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Determination of fs/fd for 7 TeV pp collisions and a measurement of the branching

fraction of the decay B0
→ D−K+

R. Aaij23, B. Adeva36, M. Adinolfi42, C. Adrover6, A. Affolder48, Z. Ajaltouni5, J. Albrecht37, F. Alessio6,37 , M. Alexander47,
G. Alkhazov29, P. Alvarez Cartelle36 , A.A. Alves Jr22, S. Amato2, Y. Amhis38, J. Amoraal23, J. Anderson39, R.B. Appleby50,
O. Aquines Gutierrez10, L. Arrabito53, A. Artamonov 34, M. Artuso52,37, E. Aslanides6, G. Auriemma22,m, S. Bachmann11,

J.J. Back44, D.S. Bailey50, V. Balagura30,37 , W. Baldini16, R.J. Barlow50 , C. Barschel37 , S. Barsuk7, W. Barter43, A. Bates47,
C. Bauer10, Th. Bauer23, A. Bay38, I. Bediaga1, K. Belous34, I. Belyaev30,37, E. Ben-Haim8, M. Benayoun8, G. Bencivenni18,

S. Benson46, J. Benton42, R. Bernet39, M.-O. Bettler17,37 , M. van Beuzekom23, A. Bien11, S. Bifani12, A. Bizzeti17,h,
P.M. Bjørnstad50, T. Blake49, F. Blanc38, C. Blanks49, J. Blouw11, S. Blusk52, A. Bobrov33, V. Bocci22 , A. Bondar33,

N. Bondar29, W. Bonivento15, S. Borghi47 , A. Borgia52 , T.J.V. Bowcock48, C. Bozzi16, T. Brambach9, J. van den Brand24,
J. Bressieux38, S. Brisbane51, M. Britsch10, T. Britton52, N.H. Brook42, A. Büchler-Germann39, A. Bursche39, J. Buytaert37,

S. Cadeddu15, J.M. Caicedo Carvajal37 , O. Callot7, M. Calvi20,j , M. Calvo Gomez35,n, A. Camboni35, P. Campana18,37 ,
A. Carbone14, G. Carboni21,k , R. Cardinale19,i , A. Cardini15, L. Carson36, K. Carvalho Akiba23, G. Casse48 , M. Cattaneo37,
M. Charles51 , Ph. Charpentier37, N. Chiapolini39 , X. Cid Vidal36, P.E.L. Clarke46, M. Clemencic37, H.V. Cliff43, J. Closier37 ,

C. Coca28, V. Coco23, J. Cogan6, P. Collins37 , F. Constantin28, G. Conti38, A. Contu51, A. Cook42, M. Coombes42 ,
G. Corti37 , G.A. Cowan38, R. Currie46, B. D’Almagne7, C. D’Ambrosio37, P. David8, P.N.Y. David23, I. De Bonis4,
S. De Capua21,k , M. De Cian39, F. De Lorenzi12, J.M. De Miranda1, L. De Paula2, P. De Simone18, D. Decamp4,

M. Deckenhoff9, H. Degaudenzi38,37, M. Deissenroth11, L. Del Buono8, C. Deplano15, O. Deschamps5, F. Dettori15,d,
J. Dickens43, H. Dijkstra37, P. Diniz Batista1, D. Dossett44, A. Dovbnya40, F. Dupertuis38, R. Dzhelyadin34, C. Eames49 ,

S. Easo45 , U. Egede49, V. Egorychev30, S. Eidelman33, D. van Eijk23, F. Eisele11, S. Eisenhardt46, R. Ekelhof9, L. Eklund47,
Ch. Elsasser39 , D.G. d’Enterria35,o, D. Esperante Pereira36 , L. Estève43, A. Falabella16,e , E. Fanchini20,j , C. Färber11,
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4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
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40NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

41Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
43Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
44Department of Physics, University of Warwick, Coventry, United Kingdom

45STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
46School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

47School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
48Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

49Imperial College London, London, United Kingdom
50School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

51Department of Physics, University of Oxford, Oxford, United Kingdom
52Syracuse University, Syracuse, NY, United States

53CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne, France, associated member
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The relative abundance of the three decay modes B0
→ D−K+ , B0

→ D−π+ and B0
s →

D−

s π+ produced in 7 TeV pp collisions at the LHC is determined from data corresponding to
an integrated luminosity of 35 pb−1. The branching fraction of B0

→ D−K+ is found to be
B
(

B0
→ D−K+

)

= (2.01±0.18stat ±0.14syst)×10−4. The ratio of fragmentation fractions fs/fd is

determined through the relative abundance of B0
s → D−

s π+ to B0
→ D−K+ and B0

→ D−π+ ,
leading to fs/fd = 0.253±0.017±0.017±0.020, where the uncertainties are statistical, systematic,
and theoretical respectively.

PACS numbers: 12.38.Qk, 13.60.Le, 13.87.Fh

Knowledge of the production rate of B0
s
mesons is re-

quired to determine any B0
s
branching fraction. This

rate is determined by the bb̄ production cross-section and
the fragmentation probability fs, which is the fraction of
B0

s mesons amongst all weakly-decaying bottom hadrons.
Similarly the production rate of B0 mesons is driven by
the fragmentation probability fd. The measurement of
the branching fraction of the rare decay B0

s → µ+µ− is
a prime example where improved knowledge of fs/fd is
needed to reach the highest sensitivity in the search
for physics beyond the Standard Model [1]. The ratio
fs/fd has not yet been measured at LHC.
The branching fraction ratio B0

s → D−

s π
+ /B0 →

D−K+ is dominated by contributions from colour-
allowed tree-diagram amplitudes and is therefore theo-
retically well understood. In contrast, the ratio B0

s →

D−

s
π+ /B0 → D−π+ can be measured with a smaller

statistical uncertainty due to the greater yield of the B0

mode, but suffers from an additional theoretical uncer-
tainty due to the contribution from a W -exchange dia-
gram. Both ratios are exploited here to measure fs/fd ac-
cording to the equations [2, 3]

fs
fd

= 0.0743×
τBd

τBs

×

[

1

NaNF

ǫD−K+

ǫ
D

−

s π+

N
D

−

s π+

ND−K+

]

, (1)

and

fs
fd

= 0.982×
τBd

τBs

×

[

1

NaNFNE

ǫD−π+

ǫ
D

−

s π+

N
D

−

s π+

ND−π+

]

. (2)

Here ǫX is the selection efficiency of decay X (includ-

ing the branching fraction of the D decay mode used to
reconstruct it) and NX is the observed number of de-
cays of this type. Inclusion of charge conjugate modes
is implied throughout. The term Na parameterises non-
factorizable SU(3)-breaking effects; NF is the ratio of
the form factors; NE is an additional correction term
to account for the W -exchange diagram in the B0 →

D−π+ decay. Their values [2, 3] are Na = 1.00 ± 0.02,
NF = 1.24 ± 0.08, and NE = 0.966 ± 0.075. The latest
world average [4] is used for the B meson lifetime ratio
τBs

/τBd
= 0.973 ± 0.015. Other numerical factors have

negligible associated uncertainties [5].

The observed yields of these three decay modes in
35 pb−1 of data collected with the LHCb detector in
the 2010 running period are used to measure fs/fd av-
eraged over the LHCb acceptance and to improve the
current measurement of the branching fraction of the
B0 → D−K+ decay mode [6].

The LHCb experiment [7] is a single-arm spectrometer,
designed to study B decays at the LHC, with a pseudo-
rapidity acceptance of 2 < η < 5 for charged tracks. The
first trigger level allows the selection of events with B
hadronic decays using the transverse energy of hadrons
measured in the calorimeter system. The event infor-
mation is subsequently sent to a software trigger, imple-
mented in a dedicated processor farm, which performs a
final online selection of events for later offline analysis.
The tracking system determines the momenta of B de-
cay products with a precision of δp/p = 0.35–0.5%. Two
Ring Imaging Cherenkov (RICH) detectors allow charged
kaons and pions to be distinguished in the momentum
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range 2–100 GeV/c.
The three decay modes, B0 → D−(K+π−π−)π+,

B0 → D−(K+π−π−)K+ and B0
s
→ D−

s
(K+K−π−)π+,

are topologically identical and therefore can be selected
using identical geometric and kinematic criteria, thus
minimizing efficiency differences between them. Events
are selected at the first trigger stage by requiring a
hadron with transverse energy greater than 3.6 GeV in
the calorimeter. The second, software, stage [8, 9] re-
quires a two, three, or four track secondary vertex with a
high sum pT of the tracks, significant displacement from
the primary interaction, and at least one track with ex-
ceptionally high pT , large displacement from the primary
interaction, and small fit χ2.
The decays of B mesons can be distinguished from

background using variables such as the pT and impact
parameter χ2 with respect to the primary interaction of
the B, D, and the final state particles. In addition the
vertex quality of the B and D candidates, the B lifetime,
and the angle between the B momentum vector and the
vector joining the B production and decay vertices are
used in the selection. The D lifetime and flight distance
are not used in the selection because the lifetimes of the
D−

s and D− differ by about a factor of two.
The final event sample is selected using the gradient

boosted decision tree technique [10]. The selection is
trained on a mixture of simulated B0 → D−π+ decays
and combinatorial background selected from the side-
bands of the data mass distributions. The distributions
of the input variables for data and simulated signal events
show excellent agreement, justifying the use of simulated
events in the training procedure.
Subsequently, D− (D−

s
) candidates are identified by

requiring the invariant mass under the Kππ (KKπ)
hypothesis to fall within the selection window 1870+24

−40

(1969+24
−40) MeV/c2. The final B0 → D−π+ and B0

s →

D−

s
π+ subsamples consist of events that pass a parti-

cle identification (PID) criterion on the bachelor parti-
cle, based on the difference in log-likelihood between the
charged pion and kaon hypotheses (DLL) of DLL(K −

π) < 0. The B0 → D−K+ subsample consists of events
with DLL(K − π) > 5. Events not satisfying either con-
dition are not used.
The relative efficiency of the selection procedure is

evaluated for all decay modes using simulated events.
As the analysis is only sensitive to relative efficiencies,
the impact of differences between data and simulation
is small. The relative efficiencies are ǫD−π+/ǫD−K+ =
1.221 ± 0.021, ǫD−K+/ǫ

D
−

s π+ = 0.917 ± 0.020, and
ǫD−π+/ǫ

D
−

s π+ = 1.120± 0.025, where the errors are due
to the limited size of the simulated event samples.
The relative yields of the three decay modes are ex-

tracted from unbinned extended maximum likelihood fits
to the mass distributions. The signal mass shape is de-
scribed by an empirical model derived from simulated
events. The mass distribution in the simulation exhibits

non-Gaussian tails on either side of the signal. The tail
on the right-hand side is due to non-Gaussian detector
effects and modelled with a Crystal Ball (CB) function
[11]. A similar tail is present on the left-hand side of
the peak. In addition, the low mass tail contains a sec-
ond contribution due to events where hadrons have ra-
diated photons that are not reconstructed. The sum of
these contributions is modelled with a second CB func-
tion. The peak values of these two CB functions are
constrained to be identical.
Various backgrounds have to be considered, in par-

ticular the crossfeed between the D− and D−

s
chan-

nels, and the contamination in both samples from Λb →

Λ+
c π

− decays, where Λ+
c → pK−π+. The D−

s contami-
nation in the D− data sample is reduced by loose PID
requirements, DLL(K − π) < 10 and DLL(K − π) > 0,
for the pions and kaons from D decays, respectively. The
resulting efficiency to reconstruct B0

s
→ D−

s
π+ as back-

ground is evaluated, using simulated events, to be 30
times smaller than forB0 → D−π+ and 150 times smaller
than for B0 → D−K+within the B0 and D− signal mass
windows. Taking into account the lower production frac-
tion of B0

s
mesons, this background is negligible.

The contamination from Λc decays is estimated in a
similar way. However, different approaches are used for
the B0 and B0

s
decays. A contamination of approxi-

mately 2% under the B0 → D−π+ mass peak and below
1% under the B0 → D−K+ peak is found, and there-
fore no explicit DLL(p − π) criterion is needed. The Λc

background in the B0
s
sample is, on the other hand, large

enough that it can be fitted for directly.
A prominent peaking background to B0 → D−K+ is

B0 → D−π+ , with the pion misidentified as a kaon. The
small π → K misidentification rate is compensated by
the larger branching fraction, resulting in similar event
yields. This background is modelled by obtaining a clean
B0 → D−π+ sample from the data and reconstructing it
under the B0 → D−K+mass hypothesis. The resulting
mass shape depends on the momentum distribution of
the bachelor particle. The momentum distribution af-
ter the DLL(K − π) > 5 requirement can be found by
considering the PID performance as a function of mo-
mentum. This is obtained using a sample of D∗+ decays,
and is illustrated in Fig. 1. The mass distribution is
reweighted using this momentum distribution to repro-
duce the B0 → D−π+ mass shape following the DLL cut.
The combinatorial background consists of events with

random pions and kaons, forming a fake D− or D−

s can-
didate, as well as real, D− or D−

s mesons that combine
with a random pion or kaon. The combinatorial back-
ground is modelled with an exponential shape.
Other background components originate from par-

tially reconstructed B0 and B0
s

decays. In B0 →

D−π+ these originate from B0 → D∗−π+ and B0 →

D−ρ+ decays, which can also be backgrounds for B0 →

D−K+ in the case of a misidentified bachelor pion. In
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FIG. 1. Probability, as a function of momentum, to correctly
identify a kaon (full circles) and to wrongly identify a pion as
a kaon (open circles) when requiring DLL(K − π) > 5. The
data are taken from a calibration sample of D∗

→ D(Kπ)π
decays; the statistical uncertainties are too small to display.

B0 → D−K+ there is additionally background from
B0 → D∗−K+ decays. The invariant mass distributions
for the partially reconstructed and misidentified back-
grounds are taken from large samples of simulated events,
reweighted according to the mass hypothesis of the signal
being fitted and the DLL cuts.
For B0

s
→ D−

s
π+ , the B0 → D−π+ background peaks

under the signal with a similar shape. In order to sup-
press this peaking background, PID requirements are
placed on both kaon tracks. The kaon which has the
same sign in the B0

s → D−

s π
+ and B0 → D−π+ decays is

required to satisfy DLL(K−π) > 0, while the other kaon
in the D+

s
decay is required to satisfy DLL(K − π) > 5.

Because of the similar shape, a Gaussian constraint is ap-
plied to the yield of this background. The central value
of this constraint is computed from the π → K misiden-
tification rate. The Λb → Λ+

c π
− background shape is

obtained from simulated events, reweighted according to
the PID efficiency, and the yield allowed to float in the
fit. Finally, the relative size of the B0

s → D−

s ρ
+ and

B0
s
→ D∗−

s
π+ backgrounds is constrained to the ratio of

the B0 → D−ρ+ and B0 → D∗−π+ backgrounds in the
B0 → D−π+ fit, with an uncertainty of 20% to account
for potential SU(3) symmetry breaking effects.
The free parameters in the likelihood fits to the mass

distributions are the event yields for the different event
types, i.e. the combinatorial background, partially re-
constructed background, misidentified contributions, the
signal, as well as the peak value of the signal shape. In
addition the combinatoric background shape is left free
in the B0 → D−π+ and B0

s
→ D−

s
π+ fits, and the sig-

nal width is left free in the B0 → D−π+ fit. In the
B0

s
→ D−

s
π+ and B0 → D−K+ fits the signal width is

fixed to the value from the B0 → D−π+ fit, corrected by
the ratio of the signal widths for these modes in simulated
events.

The fits to the full B0 → D−π+ , B0 → D−K+ ,
and B0

s → D−

s π
+ data samples are shown in Fig. 2.

The resulting B0 → D−π+ and B0 → D−K+ event
yields are 4103 ± 75 and 252 ± 21, respectively. The
number of misidentified B0 → D−π+ events under the
B0 → D−K+ signal as obtained from the fit is 131± 19.
This agrees with the number expected from the total
number of B0 → D−π+ events, corrected for the misiden-
tification rate determined from the PID calibration sam-
ple, of 145± 5. The B0

s → D−

s π
+ event yield is 670± 34.

The stability of the fit results has been investigated
using different cut values for both the PID requirement
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FIG. 2. Mass distributions of the B0
→ D−π+ , B0

→

D−K+ , and B0
s → D−

s π+ candidates (top to bottom). The
indicated components are described in the text.
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TABLE I. Experimental systematic uncertainties for the
B
(

B0
→ D−K+

)

and the two fs/fd measurements.

B
(

B0
→ D−K+

)

fs/fd

PID calibration 2.5% 1.0%/2.5%

Fit model 2.8% 2.8%

Trigger simulation 2.0% 2.0%

B(B0
→ D−π+ ) 4.9%

B(D+
s → K+K−π+) 4.9%

B(D+
→ K−π+π+) 2.2%

τBs
/τBd

1.5%

on the bachelor particle and for the multivariate selection
variable. In all cases variations are found to be small in
comparison to the statistical uncertainty.
The relative branching fractions are obtained by cor-

recting the event yields by the corresponding efficiency
factors; the dominant correction comes from the PID ef-
ficiency. The dominant source of systematic uncertainty
is the knowledge on the B0 → D−π+ branching fraction
(for the B0 → D−K+ branching fraction measurement)
and the knowledge of the D− and D−

s
branching frac-

tions (for the fs/fd measurement). An important source
of systematic uncertainty is the knowledge of the PID ef-
ficiency as a function of momentum, which is needed to
reweight the mass distribution of the B0 → D−π+ decay
under the kaon hypothesis for the bachelor track. This
enters in two ways: firstly as an uncertainty on the cor-
rection factors, and secondly as part of the systematic
uncertainty, since the shape for the misidentified back-
grounds relies on correct knowledge of the PID efficiency
as a function of momentum. The fs/fd measurement
using B0 → D−K+ and B0

s
→ D−

s
π+ is more robust

against PID uncertainties, since the final states have the
same number of kaons and pions.
Other systematics are due to limited simulated event

samples (affecting the relative selection efficiencies), ne-
glecting the Λb → Λ+

c π
− and B0

s → D−

s π
+ backgrounds

in the B0 → D−π+ fits, and the limited accuracy of the
trigger simulation. The sources of systematic uncertainty
are summarized in Tab. I.
The efficiency corrected ratio of B0 → D−π+ and

B0 → D−K+ yields is combined with the world average
of the B0 → D−π+ [12] branching ratio to give

B
(

B0
→ D−K+

)

= (2.01± 0.18± 0.14)× 10−4. (3)

The first uncertainty is statistical and the second system-
atic.
The theoretically cleaner measurement of fs/fd uses

B0 → D−K+ and B0
s
→ D−

s
π+ and is made according to

Eq. 1. Accounting for the exclusiveD branching fractions
B(D+ → K−π+π+) = (9.14± 0.20)% [13] and B(D+

s →

K−K+π+) = (5.50 ± 0.27)% [14], the value of fs/fd is

found to be

fs/fd = 0.250± 0.024stat ± 0.017syst ± 0.017theor, (4)

where the first uncertainty is statistical, the second sys-
tematic, and the third theoretical. The theoretical un-
certainty is dominated by the form factor ratio. The
statistical uncertainty is dominated by the yield of the
B0 → D−K+ mode.
The statistically more precise but theoretically less

clean measurement of fs/fd uses B0 → D−π+ and B0
s →

D−

s
π+ and is, from Eq. 2,

fs/fd = 0.256± 0.014stat ± 0.019syst ± 0.026theor. (5)

The two values for fs/fd can be combined into a single
value, taking all correlated uncertainties into account.
The value of fs/fd is :

fs/fd = 0.253± 0.017stat ± 0.017syst ± 0.020theor. (6)

In summary, with 35 pb−1 of data collected using
the LHCb detector during the 2010 LHC operation at
a centre-of-mass energy of 7 TeV, the branching frac-
tion of the Cabibbo-suppressed B0 decay mode B0 →

D−K+ has been measured with better precision than
the current world average. Additionally, two measure-
ments of the fs/fd production fraction are performed
from the relative yields of B0

s
→ D−

s
π+ with respect

to B0 → D−K+ and B0 → D−π+ . These values of
fs/fd are in good agreement with the values determined
at LEP and at the Tevatron [4].
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