
7
9
2

2
m

3
9
s

S
N

E
E

N
E

E
E

E
S

T
O

T
A

L
1
0
2
0
6
4

1
3
h

5
2
m

4
8
s

T
ab

le
5.

1:
F

lo
w

T
y
p

e
R

es
u
lt

s
fo

r
x
86

In
st

ru
ct

io
n
s

F
lo

w
T

y
p

es
:

(U
)p

,
(D

)o
w

n
,

(I
)n

-p
la

ce
,

(A
)l

l-
a
ro

u
n

d
,

(S
)p

ec
ia

l,
(N

)o
t-

S
u

p
p

o
rt

ed
,

(S
)p

ec
ia

l,
(E

)a
x

is
ta

in
te

d
in

c
m
p
x
c
h
g
,

*
-

Z
er

o
in

g
Id

io
m

,
B

o
ld

fa
c
e

-
G

en
er

a
te

d
P

o
li
cy

is
m

o
re

p
re

ci
se

148

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_IN

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_OUT

0 0
pf_OUT

0
sf_OUT

Fig. 5.4.: Information flows of dst in the or instruction

special rules in Memcheck are verified; and 4) previously published taint trackers are

compared based on taint- and analysis-granularity.

5.5.1 Interpretation of Results

The sixth column of Table 5.1 indicates the general flow type for each instruction. The

sat/unsat results from Z3 were first graphed to increase understandability, and then

interpreted to determine the flow types. In particular, one directed graph was generated

per input bit. The nodes are bits of the state S and edges signify the potential for

information flow from the source bit to the destination bit. As an example, the 32 graphs

from the 32 input bits of dst in or were combined to produce Figure 5.4. The bit to bit

in-place information flow relationship is evident.

Information Flow Types

There are four distinct information flow patterns between the source and destination

operands. Despite the fact that information flow was analyzed at the bit-level, the patterns

are the same for a byte-level taint-granularity. There are no patterns of interest for the

flags. In other words, the results match the definitions and are therefore expected.

149

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_IN

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_OUT

0 0
pf_OUT

0
cf_OUT

0
sf_OUT

0
zf_OUT of_OUT

0

Fig. 5.5.: Information flow of bits 7, 20 and 31 of dst in sbb

1. In-place: Information can only flow from bit i of the source to bit i of the destination.

The Memcheck equivalent is UifU.

2. Up: Information can only flow from bit i of the source to bits j of the destination

where j >= i. Figure 5.5 depicts this particular behavior. It is the combination of

the information flow graphs for bits 7, 20, and 31 of dst to dst. It is evident from

the figure that information only flows from bit 7 of the source operand to bit 7 and

higher of the destination. The same applies to bits 20 and 31, where bit 31 of the

source only flows to bit 31 of the destination. The Memcheck equivalent is Left.

3. Down: Information can only flow from bit i of the source to bits j of the destination

where j <= i. While Memcheck does not have an equivalent operation, it is trivial to

see that, if there was, it would be Right.

4. All-around: Information can flow from bit i of the source to any bit of the

destination. The Memcheck equivalent is Lazy.

It is possible for an instruction to exhibit multiple flow types at the same time. The

flow types listed in Table 5.1 only shows the most descriptive type. The divide instructions

are good examples of this. In divide, edx:eax is divided by rm32, the quotient placed into

eax and remainder into edx. Intuitively, division is similar to shift right and thus the flow

150

31 … 9 8 7 6 5 4 3 2 1
bsr_src_IN

0

31 … 9 8 7 6 5 4 3 2 1
bsr_dst_OUT

0

31 … 9 8 7 6 5 4 3 2 1
bsf_src_IN

0

31 … 9 8 7 6 5 4 3 2 1
bsf_dst_OUT

0

Fig. 5.6.: Comparison between bsf and bsr

type for edx:eax to eax should be down. On the other hand, the flow type for edx:eax to

edx is all-around since nothing definitive can be said about the relationship between the

divisor and the remainder without conrete value analysis. Also in practice, the actual taint

propagation policy will either be the OR of the individual flow types between the input

operands and the output operands or special rules defined per case. All in all, the flow

types identified in this step are conservative and are used to define the accurate taint

propagation policy.

The bsf, bsr and cmpxchg Instructions

bsf and bsr are two instructions that iterate through bit positions to find the first

1-bit. If these instructions do not have native IR counterparts, then it must be emulated.

Since the software developer’s manuals describe the instructions using while loops, they

both have control flow behaviors. The resulting flows for input bits 1, 5 and 8 are depicted

in Figure 5.6. Since bsf tests the lowest bits first, all subsequent iterations of the loop

depend on the lower bits being ‘0’ and thus the flow behavior is equivalent to all-around.

For example, if only bit number 5 of src IN is 1, then bits 0,1 and 2 of dst OUT are set.

However, if bit number 1 is also set, then only bit 0 of dst OUT is set. Thus, the setting of

bits 1 and 2 depend on the fact that bit 1 of src IN is 0. bsr scans from the highest bit

151

1. cmpxchg (rm32, r32) {
2. if (eax == rm32) then
3. rm32 = r32;
4. else eax = rm32;
5. }

Fig. 5.7.: Pseudocode for cmpxchg (flags are omitted)

position down, thus the flow pattern is much more direct and is special, not all-around.

These complex behaviors can also be identified as control flow dependencies using the

technique proposed by Ferrante et al. [137]. Both Dytan and DTA++ uses this technique;

however, control flow dependency does not immediately reveal the special bit-level

relationships of bsr as shown in Figure 5.6. Consequently, their policies are classified as

all-around. All other policies are assumed to support these instructions using all-around

unless evidence to the contrary was found.

cmpxchg (Figure 5.7) is a special x86 instruction that can be used to show how IR

tainting can lead to false-positives. Applying Definition 5.2.1 on the instruction as a whole

shows that there is no information flow from eax to eax because the output value of eax is

fully dependent on the input value of rm32. On the other hand, if information flow was

analyzed line-by-line, and thus mimicking the behavior of IR based tainting where each line

is a corresponding IR, eax will be tainted if eax was tainted before the instruction. This is

because eax was unchanged in the equals branch (line 3) and thus retains its taint. The

case for simple control flow dependencies is even worse. Since eax is used in the

comparison on line 2 and also as an l-val on line 4, it will remain tainted in the not-equals

branch. In the end, care must be taken to ensure that IR level tainting does not introduce

false-positives or false-negatives.

152

5.5.2 Comparing With Previously Published Policies

In practice, many taint propagation policies are manually defined using domain

knowledge and expertise. This naturally leads to the questions of whether these manually

defined policies are accurate and if so how precise, and is automatic synthesis necessary?

These questions can be answered using the definitions presented in Section 5.2.3 and the

accurate policy generated in the previous section.

While the automatically generated policy was defined for the x86 instruction set, the

bitvector semantics are common to other platforms as well. However, not all taint analysis

implementations use the same bitvector operations and therefore the comparison is limited

to those that do.

Bit-vector based policies are separated into three broad categories. Cat1 includes all

policies that rely on simple l-val r-val relationships [88,94,103,105,108,111]. Effectively,

these policies consists of in-place and all-around flow types only. There are three special

cases in this category that are discuss in more detail.

First, RIFLE [105] is a hardware implementation that associates taints with operands

and relies on the join operation, which is essentially an OR. Since taint is assigned per

operand, the propagate up and down flow types are meaningless. Thus, they are simplified

into all-around to maintain accuracy.

Then, the published policy for arithmetic and logical operations in GLIFT [108] is

equivalent to all-around. This is strange since the paper used an AND gate to illustrate the

special case where if the untainted input is 0 then the output is always 0, and thus taint at

153

the output should be cleared. Yet, the final policy presented does not handle this special

case. For consistency, GLIFT was placed into Cat1. It is likely Cat3 though.

Finally, in Raksha [111], Dalton et al. limited the taint propagation policies to three

operations, no propagation, AND the taint values and OR the taint values. These

operations are then defined for instruction classes (e.g., arithmetic), instead of individual

instructions (e.g., add and sub). Raksha does provide support for defining special rules for

up to four operations though. Since the comparison is between base policies, Raksha is

categorized into Cat1, although in practice is is most likely between Cat1 and Cat2.

Similarly, Dytan [94] and Minemu [103] allows users to define they own propagation

policies as well.

Cat2 and Cat3 include all policies with special cases support. Cat2 includes simple

special cases due to zeroing idioms like xor eax, eax [59, 95–97,106,107] and Cat3

includes more precise policies that handle many special cases including the shift

operations [16, 56,102,109,110].

The results are shown on the right side of Table 5.1. Since taint propagation policies

can be updated after publication, all of the taint propagation implementations that has

source code available has their own column with the policy defined in the source. The

policies are ordered by precision with the least precise on the left (column 7) and the most

precise on the right (column 14).

As the results show, many of the default policies used in previous publications are not

as precise as the automatically generated policy. In fact, none of the policies used the

propagate up flow type of sbb. Another interesting point is that the default policies for

libdft and Minemu are not accurate (i.e., has false-negatives). Either some of the

154

instructions were not supported, or in the case of libdft, the default use of union or OR

leads to false-negatives in instructions such as add where taint should propagate up.

Finally, the results indicate that Memcheck has the most special rules and therefore could

be the most precise taint analyzer surveyed. The accuracy and precision of Memcheck’s

rules are verified in the next section.

5.5.3 Refining Memcheck’s Special Rules

In order to verify Memcheck’s rules, Memcheck’s operations (e.g., UifU) were first

defined in SMT2 and then used to define rules from both the original paper [84] as well as

the Memcheck source code. These taint transformation rules are then analyzed for

false-negatives and false-positives based on Equations 5.4 and 5.5 respectively.

Furthermore, to maintain consistency, the rest of the discussion is framed using

Memcheck’s operations and nomenclature. In particular, data operands are labeled using

d* where * is the operand number (e.g., d1 for the first operand), and the shadow taint

variables are labeled as v* where * is the operand number of the operand it shadows (e.g.,

v1 is the shadow taint variable for d1).

As an example, Figure 5.8 shows the logic for accurately calculating the resulting taint

v3 for the AND(d1, d2) instruction with 32bit operands as declared in SMT2. The original

definition from the Memcheck [84] is shown in comments (i.e., lines that start with ‘;’). To

determine whether the rule is accurate, a simple query to the SAT solver is used to

determine whether Equation 5.5 holds for all input values of d1, v1, d2 and v2. This is

155

;Declaration for AND

(define-fun OP ((d1 (_ BitVec 32)) (d2 (_ BitVec 32)))

(_ BitVec 32)

(bvand d1 d2)

)

;Original Memcheck logic

;v3 = DifD(UifU(v1,v2),

; DifD(ImproveAND(d1,v1),

; ImproveAND(d2,v2)))

(define-fun rule ((d1 (_ BitVec 32)) (d2 (_ BitVec 32))

(v1 (_ BitVec 32)) (v2 (_ BitVec 32)))

(_ BitVec 32)

(DifD (UifU v1 v2)

(DifD (ImproveAND d1 v1)

(ImproveAND d2 v2)

)

)

)

Fig. 5.8.: Comparison between Memcheck logic and SMT2 code for verifying AND

achieved by asserting that it is not true, such that an unsat result will signify that it must

hold.

The results are summarized in Table 5.2. The xor instruction was included as a test of

the Z3 theorem prover. Memcheck does not have any special rules for xor. Runtime

numbers are not included since the false-negative tests all returned quickly, within a few

minutes, and most of the false-positive tests timed out (i.e., Z3 did not return sat or unsat

within 24 hours). The instruction, SAT solver result for the false-negative test and the

result for the false-positive test are presented in that order. The table is also separated into

two sections, the first contains the rules defined in Memcheck and the second contains

additional refined rules.

The results indicate that all of the Memcheck rules are accurate and in fact two of

them, and and cmp, are precise. Furthermore, the initial results for the false positive tests

for the shift and rotate instructions returned models (i.e., variable assignments that

satisfies the query) highlighting the fact that the result is tainted if the shift amount is

156

Instruction False-Negatives False-Positives
add unsat timeout
and unsat unsat
cmp unsat unsat
or unsat timeout
rol unsat sat, timeout*
ror unsat sat, timeout*
sal unsat sat, timeout*
sar unsat sat, timeout*
shr unsat sat, timeout*
sub unsat timeout

xor unsat timeout

New Rules
adc unsat timeout
rcl unsat sat, timeout*
rcr unsat sat, timeout*
sbb unsat timeout
bsf unsat sat*, unsat
bsr unsat sat*, unsat

Table 5.2: Summary of refined policies

157

tainted. Since this result is of limited use, the natural question is whether the only source

of false-positives is from the shift amount. Hence, the search space was limited so that the

shift amount is never tainted. This new test resulted in a timeout, noted by the *.

Despite the fact that Z3 timed out for some false-positive tests, conclusions about a

rule’s precision are not drawn. This is mainly because when the same queries were issued

in Z3 4.0, “unknown” was returned. According to the Z3 documentation this is likely due

to the use of quantifiers, which Z3 is not optimized for. This is, at least for now, a

limitation of the proposed approach. On a more promising note, Z3 returned unsat in

about 40 minutes for 4-bit xor and in about 664 minutes for 8-bit xor. It might be possible

to manually extend these lower-bit count results to larger operands. This is left as future

work.

There are similarities between the addition and shift operations, and the addition with

carry and rotate operations. Thus, it was natural to attempt to define new rules for the

latter operations based on the prior and verify their accuracy and precision. The list of new

rules are presented in Table 5.3 with the instruction on the first column and a description

of the new rule in the second. The rules for rcl and rcr are natural extensions of the shift

and rotate rules identified in Memcheck. The taint value for the carry flag, vcf, is included

in the calculations. UifU is a function that bitwise ORs the operands and PCastYX, the

pessimistic cast, returns 0 if the operand is 0 and 1s in all bit positions otherwise.

The rules for adc and sbb are also natural extensions of the add and sub rules. The

min terms represent the value where all tainted bits are set to 0 (e.g., d1 min = d1 & ˜

v1), and the max terms represent the value where all tainted bits are set to 1 (e.g., d1 max

= d1 | v1).

158

Insn Refined Rule
adc (bvor (bvor v1 v2)

(bvxor (bvadd d1 min d2 min cf min)
(bvadd d1 max d2 max cf max)))

sbb (bvor (bvor v1 v2)
(bvxor (bvsub d1 min (bvadd d2 max cf max))

(bvsub d1 max (bvadd d2 min cf min))))
rcl (UifU (PCastYX v2) (rcl v1 d2 vcf))

where vcf is the taint value for the carry flag
rcr (UifU (PCastYX v2) (rcr v1 d2 vcf))

where vcf is the taint value for the carry flag
bsf Destination is tainted if (bvule (bsf v1) (bsf d1))
bsr Destination is tainted if (bvuge (bsr v1) (bsr d1))

Table 5.3: Summary of new rules using SMT2 prefix notation

The bsf and bsr rules are similar to the Memcheck rule for cmp where short-circuiting

is used. The intuition is that if an untainted bit is already 1, then it doesn’t matter what

the value of the tainted bit is as long as the tainted bit is scanned after the untainted bit.

5.5.4 Taint- and Analysis-granularity

Section 5.2.2 discussed how taint- and analysis-granularity may affect taint propagation

precision. As an illustration, those definitions are used to compare the precision of

previously published taint trackers.

Taint-granularity Much research has been conducted to propagate taint through

bitvector operations. Policies have been defined at the operand level [87,105], 32-bit word

level [59,111], byte-level [56, 59,88,95–97,106,107,109,110], and bit-level [84, 108].

According to Theorem 5.3.1 the taint-granularities have been ordered with increasing

precision.

Other taint analysis applications, such as the ones on Java String objects, can be

compared analogously as well. Like how bitvectors consists of bits or bytes, Java Strings

159

consists of UTF-16 characters or full String objects. Therefore, theorem 5.3.1 indicates

that the Java String propagation policies defined at the character level [91,92] may be

more precise than those defined at the object level [93,99]

Analysis-granularity: The range of analysis-granularity designs matches well with the

different levels of programming languages. Researchers have defined propagation policies

for high-level languages such as C [87] and Java [91–93,99], scripting languages such as

PHP [89], PERL [101] and JavaScript [90,100], low level languages such as x86

assembly [56,84,94,103,104] and even at the gate level [108].

It is also common practice to implement taint propagation through an intermediate

language [56,59,84,94,104] with simpler semantics and reduced instruction set than

through the language or instruction set (e.g., x86 and ARM), they emulate. The emulation

code can range from a single instruction, to a basic block of instructions to whole functions

that contain multiple execution paths. Consequently, Theorem 5.3.2 indicates that this

design choice may increase false-positives and reduce precision. Similar to Memcheck, the

presence of false-positives and negatives can be verified.

5.5.5 ARM and Dalvik Level Tainting in DroidScope

Similar to how DroidScope limited fine-grained analysis support to Dalvik bytecodes

emulated using mterp, the discussions on the precision of analyzing Dalvik level taint using

only ARM instructions is also limited to the mterp interpreter. As discussed in Section

4.4.2, each bytecode in mterp is associated with a set of native instructions that is used to

emulate the bytecode’s functionality. Since the native code is optimized for individual

160

1. %default {"preinstr":"", "result":"r0", "chkzero":"0"}

2. /*

3. * Generic 32-bit binary operation. Provide an "instr" line that

4. * specifies an instruction that performs "result = r0 op r1".

5. * This could be an ARM instruction or a function call. (If the result

6. * comes back in a register other than r0, you can override "result".)

7. *

8. * If "chkzero" is set to 1, we perform a divide-by-zero check on

9. * vCC (r1). Useful for integer division and modulus. Note that we

10. * *don’t* check for (INT_MIN / -1) here, because the ARM math lib

11. * handles it correctly.

12. *

13. * For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,

14. * xor-int, shl-int, shr-int, ushr-int, add-float, sub-float,

15. * mul-float, div-float, rem-float

16. */

17. /* binop vAA, vBB, vCC */

18. FETCH(r0, 1) @ r0<- CCBB

19. mov r9, rINST, lsr #8 @ r9<- AA

20. mov r3, r0, lsr #8 @ r3<- CC

21. and r2, r0, #255 @ r2<- BB

22. GET_VREG(r1, r3) @ r1<- vCC

23. GET_VREG(r0, r2) @ r0<- vBB

24. .if $chkzero

25. cmp r1, #0 @ is second operand zero?

26. beq common_errDivideByZero

27. .endif

28.

29. FETCH_ADVANCE_INST(2) @ advance rPC, load rINST

30. $preinstr @ optional op; may set condition codes

31. $instr @ $result<- op, r0-r3 changed

32. GET_INST_OPCODE(ip) @ extract opcode from rINST

33. SET_VREG($result, r9) @ vAA<- $result

34. GOTO_OPCODE(ip) @ jump to next instruction

Fig. 5.9.: ARM Emulation code for basic mterp operations (binop.S)

architectures, the discussions are focused on ARM v5 architecture, which is widely

supported.

In the ARM v5 implementation of mterp, all of the arithmetic operations are generated

using macros. The basic emulation code for 32-bit binary arithmetic opcodes is defined in a

file named binop.S and is depicted in Figure 5.9. As the figure shows, mterp first loads the

Dalvik virtual register numbers into scratch registers r2 and r3 (lines 20 and 21), then

loads the operands from the stack using the GET VREG macro into scratch registers r0 and

r1 (lines 22 and 23), operates on the registers using the $instr macro (line 31), and finally

loads the result back into the corresponding virtual register (line 33). For example, the

161

ADD INT mterp opcode effectively replaces line 31 with add r0, r0, r1 and DIV INT

replaces line 31 with bl aeabi idiv, the call to the native function that performs

division since some ARM architectures, v5 included, do not support division natively.

Since the only non-data-transfer instruction in the emulation code is the actual

arithmetic operation (e.g., add), the taint propagation policy for tracking taint at the

ARM instruction level is the same as the logic for tracking taint at the Dalvik opcode level.

The lines of interest are 22, 23, 31 and 33 and in fact are no different than a basic block of

code that loads memory operands into registers for processing and then stores the result

from the register back into memory.

The only caveat is that the Dalvik opcodes are assumed not to be tainted. If they are

tainted, then the instructions used to decode and interpret the bytecode (lines 18-21) will

blindly propagate the taint through. This might or might not be the desired behavior since

these details do not exist in Dalvik level taint propagation. The advantage of propagating

taint through ARM instructions is the added control over how taint is to be propagated

through the decoding process. On the other hand, the and and lsr (lines 19-21) need to be

precise in order to avoid over-tainting. Special rules for these operations were discussed in

Section 5.4 and are likely to be precise.

Unary operations are emulated similarly and thus for all practical purposes,

propagating taint at the native instruction level is equivalent to propagating taint at the

Dalvik opcode level for the arithmetic instructions.

162

5.6 Discussion

SMT Solvers The ability to show accuracy and precision is wholly dependent on SAT

solvers such as Z3. As the timing results show, even queries to determine whether simple

rules, such as xor, is precise do not return within 24 hours. This is mainly due to the use

of quantifiers in the definitions and equations, which Z3 is not optimized for. On the other

hand though, it should be stressed that the proofs for accuracy return quickly and thus, in

the minimum, it is feasible to ensure that policies do not have false-negatives. Other

solvers can be used to solve the same queries. This is left as future work.

Other Design Considerations The comparisons have focused on the design parameters

that can be effectively measured with the proposed approach. There are other extremely

important design constraints such as performance and generality. That is, while the refined

policies decrease false-positives, and therefore the over-tainting problem, the overhead

needed for applying the rules can greatly affect system performance. Similarly, while a

finer-grained taint-granularity increases precision, it also requires more resources to

maintain the additional taint tags.

Overall, the final decision on how to balance the trade-offs between accuracy, precision,

performance and other factors is application dependent. There are already indications that

the trade-offs mentioned above can be successfully managed though. This means that

precise policies can be used in practice.

Symmetric multi-threading [107], unused extension processing units, (e.g.

FPU/MMU) [103], special hardware [111] and mixed static and dynamic analysis [138]

have been and can still be used to improve the performance of calculating taints. This is

163

especially true for the complex refined policies. To reduce taint label storage requirements,

researchers have used mixed granularities [59, 96] and complex page table like

structures [87,95].

There is also precedence in pairing taint analysis with SMT solvers at runtime [9, 139],

mixing analysis-granularities by using function summaries [56,96], adjusting

analysis-granularity at runtime [104] and dynamically selecting what to analyze [40,97].

Additionally, the concept of Secure Multi-Execution [140] has been shown capable of

determining whether a program is “noninterferent” with little overhead in the JavaScript

engines of Chrome and Firefox [141]. These previous efforts indicate that calculating

precise information flows at runtime might be feasible, even for larger analysis-granularities

such as functions.

Automatic Synthesis Both the behavioral models and the refined special rules were

manually defined, which can still introduce errors. To achieve the highest precision, the

policies as well as the special rules should be completely automatically generated. To this

extent, Godefroid and Taly presented a ”Smart” algorithm that uses function templates to

automatically synthesize the behavioral models of the same x86 instructions (excluding adc

and sbb) used in the tests [136]. The same algorithm can be used to synthesize the refined

rules as well as the special sanitization rules. It can be seen that the rules for adc, sbb, add

and sub follow a similar template and so do the sanitization rules. This problem is left as

future work.

164

5.7 Conclusion

The purpose of this chapter was to develop the fundamental understanding and

methodology for analyzing the accuracy and precision of dynamic taint propagation

policies. This was achieved by deriving the noninterfering data model and using it to make

four main observations on the fundamental sources of false-positives and false-negatives in

dynamic taint analysis implementations. It was proven that byte level tainting strictly

over-taints bit level tainting and that basic block level tainting, and in essence IR level

tainting, strictly over-taints instruction level tainting. The model was also used to formally

define previously used terms and to define definitions for verifying accuracy and precision.

The merit of the more formal approach was shown through a case study for generating

precise taint propagation policies for common bitvector operations. The automatically

identify information flow based policy combined with the refined rules were verified to be

more precise than previously published taint trackers. The implementation of a new more

precise taint tracker is left as future work.

165

6. SUMMARY

The original thesis was that transparent malware analysis platforms with precise taint

tracking rules can be realized using virtualization technologies. This thesis has been

validated in this dissertation.

V2E showed that heterogeneous record and replay can be used to record a sample’s

execution in a hardward virtualized environment that is transparent, followed by a replay

in an emulated environment. By changing the emulator to precisely replay the log as

recorded, the emulation based malware analysis platform, TEMU, was able to successfully

analyze real-world malware samples that previously evaded its analysis.

DroidScope showed that the two levels of semantic gaps in Android malware can be

bridged. Furthermore, it showed that two levels of semantic information can also be

seamlessly bound together such that a single emulation based malware analysis platform

can be used to analyze Android malware with colluding Java and native components.

Both V2E and DroidScope are emulation based malware analysis platforms and thus

benefit from the advantages of flexibility and efficiency for analysis plugin development.

They both have instruction tracer plugins and support taint analysis as well.

The accuracy and precision of the taint propagation policies in both of these

implementations as well as other previously published taint analysis platforms were

analyzed and compared using the methods presented in Chapter 5. The results showed

room for improvement.

166

In conclusion, while transparent and precise malware analysis is feasible using

virtualization, future work (as mentioned throughout this dissertation) is needed to extend

these initial results.

LIST OF REFERENCES

167

LIST OF REFERENCES

[1] “Online exposure social networks, mobile phones, and scams can threaten your
security,” Consumer Reports, vol. 76, June 2011.

[2] “Norton study calculates cost of global cybercrime: $114 billion annually.” http:
//www.symantec.com/about/news/release/article.jsp?prid=20110907_02,
2011.

[3] Z. Bu, T. Dirro, P. Greve, D. Marcus, F. Paget, R. Permeh, V. Pogulievsky,
C. Schmugar, J. Shah, P. Szor, and A. Wosotowsky, “Mcafee threats report: Fourth
quarter 2011,” tech. rep., McAfee Labs, 2012.

[4] Z. Bu, T. Dirro, P. Greve, D. Marcus, F. Paget, R. Permeh, C. Schmugar, J. Shah,
P. Szor, G. Venere, and A. Wosotowsky, “2012 threats predictions,” tech. rep.,
McAfee Labs, 2011.

[5] “State of mobile security 2012,” tech. rep., lookout Mobile Security, 2012.

[6] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic
malware-analysis techniques and tools,” ACM Comput. Surv., vol. 44, pp. 6:1–6:42,
Mar. 2008.

[7] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX Annual
Technical Conference, FREENIX Track, April 2005.

[8] “Qemu.” http://www.qemu.org/.

[9] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: hi-fi tests for lo-fi emulators,” in Proceedings of the
seventeenth international conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’12, (New York, NY, USA), pp. 337–348,
ACM, 2012.

[10] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing cpu emulators,” in
Proceedings of the 18th International Symposium on Software Testing and Analysis
(ISSTA’09), pp. 261–272, 2009.

[11] T. Raffetseder, C. Krügel, and E. Kirda, “Detecting system emulators,” in
Information Security, 10th International Conference, ISC 2007, pp. 1–18, October
2007.

[12] P. Ferrie, “Attacks on virtual machine emulators.” Symantec Security Response,
December 2006.

[13] “Kernel Based Virtual Machine.” http://www.linux-kvm.org/.

http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02
http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02
http://www.qemu.org/
http://www.linux-kvm.org/

168

[14] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new approach to computer
security via binary analysis,” in Proceedings of the 4th International Conference on
Information Systems Security, (Hyderabad, India), Dec. 2008.

[15] “TEMU: The BitBlaze dynamic analysis component.”
http://bitblaze.cs.berkeley.edu/temu.html.

[16] H. Yin and D. Song, “Temu: Binary code analysis via whole-system layered
annotative execution,” Tech. Rep. UCB/EECS-2010-3, EECS Department,
University of California, Berkeley, Jan 2010.

[17] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing
the semantic gap in virtual machine introspection,” in Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, (Washington, DC, USA), pp. 297–312,
IEEE Computer Society, 2011.

[18] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based architecture
for intrusion detection,” in Proceedings of Network and Distributed Systems Security
Symposium (NDSS’03), February 2003.

[19] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction,” in Proceedings of the 14th ACM
conference on Computer and Communications Security (CCS’07), October 2007.

[20] J. A. Goguen and J. Meseguer, “Security policies and security models,” in
Proceedings of the 1982 IEEE Computer Society Symposium on Research in Security
and Privacy, (Oakland, CA), IEEE Computer Society Press, May 1982.

[21] J. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38,
no. 5, pp. 32–38, May.

[22] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6,
pp. 34–45, June.

[23] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. Oracle America, Inc., 2011.

[24] D. Bornstein, “Dalvik vm internals.”
https://sites.google.com/site/io/dalvik-vm-internals, 2008. Google I/O.

[25] E. Mallach, “On the relationship between virtual machines and emulators,” in
Proceedings of the Workshop on Virtual Computer Systems, 1973.

[26] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” vol. 17, ACM, July 1974.

[27] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V. Anderson,
S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel virtualization technology,”
Computer, vol. 38, pp. 48–56, May 2005.

[28] K. Adams and O. Agesen, “A comparison of software and hardware techniques for
x86 virtualization,” in Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems,
ASPLOS-Xii, pp. 2–13, ACM, 2006.

http://bitblaze.cs.berkeley.edu/temu.html
https://sites.google.com/site/io/dalvik-vm-internals

169

[29] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel virtualization
technology: Hardware support for efficient processor virtualization,” vol. 10, Intel,
Aug. 2006.

[30] AMD, “AMD64 virtualization codenamed “pacifica” technology: Secure virtual
machine architecture reference manual,” Tech. Rep. 33047, Advanced Micro Devices,
May 2005.

[31] R. Mijar and A. Nightingale, “Virtualization is coming to a platform near you,” tech.
rep., ARM Limited, 2011.

[32] Intel, Intel 64 and IA-32 Architectures Software Developers Manual. Volume 3C:
System Programming Guide, Part 3, January 2013.

[33] N. Bhatia, “Performance evaluation of intel EPT hardware assist,” tech. rep.,
VMware, Mar 2009.

[34] AMD, “AMD-V nested paging,” tech. rep., Advanced Micro Devices, July 2008.

[35] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03), pp. 164–177,
October 2003.

[36] “Xen.” http://www.xen.org/.

[37] “Oracle vm virtualbox.” http://www.virtualbox.org/.

[38] “Android emulator.”
http://developer.android.com/tools/help/emulator.html.

[39] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam, and
D. Song, “BitScope: Automatically dissecting malicious binaries,” Tech. Rep.
CS-07-133, School of Computer Science, Carnegie Mellon University, Mar. 2007.

[40] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo
multi-path analysis of software systems,” in Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Mar. 2011.

[41] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for
malware analysis,” in Proceedings of the 2007 IEEE Symposium on Security and
Privacy(Oakland’07), May 2007.

[42] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adaptive
dynamic optimization,” in International Symposium on Code Generation and
Optimization (CGO’03), March 2003.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proc. of 2005 Programming Language Design and
Implementation (PLDI) conference, june 2005.

[44] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation engine for the
arm architecture,” in Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, CASES ’06, (New York, NY, USA),
pp. 261–270, ACM, 2006.

http://www.xen.org/
http://www.virtualbox.org/
http://developer.android.com/tools/help/emulator.html

170

[45] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in PLDI, pp. 89–100, 2007.

[46] A. R. Bernat, K. Roundy, and B. P. Miller, “Efficient, sensitivity resistant binary
instrumentation,” in Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ISSTA ’11, (New York, NY, USA), pp. 89–99, ACM, 2011.

[47] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis using stealth
localized-executions,” in SP ’06: Proceedings of the 2006 IEEE Symposium on
Security and Privacy (S&P’06), (Washington, DC, USA), pp. 264–279, IEEE
Computer Society, 2006.

[48] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineering of
malware emulators,” in Proceedings of the 30th IEEE Symposium on Security and
Privacy, pp. 94–109, 2009.

[49] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary code extraction
and interface identification for security applications,” in Proceedings of the 17th
Annual Network and Distributed System Security Symposium, (San Diego, CA), Feb.
2010.

[50] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable,
behavior-based malware clustering,” in Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS 2009), 2009.

[51] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling active
botnet infiltration using automatic protocol reverse-engineering,” in Proceedings of
the 16th ACM Conference on Computer and Communication Security, (Chicago, IL),
Nov. 2009.

[52] R. Riley, X. Jiang, and D. Xu, “Multi-aspect profiling of kernel rootkit behavior,” in
Proceedings of the fourth ACM european conference on Computer systems
(EuroSys’09), 2009.

[53] A. Lanzi, M. Sharif, and W. Lee, “K-Tracer: A system for extracting kernel malware
behavior,” in Proceedings of the 16th Annual Network and Distributed System
Security Symposium (NDSS’09), February 2009.

[54] H. Yin, Z. Liang, and D. Song, “HookFinder: Identifying and understanding malware
hooking behaviors,” in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), February 2008.

[55] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for
packed executables,” in Proceedings of the 5th ACM Workshop on Recurring Malcode
(WORM’07), Oct. 2007.

[56] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda, “Panorama: Capturing
system-wide information flow for malware detection and analysis,” in Proceedings of
the 14th ACM Conferences on Computer and Communication Security (CCS’07),
October 2007.

[57] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic Spyware Analysis,”
in Proceedings of the 2007 Usenix Annual Conference (Usenix’07), June 2007.

[58] J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention orthogonal
to memory model,” in Proceedings of the 37th International Symposium on
Microarchitecture (MICRO’04), December 2004.

171

[59] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an emulator for fingerprinting
zero-day attacks,” in EuroSys 2006, April 2006.

[60] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via
hardware virtualization extensions,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51–62, 2008.

[61] P. P. Bungale and C.-K. Luk, “PinOS: a programmable framework for whole-system
dynamic instrumentation,” in Proceedings of the 3rd international conference on
Virtual execution environments, VEE ’07, pp. 137–147, 2007.

[62] G. Kroah-Hartman, “Driving me nuts - things you never should do in the kernel.”
http://www.linuxjournal.com/article/8110, April 2005.

[63] E. Mouw, “Faq/whywritingfilefromkernelisbad.”
http://kernelnewbies.org/FAQ/WhyWritingFilesFromKernelIsBad, November
2006.

[64] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask),” in Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP
’10, (Washington, DC, USA), pp. 317–331, IEEE Computer Society, 2010.

[65] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna, “Efficient
Detection of Split Personalities in Malware,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), (San Diego, CA), February 2010.

[66] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song, “Emulating
emulation-resistant malware,” in Proceedings of the 2nd Workshop on Virtual
Machine Security (VMSec’09), November 2009.

[67] “Gartner says sales of mobile devices grew 5.6 percent in third quarter of 2011;
smartphone sales increased 42 percent.”
http://gartner.com/it/page.jsp?id=1848514, 2011.

[68] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets,” in Proceedings
of the 19th Network and Distributed System Security Symposium, (San Diego, CA),
February 2012.

[69] “Developing windows store apps.” http:
//msdn.microsoft.com/en-us/library/windows/apps/xaml/br229566.aspx.

[70] E. Meijer and J. Gough, “A technical overview of the common language
infrastructure.”
http://research.microsoft.com/en-us/um/people/emeijer/Papers/CLR.pdf,
2001.

[71] J. Singer, “JVM versus CLR: a comparative study,” in Proceedings of the 2nd
international conference on Principles and practice of programming in Java, PPPJ
’03, (New York, NY, USA), 2003.

[72] “Security alert: New sophisticated android malware droidkungfu found in alternative
chinese app markets.”
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html.

http://www.linuxjournal.com/article/8110
http://kernelnewbies.org/FAQ/WhyWritingFilesFromKernelIsBad
http://gartner.com/it/page.jsp?id=1848514
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/br229566.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/br229566.aspx
http://research.microsoft.com/en-us/um/people/emeijer/Papers/CLR.pdf
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

172

[73] “Cve-2009-1185.”
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1185.

[74] “Android developers.” http://developer.android.com/.

[75] “ded: Decompiling Android Applications.”
http://siis.cse.psu.edu/ded/index.html.

[76] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security,” in Proceedings of the 20th USENIX Security Symposium, 2011.

[77] “Proguard.” http://proguard.sourceforge.net.

[78] “Dynamic, metamorphic (and opensource) virtual machines.” http://archive.
hack.lu/2010/Desnos_Dynamic_Metamorphic_Virtual_Machines-slides.pdf.

[79] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones,” in Proceedings of the 9th USENIX conference on Operating systems
design and implementation, OSDI’10, (Berkeley, CA, USA), pp. 1–6, USENIX
Association, 2010.

[80] “Droidbox: Android application sandbox.” http://code.google.com/p/droidbox/.

[81] H. Lockheimer, “Android and security.”
http://googlemobile.blogspot.com/2012/02/android-and-security.html,
February 2012.

[82] J. Oberheide and C. Miller, “Dissecting the android bouncer.”
http://jon.oberheide.org/2012/06/21/dissecting-the-android-bouncer/,
June 2012.

[83] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic extraction of
protocol message format using dynamic binary analysis,” in Proceedings of the 14th
ACM Conferences on Computer and Communication Security (CCS’07), October
2007.

[84] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors with
bit-precision,” in Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC ’05, (Berkeley, CA, USA), pp. 2–2, USENIX Association, 2005.

[85] J. Clause and A. Orso, “Leakpoint: pinpointing the causes of memory leaks,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, (New York, NY, USA), pp. 515–524, ACM, 2010.

[86] S. McCamant and M. D. Ernst, “Quantitative information flow as network flow
capacity,” in Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, (New York, NY, USA), pp. 193–205,
ACM, 2008.

[87] L. C. Lam and T. cker Chiueh, “A general dynamic information flow tracking
framework for security applications,” in Computer Security Applications Conference,
2006. ACSAC ’06. 22nd Annual, pp. 463–472, dec. 2006.

[88] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security enforcement using
dynamic data flow analysis,” in Proceedings of the 15th ACM conference on
Computer and communications security, CCS ’08, (New York, NY, USA), pp. 39–50,
ACM, 2008.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1185
http://developer.android.com/
http://siis.cse.psu.edu/ded/index.html
http://proguard.sourceforge.net
http://archive.hack.lu/2010/Desnos_Dynamic_Metamorphic_Virtual_Machines-slides.pdf
http://archive.hack.lu/2010/Desnos_Dynamic_Metamorphic_Virtual_Machines-slides.pdf
http://code.google.com/p/droidbox/
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://jon.oberheide.org/2012/06/21/dissecting-the-android-bouncer/

173

[89] I. Papagiannis, M. Migliavacca, and P. Pietzuch, “PHP aspis: using partial taint
tracking to protect against injection attacks,” in Proceedings of the 2nd USENIX
conference on Web application development, WebApps’11, (Berkeley, CA, USA),
pp. 2–2, USENIX Association, 2011.

[90] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks,” in Proceedings of the 15th conference on
USENIX Security Symposium - Volume 15, USENIX-SS’06, (Berkeley, CA, USA),
USENIX Association, 2006.

[91] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting and
syntax-aware evaluation to counter sql injection attacks,” in Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software engineering,
SIGSOFT ’06/FSE-14, (New York, NY, USA), pp. 175–185, ACM, 2006.

[92] E. Chin and D. Wagner, “Efficient character-level taint tracking for java,” in
Proceedings of the 2009 ACM workshop on Secure web services, SWS ’09, (New York,
NY, USA), pp. 3–12, ACM, 2009.

[93] B. Chess and J. West, “Dynamic taint propagation: Finding vulnerabilities without
attacking,” Inf. Secur. Tech. Rep., vol. 13, pp. 33–39, Jan. 2008.

[94] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis framework,”
in Proceedings of the 2007 international symposium on Software testing and analysis,
ISSTA ’07, (New York, NY, USA), pp. 196–206, ACM, 2007.

[95] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft: practical
dynamic data flow tracking for commodity systems,” in Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, VEE ’12, (New
York, NY, USA), pp. 121–132, ACM, 2012.

[96] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser: protecting
sensitive data leaks using application-level taint tracking,” SIGOPS Oper. Syst. Rev.,
vol. 45, pp. 142–154, Feb. 2011.

[97] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead
practical information flow tracking system for detecting security attacks,” in
Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 39, (Washington, DC, USA), pp. 135–148, IEEE
Computer Society, 2006.

[98] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Automatically
hardening web applications using precise tainting,” in In 20th IFIP International
Information Security Conference, pp. 372–382, 2005.

[99] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in
Proceedings of the 21st Annual Computer Security Applications Conference, ACSAC
’05, (Washington, DC, USA), pp. 303–311, IEEE Computer Society, 2005.

[100] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis,” in
Proceeding of the Network and Distributed System Security Symposium (NDSS’07),
February 2007.

[101] “perlsec: Taint mode.” perldoc.perl.org/perlsec.html#Taint-mode, August
2012.

perldoc.perl.org/perlsec.html#Taint-mode

174

[102] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software,” in Proceedings of the
12th Annual Network and Distributed System Security Symposium (NDSS’05),
February 2005.

[103] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest taint tracker,”
in Proceedings of RAID’11, (Menlo Park, CA), September 2011.

[104] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++: Dynamic taint
analysis with targeted control-flow propagation,” in Proceedings of the 18th Annual
Network and Distributed System Security Symposium, (San Diego, CA), Feb. 2011.

[105] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A.
Reis, M. Vachharajani, and D. I. August, “Rifle: An architectural framework for
user-centric information-flow security,” in Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 37, (Washington, DC, USA),
pp. 243–254, IEEE Computer Society, 2004.

[106] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program execution via
dynamic information flow tracking,” in Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’04), October 2004.

[107] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “Sift: a low-overhead
dynamic information flow tracking architecture for smt processors,” in Proceedings of
the 8th ACM International Conference on Computing Frontiers, CF ’11, (New York,
NY, USA), pp. 37:1–37:11, ACM, 2011.

[108] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T. Sherwood,
“Complete information flow tracking from the gates up,” in Proceedings of the 14th
international conference on Architectural support for programming languages and
operating systems, ASPLOS ’09, (New York, NY, USA), pp. 109–120, ACM, 2009.

[109] J. Kong, C. C. Zou, and H. Zhou, “Improving software security via runtime
instruction-level taint checking,” in Proceedings of the 1st workshop on Architectural
and system support for improving software dependability, ASID ’06, (New York, NY,
USA), pp. 18–24, ACM, 2006.

[110] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer, “Defeating memory corruption
attacks via pointer taintedness detection,” in Dependable Systems and Networks,
2005. DSN 2005. Proceedings. International Conference on, pp. 378 – 387, june-1 july
2005.

[111] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible information flow
architecture for software security,” in Proceedings of the 34th annual international
symposium on Computer architecture, ISCA ’07, (New York, NY, USA), pp. 482–493,
ACM, 2007.

[112] D. M. Volpano, “Safety versus secrecy,” in Proceedings of the 6th International
Symposium on Static Analysis, SAS ’99, (London, UK, UK), pp. 303–311,
Springer-Verlag, 1999.

[113] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict control dependence and its
effect on dynamic information flow analyses,” in Proceedings of the 19th international
symposium on Software testing and analysis, ISSTA ’10, (New York, NY, USA),
pp. 13–24, ACM, 2010.

175

[114] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the practicality of pointer
tainting,” in EuroSys ’09, April 2009.

[115] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: efficient deterministic
multithreading in software,” Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS’09), Mar. 2009.

[116] D. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay debugging for distributed
applications,” in Proceedings of the 2006 USENIX Annual Technical Conference,
pp. 27–27, 2006.

[117] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and Z. Zhang,
“R2: An application-level kernel for record and replay,” in Proceedings of the 9th
Symposium on Operating Systems Design and Implementation (OSDI’08),
pp. 193–208, 2008.

[118] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flashback: a
lightweight extension for rollback and deterministic replay for software debugging,”
in Proceedings of the 2004 USENIX Annual Technical Conference, June 2004.

[119] Y. Saito, “Jockey: a user-space library for record-replay debugging,” in
AADEBUG’05: Proceedings of the sixth international symposium on Automated
analysis-driven debugging, pp. 69–76, 2005.

[120] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen, “Revirt:
Enabling intrusion analysis through virtual-machine logging and replay,” in
Proceedings of the 5th symposium on Operating Systems Design and Implementation
(OSDI’02), December 2002.

[121] “Vmware.” http://www.vmware.com/.

[122] J. Chow, T. Garfinkel, and P. Chen, “Decoupling dynamic program analysis from
execution in virtual environments,” in Proceedings of 2008 Usenix Annual Technical
Conference, June 2008.

[123] C. da Wang and S. Ju, “The dilemma of covert channels searching,” in ICISC,
pp. 169–174, 2005.

[124] M. Siper, Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[125] “adore-ng rootkit.” http://stealth.openwall.net/rootkits/.

[126] “Anubis: Analyzing Unknown Binaries.” http://anubis.iseclab.org/.

[127] “CWSandbox::Behavior-based Malware Analysis.” http://mwanalysis.org/.

[128] B. Cheng and B. Buzbee, “A JIT compiler for android’s dalvik VM.”
http://www.google.com/events/io/2010/sessions/
jit-compiler-androids-dalvik-vm.html, 2010. Google I/O.

[129] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,” in Proceedings of the
Theory and practice of software, 14th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’08/ETAPS’08,
(Berlin, Heidelberg), pp. 337–340, Springer-Verlag, 2008.

http://www.vmware.com/
http://stealth.openwall.net/rootkits/
http://anubis.iseclab.org/
http://mwanalysis.org/
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html

176

[130] “Jif: Java + information flow.” http://www.cs.cornell.edu/jif/, August 2012.

[131] A. C. Myers, “Jflow: practical mostly-static information flow control,” in Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’99, (New York, NY, USA), pp. 228–241, ACM, 1999.

[132] F. Pottier and V. Simonet, “Information flow inference for ml,” ACM Trans.
Program. Lang. Syst., vol. 25, pp. 117–158, Jan. 2003.

[133] “Valgrind: Project suggestions.” http://valgrind.org/help/projects.html, July
2012.

[134] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK) (A. Gupta and D. Kroening, eds.), 2010.

[135] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis
platform,” in Proceedings of the 23rd International Conference on Computer Aided
Verification, CAV’11, (Berlin, Heidelberg), pp. 463–469, Springer-Verlag, 2011.

[136] P. Godefroid and A. Taly, “Automated synthesis of symbolic instruction encodings
from i/o samples,” in Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation, PLDI ’12, (New York, NY,
USA), pp. 441–452, ACM, 2012.

[137] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, pp. 319–349,
July 1987.

[138] K. Jee, G. Portokalidis, V. P. Kemerlis, and S. Ghosh, “A general approach for
efficiently accelerating software-based dynamic data flow tracking on commodity
hardware,” in Proceedings of the 19th Annual Network and Distributed System
Security Symposium, (San Diego, CA), Feb. 2012.

[139] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity to distinguish
undue influence,” in Proceedings of the Fourth ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS), (Dublin, Ireland), June
2009.

[140] D. Devriese and F. Piessens, “Noninterference through secure multi-execution,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
(Washington, DC, USA), pp. 109–124, IEEE Computer Society, 2010.

[141] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flowfox: a web browser
with flexible and precise information flow control,” in Proceedings of the 19th ACM
Conferences on Computer and Communication Security (CCS’12), October 2012.

http://www.cs.cornell.edu/jif/
http://valgrind.org/help/projects.html

VITA

177

VITA

Lok Kwong Yan was born in a village named Shiukou Cun in Huadu, Guangdong,

China. He received his Bachelor of Science degree in Computer Engineering and Master of

Science degree in Electrical engineering from Polytechnic University, now known as

Polytechnic Institute of New York University. He received his PhD in Computer

Information Science and Engineering from Syracuse University in May 2013.

	Transparent and Precise Malware Analysis Using Virtualization: From Theory to Practice
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Virtualization
	Hardware Virtualization
	The QEMU Emulator
	The Kernel Based Virtual Machine (KVM)

	Dynamic Malware Analysis
	Transparency

	Android
	Android Malware Analysis

	Taint Analysis
	Challenges
	Noninterference

	Summary

	Making Emulators Transparent
	Introduction
	Design Goals & Approach
	Design Goals
	Architecture
	Precise Heterogeneous Record and Replay

	Transparent Recorder
	Mediating Recording Realm
	Basic Scheme
	Other Inputs
	Optimizations
	Bridging the Semantic Gap
	Shadow Time Stamp Counter
	Implementation

	Precise Replayer
	Dynamic Binary Translation and QEMU
	Changes for Precise Replay
	Example Walk-through
	Implementation

	Evaluation
	Study of Existing Anti-emulation Attacks
	Analyzing Malware on Existing Malware Analysis Platforms
	Analyzing Real world Malware with V2E
	Recorder Performance

	Discussion
	Conclusion

	Emulation-based Android Malware Analysis
	Introduction
	Architecture
	Instrumentation Interface
	Basic Instrumentation
	Application Programming Interfaces
	Instrumentation Optimization
	Taint Analysis

	Bridging the Semantic Gaps
	Reconstructing the OS-level View
	Reconstructing the Dalvik View
	Symbol Information

	Plugins
	Sample Plugin
	Analysis Plugins

	Evaluation
	Performance
	Analysis of DroidKungFu
	Analysis of DroidDream

	Discussion
	Conclusion

	Understanding Dynamic Taint Analysis
	Introduction
	Formal Foundation
	Noninterference
	Taint Propagation Policies
	Over- and Under-tainting

	Sources of Over- and Under-tainting
	Over-tainting Due to Taint-granularity: Observation 5.2.1
	Analysis-granularity and Over-tainting: Observation 5.2.2
	Other Sources of Over- and Under-tainting

	Generating an Accurate Policy for x86
	Stage 1: Behavioral Definitions
	Stage 2: General Information Flow

	Results
	Interpretation of Results
	Comparing With Previously Published Policies
	Refining Memcheck's Special Rules
	Taint- and Analysis-granularity
	ARM and Dalvik Level Tainting in DroidScope

	Discussion
	Conclusion

	Summary
	LIST OF REFERENCES
	VITA

