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ABSTRACT

Distributed inference using multiple sensors has been an active area of research since the emer-

gence of wireless sensor networks (WSNs). Several researchers have addressed the design issues

to ensure optimal inference performance in such networks. The central goal of this thesis is to

analyze distributed inference systems with potentially unreliable components and design strategies

to ensure reliable inference in such systems. The inference process can be that of detection or es-

timation or classification, and the components/agents in the system can be sensors and/or humans.

The system components can be unreliable due to a variety of reasons: faulty sensors, security

attacks causing sensors to send falsified information, or unskilled human workers sending imper-

fect information. This thesis first quantifies the effect of such unreliable agents on the inference

performance of the network and then designs schemes that ensure a reliable overall inference.

In the first part of this thesis, we study the case when only sensors are present in the system,

referred to as sensor networks. For sensor networks, the presence of malicious sensors, referred to

as Byzantines, are considered. Byzantines are sensors that inject false information into the system.

In such systems, the effect of Byzantines on the overall inference performance is characterized

in terms of the optimal attack strategies. Game-theoretic formulations are explored to analyze

two-player interactions.

Next, Byzantine mitigation schemes are designed that address the problem from the system’s

perspective. These mitigation schemes are of two kinds: Byzantine identification schemes and

Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes

are designed that learn the identity of Byzantines in the network and use this information to im-

prove system performance. When such schemes are not possible, Byzantine tolerant schemes using

error-correcting codes are developed that tolerate the effect of Byzantines and maintain good per-

formance in the network. Error-correcting codes help in correcting the erroneous information from

these Byzantines and thereby counter their attack.



The second line of research in this thesis considers humans-only networks, referred to as human

networks. A similar research strategy is adopted for human networks where, the effect of unskilled

humans sharing beliefs with a central observer called CEO is analyzed, and the loss in performance

due to the presence of such unskilled humans is characterized. This problem falls under the family

of problems in information theory literature referred to as the CEO Problem, but for belief sharing.

The asymptotic behavior of the minimum achievable mean squared error distortion at the CEO

is studied in the limit when the number of agents L and the sum rate R tend to infinity. An

intermediate regime of performance between the exponential behavior in discrete CEO problems

and the 1/R behavior in Gaussian CEO problems is established. This result can be summarized

as the fact that sharing beliefs (uniform) is fundamentally easier in terms of convergence rate than

sharing measurements (Gaussian), but sharing decisions is even easier (discrete).

Besides theoretical analysis, experimental results are reported for experiments designed in col-

laboration with cognitive psychologists to understand the behavior of humans in the network. The

act of fusing decisions from multiple agents is observed for humans and the behavior is statistically

modeled using hierarchical Bayesian models. The implications of such modeling on the design of

large human-machine systems is discussed. Furthermore, an error-correcting codes based scheme

is proposed to improve system performance in the presence of unreliable humans in the inference

process. For a crowdsourcing system consisting of unskilled human workers providing unreliable

responses, the scheme helps in designing easy-to-perform tasks and also mitigates the effect of

erroneous data. The benefits of using the proposed approach in comparison to the majority voting

based approach are highlighted using simulated and real datasets.

In the final part of the thesis, a human-machine inference framework is developed where hu-

mans and machines interact to perform complex tasks in a faster and more efficient manner. A

mathematical framework is built to understand the benefits of human-machine collaboration. Such

a study is extremely important for current scenarios where humans and machines are constantly

interacting with each other to perform even the simplest of tasks. While machines perform best

in some tasks, humans still give better results in tasks such as identifying new patterns. By us-



ing humans and machines together, one can extract complete information about a phenomenon

of interest. Such an architecture, referred to as Human-Machine Inference Networks (HuMaINs),

provides promising results for the two cases of human-machine collaboration: machine as a coach

and machine as a colleague. For simple systems, we demonstrate tangible performance gains by

such a collaboration which provides design modules for larger, and more complex human-machine

systems. However, the details of such larger systems needs to be further explored.
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CHAPTER 1

INTRODUCTION

1.1 Inference from Multiple Agents

Inferring about an unknown phenomenon based on observations of multiple agents is a part of

our daily lives. Almost every decision we make is made after collecting evidence from multiple

sources (agents). These sources are typically of two kinds: sensors/machines that are objective in

nature and humans that are typically subjective in nature (sometimes referred to as hard and soft

sources, respectively). Decision fusion is the process of integrating decisions made by multiple

entities about the same phenomenon into a single final decision. The typical framework of parallel

decision fusion is shown in Fig. 1.1, where a set of local decision makers (LDMs) observe a

phenomenon and make decisions regarding its presence or absence (Yes/No binary decisions).

These local decisions are received by a global decision maker (GDM) who fuses the received data

to make the final decision.

When all the sources/agents are sensors, we have the well-studied sensor networks [20, 154,

155, 163]. Due to the advancements in wireless technology, wireless sensor networks (WSNs)

are increasingly being used both in military and civilian applications [2]. One such applica-

tion is to monitor, detect, and/or estimate the location of a target or object in an area of inter-

est [101, 155, 167]. Localization techniques proposed in the literature for sensor networks include



2

Phenomenon

LDM 1 LDM 2 LDM N

GDM

.  .  .

Fig. 1.1: System model consisting of local decision makers (LDMs) and a global decision maker
(GDM).

direction of arrival (DOA), time of arrival (TOA) and time-difference of arrival (TDOA) based

methods [68] [34]. Recent research has focused on developing techniques which do not suffer

from imperfect time synchronization. For example, in [91] [92], the authors propose localization in

WSNs by “dumb sensors” which are cheap and do not require time synchronization or extensive lo-

cal processing. Received signal strength (RSS) based methods, which do not suffer from imperfect

synchronization and/or extensive processing, have also been proposed which employ least-squares

or maximum-likelihood (ML) based source localization techniques [85] [126]. Due to resource

constraints such as energy and bandwidth, it is often desirable that sensors only send binary or

multi-bit quantized data to limit the communication requirements. RSS based target localization

using quantized data in a sensor network has been investigated in the literature [106] [101].

When all the agents in the network are humans, we have the human networks such as team

decision making systems typically seen in large organizations such as firms. Consider the problem

faced by the chief executive officer (CEO) of a firm with a large portfolio of projects that each

have an underlying probability of success, say drawn from a uniform distribution on [0, 1]. Each

of the subordinates will have noisy beliefs about the risks facing the projects: random variables

denoting the success probability jointly distributed, e.g., according to a copula model (common in
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mathematical finance to model beliefs about risks [38, 53, 99]). Subordinates must convey these

risks, but are not allowed to convene. The CEO has cognitive constraints that limit the information

rate he/she can receive from the subordinates, requiring subordinates to partition risks into quantal

grades like A, B, C, and D, before conveying them. Such quantized grading is typical in businesses

with complex information technology projects [115]. Upon receiving information from the sub-

ordinate agents, the CEO estimates the underlying success probability to minimize mean squared

error (Brier score [110]) in estimating risk before taking action.

Additional questions arise when the global fusion center is also a human who is fusing data

from multiple humans, like the CEO described before. In such cases, it is of interest to understand

the act of decision fusion by the human. It is interesting to compare the behavior of humans with

optimal decision rules that have been developed based on statistical models. According to the

bounded rationality [54] argument about humans, it is expected that humans do not necessarily

follow optimal rules. By asking how far from optimality humans are at fusing data from multiple

sources, we can develop bounded rational models for this task.

The problem of fusing multiple human decisions has been investigated in different contexts in

the psychology literature (see [131,132] and references therein). Such a framework is very similar

to the problems of social choice theory, voting, etc. Based on the observations made from these

works, it can be expected that human behavior is non-deterministic in general. Therefore, Bayesian

modeling approaches [56] can be adopted to model such behavior.

When only the global decision maker is a machine and the local decision makers are hu-

mans, the above framework addresses the paradigm of crowdsourcing for distributed inference

tasks [22,136,137] where multiple crowd workers provide their responses regarding a task of inter-

est. Conventional studies of human decision making involve decisions made by individuals such as

military commanders or company presidents, or by a small number of individuals such as commit-

tees or cabinets operating under decision fusion rules such as majority voting. Behavioral scientists

have studied human decision making from a cognitive viewpoint whereas economists have studied

it from a decision theory viewpoint. When agents are rational and knowledgeable about the prob-
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lem domain, team decision theory provides well-developed insights [94]. With the emergence of

widespread and inexpensive computing and networking infrastructure, new paradigms for human

participation, such as crowdsourcing, have arisen for distributed inference tasks [22, 136, 137] and

are becoming very prevalent in the specialized and globalized knowledge economy.

1.2 Research Challenges

While there are several practical challenges one faces while inferring based on observations/information

from multiple agents, this thesis focuses on the class of challenges associated with the lack of re-

liable information. We focus on the causes of unreliable data from the agents. These causes can

be divided into three types: faulty or malicious sensors (Byzantines), imperfect channels in the

network, and unskilled humans.

Secure inference using sensors is extremely important in situations where malicious sensors

attempt to disrupt the network and diminish its capability. Several algorithms have been developed

for secure localization in WSNs [24,86,173]. While several algorithms have also been designed for

localization using quantized measurements [101], no malicious sensors or attackers in the network

have been considered. One kind of attack in a WSN is by Byzantines [159] where an adversary

takes over some sensors of the WSN and forces them to send falsified information to the fusion

center (FC). The main goal of Byzantine attackers is to undermine the network such that the FC

is unable to estimate the correct location of the target. Although the presence of such malicious

sensors is the focus of this thesis, there are other related security challenges such as jamming and

eavesdropping that are relevant to the problems considered in this thesis but are not considered

here.

An important element of WSNs is the presence of non-ideal wireless channels between sensors

and the FC [30] [108]. These non-ideal channels corrupt the quantized data sent by the local

sensors to the FC. This causes errors which deteriorates the inference performance at the FC.

Hence, the inference system must be supported by robust coding and modulation schemes that
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efficiently model these vastly different channel characteristics. Also, in most of the cases, the

optimal system parameter values change due to the presence of imperfect channels in the system.

For example, when a single-sensor is performing an M -ary (M > 2) hypothesis testing problem,

or when multiple sensors are performing a hypothesis testing problem, optimal sensor signaling

is dependent on the channels in the system [30]. Therefore, a system designed in the absence of

imperfect channels can have a degraded performance in the presence of non-ideal channels. In

particular, in a typical WSN where two or more sensors are engaged in the detection problem,

channel-aware design always leads to performance improvement under given resource constraints

[87]. Thus, the presence of imperfect channels in WSNs presents an important research challenge

to the problems considered in this thesis.

Although both crowdsourcing and conventional team decision making [94] involve human de-

cision makers, there are three major differences. First, the number of participants involved in

crowdsourcing is usually large. Second, contrary to traditional mathematical models of team deci-

sion making [154], members of the crowd may be unreliable or malicious [62, 84, 152] especially

since they are often anonymous [47, 122]. Third, workers may not have sufficient domain exper-

tise to perform full classification and may only be able to make simpler binary distinctions [25].

These differences give rise to a multitude of new system design challenges when crowdsourcing

is employed for tasks with varying quality requirements and time deadlines. The main challenge,

however, is quality control to ensure reliable crowd work [62] with provable performance guar-

antees. Also of importance are the privacy issues of humans taking part in the task and the tasks

themselves. Although the major focus of this thesis is on the case when the humans are unskilled,

some relevant work on task privacy can be found in [152, 153].

1.3 Research Methodology

The problem of attaining reliable performance from unreliable components is not a new one.

Claude Shannon in his unpublished manuscript of 1956 titled “Reliable Machines from Unreli-
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able Components” considers the problem of designing reliable machines from unreliable compo-

nents [125]. He very rightly suggests that there are typically three methods to improve system

reliability: complete redesign, improve system components, and/or use of error-correction codes

(Fig. 1.2). Complete redesign refers to changing the design of the system as a whole, for example

moving from analog systems to digital systems. System components can be improved by using

more robust machines. And finally, reliable machines can be designed by using error-correcting

codes. Some other researchers have also addressed similar problems of attaining reliable perfor-

mance from unreliable data [140,150]. In [140], Taylor addresses the problem of theoretical capa-

bilities of memories and computing systems that are designed from unreliable components. More

recently, communication systems with unreliable decoders has been considered in [150] where the

performance of such communication systems has been studied.

Improve	
  
components	
  

Error-­‐correc/on	
  
Codes	
  

Complete	
  
Redesign	
  

Research	
  
Methodology	
  

Fig. 1.2: Research methodology for reliable inference from unreliable agents

However, to the best of the author’s knowledge, researchers have not considered this approach

for distributed inference networks consisting of humans and/or machines. In such systems, one

can use the methodology described above (Fig. 1.2) to attain reliable performance. As seen later

in the thesis, complete redesign might correspond to a total change in the inference architecture

or process. System components can be improved either by identifying the malicious sensors and

removing them or improving the performance of humans by giving them easier tasks. Although

the cause of unreliable information is different for humans and machines, the effect is the same:

errors in the data. Therefore, one can use coding-theory ideas to correct these errors and improve
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performance. The schemes proposed show the benefit of adapting coding based techniques to

signal processing applications.

1.4 Outline and Contributions

The central goal of this thesis is to analyze the performance of inference systems with potentially

unreliable components and design strategies to ensure reliable inference performance from these

systems with unreliable agents. Since the inference process can be one of detection or estimation

or classification, it brings in several problems of interest. An overview of the general architecture

of problems is provided in Chapter 2 and literature review and background material needed for the

later chapters of the thesis is presented. Sensor networks are studied in Chapters 3 and 4 while

human networks are considered in Chapters 5, 6, and 7 . For each of these parts (Chapters 3-4

and Chapters 5-7), we follow the research methodology described in Sec. 1.3. In Chapter 3, the

effect of unreliable components of the sensor network is analyzed to determine their effect on the

overall performance of the system. This study leads to Chapter 4 where a redesign of the system is

considered and learning-based schemes along with error-correcting codes are used to counter the

unreliable data from malicious sensors. A similar strategy is followed for human networks where,

in Chapters 5 and 6, the effect of humans in the system is analyzed and quantified. In Chapter 7, we

propose ways to improve the system components by redesigning the system where humans perform

easy tasks and error-correcting codes are used to mitigate the effect of potential unreliable data.

The human-machine inference framework is developed in Chapter 8 where humans and machines

interact together to perform complex tasks in a faster and more efficient manner. The thesis is

concluded in Chapter 9 with a summary of results presented in this thesis and future research

directions.

Chapter 2: Background

The general system model considered in this thesis is described in Chapter 2 and the taxonomy

corresponding to this generalized model is presented. Literature corresponding to this structure
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is reviewed. Some specific tools used in the development of this thesis are also explained in this

chapter.

Chapter 3: Estimation in Sensor Networks: Unreliable Agents

In this chapter, we consider the case of sensor networks performing a location estimation task in

WSNs using binary quantized data. We consider malicious sensors called Byzantines and investi-

gate the target localization problem under a Bayesian framework. We assume the target location

to be random and develop a Monte Carlo based approach for target localization. The appropriate

performance metric to characterize the performance of the network is Posterior Fisher Information

or Posterior Cramér-Rao lower bound (PCRLB). Two kinds of attack strategies are considered: In-

dependent and Collaborative attacks. By modeling the effect of Byzantines as a binary symmetric

channel (BSC), we determine the fraction of Byzantine attackers in the network that make the FC

incapable of utilizing sensor information to estimate the target location. Optimal attacking strate-

gies for given attacking resources are also derived by modeling the behavior as a zero-sum game.

We use PCRLB as the utility function and find the Nash Equilibrium as the saddle point. Results

are also extended to the case of target tracking problem.

Chapter 4: Estimation in Sensor Networks: Reliable Inference

The design of schemes for ensuring reliable performance from systems consisting of malicious

agents is considered in this chapter. Multiple schemes are proposed for the mitigation of Byzantine

attacks. The first scheme is based on a Byzantine identification method under the assumption of

identical local quantizers. We show with simulations that the proposed learning-based scheme

identifies most of the Byzantines. In order to improve performance, we propose a second scheme

in conjunction with our identification scheme where dynamic non-identical threshold quantizers

are used at the sensors. We show that it not only reduces the location estimation error but also

makes the Byzantines ineffective in their attack strategy. We also propose the use of coding theory

techniques to estimate the location of the target in WSNs. We develop the fundamental theory and

derive asymptotic performance results. We first consider the code design problem in the absence
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of channel errors and Byzantine data. The proposed scheme models the localization problem as a

hierarchical classification problem. The scheme provides a coarse estimate in a computationally

efficient manner as compared to the traditional ML based approach. We present performance

analysis of the proposed scheme in terms of the detection probability of the correct region. We

show analytically that the schemes achieve perfect performance in the asymptotic regime. We

address the issues of Byzantines and channel errors subsequently and modify our scheme to handle

them. The error correction capability of the coding based approach provides Byzantine tolerance

capability and the use of soft-decoding at the FC provides tolerance to channel errors.

Chapter 5: Estimation in Human Networks: Unreliable Local Agents

In Chapter 5, we consider networks with humans and analyze the effect of unreliable local humans

in networks. When all local agents are humans, it can be regarded as the situation in a large

organization such as a firm where a group of agents independently observe corrupted versions of

data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the

underlying data based on the received coded observations. Agents are not allowed to convene

before transmitting their observations. This falls under the category of problems referred to as

the CEO problem, but with non-regular source distributions (in the sense of Bayesian estimation

theory [145, p. 72]), and observations governed by a given conditional probability density function,

for example, through copula models. More precisely an i.i.d. source sequence X(t) is considered,

which follows a probability density function (pdf) fX(x) with finite support X , such that

∂fX(x)

∂x
or
∂2fX(x)

∂x2

either does not exist or is not absolutely integrable. The asymptotic behavior of quadratic distortion

as a function of sum rate in the limit of large numbers of agents and rate is determined. As

commented by Viswanathan and Berger [162], results for discrete and continuous alphabets are

not very different in most problems of information theory. However, for the CEO problem, the

average distortion decays at an exponential rate for the discrete case and decays as 1/R for the
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Gaussian case, where R is the sum rate. In this chapter, we derive an intermediate 1/R2 decay rate

behavior when the regularity conditions required for the Bayesian Cramér-Rao lower bound used

in [162] do not hold.

Chapter 6: Detection in Human Networks: Unreliable Global Fusion

The effect of a human fusing decisions from multiple agents is considered in Chapter 6. The prob-

lem of decision fusion by humans is addressed and results of experiments conducted on human

subjects, to understand this human behavior, are reported. Also, a hierarchical Bayesian model is

developed to capture the decision fusion by people. Due to the hierarchical nature, this model en-

compasses the differences observed at various levels: individual level, crowd level, and population

level. On an individual level, every human has a different bias which affects his/her decision fusion

process. A crowd is a collection of people who have similar understanding due to cultural, societal,

or other factors, and therefore, might have similar characteristics in performing tasks. On a popu-

lation level, there are differences in societies, cultures, or demographics, which affect the decision

fusion process. By adopting a hierarchical Bayesian model, these various types of differences can

be modeled. The implications of such a model on developing large-scale human-machine systems

are presented by developing optimal decision fusion trees with both human and machine agents.

Chapter 7: Classification in Human Networks: Reliable Inference

In Chapter 7, we discuss ways to enhance the performance of networks with humans by develop-

ing easy-to-answer questions. By focusing on crowdsourcing ofM -ary classification tasks, such as

multi-class object recognition from images into fine-grained categories [25], we design a coding-

theoretic scheme to minimize misclassification probability. Distributed classification codes and a

minimum Hamming distance decoder is used such that workers need to only answer binary ques-

tions. The efficacy of this coding-based approach is demonstrated using simulations and through

real data from Amazon Mechanical Turk [130], a paid crowdsourcing microtask platform. The

approach is analyzed under different crowdsourcing models including the peer-dependent reward

scheme [61] and the dependent observations model [111]. In the process, an ordering principle
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for the quality of crowds is also developed. For systems with peer-dependent reward schemes, it

is observed that higher correlation among workers results in performance degradation. Further, if

the workers also share dependent observations due to common sources of information, it is shown

that the system performance deteriorates as expected. However, it is also observed that when the

observations become independent, the performance gain due to our coding-based approach over

the majority-vote approach increases.

Chapter 8: Human-Machine Inference Networks (HuMaINs)

A human-machine collaborative paradigm is developed in this chapter where humans and ma-

chines, which have radically different cognitive strengths and weaknesses, are combined in an

intelligent manner to tackle various informational tasks with high speed and accuracy. A gen-

eral problem solving architecture is considered and possible models of collaboration are outlined.

Based on this architecture of human-machine inference networks, two example problems are con-

sidered. In the knowledge discovery problem, a human interested in discovering all the unknown

elements of a set is supported by a machine. This partnership is referred to as machine as a coach

collaboration. The performance of this learning process is characterized in terms of size and qual-

ity of the knoweldge base at every time step. In the solution search problem, humans and machines

collaborate as colleagues to determine the solution to a problem, such as finding a maximum point

for a given function. The mathematical frameworks presented in this chapter provide an intuitive

understanding of the benefits of human-machine collaboration and can help in the design of larger

human-machine inference networks.

Chapter 9: Conclusion

In the conclusion chapter, we first recapitulate the main ideas and results presented in the thesis.

Then some directions for extending the thesis are given that are derived from the general formula-

tions of problems and solution methodologies presented in the thesis.
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CHAPTER 2

BACKGROUND

As discussed in the introduction, distributed inference has been extensively studied by various

authors in the past few decades. In the context of distributed inference with multiple sensors in

a sensor network, a good survey can be found in [155] and references therein. When the agents

performing the inference task are humans, this setup is similar to that of team decision making

studied by Radner in [113]. However, limited work has focused on the case when these agents

are potentially unreliable. In this chapter, we present a quick background required for this thesis.

In Sec. 2.1, we describe the general system model of the problems addressed in this thesis. We

present some prior results for distributed inference with malicious sensors (Byzantines) present in

the literature in Sec. 2.3. Some background material is presented in Sec. 2.4 which is helpful in

understanding the schemes proposed in the later chapters.

2.1 General Architecture

The generalized system model followed in this thesis can be seen in Fig. 2.1 where multiple agents

observe an unknown phenomenon that they are to make inferences about. These agents can be

reliable or unreliable. For example, in Fig. 2.1, there are some agents that are providing false

information. Some humans can be genuinely interested in providing the right information but
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due to erroneous sensing (for example, using ‘eyes’ instead of ‘ears’ in the figure), the agent 2

is providing some unreliable information. On the other hand, some ‘lazy’ agents could randomly

provide the information due to lack of interest (agent 3 in Fig. 2.1). Similarly, some sensors could

be imperfect, or even faulty (agent 6 that is stuck-at ‘1’). Sensors are also prone to malicious

attacks and could, therefore, be attacked by an external adversary and re-programmed to send

flipped version of information (agent 5 in Fig. 2.1).
Ph

en
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en
on

Fusion 
Center

0001

1

Fig. 2.1: Inference with potentially unreliable agents

2.2 Taxonomy

2.2.1 Inference

An inference problem can be of several types. The typical inference problems are of two ma-

jor kinds: detection (or more generally, classification) and estimation [73, 74]. In classification,

the phenomenon to be inferred is of finite possibilities, say M possible classes. This is repre-

sented by M possible hypotheses: H0, . . . ,HM−1. Multiple observations x = [x1, . . . , xN ] are

collected regarding the phenomenon which follow distribution p(x|Hl) for each hypothesis Hl,

l = 0, . . . ,M − 1. The true class is then determined using the M -ary maximum a posteriori
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(MAP) decision rule as, decideHk if

p(Hk|x) > p(Hi|x), i 6= k.

For the case of equiprobable prior, this becomes the M -ary maximum likelihood (ML) decision

rule. When the number of hypotheses M = 2, it is referred to as the detection problem.

In a typical estimation problem, the goal is to estimate the value of an unknown parameter θ

(which could possibly be a vector). This value is continuous and can take any value in the set Θ.

Similar to the classification problem, multiple observations are taken x = [x1, . . . , xN ] that follow

a conditional distribution p(x|θ) and the estimate θ̂ is made as the MAP estimator

θ̂ = arg max
θ

p(θ|x).

When the prior is uniform, it is the ML estimator. If the parameter θ is time varying, it is typically

referred to as the tracking problem.

This thesis focuses on such inference problems where the goal is to infer the unknown phe-

nomenon using multiple observations.

2.2.2 Agents

In the case of distributed inference (classification or estimation), the observations are made in a

distributed manner using multiple agents that are spatially distributed in the network. These agents

observe the phenomenon and transmit their observations over (possibly) imperfect channels to FC

who then fuses the data to infer about the phenomenon. The typical goal in such a framework is to

design the signal processing schemes at the local sensors and the FC to infer regarding an event as

accurately as possible, subject to an alphabet-size constraint on the messages transmitted by each

local sensor (for a comprehensive survey, see [155] and references therein). Several aspects of such

a framework can be studied [155]: network topology, decision rules, effect of wireless channels,

effect of spatio-temporal dependence, etc. Most of the initial work focused on the design of local
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sensor decision rules and optimal fusion rule at the FC [20, 33, 69, 80, 89, 119, 141, 154, 157, 160,

163]. The advancement of wireless sensor networks (WSNs) renewed interest in this area along

with new research challenges: wireless channels [28, 30], network topologies [3, 135, 139], sensor

resource management [5, 6, 64, 114], correlated observations [27, 42, 63, 134], etc. The effect of

wireless channels can be addressed by analyzing the system under the channel-aware formulation

[30,105]. Another dimension which has received vast interest is the effect of topologies on system

performance. Researchers have considered the move from the traditional parallel topology (also

referred to as the star topology [154]) to other topologies such as serial/tandem topologies [135]

and tree topologies [139].

Depending on the problem of interest, these agents are of two types: physical sensors making

objective measurements or human workers providing subjective opinions. Most of the work in the

WSN literature has been when these agents are physical sensors. More recently, the crowdsourcing

paradigm is considering the case when the distributed agents are human workers performing a

distributed inference task. The data transmitted by the local agents to the FC is quantized due to

practical constraints such as limited energy or bandwidth in the case of physical sensors and/or

cognitive constraints in the case of human agents. The physical sensors are sometimes referred to

as ‘hard’ sensors and the humans are sometimes referred to as ‘soft’ sensors.

This thesis focuses on distributed inference problems with observations from multiple agents

of both types, namely sensors and humans.

2.2.3 Unreliability

These multiple agents in the distributed inference network are not necessarily reliable. For ex-

ample, in the case of physical sensors, they could be unreliable due to noisy local observations

received at the local sensors. This is governed by the conditional distribution described above.

Besides this basic cause, there are several other causes for unreliable data from such physical sen-

sors. The sensors could have permanent faults such as a stuck-at faults which causes the sensor to

always send the same information to the FC irrespective of what it senses. Such a behavior of the
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sensor provides no information to the FC and therefore, needs to be addressed. A more malicious

cause could be the case of security attacks where the sensor can be attacked and reprogrammed

by an external adversary into sending false data to the FC. Such a malicious sensor sending false

information would result in a deteriorated performance at the FC if suitable mitigation approaches

are not employed. All these reasons could result in unreliable data at the FC from the physical

sensors. In the case of humans, unreliable data could be due to the lack of skill by the human

worker that could result in imperfect information from him/her. Although unintentional, the lack

of knowledge has the same effect as other unreliable data and can cause a degraded performance

at the FC. Sometimes, the unreliableness could also be due to the spammers in the network who

provide random data as done in crowdsourcing networks where the workers are typically anony-

mous. Besides such scenarios, the maliciousness may also exist in some cases, where an external

user gets into the task to provide intentional false data while also learning about the task. Also

important in such cases is the privacy of the task.

This thesis focuses on distributed inference problems with data from potentially unreliable

agents (both humans and/or sensors).

2.3 Past Work

The problem of inference from multiple agents that are potentially unreliable, is not a new one. In

1982, Lamport et al. presented the so-called Byzantine generals problem as follows [81]: “a group

of generals of the Byzantine army camped with their troops around an enemy city. Communicating

only by messenger, the generals must agree upon a common battle plan. However, one or more

of them may be traitors who will try to confuse the others. The problem is to find an algorithm

to ensure that the loyal generals will reach agreement." This problem is similar in principle to

the problem considered in this thesis. The authors gave a sharp characterization of the power

of the Byzantine generals. It was shown that if the fraction of Byzantine generals is less than

1/3, there is a way for the loyal generals to reach a consensus agreement, regardless of what the
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Byzantine generals do. If the fraction is above 1/3, consensus can no longer be guaranteed. There

are many diverse behaviors that a Byzantine entity may engage in, such as a sensor may lie about

connectivity, flood network with false traffic, attempt to subjugate control information, falsely

describe opinions of another node (e.g., peer to peer), or capture a strategic subset of devices

and collude. This section reviews the Byzantine generals problem in the context of distributed

inference [159], where data collected from remote locations are sent to an FC for processing and

inference. The assumption is that the data are potentially tampered or falsified by some internal

adversary who has the knowledge about the algorithm used at the FC. This problem has been

referred to as distributed inference with Byzantine data. The Byzantine data problem in statistical

inference has to take into account the inherent randomness in the data. Even without the presence

of an adversary, one cannot expect perfect inference; detections can at best be correct with high

probability as parameter estimates almost always are not equal to the true value. Therefore, there is

a need for a probabilistic approach to the Byzantine data problem in distributed inference. Vempaty

et al. provide a concise survey of results in this area [159]. Researchers have typically focused

on two basic parts of this problem. In the first set of works, the problem is analyzed from the

attacker’s perspective and optimal attack strategies are derived that result in deterioration of the

network’s performance [65,67,90,98,117,158]. They have modeled the potential attack strategies

and optimized over the attack space to determine the optimal attack by the adversary. The second

set of works focused on analysis from the network’s perspective to determine the counter-attack

strategies to protect the network from these Byzantine attacks [37, 51, 58, 117, 156, 158].

Most of the above works deal with the case of detection. This thesis provides the first result

for the case of distributed estimation with Byzantine data by considering location estimation as

the estimation task. Also, the set of results presented focus on the case when the agents are sen-

sors although the original motivation of the Byzantine generals problem is that of human decision

makers. This thesis makes progress in that direction also by providing results for the case of dis-

tributed inference with unreliable humans using crowdsourcing as an application. The results are

both information theoretic that characterize the effect of unreliable humans taking part in an infer-
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ence task and also signal processing based where we propose coding theory based algorithms to

ensure reliable inference from such unreliable humans. This thesis also takes steps in the direction

of inference using both humans and machines simultaneously to perform complex tasks accurately

and quickly.

2.4 Background Material

This section provides some mathematical background needed to understand some of the results

in this thesis. Besides basic knowledge of detection and estimation theory and information and

coding theory, the following algorithms are helpful.

2.4.1 Distributed Classification Fusion using Error Correcting Codes

In this subsection, we give a brief overview of Distributed Classification Fusion using Error Cor-

recting Codes (DCFECC) approach proposed in [166]. In [166], the authors propose an M -ary

distributed classification task using binary quantized data to reduce communication between the

local sensors and the FC. After processing the observations locally, possibly in the presence of

sensor faults, the N local sensors transmit their local decisions to the FC. In the DCFECC ap-

proach, a code matrix C is selected to perform both local decision and fault-tolerant fusion at the

FC. The code matrix is an M ×N matrix with elements c(j+1)i ∈ {0, 1}, j = 0, 1, . . . ,M − 1 and

i = 1, . . . , N . Each hypothesis Hj is associated with a row in the code matrix C and each column

represents a binary decision rule at the local sensor. The optimal code matrix is designed off-line

using techniques such as simulated annealing or cyclic column replacement [166]. After receiving

the binary decisions u = [u1, . . . , uN ] from local sensors, the FC performs minimum Hamming

distance based fusion and decides on the hypothesis Hj for which the Hamming distance between

the row of C corresponding to Hj for j = 0, . . . ,M − 1 and the received vector u is minimum. In
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other words, the fusion rule used by the fusion center is to decide Hj , where

j = arg min
0≤j≤M−1

dH(u, rj),

dH(x,y) is the Hamming distance between vectors x and y, and rj is the row of C corresponding

to hypothesis Hj . The tie-break rule is to randomly pick a codeword from those with the same

smallest Hamming distance to the received vector. Due to the minimum Hamming-distance based

fusion scheme, the DCFECC approach can also handle missing data. When an agent does not

return any decision, its contribution to the Hamming distance between the received vector and

every row of the code matrix is the same and therefore, the row corresponding to the minimum

Hamming distance remains unchanged. The error-correction property of the code matrix provides

fault-tolerance capability [166]. It is important to note that the above scheme is under the assump-

tion that N > M and the performance of the scheme depends on the minimum Hamming distance

dmin of the code matrix C.

2.4.2 Distributed Classification using Soft-decision Decoding

In this subsection, we present a brief overview of Distributed Classification using Soft-decision

Decoding (DCSD) approach proposed in [165]. This approach uses a soft-decision decoding rule

as opposed to the hard-decision decoding rule used in the DCFECC approach. The use of soft-

decision decoding makes the system robust to fading channels between the sensors and the FC.

The basic difference between the two approaches (DCFECC and DCSD) is the decoding rule. In

DCFECC, the minimum Hamming distance rule is used. In the presence of fading channels, the

received data at the FC is analog although the local sensors transmit quantized data based on the

code matrix C as described before. Then, the FC can use hard-decision decoding to determine the

quantized data sent by the local sensors and use minimum Hamming distance rule to determine

the true class. However, in [165], the authors show that the performance can deteriorate when

hard-decision decoding is used. Instead, they propose a soft-decision decoding rule based on the
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channel statistics to determine the true class. We skip the derivation of the soft-decision decoding

rule but present the decoding rule here for the case when binary quantizers are used at the local

sensors, i.e., the elements of the code matrix are ‘0’ or ‘1’.

Let the analog data received at the FC from the local sensors be v = [v1, · · · , vN ] when the

local sensors transmit u = [u1, · · · , uN ], where ui = 0/1 is decided by the code matrix C. For

fading channels between the local sensors and the FC, vi and ui are related as follows

vi = hi(−1)ui
√
Eb + ni, (2.1)

where hi is the channel gain that models the fading channel, Eb is the energy per bit and ni is the

zero mean additive white Gaussian noise. Define the reliability of the received data vi as

ψi = ln
P (vi|ui = 0)P (ui = 0|0) + P (vi|ui = 1)P (ui = 1|0)

P (vi|ui = 0)P (ui = 0|1) + P (vi|ui = 1)P (ui = 1|1)
(2.2)

for i = {1, · · · , N}. Here P (vi|ui) can be obtained from the statistical model of the fading channel

considered and P (ui = d|s) for s, d = {0, 1} is given as follows

P (ui = d|s) =
M−1∑
j=0

P (ui = d|Hj)Pi(Hj|s). (2.3)

P (ui = d|Hj) depends on the code matrix while Pi(Hj|s) is the probability that the hypothesis Hj

is true given s is present at the bit i (column i of the code matrix) before local decision making,

and can be expressed as

Pi(Hj|s) =
Pi(s|Hj)∑M−1
l=0 Pi(s|Hl)

(2.4)

where

Pi(s|Hl) =


1, if c(l+1)i = s

0, if c(l+1)i 6= s

. (2.5)

Then the decoding rule is to decide the hypothesis Hj where j = arg min
0≤j≤M−1

dF (ψ, cj+1). Here



24

dF (ψ, cj+1) =
∑N

i=1(ψj − (−1)c(j+1)i)2 is the distance between ψ = [ψ1, · · · , ψN ] and (j + 1)th

row of C and is referred to as F -distance.

2.5 Summary of Contributions

Table 2.1 summarizes the contributions of the thesis. The contributions of the thesis can be split

into three broad parts: inference based on sensor networks, human networks, and human-machine

inference networks. The results in the first two parts can be further divided into two major classes:

the first which analyzes the effect of unreliable agents in the network and the second which focuses

on design of the system to ensure reliable inference from these unreliable agents. The final part

focuses on the development of the human-machine collaborative architecture and develops a path

for future research in this area.

Table 2.1: Summary of contributions

Inference task Agent type Cause of unreliability Results
Estimation Sensors Byzantines Determined optimal Byzantine attack

Imperfect channels Byzantine mitigation schemes
Coding theoretic schemes

Estimation Humans Cognitive limitations Non-regular CEO problem
1/R2 convergence rate

Detection Humans Bounded rationality Decision fusion by humans
Bayesian hierarchical model
Sociotechnical system design

Classification Humans Lack of domain knowledge Design of easy-to-answer questions
Coding theoretic classification
scheme

Problem-solving Both Bounded rationality Machine as coach to human for
knowledge discovery
Machine as colleague for solution
search
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CHAPTER 3

ESTIMATION IN SENSOR NETWORKS:

UNRELIABLE AGENTS

3.1 Introduction

In this chapter, we address the case of unreliable sensors (referred to as Byzantines) in distributed

estimation. A related work was carried out for distributed detection by Marano et al. [90] and

for primary user detection for cognitive radio networks by Rawat et al. in [117]. The problem

of Byzantines has also been investigated in the context of network coding and information theory

in [77] and [78].

The location estimation problem in wireless sensor networks (WSNs) is considered where sen-

sors quantize their local observations before sending it to the FC. The FC estimates the location of

the target using the sensors’ locations and their quantized observations. In such a setup, a target

localization scheme based on Monte Carlo methods is proposed for the Bayesian setup and the

effect of malicious sensors is investigated. Two attack strategies are considered: independent and

collaborative, and the optimal attack is derived that minimizes the posterior Fisher information or

maximizes the posterior Cramér-Rao lower bound (PCRLB). The remainder of the chapter is or-

ganized as follows: In Sec. 3.2, the system model is introduced and the assumptions made are laid
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out. The estimation process is also developed and the performance metrics are defined. In Sec. 3.3,

the performance of the estimation process is analyzed in the presence of independent attacks. The

optimal strategies for both the honest and the Byzantine sensors are determined. In Sec. 3.4, col-

laborative attacks of Byzantines are introduced and an analysis similar to the one with independent

attacks is performed. Numerical results that support our theoretical analyses of Byzantines are

presented. The problem of tracking a moving target is considered in Sec. 3.5 and similar analysis

is performed. Concluding discussion is provided in Sec. 3.6.

3.2 Preliminaries

3.2.1 System Model

Consider a scenario where N sensors are deployed in a WSN to estimate the location of a target

present at θ = [xt, yt] where xt and yt denote the coordinates of the target location in the 2-D

Cartesian plane as shown in Fig. 3.1. Although the sensors in Fig. 3.1 are shown to be deployed on

a regular grid, the schemes proposed here are capable of handling any kind of sensor deployment

as long as the location information for each sensor is available at the FC. Assume that the target

location has a prior distribution p0(θ). For simplicity, we assume that p0(θ) is a Gaussian distribu-

tion, i.e., θ ∼ N (µ, σ2
θI), where the mean µ is the center of a Region of Interest (ROI) and σ2

θI is

very large such that the ROI includes the target’s (100-t)% confidence region (typically taken to be

99%). The signal radiated from this location is assumed to follow an isotropic power attenuation

model given as

a2
i = P0

(
d0

di

)n
, (3.1)

where ai is the signal amplitude received at the ith sensor, P0 is the power measured at a reference

distance d0, n is the path-loss exponent, and di is the distance between the target and the ith sensor.

Note that di 6= 0, i.e., the target is not co-located with a sensor. This assumption is valid as the

probability of a target being exactly at the same location as the sensor is zero, therefore, ai is almost
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surely not unbounded. Without loss of generality, fix d0 = 1 and n = 2. The signal amplitude is

corrupted by additive white Gaussian noise (AWGN) at each sensor:

si = ai + ni, (3.2)

where si is the corrupted signal at the ith sensor and the noise ni follows N (0, σ2). This noise is

considered to be independent across sensors. Note that the signal model given in (3.1) and (3.2) has

been verified experimentally for acoustic signals in [85] and it results from averaging time samples

of the received acoustic energy. The interested reader is referred to [85, 97, 126] for details.

Fig. 3.1: The target in a grid deployed sensor field with anchor sensors

Due to bandwidth and energy limitations, each sensor uses a binary quantizer and sends its

quantized binary measurement to the FC. The FC is assumed to know the sensor locations and the

sensors use threshold quantizers because of their simplicity [119] in terms of both implementation

and analysis:

Di =


0 si < ηi

1 si > ηi

(3.3)

whereDi is the quantized binary measurement and ηi is the quantization threshold at the ith sensor.

The FC receives the binary vector u = [u1, . . . , uN ] from all the sensors in the network. After

collecting u, the FC estimates the location θ = [xt, yt] by using the Minimum Mean Square Error
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(MMSE) estimator as in [95], i.e., θ̂ = E[θ|u], where E[·|u] denotes the expectation with respect

to the posterior probability density function (pdf) p(θ|u). Since E[θ|u] cannot be calculated in a

closed from, we compute it using an importance sampling based Monte Carlo method described

in detail below. We also assume the presence of K anchor sensors in the network similar to [95].

These anchor sensors are assumed to be secure and are used to obtain an initial estimate of the

target location, θ.

3.2.2 Monte Carlo Method based Target Localization

With the recent advances in computation power, Monte Carlo based methods have become useful

tools for inference problems. An importance sampling based Monte Carlo method [46] is used to

approximate the posterior pdf, p(θ|u), as

p(θ|u) =

Np∑
m=1

wmδ(θ − θm), (3.4)

where the approximation is obtained as a weighted sum of Np particles. The particles θm =

[xm, ym] are drawn from the prior distribution p0(θ). The weights are calculated using the data u

and are proportional to the likelihood function

w̃m ∝ p(u|θm)w0
m, (3.5)

where the initial weights are set as identical, i.e., w0
m = 1/Np. The updated weight of each particle

is the original weight multiplied by the likelihood function of the data. Since the sensors’ data are

conditionally independent, we have p(u|θm) =
∏N

i=1 p(ui|θm) for m = 1, . . . , Np. The particle

weights are then normalized as

wm =
w̃m∑Np
m=1 w̃m

(3.6)

=
p(u|θm)∑Np
m=1 p(u|θm)

(3.7)
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This results in the location estimate θ̂ given by

θ̂ =

Np∑
m=1

wmθm. (3.8)

3.2.3 Performance Metrics

PCRLB and posterior Fisher Information Matrix (FIM) are used as the performance metrics to

analyze the estimation performance [145, 146]. Let θ̂(u) be an estimator of the target location θ.

Then, the covariance matrix of the estimation error is bounded below by the PCRLB, F−1,

E
{

[θ̂(u)− θ][θ̂(u)− θ]T
}
≥ F−1. (3.9)

In (3.9), F is the posterior FIM [146] given as

F = −Eθ,u[∇θ∇T
θ lnP (u, θ)] (3.10)

= −Eθ,u[∇θ∇T
θ lnP (u|θ)]− Eθ[∇θ∇T

θ ln p0(θ)] (3.11)

= FD + FP (3.12)

where ∇θ is the gradient operator defined as ∇θ =
[
∂
∂xt
, ∂
∂yt

]T
. FD and FP represent the contri-

butions of data and the prior to F respectively. The elements of F are:

F11 =

∫
p0(θ)

(
N∑
i=1

1∑
l=0

1

P (ui = l|θ)

[
∂P (ui = l|θ)

∂xt

]2
)
dθ +

1

σ2
θ

, (3.13)

F22 =

∫
p0(θ)

(
N∑
i=1

1∑
l=0

1

P (ui = l|θ)

[
∂P (ui = l|θ)

∂yt

]2
)
dθ +

1

σ2
θ

, (3.14)

F21 = F12 =

∫
p0(θ)

N∑
i=1

1∑
l=0

1

P (ui = l|θ)

[
∂P (ui = l|θ)

∂xt

] [
∂P (ui = l|θ)

∂yt

]
dθ, (3.15)
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where P (ui = l|θ) for l = 0, 1 is the probability that a sensor sends ui = l. This value depends on

Byzantines’ attacking strategy.

3.3 Localization in the Presence of Byzantine Sensors

3.3.1 Independent Attack Model

For a major part of this chapter, we assume that the Byzantines attack the network independently. In

an independent attack, each Byzantine sensor attacks the network by relying on its own observation

without any knowledge regarding the presence of other Byzantines or their observations. Let the

number of Byzantines present in the network be M = αN . When the channels between sensors

and FC are ideal, for an honest sensor, ui = Di, whereas for the Byzantines, we assume that they

flip their quantized binary measurements with probability p. Therefore, under the Gaussian noise

assumption, the probability that ui = 1 is given by

P (ui = 1|θ, i = Honest) = Q

(
ηi − ai
σ

)
(3.16)

P (ui = 1|θ, i = Byzantine) = p

(
1−Q

(
ηi − ai
σ

))
+ (1− p)Q

(
ηi − ai
σ

)
(3.17)

where Q(·) is the complementary cumulative distribution function of a standard Gaussian dis-

tribution defined as

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt.

The probability of a sensor sending a quantized value ‘1’ is given by

P (ui = 1|θ) = (1− α)Q

(
ηi − ai
σ

)
+ α

(
p

(
1−Q

(
ηi − ai
σ

))
+ (1− p)Q

(
ηi − ai
σ

))
.

(3.18)

Proposition 3.3.1. Under independent attack, the PCRLB is given by F−1, where F is the posterior
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FIM whose elements are given by

F11 =
N∑
i=1

∫
θ

p0(θ)
(1− 2αp)2a2

i e
− (ηi−ai)

2

σ2 (xi − xt)2

2πσ2d4
iP1(1− P1)

+
1

σ2
θ

, (3.19)

F12 = F21 =
N∑
i=1

∫
θ

p0(θ)
(1− 2αp)2a2

i e
− (ηi−ai)

2

σ2 (xi − xt)(yi − yt)
2πσ2d4

iP1(1− P1)
, (3.20)

F22 =
N∑
i=1

∫
θ

p0(θ)
(1− 2αp)2a2

i e
− (ηi−ai)

2

σ2 (yi − yt)2

2πσ2d4
iP1(1− P1)

+
1

σ2
θ

. (3.21)

where P1 = P (ui = 1|θ) is given in (3.18).

Proof. The proof follows from the definition of F given in (3.10)-(3.15) and using the following

∂P1

∂xt
= −(1− 2αp)aie

− (ηi−ai)
2

2σ2 (xi − xt)
σ
√

2πd2
i

, (3.22)

∂P1

∂yt
= −(1− 2αp)aie

− (ηi−ai)
2

2σ2 (yi − yt)
σ
√

2πd2
i

. (3.23)

It can be observed that when α = 0, i.e., when all the sensors are honest, the above expression

simplifies to the special case of FD = Eθ[J(θ)] where J(θ) is the Fisher information matrix

derived by Niu et al. in [101] for the case of target localization using quantized data in the absence

of Byzantines.

3.3.2 Blinding the Fusion Center

The goal of Byzantines is naturally to cause as much damage to the functionality of the FC as

possible. We call the event of causing the maximum possible damage as blinding the FC which

refers to making the FC incapable of using the data from the local sensors to estimate the target
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location. This is clearly the case when the data’s contribution to posterior Fisher Information

matrix, FD, approaches zero. In this scenario, the best the FC can do is to use the prior to estimate

the location. In other words, F approaches the prior’s contribution to posterior Fisher Information,

FP = 1
σ2
θ
I or the PCRLB approaches σ2

θI. Since PCRLB and FIM are matrix-valued and are

functions of α, the blinding condition corresponds to the trace of PCRLB tending to 2σ2
θ or the

determinant of FIM tending to 1
σ4
θ
. That is, αblind is defined as

αblind := min{α| tr(F(α)−1) = 2σ2
θ}, (3.24)

or

αblind := min

{
α||F(α)| = 1

σ4
θ

}
. (3.25)

A closed form expression for αblind can be derived and further analysis of the localization

process in the presence of Byzantines can be carried out if all the honest sensors are identical and

similarly all the Byzantines are identical. Therefore, in the following, we continue the analysis

assuming all the honest sensors use the same local threshold ηH and all the Byzantines use ηB.

Byzantines Modeled as a Binary Symmetric Channel (BSC)

From the FC’s perspective, the binary data received from the local sensor is either a false ob-

servation of the local sensor with probability q = αp or a true observation with probability

1 − q = (1 − α) + α(1 − p). Therefore, the effect of Byzantines, as seen by the FC, can be

modeled as a Binary Symmetric Channel (BSC) with transition probability q. It is clear that this

virtual ‘channel’ affects the PCRLB at the FC, which is a function of q. It has been shown in the

literature [105] that the Cramér-Rao Lower Bound (CRLB) of the localization process approaches

infinity when this transition probability approaches 1
2

irrespective of the true location of the target

(θ). This result means that the data’s contribution to posterior Fisher Information FD approaches 0

for q = αp = 1
2
. Observe that higher the probability of flipping of the Byzantines (p), the lower the

fraction of Byzantines required to blind the FC. So, the minimum fraction of Byzantines, αblind, is
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1
2

corresponding to p = 1. In order to blind the network, the Byzantines need to be at least 50% in

number and should flip their quantized local observations with probability p = 1.

Another interpretation of this problem can be provided from the information theoretic per-

spective. Since the Byzantines’ effect is modeled as a BSC, the capacity of this channel is C =

1−Hb(q) where Hb(q) is the Binary Entropy Function given by

Hb(q) = −q log2 q − (1− q) log2 (1− q). (3.26)

The FC receives non-informative data from the sensors or becomes blind, when the capacity ap-

proaches 0 which happens when Hb(q) = 1 or q = 1
2
. Following the discussion above, we have

αblind = 1
2

and p = 1.

It can also be observed that the data’s contribution to F11 and F22 elements of F given by (3.19)

and (3.21) become 0 when αp = 1
2
. Once again, we get αblind = 1

2
and p = 1 as the optimal attack

strategy to blind the FC. Due to this observation, in the remainder of the section, we assume that

the Byzantines flip their observations with probability 1, i.e., p = 1.

3.3.3 Best Honest and Byzantine Strategies: A Zero-Sum Game

When α, the fraction of Byzantine sensors in the network, is greater than or equal to αblind, attack-

ers will be able to blind the FC. But when α is not large enough to blind the FC, the Byzantine

sensors will try to maximize the damage by making either tr(F−1) as large as possible or |F| as

small as possible. In contrast, the FC will try to minimize tr(F−1) or maximize |F|. This will

result in a game between the FC and each Byzantine attacker where each player has competing

goals. Each Byzantine sensor will adjust its threshold ηB to maximize tr(F−1) or minimize |F|

while the FC will adjust the honest sensor’s threshold ηH to minimize tr(F−1) or maximize |F|.

Thus, it is a zero-sum game where the utility of the FC is − tr(F−1) (or |F|) and the utility of the

Byzantine sensor is tr(F−1) (or −|F|) [50]. More formally, let us consider tr(F−1) and denote

C(ηH , ηB) = tr(F−1) as the cost function adopted by the honest sensors. Let η∗H and η∗B denote the
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best threshold (strategy) of the honest and the Byzantine sensors, respectively. For a given ηB, η∗H

is computed as

η∗H = arg min
ηH
C(ηH , ηB). (3.27)

Similarly, for a given ηH , η∗B is computed as

η∗B = arg min
ηB
−C(ηH , ηB). (3.28)

The solutions to (3.27) and (3.28) characterize the Nash equilibria which are defined as follows

[50].

Definition 3.3.2. A (pure) strategy η∗H for the honest sensor is a Nash equilibrium (NE) if

C(η∗H , η∗B) ≤ C(ηH , η∗B). (3.29)

Similarly, a (pure) strategy η∗B for the Byzantine sensor is a Nash equilibrium (NE) if

C(η∗H , η∗B) ≥ C(η∗H , ηB). (3.30)

In a zero-sum game, the best strategy for both players is the saddle point, at which none of

the players have the incentive to change their strategy. The saddle point for this problem given by

(3.27) and (3.28) can be found using traditional methods. First, we find the set of stationary points

of tr(F−1) defined by S,

S :=

{
(ηH , ηB)|∂ tr(F−1)

∂ηH
=
∂ tr(F−1)

∂ηB
= 0

}
. (3.31)

The saddle point, (η∗H , η
∗
B), is the one at which the Hessian matrix is indefinite, i.e., the determinant

of the Hessian matrix is negative,

(η∗H , η
∗
B) =

{
(ηH , ηB) ∈ S|∂

2 tr(F−1)

∂2ηH

∂2 tr(F−1)

∂2ηB
−
(
∂2 tr(F−1)

∂ηH∂ηB

)2

< 0

}
. (3.32)
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Note that the above expressions are with respect to tr(F−1). Similar analysis can be carried out

when tr(F−1) is replaced with |F| as the performance metric.

3.3.4 Numerical Results

In this subsection, we present simulation results in support of our analysis of Byzantines in a

localization problem. We consider the WSN model whereN = 100 sensors are randomly deployed

in a 11 ×11 square region of interest where the target is located. The target’s location is randomly

generated from the prior p0(θ) with σθ = 2.1352 such that its 99% confidence region covers the

entire ROI. There are M = αN Byzantine sensors present in the network who try to manipulate

the data and send falsified information to the FC. We assume that the power at the reference point

(d0 = 1) is P0 = 200. The signal amplitude at the local sensor is corrupted by AWGN with

standard deviation σ = 3. In Figs. 3.2 and 3.3, we plot the values of tr(F−1) and |F| against α in

the case of an independent attack with ηH = ηB = 8.5. The figures show that when α = 0.5, the

tr(F−1) approaches 2σ2
θ and |F| approaches 1

σ4
θ
. This shows that αblind is equal to 1/2, i.e., unless

the number of Byzantine sensors is greater or equal to 50 percent of the total number of sensors,

the FC can not be made blind under independent attack. This supports our theoretical analysis

regarding the PCRLB approaching σ2
θI when α, which is the transition probability of the BSC

model, approaches 1
2
. These results can be reproduced for different values of ηH and ηB. Fig. 3.4

shows the increase in Mean Square Error (MSE) of the target estimate with α. As the fraction of

Byzantines increases, the MSE increases as illustrated in Fig. 3.4. Since the MSE is lower bounded

by tr(F−1), the plot in Fig. 3.4 is always above the plot of tr(F−1) versus α in Fig. 3.2.

As discussed in Sec. 3.3.3, when α < αblind, there exists a zero-sum game between the FC

and Byzantine sensors, in which the optimal strategies are given by the saddle points (equilibrium

points). In Figs. 3.5 and 3.6, we plot tr(F−1) with varying thresholds for α = 0.4 and we observe

that there exists a saddle point (η∗H , η
∗
B) which provides optimal strategies for both types of sensors.

The saddle point (η∗H , η
∗
B), in this particular example, is at (8.5, 8.5). This result is intuitive as

Byzantines flip their decision with probability 1. Therefore, the best strategy for the Byzantines is
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Fig. 3.2: Plot of tr(F−1) versus α

to use the same best response of the Honest sensors and then flip them with probability 1. Similar

results can be obtained for different values of α.

Figs. 3.7 and 3.8 show similar game theoretic analysis results for the case of |F| as the perfor-

mance metric. The optimal values for this case (η∗H , η
∗
B) are the same (8.5, 8.5). Thus, there exist

saddle points (η∗H , η
∗
B) which yield the optimal strategies for both the FC and Byzantine attack-

ers. We would like to point out that the two objective functions used in the analysis (tr(F−1) and

|F|) need not always result in the same operational point in general. However, in this particular

example, this value turns out to be the same, irrespective of the performance metric.

3.4 Collaborative Attack

Next, consider the case of Byzantine attacks where all the malicious sensors communicate with

each other and attack the network in a coordinated fashion. In a collaborative attack, Byzantines

collaborate to deteriorate the network’s estimation performance and attack the network after col-

luding with others. Here again, assume α to be the fraction of Byzantines present in the network.

Analysis of the collaborative attack is significantly more complicated than the independent case.

Here, a reasonable lower bound for αblind, namely αLblind, is provided for this case.
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Fig. 3.4: Plot of MSE versus α

In order to find the lower bound for αblind, assume that the exact location of target θ can

be perfectly learned by Byzantine sensors due to collaboration. Thus, consider the case where

Byzantine attackers know the location of the target and use this information collaboratively to

improve their attack on the network. Let us first consider the case where each sensor uses an

identical threshold. In such a case, the optimal strategy for the Byzantine sensors will be to send

ui based on the true θ value and their locations. For a given sensor i, its location θi = [xi, yi],

its observation model, and its threshold ηi = η, the probability of the sensor sending a quantized
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Fig. 3.5: Surface plot of tr(F−1) versus honest and Byzantine sensor’s threshold, ηH and ηB. The
existence of a saddle point is clear.

value 1 as seen by the FC is:

Pi(ui = 1|θ) = (1− α)PH
i (ui = 1|θ) + αPB

i (ui = 1|θ) (3.33)

The Byzantines would like to design their variables α and PB
i (ui = 1|θ) so that the FC becomes

blind to the information received from this ith sensor, i.e., the information received from the ith

sensor does not help the FC estimate the target location. This can be achieved by making the

value Pi(ui = 1|θ) a constant value (k) with respect to θ. Let PH
i,inf := infθ(P

H
i (ui = 1|θ)) and the

PH
i,sup := supθ(P

H
i (ui = 1|θ)). Then for the ith sensor, if it was honest and PH

i (ui = 1|θ) = PH
i,inf ,

it would mean that the target is as far away from the ith sensor as possible. However, if the same

sensor behaved as a Byzantine it is reasonable to assume that a sensible Byzantine would send a 1

to the FC with as high a probability as possible, i.e., PB
i (ui = 1|θ) = 1. Similarly, if the ith sensor

was honest and PH
i (ui = 1|θ) = PH

i,sup, then it would mean that the target is as close to the ith

sensor as possible and if the same sensor behaved as a Byzantine, under a similar assumption as

before, it would send a 1 to the FC with as low a probability as possible, i.e., PB
i (ui = 1|θ) = 0.
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This gives us two equations in two unknowns, αLblind,i and k:

(1− αLblind,i)PH
i,inf + αLblind,i.1 = k (3.34)

and

(1− αLblind,i)PH
i,sup + αLblind,i.0 = k. (3.35)

After solving (3.34) and (3.35), we get

αLblind,i =
PH
i,sup − PH

i,inf

1 + PH
i,sup − PH

i,inf

(3.36)

where αLblind,i is the fraction of malicious sensors required to make sensor i non-informative to the

FC. In this case, we have the following at the FC,

Pi(ui = 1|θ) = (1− αLblind,i)PH
i (ui = 1|θ) + αLblind,iP

B
i (ui = 1|θ) =

PH
i,sup

1 + PH
i,sup − PH

i,inf

(3.37)

which is a constant independent of θ. Thus, when α ≥ αLblind,i for a particular honest sensor i, the

attackers can have α − αLblind,i fraction of Byzantine sensors act like honest sensors and have the
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rest αLblind,i Byzantine sensors send 1 with probability as below:

PB
i (ui = 1|θ) =

PH
i,sup − PH

i (ui = 1|θ)
PH
i,sup − PH

i,inf

This causes the FC to become incapable of utilizing the received information from the ith sensor to

estimate the target location. In order to guarantee that the FC cannot obtain any useful information

from any of its sensors, the minimum required αL,identblind is given as

αL,identblind = max
i
αLblind,i. (3.38)

This provides us with a lower bound, αL,identblind , for the collaborative case under the identical thresh-

old scheme. For the collaborative attack case, it can be observed that αLblind,i given by (3.36) is

always ≤ 0.5 which implies that αL,identblind ≤ 0.5 which is the αblind obtained in the independent

attack case. This shows that if a strategy exists to obtain this lower bound, then the fraction of

sensors required to blind the FC would decrease in the collaborative attack case as compared to the

independent attack case. A similar observation was made by Rawat et al. in [117] for the primary

user detection for cognitive radio networks in the presence of Byzantines.
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3.5 Target Tracking in the Presence of Byzantine Sensors

Now, we analyze the effect of Byzantines on a more general estimation problem namely a target

tracking problem in WSNs. We first discuss the system model and the performance metrics rele-

vant to the tracking framework. Using a similar Byzantine attack model as used for the location

estimation task, we evaluate the effect of Byzantines on the tracking performance.

3.5.1 System Model

We consider a single target moving in a two-dimensional Cartesian coordinate plane whose dy-

namics is defined by the 4-dimensional state vector θk = [xtk ytk ẋtk ẏtk]T where xtk and ytk denote

the x and y coordinates of the target respectively, at time k. ẋtk and ẏtk denote the first order

derivatives (velocities) in x and y directions, respectively. Target motion is defined by the white

noise acceleration model [13] as described below:

θk = Fθk−1 + νk, (3.39)
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where

F =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


(3.40)

and νk is the additive white Gaussian process noise which is assumed to be zero mean with covari-

ance matrix Q given by

Q = q



T 3

3
0 T 2

2
0

0 T 3

3
0 T 2

2

T 2

2
0 T 0

0 T 2

2
0 T


, (3.41)

where q and T denote the process noise parameter and the time interval between adjacent sensor

measurements, respectively. We assume that the FC has an exact knowledge of the target state-

space model (3.39) and the process noise statistics. There are N sensors deployed in the network.

The dynamic target radiates a signal which is assumed to follow an isotropic power attenuation

model same as the location estimation problem:

a2
ik = P0

(
d0

dik

)n
, (3.42)

where aik is the signal amplitude received at the ith sensor at time instant k, P0 is the power

measured at a reference distance d0, n is the path-loss exponent, and dik is the distance between

the target and the ith sensor at the kth time step. Without loss of generality, we assume d0 = 1

and n = 2. The signal amplitude is assumed to be corrupted by additive white Gaussian noise

(AWGN) at each sensor:

sik = aik + ni, (3.43)
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where sik is the corrupted signal at the ith sensor at time instant k and the noise ni followsN (0, σ2).

We assume this noise to be independent across sensors. Due to energy and bandwidth constraints,

each sensor quantizes its received signal sik locally using a binary quantizer and the quantized data

is sent to the FC. We consider threshold quantizers for their simplicity in terms of implementation

and analysis:

vik =


0 sik < ηik

1 sik > ηik

. (3.44)

In (3.44), vik is the locally quantized binary measurement of the ith sensor and ηik is the quan-

tization threshold used by this sensor at time instant k. The FC receives the binary vector uk =

[u1k, · · · , uNk] from all the sensors in the network, where uik may not be equal to vik due to the

presence of Byzantine sensors in the network (c.f. 3.5.3). After collecting uk, the FC sequentially

estimates the target state θk using a sequential importance resampling (SIR) particle filter [11].

3.5.2 Performance Metrics

As used before for the location estimation problem, we use PCRLB as the metric for tracking

performance. Let θ̂k(u1:k) be an estimator of the state vector θk at time k, given all the available

measurements u1:k = [u1 · · ·uk] up to time k. Then, the mean square error (MSE) matrix of the

estimation error at time k, is bounded below by the PCRLB Jk
−1 [45],

Bk = E

{[
θ̂k (u1:k)− θk

] [
θ̂k (u1:k)− θk

]T}
≥ Jk

−1, (3.45)

where Jk is the Fisher information matrix (FIM). Tichavský et al. in [143] provide a recursive

approach to calculate this sequential FIM Jk:

Jk+1 = D22
k −D21

k

(
Jk + D11

k

)−1
D12

k , (3.46)
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where

D11
k =E

{
−∇θk∇T

θk
log p (θk+1|θk)

}
, (3.47)

D12
k =E

{
−∇θk∇T

θk+1
log p (θk+1|θk)

}
, (3.48)

D21
k =E

{
−∇θk+1

∇T
θk

log p (θk+1|θk)
}

=
(
D12

k

)T
, (3.49)

D22
k =E

{
−∇θk+1

∇T
θk+1

log p (θk+1|θk)
}

+ E
{
−∇θk+1

∇T
θk+1

log p (uk+1|θk+1)
}

=D22,a
k + D22,b

k . (3.50)

The derivative operator∇θk in (3.47)-(3.50) is defined as

∇θk =

[
∂

∂xtk
,
∂

∂ytk
,
∂

∂ẋtk
,
∂

∂ẏtk

]T
(3.51)

and the expectations in (3.47)-(3.50) are taken with respect to the joint probability distribution

p (θ0:k+1,u1:k+1). The a priori probability density function (pdf) of the target state p0(θ0) can be

used to calculate the initial FIM as J0 = E
{
−∇θ0∇T

θ0
log p0 (θ0)

}
.

For the target dynamic model and the measurement model used in this paper, the expressions

in (3.47)-(3.50) simplify to

D11
k = FTQ−1F, (3.52)

D12
k =

(
D21

k

)T
= −FTQ−1, (3.53)

D22
k = Q−1 + D22,b

k . (3.54)

Note that D22,b
k is the only term that depends on the observations u1:k of the local sensors.
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3.5.3 Attack Model

In this section, we analyze the system in the presence of Byzantines. For this target tracking prob-

lem, we focus on independent attacks only. Since the quantized observations transmitted by the

local sensors are binary in nature, the Byzantines can attack the network by changing this binary

quantized data. Let M = αN be the number of Byzantines in the network. It is assumed that the

FC knows the fraction of Byzantines (α) but does not the know the identity of the Byzantines. An

honest sensor sends its true observation to the FC and therefore, uik = vik, whereas for the Byzan-

tines, we assume that they flip their quantized binary measurements with probability p. Therefore,

under the Gaussian noise assumption, the probability that uik = 1 is given by

P (uik = 1|θk, i = Honest) = Q

(
ηik − aik

σ

)
, (3.55)

P (uik = 1|θk, i = Byzantine) = p

(
1−Q

(
ηik − aik

σ

))
+ (1− p)Q

(
ηik − aik

σ

)
, (3.56)

where Q(·) is the complementary cumulative distribution function of a standard Gaussian distri-

bution. From the FC’s perspective, the probability of a sensor sending ‘1’ is, therefore, given

by

Pik = P (uik = 1|θk) = (1−α)Q

(
ηik − aik

σ

)
+α

(
p

(
1−Q

(
ηik − aik

σ

))
+ (1− p)Q

(
ηik − aik

σ

))
.

(3.57)

Proposition 3.5.1. Under independent Byzantine attacks, data’s contribution D22,b
k to FIM is

given by:

D22,b
k =



D22,b
k 11 D22,b

k 12 0 0

D22,b
k 21 D22,b

k 22 0 0

0 0 0 0

0 0 0 0


, (3.58)
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where the non-zero elements are given by

D22,b
k 11 =

N∑
i=1

E

(1− 2αp)2a2
ile
− (ηil−ail)

2

σ2 (xil − xtl)2

2πσ2d4
ilPil(1− Pil)

 , (3.59)

D22,b
k 12 = D22,b

k 21 =
N∑
i=1

E

(1− 2αp)2a2
ile
− (ηil−ail)

2

σ2 (xil − xtl)(yil − ytl)
2πσ2d4

ilPil(1− Pil)

 , (3.60)

D22,b
k 22 =

N∑
i=1

E

(1− 2αp)2a2
ile
− (ηil−ail)

2

σ2 (yil − ytl)2

2πσ2d4
ilPil(1− Pil)

 . (3.61)

where for l = k + 1, Pil is given in (3.57) and the expectation is taken with respect to

p (θ0:k,u1:k) p (θk+1|θk).

Proof. Note that the only non-zero terms of D22,b
k are in the 2× 2 sub-matrix D22,b

k (1 : 2, 1 : 2).

This is due to the fact that the distribution of data does not depend on the first order derivatives (ẋtk

and ẏtk) of the state θk. Based on the fact that θk, θk+1 and uk+1 form a Markov chain, the joint

PDF for the expectation can be rewritten as follows

p (θ0:k+1,u1:k+1) = p (θ0:k,u1:k) p (θk+1|θk) p (uk+1|θk+1) . (3.62)

The remainder of the proof follows from the definition of D22,b
k given in (3.50) and using the

following

∂Pi(k+1)

∂xt(k+1)

= −
(1− 2αp)ai(k+1)e

−
(ηi(k+1)−ai(k+1))

2

2σ2 (xi(k+1) − xt(k+1))

σ
√

2πd2
i(k+1)

, (3.63)

∂Pi(k+1)

∂yt(k+1)

= −
(1− 2αp)ai(k+1)e

−
(ηi(k+1)−ai(k+1))

2

2σ2 (yi(k+1) − yt(k+1))

σ
√

2πd2
i(k+1)

. (3.64)
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3.5.4 Blinding the Fusion Center

The goal of Byzantines is naturally to cause as much damage to the functionality of the FC as

possible. Following the same terminology as used for the location estimation problem, we call

the event of causing maximum damage as blinding the FC which refers to making the data from

the local sensors non-informative for the FC. In our case, this happens when the data’s contribu-

tion D22,b
k to FIM, approaches zero. In this scenario, the best the fusion center can do is to use

the information from the prior knowledge of state transition model to estimate the state. Since

PCRLB/FIM is matrix-valued and it is a function of α, we define the blinding condition to mean

that the trace of D22,b
k is zero. That is, αblind may be defined as

αblind , min{α| tr(D22,b
k (α)) = 0}. (3.65)

For our framework, a closed form expression for αblind can be derived and further analysis

of target tracking in the presence of Byzantines can be carried out by carefully observing the ex-

pressions derived in Prop. 3.5.1. Observe that the non-zero elements of D22,b
k , data’s contribution

to FIM, given by (3.59)-(3.61) all become zero when αp = 1
2
, i.e., D22,b

k = 0 when αp = 1
2
.

This implies that the higher the probability of flipping of Byzantines (p), the lower the fraction of

Byzantines required to blind the FC from local sensors’ data. Therefore, the minimum fraction of

Byzantines, αblind, is 1
2

corresponding to p = 1. Byzantines need to be at least 50% in number and

should flip their quantized local observations with probability ‘1’ to blind the network.

3.6 Discussion

In this chapter, the problems of target localization and target tracking with Byzantine sensors have

been considered and the effect of unreliable agents (sensors) has been explored. Optimal attacking

strategies have been theoretically found along with the fundamental limits of attack that corre-

sponds to no information at the FC. In the following chapter, the problems are analyzed from the
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network’s perspective to determine the approaches that the network can adopt to ensure reliable

inference using unreliable sensors when the fraction of sensors is below the blinding fraction.
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CHAPTER 4

ESTIMATION IN SENSOR NETWORKS:

RELIABLE INFERENCE

4.1 Introduction

In the previous chapter, the problem of localization was discussed in the presence of Byzantine at-

tacks and the optimal attack strategies were analyzed for the attacker who intends to deteriorate the

performance of the estimation task at the FC. It was shown that when the fraction of Byzantines in

the network are greater than 0.5 and are attacking independently, the FC becomes blind to the data

from the sensors and can only estimate the location of the target using the prior information. How-

ever, addressing the problem from the network’s perspective, one can develop techniques to counter

the effect of Byzantines and ensure reliable estimation performance. In this chapter, such schemes

are explored. Note that the focus is only on the independent attack case. As discussed briefly at the

end of the previous chapter, the analysis for the collaborative attack case is more complex and is

not considered here. Three schemes are proposed in this chapter: Byzantine identification scheme,

design of dynamic non-identical threshold scheme, and coding-theoretic target localization. The

Byzantine identification scheme proposed herein is similar in principle to the one proposed in [156]

for a distributed detection problem where the Byzantines are identified in an adaptive fashion and
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their information is used adaptively to improve the system’s detection performance. The dynamic

non-identical threshold scheme explores the design of local quantizers by moving away from the

traditional static identical thresholds to dynamic non-identical thresholds that make the system ro-

bust to Byzantines. The effectiveness of the proposed dynamic non-identical threshold scheme

against Byzantines is also shown for the target tracking problem discussed in Sec.3.5. Lastly,

the coding-theoretic scheme builds on the DCFECC and DCSD approaches discussed in Sec. 2.4

to develop a computationally more efficient scheme than the maximum likelihood scheme of the

previous chapter. This coding-theoretic scheme is also more robust to Byzantine attacks.

The remainder of the chapter is organized as follows: In Sec. 4.2, the Byzantine identification

scheme is described and validated with some numerical results. Dynamic non-identical quantizers

are developed in Sec. 4.3 using variational calculus to improve the performance of the system in

the presence of Byzantines. Following these Byzantine mitigation schemes, in Sec. 4.4, a new

localization scheme is developed using coding theory that is computationally more efficient than

the traditional maximum likelihood approach. Its performance analysis is first characterized in

the absence of Byzantines and is shown to be asymptotically optimal when the number of sensors

approach infinity. The performance in the presence of Byzantines is then analyzed in Sec. 4.5 and

it is shown to be robust to the Byzantine attacks, both analytically and via simulations. Further

analysis is provided in Sec. 4.6 where the scheme is extended to the case of non-ideal channels

between the sensors and the FC. The chapter is summarized with some discussion in Sec. 4.7.

4.2 Byzantine Identification

The first scheme proposed for the mitigation of independent Byzantine attacks is to identify the

Byzantines by observing their behavior over time. In the preceding chapter, we have shown how the

optimal identical thresholds are designed in the presence of Byzantines based on the PCRLB for the

target location estimation error. It was assumed that all the Byzantines use an identical threshold

ηB and all the honest sensors use an identical threshold ηH . It can be seen in the numerical results
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presented in Sec. 3.3.4 that the optimal strategy for the Byzantines and the honest sensors is to use

ηH = ηB = η. Here, we propose a scheme to identify the Byzantines present in the network. This

scheme is similar to previous work in [156] for the cooperative spectrum sensing problem.

The basic idea of this identification scheme is to observe a sensor’s behavior over time and

decide on whether it behaves closer to an honest or a Byzantine sensor [156]. This is done by

comparing the observed values of γ̂i = P (ui = 1|θ) to the expected values of γ̂Hi = P (ui =

1|θ̂, i = Honest) or γ̂Bi = P (ui = 1|θ̂, i = Byzantine). γ̂i = P (ui = 1|θ) is estimated in an

iterative manner where γ̂i at the (T + 1)th iteration is calculated as

γ̂i(T + 1) =
T γ̂i(T ) + ui(T + 1)

T + 1
. (4.1)

The values of γ̂Hi and γ̂Bi can be calculated using (3.16) and (3.17). It is important to observe

here that these values require the location θ which is unknown. These values in our scheme are

initialized by using a coarse estimate of the location, θ̂. In order to obtain an initial coarse estimate,

θ̂, a procedure similar to the one proposed by Masazade et al. in [95] is adopted. In this procedure,

it is assumed that there are K anchor sensors in the network that have a higher level of security and

thereby treated as honest sensors. The initial data is collected at the FC (at time T = 0) from these

K anchor sensors and the MMSE estimate is obtained using the procedure described in Section

3.2.2. For the remainder of this section, the following model is assumed. At every iteration of the

algorithm, the sensors send their 1-bit data using the pre-designed identical threshold value. Using

these N sensors’ data of previous T time instants, the FC iteratively updates γ̂i(T + 1).

The estimate γ̂i(T ) is computed at every iteration T and a sensor is declared honest or Byzan-

tine based on the test statistic

Λi(T ) =

∣∣∣∣ γ̂i(T )− γ̂iH

γ̂i(T )− γ̂iB

∣∣∣∣ (4.2)

which is the ratio of the deviations between the estimated behavior of the ith sensor and the ex-

pected behavior of an honest sensor, to the estimated behavior of the ith sensor and the expected

behavior of a Byzantine sensor. The FC declares a sensor as a Byzantine at time instant T if Λi(T )
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is greater than 1. This would mean that the sensor behaves closer to a Byzantine than an honest sen-

sor. The advantage of this scheme is that it is adaptive such that the sensor’s declaration regarding

the sensor being honest or Byzantine is based on data from previous time instants. It is important

to note that the above formulation (4.2) is purely heuristic and no optimality is claimed. It is a sub-

optimal and an easy to implement formulation. The rationale behind such a formulation is that in

traditional classification/pattern recognition problems, the decision regarding the type (of a sensor)

is made by observing the behavior (of the sensor). A sensor is declared as Type A, if it behaves

closer to the expected behavior of Type A. In our problem, the behavior is characterized by γ̂i(T )

and a decision is made by comparing the closeness of this behavior to the expected behavior (γ̂iH

or γ̂iB). It is important to note that, in this section, we propose a Byzantine identification scheme

but do not discuss the estimation procedure. The estimation is done after a final decision is made

regarding the identity of the Byzantines. The time instant when a final decision is made depends

on the particular scenario and is a design criterion. Once, the final decision is made, the data from

the sensors identified as Byzantines can be re-flipped and used in the estimation process similar to

the adaptive fusion rule designed in [156] for the problem of distributed spectrum sensing in the

presence of Byzantines. In the following sub-section, we show with numerical simulations that,

for our particular example, most of the Byzantines can be identified in around 100 iterations using

the proposed Byzantine identification scheme.

4.2.1 Numerical Results

The effectiveness of our identification scheme is presented through numerical results. For this

scenario, the same network with N = 100 sensors uniformly deployed in a 11× 11 area as shown

in Fig. 3.1 is considered. The fraction of the Byzantines is α = 0.4, i.e., 40 out of 100 sensors

are malicious. It is assumed that there are K anchor sensors as shown in Fig. 3.1. Each sensor

measures si, the signal amplitude ai corrupted by AWGN with σ = 3. The power at the reference

distance (d0 = 1) is P0 = 200. The Byzantines and honest sensors use thresholds ηH = ηB =

8.5, which are the optimum thresholds found in Sec. 3.3.4 assuming that the prior distribution
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of the target location is a normal distribution such that the region of interest (ROI) includes 99%

confidence region. Each Byzantine flips its binary observation with probability 1, before sending it

to the FC. The results of the proposed Byzantine identification scheme for a specific target location

realization can be seen in Figs. 4.1 and 4.2. In Fig. 4.1, the number of wrongly identified sensors

(an honest sensor wrongly identified as a Byzantine and vice-versa) is plotted as a function of

time for different values of K, the number of anchor sensors. The value of K has been varied to

observe the effect of the coarseness of the estimate on the Byzantine identification scheme. The

graph shows that most of the sensors are correctly identified with time. The number of wrongly

identified sensors is maximum for K = 3 and minimum for K = 9 as expected since the coarse

estimate is more accurate when the number of anchor sensors is larger. For K = 5, the number

of wrongly identified sensors converges to the value of 14 (out of a total of 100 sensors). From

this figure, it can be inferred that K = 5 is a reasonable number of anchor sensors to be used.

In Fig. 4.2, the estimated α given by αest = M̂
N

, where M̂ is the number of sensors identified as

Byzantines, is plotted as a function of time for a network with K = 5 anchor sensors placed in

star formation as shown in Fig. 3.1. As can be seen from Fig. 4.2, αest converges to the value

of 0.42. From these figures, it can be inferred that 8 honest sensors (out of 60 honest sensors in

the network) have been falsely identified as Byzantines and 6 Byzantines (out of 40 Byzantines

present in the network) have been mis-identified as honest sensors.

It is important to note that the performance of the proposed scheme depends on the MSE of the

initial coarse estimate. In all the simulations performed, the MSE of the initial coarse estimate is

< 3 square units and in Table 4.1, we show the effect of MSE of the estimate on the performance

of the identification scheme when K = 5 anchor sensors are used.

4.2.2 Discussion

The proposed scheme does not depend on the fraction of Byzantines (α) present in the network and,

therefore, the scheme performs well for all possible values of α. It detects most of the Byzantines in

the network. A major limitation of this scheme is that some sensors can not be identified reliably
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Fig. 4.1: Number of wrongly identified sensors with time

Table 4.1: Mismatches versus MSE of the initial coarse estimate found usingK = 5 anchor sensors

MSE of initial
coarse estimate

Number of
Mismatches

0.4 1
0.6 2
1.4 7
1.6 8
1.9 10
2.28 12
2.44 13
2.6 14

as Byzantine or honest. It can be observed that the sensors for which this scheme fails are the

sensors for which the test statistic ΛT
i is close to 1. This happens when γHi or γBi is close to 0.5.

These are the sensors for which ai = η corresponding to some constant di = d. These sensors lie

on the boundary region as shown in Fig. 4.3. These ambiguous sensors evade the identification

process due to the following reason. An ambiguous sensor is defined as the sensor i, for which

the quantization threshold is approximately equal to its received amplitude ai. Therefore, for

the Gaussian noise model assumed here, P (ui = 1|θ̂) = γ̂i ≈ 0.5 for an ambiguous sensor

irrespective of whether it is an honest sensor or a Byzantine. This implies that these sensors send



55

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

α
e

s
t

Fig. 4.2: Estimate of α with time

Fig. 4.3: Boundary around which the sensors are ‘ambiguous’

1 with approximate probability 0.5. Since, the Byzantines flip their decision with probability 1,

it cannot be inferred if it was an honest sensor genuinely sending 1 with probability 0.5 or a

Byzantine sensor sending 1 with probability 0.5 after flipping its decision. Furthermore, since the

received amplitude ai is constant for ambiguous sensors, they happen to form a circle around the

true target location. This ‘hard’ decision regarding the type of sensor results in a high probability

of misidentification of the sensors in the region shown in Fig. 4.3. These sensors can, therefore, be

categorized as ambiguous. The ratio of the number of these ambiguous sensors on the boundary

region to the total number of sensors in a network may be small in practice. In this case, they

have negligible impact on estimation performance. However, this number depends on the relative



56

positioning of the target with respect to the local sensors and on the threshold used for quantization

at the local sensors. The width of the uncertain zone also depends on sensor noise variance. If this

ratio is high, then the estimation performance might be severely degraded. Therefore, we need to

design a scheme where the information from these sensors can be utilized for localization. This

problem of boundary sensors can be alleviated if we use non-identical quantizers discussed in the

following section, in conjunction with the identification scheme.

4.3 Design of Dynamic Non-Identical Quantizers

In this section, we introduce our non-identical quantizer design scheme to tackle the ambiguity

caused by boundary sensors when identical quantizers are used. The estimation model in this

section is sequential and described as follows. At every iteration T , all the N sensors send their

one-bit data regarding the location of the target using their local thresholds. At time T = 0, the

local sensors use the optimal identical thresholds designed in Sec. 3.3.3 for quantization. The FC

estimates the target location at every time instant T using Monte-Carlo based MMSE estimation

described in Sec. 3.2.2 and broadcasts this estimate information to the local sensors. The essential

difference between this new scheme and the previous one is the feedback between the FC and the

local sensors. In other words, according to this new scheme, local sensors update their quantizers

based on the feedback information (location estimate) they receive from the FC. In order to under-

stand the design, we first investigate the case where there are no Byzantines and all the sensors are

honest.

4.3.1 Honest Sensors Only

Niu et al. in [101] analyzed the location estimation problem and proposed a threshold design

method by minimizing the CRLB on the location estimation error, where the optimal thresholds

are found by

min
η̄
V (η̄|θ), (4.3)
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where V (η̄) is the trace of the CRLB matrix. In this work, since PCRLB is the performance metric,

the optimization problem can be written as

min
η̄

∫
V (η̄|θ)p0(θ)dθ. (4.4)

This minimization problem is a non-convex vector minimization problem over N variables. Here,

this problem can be simplified by making every threshold a function of signal amplitude at the

sensor and assuming that all the sensors follow the same functional dependence, i.e,

ηi = η(ai), (4.5)

where η(·) is some function and ai is the amplitude of the observation at the ith sensor. Since the

value of ai is not known, each threshold is updated iteratively as

ηT+1
i = η(âTi ), (4.6)

where âTi is the expected amplitude at the previous time instant which is estimated by using the

location estimate of the T th iteration, θ̂T . The minimization problem now becomes a variational

minimization problem

min
η(·)

∫
V (η(·)|θ)p0(θ)dθ. (4.7)

This is still a difficult problem as V is a function of the target’s location θ which is unknown. There-

fore, a heuristic approach is proposed that is similar to the one used in [101] which is explained

next.

Heuristic Approach for Non-Identical Quantizer Design

It is important to observe that all the required information about the target location θ = [xt, yt]

is completely available in the signal amplitudes ai’s. Therefore, intuitively, if one can accurately

estimate ai from ui for i = 1, 2, . . . , N , then the target location can be accurately estimated. At
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any given sensor, this estimation problem is to estimate a using the log-likelihood function given

by

lnP (u|a) = (1− u) lnP (u = 0|η(â), a) + u lnP (u = 1|η(â), a) (4.8)

where a is the signal amplitude at that sensor, â is the estimate of the amplitude and u ∈ {0, 1} is

the corresponding quantized bit-value.

Proposition 4.3.1. The posterior Fisher Information about the signal amplitude, a, at a given

sensor is given by

G[η(·)] =

∫
A

F [η(â), a]pA(a)da+ Γ, (4.9)

where pA(a) is the pdf of the signal amplitude a at the sensor and

F [η(â), a] =
e−

(η(â)−a)2

σ2

2πσ2[Q(η(â)−a
σ

)][1−Q(η(â)−a
σ

)]
(4.10)

is the data’s contribution to posterior FI and Γ is a constant representing prior’s contribution to

the posterior FI which is given by

Γ = −E
[
d2 ln pA(a)

da2

]
. (4.11)

Proof. The proof is given in Appendix A.1.

Now the threshold function η(·) can be designed such that it maximizes the posterior Fisher

information.

Proposition 4.3.2. The posterior Fisher InformationG[η(·)] is maximized when the threshold func-

tion is η(a) = a.

Proof. Since the second term on the right hand side of (4.9) is not a function of η, we can only

consider the first term. The maximization of the first term with respect to η(·) is a functional

maximization problem and it can be solved using the Euler-Lagrange equation from variational
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calculus [147] given by
∂F

∂η
=

d

da

∂F

∂η(1)
, (4.12)

where η(1) is the first derivative of η with respect to a. Since F [η(â), a] is independent of η(1), the

Euler-Lagrange equation reduces to ∂F
∂η

= 0 or F = constant with respect to η. From (4.10), this

gives the result that η(a) = a for F to be a constant with respect to η.1

Such an analysis was also carried out numerically by Ribeiro et al. in [119], where the authors

plotted the CRLB against (η − a) to show that η(a) = a minimizes the CRLB or in other words

maximizes the Fisher information.

Therefore, the thresholds are designed such that, ηT+1
i = η(âTi ) = âTi which means that the

threshold of the ith sensor at time (T + 1) is the estimated amplitude at this sensor at the previous

time instant T . This amplitude is estimated by using the previous time instant’s location estimate,

θ̂T , which is broadcast by the FC to the local sensors. It is important to note that this result

is expected as such a threshold design will ideally yield the maximum entropy as it results in

P (ui = 1|θ) = P (ui = 0|θ) = 1
2
.

4.3.2 Game Between Honest and Byzantine Sensors

The situation changes when there are honest sensors as well as Byzantine sensors present in the

system. Since the Byzantines’ aim is to deteriorate the system performance, they do not necessarily

use the threshold design specified by the FC. Instead, Byzantines use their own threshold function

ηB(·) and they flip their decisions with probability p. Let the threshold function of the honest

sensors be ηH(·).

Proposition 4.3.3. The posterior Fisher Information about the signal amplitude, a, at a given

sensor in the presence of Byzantines is given by

G[ηH(·), ηB(·)] =

∫
A

F [ηH(.), ηB(.), a]pA(a)da+ Γ, (4.13)

1Interested reader is referred to Sec. 2.2 of [147] for further information on Euler-Lagrange Equation and Varia-
tional Calculus.
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where the constant Γ is given in (4.11), pA(a) is the pdf of the signal amplitude a at the sensor, and

F [ηH(·), ηB(·), a] =

(
−α(2p− 1)e−

(ηB(â)−a)2

2σ2 + (1− α)e−
(ηH (â)−a)2

2σ2

)2

2πσ2[P1][1− P1]
, (4.14)

with P1 is defined as the probability of the sensor sending 1 as seen by the FC

P1 = α

(
p

(
1−Q

(
ηB(â)− a

σ

))
+ (1− p)Q

(
ηB(â)− a

σ

))
+ (1− α)Q

(
ηH(â)− a

σ

)
.

(4.15)

Proof. The proof is given in Appendix A.2.

In this case, the problem can again be modeled as a zero-sum game where the objective of the

FC is to maximize the posterior Fisher Information G[ηH(.), ηB(.)] whereas the objective of the

Byzantine sensor is to minimize G[ηH(.), ηB(.)]. This problem can be solved by examining the

expression of G in (4.13). Under the scenario that each sensor behaves independently, it can be

shown that the Fisher Information (FI) given by (4.14) is maximized when honest sensors set their

thresholds as ηH(â) = â regardless of the value of ηB. For Byzantines, there are two cases to be

considered: αp < 1
2

and αp ≥ 1
2
. For αp < 1

2
, the Byzantines, who try to minimize this posterior

FI, achieve minimization similarly by setting ηB(â) = â regardless of the value of ηH . This

result is expected as the Byzantines flip their observations with a probability p. It is important to

observe that when ηB(â) = ηH(â) = â, it implies that the honest sensors send 0/1 with probability

approximately equal to 1
2
. Also, observe that if the Byzantines also use this thresholding scheme,

the probability of a Byzantine sending a 1 is

P (u = 1|a,Byzantine) = p

(
1−Q

(
ηB(â)− a

σ

))
+ (1− p)Q

(
ηB(â)− a

σ

)
, (4.16)

which becomes 1
2
, when ηB(â) = â, irrespective of the value of p. Similar to the honest sensors,
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the Byzantines maximize the entropy as well and eventually benefit the network in the localiza-

tion task as discussed earlier. This result can also be interpreted by using the BSC modeling of

Byzantines. In this model, the honest sensors try to transmit the data (0/1) such that the capacity

is achieved. The capacity is achieved when the input follows uniform distribution. Our thresh-

old scheme makes P (ui = 0/1|θ) = 1
2
, thereby achieving capacity of this ‘Byzantine’ BSC. For

αp ≥ 1
2
, the Byzantines need to use ηB(â) = ±∞, that is, always send a 0 or 1. However, in this

case, the network would again eventually overcome the actions of Byzantines as the FC can easily

identify the Byzantines using the Byzantine identification scheme proposed in Sec. 4.2.

It is worthwhile to point out here that no final strategies are proposed for the Byzantines here.

Instead, it is shown that any non-honest strategy used by the Byzantines can be identified by the

FC and therefore, the effect of Byzantines can be mitigated. Therefore, utilizing dynamic non-

identical quantizers ensures that the Byzantines become ‘ineffective’ in their attack strategy and

the network eventually mitigates the actions of Byzantines. It is also important to observe that this

particular framework ensures that the network is robust for any fraction (α) of the Byzantines in

the system. The trade-off is that the FC needs to broadcast the target location estimate at each

iteration which increases the system complexity and consume more system resources compared

to using static identical quantizers. Static thresholds are set only once in the beginning and they

stay constant throughout the estimation process. In the identification procedure, the FC tries to

identify sensors based on their observed behavior over time, which requires each sensor to send

their decisions to the FC in a continuous manner. In contrast, dynamic thresholds are adjusted

dynamically at each sensor using the feedback from the FC. As one would expect, feedback not

only improves estimation performance but it also makes the network more robust to Byzantine

attacks.

4.3.3 Numerical Results

The superiority of the proposed dynamic non-identical quantizer design over the static identical

quantizer design is now shown via simulations. For this scenario, consider a network withN = 100
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sensors uniformly deployed in a 11 × 11 area same as before (refer to Fig. 3.1). The power at the

reference distance (d0 = 1) is again set as P0 = 200. This set-up yielded an optimal identical

threshold as η = 8.5. During the first iteration, the location θ(1) is estimated using identical

thresholds. After obtaining θ̂(1), the estimates in the next iterations are calculated by using the

proposed dynamic non-identical threshold design scheme as ηT+1
i = âTi . MMSE estimators are

implemented using the importance sampling method as described in Sec. 3.2.2 with Np = 10000

particles. Fig. 4.4 shows the mean squared error (MSE) values of the estimators for 1000 Monte-

Carlo realizations of θ compared to the MSE of those using identical thresholds. As can be seen

from Fig. 4.4, the estimation error reduces significantly (by around 70% in 3 iterations) when non-

identical dynamic threshold quantizers are used as compared to the identical threshold quantizers.

This motivates the honest sensors to use the designed non-identical thresholds. As discussed above,

the Byzantines are ineffective in this proposed scheme.
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Fig. 4.4: MSE comparison of the two schemes: identical threshold scheme and non-identical
dynamic threshold scheme

When each sensor uses this dynamic non-identical quantizer design scheme for the case of

collaborative attack discussed in Sec. 3.4, the analysis is extremely difficult, however, the following

can be conjectured. The largest deviation in the current estimate caused by the Byzantines is

limited to the confidence interval of the previous estimate since, otherwise, they would be easily
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identified as outliers at the FC. This limits the attacking power of each Byzantine and hence,

more number of Byzantines are required to cause the same blinding effect at the FC. Therefore,

we conjecture that αL,non−identblind ≥ αL,identblind , where αL,non−identblind denotes the fraction of Byzantines

required to blind the FC under dynamic non-identical quantizer scheme.

4.3.4 Target Tracking

Next, we consider the problem of target tracking and show how the non-identical threshold design

scheme proposed above for the location estimation problem can also be used for the target tracking

problem. The estimation model in this section is sequential and described as follows. At time

k = 0, the local sensors send quantized data using the optimal identical quantizer thresholds pro-

posed in [101]. The FC estimates the target state at every time instant using particle filtering and

broadcasts this estimate information to the local sensors. At every subsequent iteration k, all the N

sensors send their one-bit quantized observations using their updated local thresholds. In this new

scheme, local sensors update their quantizers based on the feedback information (state estimate)

they receive from the FC. In order to develop insights, we follow a similar methodology as done

for location estimation problem, and investigate the case where there are no Byzantines and all the

sensors are honest.

Honest Sensors Only

Note that the recursive Fisher information is a function of sensor thresholds from time 1 to time

k. Using the target dynamic model in (3.39) and the sensor measurement model in (3.43), one can

design optimal static threshold values offline by minimizing a cost function, which could be the

trace or the determinant of the recursive PCRLB in (3.46), over the sensor thresholds. However, as

was previously shown in [104], the performance can be improved using a dynamic optimal quan-

tizer design. For the dynamic quantizers, quantizer design must not only be based on the system

model but must also exploit the feedback mechanism from the FC to the sensors. In order to dy-

namically design thresholds in real time, one needs to take into account the information contained
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in the measurements up to time k, i.e., u1:k. It was also shown in [104] that this optimization

is complicated and researchers have found ways to simplify the optimization problem. Here, we

simplify this problem by making every local sensor threshold a function of signal amplitude at the

sensor and assuming that all the sensors follow the same functional dependence, i.e,

ηik = η(aik), (4.17)

where η(·) is some function and aik is the amplitude of the observation at the ith sensor at time k.

Since the value of aik is not known, we update each threshold iteratively as

ηi(k+1) = η(âik), (4.18)

where âik is the estimated amplitude at the previous time instant which is estimated by using

the state estimate of the kth iteration, θ̂k. The minimization problem now becomes a variational

minimization problem

min
η(·)

tr
(
D22,b

k (η(·))
)
. (4.19)

This is still a difficult problem as the objective function depends on the target’s true state θk+1

which is an unknown. Therefore, we use the heuristic approach used before for the location

estimation problem in Sec. 4.3.1 to design the quantizers. This gives the threshold value as

ηi(k+1) = η(âik) = âik which means that the threshold of the ith sensor at time (k + 1) is the

estimated amplitude at this sensor at the previous time instant k. This previous time instant’s state

estimate θ̂k, is needed to estimate the amplitude, which is broadcast by the FC to the local sensors.

The analysis when there are Byzantines in the network is similar to the game-theoretic problem

discussed in Sec. 4.3.2. This problem consists of two players and can be modeled as a zero-sum

game. The two players, the FC and the Byzantines, have opposing objectives where the objective of

the FC is to maximize the posterior Fisher InformationG[ηH(·), ηB(·)] whereas the objective of the

Byzantine sensors is to minimize G[ηH(·), ηB(·)]. This problem has been solved in Sec. 4.3.2 by
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examining the expression of G. When sensors behave independently, the Fisher information (FI)

given by (4.14) is maximized when honest sensors set their thresholds as ηH(â) = â regardless of

the value of ηB. For αp ≤ 1
2
, the Byzantines, who try to minimize this posterior FI, achieve the

minimization similarly by setting ηB(â) = â regardless of the value of ηH . This result is expected

as the Byzantines flip their observations with a probability p. Observe that if the Byzantines use

this thresholding scheme, the probability of a Byzantine sending a ‘1’ is

P (u = 1|a,Byzantine) = p

(
1−Q

(
ηB(â)− a

σ

))
+ (1− p)Q

(
ηB(â)− a

σ

)
(4.20)

which becomes 1
2
, when ηB(â) ≈ a, irrespective of the value of p. Also, since ηH(â) ≈ a, it

implies that the honest sensors also send 0/1 with probability approximately equal to 1
2
.

Simulation Results

We present simulation results to show the effectiveness of our proposed dynamic non-identical

threshold scheme in the presence of Byzantines for the target tracking problem. Consider a network

of N sensors deployed in a grid over a 200 m × 200 m area. The sensor density, defined as the

number of sensors per unit area, is denoted by ρ. The target is assumed to emit power P0 = 25000

and the local observations at the sensors are assumed to be corrupted by AWGN with zero mean

and variance σ2 = 1. The target state dynamics is modeled as follows: the initial state distribution

is assumed to be Gaussian with mean µ0 = [−80 −80 2 2]T and covariance Σ0 = diag[102 102

.52 .52], the target motion model is assumed to be a near constant velocity model and the process

noise parameter is q = 0.16. The total observation time duration is 60s and it is assumed that

the observations are made every T = 1s. For particle filtering, we use Np = 1000 particles. As

we have shown that the optimal strategy for the Byzantines is to flip their local observations with

probability ‘1’ for which the αblind = 0.5, we consider the case when the fraction of Byzantines

α ≤ 0.5.

The identical threshold scheme uses constant thresholds ηik = 1.7 for i = 1, · · · , N and
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Fig. 4.5: Example of tracking using the two schemes when α = 0.1

k = 1, · · · , 60 which is the optimal static threshold designed in [101]. The dynamic non-identical

threshold scheme follows the update mechanism proposed in this section. Figs. 4.5 and 4.6 show

the improvement in tracking performance when the non-identical threshold scheme is used instead

of the identical threshold scheme. For α = 0.1, Fig. 4.5 shows the estimated tracks and the true

track for a particular realization. It can be observed that the estimation error for both the identical

and non-identical threshold schemes is not very different. However, when α = 0.3, as seen from

Fig. 4.6, the error is significantly reduced when the non-identical threshold scheme is used over

the identical threshold scheme.

We now compare the average performance of both the schemes characterized by the average

root mean square error (RMSE) over 100 Monte-Carlo runs. Fig. 4.7 shows this comparison of the

two schemes for two different values of N : N = 36 (ρ = 9×10−4) and N = 100 (ρ = 25×10−4).

As Fig. 4.7 shows, the proposed scheme performs better and it is more robust than the identical

threshold scheme in the presence of Byzantines. However, note that both the schemes have the

same performance when α = αblind = 0.5, since α = 0.5 means that the FC is blind to sensor data.

So far, two schemes have been presented to mitigate the effect of Byzantines in the network.
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Fig. 4.6: Example of tracking using the two schemes when α = 0.3

While the first scheme is passive and only learns the Byzantines’ identity over time, the second

scheme changes the system and uses a dynamic non-identical threshold scheme. However, both

the schemes still use maximum likelihood or MMSE based optimal estimators. The third scheme

proposed next, changes this approach and proposes a sub-optimal but easy to implement localiza-

tion scheme which could be extended to include the tracking problem but is not included in this

thesis. This scheme works on the idea that classification is easier than estimation and therefore, for-

mulates the localization problem as hierarchical classification using error-correcting codes. First,

the scheme is designed in the absence of any Byzantines and then the scheme is analyzed in the

presence of such malicious sensors and/or imperfect channels. Note that a major change is the

transition from a Bayesian framework using MMSE based estimator to the framework that uses a

sub-optimal estimator.
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4.4 Localization as Hierarchical Classification

In this section, a localization scheme is proposed which is based on hierarchical classification. The

algorithm is iterative in which at every iteration, an M -ary hypothesis test is performed at the FC

and accordingly the ROI is split into M regions. The FC, through feedback, declares this region

as the ROI for the next iteration. The M -ary hypothesis test solves a classification problem where

each sensor sends binary quantized data based on a code matrix C. The code matrix is of size

M × N with elements c(j+1)i ∈ {0, 1}, j = 0, 1, · · · ,M − 1 and i = 1, · · · , N , where each

row represents a possible region and each column i represents ith sensor’s binary decision rule.

After receiving the binary decisions u = [u1, u2, · · · , uN ] from local sensors, the FC performs

minimum Hamming distance based fusion. In this way, the search space for target location is

reduced at every iteration and the search is stopped based on a pre-determined stopping criterion.

The optimal splitting of the ROI at every iteration depends on the topology of the network and the

distribution of sensors in the network. For a given network topology, the optimal region split can

be determined offline using k-means clustering [18] which yields Voronoi regions [12] containing



69

equal number of sensors in every region. For instance, when the sensors are deployed in a uniform

grid, the optimal splitting is uniform as shown in Fig. 4.8. In the remainder of the chapter, we

consider a symmetric sensor deployment such as a grid. Such a deployment results in a one-to-

one correspondence between sensors across regions which is required in our derivations. Further

discussion is provided in the later part of this section. In this section, the sensors are assumed to be

benign and the channels between the local sensors and the FC are assumed to be ideal. Therefore,

in this section, the binary decisions received at the FC are the same as the binary decisions made by

the local sensors, i.e., ui = Di, for i = 1, · · · , N where Di is defined in (3.3). These assumptions

are relaxed in the later sections. The FC estimates the target location using the received data u.
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Fig. 4.8: Equal region splitting of the ROI for localization as a 4-hypothesis test

4.4.1 Basic Coding Based Scheme

In this subsection, the basic coding based scheme is presented for target localization. Since there

are N sensors which are split into M regions, the number of sensors in the new ROI after every

iteration is reduced by a factor of M . After k iterations, the number of sensors in the ROI are N
Mk

and therefore, the code matrix at the (k+ 1)th iteration would be of size M × N
Mk .1 Since the code

matrix should always have more columns than rows, kstop < logM N , where kstop is the number of
1It is assumed that N is divisible by Mk for k = 0, 1, . . . , logM N − 1.
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iterations after which the scheme terminates. After kstop iterations, there are only N

Mkstop
sensors

present in the ROI and a coarse estimate θ̂ = [θ̂x, θ̂y] of the target’s location can be obtained by

taking an average of locations of the N

Mkstop
sensors present in the ROI:

θ̂x =
Mkstop

N

∑
i∈ROIkstop

xi (4.21)

and θ̂y =
Mkstop

N

∑
i∈ROIkstop

yi, (4.22)

where ROIkstop is the ROI at the last step.

Since the scheme is iterative, the code matrix needs to be designed at every iteration. Observing

the structure of the problem, the code matrix can be designed in a simple and efficient way as

described below. As pointed out before, the size of the code matrix Ck at the (k + 1)th iteration is

M × N
Mk , where 0 ≤ k ≤ kstop. Each row of this code matrix Ck represents a possible hypothesis

described by a region in the ROI. Let Rk
j denote the region represented by the hypothesis Hj for

j = 0, 1, · · · ,M − 1 and let Skj represent the set of sensors that lie in the region Rk
j . Also, for

every sensor i, there is a unique corresponding region in which the sensor lies and the hypothesis

of the region is represented as rk(i). It is easy to see that Skj = {i ∈ ROIk|rk(i) = j}. The code

matrix is designed in such a way that for the jth row, only those sensors that are in Rk
j have a ‘1’

as their elements in the code matrix. In other words, the elements of the code matrix are given by

ck(j+1)i =


1 if i ∈ Skj

0 otherwise
, (4.23)

for j = 0, 1, · · · ,M − 1 and i ∈ ROIk.

The above construction can also be viewed as each sensor i using a threshold ηki for quantization

(as described in (3.3)). Let each region Rk
j correspond to a location θkj for j = 0, 1, · · · ,M − 1,

which in our case is the center of the region Rk
j . Each sensor i decides on a ‘1’ if and only if

the target lies in the region Rk
rk(i)

. Every sensor i, therefore, performs a binary hypothesis test
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described as follows:

H1 : θk ∈ Rk
rk(i)

H0 : θk /∈ Rk
rk(i)

. (4.24)

If di,θkj represents the Euclidean distance between the ith sensor and θkj for i = 1, 2, · · · , N

and j = 0, 1, · · · ,M − 1, then rk(i) = arg min
l

di,θkl . Therefore, the condition θk ∈ Rk
rk(i)

can be

abstracted as a threshold ηki on the local sensor signal amplitude given by

ηki =

√
P0

di,θk
rk(i)

. (4.25)

This ensures that if the signal amplitude at the ith sensor is above the threshold ηki , then θk lies in

region Rk
rk(i)

leading to minimum distance decoding.

4.4.2 Performance Analysis

In this subsection, the performance of the proposed scheme is analyzed. An analytically tractable

metric to analyze the performance of the proposed scheme is the probability of detection of the

target region. It is an important metric when the final goal of the target localization task is to

find the approximate region or neighborhood where the target lies rather than the true location

itself. Since the final ROI could be one of the M regions, a metric of interest is the probability of

‘zooming’ into the correct region. In other words, it is the probability that the true location and the

estimated location lie in the same region.

The final region of the estimated target location is the same as the true target location, if and

only if we ‘zoom’ into the correct region at every iteration of the proposed scheme. If P k
d denotes

the detection probability at the (k + 1)th iteration, the overall detection probability is given by

PD =
kstop∏
k=0

P k
d . (4.26)
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Exact Analysis

Let us consider the (k+1)th iteration and define the received vector at the FC asuk = [uk1, u
k
2, · · · , ukNk ],

where Nk are the number of local sensors reporting their data to FC at (k + 1)th iteration. Let Dkj

be the decision region of jth hypothesis defined as follows:

Dkj = {uk|dH(uk, ckj+1) ≤ dH(uk, ckl+1) for 0 ≤ l ≤M − 1},

where dH(·, ·) is the Hamming distance between two vectors, and ckj+1 is the codeword correspond-

ing to hypothesis j in code matrix Ck. Then define the reward rj,kuk associated with the hypothesis

j as

rj,kuk =


1

quk
when uk ∈ Dkj

0 otherwise
, (4.27)

where quk is the number of decision regions to whom uk belongs to. Note that quk can be greater

than one when there is a tie at the FC. Since the tie-breaking rule is to choose one of them randomly,

the reward is given by (4.27). According to (4.27), the detection probability at the (k+1)th iteration

is given by

P k
d =

M−1∑
j=0

P (Hk
j )

∑
uk∈{0,1}Nk

P (uk|Hk
j )rj,kuk

=
1

M

M−1∑
j=0

∑
uk∈Dkj

(
Nk∏
i=1

P (uki |Hk
j )

)
1

quk
, (4.28)

where P (uki |Hk
j ) denotes the probability that the sensor i sends the bit uki ∈ {0, 1}, i = 1, 2, · · · , Nk,

when the true target is in the region Rk
j corresponding to Hk

j at the (k + 1)th iteration.

From the system model described before,

P (uki = 1|Hk
j ) = Eθ|Hk

j

[
P (uki = 1|θ,Hk

j )
]
. (4.29)
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Since (4.29) is complicated, it can be approximated using θkj which is the center of the region Rk
j .

(4.29) now simplifies to

P (uki = 1|Hk
j ) ≈ Q

(
ηki − akij

σ

)
, (4.30)

where ηki is the threshold used by the ith sensor at kth iteration, σ2 is the noise variance, akij is the

signal amplitude received at the ith sensor when the target is at θkj and Q(x) is the complementary

cumulative distribution function of standard Gaussian and is given by

Q(x) =
1√
2π

∫ ∞
x

e(−t2/2)dt. (4.31)

Using (4.26), the probability of detection of the target region can be found as the product of

detection probabilities at every iteration k. It is clear from the derived expressions that the exact

analysis of the detection probability is complicated and, therefore, some analytical bounds are

derived on the performance of the proposed scheme.

Performance Bounds

In this section, performance bounds on the proposed coding based localization scheme are pre-

sented. For the analysis, the lemmas in [170] will be used, which are stated here for the sake of

completeness.

Lemma 4.4.1 ( [170]). Let {Zj}∞j=1 be independent antipodal random variables with Pr[Zj =

1] = qj and Pr[Zj = −1] = 1− qj . If λm , E[Z1 + · · ·+ Zm]/m < 0, then

Pr{Z1 + · · ·+ Zm ≥ 0} ≤ (1− λ2
m)m/2. (4.32)

Using this lemma, the performance bounds on our proposed scheme are presented.

Lemma 4.4.2. Let θ ∈ Rk
j be the fixed target location. Let P k

e (θ) be the error probability of

detection of the target region given θ at the (k + 1)th iteration. For the received vector of Nk =

N/Mk observations at the (k + 1)th iteration, uk = [uk1, · · · , ukNk ], assume that for every 0 ≤
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j, l ≤M − 1 and l 6= j, ∑
i∈Skj ∪Skl

qki,j <
Nk

M
=

N

Mk+1
, (4.33)

where qki,j = P{zki,j = 1|θ}, zki,j = 2(uki ⊕ ck(j+1)i)− 1, and Ck = {ck(j+1)i} is the code matrix used

at the (k + 1)th iteration. Then

P k
e (θ) ≤

∑
0≤l≤M−1,l 6=j

1−

(∑
i∈Skj ∪Skl

(2qki,j − 1)
)2

d2
m,k


dm,k/2

(4.34)

≤ (M − 1)
(

1−
(
λkj,max(θ)

)2
)dm,k/2

, (4.35)

where dm,k is the minimum Hamming distance of the code matrix Ck given by dm,k = 2N
Mk+1 due to

the structure of our code matrix and

λkj,max(θ) , max
0≤l≤M−1,l 6=j

1

dm,k

∑
i∈Skj ∪Skl

(2qki,j − 1). (4.36)

Proof. The proof is provided in Appendix A.3.

The probabilities qki,j = P{uki 6= ck(j+1)i|θ} can be easily computed as below. For 0 ≤ j ≤

M − 1 and 1 ≤ i ≤ Nk, if i ∈ Skj ,

qki,j = P{uki = 0|θ}

= 1−Q
(

(ηki − ai)
σ

)
, (4.37)

where ηki is the threshold used by the ith sensor at (k + 1)th iteration, σ2 is the noise variance,

ai is the amplitude received at the ith sensor given by (3.1) when the target is at θ. If i /∈ Skj ,

qki,j = 1− P{uki = 0|θ}.

Before we present our main theorem, for ease of analysis, we give an assumption that will be

used in the theorem. Note that, our proposed scheme can still be applied to those WSNs where the
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assumption does not hold.

Assumption 4.4.3. For any target location θ ∈ Rk
j and any 0 ≤ k ≤ kstop, there exists a bijection

function f from Skj to Skl , where 0 ≤ l ≤M − 1 and l 6= j, such that

f(ij) = il,

ηkij = ηkil ,

and

dij < dil ,

where ij ∈ Skj , il ∈ Skl , and dij (dil) is the distance between θ and sensor ij (il).

One example of WSNs that satisfies this assumption is given in Fig. 4.9. For every sensor

ij ∈ Skj , due to the symmetric region splitting, there exists a corresponding sensor il ∈ Skl which is

symmetrically located as described in the following: Join the centers of the two regions and draw

a perpendicular bisector to this line as shown in Fig. 4.9. The sensor il ∈ Skl is the sensor located

symmetrically to sensor ij on the other side of the line L. These are the sensors for which the

thresholds are the same. In other words, due to the symmetric placement of the sensors, ηkij = ηkil .

Clearly, when θ ∈ Rk
j , dij < dil .

Theorem 4.4.4. Let PD be the probability of detection of the target region given by (4.26), where

P k
d is the detection probability at the (k + 1)th iteration. Under Assumption 4.4.3,

P k
d ≥ 1− (M − 1)

(
1− (λkmax)

2
)dm,k/2 , (4.38)

where

λkmax , max
0≤j≤M−1

λkj,max

and

λkj,max , max
θ∈Rkj

λkj,max(θ).
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Fig. 4.9: ROI with an example set of paired sensors

Proof. The proof is provided in Appendix A.4.

Next the asymptotic performance of the scheme is analyzed, i.e., PD is examined for the case

when N approaches infinity.

Theorem 4.4.5. Under Assumption (4.4.3), lim
N→∞

PD = 1.

Proof. Note that

λkj,max = max
0≤l≤M−1,l 6=j

1

dm,k

∑
i∈Skj ∪Skl

(2qki,j − 1) >
Mk+1

2N

∑
i∈Skj ∪Skl

(−1) = −1

for all 0 ≤ j ≤ M − 1 since not all qki,j = 0. Hence, by definition, λkmax is also greater than −1.

Since−1 < λkmax < 0, 0 < 1−(λkmax)
2 < 1. Under the assumption that the number of iterations are

finite, for a fixed number of regions M , the performance of the proposed scheme can be analyzed

under asymptotic regime. Under this assumption, dm,k = 2N
Mk+1 grows linearly with the number of
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sensors N for 0 ≤ k ≤ kstop. Then

lim
N→∞

PD = lim
N→∞

kstop∏
k=0

P k
d

≥
kstop∏
k=0

lim
N→∞

[
(1− (M − 1)(1− (λkmax)

2)dm,k/2
]

=
kstop∏
k=0

(1− (M − 1) lim
N→∞

[
(1− (λkmax)

2)dm,k/2
]

=
kstop∏
k=0

[1− (M − 1)0]

=
kstop∏
k=0

1 = 1.

Hence, the overall detection probability becomes ‘1’ as the number of sensors N goes to infinity.

This shows that the proposed scheme asymptotically attains perfect region detection probability

irrespective of the value of finite noise variance.

4.4.3 Numerical Results

Some numerical results are now presented which justify the analytical results presented in the pre-

vious subsection and provide some insights. In the previous subsection, it was observed that the

performance of the basic coding scheme quantified by the probability of region detection asymp-

totically approaches ‘1’ irrespective of the finite noise variance. Fig. 4.10 shows that the region

detection probability increases as the number of sensors approaches infinity. Observe that for a

fixed noise variance, the region detection probability increases with increase in the number of sen-

sors. Also, for a fixed number of sensors, the region detection probability decreases with σ when

the number of sensors are low. But when the number of sensors is large, the reduction in region de-

tection probability with σ is negligible and as N →∞, the region detection probability converges

to 1.
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Fig. 4.10: Region detection probability versus the standard deviation of noise with varying number
of sensors

4.5 Localization in the Presence of Byzantines

Now consider the case when there are Byzantines in the network. As discussed before, Byzantines

are local sensors which send false information to the FC to deteriorate the network’s performance.

Assume the presence of B = αN number of Byzantines in the network. Here, the Byzantines are

assumed to attack the network independently where the Byzantines flip their data with probability

‘1’ before sending it to the FC.2 In other words, the data sent by the ith sensor is given by:

ui =


Di if ith sensor is honest

D̄i if ith sensor is Byzantine
. (4.39)

For such a system, it has been shown in the previous chapter that the FC becomes blind to

network’s information for α ≥ 0.5. Therefore, for the remainder of this chapter, the system is

analyzed when α < 0.5. For the basic coding scheme described in Sec. 4.4.1, each column in Ck

contains only one ‘1’ and every row of Ck contains exactly N
Mk+1 ‘1’s. Therefore, the minimum

Hamming distance of Ck is 2N
Mk+1 and, at the (k + 1)th iteration, it can tolerate a total of at most

2It has been shown in the previous chapter that the optimal independent attack strategy for the Byzantines is to flip
their data with probability ‘1’.
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N
Mk+1 − 1 faults (data falsification attacks) due to the presence of Byzantines in the network. This

value is not very high and the basic scheme is now extended to a scheme which can handle more

Byzantine faults.

4.5.1 Exclusion Method with Weighted Average

As shown above, the scheme proposed in Sec. 4.4.1 has a Byzantine fault tolerance capability

which is not very high. The performance can be improved by using an exclusion method for

decoding where the best two regions are kept for the next iteration and using weighted average

to estimate the target location at the final step. This scheme builds on the basic coding scheme

proposed in Sec. 4.4.1 with the following modifications:

• Since after every iteration two regions are kept, the code matrix after the kth iteration is of

size M × 2kN
Mk and the number of iterations needed to stop the localization task needs to

satisfy kstop < logM/2N .

• At the final step, instead of taking an average of the sensor locations of the sensors present

in the ROI at the final step, we take a weighted average of the sensor locations where the

weights are the 1-bit decisions sent by these sensors. Since, a decision ui = 1 implies that

the target is closer to sensor i, a weighted average ensures that the average is taken only over

the sensors for which the target is reported to be close.

Therefore, the target location estimate is given by

θ̂x =

∑
i∈ROIkstop

uixi∑
i∈ROIkstop

ui
(4.40)

and θ̂y =

∑
i∈ROIkstop

uiyi∑
i∈ROIkstop

ui
. (4.41)

The exclusion method results in a better performance compared to the basic coding scheme

since it keeps the two best regions after every iteration. This observation is also evident in the

numerical results presented in Sec. 4.5.3.
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4.5.2 Performance Analysis

Byzantine Fault Tolerance Capability

When the exclusion method based scheme described in Sec. 4.5.1 is used, since the two best

regions are considered after every iteration, the fault tolerance performance improves and a total

of at most 2k+1N
Mk+1 − 1 faults can be tolerated. This improvement in the fault tolerance capability can

be observed in the simulation results presented in Sec. 4.5.3.

Proposition 4.5.1. The maximum fraction of Byzantines that can be handled at the (k + 1)th

iteration by the proposed exclusion method based coding scheme is limited by αkf = 2
M
− Mk

2kN
.

Proof. The proof is straight forward and follows from the fact that the error correcting capability

of the code matrix Ck at (k + 1)th iteration is at most 2k+1N
Mk+1 − 1. Since there are 2kN

Mk sensors

present during this iteration, the fraction of Byzantine sensors that can be handled is given by

αkf = 2
M
− Mk

2kN
.

The performance bounds on the basic coding scheme presented in Sec. 4.4.2 can be extended

to the exclusion based coding scheme presented in Sec. 4.5.1. When there are Byzantines in the

network, the probabilities qki,j of (4.37) become

qki,j = 1−
[
(1− α)Q

(
(ηki − ai)

σ

)
+ α

(
1−Q

(
(ηki − ai)

σ

))]
. (4.42)

It was shown in Sec. 4.4.2 that the detection probability at every iteration approaches ‘1’ as the

number of sensors N goes to infinity. However, this result only holds when the condition in (4.33)

is satisfied. Notice that, in the presence of Byzantines,

qki,j =


(1− α)

(
1−Q

(
(ηki −ai)

σ

))
+ αQ

(
(ηki −ai)

σ

)
, for i ∈ Skj

(1− α)Q
(

(ηki −ai)
σ

)
+ α

(
1−Q

(
(ηki −ai)

σ

))
, for i ∈ Skl

, (4.43)

which can be simplified as
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qki,j =


(1− α)− (1− 2α)Q

(
(ηki −ai)

σ

)
, for i ∈ Skj

α + (1− 2α)Q
(

(ηki −ai)
σ

)
, for i ∈ Skl

. (4.44)

Now using the pairwise sum approach discussed in Sec. 4.4.2, (A.17) can be re-written as follows:

qkij ,j + qkil,j = 1− (1− 2α)

[
Q

(
(η − aij)

σ

)
−Q

(
(η − ail)

σ

)]
, (4.45)

which is an increasing function of α since Q
(

(η−aij )

σ

)
> Q

(
(η−ail )

σ

)
for all finite σ as discussed

before. Therefore, when α < 0.5, the pairwise sum in (4.45) is strictly less than 1 and the condition

(4.33) is satisfied. However, when α ≥ 0.5,
∑

i∈Skj ∪Skl
qki,j ≥ Nk

M
. Therefore, the condition fails

when α ≥ 0.5. It has been shown in the previous chapter that the FC becomes blind to the local

sensor’s information when α ≥ 0.5. Next, we state the theorem when there are Byzantines in the

network.

Theorem 4.5.2. Let α be the fraction of Byzantines in the networks. Under Assumption (4.4.3),

when α < 0.5, lim
N→∞

PD = 1.

Note that the performance bounds derived can be used for system design. Let us consider N

sensors uniformly deployed in a square region. Let this region be split into M equal regions. From

Prop. 4.5.1, we know that αkf is a function of M and N . Also, the detection probability equa-

tions and bounds derived in Sec. 4.4.2 are functions of M and N . Hence, for given fault tolerance

capability and region detection probability requirements, one can find the corresponding number

of sensors (Nreq) to be used and the number of regions to be considered at each iteration (Mreq).

Some guidelines for system design of a network which adopts the proposed approach are presented

in the following. Suppose that a system is to be designed that splits into M = 4 regions after every

iteration. How should a system designer decide the number of sensors N in order to meet the tar-

get region detection probability and Byzantine fault tolerance capability requirements? Table 4.2

shows the performance of the system in terms of the target region detection probability and Byzan-

tine fault tolerance capability with varying number of sensors found using the expressions derived
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in Prop. 4.5.1 and in Sec. 4.4.2.

Table 4.2: Target region detection probability and Byzantine fault tolerance capability with varying
N (M = 4)

N Target Region Detection probability Byzantine fault tolerance capability
32 0.4253 0.4688
128 0.6817 0.4844
512 0.6994 0.4922

From Table 4.2, it can be observed that the performance improves with increasing number of

sensors. However, as a system designer, one would like to minimize the number of sensors that

need to be deployed while assuring a minimum performance guarantee. In this example, if one is

interested in achieving a region detection probability of approximately 0.7 and a Byzantine fault

tolerance capability close to 0.5, N = 512 sensors are sufficient.

4.5.3 Simulation Results

In this section, some simulation results are presented to evaluate the performance of the proposed

schemes in the presence of Byzantine faults. The performance is analyzed using two performance

metrics: mean square error (MSE) of the estimated location and probability of detection (PD) of

the target region. A network of N = 512 sensors are deployed in a regular 8 × 8 grid as shown

in Fig. 4.8. Let α denote the fraction of Byzantines in the network that are randomly distributed

over the network. The received signal amplitude at the local sensors is corrupted by AWGN noise

with noise standard deviation σ = 3. The power at the reference distance is P0 = 200. At every

iteration, the ROI is split into M = 4 equal regions as shown in Fig. 4.8. We stop the iterations

for the basic coding scheme after kstop = 2 iterations. The number of sensors in the ROI at the

final step are therefore, 32. In order to have a fair comparison, we stop the exclusion method after

kstop = 4 iterations, so that there are again 32 sensors in the ROI at the final step.

Fig. 4.11 shows the performance of the proposed schemes in terms of the MSE of the estimated

target location when compared with the traditional maximum likelihood estimation [101]. The
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MSE has been found by performing 1×103 Monte Carlo runs with the true target location randomly

chosen in the 8× 8 grid.
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Fig. 4.11: MSE comparison of the three localization schemes: Basic coding scheme, Coding with
exclusion, and ML-based localization

As can be seen from Fig. 4.11, the performance of the exclusion method based coding scheme

is better than the basic coding scheme and outperforms the traditional MLE based scheme when

α ≤ 0.375. When α > 0.375, the traditional MLE based scheme has the best performance.

However, it is important to note that the proposed schemes provide a coarse estimate as against

the traditional MLE based scheme which optimizes over the entire ROI. Also, the traditional

scheme is computationally much more expensive than the proposed coding based schemes. In

the simulations performed, the proposed schemes are around 150 times faster than the conven-

tional scheme when the global optimization toolbox in MATLAB was used for the optimization

in the ML based scheme. The computation time is very important in a scenario when the target is

moving and a coarse location estimate is needed in a timely manner.

Fig. 4.12 shows the performance of the proposed schemes in terms of the detection probability

of the target region. The detection probability has been found by performing 1× 104 Monte Carlo

runs with the true target randomly chosen in the ROI. Fig. 4.12 shows the reduction in the detection

probability with an increase in α when more sensors are Byzantines sending false information to

the FC.
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Fig. 4.12: Probability of detection of target region as a function of α

In order to analyze the effect of the number of sensors on the performance, simulations were

performed by changing the number of sensors and keeping the number of iterations the same as

before. According to Prop. 4.5.1, when M = 4, the proposed scheme can asymptotically handle

up to 50% of the sensors being Byzantines. Figs. 4.13 and 4.14 show the effect of the number

of sensors on MSE and detection probability of the target region respectively when the exclusion

method based coding scheme is used. As can be seen from both figures (Figs. 4.13 and 4.14),

the fault-tolerance capability of the proposed scheme improves with an increase in the number of

sensors and approaches αkf = 0.5 asymptotically.
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Fig. 4.13: MSE of the target location estimate with varying N
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Fig. 4.14: Probability of detection of target region with varying N

4.6 Soft-Decision Decoding for Non-Ideal Channels

While Byzantines have been considered in the previous section, another practical cause of unre-

liability in the observations is the presence of imperfect channels. In this section, the scheme is

extended to counter the effect of non-ideal channels on system performance. Besides the faults due

to the Byzantines in the network, the presence of non-ideal channels further degrades the localiza-

tion performance. To combat the channel effects, a soft-decision decoding rule is used at every

iteration, instead of the minimum Hamming distance decoding rule.

4.6.1 Decoding Rule

At each iteration, the local sensors transmit their local decisions uk which are possibly corrupted

due to the presence of Byzantines. Let the received analog data at the FC be represented as

vk = [vk1 , v
k
2 , · · · , vkNk ], where the received observations are related to the transmitted decisions

as follows:

vki = hki (−1)u
k
i

√
Eb + nki , ∀i = {1, · · · , Nk}, (4.46)

where hki is the fading channel coefficient, Eb is the energy per channel bit and nki is the additive

white Gaussian noise with variance σ2
f . Here, the channel coefficients are assumed to be Rayleigh
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distributed with variance σ2
h.

The FC is assumed to have no knowledge of the fraction of Byzantines α. Hence, instead

of adopting the reliability measure given in (2.2), a simpler reliability measure ψki is used in our

decoding rule that is not related to local decisions of sensors. It will be shown that this reliability

measure captures the effect of imperfect channels reasonably well when there are Byzantines in

the network. The reliability for each of the received bits is defined as follows:

ψki = ln
P (vki |uki = 0)

P (vki |uki = 1)
(4.47)

for i = {1, · · · , N}. Here P (vki |uki ) can be obtained from the statistical model of the Rayleigh

fading channel considered here. Define F -distance as

dF (ψk, ckj+1) =

Nk∑
i=1

(ψki − (−1)c
k
(j+1)i)2,

where ψk = [ψk1 , · · · , ψkNk ] and ckj+1 is the jth row of the code matrix Ck. Then, the fusion rule is

to decide the region Rk
j for which the F -distance between ψk and the row of Ck corresponding to

Rk
j is minimized.

4.6.2 Performance Analysis

In this section, some bounds on the performance of the soft-decision decoding scheme are pre-

sented in terms of the detection probability. Without loss of generality, assume Eb = 1. As

mentioned before in (4.26), the overall detection probability is the product of the probability of

detection at each iteration, P k
d . The following lemma is first presented without proof which is used

to prove the theorem stated later in this section.

Lemma 4.6.1 ( [165]). Let ψ̃ki = ψki − E[ψki |θ], then

E
[
(ψ̃ki )2|θ

]
≤ 8

σ4

{
E[(hki )

4] + E[(hki )
2]σ2

f

}
, (4.48)
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where σ2 is the variance of the noise at the local sensors whose observations follow (3.2).

For the Rayleigh fading channel considered here, both E[(hki )
4] and E[(hki )

2] are bounded and

therefore, the LHS of (4.48) is also bounded.

Lemma 4.6.2. Let θ ∈ Rk
j be the fixed target location. Let P k

e,j(θ) be the error probability of

detection of the target region given θ ∈ Rk
j at the (k + 1)th iteration. For the reliability vector

ψk = [ψk1 , · · · , ψkNk ] of the Nk = N/Mk observations and code matrix Ck used at the (k + 1)th

iteration,

P k
e,j(θ) ≤

∑
0≤l≤M−1,l 6=j

P

 ∑
i∈Skj ∪Skl

Zjl
i ψ̃

k
i < −

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]

∣∣∣∣θ
 , (4.49)

where Zjl
i = 1

2
((−1)c

k
ji − (−1)c

k
li).

Proof.

P k
e,j(θ) = P{detected region 6= Rk

j |θ}

≤ P

{
dF (ψk, ckj+1) ≥ min

0≤l≤M−1,l 6=j
dF (ψk, ckl+1)|θ

}
≤

∑
0≤l≤M−1,l 6=j

P
{
dF (ψk, ckj+1) ≥ dF (ψk, ckl+1)|θ

}
=

∑
0≤l≤M−1,l 6=j

P

{
Nk∑
i=1

(ψki − (−1)c
k
(j+1)i)2 ≥ (ψki − (−1)c

k
(l+1)i)2|θ

}

=
∑

0≤l≤M−1,l 6=j

P

 ∑
i∈Skj ∪Skl

Zjl
i ψ

k
i < 0

∣∣∣∣θ


=
∑

0≤l≤M−1,l 6=j

P

 ∑
i∈Skj ∪Skl

Zjl
i ψ̃

k
i < −

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]

∣∣∣∣θ
 . (4.50)

Let σ2
ψ̃
(θ) =

∑
i∈Skj ∪Skl

E
[
(Zjl

i ψ̃
k
i )2|θ

]
=
∑

i∈Skj ∪Skl
E
[
(ψ̃ki )2|θ

]
, then the above result can be
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re-written as

P k
e,j(θ) ≤

∑
0≤l≤M−1,l 6=j

P

 1

σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i ψ̃

k
i < −

1

σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]

∣∣∣∣θ
 . (4.51)

Under the assumption that for a fixed M , N
Mk+1 → ∞ as N → ∞ for k = 0, · · · , kstop, we

have the following result for asymptotic performance of the proposed soft-decision rule decoding

based scheme.

Theorem 4.6.3. Under Assumption (4.4.3), when α < 0.5,

lim
N→∞

PD = 1.

Proof. The proof is provided in Appendix A.5.

Note that the detection probability of the proposed scheme can approach ‘1’ even for extremely

bad channels with very low channel capacity. This is true because, for fixed M , when N ap-

proaches infinity, the code rate of the code matrix approaches zero. Hence, even for extremely bad

channels, the code rate is still less than the channel capacity.

4.6.3 Numerical Results

In this section, some numerical results are presented which show the improvement in the system

performance when soft-decision decoding rule is used instead of the hard-decision decoding rule in

the presence of Byzantines and non-ideal channels. As defined before, α represents the fraction of

Byzantines and evaluate the performance of the basic coding approach with soft-decision decoding

at the FC. Consider the scenario with following system parameters: N = 512, M = 4, A = 82 =

64 sq. units, P0 = 200, σ = 3, Eb = 1, σf = 3 and E[(hki )
2] = 1 which corresponds to σ2

h = 1− π
4
.

The basic coding approach is stopped after kstop = 2 iterations. Note that in the presence of non-

ideal channels, αblind is less than 0.5 since the non-ideal channels add to the errors at the FC. The

number of Byzantine faults which the network can handle reduces and is now less than 0.5. In the
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simulations, the performance of the schemes deteriorates significantly when α→ 0.4 (as opposed

to 0.5 observed before) and therefore, the results are only plotted for the case when α ≤ 0.4

Fig. 4.15 shows the reduction in mean square error when the soft-decision decoding rule is

used instead of the hard-decision decoding rule. Similarly, Fig. 4.16 shows the improvement in

target region detection probability when using the soft-decision decoding rule. The plots are for

5× 103 Monte-Carlo simulations.
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Fig. 4.15: MSE comparison of the basic coding scheme using soft- and hard- decision decoding
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Fig. 4.16: Probability of detection of target region comparison of the basic coding scheme using
soft- and hard- decision decoding

As the figures suggest, the performance deteriorates in the presence of non-ideal channels.
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Also, the performance worsens with an increase in the number of Byzantines. The performance

can be improved by using the exclusion method based coding approach as discussed in Sec. 4.5 in

which two regions are stored after every iteration. Figs. 4.17 and 4.18 show this improved perfor-

mance as compared to the basic coding approach. Note that the exclusion method based coding

approach also follows the same trend as the basic coding approach with soft-decision decoding

performing better than hard-decision decoding.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

14

Fraction of Byzantines (α)

M
S

E

 

 

Hard decision decoding

Soft decision decoding

Fig. 4.17: MSE comparison of the exclusion coding scheme using soft- and hard- decision decod-
ing
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Fig. 4.18: Probability of detection of target region comparison of the exclusion coding scheme
using soft- and hard- decision decoding

In the theoretical analysis, it was shown that the probability of region detection asymptotically
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approaches ‘1’ irrespective of the finite noise variance. Fig. 4.19 presents this result that the region

detection probability increases as the number of sensors approach infinity. Observe that for a fixed

noise variance, the region detection probability increases with an increase in the number of sensors

and approaches ‘1’ as N → ∞. However, as σf increases, the convergence rate decreases. For

example, when σf = 1.5,N = 4096 is large enough to have a PD value close to 0.85. However, for

σf = 4, N = 4096 results in PD = 0.65 which is not very large. It is expected that PD → 1 only

for much larger number of sensors for σf = 4 and therefore, the convergence rate is less compared

to when σf = 1.5.
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Fig. 4.19: Probability of detection of target region of the exclusive coding scheme using soft-
decision decoding with varying number of sensors

4.7 Discussion

In this chapter, the design of reliable localization and tracking in sensor networks has been explored

when the network consists of some malicious sensors referred to as Byzantines. Based on the re-

sults on the nature of Byzantines derived in Chapter 3, three schemes have been proposed. Each of

these schemes are of increasing complexity and propose more changes in the system mechanisms.

The first scheme deals with identification of the Byzantines by observing the data over time. It

was shown that the proposed scheme works well and identifies most of the Byzantines. In order
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to improve the performance further, the second scheme moves from the traditional static identical

thresholds at the local sensors to dynamic non-identical thresholds. By doing so, one can improve

the system performance while also making the Byzantines ineffective in their attack strategy. Both

these schemes deal with maximum likelihood type (MMSE) optimal estimators at the FC. The

third scheme proposed a sub-optimal but simple and effective estimator at the FC that is based on

coding scheme. This scheme is shown to be computationally more efficient while also making it

robust to Byzantine attacks due to the use of error-correcting codes. Asymptotic optimality of the

scheme is proved using large-deviation techniques.



93

CHAPTER 5

ESTIMATION IN HUMAN NETWORKS:

UNRELIABLE LOCAL AGENTS

5.1 Introduction

In the previous chapters, inference in sensor networks has been considered. The effect of unre-

liable sensors on inference in the network was analyzed in Chapter 3 and schemes to mitigate

their effect and ensure reliable inference at the FC were discussed in Chapter 4. In the following

chapters (Chapters 5–7), human networks are considered and a similar approach is followed. In

this chapter, the effect of unreliable local humans is considered. When all the agents in the net-

work are humans, we have the human networks such as team decision making systems typically

seen in large organizations such as firms. For example, consider the problem faced by the chief

executive officer (CEO) of a firm with a large portfolio of projects that each have an underlying

probability of success. Each of the subordinates will have noisy beliefs about the risks facing the

projects. The CEO has cognitive constraints that limit the information rate he/she can receive from

the subordinates, requiring subordinates to partition risks into quantal grades like A, B, C, and D,

before conveying them. Such quantized grading is typical in businesses with complex information

technology projects [115]. Upon receiving information from the subordinate agents, the CEO es-
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timates the underlying success probability to minimize mean squared error (Brier score [110]) in

estimating risk before taking action.

This is, of course, a version of the classical problem in multiterminal source coding called the

CEO problem, but for a source that has not been considered in the literature. The source considered

here is a non-regular source distribution and is defined as follows: an i.i.d. source sequence X(t),

which follows a probability density function (pdf) fX(x) with finite support X , is considered to be

non-regular if
∂fX(x)

∂x
or
∂2fX(x)

∂x2

either does not exist or is not absolutely integrable. The CEO problem was first introduced by

Berger, Zhang, and Viswanathan [17], where they considered the source of interest to be a dis-

crete data source sequence and studied the asymptotic behavior of the minimal error probabil-

ity in the limit as the number of agents and the sum rate tend to infinity. It was later extended

to the case when the source sequence of interest is continuous and distributed as Gaussian and

a quadratic distortion measure is used as the performance measure [162]. Oohama studied the

sum rate distortion function of the quadratic Gaussian CEO problem and determined the com-

plete solution to the problem [102]; the full rate-distortion region was then found independently

by Oohama [103] and Prabhakaran, et al. [109]. Several extensions to this problem have been

studied [35, 36, 52, 133, 138, 164, 169]. However, most of these extensions continue to deal with

the quadratic Gaussian setting. Viswanath formulated a similar multiterminal Gaussian source

coding problem and characterized the sum rate distortion function for a class of quadratic distor-

tion metrics [161]. In [35, 138], the authors consider the vector Gaussian case and study the sum

rate for the vector Gaussian CEO problem. The related problem of determining the rate region

for the quadratic Gaussian two-encoder source coding problem was solved by Wagner, Tavildar,

and Viswanath [164]. Chen, et al. determined bounds on the rate region for the CEO problem

with general source distributions [36]. Eswaran and Gastpar considered the CEO problem where

the source is non-Gaussian but observations are still made through an additive white Gaussian

noise (AWGN) channel [52]. The above problem of belief sharing in organizations is also closely
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connected to studies of communicating probability values [60, 79, 118, 148, 149]. Contrary to

typical work in distributed source coding for inference [57] that is concerned with compressing

agents’ measurements, optimal quantization of prior probabilities for Bayesian hypothesis testing

was studied in [148]. This was extended to the case of collaborative decision making in parallel

fusion settings [118], very much like the CEO problem herein but in non-asymptotic regimes. Such

a problem arises in several statistical signal processing, economics, and political science settings

such as human affairs, where juries or committees need to have a common preference between two

given alternatives.

Although, the problem is motivated by the perspective of inference by humans, such situations

may be faced even in the case of sensors. In sensor network settings where sensors see a phe-

nomenon through Gaussian noise but produce censored data due to hardware limitations of the

measuring device, observations might follow truncated Gaussian with bounded support. Censored

sensor data renders celebrated information-theoretic results for Gaussian observations invalid. The

results in this chapter hold under such scenarios when the sensor observations follow truncated

Gaussian distribution, a non-regular distribution.

The remainder of the chapter is organized as follows: In Sec. 5.2, the mathematical formulation

of the non-regular CEO problem is described and the main result is stated. The achievability is

proved in Sec. 5.3 using a layered architecture with scalar quantization, distributed entropy coding,

and midrange estimation. The converse is proved in Sec. 5.4 using the Bayesian Chazan-Zakai-Ziv

bound. Concluding remarks are presented in Sec. 5.5.

5.2 Non-Regular CEO Problem

Consider an i.i.d. source sequence of interest {X(t)}∞t=1 drawn from a non-regular probability

density function fX(x) with finite supportX . Without loss of generality, let the source be supported

on [0, 1].1 Several agents (L) make imperfect conditionally independent assessments of {X(t)}∞t=1,

1Note that an extension to a general finite support is straightforward.
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to obtain noisy versions {Yi(t)}∞t=1 for i = 1, . . . , L. The relationship between X(t) and Yi(t) is

governed by a conditional probability density function Wα(yi|x) for all agents, where α is the

coupling parameter. This coupling parameter represents the strength of the dependence between

the source X(t) and the observations Yi(t). The agents separately compress their observations.

The CEO is interested in estimating X(t) such that the mean squared error (MSE) between the

n-block source Xn = [X(1), . . . , X(n)] and its estimate X̂n = [X̂(1), . . . , X̂(n)] is minimized.

Let the source code Cni of rate Rn
i = (1/n) log |Cni | represent the coding scheme used by agent

i to encode a block of length n of observed data {yi(t)}∞t=1. The CEO’s estimate is given as

X̂n = φnL(Cn
1 , . . . , C

n
L) where φnL : Cn

1 × · · · × Cn
L is the CEO’s mapping. A specific achievability

scheme for an example system, Fig. 5.1 shown in the sequel, illustrates the basic system structure.

We are interested in the tradeoff between the sum rate R =
∑L

i=1 R
n
i and the MSE at the CEO,

Dn(Xn, X̂n), defined as:

Dn(Xn, X̂n) ,
1

n

n∑
t=1

(X(t)− X̂(t)))2. (5.1)

For a fixed set of codes, the MSE corresponding to the best estimator at the CEO is given by:

Dn(Cn
1 , . . . , C

n
L) , min

φnL

Dn(Xn, φnL(Cn
1 , . . . , C

n
L)).

Also, define the following quantities:

Dn(L,R) , min
{Cni }:

∑L
i=1R

n
i ≤R

Dn(Cn
1 , . . . , C

n
L), (5.2)

D(L,R) , lim
n→∞

Dn(L,R), (5.3)

and

D(R) , lim
L→∞

D(L,R). (5.4)
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To understand the tradeoff between sum rate and distortion, the following quantity is studied:

β(α) , lim
R→∞

R2D(R).

Let X be the generic random variable representing the source and Yi represent the generic ran-

dom variable representing agent i’s observation whereX and Yi are related through the conditional

pdf Wα(yi|x). The focus is on observation channels which satisfy the following property, when a

forward test channel with an output auxiliary random variable U , is used.

Property 5.2.1. For a given observation channelWα(y|x) betweenX and Y , there exists a random

variable U such that: X , Y , and U form a Markov chain, X → Y → U , and the conditional

distribution of U given X , fU |X(u|x), has bounded support: u ∈ [a(x), b(x)], where (a + b)(x)

is invertible and the inverse function l(·) := (a + b)−1(·) is Lipschitz continuous with Lipschitz

constant K > 0, and further does not vanish at its end points: limu→a(x) or b(x) fU |X(u|x) > 0.

Let the set S(W ) denote the set of random variables U which satisfy the above property for a

given observation channel W . Explicit examples of channels satisfying this property are provided

later in Sec. 5.2.1.

The main result is now stated here; achievability and converse proofs are developed in the

sequel.

Theorem 5.2.2. When conditional density Wα satisfies Property 5.2.1, the following relations

hold:

β(α) ≤ 2K2

δ2

(
min

U∈S(W )
I(Y ;U |X)

)2

(5.5)

and

β(α) ≥
(

min
U :X→Y→U

I(Y ;U |X)
)2
∫ ∞
h=0

h

∫ 1

θ=0

fX(θ)e−hg(θ)dθdh (5.6)

where K, δ > 0 are constants and

g(θ) ,

{
d

d∆
−
[
min
s

log

(∫
W s
α(y|θ)W 1−s

α (y|θ + ∆)dy

)]}
∆=0

(5.7)
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is the first derivative of Chernoff information between the conditional densities Wα of the observa-

tion given x = θ and x = θ+ ∆, evaluated at ∆ = 0. The minimums are taken over all non-trivial

random variables to ensure that the conditional mutual information is non-zero.

Notice from the theorem, since β(α) is a finite constant, it implies that for a non-regular source

distribution, in the limit of large sum rate, the distortion decays as 1/R2. This serves as an interme-

diate regime between the exponential decay of the discrete case [17] and 1/R decay of the quadratic

Gaussian case [162]. This result can be summarized as the fact that sharing beliefs (uniform) is

fundamentally easier (in terms of convergence rate) than sharing measurements (Gaussian), but

sharing decisions is even easier (discrete). This shows the effect of the underlying source distri-

bution on the asymptotic estimation performance. When the source has countably finite support

set (discrete), an exponential decay is observed. On the other extreme, when the source has an

unbounded support set (Gaussian), a 1/R decay is observed. Above result is for the source with

bounded support (uniform, for example), and an intermediate result of 1/R2 decay is determined.

This suggests the intuitive observation that as the number of possibilities for the source (support)

increases, it gets more difficult to communicate the values.

One can also note the similarity in structure of the lower bound of β(α) in this problem with

other CEO problems [17, 162]. Most notably, in all cases, there is a minimization of conditional

mutual information. Also, the bound here depends on Chernoff information which serves as a

divergence metric similar to the Kullback-Leibler divergence for the discrete case [17] and as an

information metric similar to Fisher information for the quadratic Gaussian case [162].

5.2.1 Examples of Observation Channels Satisfying Property 5.2.1

Property 5.2.1 may seem a little opaque, so here we give an illustrative example of a family of

observation channels that satisfy it.

Proposition 5.2.3. A sufficient condition for an observation channel to satisfy Property 5.2.1 is

when its density Wα(yi|x) is given by a copula conditional density function2 and has discontinuity
2A copula is a multivariate probability distribution for which the marginal probability distribution of each variable
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at end points.

Proof. Let the end points of observation channel Wα(yi|x) be denoted by el(x) and eu(x). Due to

its discontinuity at the end points, we have the following

lim
yi→el(x) or eu(x)

Wα(yi|x) > 0. (5.8)

Consider the test channel given by Ui = Yi + N , where N is a k-peak noise for k ≥ 2, fN(n) =∑k
l=1 plδ(n − nl), where δ(·) is the Dirac delta function,

∑k
l=1 pl = 1, and n1 < n2 < · · · < nk.

Then the conditional distribution of U given X , fU |X(ui|x) =
∑k

l=1 plWα(ui−nl|x), has bounded

support: [el(x) + n1, eu(x) + nk] and the values of fU |X(ui|x) at the end points are given by

lim
ui→el(x)+n1

fU |X(ui|x) ≥ p1 lim
yi→el(x)

Wα(yi|x) > 0 (5.9)

and

lim
ui→eu(x)+nk

fU |X(ui|x) ≥ pk lim
yi→eu(x)

Wα(yi|x) > 0. (5.10)

This proves the proposition.

We now provide a specific example from the above family of observation channels and explic-

itly show that it satisfies Property 5.2.1.

Example 5.2.4. As a specific example, consider the case when the source X(t) and the observa-

tions Yi(t) are marginally distributed with uniform distribution in (0, 1) and Clayton copula model

is used to model the channel between the source and the observations. The conditional distribution

of Yi given X is given by the following (for 1/2 < α < 1)

Wα(yi|x) =


(1− α)(xyi)

α−1 (xα + yαi − 1)1/α−2 , for (1− xα)1/α ≤ yi ≤ 1

0, otherwise.
(5.11)

is uniform [99].
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Using the test channel defined as Ui = Yi +N , where N is a k-peak noise for k ≥ 2, fN(n) =∑k
l=1 plδ(n − nl), where δ(·) is the Dirac delta function and

∑k
l=1 pl = 1, results in a density

fU |X(ui|x) given by (without loss of generality, assume n1 < n2 < · · · < nk):

fU |X(ui|x) =



p1(1− α)(x(ui − n1))α−1 (xα + (ui − n1)α − 1)
1/α−2

, for (1− xα)1/α + n1 ≤ ui ≤ 1 + n1

p2(1− α)(x(ui − n2))α−1 (xα + (ui − n2)α − 1)
1/α−2

, for (1− xα)1/α + n2 ≤ ui ≤ 1 + n2

...

pk(1− α)(x(ui − nk))α−1 (xα + (ui − nk)α − 1)
1/α−2

, for (1− xα)1/α + nk ≤ ui ≤ 1 + nk

0, otherwise.

(5.12)

when 1 + nl < (1− xα)1/α + nl+1 for l = 1, . . . , k − 1 to ensure the shifted versions of Wα(yi|x)

do not overlap.3

We now show that fU |X(ui|x) given by (5.12) satisfies Property 5.2.1, which basically consists

of two conditions on fU |X(u|x): bounded support and non-vanishing end points. fU |X(ui|x) given

in (5.12) has bounded support as (1 − xα)1/α + n1 ≤ ui ≤ 1 + nk (irrespective of whether the

shifted versions overlap or not). Also, its values at the end points are given by:

lim
ui→(1−xα)1/α+n1

fU |X(ui|x) = p1(1− α)xα−1(1− xα)1−1/α(0)1/α−2 →∞ > 0 (5.13)

as α > 1/2 and

lim
ui→1+nk

fU |X(ui|x) = pk(1− α)x−α > 0 (5.14)

Hence, it satisfies Property 5.2.1.

Note the similarity between the form of this test channel and the random quantizer used by Fix

for achieving the rate-distortion function of a uniform source [49].

As will be seen later in Sec. 5.3, the achievability involves use of a test channel, Slepian-Wolf

encoding and decoding, and midrange estimation at the CEO. Fig. 5.1 provides a block diagram

outlining these steps for the example considered here.

3It is straightforward to prove that the property holds even when there is overlap among the shifted versions.
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Fig. 5.1: A block diagram of the system model for Example 1 using the Clayton copula based
observation channel Wα(yi|x) given by (5.11) and test channel U = Y + N where N is a k-peak
noise. Here kn0 represents the block code that approximates the test channel

5.3 Direct Coding Theorem

The structure of the achievable scheme is a layered architecture, with scalar quantization followed

by Slepian-Wolf entropy coding, just like for the Gaussian CEO problem [162] and other source

coding problems [124, 164, 172]. The following are key steps of the analysis: quantization of

alphabets, codes that approximate the forward test channel, Slepian-Wolf encoding and decoding,

and estimation at the CEO.

Every agent uses a two-stage encoding scheme. In the first stage, a block of observations are

mapped to codewords from a codebook which is identical for all agents. The second stage is an

index encoder that performs Slepian-Wolf encoding of the codewords [39, 129]. For decoding,

the CEO first performs index decoding to determine the L codewords corresponding to each of the

agents, and then estimates the source value at each instant based on a midrange estimator [10,100].

The key aspect of the proof is the choice of forward test channel which is characterized by
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an auxiliary random variable U . Choose the test channel from Y to U , denoted by Q(u|y) where

U ∈ S(W ), so as to induce a distribution fU |X(u|x) which satisfies Property 5.2.1.

5.3.1 Quantization of Alphabets

To design the coding scheme, start by quantizing the continuous alphabets. Denote by X̃ , Ỹ , and

Ũ the quantized versions of random variables X , Y , and U , respectively. Their corresponding

alphabets are denoted by X̃ , Ỹ , and Ũ respectively. Conditions to be satisfied by the quantization

are as follows:

E(U − Ũ)2 ≤ δ0 (5.15)

|I(Y ;U)− I(Ỹ , Ũ)| ≤ δ1 (5.16)

|I(X;U)− I(X̃, Ũ)| ≤ δ2, (5.17)

where δj > 0, for j = 0, 1, 2. There exist quantization schemes that achieve each of these above

constraints individually: (5.15) from that fact that EU2 < ∞, and (5.16) and (5.17) from the

definition of mutual information for arbitrary ensembles [44]. Therefore, a common refinement of

the quantization schemes that achieve (5.15)–(5.17) separately will satisfy them simultaneously.

This quantization induces a corresponding joint probability distribution for the quantized versions

X̃ , Ỹ , and Ũ :

PỸ ,Ũ(ỹ, ũ) =

∫
{(y,u):quant(y)=ỹ,quant(u)=ũ}

fY,U(y, u)dydu

PX̃,Ũ(x̃, ũ) =

∫
{(x,u):quant(x)=x̃,quant(u)=ũ}

fX(x)fU |X(u|x)dxdu

W̃α(ỹ|x) =

∫
{y:quant(y)=ỹ}

Wα(y|x)dy

Q(ũ|ỹ) =
PỸ ,Ũ(ỹ, ũ)

PỸ (ỹ)
.

Note that any letters ỹ of zero measure are removed from Ỹ .
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5.3.2 Codes That Approximate the Test Channel

The encoding scheme works on the quantized version Ỹi. The basic idea is to build a block code

between the quantized versions Ỹi and Ũi, and show that the designed block code approximates the

test channel Q(u|y) that arises from satisfying Property 5.2.1. Let kn0 be a block code of length

n0 from Ỹn0 to Ũn0 . This map, kn0 , induces the following joint distribution between the blocks

Ỹ n0 = [Ỹ (1), . . . , Ỹ (n0)] and Ũn0 = [Ũ(1), . . . , Ũ(n0)]:

P̂ n0(Ỹ n0 = ỹn0 , Ũn0 = ũn0) = PỸ n0 (ỹn0)1{kn0 (ỹn0 )=ũn0},

where 1A is the indicator function which is 1 when the event A is true and 0 otherwise. Also, the

corresponding marginals and conditionals are given by

P̂ (Ỹ (t) = ỹ, Ũ(t) = ũ) = EPỸ n1{Ũ(t)=ũ,Ỹ (t)=ỹ}

Q̂(Ũ(t) = ũ|Ỹ (t) = ỹ) =
P̂ (Ỹ (t) = ỹ, Ũ(t) = ũ)

PỸ (Ỹ (t) = ỹ)
.

Now the existence of a block code kn0 : Ỹn0 → Ũn0 which approximates a test channel Q(u|y)

arising from Property 5.2.1 follows from [162, Proposition 3.1], which is stated here without proof.

Proposition 5.3.1 ( [162]). For every ε0, δ3 > 0, there exists a deterministic map kn0 : Ỹn0 → Ũn0

with the range cardinality M such that

1

n0

logM ≤ I(Y ;U) + δ3 (5.18)

and ∑
ũ∈Ũ

|Q̂(Ũ(t) = ũ|x)−Q(Ũ(t) = ũ|x)| ≤ ε0

|X̃ |

for all t = 1, . . . , n0 and all real x.
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5.3.3 Encoding and Decoding

The encoding is performed in two stages: in the first stage, the agents use the identical deter-

ministic mapping kn0 of Proposition 5.3.1 to encode their quantized observation block Ỹ n0
i into

codewords Ũn0
i ; and in the second stage, Slepian-Wolf encoding [129] is used to encode the in-

dex of each agent’s codeword Ũn0
i . Let the index of codeword Ũn0

i in the codebook be denoted

by Vi, for i = 1, . . . , L. The index is used to represent the codeword due to the one-to-one

correspondence between the index and the codeword, therefore, we have Vi = Ũn0
i . Note that

V1, . . . , VL are correlated and Slepian-Wolf encoding of the indices is used to remove that cor-

relation across agents. This is done by index encoding the n-length block of indices of agent i,

represented as V n
i = [Vi(1), . . . , Vi(n)], where Vi(t) is the tth component of the n-block of the

indices of agent i. This block of indices is then mapped to a smaller index set using a mapping

ei : Ũnn0 → {0, . . . , Ni − 1}, for i = 1, . . . , L, where Ni and n are chosen to be sufficiently large

to ensure a negligible decoding error. The sum rate per source symbol is given by

R =
1

nn0

L∑
i=1

logNi.

Therefore, the complete encoder is given by hi = ei ◦ kn0 : Ỹnn0 → {0, 1, 2, . . . , Ni − 1}, where

‘◦’ is the composition operator. Let the output of this encoder be represented by Zi = hi(Ỹ
nn0
i ) ∈

{0, 1, . . . , Ni − 1}.

The CEO receives the indices Z1, . . . , ZL corresponding to the L agents. It first recovers the

block of indices V̂ n
i , for all i using a mapping φ :

∏L
i=1{0, 1, . . . , Ni−1} →

∏L
i=1 Ũ

nn0
i . The output

of this decoder, represented as V̂ n
i = [V̂i(1), . . . , V̂i(n)] = [Ûn0

i (1), . . . , Ûn0
i (n)], is the decoded

super codeword and Ûn0
i (t) is the decoded version of Ũn0

i (t). From the Slepian-Wolf theorem

(cf. [162, Proposition 3.2]), there exist encoders {ei} and a decoder φ such that the codewords can

be recovered with negligible error probability for sufficiently large block size n.

Proposition 5.3.2 ( [162]). For every ε1, λ > 0, there exist sufficiently large L, n, and index en-
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coders e1, . . . , eL and index decoder φ such that

R

L
≤ 1

n0

H(Ũn0|X̃n0) + ε1, (5.19)

Pr{(Ûn0
1 , . . . , Ûn0

L ) 6= (Ũn0
1 , . . . , Ũn0

L ) ≤ λ}, (5.20)

where X̃n0 = [X̃(1), . . . , X̃(n0)].

5.3.4 Further Analysis of Code Rate

Note that the bound on sum rate per agent R/L in (5.19) is in terms of the distributions of Ũ

and X̃ . By further analyzing the code rate, a bound can be determined which is a function of

the distributions of the unquantized versions, X and U . For this, the closeness of the marginal

distribution induced by the encoding function kn0 to the test channel statistics is used to bound the

entropy terms. Let H(X̃) denote the entropy of the quantized random variable X̃ , then

1

n0

H(Ũn0|X̃n0) =
1

n0

(H(Ũn0 , X̃n0)−H(X̃n0)) (5.21)

=
1

n0

H(Ũn0) +
1

n0

H(X̃n0|Ũn0)− 1

n0

H(X̃n0) (5.22)

=
1

n0

H(Ũn0) +
1

n0

H(X̃n0|Ũn0)− 1

n0

n0∑
t=1

H(X̃(t)) (5.23)

≤ 1

n0

logM +
1

n0

H(X̃n0|Ũn0)− 1

n0

n0∑
t=1

H(X̃(t)) (5.24)

≤ I(Y ;U) +
1

n0

H(X̃n0|Ũn0)− 1

n0

n0∑
t=1

H(X̃(t)) + δ3 (5.25)

where (5.23) is due to the independent nature of sourceX(t) over time, (5.24) is by upper bounding

H(Ũn0) by the logarithm of number of codewords M , and (5.25) follows from (5.18). Next,
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H(X̃n0|Ũn0) can be further bounded as:

H(X̃n0|Ũn0) =

n0∑
t=1

H(X̃(t)|Ũn0 , X̃(1), . . . , X̃(t− 1))

≤
n0∑
t=1

H(X̃(t)|Ũ(t)) (5.26)

using the fact that conditioning only reduces entropy. Therefore, we have

1

n0

H(Ũn0 |X̃n0) ≤ I(Y ;U) +
1

n0

H(X̃n0|Ũn0)− 1

n0

n0∑
t=1

H(X̃(t)) + δ3 (5.27)

≤ I(Y ;U) +
1

n0

n0∑
t=1

H(X̃(t)|Ũ(t))− 1

n0

n0∑
t=1

H(X̃(t)) + δ3

= I(Y ;U)− 1

n0

n0∑
t=1

I(X̃(t), Ũ(t)) + δ3 (5.28)

≤ I(Y ;U)− I(X̃, Ũ) + δ3 + 2ε0 log
|Ũ ||X̃ |
ε0

(5.29)

where (5.29) is due to the t-symmetry of the encoder and [162, Proposition A.3].

Thus, using (5.16):

1

n0

H(Ũn0|X̃n0) ≤ I(Y ;U)− I(X̃, Ũ) + δ3 + 2ε0 log
|Ũ ||X̃ |
ε0

(5.30)

≤ I(Y ;U)− I(X;U) + δ2 + δ3 + 2ε0 log
|Ũ ||X̃ |
ε0

. (5.31)

Due to the Markov chain relationship X → Y → U , the right hand side can be further simplified

to

1

n0

H(Ũn0|X̃n0) ≤ I(Y ;U |X) + δ2 + δ3 + 2ε0 log
|Ũ ||X̃ |
ε0

(5.32)

By choosing δ2, δ3, ε0, ε2 such that

δ2 + δ3 + 2ε0 log
|Ũ ||X̃ |
ε0

< ε2,
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we have

R

L
≤ I(Y ;U |X) + ε1 + ε2. (5.33)

Having determined a bound on sum rate, the next step is to bound the minimum quadratic distor-

tion.

5.3.5 Estimation Scheme

The CEO, after decoding the codewords sent by the agents (Ûn0
1 , . . . , Ûn0

L ), estimates the source

X(t) on an instant-by-instant basis. Since the range of Ui(t) depends on X(t), we first estimate

the midrange of data Û1(t), . . . , ÛL(t). The midrange estimator [10,41,100,120] is the maximally

efficient estimator for the center of a uniform distribution. The midrange estimator also seems

to work well for estimating the location parameter of other distributions of bounded support and

it is more effective than the sample mean for many distributions such as the cosine distribution,

parabolic distribution, rectangular distribution, and inverted parabolic distribution [120], though

the best estimator depends on the distribution of the source that is to be estimated. For these

reasons, the midrange estimator is used here.

After estimating the midrange of data, using the inverse function l(·) as follows (cf. Prop-

erty 5.2.1),

X̂(t) = 2l

(
Û(1)(t) + Û(L)(t)

2

)
, (5.34)

one gets an estimate ofX(t). Here Û(i)(t) are the order statistics of Ûi(t) [43]. Note thatE
[
Û(1)+Û(L)

2

]
=

E
[
a(X)+b(X)

2

]
.

An upper bound on the distortion can now be derived, following a method similar to Açkay, et
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al. [1]:

E[X̂(t)−X(t)]2

≤ K2E

( Û(1)(t) + Û(L)(t)

2
− a(X(t)) + b(X(t))

2

)2


= K2EXEU |X

[(
Û(1)(t) + Û(L)(t)

2
− a(X(t)) + b(X(t))

2

)2∣∣∣∣∣X(t)

]
(5.35)

≤ 2K2EXEU |X

[(
U(1)(t) + U(L)(t)

2
− a(X(t)) + b(X(t))

2

)2∣∣∣∣∣X(t)

]
+ ε3 (5.36)

where U(i)(t) are the order statistics of Ui(t); the first inequality is due to Lipschitz continuity

of the function l(·) with Lipschitz constant K, and (5.36) follows from Proposition A.6.1 in the

Appendix.

Now we evaluate the main term in (5.36); for notational simplicity, we drop the dependence on

t and the dependence of a(·) and b(·) on X . However, we need to be aware of the dependence of

the limits a and b on the unknown X . As fU |X(u|x) does not vanish at the endpoints, there exist ε

and δ such that fU |X(u|x) ≥ δ for a ≤ u ≤ a+ ε and b− ε ≤ u ≤ b. Now,

EU |X

[(
U(1) + U(L)

2
− a+ b

2

)2
∣∣∣∣∣X
]

=

∫
u(1)>a+ε or u(L)<b−ε

(
u(1) + u(L)

2
− a+ b

2

)2

fu(1),u(L)|Xdu(1)du(L)

+

∫
u(1)<a+ε and u(L)>b−ε

(
u(1) + u(L)

2
− a+ b

2

)2

fu(1),u(L)|Xdu(1)du(L). (5.37)

Since (u(1) + u(L))/2 ∈ [a, b]:

(
u(1) + u(L)

2
− a+ b

2

)2

≤
(
b− a

2

)2
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and the first term on right side of (5.37) can be bounded as:

∫
u(1)>a+ε or u(L)<b−ε

(
u(1) + u(L)

2
− a+ b

2

)2

fu(1),u(L)|Xdu(1)du(L)

≤ 2−2(b− a)2 Pr
{
u(1) > a+ ε or u(L) < b− ε|X

}
.

Since the {Ui} are conditionally independent given X , further simplification can be done as:

Pr
{
u(1) > a+ ε or u(L) < b− ε|X

}
≤ Pr

{
u(1) > a+ ε|X

}
+ Pr

{
u(L) < b− ε|X

}
(5.38)

=
L∏
i=1

Pr {ui > a+ ε|X}+
L∏
i=1

Pr {ui < b− ε|X} (5.39)

=
L∏
i=1

(1− Pr {ui ≤ a+ ε|X}) +
L∏
i=1

(1− Pr {ui ≥ b− ε|X}). (5.40)

Since, fU |X(u|x) ≥ δ for a ≤ u ≤ a + ε and b − ε ≤ u ≤ b, Pr {ui ≤ a+ ε|X} ≥ δε and

Pr {ui ≥ b− ε|X} ≥ δε. Therefore,

Pr
{
u(1) > a+ ε or u(L) < b− ε|X

}
≤

L∏
i=1

(1− Pr {ui ≤ a+ ε|X}) +
L∏
i=1

(1− Pr {ui ≥ b− ε|X})

≤
L∏
i=1

(1− δε) +
L∏
i=1

(1− δε) (5.41)

≤ 2(1− δε)L. (5.42)

To evaluate the second term in the right side of (5.37), define the following variables:

ξ = L(1− FU |X(u(L))), b− ε ≤ u(L) ≤ b (5.43)

η = LFU |X(u(1)), a ≤ u(1) ≤ a+ ε, (5.44)
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where FU |X is the conditional cumulative distribution function of U givenX . These variables have

the following marginal and joint densities [1]:

fξ(s) = fη(s) =
(

1− s

L

)L−1

, 0 ≤ s ≤ L (5.45)

fξ,η(s1, s2) =
L− 1

L

(
1− s1 + s2

L

)L−2

, s1, s2 ≥ 0, s1 + s2 ≤ L.

Also, as L→∞, ξ and η become independent and fξ(s), fη(s)→ e−s.

From the above definitions,

ξ = L

∫ b

u(L)

fu|xdu ≥ δL(b− u(L)), (5.46)

η = L

∫ u(1)

a

fu|xdu ≥ δL(u(1) − a), (5.47)

provided u(1) ≤ a+ ε and b− ε ≤ u(L). Therefore, for the second term, we have

∣∣∣∣u(1) + u(L)

2
− a+ b

2

∣∣∣∣2 =
1

4

∣∣(u(1) − a)− (b− u(L))
∣∣2 (5.48)

≤ 1

4

[∣∣u(1) − a
∣∣2 +

∣∣b− u(L)

∣∣2] (5.49)

≤ ξ2 + η2

4δ2L2
, (5.50)

where the fact that |A−B|2 ≤ A2 +B2 for A,B > 0, is used.

Now using the inequalities that have been developed, one can bound the distortion in (5.36) as:

D(L,R)

≤ 2K2EX

[
(b−a)2(1−δε)L

2
+ 1

4δ2L2

∫ L(1−FU|X(b−ε))

0

∫ LFU|X(a+ε)

0

(s2
1 + s2

2)fξ,η(s1, s2)ds1ds2

]
+ ε3.

(5.51)



111

Using (5.33) and (5.51), we get:

R2D(L,R) ≤ L2I2(Y ;U |X)

(
2K2EX

[
(b− a)2(1− δε)L

2

+
1

4δ2L2

∫ L(1−FU|X(b−ε))

0

∫ LFU|X(a+ε)

0

(s2
1 + s2

2)fξ,η(s1, s2)ds1ds2

]
+ ε3

)
.

By taking limits L,R→∞, we have:

β(α) = lim
L,R→∞

R2D(L,R)

≤ I2(Y ;U |X)

(
2K2EX

[
1

4δ2

∫ ∞
0

∫ ∞
0

(s2
1 + s2

2) lim
L→∞

fξ,η(s1, s2)ds1ds2

])
(5.52)

= I2(Y ;U |X)

(
2K2EX

[
1

4δ2

∫ ∞
0

∫ ∞
0

(s2
1 + s2

2)e−s1e−s2ds1ds2

])

= I2(Y ;U |X)

(
2K2EX

[
1

2δ2

∫ ∞
0

s2e−sds

])
(5.53)

=
2K2

δ2
I2(Y ;U |X) > 0 (5.54)

where U is chosen to satisfy Property 5.2.1 and K > 0 is a constant. Therefore,

β(α) ≤ 2K2

δ2

(
min

U∈S(W )
I(Y ;U |X)

)2

. (5.55)

This concludes the achievability proof. Note that the bound only depends on the conditional mu-

tual information I(Y ;U |X) which corresponds to the compression of the observation noise. The

compression of the source X does not appear in the bound, since such a term vanishes because the

number of agents L grows without bound.
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5.4 Converse Coding Theorem

The converse for the quadratic non-regular CEO problem is similar in structure to the converse for

the quadratic Gaussian CEO [162] and the discrete CEO problem [17]. The proof uses a lower

bound on the distortion function similar to the Bayesian Cramér-Rao lower bound used in [162].

However, note that the source distribution herein does not satisfy the regularity conditions required

for using the Cramér-Rao bound [145]. Therefore, a version of the extended Chazan-Zakai-Ziv

bound [14, 15, 29] is used, which is first stated here without proof.

Lemma 5.4.1. For estimating a random scalar parameter x ∼ fX(x) with support on [0, T ] using

data z = [z1, . . . , zk] with conditional distribution f(z|x), the MSE between x and x̂(z) is bounded

as follows:

E(x− x̂(z))2 ≥ 1

2T

∫ T

h=0

h

[∫ T−h

θ=0

(fX(θ) + fX(θ + h))Pmin(θ, θ + h)dθ

]
dh, (5.56)

where Pmin(θ, θ + h) is the minimum error probability corresponding to the following binary

hypothesis testing problem:

H0 : z ∼ f(z|x), x = θ, Pr(H0) =
fX(θ)

fX(θ) + fX(θ + h)
,

H1 : z ∼ f(z|x), x = θ + h, Pr(H1) =
fX(θ + h)

fX(θ) + fX(θ + h)
.

The above Chazan-Zakai-Ziv bound falls under the family of Ziv-Zakai bounds. Ziv-Zakai

bounds have been shown to be useful bounds for all regions of operation unlike other bounds (for

example, Cramér-Rao bound) that have limited applicability [14]. This family of bounds build on

the original Ziv-Zakai bound [174] and have the advantage of being independent of bias and very

tight in most cases. A detailed study of this family of bounds can be found in [14].

Note that this lemma bounds the performance of an estimation problem in terms of the perfor-

mance of a sequence of detection problems. Therefore, as shall be seen later, one gets Chernoff

information rather than Fisher information as seen in the estimation problem in the quadratic Gaus-
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sian CEO [162].

Using Lemma 5.4.1, the converse is now proved. Let {Cni }Li=1 be L codes of block length n,

corresponding to the L agents, with respective rates R1, R2, . . . , RL. The genie-aided approach

is used to determine the lower bound as follows: Let the CEO implement n estimators Ot for

t = 1, . . . , n where Ot estimates X(t) given all components of the source word xn except x(t).

Recall the definition of Xn = [X(1), . . . , X(n)] and further define Y n
i = [Yi(1), . . . , Yi(n)]. This

gives

nRi = log |Cni |

≥ I(Y n
i ;Ci|Xn)

=
n∑
t=1

I(Yi(t);Ci|Y t−1
i , Xn) (5.57)

=
n∑
t=1

[
h
(
Yi(t)|Y t−1

i , Xn
)
− h

(
Yi(t)|Ci, Y t−1

i , Xn
)]

=
n∑
t=1

[
h (Yi(t)|Xn)− h

(
Yi(t)|Ci, Y t−1

i , Xn
)]

(5.58)

≥
n∑
t=1

[h(Yi(t)|Xn)− h(Yi(t)|Ci, Xn)] (5.59)

=
n∑
t=1

I(Yi(t);Ci|Xn),

where X is the generic source random variable, Yi is the noisy version of X as observed by agent

i; (5.57) is from the product rule of mutual information, (5.58) is due to the independence of Y (t)

across time, and (7.6) follows since conditioning only reduces entropy.

Hence, a lower bound on the sum rate R is given as follows:

R ≥ 1

n

n∑
t=1

L∑
i=1

I(Yi(t);Ci|Xn).

Define X̆t = (X1, . . . , Xt−1, Xt+1, . . . , Xn) and let Ui(t, x̆t) be a random variable whose joint
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distribution with X(t) and Yi(t) is:

Pr {x ≤ X(t) ≤ x+ dx, y ≤ Yi(t) ≤ y + dy, Ui(t, x̆t) = c}

= fX(x)Wα(y|x) Pr(Ci = c|Yi(t) = y,X(t) = x, X̆t = x̆t)dxdy

= fX(x)Wα(y|x) Pr(Ci = c|Yi(t) = y, X̆t = x̆t)dxdy,

since the codeword Ci depends on X(t) only through Yi(t). Therefore, for each i and any fixed x̆t,

we have the Markov chain relationship X(t)→ Yi(t)→ Ui(t, x̆t). Now, we can express the lower

bound on R as

R ≥ 1

n

n∑
t=1

L∑
i=1

EX̆tI(Yi(t);Ui(t, X̆t)|X(t)). (5.60)

Note that in order to find a lower bound on β(α), we consider the best case where the CEO

knows C1, . . . , CL and x̆t, i.e., the CEO uses an estimator X̂(C1, . . . , CL, x̆t). Using the Chazan-

Zakai-Ziv bound (Lemma 5.4.1):

E(X(t)− X̂t)
2 ≥ 1

2

∫ 1

h=0

h

[∫ 1−h

θ=0

(fX(θ) + fX(θ + h))Pmin,t(θ, θ + h)dθ

]
dh (5.61)

where Pmin,t(θ, θ + h) is the minimum achievable error probability, using data Y1(t), . . . , YL(t)

from the L agents, to differentiate between X(t) = θ and X(t) = θ + h.

Therefore, from the definition of D(L,R):

D(L,R) =
1

n

n∑
t=1

E(X(t)− X̂t)
2

≥ 1

2n

n∑
t=1

[∫ 1

h=0

h

[∫ 1−h

θ=0

(fX(θ) + fX(θ + h))Pmin,t(θ, θ + h)dθ

]
dh

]
≥ 1

2nL2

n∑
t=1

[∫ 1

h=0

hL

[∫ 1−h

θ=0

(fX(θ) + fX(θ + h))Pmin,t(θ, θ + h)dθ

]
d(hL)

]
,

where we have multiplied and divided the right side by L2. Now, using a change of variables
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h̃ = hL:

D(L,R)

≥ 1

2nL2

n∑
t=1

∫ L

(hL)=0

(hL)

∫ 1−(hL)/L

θ=0

(fX(θ) + fX(θ + (hL)/L))Pmin,t(θ, θ + (hL)/L)dθd(hL)

=
1

2nL2

n∑
t=1

[∫ L

h̃=0

h̃

[∫ 1−h̃/L

θ=0

(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃

]

≥ 1

2L2

1
1
n

∑n
t=1

1[∫ L
h̃=0

h̃
[∫ 1−h̃/L
θ=0 (fX(θ)+fX(θ+h̃/L))Pmin,t(θ,θ+h̃/L)dθ

]
dh̃

] , (5.62)

where the last step is due to the inequality of arithmetic and harmonic means.

Note that, although not explicit, D(L,R) does depend on R. This dependence is implicitly

visible via n (see (5.60)). Therefore, as can be observed below in (5.63), the product of R2 and

D(L,R) results in a positive constant that is independent of R and does not vanish as L→∞.

Using (5.60) and (5.62), one gets the following expression:

R2D(L,R)

≥ 1

n2

n

2L2

(∑n
t=1

∑L
i=1EX̆tI(Yi(t);Ui(t, X̆t)|X(t))

)2

∑n
t=1

[∫ L
h̃=0

h̃
[∫ 1−h̃/L

θ=0
(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃
]−1

=
1

2nL2

(∑n
t=1

∑L
i=1EX̆tI(Yi(t);Ui(t, X̆t)|X(t))

)2

∑n
t=1

[∫ L
h̃=0

h̃
[∫ 1−h̃/L

θ=0
(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃
]−1

=
1

2nL2

∑n
t=1

∑n
t′=1

∑L
i=1

∑L
i′=1EX̆tI(Yi(t);Ui(t, X̆t)|X(t))EX̆t′I(Yi′(t

′);Ui′(t
′, X̆t′)|X(t′))∑n

t=1

[∫ L
h̃=0

h̃
[∫ 1−h̃/L

θ=0
(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃
]−1

≥ min
t

1

2nL2

∑n
t′=1

∑L
i=1

∑L
i′=1EX̆tI(Yi(t);Ui(t, X̆t)|X(t))EX̆t′I(Yi′(t

′);Ui′(t
′, X̆t′)|X(t′))[∫ L

h̃=0
h̃
[∫ 1−h̃/L

θ=0
(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃
]−1

≥ min
t,t′,i,i′

EX̆tI(Yi(t);Ui(t, X̆t)|X(t))EX̆t′I(Yi′(t
′);Ui′(t

′, X̆t′)|X(t′))

×
∫ L

h̃=0

h̃

2

[∫ 1−h̃/L

θ=0

(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃ (5.63)
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where Proposition A.7.1 from the Appendix is used for the last two inequalities. Since the input

sequence X(t) is i.i.d. over time, the minimum for the ‘primed’ variables and the ‘unprimed’

variables is the same. Therefore, one can further simplify the inequality in (5.63) as:

R2D(L,R) ≥
(

min
t,i

EX̆tI(Yi(t);Ui(t, X̆t)|X(t))

)2

∫ L

h̃=0

h̃

2

[∫ 1−h̃/L

θ=0

(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃. (5.64)

Further simplification gives the following

R2D(L,R) ≥
(

min
t,i,X̆t

I(Yi(t);Ui(t, X̆t)|X(t))

)2

∫ L

h̃=0

h̃

2

[∫ 1−h̃/L

θ=0

(fX(θ) + fX(θ + h̃/L))Pmin,t(θ, θ + h̃/L)dθ

]
dh̃. (5.65)

Now as L→∞, using the Chernoff-Stein Lemma [40], the error probability Pmin,t(θ, θ+h̃/L)

is given as e−LC(θ,θ+h̃/L) where Gθ(h̃/L) , C(θ, θ+ h̃/L) is the Chernoff information between the

conditional densities of y given x = θ and x = θ + h̃/L. It is given by the following

Gθ(h̃/L) = −min
s

log

(∫
W s
α(y|θ)W 1−s

α (y|θ + h̃/L)dy

)
.

Since the argument of Gθ(h̃/L) is close to zero as L → ∞, using the Taylor expansion of

Gθ(∆) around zero, we get:

Gθ(∆) = Gθ(0) + ∆G′θ(∆)|∆=0 +O(∆2). (5.66)
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Using this expansion:

e−LC(θ,θ+h̃/L) = e−LGθ(h̃/L) (5.67)

= e−L(Gθ(0)+h̃/LG′θ(∆)|∆=0+O(L−2))

= e−h̃G
′
θ(∆)|∆=0+O(L−1), (5.68)

since Gθ(0) = C(θ, θ) = 0. Therefore,

lim
L→∞

R2D(L,R) ≥ lim
L→∞

(
min
t,i,X̆t

I(Yi(t);Ui(t, X̆t)|X(t))

)2

∫ L

h̃=0

h̃

2

[∫ 1−h̃/L

θ=0

(fX(θ) + fX(θ + h̃/L))e−h̃G
′
θ(∆)|∆=0+O(L−1)dθ

]
dh̃

which implies

β(α) = lim
L,R→∞

R2D(L,R) ≥
(

min
U :X→Y→U

I(Y ;U |X)
)2
∫ ∞
h=0

h

∫ 1

θ=0

fX(θ)e−hg(θ)dθdh,

where g(θ) is the first derivative of Chernoff information between the conditional densities (Wα)

of the observation given x = θ and x = θ + ∆, evaluated at ∆ = 0 and is given by:

g(θ) =

{
d

d∆
−
[
min
s

log

(∫
W s
α(y|θ)W 1−s

α (y|θ + ∆)dy

)]}
∆=0

. (5.69)

This concludes the proof of the converse.

5.5 Discussion

In this chapter, the case of unskilled local humans in a network was considered and their effect

was analyzed on the estimation of a source sequence. The asymptotic behavior of the minimum

achievable mean squared error distortion at the CEO was derived in the limit when the number of

agents and the sum rate tend to infinity. This is the non-regular CEO problem, which addresses the
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practical case where multiple subordinates send quantal grades of their noisy beliefs to the CEO.

When the source distribution does not satisfy the regularity conditions, we get an intermediate

regime of performance between the discrete CEO problem [17] and the quadratic Gaussian CEO

problem [162]. A key observation is that the rate of convergence depends on Chernoff information.

The result extends the literature on the CEO problem from the traditional case of Gaussian source

distribution and Gaussian channel noise to non-regular source distributions. While the proofs are

similar in structure to the traditional CEO problems, they use different techniques, which can also

be applied to other non-Gaussian non-regular multiterminal source coding problems. Our results

indicate that one can expect a change in behavior for other multiterminal source coding problems

as well, when the source follows non-Gaussian non-regular distribution.

In the next chapter, the effect of an unreliable global human decision maker fusing decisions

from multiple agents is considered.
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CHAPTER 6

DETECTION IN HUMAN NETWORKS:

UNRELIABLE GLOBAL FUSION

6.1 Introduction

In the previous chapter, the effect of unskilled local humans on estimating a source value was ex-

plored. It considered the case when the local agents are humans and the global agent referred to

as the CEO is using an optimal estimator. However, such an assumption is not valid in reality and

one needs to understand how a human agent fuses data from multiple agents, to engineer systems

where the GDM is also a human. This chapter studies decision fusion by humans via behavioral

experiments and demonstrates differences from optimal approaches. Based on experimental re-

sults, we develop a particular bounded rationality model (cf. [54]). The implications of such a

model on design of sociotechnical systems are presented by developing optimal decision fusion

trees with human decision fusion components.

The remainder of the chapter is organized as follows: In Sec. 6.2, psychology experiments are

described that help understand decision fusion by humans, especially in comparison to optimal

fusion rules. After establishing that the existing decision fusion models of machines cannot ex-

plain the human behavior, in Sec. 6.3, Bayesian hierarchical models are developed to explain the
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observed behavior. In Sec. 6.4, its implications are discussed by demonstrating its effect on the

design of large-scale sociotechnical systems. Concluding remarks are provided in Sec. 6.5.

6.2 Experiments and Data Analysis

Sec. 6.2.1 describes the experiments designed to study decision fusion by humans. The collected

data is analyzed in Sec. 6.2.2 and the performance of humans is compared with that of optimal

rules.

6.2.1 Experimental Design

To understand the decision fusion behavior in humans, experiments replicating the process of

Fig. 3.2.1 were designed. Human subjects consisting of undergraduate students of Syracuse Uni-

versity were enrolled for this task. The experiment consisted of data collection in two stages: the

first stage models local decision-making and the second stage models the data fusion aspect. The

experiment was based on a memory-based task and is described as follows. Consider a target set

of 100 words D and a distinct set of 100 distractor words N , with S = D ∪N . For the first stage,

human subjects (called sources) took part in a recognition task where they first memorizedD, then

performed a local decision for each s ∈ S as to whether s ∈ D or s ∈ N . In the second stage,

a new set of human subjects had to decide whether the word was present in the original database

D by using decisions from the sources. These human subjects of second stage replicate the role

of a GDM (Fig. 3.2.1). Note that these decision makers of second stage have no direct access to

the database; their only source of information is from the sources. Local decisions from a variable

number of sources (N ) were presented to these subjects. This value N was either 2, 5, 10, or

20. The subjects were also presented with the sources’ reliabilities and bias values. These values

play the role of probability of detection and false alarm used in signal processing literature. Each

dataset of the resulting dataset has the following information: word s, true hypothesis of s (s ∈ D

or s ∈ N ), number of sources for this particular task (N ), sources’ decisions and reliabilities, and
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the fused decision reported by GDM.

6.2.2 Data Analysis

This section presents a summary of the analyzed data. First, the optimal decision fusion rule [26]

is presented for comparison.

Optimal fusion rule

When the sources’ reliabilities are known, optimal decision fusion is achieved by the Chair-

Varshney (CV) rule [26]. Represent the “Yes/No” decisions of ith LDM as

ui =


+1, if the decision is “Yes",

−1, if the decision is “No".
(6.1)

After receiving the N decisions u = [u1, . . . , uN ], the global decision u0 ∈ {−1,+1} is made as

follows:

u0 =


+1, if a0 +

∑N
i=1 aiui > 0,

−1, otherwise,
(6.2)

where a0 = log P1

1−P1
,

ai =


log

1−PM,i
PF,i

, if ui = +1,

log
1−PF,i
PM,i

, if ui = −1,

for i = 1, . . . , N , and P1 is the prior probability that the underlying hypothesis is “Yes" (+1), PM,i,

PF,i represent the missed detection and false alarm probabilities respectively, of the ith decision

maker.
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Fig. 6.1: Distribution of subjects’ match value between the human decision and the CV rule’s
decision

How efficient are people?

To determine how efficient humans are at fusing decisions, the final decisions by 21 human subjects

are compared with the decision from the Chair-Varshney rule.1 Each human subject at the second

stage typically performed 100 tasks, 25 each withN = 2, 5, 10, 20. The final decisions made by the

humans match the optimal rule around 80–90% of the time. The closeness with the optimal fusion

rule increases with an increase in N from 2 to 20. By defining the match value of a subject as the

fraction of times his/her decision matches the decision of the CV rule with the same input data,

individual participant’s performance is compared with the CV rule. Although there is 80–90%

match overall, a closer examination shows that the individual match value has a lot of variation

across subjects. For example, when N = 5, while one participant had a low match value of

0.54, another participant had a high match value of 0.98. Fig. 6.1 shows the distribution of the

match values between the human’s decision and the CV rule’s decision for different values of N .

Therefore, a single decision fusion rule (such as the CV rule) cannot capture the human behavior.

Next, we develop a model to represent the observed human behavior.

1Note that in our setup, P1 = 0.5, implying a0 = 0.
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6.3 Bayesian Hierarchical Model

In this section, a Bayesian hierarchical model is developed which characterizes the human behavior

at fusing multiple decisions.

6.3.1 Description of Model

The phenomenon of different match values across individual participants can be represented as a

random variable following a distribution as shown in Fig. 6.1. Such a model captures the individ-

ual differences in humans while fusing multiple decisions. As mentioned before, the differences

among humans can be at multiple levels: individual level, crowd level, and population level. The

individual-level decision model is described below (Fig. 6.2):

• A deterministic decision v is determined using the optimal fusion rule (CV rule).

• The next step is a randomization step, where a match value p is sampled from a distribution

fp(·).

• The distribution fp(·) is determined by fitting a model to experimental data in Fig. 6.1. The

α, β 

CV ruleLocal 
observations

p

vLocal 
decisions 

(u)

u0 d0

1

0

1

p

p

Fig. 6.2: The 2-step decision-making model where the first step determines a deterministic de-
cision using the CV rule and the second step models the randomness of human decision-making.
Here α and β are hyperparameters that capture the randomness in match value
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final decision is now given by:

d =


v, with probability p,

1− v, with probability 1− p.
(6.3)

Due to the limited number of data points, a bootstrap model is used for data fitting, where

n = 15 data points among the total T = 21 data points are randomly selected for which a Beta

distribution with parameters α and β are fit. This process is repeated Nmc = 1000 times. If αj

and βj represent the parameters from the jth trial, the final parameters are decided by taking an

average of these parameters. For the dataset described in Sec. 6.2, the results are shown in Fig. 6.3.

An interesting observations is that the distribution fp(·) shifts to the right and the mean increases

with an increase in N .

Clearly the exact values of α and β are themselves dependent on the crowd considered, i.e.

they depend on the number of sources, whether they are college students or online participants,

the demographics of the participants, etc. This takes us to the next higher level in the model

where these values of α and β, or in other words, the distribution fp(·) itself is dependent on the

underlying crowd chosen for the task. Different crowds would have different values of α and β.

Hidden variables like demographics, motivation, etc. can affect the parameters of the randomized

decision rule model discussed above. Therefore, continuing on the Bayesian modeling approach,

these parameters α and β can be modeled as random variables sampled from a distribution with

parameters P (population parameters). Population parameters govern the entire population as a

whole from which different sets of crowds are sampled. This complete model can be captured by

Fig. 6.4.

6.4 Optimal Design of Sociotechnical Systems

From the proposed model, it is clear that for a complete study, one has to repeat human subject

experiments with different crowds, to determine the population parameters and their effect on the
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Fig. 6.3: Distribution fp(·;α, β) of match value p with parameters α and β of beta distribution,
found using data fitting. The mean value is also highlighted.

crowd parameters α and β. For example, one might get different results from online participants,

such as Turkers from Amazon Mechanical Turk2, as compared to a group of college students [59].

From the experiments, an ensemble of parameters can be determined, which will help us in getting

population-level insight into individual differences regarding how people fuse decisions. Such a

hierarchical model can be used for understanding and designing larger signal processing systems

that have a human decision fusion component such as distributed detection systems [94,154] where

each agent is not a single cognitive agent, but rather a human-based decision fusion system (see

Fig. 6.5). Also, cognitive agents (humans) in such systems may be drawn from a specialized sub-

population.

2https://www.mturk.com/
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Next, we consider designing sociotechnical systems with machines and with humans, as mod-

eled through our hierarchical Bayesian framework. Consider a system like Fig. 6.5 where multiple

levels of decision makers are present in the system with human decision makers fusing data from

multiple subordinate agents (humans or sensors) before sending their fused observations to a final

fusion center. If these last level agents were sensors/machines rather than humans, one can use the

optimal fusion rule to fuse the data [26]. Note that this optimal fusion rule weighs the decisions

with their ‘reliabilities’ which are deterministically known. However, when the final fusion center

receives data from humans, one needs to use the Bayesian hierarchical model of human decision

fusers to design the fusion rule at the FC. 3

Considering the Bayesian formulation, the optimal fusion rule at the FC is developed by adopt-

ing a methodology similar to [26]. Let the phenomenon of interest be a binary hypothesis testing

problem with prior probabilities P (H0) = P0 and P (H1) = P1 = 1 − P0. Assume that the FC

receives decisions from Nc human decision fusion components. We represent their decisions by

di ∈ {−1,+1}, where di = −1(+1), if the ith component’s decision is H0(H1). The FC makes

the final decision d0 = f(d1, . . . , dNc) using the Nc decisions based on the fusion rule f(·). The

goal is to design the optimal fusion rule f(·) based on the hierarchical decision-making model of

the components as discussed above (see Fig. 6.4).

The optimal decision rule that minimizes the probability of error at the FC is given by the

following likelihood ratio test
P (d1, . . . , dNc|H1)

P (d1, . . . , dNc|H0)

H1

≷
H0

P0

P1

, (6.4)

3Note there are two kinds of hierarchies considered herein: the Bayesian hierarchy for human modeling and tree
hierarchy of decision-making.

α,β  p dP
Population 
parameters

Crowd 
parameters

Individual 
match value

Individual 
decision

Fig. 6.4: Bayesian hierarchical model of decision fusion by humans
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Fusion 
center

Fig. 6.5: Hierarchical system consisting of human decision fusion components

or equivalently,

log
P (H1|d1, . . . , dNc)

P (H0|d1, . . . , dNc)

H1

≷
H0

0. (6.5)

This optimal fusion rule can be written as

log
P1

P0

+
∑
S⊕

log
P (di = +1|H1)

P (di = +1|H0)
+
∑
S	

log
P (di = −1|H1)

P (di = −1|H0)

H1

≷
H0

0, (6.6)

where S⊕(S	) is the set of all components that reported a decision di = +1(−1).

The terms in (6.6) can be further simplified as

P (di = +1|H1)

= P (di = +1, di,CV = +1|H1) + P (di = +1, di,CV = −1|H1)

= P (di = +1|di,CV = +1)P (di,CV = +1|H1)

+ P (di = +1|di,CV = −1)P (di,CV = −1|H1)

= piPd,i + (1− pi)(1− Pd,i)

= 1− pi − Pd,i + 2piPd,i

where di,CV ∈ {−1,+1} is the decision that the ith human fusion center would make using the

optimal CV rule, pi is the match value of the ith human, and Pd,i , P (di,CV = +1|H1). Similarly,

the expressions for P (di = +1|H0), P (di = −1|H1), and P (di = −1|H0) can be derived as a



128

function of Pf,i , P (di,CV = +1|H0).

P (di = +1|H0) = 1− pi − Pf,i + 2piPf,i, (6.7)

P (di = −1|H1) = pi + Pd,i − 2piPd,i, (6.8)

and

P (di = −1|H0) = pi + Pf,i − 2piPf,i, (6.9)

This simplifies the optimal fusion rule (6.6) as

log
P1

P0

+
∑
S⊕

log
1− pi − Pd,i + 2piPd,i
1− pi − Pf,i + 2piPf,i

+
∑
S	

log
pi + Pd,i − 2piPd,i
pi + Pf,i − 2piPf,i

H1

≷
H0

0. (6.10)

Note that the above expression requires the knowledge of individual match values. When this

knowledge is not available, but the crowd parameters α and β are known (refer to Fig. 6.4), it is

not very difficult to see that the only change in the optimal fusion rule will be to replace pi with

E[pi] = α
α+β

. Therefore, when all the decision fusion components are identical (same number of

sources, identically distributed sources, etc.), then the optimal fusion rule becomes a K out of N

rule. The optimal K∗ can be derived as follows. Let the number of components with final decision

di = +1 be K, then (6.10) becomes (after replacing pi with E[pi])

log
P1

P0

+K log
1− α

α+β
− Pd + 2 α

α+β
Pd

1− α
α+β
− Pf + 2 α

α+β
iPf

+ (Nc −K) log

α
α+β

+ Pd − 2 α
α+β

Pd
α

α+β
+ Pf − 2 α

α+β
Pf

H1

≷
H0

0 (6.11)

or in other words

K
H1

≷
H0

log P0

P1
−Nc log a∗	

log
a∗⊕
a∗	

. (6.12)

where

a∗⊕ =
1− α

α+β
− Pd + 2 α

α+β
Pd

1− α
α+β
− Pf + 2 α

α+β
Pf

=
β + (α− β)Pd
β + (α− β)Pf



129

and

a∗	 =

α
α+β

+ Pd − 2 α
α+β

Pd
α

α+β
+ Pf − 2 α

α+β
Pf

=
α + (β − α)Pd
α + (β − α)Pf

.

This gives a K out of N rule with optimal K∗ given by

K∗ =

 log P0

P1
−Nc log a∗	

log
a∗⊕
a∗	

 . (6.13)

If these data fusion components of Fig. 6.5 are from different crowds, one can go higher in the

Bayesian hierarchical model and use the population parameters to determine the optimal fusion

rule. Also, any machines using CV rules in the penultimate level of the hierarchical sociotechnical

system can be regarded as a human agent with a perfect match value of 1. Such a generality can

help us in potentially constructing arbitrary-depth trees of sociotechnical decision-making, where

humans are modeled and the machines are optimized.

In the following, the benefit associated with the Bayesian hierarchical model is characterized.

Consider the case when such a model of human decision fusion is ignored, then the optimal K∗sen

for the K out of N rule is given by

K∗sen =


log P0

P1
−Nc log 1−Pd

1−Pf

log
Pd(1−Pf )

Pf (1−Pd)

 . (6.14)

The error probability for fixed K is

Pe(K) = P0

Nc∑
i=K

(
Nc

i

)(
β + (α− β)Pf

α + β

)i(
α− (α− β)Pf

α + β

)Nc−i
+ P1

K−1∑
i=0

(
Nc

i

)(
β + (α− β)Pd

α + β

)i(
α− (α− β)Pd

α + β

)Nc−i
. (6.15)

Therefore, the performance loss by ignoring the effect of humans in the system is due to the

mismatched K value and is given by (6.16).
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Fig. 6.6: Percentage improvement in system performance by using the Bayesian hierarchical
model for system design with varying prior probability

∆Pe =


∑K∗−1
i=K∗

sen

(
Nc

i

) [
P0

(
β+(α−β)Pf

α+β

)i (
α−(α−β)Pf

α+β

)Nc−i
− P1

(
β+(α−β)Pd

α+β

)i (
α−(α−β)Pd

α+β

)Nc−i
]
, if K∗ > K∗sen,∑K∗

sen−1
i=K∗

(
Nc

i

) [
P1

(
β+(α−β)Pd

α+β

)i (
α−(α−β)Pd

α+β

)Nc−i
− P0

(
β+(α−β)Pf

α+β

)i (
α−(α−β)Pf

α+β

)Nc−i
]
, if K∗ < K∗sen

(6.16)

In Fig. 6.6, the performance gain by using the Bayesian hierarchical model is plotted against

different values of prior probability. The parameters used are Nc = 5, Pd = 0.9, Pf = 0.1,

α = 5, and β = 3. As can be observed, by utilizing the knowledge of human decision fusion

components in the system during system design, one can improve the performance by around 35%

on an average.

The sudden jump in performance gain around priors P0 = 0.1 and P0 = 0.9 is due to the chosen

values of Pd and Pf and can be analytically determined using the expressions in (6.13) and (6.14).

Also, note that the region around P0 = 0.5 for which there is no performance improvement is due

to the situation when the term dependent on the prior dominates the other terms in the expressions

of K∗ and K∗sen, thereby resulting in equal values of K∗ and K∗sen. The width of this region where

there is no performance gain depends on the values of α and β as we can see in Fig. 6.7, as P0 = 0.3

is outside this region for β ≥ 1.5 while it is within this region for β < 1.5. Similar observations

can be made for different values of priors.
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6.5 Discussion

In this chapter, the decision fusion problem has been considered. It was first observed for a system

involving humans that a deterministic optimal fusion rule, such as the Chair-Varshney rule, does

not characterize the human behavior, since data fusion by humans is not deterministic in nature.

For a given set of data, the optimal deterministic rule gives the same output at any time instant. On

the other hand, the output changes for different humans and in some cases, for the same human

at different time instant, as pointed by Payne and Bettman in [107]. This suggests the use of a

randomized decision rule, which was the focus of the next part of the chapter. Hierarchical models

have been developed which characterize this behavior. The effect of such models on the design of

larger human-machine systems has been demonstrated.

Having analyzed the effect of unreliable humans in this chapter and the previous one, in the

next chapter, human networks with such unskilled humans are considered and a coding theory

based scheme to ensure reliable inference from them is developed.
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CHAPTER 7

CLASSIFICATION IN HUMAN NETWORKS:

RELIABLE INFERENCE

7.1 Introduction

In the previous chapters, the effect of unskilled humans in the network was analyzed and it was

shown that the performance can be suboptimal due to their presence. In this chapter, the case when

the local agents are humans but the global agent is a machine is considered and schemes are de-

signed that can use such unskilled humans and still yield reasonable performance at the FC. This

setup is that of crowdsourcing where workers often find microtasks tedious and due to lack of moti-

vation fail to generate high-quality work [112]. It is, therefore, important to design crowdsourcing

systems with sufficient incentives for workers [83]. The most common incentive for workers is

monetary reward, but in [151], it has been found that intrinsic factors such as the challenge as-

sociated with the task was a stronger motivation for crowd workers than extrinsic factors such

as rewards. Unfortunately, it has been reported that increasing financial incentives increases the

number of tasks which the workers take part in but not the per task quality [96]. Recent research,

however, suggests that making workers’ rewards co-dependent on each other can significantly in-

crease the quality of their work. This suggests the potency of a peer-dependent reward scheme
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for quality control [61]. In a teamwork-based scheme, paired workers are rewarded based on their

average work whereas in a competition-based scheme, the paired worker who performs the best

gets the entire reward. Herein, we develop a mathematical framework to evaluate the effect of such

pairings among crowd workers.

Another interesting phenomenon in crowdsourcing is dependence of observations among crowd

workers [111]. Crowds may share common sources of information, leading to dependent obser-

vations among the crowd workers performing the task. Common sources of information have

oft-been implicated in the publishing and spread of false information across the internet, e.g. the

premature Steve Jobs obituary, the second bankruptcy of United Airlines, and the creation of black

holes by operating the Large Hadron Collider [19]. A graphical model may be used to characterize

such dependence among crowd workers [111].

In typical networked sensing systems, heterogeneous sensors are used to observe a phenomenon

and to collaboratively make inferences (detection, classification, or estimation), where algorithms

at the sensors or at a fusion center are derived to operate optimally or near-optimally. In large sen-

sor networks consisting of inexpensive battery-powered sensors with limited capabilities, one key

issue has been to maintain inference quality in the presence of faulty sensors or communication

errors. Recently an innovative marriage of concepts from coding theory and distributed inference

has been proposed [166,170], where the goal is to jointly maximize classification performance and

system fault tolerance by jointly designing codes and decision rules at the sensors. In the present

work, we apply distributed inference codes [166] to crowdsourcing tasks like classification. This

is consistent with popular uses of crowdsourcing microtask platforms such as Amazon Mechanical

Turk.

Since quality control is a central concern for crowdsourcing [62], previous work considered

numerical analysis methods [55] and binary classification tasks [70, 71]. In [70, 71], the authors

considered the problem of task allocation in a crowdsourcing system; an iterative algorithm based

on belief propagation was proposed for inferring the final answer from the workers’ responses. This

algorithm was shown to perform as well as the best possible algorithm. They also provided numer-
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ical results for large system size and showed that their approach outperforms the majority-based

approach. Extensions to a multi-class labeling task [72] provided an algorithm to obtain the best

tradeoff between reliability and redundancy. This algorithm was based on low-rank approximation

of weighted adjacency matrices for random regular bipartite graphs used for task allocation.

In this chapter, a coding theory based scheme is proposed which has two-fold benefits. The

coding-based scheme helps us in designing easy-to-answer binary questions for the humans that

improves the performance of individual agents. The second benefit is on the decoding side where

the error-correcting code can tolerate a few errors from these agents and, therefore, make reliable

inferences. The remainder of the chapter is organized as follows: In Sec. 7.2, a mathematical

model of the crowdsourcing problem is developed and the coding-based approach is proposed. In

Sec. 7.3, a crowdsourcing system with independent workers is considered. The peer-dependent

reward scheme is introduced in Sec. 7.4 and the system is further generalized in Sec. 7.5 by al-

lowing dependence among crowd worker observations. For each of these models, in turn, misclas-

sification performance expressions for both coding- and majority-based approaches are derived.

Examples demonstrate that systems with good codes outperform systems that use majority voting.

Experimental results using real data from Amazon Mechanical Turk are also provided wherever

applicable. Concluding remarks are provided in Sec. 7.6.

7.2 Coding for Crowdsourcing

In this section, the basic concept of using error-correcting codes to achieve reliable classification

in a crowdsourcing system is discussed.

7.2.1 Reliable Classification using Crowds

First, we describe how the DCFECC approach discussed in Sec. 2.4 can be used in crowdsourcing

systems to design the questions to be posed to the crowd workers. As an example, consider an

image to be classified into one of M fine-grained categories. Since object classification is often
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difficult for machine vision algorithms, human workers may be used for this task. In a typical

crowdsourcing microtask platform, a task manager creates simple tasks for the workers to com-

plete, and the results are combined to produce the final result. Due to the low pay of workers

and the difficulty of tasks, individual results may be unreliable. Furthermore, workers may not

be qualified to make fine-grained M -ary distinctions, but rather can only answer easier questions.

Therefore, in the proposed approach, codes are used to design microtasks and decoding is per-

formed to aggregate responses reliably.

Consider the task of classifying a dog image into one of four breeds: Pekingese, Mastiff,

Maltese, or Saluki. Since workers may not be canine experts, they may not be able to directly

classify and so we should ask simpler questions. For example, the binary question of whether a dog

has a snub nose or a long nose differentiates between {Pekingese, Mastiff} and {Maltese, Saluki},

whereas the binary question of whether the dog is small or large differentiates between {Pekingese,

Maltese} and {Mastiff, Saluki}. Using a code matrix, we now show how to design binary questions

for crowd workers that allow the task manager to reliably infer correct classification even with

unreliable workers.

As part of modeling, assume that worker j decides the true class (local decision yj) with prob-

ability pj and makes the wrong classification with uniform probability:

p(yj|Hm) =


pj if yj = m

1−pj
M−1

otherwise,
(7.1)

Note that, the uniform noise model here can be regarded as the “worst case” in terms of

information. In such a case, this would relate to an upper bound on the performance of the

system. For every worker j, let aj be the corresponding column of A and recall hypothesis

Hl ∈ {H0, H1, · · · , HM−1} is associated with row l in A. The local workers send a binary an-

swer uj based on decision yj and column aj . An illustrative example is shown in Fig. 7.1 for the

dog breed classification task above. Let the columns corresponding to the ith and jth workers be
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MINIMUM 
HAMMING 
DISTANCE 
DECODER

i =[1 0 1 0]

j =[1 1 0 0]

SMALL OR LARGE?

SNUB NOSE OR 
LONG NOSE?

Fig. 7.1: A schematic diagram showing binary questions posed to workers and the decoding rule
used by the task manager

ai = [1010]′ and aj = [1100]′ respectively. The ith worker is asked: “Is the dog small or large?”

since the worker is to differentiate between the first (Pekingese) or third (Maltese) breed and the

others. The jth worker is asked: “Does the dog have a snub nose or a long nose?” since the worker

is to differentiate between the first two breeds (Pekingese, Mastiff) and the others. These questions

can be designed using taxonomy and dichotomous keys [121]. Knowing that Pekingese and Mal-

tese are small dogs while the other two breeds are large, we can design the appropriate question as

“Is the dog small or large?” for ith worker whose corresponding column is ai = [1010]′. The task

manager makes the final classification as the hypothesis corresponding to the codeword (row) that

is closest in Hamming distance to the received vector of decisions.

7.2.2 Unreliable Workers

Although distributed classification in sensor networks and in crowdsourcing are structurally simi-

lar, an important difference is the anonymity of crowds. Since crowd workers are anonymous, one

cannot identify the specific reliability of any specific worker as could be done for a sensor. Hence,

each worker j in the crowd is assumed to have an associated reliability pj , drawn from a common

distribution that characterizes the crowd. Herein, three different crowd models that generate crowd

reliabilities are considered: individual and independent crowd workers; crowd workers governed

by peer-dependent reward schemes; and crowd workers with common sources of information. In

the following sections, each of these models is analyzed to evaluate the proposed coding-based



137

scheme.

7.3 Crowdsourcing System with Individual Crowd Work-

ers

In this section, the basic crowdsourcing system is analyzed where independent crowd workers

perform the task individually and are rewarded based on their decision only.

7.3.1 Model

The system consisting of individual and independent workers can be modeled as one where the

workers’ reliabilities are drawn i.i.d. from a specific distribution. Two crowd reliability models

namely a spammer-hammer model and a beta model are considered herein. In a spammer-hammer

model, the crowd consists of two kinds of workers: spammers and hammers. Spammers are unre-

liable workers that make a decision at random whereas hammers are reliable workers that make a

decision with high reliability. The quality of the crowd, Q, is governed by the fraction of hammers.

In a beta model, the reliabilities of workers are drawn from a beta distribution with parameters α

and β.

7.3.2 Performance Characterization

Having defined a coding-based approach to reliable crowdsourcing, its performance is determined

in terms of average misclassification probability for classification under minimum Hamming dis-

tance decoding. Suppose N workers take part in an M -ary classification task. Let p denote the

reliabilities of these workers, such that pj for j = 1, . . . , N are i.i.d. random variables with mean

µ. Define this to be an (N,M, µ) crowdsourcing system.

Proposition 7.3.1. Consider an (N,M, µ) crowdsourcing system. The expected misclassification
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probability using code matrix A is:

Pe(µ) =
1

M

∑
i,l

N∏
j=1

[(
µalj +

(1− µ)

(M − 1)

∑
k 6=l

akj

)
(2ij − 1) + (1 − ij)

]
C l

i , (7.2)

where i = [i1, · · · , iN ] ∈ {0, 1}N is the received codeword and C l
i is the cost associated with a

global decision Hl when the received vector is i. This cost is:

C l
i =


1− 1

%
if i is in decision region of Hl

1 otherwise.
(7.3)

where % is the number of decision regions1 i belongs to; % can be greater than one when there is a

tie at the task-manager and the tie-breaking rule is to choose one of them randomly.

Proof. Let Pe,p denote the misclassification probability given the reliabilities of the N workers.

Then, if uj denotes the bit sent by the worker j and the global decision is made using the Hamming

distance criterion:

Pe,p =
1

M

∑
i,l

P (u = i|Hl)C
l
i . (7.4)

Since local decisions are conditionally independent, P (u = i|Hl) =
∏N

j=1 P (uj = ij|Hl). Further,

P (uj = ij|Hl) = ijP (uj = 1|Hl) + (1− ij)P (uj = 0|Hl)

= (1− ij) + (2ij − 1)P (uj = 1|Hl)

= (1− ij) + (2ij − 1)
M∑
k=1

akjP (yj = k|Hl)

= (1− ij) +

(
pjalj +

(1− pj)
(M − 1)

∑
k 6=l

akj

)
(2ij − 1)

where yj is the local decision made by worker j. Since reliabilities pj are i.i.d. with mean µ, the

desired result follows.
1For each Hl, the set of i for which the decision Hl is taken is called the decision region of Hl.
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Performance Bound

Yao et al. provide performance analysis for the distributed M -ary classification fusion system with

minimum Hamming distance fusion [170]. Their result is stated here without proof. This result

can be used in the context of distributed M -ary classification using N workers with reliabilities

{pj}Nj=1 and a code matrix A for coding-based classification.

Proposition 7.3.2 ( [170]). Let Pe be the probability of minimum Hamming distance fusion mis-

classification error given as

Pe ,
1

M

M−1∑
i=1

P (fusion decision 6= Hi|Hi). (7.5)

If for every l 6= i

∑
{j∈[1,··· ,N ]:alj 6=aij}

E[zi,j] =
N∑
j=1

(alj ⊕ aij)(2qi,j − 1) < 0, (7.6)

where 0 ≤ l, i ≤ M − 1, zi,j , 2(uj ⊕ aij) − 1, ⊕ represents the ‘xor’ operation and qi,j ,

P{zi,j = 1|Hi}, then

Pe ≤ 1

M

M−1∑
i=0

∑
0≤l≤M−1,l 6=i

inf
θ≥0

exp

{∑
j=1

N log (qi,je
θ + (1− qi,j)e−θ)alj⊕aij

}
. (7.7)

The proof of the proposition follows from large deviations theory [170]. In crowdsourcing, the

probabilities qi,j = P{uj 6= aij} can be easily computed as:

qi,j =
M−1∑
l=0

(aij ⊕ alj)h(j)
l|i , (7.8)

where h(j)
l|i is the probability that worker j decides Hl when the true hypothesis is Hi and are given
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by

h
(j)
l|i =


pj, i = l

1−pj
M−1

, i 6= l.
(7.9)

7.3.3 Majority Voting

A traditional approach in crowdsourcing has been to use a majority vote to combine local decisions;

we also derive its performance for purposes of comparison. ForM -ary classification, each worker’s

local decision is modeled as log2M -bit valued, but since workers only answer binary questions,

theN workers are split into log2M groups with each group sending information regarding a single

bit. For example, consider the dog breed classification task of Sec. 7.2.1 which has M = 4

classes. Let us represent the classes by 2-bit numbers as follows: Pekingese is represented as

‘00’, Mastiff as ‘01’, Maltese as ‘10’, and Saluki as ‘11’. The N crowd workers are split into 2

groups. In traditional majority vote, since the workers are asked M -ary questions, each worker

first identifies his/her answer. After identifying his/her class, the first group members send the first

bit corresponding to their decisions, while the second group members send the second bit of their

decisions. The task manager uses a majority rule to decide each of the log2M bits separately and

concatenates to make the final classification. Suppose N is divisible by log2M .

Proposition 7.3.3. Consider an (N,M, µ) crowdsourcing system. The expected misclassification

probability using majority rule is:

Pe(µ) = 1− 1

M

[
1 + SÑ,(1−q)

(
Ñ

2

)
− SÑ,q

(
Ñ

2

)]log2M

, (7.10)

where Ñ = N
log2 M

, q = M(1−µ)
2(M−1)

, and SN,p(·) is the survival function (complementary cumulative

distribution function) of the binomial random variable B(N, p).

Proof. In a majority-based approach, Ñ = N
log2M

workers send information regarding the ith bit

of their local decision, i = 1, . . . , log2M . For a correct global decision, all bits have to be correct.

Consider the ith bit and let P i
c,p be the probability of the ith bit being correct given the reliabilities
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of the Ñ workers sending this bit. Then,

P i
c,p =

Pd + 1− Pf
2

, (7.11)

where Pd is the probability of detecting the ith bit as ‘1’ when the true bit is ‘1’ and Pf is the prob-

ability of detecting the ith bit as ‘1’ when the true bit is ‘0’. Note that ‘0’ and ‘1’ are equiprobable

since all hypotheses are equiprobable. Under majority rule for this ith bit,

Pd =
Ñ∑

j=b Ñ
2

+1c

∑
∀Gj

∏
k∈Gj

(
1− M(1− pk)

2(M − 1)

) ∏
k/∈Gj

M(1− pk)
2(M − 1)

,

where Gj is a set of j out of Ñ workers who send bit value ‘1’ and M(1−pk)
2(M−1)

is the probability of

the kth worker making a wrong decision for the ith bit. Similarly,

Pf =
Ñ∑

j=b Ñ
2

+1c

∑
∀Gj

∏
k∈Gj

M(1− pk)
2(M − 1)

∏
k/∈Gj

(
1− M(1− pk)

2(M − 1)

)
.

Now the overall probability of correct decision is given by Pc,p =
∏log2 M

i=1 P i
c,p. Since reliabilities

are i.i.d., the expected probability of correct decision Pc is:

Pc =

log2M∏
i=1

E[P i
c,p], (7.12)

where expectation is with respect to p. Since reliabilities are i.i.d.:

E[Pd] =

Ñ∑
j=b Ñ

2
+1c

(
Ñ

j

)
(1− q)jq(Ñ−j) = SÑ,(1−q)

(
Ñ

2

)
, (7.13)

E[Pf ] =
Ñ∑

j=b Ñ
2

+1c

(
Ñ

j

)
qj(1− q)(Ñ−j) = SÑ,q

(
Ñ

2

)
. (7.14)

Using (7.11), (7.12), (7.13), and (7.14), we get the desired result.
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7.3.4 Performance Evaluation

The expressions derived in the previous subsection help us in understanding the behavior of crowd-

sourcing systems. One can define an ordering principle for the quality of crowds in terms of the

quality of their distributed inference performance. This is a valuable concept since it provides us

a tool to evaluate a given crowd. Such a valuation could be used by the task manager to pick the

appropriate crowd for the task based on the performance requirements. For example, if the task

manager is interested in constraining the misclassification probability of his/her task to ε while

simultaneously minimizing the required crowd size, the above expressions can be used to choose

the appropriate crowd.

Theorem 7.3.4 (Ordering of Crowds). Consider crowdsourcing systems involving crowd C(µ) of

workers with i.i.d. reliabilities with mean µ. Crowd C(µ) performs better than crowd C(µ′) for

classification if and only if µ > µ′.

Proof. As can be observed from Props. 7.3.1 and 7.3.3, the average misclassification probabilities

depend only on the mean of the reliabilities of the crowd. Therefore, it follows that crowd C(µ) of

workers with i.i.d. reliabilities with mean µ performs better for classification than crowd C(µ′) of

workers with i.i.d. reliabilities with mean µ′ as µ > µ′.

Since the performance criterion is average misclassification probability, this can be regarded

as a weak criterion of crowd-ordering in the mean sense. Thus, with this crowd-ordering, better

crowds yield better performance in terms of average misclassification probability. Indeed, misclas-

sification probability decreases with better quality crowds. In this chapter, the term reliability has

been used to describe the individual worker’s reliability while the term quality is a description of

the total reliability of a given crowd (a function of mean µ of worker reliabilities). For example,

for the spammer-hammer model, quality of the crowd is a function of the number of hammers in

the crowd, while the individual crowd workers have different reliabilities depending on whether

the worker is a spammer or a hammer.



143

Proposition 7.3.5. Average misclassification probability reduces with increasing quality of the

crowd.

Proof. Observe from Props. 7.3.1 and 7.3.3 for coding- and majority-based approaches, respec-

tively, that the average misclassification probability is a monotonically decreasing function of the

mean of reliabilities of the crowd (µ). This value µ serves as a quality parameter of the crowd and,

therefore, average misclassification probability reduces with increasing quality of the crowd.

To get more insight, a crowdsourcing system with coding is simulated as follows: N = 10

workers take part in a classification task with M = 4 equiprobable classes. A good code matrix A

is found by simulated annealing [166]:

A = [5, 12, 3, 10, 12, 9, 9, 10, 9, 12]. (7.15)

Here and in the sequel, code matrices are represented as a vector of M bit integers. Each integer

rj represents a column of the code matrix A and can be expressed as rj =
∑M−1

l=0 alj × 2l. For

example, the integer 5 in column 1 of A represents a01 = 1, a11 = 0, a21 = 1 and a31 = 0.

Consider the setting where all the workers have the same reliability pj = p. Fig. 7.2 shows the

probability of misclassification as a function of p. As is apparent, the probability of misclassifica-

tion reduces with reliability and approaches 0 as p→ 1, as expected.

Now the performance of the coding-based approach is compared to the majority-based ap-

proach. Fig. 7.3 shows misclassification probability as a function of crowd quality for N = 10

workers taking part in an (M = 4)-ary classification task. The spammer-hammer model, where

spammers have reliability p = 1/M and hammers have reliability p = 1, is used. The figure shows

a slight improvement in performance over majority vote when code matrix (7.15) is used.

Now consider a larger system with increased M and N . A good code matrix A for N = 15

and M = 8 is found by cyclic column replacement:

A = [150, 150, 90, 240, 240, 153, 102, 204, 204, 204, 170, 170, 170, 170, 170]. (7.16)
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Fig. 7.2: Coding-based crowdsourcing system misclassification probability as a function of worker
reliability
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Fig. 7.3: Misclassification probability as a function of crowd quality using coding- and majority-
based approaches with the spammer-hammer model, (M = 4, N = 10).
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The code matrix for the system with N = 90 and M = 8 is formed sub-optimally by concate-

nating the columns of (7.16) six times. Due to the large system size, it is computationally very

expensive to optimize for the code matrix using either the simulated annealing or cyclic column

replacement methods. Therefore, we concatenate the columns of (7.16). This can be interpreted

as a crowdsourcing system of 90 crowd workers consisting of 6 sub-systems with 15 workers each

which are given the same task and their data is fused together. In the extreme case, if each of these

sub-systems was of size one, it would correspond to a majority vote where all the workers are

posed the same question. Fig. 7.4 shows the performance when M = 8 and N takes the two val-

ues: N = 15 and N = 90. These figures suggest that the gap in performance generally increases

for larger system size. Similar observations hold for the beta model of crowds, see Figs. 7.5 and

7.6. Good codes perform better than majority vote as they diversify the binary questions which are

asked to the workers. From extensive simulations, we found that the coding-based approach is not

very sensitive to the choice of code matrix A as long as we have approximately equal number of

ones and zeroes in every column. However, if we use any code randomly, performance may de-

grade substantially, especially when the quality of crowd is high. For example, consider a system

consisting of N = 15 workers performing a (M = 8)-ary classification task. Their reliabilities

are drawn from a spammer-hammer model and Fig. 7.7 shows the performance comparison be-

tween the coding-based approach using the optimal code matrix, majority-based approach and the

coding-based approach using a random code matrix with equal number of ones and zeroes in every

column. It can be observed that the performance of the coding-based approach with a random code

matrix deteriorates for higher quality crowds.

Experimental ResultsFor Real Datasets

In this section, the proposed coding- based approach is tested on six publicly available Amazon

Mechanical Turk data sets—quantized versions of the data sets in [130]: the anger, disgust, fear,

joy, sadness and surprise datasets of the affective text task. Each of the data sets consist of 100

tasks with N = 10 workers taking part in each. Each worker reports a value between 0 and 100,
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Fig. 7.4: Misclassification probability as a function of crowd quality using coding- and majority-
based approaches with the spammer-hammer model, (M = 8).
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Fig. 7.5: Misclassification probability as a function of β using coding- and majority-based ap-
proaches with the Beta(α = 0.5, β) model, (M = 4, N = 10).



147

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−3

10−2

10−1

100

β

M
is

cl
as

si
fic

at
io

n 
pr

ob
ab

ili
ty

 

 

Coding Approach (N=15)
Majority Approach (N=15)
Coding Approach (N=90)
Majority Approach (N=90)

Fig. 7.6: Misclassification probability as a function of β using coding- and majority-based ap-
proaches with the Beta(α = 0.5, β) model, (M = 8).
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Fig. 7.7: Misclassification probability as a function of crowd quality using optimal code matrix,
random code matrix for coding-based approach and majority approach with the spammer-hammer
model, (M = 8, N = 15).
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Table 7.1: Fraction of errors using coding- and majority-based approaches
Dataset Coding-based approach Majority-based approach
Anger 0.31 0.31
Disgust 0.26 0.20
Fear 0.32 0.30
Joy 0.45 0.47
Sadness 0.37 0.39
Surprise 0.59 0.63

and there is a gold-standard value for each task. For the analysis, the values are quantized by

dividing the range into M = 8 equal intervals. The majority -based approach is compared with the

proposed coding-based approach. A good optimal code matrix for N = 10 and M = 8 is designed

by simulated annealing [166]:

A = [113, 139, 226, 77, 172, 74, 216, 30, 122]. (7.17)

Table 7.1 compares the performance of the coding- and majority-based approaches. The values

in Table 7.1 are the fraction of wrong decisions made, as compared with the gold-standard value.

As indicated, the coding-based approach performs at least as well as the majority-based approach

in 4 of 6 cases considered. The gap in performance is expected to increase as problem size M and

crowd size N increase. Also, while it is true that the coding-based approach is only slightly better

than the majority approach in the cases considered in Table 7.1, this comparison only shows the

benefit of the proposed coding-based approach in terms of the fusion scheme. The datasets contain

data for tasks where the workers have reported continuous values and, therefore, it does not capture

the benefit of asking binary questions. This aspect is a major benefit of the proposed coding-based

approach whose empirical testing is yet to be carried out.
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7.4 Crowdsourcing System with Peer-dependent Reward

Scheme

In this section, the crowdsourcing system is considered wherein the crowd workers are paired into

groups of two and their reward value is based on the comparative performance among the paired

workers [61]. This has been proposed as a method for increasing worker motivation.

7.4.1 Model

Two kinds of worker pairings are considered: competitive and teamwork. Both kinds can be cap-

tured by considering crowd reliability models where worker reliabilities are no longer independent

as in Sec. 7.3. For simplicity, assume that N is even so that each worker j has a corresponding

partner jp and there are a total of N/2 pairs. The reliabilities of these paired workers are correlated

with covariance ρ, which is assumed to be the same for all pairs due to the identical nature of

workers. Also, workers within a pair are independent of the workers outside their pair. Hence:

cov(pi, pj) =


0, if i 6= jp

ρ, if i = jp.
(7.18)

The value of ρ depends on whether workers are paired for teamwork or for competition [61]. An

(N,M, µ, ρ) crowdsourcing system has N workers performing an M -ary classification task and

having reliabilities pj which are identical random variables with mean µ and covariance structure

defined by (7.18).

7.4.2 Performance Characterization

In this section, the misclassification probability is derived when the crowd workers are correlated.

As described above, this scenario takes place when the workers are paired with each other.
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Proposition 7.4.1. Consider an (N,M, µ, ρ) crowdsourcing system. The expected misclassifica-

tion probability using code matrix A is:

Pe(µ, ρ) =
1

M

∑
i,l

C l
i

N
2∏
j=1

[
(1− ij)(1− ijp) + (1− ij)(2ijp − 1)(

µaljp +
(1− µ)

(M − 1)

∑
k 6=l

akjp

)
+ (1− ijp)(2ij − 1)(

µalj +
(1− µ)

(M − 1)

∑
k 6=l

akj

)
+ (2ij − 1)(2ijp − 1)

(
(ρ+ µ2)aljaljp +

µ− (ρ+ µ2)

(M − 1)

(
alj
∑
k 6=l

akjp + aljp
∑
k 6=l

akj

)

+
4r

M2

∑
k 6=l

akjp
∑
k 6=l

akj

)]
(7.19)

where r =
(

M
2(M−1)

)2

[(1− µ)2 + ρ], i = [i1, · · · , iN ] ∈ {0, 1}N is the received codeword and C l
i

is the cost associated with a global decision Hl when the received vector is i. This cost is given in

(7.3).

Proof. Let Pe,p denote the misclassification probability given the reliabilities of the N workers.

Then, if uj denotes the bit sent by the worker j and the global decision is made using the Ham-

ming distance criterion, Pe,p = 1
M

∑
i,l P (u = i|Hl)C

l
i . Since local decisions are conditionally

independent, P (u = i|Hl) =
∏N

j=1 P (uj = ij|Hl). Further,

P (uj = ij|Hl) = ijP (uj = 1|Hl) + (1− ij)P (uj = 0|Hl)

= (1− ij) + (2ij − 1)P (uj = 1|Hl)

= (1− ij) + (2ij − 1)
M∑
k=1

akjP (yj = k|Hl)

= (1− ij) + (2ij − 1)

(
pjalj +

(1− pj)
(M − 1)

∑
k 6=l

akj

)

where yj is the local decision made by worker j. Note that the reliabilities pj of workers across
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pairs are independent while the workers within the pair are correlated according to (7.18). There-

fore:

E

[
N∏
j=1

P (uj = ij|Hl)

]
=

N/2∏
j=1

E
[
P (uj = ij|Hl)P (ujp = ijp |Hl)

]
=

N/2∏
j=1

E

[(
(1− ij) +

(
pjalj +

(1−pj)
(M−1)

∑
k 6=l

akj

)
(2ij − 1)

)
(

(1− ijp) +

(
pjpaljp +

(1−pjp )

(M−1)

∑
k 6=l

akjp

)
(2ijp − 1)

)]
(7.20)

The above equation, correlation structure (7.18) and definition r =
(

M
2(M−1)

)2

[(1− µ)2 + ρ] yield

the desired result.

7.4.3 Majority Voting

As mentioned before, for the sake of comparison, error performance expressions are derived for

the majority-based approach too. Consider majority vote, with N divisible by 2 log2M .

Proposition 7.4.2. Consider an (N,M, µ, ρ) crowdsourcing system. The expected misclassifica-

tion probability using majority rule is:

Pe(µ, ρ) = 1 − 1

M

[
1 +

Ñ∑
j=b Ñ

2
+1c

bj(Ñ , q, r)
[
(1− 2q + r)(j− Ñ

2
) − r(j− Ñ

2
)
] ]log2 M

,

where

bj(Ñ , q, r) =

b Ñ−j
2
c∑

g=0

(
Ñ
2

g

)( Ñ
2
− g

j + g − Ñ
2

)
[2 (q − r)](Ñ−j−2g) (r − 2qr + r2)g,

Ñ = N
log2M

, q = M(1−µ)
2(M−1)

, and r =
(

M
2(M−1)

)2

[(1− µ)2 + ρ].

Proof. In a majority-based approach, Ñ = N
log2M

workers send information regarding the ith
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bit of their local decision, i = 1, . . . , log2M . For a correct global decision, all bits have to be

correct. Consider the ith bit and let P i
c,p be the probability of the ith bit being correct given the

reliabilities of the Ñ workers sending this bit. Also, assume that the paired workers send the same

bit information. Then,

P i
c,p =

Pd + 1− Pf
2

, (7.21)

where Pd is the probability of detecting the ith bit as ‘1’ when the true bit is ‘1’ and Pf is the prob-

ability of detecting the ith bit as ‘1’ when the true bit is ‘0’. Note that ‘0’ and ‘1’ are equiprobable

since all the hypotheses are equiprobable. Under majority rule for this ith bit,

Pd =
Ñ∑

j=b Ñ
2

+1c

∑
∀Gj

∏
k∈Gj

(
1− M(1− pk)

2(M − 1)

) ∏
k/∈Gj

M(1− pk)
2(M − 1)

, (7.22)

where Gj is a set of j out of Ñ workers who send bit value ‘1’ and M(1−pk)
2(M−1)

is the probability of

the kth worker making a wrong decision for the ith bit. Similarly,

Pf =
Ñ∑

j=b Ñ
2

+1c

∑
∀Gj

∏
k∈Gj

M(1− pk)
2(M − 1)

∏
k/∈Gj

(
1− M(1− pk)

2(M − 1)

)
, (7.23)

Now the overall probability of correct decision is given by Pc,p =
∏log2M

i=1 P i
c,p. Since the

workers across the groups are independent, the expected probability of correct decision Pc is:

Pc =

log2M∏
i=1

E[P i
c,p], (7.24)

where expectation is with respect to p. Within the same group, paired workers exist who are

correlated and, therefore, the reliabilities are not independent. Let g pairs of workers be present

in the set Gc
j , where 0 ≤ g ≤ Ñ−j

2
. This implies that 2g workers in Gc

j are correlated with their

partners in the same group and the remaining (Ñ− j−2g) are correlated with their paired workers

in Gj . Therefore, there are (j + g − Ñ
2

) pairs of correlated workers in Gj . The number of such
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divisions of workers into Gj and Gc
j such that there are exactly g pairs of correlated workers in Gc

j

is determined as the number of ways of choosing g possible pairs from a total of Ñ
2

pairs forGc
j and

(j + g − Ñ
2

) pairs of correlated workers from the remaining ( Ñ
2
− g) pairs for Gj . The remaining

(Ñ − j − 2g) workers of Gc
j(Gj) have their paired workers in Gj(G

c
j) and this gives the following

number of ways of such divisions:

Ng =

(
Ñ
2

g

)( Ñ
2
− g

j + g − Ñ
2

)
2(Ñ−j−2g). (7.25)

Define q = M(1−µ)
2(M−1)

as the expected probability of a worker deciding a wrong bit and

r = E

[
M(1− pk)
2(M − 1)

M(1− pkp)
2(M − 1)

]
(7.26)

=

(
M

2(M − 1)

)2

[(1− µ)2 + ρ] (7.27)

as the expected probability that both the workers in a correlated worker pair send wrong bit infor-

mation. Taking the expectation of Pd and Pf (cf. (7.22), (7.23)) and using (7.25), we get:

E[Pd] =
Ñ∑

j=b Ñ
2

+1c

b Ñ−j
2
c∑

g=0

(
Ñ
2

g

)( Ñ
2
− g

j + g − Ñ
2

)

[2 (q − r)](Ñ−j−2g) rg(1− 2q + r)(j+g− Ñ
2

)

=
Ñ∑

j=b Ñ
2

+1c

bj(Ñ , q, r)(1− 2q + r)(j− Ñ
2

) (7.28)
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and

E[Pf ] =
Ñ∑

j=b Ñ
2

+1c

b Ñ−j
2
c∑

g=0

(
Ñ
2

g

)( Ñ
2
− g

j + g − Ñ
2

)

[2 (q − r)](Ñ−j−2g) r(j+g− Ñ
2

)(1− 2q + r)g

=
Ñ∑

j=b Ñ
2

+1c

bj(Ñ , q, r)r
(j− Ñ

2
). (7.29)

Using (7.21), (7.24), (7.28), and (7.29), gives the desired result.

Some observations can be made here. First, when workers are not paired and instead perform

the task individually, they are independent and ρ = 0. Therefore, r = q2 and Pe(µ, 0) for majority-

and coding-based approaches from Props. 7.4.1 and 7.4.2 reduces to the results from Sec. 7.3.

Second, a crowd with mean µ = 1/M , i.e., a crowd with workers of poor reliabilities on an average,

has q = 1/2 and performs no better than random classification which gives Pc(1/M, ρ) = 1/M for

the majority case or Pe(1/M, ρ) = (M−1)
M

. Similar observations can be made for the coding-based

approach.

7.4.4 Performance Evaluation

Next, the performance of this system with peer-dependent reward scheme is evaluated. As men-

tioned before, such a scheme results in correlation among the crowd workers. Fig. 7.8 shows the

performance of a system with peer-dependent reward scheme with varying correlation parameter

(ρcorr). Note that the plots are with respect to the correlation coefficient (ρcorr) and the equations

are with respect to the covariance parameter (ρ). The plots are for a system with N crowd workers

and M = 8, i.e., performing 8-ary classification. As the figure suggests, the performance of the

system improves when the workers are paired in the right manner. Note that when the crowd-

sourcing system with peer-dependent reward scheme has ρcorr = 0, it reduces to the system with

individual crowd workers considered in Sec. 7.3. Fig. 7.8 includes the system with independent
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Fig. 7.8: Misclassification probability as a function of ρcorr using coding- and majority-based
approaches with the Beta(α = 0.5, β = 0.5) model, (M = 8).

crowd workers as a special case when ρcorr = 0. Also, these results suggest that having a negative

correlation among workers results in better performance while a positive correlation deteriorates

system performance. This observation can be attributed to the amount of diversity among the crowd

workers. When ρcorr = 1, the workers are correlated with each other while a correlation value of

ρcorr = −1 corresponds to a diverse set of workers which results in improved performance.

7.5 Crowdsourcing System with Common Sources of In-

formation

In this section, the above model is further generalized by considering dependence among the obser-

vations of the crowd workers; previous sections had considered independent local observations by

crowd workers. Although Sec. 7.4 considered paired workers with correlated reliabilities, here ob-

servations by crowd workers are dependent too. Crowd workers may have dependent observations

when they share a common information source [111].



156

7.5.1 Model

One way to capture dependence among workers’ observations is to assume that there is a set

of latent groups {S1, S2, · · · }, and each crowd worker j is assigned to one group Ssj where

sj ∈ {1, 2, · · · } is a random variable indicating membership. Each group Sl is modeled to have

an associated group reliability rl ∈ [0, 1] which determines the general reliability of the group.

When a group represents the set of crowd workers who share a common source of information, the

reliability rl of the group Sl represents the reliability of the information source. Associated with

every crowd worker j, then, is the worker’s reliability pj ∈ [0, 1] which determines the worker’s

reliable use of the information.

We now describe a generative process for this model, the Multi-Source Sensing Model de-

scribed in [111].

1. Draw λ ∼ GEM(κ), i.e., stick breaking construction with concentration κ. For this, the stick-

breaking construction GEM(κ) (named after Griffiths, Engen and McCloskey) discussed

in [111] is used. Specifically, in GEM(κ), a set of random variables γ = {γ1, γ2, · · · } are

independently drawn from the beta distribution γi ∼ β(1, κ). They define the mixing

weights λ of the group membership component such that P (sj = l|γ) = λl = γl
∏l−1

g=0(1−

γg).

2. For each worker j, draw its group assignment sj|λ ∼ Discrete(λ), where sj|λ ∼ Discrete(λ)

denotes a discrete distribution, which generates the value sj = l with probability λl.

3. For each group Sl, draw its group reliability rl ∼ F (µ), where F (µ) is the group reliability

distribution with mean µ. Some possible examples are the beta model where reliabilities are

beta distributed or the spammer-hammer model.

4. For each crowd worker j, draw their reliability pj ∼ β
(

rsj
1−rsj

, 1
)

such that E[pj] = rsj

5. For each crowd worker j, draw his observation yj based on reliability pj and true hypothesis

Hl (cf. (7.1))
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Learning does not require prior knowledge on the number of groups, due to the stick-breaking

process, but note the dependence among observations depends on the number of latent groups

which itself is a function of the concentration parameter κ. Due to grouping of workers, reliabilities

may not be independent random variables as in Sec. 7.4. An (N,M, µ, κ) crowdsourcing system

consists of N grouped, but unpaired crowd workers performing M -ary classification, whereas

an (N,M, µ, ρ, κ) crowdsourcing system has N grouped and paired crowd workers with pairing

covariance ρ performing M -ary classification.

7.5.2 Performance Characterization

First consider crowd workers grouped by latent variables, but without peer-dependent rewards.

Proposition 7.5.1. Consider an (N,M, µ, κ) crowdsourcing system. The expected misclassifica-

tion probability using code matrix A is:

Pe(µ, κ) =
1

M

∑
i,l,s

C l
iP (S = s|Hl)

N∏
j=1

[(
µalj +

(1− µ)

(M − 1)

∑
k 6=l

akj

)
(2ij − 1) + (1− ij)

]
,

where i = [i1, · · · , iN ] ∈ {0, 1}N is the received codeword, s = [s1, · · · , sN ] ∈ {0, · · · , L − 1}N

is the group assignment, L is the number of groups and C l
i is the cost associated with a global

decision Hl when the received vector is i. This cost is given in (7.3). The probability P (S = s|Hl)

is a function of the concentration parameter κ and is:

P (S = s|Hl) =
1

[β(1, κ)]L

L−1∏
l=0

β

(
nl + 1, N + κ−

l∑
g=0

ng

)

where β(·, ·) is the beta function and nl is the number of workers in the group Sl.

Proof. Let Pe,p denote the misclassification probability given the reliabilities of the N workers.

Then, if uj denotes the bit sent by the worker j and the global decision is made using the Hamming

distance criterion, Pe,p = 1
M

∑
i,l P (u = i|Hl)C

l
i . Although local decisions are dependent, they are
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conditionally independent given the group assignments.

P (u = i|Hl) =∑
s

P (u = i|S = s, Hl)P (S = s|Hl) =
∑

s

[
N∏
j=1

P (uj = ij|Sj = sj, Hl)

]
P (S = s|Hl).

Further,

P (uj = ij|Sj = sj, Hl)

= ijP (uj = 1|Sj = sj, Hl) + (1− ij)P (uj = 0|Sj = sj, Hl)

= (1− ij) + (2ij − 1)P (uj = 1|Sj = sj, Hl)

= (1− ij) + (2ij − 1)
M∑
k=1

akjP (yj = k|Sj = sj, Hl)

= (1− ij) + (2ij − 1)

(
pjalj +

(1− pj)
(M − 1)

∑
k 6=l

akj

)

and

P (S = s|Hl) = Eλ {P (S = s|Hl, λ)} (7.30)

= Eλ

{
N∏
j=1

P (Sj = sj|λ)

}
= Eλ

{
N∏
j=1

λsj

}
(7.31)

= Eλ

{
L−1∏
l=0

(λl)
nl

}
(7.32)

= Eγ

{
γn0

0

L−1∏
l=1

[
γl

l−1∏
g=1

(1− γg)

]nl}
(7.33)

= Eγ

{
γn0

0

L−1∏
l=1

[
γnll

l−1∏
g=1

(1− γg)nl
]}

(7.34)

= Eγ {γn0
0 γn1

1 (1− γ0)n1γn2
2 (1− γ1)n2(1− γ0)n2 · · · }

= Eγ

{
L−1∏
l=0

γnll (1− γl)(N−
∑l
g=0 ng)

}
(7.35)
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Since γ are independently drawn from the beta distribution γl ∼ β(1, κ),

P (S = s|Hl) =
L−1∏
l=0

E
[
γnll (1− γl)(N−

∑l
g=0 ng)

]

=
L−1∏
l=0

β
(
nl + 1, N + κ−

∑l
g=0 ng

)
β(1, κ)

(7.36)

=
1

[β(1, κ)]L

L−1∏
l=0

β

(
nl + 1, N + κ−

l∑
g=0

ng

)
(7.37)

For workers without peer-dependent reward, the reliabilities pj are independent random vari-

ables with mean rsj . Using the fact E[rsj ] = µ yields the desired result.

Next, the peer-dependent reward scheme is introduced.

Proposition 7.5.2. Consider an (N,M, µ, ρ, κ) crowdsourcing system. The expected misclassifi-

cation probability using code matrix A is:

Pe(µ, ρ, κ) =
1

M

∑
i,l,s

C l
iP (S = s|Hl)

N
2∏
j=1

[
(1− ij)(1− ijp)

+ (1− ij)(2ijp − 1)

(
µaljp +

(1− µ)

(M − 1)

∑
k 6=l

akjp

)

+ (1− ijp)(2ij − 1)

(
µalj +

(1− µ)

(M − 1)

∑
k 6=l

akj

)

+ (2ij − 1)(2ijp − 1)

(
(ρ+ µ2)aljaljp +

µ− (ρ+ µ2)

(M − 1)(
alj
∑
k 6=l

akjp + aljp
∑
k 6=l

akj

)
+

4r

M2

∑
k 6=l

akjp
∑
k 6=l

akj

)]
(7.38)

where r =
(

M
2(M−1)

)2

[(1 − µ)2 + ρ], i = [i1, · · · , iN ] ∈ {0, 1}N is the received codeword,

s = [s1, · · · , sN ] ∈ {0, · · · , L − 1}N is the group assignment, L is the number of groups and C l
i

is the cost associated with a global decision Hl when the received vector is i. This cost is given in
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(7.3). The probability P (S = s|Hl) is a function of the concentration parameter κ and is:

P (S = s|Hl) =
1

[β(1, κ)]L

L−1∏
l=0

β

(
nl + 1, N + κ−

l∑
g=0

ng

)
(7.39)

where nl is the number of workers in the group Sl.

Proof. The proof proceeds similarly to the proof of Prop. 7.5.1. However, since the workers are

paired, they are correlated according to (7.18). This gives us

E

[
N∏
j=1

P (uj = ij|Sj = sj, Hl)

]

=

N/2∏
j=1

E
[
P (uj = ij|Si = sj, Hl)P (ujp = ijp|Sjp = sjp , Hl)

]
=

N/2∏
j=1

E

[(
(1− ij) +

(
pjalj +

(1− pj)
(M − 1)

∑
k 6=l

akj

)
(2ij − 1)

)
(

(1− ijp) +

(
pjpaljp +

(1− pjp)
(M − 1)

∑
k 6=l

akjp

)
(2ijp − 1)

)]

Using the above equation, correlation structure (7.18), and the definition of r =
(

M
2(M−1)

)2

[(1 −

µ)2 + ρ] we get the desired result.

Expressions for the majority approach can be derived as a special case of the coding-based

approach by substituting the appropriate code matrix.

7.5.3 Performance Evaluation

Having analyzed the system with dependent observations among crowd workers, the performance

of the system is now evaluated and the effect of the concentration parameter κ is analyzed. Fig. 7.9

shows the performance of the system as a function of the concentration parameter (κ). Note that

a high value of κ implies independent observations while κ = 0 implies completely dependent

observations (all workers have a single source of information). The plots in Fig. 7.9 are for a system



161

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

κ

M
is

cl
as

si
fic

at
io

n 
pr

ob
ab

ili
ty

 

 

Coding Approach (N=15)

Majority Approach (N=15)

Coding Approach (N=90)

Majority Approach (N=90)

Fig. 7.9: Misclassification probability as a function of κ using coding- and majority-based ap-
proaches with the Beta(α = 0.5, β = 0.5) model, (M = 8).

with uncorrelated workers (no peer-dependent reward scheme) performing an 8-ary classification

(M = 8).

As expected, one can observe that the system performance improves when the observations

become independent. Also, the performance gap between majority- and coding-based approaches

increases as the observations become independent. When the observations are dependent, all work-

ers have similar observations on an average, so posing similar questions (majority-based approach)

will perform similarly to posing diverse questions (coding-based approach). On the other hand,

when the observations are independent, it is more informative to pose diverse questions to these

workers as done in the coding-based approach. Therefore, we infer that diversity is good and the

benefit of using coding increases when the observations are more diverse.

Similar observations can also be made for a system consisting of peer-dependent reward scheme

with dependent observations. Fig. 7.10 shows the performance of such a system using both

majority- and coding-based approaches. The plots are for a system with N crowd workers per-

forming an 8-ary classification task (M = 8). The group reliability distribution is assumed to be

beta distribution and the correlation parameter is ρcorr = −0.5.
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Fig. 7.10: Misclassification probability as a function of κ using coding- and majority-based
approaches with the Beta(α = 0.5, β = 0.5) model and ρ = −0.5, (M = 8).

7.6 Conclusion

In this chapter, the use of coding for reliable classification using unreliable crowd workers has been

proposed. Using different crowdsourcing models, it has been shown that coding-based methods

in crowdsourcing can more efficiently use human cognitive energy over traditional majority-based

methods. Since minimum Hamming distance decoding is equivalent to MAP decoding in this

setting, the anonymity of unreliable crowd workers is not a problem. We have shown that better

crowds yield better performance. In other words, crowds which have higher reliabilities on an

average perform better than the crowds with lower reliabilities. Although dependent observations

have been considered in typical sensor networks, human decision makers in a crowdsourcing sys-

tem give rise to multiple levels of dependencies. This work provides a mathematical framework

to analyze the effect of such dependencies in crowdsourcing systems and provides some insights

into the design aspects. By considering a model with peer-dependent reward scheme among crowd

workers, it has been shown that pairing among workers can improve performance. Note that this

aspect of rewards is a distinctive feature of crowdsourcing systems. It has also been shown that

diversity in the system is desirable since the performance degrades when the worker observations

are dependent.

The benefits of coding are especially large for applications where the number of classes is
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large, such as fine-grained image classification for building encyclopedias like Visipedia2. In such

applications, one might need to classify among more than 161 breeds of dogs or 10000 species of

birds. Designing easy-to-answer binary questions using the proposed scheme will greatly simplify

the workers’ tasks.

2http://www.vision.caltech.edu/visipedia/
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CHAPTER 8

HUMAN-MACHINE INFERENCE

NETWORKS (HUMAINS)

8.1 Introduction

In the previous chapters, systems with only sensors or only humans were studied. In this chapter, a

framework for human-machine inference networks (HuMaINs) is presented. Note that the previous

chapters focused on specific inference problems. An inference problem can also be referred to as

problem-solving process, where the problem to be solved is that of inferring about a phenomenon.

For example, an object classification task answers the question: “Which class does a given object

belong to?". In other words, it solves the problem of classifying the given object into various

possible classes.

In traditional economics, cognitive psychology, and artificial intelligence (AI) literature, the

problem-solving process is described in terms of searching a problem space, which consists of

various states of the problem, starting with the initial state and ending at the goal state [4]. Each

path from the initial state represents a possible strategy which can be used. There could be multiple

paths between the initial and the goal state which are the solutions to the problem. The focus here

is on the case where there is a single path between the initial and the goal state. The problem-
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solving process is to identify this solution path among the multiple paths emanating from the initial

state. Other paths lead to other goal states. Continuing with the example of object classification

problem, the initial state is the unclassified object and the final state is the classified object. Each

path from the initial state is a potential class for the given object, and the solution path is the

true class. Identifying the solution path corresponds to the correct classification of the object. In

this chapter, a problem-solving framework is considered and the benefits associated with human-

machine collaboration to solve problems in an efficient manner are emphasized.

The first step for such a search is to determine the set of available strategies, i.e., the strategy

space. For the object classification problem, this refers to identifying the set of possible classes

that the object may belong to. The second step is to evaluate the strategies to determine the best

strategy as the solution. For the object classification problem, this refers to observing the character-

istics of the object and determining the true class by evaluating the possible classes. In traditional

economic theory, a rational decision maker is assumed to have the knowledge of the set of pos-

sible alternatives1, has the capability to evaluate the consequences of each alternative, and has a

utility function which he/she tries to maximize to determine the optimal strategy [93]. However,

it has long been debated that humans are not rational but are bounded rational agents. Under the

bounded rationality framework [93,127], decision makers are cognitively limited and have limited

time, limited information, and limited resources. The set of alternatives is not completely known

a priori nor are the decision makers perfectly aware of the consequences of choosing a particular

alternative. Therefore, the decision maker might not always determine the best strategy for solving

the problem.

On the other hand, machines are rational in the sense that they have stronger/larger memory

for storing alternatives and have the computational capability to more accurately evaluate the con-

sequences of a particular alternative. Therefore, a machine can aid a human in fast and accurate

problem-solving. The goal of this chapter is to develop a framework for human-machine collabo-

ration for problem-solving and illustrate its benefits. There are two basic ways in which a machine

1The terms strategy and alternative are used interchangeably.
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can aid a human: in gaining knowledge about the set of alternatives, and in accurately evaluating

the consequences of a chosen alternative. For example, in medical diagnosis, the human doctors

might only look at a subset of possible diagnoses based on the symptoms, due to the cognitive lim-

itations of humans. On the other hand, a machine with a database consisting of a much larger set

of diseases can provide this human doctor with more exhaustive set of diagnoses by evaluating the

symptoms in a timely manner. Such a machine can support the doctor in recognizing some of the

rare diseases and also provide corresponding recommendations which could have been overlooked

by the doctor. This is partly the idea behind IBM’s Watson, M. D.2 Another example is the task

of pattern recognition. While humans are good at identifying new patterns, machines are good at

searching for specific patterns. Therefore, in a pattern recognition task, humans can provide new

patterns which the machines can search for.

As stated by Lubart in [88], when the machine supports the human in determining the set of

alternatives, the machine is acting as a coach to the human to discover new alternatives. When

the machine is helping the human by evaluating the effects of a particular alternative, the machine

is acting as a colleague to the human in solving a problem. We discuss these two problems in

this chapter, with more focus on the first one, to illustrate the benefits of using human machine

collaboration for problem-solving.

8.2 Knowledge Discovery Problem

In this section, the first way in which a machine can help a human is explored, by providing

him/her with new information, so that he/she can make a well-informed decision by evaluating the

available alternatives. This knowledge discovery problem occurs when the human is undergoing

little-d discovery or P-discovery. This terminology is inspired by the terminology used in the

creativity literature, where little-c creativity means novelty with respect only to the mind of the

individual concerned or everyday creativity which can be found in nearly all people, and big-C

2http://www/ibm.com/smarterplanet/us/en/ibmwatson/
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Creativity means novelty with respect to the whole of previous history or eminent creativity, which

is reserved for the great [21]. The knowledge discovery problem considered here is different from

the human-machine collaboration for scientific discovery in the AI area [75, 82, 144] that can be

referred to as big D-Discovery or H-discovery.

The output of the little-d discovery process considered here is expansion of knowledge base by

adding additional elements into the knowledge base. While new elements are discovered and added

into the knowledge base, it is important to understand the effect of discovering new elements. In

creativity literature, generation of a product or service is judged based on its novelty and also its

appropriateness, usefulness, or value to a knowledgeable social group [123]. While novelty of the

element implies that it was previously unknown and therefore increases the size of the knowledge

base, quality refers to the value it brings to the knowledge base when it is added. Therefore, size

(number of distinct elements) and quality of the knowledge base are used as metrics in evaluating

the discovery process. For a given set of elements in the knowledge base, size is defined as the total

number of elements in the knowledge base and quality is defined as the total value of the elements

in the knowledge base.

8.2.1 Problem Formulation

The knowledge discovery problem can be mathematically formulated as follows. Consider a set of

M total elements, denoted by Θ, that are to be learnt by a human. This is the set that represents the

entire knowledge base. The human is initially only aware of the presence of a subset Θ0 ⊂ Θ of

these M possibilities. He/She learns the other elements over multiple iterations. At each iteration,

the unknown element θ can be one of the M possible values according to a prior probability mass

function (pmf) p = [p1, . . . , pM ]. A machine makes a noisy observation of this element resulting

in a noisy estimate of this element. This noisy estimate is provided to the human, who updates

his/her element set by adding it to his/her current knowledge base. In other words, the machine

observes a noisy version of element θ = m with probability pm and provides its estimate based on

this observation to the human. Note that the machine presents its outcome to the human without
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any information regarding the initial subset of elements known by the human. Let the underlying

element θt be observed at iteration t. The machine makes an observation xMt corrupted by noise

which is i.i.d. across time. Based on this observation, the machine infers the element to be θ̂t ∈ Θ

as follows:

θ̂t = arg max
θ∈Θ

p(θ|xMt ),

where p(θ|xMt ) is the posterior pmf given the observation. The human’s updated element set is

Θt = Θt−1 ∪ θ̂t. Each new element is characterized in terms of two basic performance measures:

novelty and quality.

8.2.2 Size of Knowledge Base

As mentioned before, size is measured by the total number of distinct elements that are known to

the human at any given time. This includes both the prior set of elements known to the human

before the start of the discovery process as well as the elements learnt with the help of a machine

during the discovery process. Note that the number of elements discovered by the human during

the discovery process can be easily determined by subtracting the initial size of the knowledge base

from the size of the current knowledge base. Let Nt = |Θt| denote the total number of elements in

the human’s knowledge base at iteration t. Then, the number of elements discovered by the human

after t iterations is given by Dt = |Θt| − |Θ0|. In this chapter, however, we focus only on the size

that gives the total number of distinct elements known to the human.

First, we make some intuitive observations that are later verified using theoretical analysis and

simulation results. The learning rate, defined as the rate at which knowledge set grows, depends on

the pmf p, the initial set Θ0, and the noise distribution. The performance, characterized in terms of

this learning rate, is best for uniform prior due to maximum uncertainty (entropy), when the initial

knowledge set Θ0 is arbitrary. However, for cases when Θ0 contains rare elements (low pmf value),

the knowledge discovery is expected to be fast as the unknown elements are of high probability and

can be quickly learnt by the human. These intuitive observations can be observed in our analytical
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results. Also, for noisy observations, it might be possible that higher noise variance might result

in faster total discovery as noisy machine’s observations can cause false decisions at the machine

helping the discovery of new elements (typically of low probability) by the human. While false

decisions might cause negative consequences if one acts upon them, they might be helpful when

the goal is just to learn all possible elements. In such cases, false decisions at the machine might

help add new elements into the human’s knowledge base.

Let the misclassification probabilities due to noise corrupted unreliable observations at the

machine be

rmn , Pr(θ̂t = n|θt = m)

for m,n = 1, . . . ,M , which are assumed to be the same for all t. Therefore, the posterior pmf

p̃ = [p̃1, . . . , p̃M ] of the elements is the new prior distribution of the elements observed by the

human. This pmf is given as

p̃m =
M∑
n=1

pnrnm.

An asymmetric channel R , {rmn} between machine’s input and output can represent the diffi-

culty associated with the identification of elements by the machine. More explicitly, the machine

can identify some elements more precisely than others, which would result in an asymmetric chan-

nel R. Some elements can be more difficult to identify/discover than others [7–9].

Proposition 8.2.1. For the machine-aided knowledge discovery problem with a pmf p and mis-

classification channel R at the machine, the expected size of knowledge base after T iterations is

given by

E [NT |Θ0] = |Θ0| −
T∑
k=1

∑
θ/∈Θ0

(−1)k
(
T

k

)
p̃kθ , (8.1)

and the expected number of elements discovered by the human after T iterations is given by

E [DT |Θ0] =
T∑
k=1

∑
θ/∈Θ0

(−1)k+1

(
T

k

)
p̃kθ . (8.2)
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Proof. The number of elements are updated as follows

Nt =


Nt−1 if θ̂t ∈ Θt−1

Nt−1 + 1 if θ̂t /∈ Θt−1,

(8.3)

resulting in a Markov Chain:

Nt =


Nt−1 with probability

∑
θ∈Θt−1

p̃θ

Nt−1 + 1 with probability 1−
∑

θ∈Θt−1
p̃θ.

(8.4)

Therefore,

E [Nt|Θt−1] = |Θt−1|
∑

θ∈Θt−1

p̃θ + (|Θt−1|+ 1)(1− p̃θ)

= |Θt−1|+ 1−
∑

θ∈Θt−1

p̃θ. (8.5)

For t = 1,

E [N1|Θ0] = m0 + 1−
∑
θ∈Θ0

p̃θ, (8.6)

where |Θ0| = m0. Next, for t = 2,

E [N2|Θ1] = N1 + 1−
∑
θ∈Θ1

p̃θ (8.7)

= N1 + 1−
∑
θ∈Θ0

p̃θ −
∑

θ∈Θ1\Θ0

p̃θ. (8.8)



171

Recursively, we have for t ≥ 2,

E [Nt|Θt−2]

= E

Nt−1 + 1−
∑

θ∈Θt−2

p̃θ −
∑

θ∈Θt−1\Θt−2

p̃θ

∣∣∣Θt−2


= |Θt−2|+ 2

∑
θ/∈Θt−2

p̃θ − E

 ∑
θ∈Θt−1\Θt−2

p̃θ

∣∣∣Θt−2

 . (8.9)

An additional element is added into Θt only when it is not originally present in Θt−1 (it is novel),

which is with probability
∑

θ/∈Θt−1
p̃θ. Under this condition that an element has been added, each

θ /∈ Θt−2 occurs with probability p̃θ/
∑

θ/∈Θt−2
p̃θ, which reduces (8.9) to the following

E [Nt|Θt−2] = |Θt−2|+ 2
∑

θ/∈Θt−2

p̃θ −
∑

θ/∈Θt−2

p̃2
θ. (8.10)

Continuing further, for a general T

E [NT |Θ0] = |Θ0| −
T∑
k=1

∑
θ/∈Θ0

(−1)k
(
T

k

)
p̃kθ . (8.11)

Some observations can be made from the above expressions:

• As seen from (8.1), if the rare elements are already known (θ0 consists of elements whose

prior probability is low), then the convergence of the discovery process is faster and all the

elements can be learnt quicker by the human. This observation is intuitively expected as we

had previously stated.

• For the special case of uniformly distributed prior pmf and perfect observations (R is identity
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matrix),

E [NT |Θ0] = |Θ0| −
T∑
k=1

∑
θ/∈Θ0

(−1)k
(
T

k

)
1

Mk
(8.12)

E [NT |Θ0] = |Θ0| −
∑
θ/∈Θ0

T∑
k=1

(
T

k

)(
−1

M

)k
(8.13)

E [NT |Θ0] = |Θ0| −
∑
θ/∈Θ0

((
1− 1

M

)T
− 1

)
(8.14)

E [NT |Θ0] = |Θ0| − (M − |Θ0|)
(

1− 1

M

)T
+ (M − |Θ0|) (8.15)

E [ρT |ρ0] = 1− (1− ρ0)

(
1− 1

M

)T
, (8.16)

where ρt = Nt/M is the fraction of elements known by iteration t.

• Rate of knowledge discovery (rate of convergence of E[ρt|ρ0] to 1) increases monotonically

in ρ0.

• Growth rate of knowledge discovery is exponential in T . For the case of uniformly dis-

tributed prior pmf and perfect observations, this rate is given by

lim
T→∞

1

T
log(1− E[ρT |ρ0]) = − log

(
1− 1

M

)
. (8.17)

Therefore, the convergence is faster as M decreases. In other words, when the total number

of elements is less, they can be learnt faster, as expected.

For simulation purposes, the following parameters are used in the experiment: Θ = {1, . . . ,M},

pθ(m) =
(
M−1
m−1

)
pm−1(1 − p)M−m for m = 1, . . . ,M , and the noise channel is M -ary symmetric

channel with crossover probability r. In other words, we are looking at discovering a total set of

M elements. To characterize the prior using a single parameter, we use a binomial prior with pa-

rameters M and p. The symbols are ordered in decreasing order of their prior probability of being

discovered.
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Fig. 8.1: Numerical and simulations results of fraction of element set (ρt) (M = 4, Θ0 = [1, 2],
p = 0.2, and r = 0.1).

Fig. 8.1 shows the numerical and simulation results that corroborate our analytical results. The

simulation results are averaged over Nmc = 500 Monte-Carlo runs. From this figure, we can

see that the theoretical expressions derived in this chapter capture the behavior of the knowledge

discovery process. The fraction of elements in the knowledge base increase at an exponential

rate. As can be observed from Fig. 8.2, the performance depends on the initial set Θ0 and the

performance (in terms of knowledge discovery rate) is higher (and also better than the uniform

case) when the initial elements are the least probable ones (Θ0 = [3, 4] in this example). This is

intuitively true since, if the human already knows the rare elements, he/she can discover the others

at a faster rate.
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Fig. 8.2: Performance variation with different initial sets Θ0 (M = 4, p = 0.2, and r = 0.1).

Fig. 8.3 shows the performance with varying noise value r where higher r implies noisier data

at the machine. When the human is already aware of the most probable elements (refer to Fig. 8.4),
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noise has the positive effect of helping the human in discovering the lesser probable elements at

a faster rate implying that a noisy machine can help us in discovering new elements! Such

an observation is related in concept to the phenomenon of Stochastic Resonance (SR) or noise-

enhanced signal processing [32], where addition of noise can improve the system performance of

some non-linear suboptimal systems. It has been shown that the performance of some detection and

estimation systems can be improved by adding noise [31]. The exact form of noise, characterized

in terms of its pdf has been shown to be dependent on the problem of interest [31]. For example,

for a detection problem in the Neyman-Pearson setting, it has been shown that a two-peak noise is

optimal and for the Bayesian setting, one-peak noise has been proved to be optimal [31]. While the

similarities are evident, further analysis is needed to mathematize this relation and understand the

optimal noise that results in best performance. This thesis only shows the effect that noise can have

on the discovery process by considering a symmetric noise model. Determining the type (pdf) of

optimal noise will be considered in the future.
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Fig. 8.3: Effect of noise (M = 4, and p = 0.2).

Fig. 8.5 shows how the performance varies with prior distribution. The effect of prior distri-

bution on the performance is characterized by (8.1). By varying the parameter p, we can simulate

different prior probability mass functions. As p tends to 0.5, the prior pmf moves towards a uni-

form prior. Therefore, we can observe that for high values of p (0.4), the discovery process is

slowest. However, there is no general trend that can be observed as p varies from 0.1 to 0.4.

For the simple case of uniform prior and perfect observations at the machine, we evaluate the
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Fig. 8.4: Effect of noise (M = 4, p = 0.2, and Θ0 = [1, 2]).
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Fig. 8.5: Effect of different prior distribution (M = 4, r = 0, and Θ0 = [3, 4]).

performance with varying M and ρ0 in Figs. 8.6 and Figs. 8.7, respectively. As can be observed

from Fig. 8.6, the discovery process gets slower when the number of total elements (M ) is higher.

This corroborates the observation that the convergence is faster as M decreases. Fig. 8.7 shows the

discovery process with different number of initially known elements. Clearly, one can learn all the

elements faster, if he/she already knows a good portion of them.

8.2.3 Quality of Knowledge Base

In many cases, not only is the discovery of new elements important but also the quality of the

discovered element. Consider the case where each element θ ∈ Θ has a corresponding quality

factor qθ which determines the value of discovering θ. For example, while new restaurants can be
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Fig. 8.6: Expected fraction of element set with iterations (ρ0 = 0.5, varying M )
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Fig. 8.7: Expected fraction of element set with iterations (M = 10, varying ρ0)

discovered using Yelp3, the reviews it has represent its value. While the discovery is novel, it need

not be of good quality. Let q = [q1, . . . , qM ] be the quality vector and Qt =
∑

θ∈Θt
qθ denote the

quality of the elements discovered after time t.

Definition 8.2.2. The k-th order quality-prevalence function Dk
Θ0

(p̃,q) is defined as the inner

product between q (quality vector) and element-wise kth power of p̃ (probability vector) over the

subset ΘC
0 (Θ\Θ0): Dk

Θ0
(p̃,q) :=

∑
θ/∈Θ0

qθp̃
k
θ .

These functions evaluate the degree of alignment between the probability vector and the quality

vector. In other words, these functions have high value when the high probable elements are also

of high quality (aligned in the same direction) and low value when the low probable elements are

of high quality (aligned in the opposite direction). These functions evaluate the inner product of

3http://www.yelp.com/
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the quality vector with element-wise powers of probability vector, thereby bringing a geometric

notion of alignment.

Proposition 8.2.3. For the problem of machine-aided knowledge discovery problem, the expected

quality of elements in the knowledge base after T iterations is given by

E [QT |Θ0] = Q0 −
T∑
k=1

(−1)k
(
T

k

)
Dk

Θ0
(p̃,q), (8.18)

where Dk
Θ0

(p̃,q) is the kth order quality-prevalence function.

Proof. Let Qt =
∑

θ∈Θt
qθ denote the quality of the elements known after time t. Then we have

the following relation:

Qt =


Qt−1 if θ̂t ∈ Θt−1

Qt−1 + qθ̂t if θ̂t /∈ Θt−1.

(8.19)

This implies

Qt =


Qt−1 with probability

∑
θ∈Θt−1

p̃θ

Qt−1 + qθ with probability p̃θ, for every θ /∈ Θt−1.

(8.20)

Therefore,

E [Qt|Θt−1] = Qt−1

∑
θ∈Θt−1

p̃θ +
∑

θ/∈Θt−1

(Qt−1 + qθ)p̃θ (8.21)

= Qt−1 +
∑
∀θ

qθp̃θ −
∑

θ∈Θt−1

qθp̃θ. (8.22)

Following analysis similar to the analysis in proof of Prop. 8.2.1, we have for t = 1,

E [Q1|Θ0] = Q0 +
∑
θ

qθp̃θ −
∑
θ∈Θ0

qθp̃θ, (8.23)
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where Q0 =
∑

θ∈Θ0
qθ is the quality of the initial elements. Similarly for t = 2,

E [Q2|Θ1] = Q1 +
∑
θ

qθp̃θ −
∑
θ∈Θ1

qθp̃θ (8.24)

= Q1 +
∑
θ

qθp̃θ −
∑
θ∈Θ0

qθp̃θ −
∑

θ∈Θ1\Θ0

qθp̃θ. (8.25)

Therefore, we have

E [Q2|Θ0] = E

Q1 +
∑
θ

qθp̃θ −
∑
θ∈Θ0

qθp̃θ −
∑

θ∈Θ1\Θ0

qθp̃θ

∣∣∣Θ0

 (8.26)

= Q0 + 2
∑
θ/∈Θ0

qθp̃θ − E

 ∑
θ∈Θ1\Θ0

qθp̃θ

∣∣∣Θ0

 (8.27)

= Q0 + 2
∑
θ/∈Θ0

qθp̃θ −
∑
θ/∈Θ0

qθp̃
2
θ. (8.28)

Continuing further, we have, for a general T

E [QT |Θ0] = Q0 −
T∑
k=1

∑
θ/∈Θ0

(−1)k
(
T

k

)
qθp̃

k
θ . (8.29)

The two extreme possibilities are when q is aligned either in the same direction as probability

vector p or in the opposite direction. For the previous example, Fig. 8.8 shows the quality of the

discovered elements for these two extreme cases which confirms our understanding.

8.2.4 Empirical Observations

Eurekometrics [8] is the study of nature of discovery. It has been shown using empirical results

that discovery of scientific output increases exponentially, or more properly, a logistic growth

curve. Arbesman and his colleagues [7–9] have empirically quantified the discovery process. By

considering three different scientific disciplines: mammalian species, chemical elements, and mi-
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Fig. 8.8: Expected quality with time (M = 4, r = 0.1, p = 0.2, and Θ0 = [1, 2]).

nor planets, Arbesman et al. show that ease of scientific discovery is exponential resulting in an

approximate logistic curve for the number of discoveries with time [7]. In the theoretical investi-

gation performed here, the ease of discovery corresponds to the pmf p that denotes the difficulty

associated with discovering an element. When all elements are assumed to be of equal difficulty,

empirical results suggest a logistic curve for the number of discovered elements DT [7]:

DT ≈ K

1 + Ae−r0T
(8.30)

where K is the limiting size or the maximum number of elements that can be discovered, A is the

fitting constant, and r0 is the growth rate of scientific output. For a small value of A, this can be

approximated as

DT ≈ K(1− Ae−r0T ) (8.31)

⇐⇒ ρempT ≈ 1− Ae−r0T (8.32)

where ρempT = DT/K is the fraction of discovered elements. Observe that (8.32) matches the

expression (8.16) derived for the mathematical model of discovery process developed here. This

suggests that the mathematical model developed herein is in coherence with the empirical observa-

tions. In the future, this relation will be further explored to understand and interpret the parameters.
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8.3 Solution Search Problem

In this section, another example of human-machine collaboration to solve difficult problems is

introduced. As mentioned in Sec. 8.1, any problem-solving mechanism can be interpreted as a

search for the ‘best’ alternative among multiple alternatives. This can be represented as search

for the maximum of a function f(x) among all alternatives x ∈ X . Here, the function f(x)

quantifies the consequences of choosing an alternative x and, therefore, does not have an explicit

known form. For example, while playing a complex game such as chess, one is trying to maximize

the probability of winning which depends on the strategy chosen. Since humans have limited

cognitive capabilities, they might not be well-equipped to perform a quick and accurate evaluation

of the function for a given alternative. Therefore, a machine can aid the human by providing an

accurate characterization of the consequences of choosing a particular alternative. This human-

machine partnership falls under the machine as a colleague category for problem-solving. Such

colleague-based partnership is the basis for the Advanced Chess Tournaments (also referred to as

Centaur or Cyborg Chess) [142].

8.3.1 Mathematical Formulation

Consider a problem represented as f(x) where each alternative x is a possible strategy for solving

the problem. Solving the problem requires N elements (of a decision vector), i.e., each alternative

contains N variables x = [x1, . . . , xN ]. Each of these variables xi has to be chosen from a set Xi.

The goal is to determine x0 which results in the maximum value of f(x0) = f 0. Since each strategy

x is of dimension N (typically high), it is difficult for a human to evaluate the consequences of

choosing a particular strategy. Therefore, he/she takes the help of a machine to accurately evaluate

the function value. The human has a preference order p(x) on the choice of possible solutions to

the problem. This preference could be a result of experience in dealing with similar problems or

simply due to his/her intuition. For example, in chess, this preference order depends on how good

the player is.
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Definition 8.3.1. A problem is a Lipschitz continuous problem if the “distance” between the con-

sequences (in the consequences space) of two different strategies is bounded by a constant times

the “distance” between the strategies (in the strategy space).

As can be seen from the above definition, most of the problems that we face in real life are

Lipschitz continuous since changing our strategy by a small amount usually changes the conse-

quences in a limited manner. For example, choosing the best car among a set of alternatives is a

solution search problem. And the choice of a particular car does not have drastic consequences,

and therefore, choice of car is a Lipschitz continuous problem. In this chapter, Lipschitz continu-

ous problems are considered. Clearly, such a definition translates onto a condition that the function

f(·) be Lipschitz continuous. Let its Lipschitz constant be L. Some common examples of Lips-

chitz continuous functions are polynomial functions, sine/cosine functions, and the absolute value

function.

8.3.2 Collaborative Problem Solving

The collaborative problem solving approach where human and machine search for a solution to-

gether is as given below:

1. Initialize i = 1, j = 1, and set S = X as the original search space.

2. If f(p−1(j)) 6= f 0,

set S = S − {x : ||x− p−1(j)|| < 1
L
||f 0 − f(p−1(j))||}, and j = maxx∈S p(x).

Repeat Step 2.

3. x0 = p−1(j).

The basic idea is to remove nearby strategies from the search space, when a particular strategy

fails. The above approach has the following contributions from human and machine:

• Human contribution: Knowledge of the preference function p(·) that decides the strategies

to be evaluated.
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• Machine contribution: Quick and accurate evaluation of strategies.

• Common contribution: Evaluation of set S after every step based on the Lipschitz constant

L.

8.3.3 Analysis

Collaborative problem solving addresses the issues faced when only humans or only machines try

to solve a problem. When only humans try to solve the problem, due to the complex nature of

f(·), the evaluation of strategies at every step is complicated and might result in inaccurate and/or

delayed evaluation. On the other hand, if only machines try to solve the problem, due to a lack

of prior preference order p(·), they have to randomly determine the strategies to evaluate, which

would require more number of iterations on an average to solve the problem. Therefore, such a

collaborative approach is needed. Here, the number of iterations needed to find the solution using

the collaborative problem solving approach is evaluated. Clearly, it depends on the preference or-

der, the location of the true solution in the preference order, and the nature of the original problem.

To determine the number of iterations needed to find the solution, define the neighborhood of a

given strategy x as follows:

N (x) ,

{
y : ||y − x|| < 1

L
||f(y)− f(x)||

}
.

From a simple observation that is explained in further detail later, we get the following as the

number of iterations needed to find the solution for p(x0) > 2:

N(f, p) = p(x0)−
p(x0)−2∑
j=1

1

 ∑
∀1≤p0<p1<···<pj≤p(x0)−1

Ap0
p1,p2,...,pj

 , (8.33)
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where 1(·) is the indicator function and

Ap0
p1,p2,...,pj

=


1, if p−1(pk) ∈ N (p−1(p0))∀k = 1, · · · , j,

0, otherwise,
. (8.34)

For p(x0) = 1, 2, we have N(f, p) = p(x0). Although the expression looks complicated, it is

derived in a straightforward manner by observing that every time a solution is discarded, it also

discards solutions in its neighborhood. Therefore, this might cause a reduction in the number

of iterations if the discarded neighborhood consists of solution candidates with higher preference

value than the true solution.

Note that the maximum number of iterations for the collaborative approach is p(x0). For a

machine that does not have the knowledge of the preference order, it randomly chooses the alter-

natives to be evaluated and would take more number of iterations on an average. On the other

hand, although the human knows the preference order and would require same maximum number

of iterations p(x0), the computational time and accuracy are worse for the human than a machine.

Therefore, a collaborative effort reduces the time and increases the accuracy of finding the solu-

tion. This provides a mathematical way of understanding the benefits of collaboration. One can

determine when a collaborative effort is better than the individual problem-solving architectures.

Consider the case when the computation time per iteration for a human is th and for a machine is

tm. Then, if the machine solves the problem on its own without the help of a machine, it would take

a (best-case) total computational time of TM = p(x0)tm. On the other hand, a human alone would

take TH = N(f, p)th. For the collaborative effort, the total time taken is TC = N(f, p)tm, which

is clearly better than both TH and TM , since tm < th and N(f, p) ≤ p(x0). Similarly, an accuracy

analysis can also be performed. Note that the solution search problem has only been introduced in

this thesis. Several other interesting questions that arise from such a formulation will be addressed

in the future.
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8.4 Discussion

The knowledge discovery problem considered here is strongly related to the set of problems re-

ferred to as the coupon collector’s problem [16,23,76]. Most of the results in the case of weighted

coupon collectors problem (or coupon collector problem in general) consider the expected num-

ber of iterations required to collect all coupons while the knowledge discovery problem in this

chapter addresses the opposite version where the average number of coupons collected after T

iterations is evaluated. Also, most of the existing results of coupon collectors problem are approx-

imations/asymptotic order results. Most importantly, as far as we know no results in the coupon

collectors problem have been found for the noisy case or the case where each coupon is of different

quality as considered here.

In this chapter, two problems have been explored where humans and machines can collabo-

rate to improve the inference performance of tasks. Several intuitive observations have been made

for the two problems considered. Although the problems explored are simple cases, it provides

a mathematical understanding of the many benefits associated with using humans and machines

together. They fall under the larger paradigm of Human-Machine Inference Networks (HuMaINs)

which are of practical importance due to the technological advancements where humans and ma-

chines are supporting each other for various tasks. This framework needs to be further developed

to accommodate a number of other tasks as discussed in the future work of the next chapter.
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CHAPTER 9

CONCLUSION

9.1 Summary

In this thesis, the problem of accomplishing reliable inference from systems consisting of unre-

liable agents was addressed. The general methodology for this was to first analyze the effect of

unreliable agents in the network and quantify their effect on the global performance of the network.

The second step was to design schemes that are robust to such unreliable information from these

agents. These schemes used coding-theoretic approaches to improve the individual performance of

the agents and also correct the errors from them at the global agents. This analysis was performed

for sensor networks first in Chapters 3 and 4 and then for human networks in Chapters 5–7. Finally,

a human-machine collaborative framework was proposed in Chapter 8 to solve complex problems

efficiently and quickly. Specifically, the contributions of this thesis are listed below.

In Chapter 3, the target localization and target tracking problems were investigated in a WSN

under a Bayesian framework. A Monte Carlo based approach was developed for target localization.

By assuming the target location to be random, the performance of a minimum mean square error

(MMSE) estimator was analyzed in the presence of Byzantines by considering two kinds of attacks:

independent attack and collaborative attacks. The appropriate performance metric for the Bayesian

framework is Posterior Fisher Information or Posterior Cramér-Rao lower bound (PCRLB). The
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minimum fraction of Byzantines (αblind) was defined as the fraction of Byzantines required to

make the network non-informative to the FC. This was analytically derived by modeling the effect

of Byzantines as a binary symmetric channel (BSC). Optimal strategies for both the Byzantines

and the network were designed by modeling their behavior as a zero-sum game. PCRLB was

used as the utility function and the Nash-Equilibrium was found as the saddle point. For the case

of collaborative attacks, a lower bound on αblind was found. Similarly, for the target tracking

problem, αblind has been found and the optimal attacking strategies have been found for the case

when the fraction of Byzantines is lower than the blinding fraction.

In Chapter 4, techniques were investigated to make the network robust to the presence of

Byzantines. Specifically, an adaptive learning scheme was proposed to identify the Byzantines

in the network which was shown to be highly effective. Moreover, in order to improve the per-

formance further, a dynamic iterative quantization scheme at the local sensors was proposed and

derived using calculus of variations. The problem was formulated in a game-theoretic framework

and the optimal quantizers for both the honest sensors and the Byzantines were derived. The pro-

posed quantization scheme not only improved the estimation performance significantly but also

made the Byzantines ‘ineffective’ when combined with the adaptive learning scheme. These two

schemes have also been extended to target tracking problem. The third scheme proposed was

different from the traditional optimal estimator at the FC and instead an asymptotically optimal

and easy to implement scheme based on error-correcting codes was proposed. The fundamental

theory was developed and asymptotic performance results were derived. The proposed scheme

modeled the localization problem as a hierarchical classification problem. The scheme provided a

coarse estimate in a computationally efficient manner as compared to the traditional ML based ap-

proach. The performance of the proposed scheme was determined in terms of detection probability

of the correct region. It was analytically shown that the scheme achieves perfect performance in

the asymptotic regime. The error correction capability of the coding theory based approach pro-

vides Byzantine tolerance capability and the use of soft-decoding at the FC provides tolerance to

the channel errors. This shows the benefit of adopting coding theory based techniques for signal
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processing applications.

In Chapter 5, the CEO problem was considered for non-regular source distributions (such as

uniform or truncated Gaussian). A group of agents observing independently corrupted versions

of data, transmit coded versions over rate-limited links to a CEO. The CEO then estimates the

underlying data based on the received coded observations. Agents are not allowed to convene

before transmitting their observations. This formulation was motivated by the practical problem of

a firm’s CEO estimating (non-regular) beliefs about a sequence of events, before acting on them.

Agents’ observations were modeled as jointly distributed with the underlying data through a given

conditional probability density function. The asymptotic behavior of the minimum achievable

mean squared error distortion at the CEO was studied in the limit when the number of agents L

and the sum rate R tend to infinity and established a 1/R2 convergence of the distortion.

In Chapter 6, the case of a human FC who fuses decisions from multiple humans was consid-

ered and the performance of decision fusion by people was compared to the optimal fusion rules.

It was observed that the behavior is different since the optimal fusion rule is a deterministic one

while people typically use non-deterministic rules which depend on various factors. Based on these

observations, a hierarchical Bayesian model was developed to address the observed behavior of hu-

mans. This model captures the differences observed in people at individual level, crowd level, and

population level. The effect of such models on the design of larger human-machine systems was

demonstrated by designing hierarchical sociotechnical systems where the human decision fusion

components in the system are modeled using the hierarchical Bayesian model and the machines in

the system are optimized.

In Chapter 7, we focused on crowdsourcing for M -ary classification tasks, such as multi-class

object recognition from images into fine-grained categories. Distributed classification codes and a

minimum Hamming distance decoder were used to design the system in order to minimize misclas-

sification probability such that workers need to only answer binary questions. The efficacy of this

coding-based approach was demonstrated using simulations and through real data from Amazon

Mechanical Turk, a paid crowdsourcing microtask platform. The approach was analyzed under
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different crowdsourcing models including the peer-dependent reward scheme and the dependent

observations model. In the process, an ordering principle for the quality of crowds was also devel-

oped. For systems with peer-dependent reward schemes, it was observed that higher correlation

among workers results in performance degradation. Further, if the workers also share dependent

observations due to common sources of information, it was shown that the system performance

deteriorates as expected. However, it was also observed that when the observations become inde-

pendent, the performance gain due to the proposed coding-based approach over the majority-vote

approach increases.

In Chapter 8, a general problem-solving architecture was considered and possible scopes of

collaboration were outlined. Based on this architecture of human-machine inference networks,

two example problems were considered. In the knowledge discovery problem, a human interested

in discovering all the unknown elements of a set is supported by a machine. This partnership

was referred to as machine as a coach collaboration. The performance of this learning process

was characterized in terms of quantity and quality of the known elements at every time step. In

the solution search problem, humans and machines collaborated as colleagues to determine the

solution to a problem, such as finding a maximum point for a given function. The mathematical

frameworks presented in this chapter provide an intuitive understanding of the benefits of human-

machine collaboration and can help in the design of larger human-machine inference networks.

9.2 Future Directions

There are a number of interesting future directions for research. Some specific future work that

extends the work in different chapter is first discussed below. Later, more general future research

is outlined.

In Chapter 3, the model where the Byzantines’ sole aim is to disable the network and make

the FC blind to the information sent by the local sensors was considered. This formulation results

in a mathematical utility function which only contains the condition that approaches ‘0’. For this
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formulation, it has been found that the optimal attack for the Byzantines is to always flip their local

result with probability ‘1’. One interesting problem is the analysis of ‘Smart’ Byzantines (or covert

Byzantines [66]) which, besides aiming at disabling the network, also aim at protecting themselves

from being detected. This analysis needs a mathematical formulation, where along with the utility

function containing the ‘blinding’ aspect of Byzantines, there is an additional constraint defining

the covertness of Byzantines from being identified. This would be an interesting problem as it is a

more realistic scenario where malicious sensors would try to hide their malicious behavior.

In Chapter 4, the use of error-correcting codes was considered for a localization problem.

However, some of the results were restrictive based on Assumption 4.4.3. In the future, one can

extend this work by relaxing this assumption and to also derive the convergence rates using Berry-

Essen inequalities. One can also extend this work to the case of target tracking when the target’s

location changes with time and the sensor network’s aim is to track the target’s motion. The

proposed schemes provide an insight onM -ary search trees and show that the idea of coding-based

schemes can also be used for other signal processing applications. For example, the application

involving ‘search’ such as rumor source localization in social networks.

In Chapter 5, only the scaling behavior of quadratic non-regular CEO problem was considered.

It is desired to derive precise characterizations for sum rate distortion and for full rate-distortion for

this non-regular CEO problem as obtained by Oohama [102] and Prabhakaran, et al. [109], respec-

tively for the quadratic Gaussian CEO problem. Similar to other CEO problems, one can observe

the difference in decay rates for distortion between our result and the centralized case when agents

can convene. When agents are allowed to convene, the setup is the single-terminal compression

problem whose rate-distortion function under MSE was determined by Fix [49]. However, it has

no simple expression and the optimizing solution has support on finite number of mass points.

On the other hand, for absolute error distortion measure, rate-distortion function exists in closed

form for uniform source [171] and it would be interesting to analyze the uniform CEO problem

under the absolute error distortion. Gastpar and Eswaran [52] have addressed the CEO problem

for non-Gaussian sources, but have considered the additive Gaussian noise channel. An interesting
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variant is when the source follows a regular distribution with a finite support and the measurement

noise is modeled using copula. For example, beta distribution satisfies the regularity conditions

and has a finite support. Also, for distributions such as cosine, parabolic, and inverted parabolic,

midrange (similar to the one used in this chapter) is more efficient than mean [120]. In such cases,

it will be interesting to explore if the minimum achievable square distortion would still exhibit a

1/R convergence behavior.

In Chapter 6, psychological principles were employed to understand the behavior of humans at

fusing multiple decisions. The data needs to be analyzed with a fine-tooth comb to identify the in-

dividual cases when the decisions of humans do not match the CV rule’s decision. A psychological

understanding of these particular cases can help us in comprehending this complex phenomenon.

Data should also be collected with a large number of sources (N ) to verify some asymptotic ap-

proximations. In other words, this data should be used to verify the hypothesis that humans use

heuristic decision rules when the amount of data is large. On similar lines, time-constrained tasks

can also be considered, to verify if heuristic rules such as ‘pick-the-best’ rule which fail in the

framework considered here, would work well under such time-constrained situations.

In Chapter 7, a crowdsourcing system was considered and a coding theory based scheme was

designed to ensure reliable classification using unreliable crowds. Going forward, many further

questions may be addressed; some examples are as follows. Can better cognitive and attentional

models of human crowd workers provide better insight and design principles? When considering

average misclassification probability, the ordering of crowd quality depends only on a first-moment

characterization; what about finer characterizations of system performance? One can also design

the number of paired workers in the peer-dependent reward scheme to optimize system perfor-

mance. In the current work, we designed the code matrices with no prior knowledge of the crowd

parameters. In the future, one can also consider a setup where the crowd parameters such as the

covariance and/or dependence parameters are known to further improve the system performance.

Fig. 9.1 summarizes future directions in terms of the general problems following this thesis and

the general approach towards solving them. A HuMaIN as defined in Chapter 8 consists of a social
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network where humans exchange subjective opinions among themselves, and a sensor network

where sensors exchange objective measurements amongst them. Moreover, due to the interaction

between social and sensor networks, the behavioral characteristics of humans determine algorithms

adopted by machines and these algorithms in turn affect the behavior of humans. Therefore, as

suggested by the preliminary results, an intelligent collaboration of humans and machines can

deliver improved results.

The future work can be summarized into two specific research directions:

1. Use of statistical modeling techniques to develop mathematical models of human decision

making, in collaboration with cognitive psychologists, and

2. To use the above developed models to design robust fusion algorithms that handle unreliable

data from the agents.

These projects have both theoretical and implementation challenges. Therefore, the focus is first

on developing theoretical models for such a collaboration and then, implementing the designed

algorithms to verify their applicability in practice. Both these problems are further explained in

detail below.

Social Network Interaction Sensor Network Interaction

Human-Machine Inference Network

Subjective 
Opinions

Objective 
MeasurementsAlgorithm Design

Behavioral Change

(a)

Observe human 
behavior

Build behavioral 
models

(Re)Design 
human-machine 

systems

(b)

Fig. 9.1: Elements of the proposed research. (a) Unified architecture of human-machine inference
networks (b) General approach for design and analysis of HuMaINs.
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9.2.1 Statistical Modeling of Human Decision Making

The first step towards developing efficient systems containing humans and machines is to develop

appropriate models characterizing their behavior. While statistical models exist that characterize

the machine observations, researchers have not extensively investigated the modeling of decisions

and subjective confidences on multihypothesis tasks, or on tasks in which human decision makers

can provide imprecise (i.e., vague) decisions. Both of these task types, however, are important in

the many applications of HuMaINs. In the preliminary work (Chapter 6), a comparative study be-

tween people and machines at the task of decision fusion has been performed. It was observed that

the behavior is different since the optimal fusion rule is a deterministic one while people typically

use non-deterministic rules which depend on various factors. Based on these observations, a hier-

archical Bayesian model was developed to address the observed behavior of humans. This model

captures the differences observed in people at individual level, crowd level, and population level.

Moving forward, for individual human decision-making models, tools from bounded rationality

framework [127] and rational inattention theory [128] can be used in building a theory. Exper-

iments with human subjects can be designed to model the cognitive mechanisms which govern

the generation of decisions and decision confidences as they pertain to the formulation of precise

and imprecise decisions. One can also build models that consider the effect of stress, anxiety, and

fatigue in the cognitive mechanisms of human decision making, decision confidence assessment,

and response time (similar to [116, 168]).

9.2.2 Design of Robust Algorithms for Collaborative Decision Making

The next step after deriving probabilistic models of human decision-making, is to develop efficient

fusion algorithms for collaborative decision making. The goal would be to seek optimal or near-

optimal fusion rules which incorporate the informational nature of both humans and machines.

Due to the large volume of data in some practical applications, it is also of interest to analyze

the effects that a large number of agents (humans/machines) and a high rate of incoming data

have on the performance of the fusion rules. However, the highly parameterized nature of these
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human models might deem their implementation impractical. Also the presence of unreliable

components in the system might result in poor fusion performance. Data from existing studies in

the cognitive psychology literature along with models resulting from the work in Sec. 9.2.1 can

be used in the analysis of these operators. For cases in which the implementation of the optimal

rule is not feasible, a future project can investigate the use of adaptive fusion rules that attempt to

learn the parameters of the optimal fusion rule online. Also, for the design of simple and robust

algorithms, ideas from coding theory can be used similar to the reliable crowdsourcing results

previously derived in Chapter 7.

For the development of future systems consisting of humans and machines, the methodology

described above needs to be implemented. First, statistical models of humans should be developed,

which are then used to optimize the machines in the system. Due to the presence of potential unre-

liable agents, one has to also take into consideration the robustness of the systems while developing

such large-scale systems. This thesis demonstrated the utility of statistical learning techniques and

tools from coding theory to achieve reliable performance from unreliable agents.
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APPENDIX A

APPENDIX

A.1 Proof of Proposition 4.3.1

The probability of a sensor sending a bit value 1 is

P (u = 1|a) = Q

(
η(â)− a

σ

)
. (A.1)

The data’s contribution to the posterior Fisher Information is given by

F = −E
[∂2 lnP (u|a)

∂2a

]
, (A.2)

where ln p(u|a) = (1 − u) ln (1− P (u = 1|a)) + u lnP (u = 1|a). Let P1 = P (u = 1|a) and

P0 = 1− P1. Then

∂2 ln p(u|a)

∂2a
= −(1− u)

P 2
0

(∂P0

∂a

)2

+
(1− u)

P0

∂2P0

∂2a
− u

P 2
1

(∂P1

∂a

)2

+
u

P1

∂2P1

∂2a

and

E
[∂2 ln p(u|a)

∂2a

]
= − 1

P0

(∂P0

∂a

)2

− 1

P1

(∂P1

∂a

)2

(A.3)
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Note the fact that E[u] = P1 has been used in (A.3). Since P1 = 1− P0,

(∂P0

∂a

)2

=
(∂P1

∂a

)2

=
e−

(η(â)−a)2

σ2

2πσ2
, (A.4)

where the relation
∂Q[(η(â)−a)

σ
)]

∂a
=
e−

(η(â)−a)2

2σ2

σ
√

2π
(A.5)

has been used. From (A.2), (A.3) and (A.4), we get the desired result.

A.2 Proof of Proposition 4.3.3

Let the probability of a sensor sending a bit value 1 be defined as P1.

P1 = P (u = 1|a,Byzantine)P (Byzantine) + P (u = 1|a,Honest)P (Honest)

= α

(
p

(
1−Q

(
ηB(â)− a

σ

))
+ (1− p)Q

(
ηB(â)− a

σ

))
+

(1− α)Q

(
ηH(â)− a

σ

)
, (A.6)

where P (Byzantine) = α is the probability that the sensor is a Byzantine, and similarly, P (Honest) =

1− α is the probability that the sensor is honest. Here, p denotes the probability of flipping by the

Byzantines. The data’s contribution to the posterior Fisher Information is given by

F = −E
[∂2 lnP (u|a)

∂2a

]
, (A.7)

where ln p(u|a) = (1− u) ln (1− P1) + u lnP1. Let P0 = 1− P1. Then

∂2 ln p(u|a)

∂2a
= −(1− u)

P 2
0

(∂P0

∂a

)2

+
(1− u)

P0

∂2P0

∂2a
− u

P 2
1

(∂P1

∂a

)2

+
u

P1

∂2P1

∂2a
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and

E
[∂2 ln p(u|a)

∂2a

]
= − 1

P0

(∂P0

∂a

)2

− 1

P1

(∂P1

∂a

)2

(A.8)

Note the fact that E[u] = P1 has been used in (A.8). Since P1 = 1− P0,

(∂P0

∂a

)2

=
(∂P1

∂a

)2

=

(
−α(2p− 1)e−

(ηB(â)−a)2

2σ2 + (1− α)e−
(ηH (â)−a)2

2σ2

)2

2πσ2
, (A.9)

where the relation
∂Q[(η(â)−a)

σ
)]

∂a
=
e−

(η(â)−a)2

2σ2

σ
√

2π
(A.10)

has been used. From (A.7), (A.8) and (A.9), we get the desired result.

Note that when α = 0, the data’s contribution to posterior Fisher Information in (4.14) becomes

F [η(â), a] =
e−

(η(â)−a)2

σ2

2πσ2[Q(η(â)−a
σ

)][1−Q(η(â)−a
σ

)]
, (A.11)

which is the result of Proposition 4.3.1.

A.3 Proof of Lemma 4.4.2

Let dH(·, ·) be the Hamming distance between two vectors, for fixed θ ∈ Rk
j ,

P k
e (θ) = P

{
detected region 6= Rk

j |θ
}

≤ P

{
dH(uk, ckj+1) ≥ min

0≤l≤M−1,l 6=j
dH(uk, ckl+1)|θ

}
≤

∑
0≤l≤M−1,l 6=j

P
{
dH(uk, ckj+1) ≥ dH(uk, ckl+1)|θ

}
=

∑
0≤l≤M−1,l 6=j

P

 ∑
{i∈[1,··· ,Nk]:c(l+1)i 6=c(j+1)i}

zki,j ≥ 0|θ

 . (A.12)

Using the fact that ck(l+1)i 6= ck(j+1)i for all i ∈ Skj ∪ Skl , l 6= j, we can simplify the above
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equation. Also, observe that {zi,j}Nki=1 are independent across the sensors given θ. According to (2)

in [170],

λm =
1

dm,k

Nk∑
i=1

(ck(l+1)i⊕ck(j+1)i)(2q
k
i,j−1) =

1

dm,k

∑
i∈Skj ∪Skl

(2qki,j−1) =
1

dm,k

 ∑
i∈Skj ∪Skl

2qki,j −
2Nk

M


(A.13)

since ck(l+1)i 6= ck(j+1)i for all i ∈ Skj ∪ Skl , l 6= j. λm < 0 is then equivalent to condition (4.33).

Therefore, using Lemma 4.4.1 and (A.13),

P

 ∑
{i∈[1,··· ,Nk]:c(l+1)i 6=c(j+1)i}

zki,j ≥ 0|θ

 ≤

1−

(∑
i∈Skj ∪Skl

(2qki,j − 1)
)2

d2
m,k


dm,k/2

.(A.14)

Substituting (A.14) into (A.12), we have (4.34). Note that condition (4.33) (λm < 0) implies

λkj,max(θ) < 0 by definition. Hence, (4.35) is a direct consequence from (4.34).

A.4 Proof of Theorem 4.4.4

First we prove that condition (4.33) is satisfied by the proposed scheme for all θ when σ < ∞.

Hence, the inequality (4.35) can be applied to the proposed scheme. The probabilities qki,j given by

(4.37) are

qki,j =


1−Q

(
(ηki −ai)

σ

)
, for i ∈ Skj

Q
(

(ηki −ai)
σ

)
, for i ∈ Skl

. (A.15)

By Assumption 4.4.3, there exists a bijection function f from Skj to Skl . The sum
∑

i∈Skj ∪Skl
qki,j of

(4.33) can be evaluated by considering pairwise summations as follows. Let us consider one such
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pair (ij ∈ Skj , f(ij) = il ∈ Skl ). Hence, their thresholds are ηkij = ηkil = η. Then, from (A.15),

qkij ,j + qkil,j = 1−Q
(

(η − aij)
σ

)
+Q

(
(η − ail)

σ

)
(A.16)

= 1−
[
Q

(
(η − aij)

σ

)
−Q

(
(η − ail)

σ

)]
. (A.17)

Now observe that, by the assumption,

aij =

√
P0

dij
>

√
P0

dil
= ail

and, therefore,Q
(

(η−aij )

σ

)
> Q

(
(η−ail )

σ

)
for all finite values of σ. From (A.17), the sum qkij ,j+q

k
il,j

is strictly less than 1. Therefore, the sum
∑

i∈Skj ∪Skl
qki,j <

Nk
M

= N
Mk+1 =

dm,k
2

. Therefore, the

condition in (4.33) is satisfied for the code matrix used in this scheme. Hence, P k
e (θ) can always

be bounded by (4.35).

By using (4.35), P k
d can be bounded as follows:

P k
d = 1−

M−1∑
j=0

P{θ ∈ Rk
j}P

{
detected region 6= Rk

j |θ ∈ Rk
j

}
= 1− 1

M

M−1∑
j=0

∫
θ

P{θ|θ ∈ Rk
j}P

{
detected region 6= Rk

j |θ, θ ∈ Rk
j

}
dθ

= 1− 1

M

M−1∑
j=0

∫
θ∈Rkj

P{θ|θ ∈ Rk
j}P k

e (θ) dθ

≥ 1− 1

M

M−1∑
j=0

∫
θ∈Rkj

P{θ|θ ∈ Rk
j}(M − 1)

(
1−

(
λkj,max(θ)

)2
)dm,k/2

dθ

≥ 1− M − 1

M

M−1∑
j=0

(
1−

(
λkj,max

)2
)dm,k/2 ∫

θ∈Rkj
P{θ|θ ∈ Rk

j } dθ (A.18)

≥ 1− M − 1

M

M−1∑
j=0

(
1−

(
λkmax

)2
)dm,k/2

(A.19)

= 1− (M − 1)
(

1−
(
λkmax

)2
)dm,k/2

. (A.20)
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Both (A.18) and (A.19) are true since λkj,max < 0 and λkmax < 0.

A.5 Proof of Theorem 4.6.3

First we prove that when α < 0.5, then

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]→∞, (A.21)

where Zjl
i = 1

2
((−1)c

k
ji − (−1)c

k
li). Based on our code matrix design, Zjl

i for i ∈ Skj ∪ Skl is given

as

Zjl
i =


−1, for i ∈ Skj

+1, for i ∈ Skl
. (A.22)

By using the pairwise summation approach discussed in Section 4.4.2, notice that, for every

sensor ij ∈ Skj and its corresponding sensor il ∈ Skl , when θ ∈ Rk
j ,

Zjl
ij
E[ψkij |θ] + Zjl

il
E[ψkil |θ] = E[(ψkil − ψ

k
ij

)|θ]. (A.23)

Now, for a given sensor i,

E[ψki |θ] = P (uki = 0|θ)E[ψki |θ, uki = 0] + P (uki = 1|θ)E[ψki |θ, uki = 1] (A.24)

= (1− P (uki = 1|θ))E[ψki |uki = 0] + P (uki = 1|θ)E[ψki |uki = 1] (A.25)

= E[ψki |uki = 0] + P (uki = 1|θ)
[
E[ψki |uki = 1]− E[ψki |uki = 0]

]
, (A.26)

where the facts that P (uki = 0|θ) + P (uki = 1|θ) = 1 and that the value of ψki depends only on uki

have been used.

Note that the channel statistics are the same for both the sensors. Therefore, E[ψki |uki = d] for
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d = {0, 1} given by

E[ψki |uki = d] = E

[
ln
P (vki |uki = 0)

P (vki |uki = 1

∣∣∣∣∣uki = d

]

is the same for both the sensors. The pairwise sumE[(ψkil−ψ
k
ij

)|θ] now simplifies to the following,

E[(ψkil − ψ
k
ij

)|θ]

= E[ψki |uki = 0] + P (ukil = 1|θ)
[
E[ψki |uki = 1]− E[ψki |uki = 0]

]
− E[ψki |uki = 0]− P (ukij = 1|θ)

[
E[ψki |uki = 1]− E[ψki |uki = 0]

]
(A.27)

=
(
P (ukil = 1|θ)− P (ukij = 1|θ)

) [
E[ψki |uki = 1]− E[ψki |uki = 0]

]
. (A.28)

When θ ∈ Rk
j ,

P (ukij = 1|θ) = α + (1− 2α)Q

(
(η − aij)

σ

)
(A.29)

P (ukil = 1|θ) = α + (1− 2α)Q

(
(η − ail)

σ

)
(A.30)

and, therefore,

P (ukil = 1|θ)− P (ukij = 1|θ) = (1− 2α)

(
Q

(
(η − ail)

σ

)
−Q

(
(η − aij)

σ

))
. (A.31)

Note that, since θ ∈ Rk
j , Q

(
(η−ail )

σ

)
< Q

(
(η−aij )

σ

)
. Next we prove that

E[ψki |uki = 1]− E[ψki |uki = 0] < 0 (A.32)
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for all finite noise variance of the fading channel (σ2
f ).

E[ψki |uki = 1]− E[ψki |uki = 0]

= E

[
ln
P (vki |uki = 0)

P (vki |uki = 1

∣∣∣∣∣uki = 1

]
− E

[
ln
P (vki |uki = 0)

P (vki |uki = 1

∣∣∣∣∣uki = 0

]

=

∫ ∞
−∞

P (vki |uki = 1) ln
P (vki |uki = 0)

P (vki |uki = 1
dvki −

∫ ∞
−∞

P (vki |uki = 0) ln
P (vki |uki = 0)

P (vki |uki = 1
dvki

= −
[
D(P (vki |uki = 1)||P (vki |uki = 0) +D(P (vki |uki = 0)||P (vki |uki = 1)

]
, (A.33)

where D(p||q) is the Kullback-Leiber distance between probability distributions p and q. Since

P (vki |uki = 1) 6= P (vki |uki = 0) for all finite σ2
f , we have D(P (vki |uki = 1)||P (vki |uki = 0) > 0 and

D(P (vki |uki = 0)||P (vki |uki = 1) > 0. This concludes that E[ψki |uki = 1] − E[ψki |uki = 0] < 0.

Hence, When α < 1/2, from (A.28), (A.31), and (A.32), E[(ψkil − ψ
k
ij

)|θ] > 0 and the condition∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]→∞ is satisfied.

We now show that when the condition (A.21) is satisfied, the proposed scheme asymptotically

attains perfect detection probability.

lim
N→∞

PD = lim
N→∞

kstop∏
k=0

P k
d

≥
kstop∏
k=0

lim
N→∞

[
1−

M−1∑
j=0

P
{
θ ∈ Rk

j

}
P
{

detected region 6= Rk
j |θ ∈ Rk

j

}]

=
kstop∏
k=0

lim
N→∞

[
1− 1

M

M−1∑
j=0

∫
θ

P
{
θ|θ ∈ Rk

j

}
P
{

detected region 6= Rk
j |θ, θ ∈ Rk

j

}
dθ

]
.

Define

P k
e,j,max , max

θ∈Rkj
P k
e,j(θ) (A.34)

and

P k
e,max , max

0≤j≤M−1
P k
e,j,max. (A.35)
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Then,

lim
N→∞

PD =
kstop∏
k=0

lim
N→∞

[
1− 1

M

M−1∑
j=0

∫
θ

P
{
θ|θ ∈ Rk

j

}
P k
e,j(θ)dθ

]

≥
kstop∏
k=0

lim
N→∞

[
1− 1

M

M−1∑
j=0

∫
θ∈Rkj

P
{
θ|θ ∈ Rk

j

}
P k
e,j,maxdθ

]

=
kstop∏
k=0

lim
N→∞

[
1− 1

M

M−1∑
j=0

P k
e,j,max

∫
θ∈Rkj

P
{
θ|θ ∈ Rk

j

}
dθ

]

≥
kstop∏
k=0

lim
N→∞

[
1−

P k
e,max

M

M−1∑
j=0

1

]

=
kstop∏
k=0

[
1− lim

N→∞
P k
e,max

]
. (A.36)

Since E
[
(ψ̃ki )2|θ

]
is bounded as shown by Lemma 4.6.2, Lindeberg condition [48] holds and

1
σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i ψ̃

k
i tends to a standard Gaussian random variable by Lindeberg central limit

theorem [48]. Therefore, from (4.51),

lim
N→∞

P k
e,j(θ) ≤ lim

N→∞

∑
0≤l≤M−1,l 6=j

P

 1

σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i ψ̃

k
i < −

1

σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]

∣∣∣∣θ
(A.37)

=
∑

0≤l≤M−1,l 6=j

lim
N→∞

Q

 1

σψ̃(θ)

∑
i∈Skj ∪Skl

Zjl
i E[ψki |Hk

j ]

 . (A.38)

Since, for a fixed θ, σψ̃(θ) will grow slower than
∑

i∈Skj ∪Skl
Zjl
i E[ψki |θ] when

∑
i∈Skj ∪Skl

Zjl
i E[ψki |θ]→

∞, limN→∞ P
k
e,j(θ) = 0 for all θ. Hence, limN→∞ P

k
e,max = 0 and from (A.36), limN→∞ PD = 1

for all finite noise variance.
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A.6 Proposition A.6.1

Proposition A.6.1.

K2E

( Û(1) + Û(L)

2
− a+ b

2

)2
 ≤ 2K2E

[(
U(1) + U(L)

2
− a+ b

2

)2
]

+ ε3

where ε3 = ε3(δ0, n) can be made arbitrarily small by making n sufficiently large and δ0 sufficiently

small.

Proof. Let B be the event {Ũi 6= Ûi,∀i}. By inequality (5.20), we have Pr {B} ≤ λ. Now,

K2E

[(
Û(1) + Û(L)

2
− a+ b

2

)2

− 2

(
U(1) + U(L)

2
− a+ b

2

)2
]

=
K2

4
E

[(
Û(1) + Û(L) − (a+ b)

)2

− 2
(
U(1) + U(L) − (a+ b)

)2

]

=
K2

4
E

[(
(Û(1) + Û(L))− (U(1) + U(L))−

(
(a+ b)− (U(1) + U(L))

) )2

− 2
(
U(1) + U(L) − (a+ b)

)2

]

≤K
2

4
E

[
2
(

(Û(1) + Û(L))− (U(1) + U(L))
)2

+ 2
(
(a+ b)− (U(1) + U(L))

)2

− 2
(
U(1) + U(L) − (a+ b)

)2

]

=
K2

2
E

[(
(Û(1) + Û(L))− (U(1) + U(L))

)2
]

≤K2E

[(
(U(1) + U(L))− (Ũ(1) + Ũ(L))

)2
]

+K2E

[(
(Ũ(1) + Ũ(L))− (Û(1) + Û(L))

)2
]

≤2K2E

[(
U(1) − Ũ(1)

)2
]

+ 2K2E

[(
U(L) − Ũ(L)

)2
]

+ 2K2E

[(
Ũ(1) − Û(1)

)2
]

+ 2K2E

[(
Ũ(L) − Û(L)

)2
]

,

where Ũ(i) are the order statistics of Ũi, and the last two inequalities follow from the fact that

E[(A+B)2] ≤ 2E[A2] + 2E[B2].
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Now, choose δ0 to be sufficiently small to ensure that the ordering of variates Ui is preserved

under quantization. Then, U(1) and Ũ(1) correspond to the same agent’s data, say the `th agent.

Therefore,

E

[(
U(1) − Ũ(1)

)2
]

= E

[(
U` − Ũ`

)2
]
≤ δ0

by (5.15). Similarly, E
[(
U(L) − Ũ(L)

)2
]
≤ δ0. Also, define ũmax = max{|ũ| : ũ ∈ Ũ}. Now, for

i = {1, . . . , L}:

E

[(
Ũ(i) − Û(i)

)2
]

=
∑
u,u′

(
Ũ(i) − Û(i)

)2

Pr
{
Ũ(i) = u, Û(i) = u′

}
=
∑
u,u′

(
Ũ(i) − Û(i)

)2

Pr
{
Ũ(i) = u, Û(i) = u′

}
≤
∑
u,u′

4ũ2
max Pr

{
Ũ(i) = u, Û(i) = u′

}
= 4ũ2

max Pr
{
Ũ(i) 6= Û(i)

}
≤ 4ũ2

max Pr {B}

≤ 4ũ2
maxλ.

Therefore,

K2E

[(
Û(1) + Û(L)

2
− a+ b

2

)2

− 2

(
U(1) + U(L)

2
− a+ b

2

)2
]
≤ 4K2δ0 + 8K2ũ2

maxPr(B)

≤ 4K2δ0 + 8K2ũ2
maxλ.

Now, choosing a sufficiently large n such that

λ <
ε3 − 4K2δ0

8K2ũ2
max

,

yields the desired result.
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A.7 Proposition A.7.1

Proposition A.7.1. The following inequality:

∑n
i=1 piAi∑n
i=1 piBi

≥ min
i

(
Ai
Bi

)
(A.39)

holds, if pi, Ai, Bi ≥ 0 and not all are 0.

Proof. Let m = mini

(
Ai
Bi

)
. By definition,

Ai ≥ Bim, for all i = 1, . . . , n

=⇒ piAi ≥ piBim, for all i = 1, . . . , n

=⇒
n∑
i=1

piAi ≥ m
n∑
i=1

piBi

=⇒
∑n

i=1 piAi∑n
i=1 piBi

≥ m = min
i

(
Ai
Bi

)
.
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