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ABSTRACT 
Lattice Boltzmann method (LBM), as a new computational fluid simulation method, has 
aroused widespread attention in recent decades within engineering practice. LBM with large 
eddy simulation (LBM-LES) model is commonly used in predicting high Reynolds flow, and 
is considered to have a prediction accuracy similar to traditional finite volume method (FVM-
LES). Nonetheless, a systematic discussion on the accuracy of LBM-LES, and its consistency 
with FVM-LES, in indoor turbulent flow situations, is still insufficient. In this study, 
simulations of an indoor isothermal forced convection benchmark case (from IEA Annex 20) 
are implemented by using both LBM-LES and FVM-LES, with the aim of comparing the 
accuracies of LBM-LES and FVM-LES, in indoor turbulent flow situations. A comparison of 
their relative computation speeds, and parallel computation performances, is also implemented. 
The results show that LBM-LES can achieve the same level of accuracy as FVM-LES, in indoor 
turbulent flow situations; however, more refined meshes are required. Compared with FVM-
LES, half size grids are required for LBM-LES to approach similar levels of accuracy, meaning 
that the meshes of LBM-LES are approximately eight times as large as FVM-LES. The 
computation speeds of both LBM-LES and FVM-LES scale well, with the increase in the 
number of computation cores in one node. Their computation speeds (with the same accuracy) 
approach a similar level; however, the parallel computation speed of the LBM-LES speed can 
be larger than FVM, owing to its superior parallel speedup performance. 
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INTRODUCTION 
The lattice Boltzmann method (LBM) has recently been applied in indoor turbulent flows 
(Sajjadi et al. 2016), in place of the conventional finite volume method (FVM). Based on the 
lattice Boltzmann equation, the LBM simulates the fluid motion process by assuming a 
collection of particles colliding, and a stream behavior for their distribution functions (Chen 
and Doolen 1998). When solving turbulent flow problems with a high Reynolds number, the 
LBM can be used with a large eddy simulation (LBM-LES) model, as in the FVM (FVM-LES). 
As it is necessary to solve the Poisson equation in the FVM, there is an obvious disadvantage 
in that the calculation load and time cost are tremendous. However, the LBM shows more 
promise in high-speed LES simulations for complex and large-scale urban flows, owing to its 
simpler algorithm, and it is also more appropriate for parallel calculations. 

Although the LBM has been applied in the flow simulation of indoor turbulence, a systematic 
comparison of its accuracy, consistency, and computation speed with the FVM is still 
insufficient. Therefore, in this research, simulations of an indoor turbulent flow benchmark case 
from IEA Annex 20 (Lemaire et al. 1993) are implemented by using both the LBM-LES and 
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FVM-LES, to verify the accuracy of the LBM-LES and to compare this accuracy with that of 
FVM-LES. The computation speeds and parallel computation performances are also determined. 

OUTLINE OF LBM  
Lattice Boltzmann equation 
Instead of the Navier-Stokes equation, the LBM in this research simulates the fluid using the 
lattice Boltzmann equation, with the BGK approximation (Bhatnagar, Gross, and Krook 1954). 
The non-external-force lattice Boltzmann-BGK equation is expressed as Equation (1), where 
𝛥𝑡  is the discrete time, 𝐞𝑎  is the discrete speed in the 𝑎 -direction, 𝑓𝑎(𝐫, 𝑡)  is particle  𝑎  s
distribution function, 𝑓𝑎

𝑒𝑞(𝐫, 𝑡) is the equilibrium function, and 𝜏 is the relaxation time.

𝑓𝑎(𝐫 + 𝐞𝑎𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓𝑎(𝐫, 𝑡) =
1

𝜏
[𝑓𝑎

𝑒𝑞(𝐫, 𝑡) − 𝑓𝑎(𝐫, 𝑡)] (1) 

Discrete velocity scheme 
The DdQq (d = spatial dimension, q = discrete particle speed) discrete velocity scheme (Qian, 
D Humières, and Lallemand 1992) is widely accepted for the LBM. In this research, the D3Q19 
scheme was employed, as shown in Figure 1. Cubic lattices are used in this scheme, with 18 
adjacent points for every lattice point. The particles only exist on the points, and move to an 
adjacent point, or just rest, during each time step. Therefore, the D3Q19 scheme has three types 
of particles, with motion speeds indicated in Table 1, where 𝑒 is the particle speed, 𝑒 = 𝛥𝑥 𝛥𝑡⁄ , 
and 𝛥𝑥 is the lattice length. 

Table 1. Discrete velocity of each particle 

Particle No. Discrete 
velocity Motion paths 

0 0 rest 

1– 6 𝑒 along the normal axis 

7– 18 √2 𝑒 along the diagonal 
Figure 1. Lattice system of the D3Q19 scheme 

LES model in LBM 
In this study, the LES (using the standard Smagorinsky SGS model) is implemented. According 
to the LES theory, the total viscosity 𝜈𝑡𝑜𝑡𝑎𝑙 is composed of the molecular viscosity 𝜈 and the 
eddy viscosity 𝜈𝑡. The 𝜈𝑡𝑜𝑡𝑎𝑙 and 𝜈𝑡 are given by Equation (2). 

𝜈𝑡𝑜𝑡𝑎𝑙 = 𝜈 + 𝜈𝑡,    𝜈𝑡 = (𝐶𝑠𝛥)2|�̅�| (2) 

where 𝐶𝑠 is the Smagorinsky constant, Δ is the filter, and �̅� is the strain rate tensor. This is as 
same as the LES theory of the FVM.  

Furthermore, the total viscosity can be calculated using Equation (3) by the LBM s theory. 

𝜈𝑡𝑜𝑡𝑎𝑙 = 𝑒𝑠
2(𝜏𝑡𝑜𝑡𝑎𝑙 − 0.5)𝛥𝑡 (3) 

where 𝑒𝑠 is the speed of sound of the particles, and 𝜏𝑡𝑜𝑡𝑎𝑙  is the total relaxation time. Therefore, 
the total relaxation time 𝜏𝑡𝑜𝑡𝑎𝑙 is obtained from 𝜈𝑡𝑜𝑡𝑎𝑙, and it substitutes the original relaxation 
time 𝜏 in Equation (1), to implement the LBM-LES simulation.  
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OUTLINE OF SIMULATION TARGET AND SIMULATION CONDITIONS 
The LBM-LES and FVM-LES (abbreviated to LBM and FVM below) approach was conducted 
for the indoor isothermal forced flow. The room model and simulation boundary conditions are 
shown in Figure 2 and Table 2, respectively. The room characteristics are 𝐿  𝐻⁄ = 3, ℎ  𝐻⁄ =
0.056, 𝑡  𝐻⁄ = 0.16, and 𝑅𝑒 = 5000  where 𝐿, 𝐻, ℎ, 𝑡 and 𝑅𝑒 represent the room length, room 
height, slot inlet height, outlet height, and the Reynolds number (refer to the inlet height and 
velocity), respectively. Since the inlet turbulence intensity of the experimental data is only 4% 
according to the IEA report, it can be considered to have a very small impact on the velocity, 
and thus, the inlet turbulence intensity was ignored in this simulation. A set of various uniform 
grid resolutions were employed, as illustrated in Table 3.  

Figure 2. Sketch of the simulation target (from IEA Annex 20) 

Table 2. Boundary conditions (B.C.) Table 3. Case study 
Item FVM-LES LBM-LES 

Sub-grid scale 
model 

Standard Smagorinsky model 
(Cs= 0.12) 

Damping 
function Van Driest-style 

Simulation 
domain 9.0 m (L) ×3.0 m (W) ×3.0 m (H) 
Time 

discretization Euler-implicit - 
Space 

discretization 
2nd-order central 

difference - 
Simulation 

Period 
Preparatory: 18 min, average: 6 min 

(air change rate: 0.172 min-1) 
Inlet B.C. Uniform velocity boundary, 

𝑼𝑖𝑛 = 0.455 𝑚/𝑠, (no fluctuations) 
Outlet B.C. Gradient-zero 
Other B.C. Wall function 

(Spalding s law) 
No-slip 

(Bounce-back) 

Case Name Simulation 
Method Grid size Mesh 

quantity 

LBM_004 

LBM-LES 

0.04 m 
 (1/75 H) 1.6 M 

LBM_002 0.02 m 
(1/150 H) 10.1 M 

LBM_001 0.01 m 
 (1/300 H) 81 M 

FVM_004 
FVM-LES 

0.04 m 
 (1/75 H) 1.6 M 

FVM_002 0.02 m 
(1/150 H) 10.1 M 

RESULTS AND DISCUSSIONS 
Time-averaged scalar velocity 

Figure 3 shows the normalized time-averaged scalar velocity of the central vertical section for 
the different cases. A large air circulation flow, which was equivalent to the room size, occurred 

Figure 3. Normalized time-averaged scalar velocity of each cases 
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from the inlet, with a region-stagnated air flow in the center of the room. The LBM represented 
the flow features as well as the FVM. Nonetheless, a tendency of moving lower away from the 
ceiling, for the airflow from the inlet, could be observed clearly in LBM_004. This is most 
probably because the LBM employed the standard bounce-back boundary condition, which 
excludes a wall function (such as the Spalding rule) for calculating the eddy viscous drag at the 
wall layer. Also, the damping function (such as the Van Driest style) is absent from the LBM, 
causing an overestimation of the eddy viscosity adjacent to the ceiling compared with the FVM, 
and it weakened as the LBM s grids became finer. This phenomenon did not occur in the FVM, 
regardless of grid resolutions, since the wall function and the damping function was employed. 

Comparison of the accuracy of LBM and FVM 
The experimental data (Nielsen, Rong, and Olmedo 2010) was used to validate the accuracy. 
As shown in Figure 4, both LBM and FVM were generally able to represent the distribution 
tendency of 〈𝑈〉 (the mainstream direction component of the time-averaged mean velocity), 
except for LBM_004, which demonstrated the most unacceptable accuracy. The LBM s 
accuracy improved as the grid resolutions improved in each region. For , the velocities 
of all the LBM cases were under-predicted in the jet, most probably due to the absence of the 
damping function, while the FVM agreed well. Further, both LBM and FVM slightly 
underestimated the velocity on the height of the inlet at 𝑥 = 2𝐻, and the same was true along 
𝑦 = 1/2ℎ. Along 𝑦 = 𝐻 − 1/2ℎ, LBM cases agreed well with the experiment, as did the FVM. 

Figure 4 shows the comparison of the RMS profiles of the horizontal velocity component 
(RMS = √〈𝑢′2〉). Near the ceiling, at 𝑥 = 𝐻, FVM overestimated the RMS, while the accuracy 
of the LBM was higher (especially LBM_001). Along 𝑦 = 1/2ℎ, the FVM also over-predicted 
the RMS, and the LBM achieved a higher accuracy. On the other hand, both the LBM and FVM 
underestimated the RMS at the lower area, at 𝑥 = 2𝐻  and along  𝑦 = 𝐻 − 1/2ℎ . This 
underestimation of the RMS also appeared in the FVM-LES implemented by Davidson 
(Davidson and Nielsen 1996). In addition, because both the LBM and FVM demonstrated an 
underestimation at these areas, it may not be not an inherent problem of the LBM, but rather 
due to a difference between the simulations and experimental conditions.  

Figure 4. Distribution of  〈𝑈〉 (top row) and RMS  (bottom row) 
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The accuracy of simulations is quantitatively evaluated by considering all the experimental and 
predicted data of the corresponding spots, using the mean error (ME) defined by Equation (4), 
where 𝑉𝐸𝑋𝑃(𝑖) and 𝑉𝐿𝐵𝑀 𝑜𝑟 𝐹𝑉𝑀 (𝑖) are the experimental or predicted data of corresponding spots. 

ME =
1

𝑀
∑ |𝑉𝐿𝐵𝑀 𝑜𝑟 𝐹𝑉𝑀(𝑖) − 𝑉𝐸𝑋𝑃(𝑖)|

𝑀

𝑖=1
 (4) 

Figure 5 shows the ME of the measurement points at all the points (All Data), the points adjacent 
to the ceiling (𝑦 = 1/2ℎ), the ground (𝑦 = 𝐻 − 1/2ℎ), and points far away from walls (

). Generally, among all the LBM cases, the accuracy of  〈𝑈〉 was markedly improved 
when the grid resolution was changed from 0.04 m to 0.02 m, but only slightly improved when 
it was changed from 0.02 m to 0.01 m. The accuracy of the FVM cases was between that of 
LBM_002 and LBM_001. With respect to RMS, the accuracy of the LBM was almost the same 
at any grid resolution and was slightly better than the FVM. Whether for all points, or sub-
regional points, the previous tendency was clearly observed. With regard to the sub-regional 
points  MEs (for 〈𝑈〉), the maximum and minimum MEs appeared adjacent to the ceiling (𝑦 =
1/2ℎ) and to the ground (𝑦 = 𝐻 − 1/2ℎ), respectively, regardless of simulation methods and 
grid resolutions. The difference in RMS among different sub-regions was small.  

In conclusion, the same grid resolution of the LBM and FVM led to different accuracy levels 
in this study. More refined grids were required for the LBM to achieve the same accuracy than 
the FVM. The accuracy of LBM_002 and LBM_001 approximated that of FVM_004 and 
FVM_002, respectively, showing that the LBM required half the grid width of the FVM.  

COMPUTATION SPEED AND PARALLEL COMPUTATION PERFORMANCE 
The computation speeds, and parallel computation performances attained using the two 
methods, were compared using one node including two Intel (R) Xeon (R) E5-2667v4 @ 3.20 
GHz (8 cores) CPUs, and the simulations were performed with different core utilization 
situations (1, 2, 4, 8, and 16). The elapsed computation time was normalized by the physical 
time for the flow motion (24 min), as shown in Figure 6. The computation times of both the 
LBM and FVM linearly decreased (approximately) with the increase in the cores, indicating 
that their speeds scaled well. The computation times of LBM_002 and LBM_001 were of 
almost the same order as those of FVM_004 and FVM_002, respectively, signifying that for 
the same accuracy, LBM and FVM used the same amount of computation time.  

Figure 7 shows the LBM s computation speed ratio of the FVM of LBM and FVM with 
different core usage situations, and parallel efficiency for both the FVM and LBM. The 
computation speed of the LBM using one core was only 0.4 times that of the FVM, but it 
increased with increase in the number of cores, and finally became about 1.2 when the number 

Figure 5. Mean Error (ME) of different grid resolutions 
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of cores approached 16. Although the parallel efficiency of both the LBM and FVM had initial 
values of 2-3, the parallel efficiency of the LBM increased to 24, whereas that of the increased 
only to 9. This signified that the parallel efficiency of the LBM responded much better to an 
increase in the number of cores.  

CONCLUSIONS 
In the indoor turbulent flow situation, the LBM can accurately represent the physical flow 
structure, and this accuracy improves as the grid resolution becomes higher. The grid width 
needed for the LBM is approximately half that of the FVM, to achieve the same level of 
accuracy, partly due to the absence of the wall function in the LBM. Regarding the computation 
speeds, the speeds of both the LBM and FVM scaled well with an increase in cores  quantity in 
one node. The speeds of LBM and FVM were on approximately the same level for the same 
degree of accuracy, even though the LBM s mesh was 8 times that of the FVM s. The speed of 
the LBM corresponding to 1-core is much slower than the FVM, while the speeds corresponding 
to 16-core became faster due to the better parallel simulation performance of the LBM. 
Furthermore, the LBM parallel speedup scales well with the increase in the cores, whereas FVM 
suffers from an upper limitation. Therefore, the speed of the LBM may be further increased by 
employing more cores (for e.g., in supercomputers); this will be considered in future research. 
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Figure 6. Normalized computation time Figure 7. Parallel computation efficiency 
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