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ABSTRACT 
The need for tools to analyze heat and moisture behavior in wooden constructions is increasing 
with the increasing awareness of the moisture problems. An example of a construction with a 
history of mould problems is cold attics. Most heat models of attics use a lumped node technique 
for energy balance and ignore the variation in heat transfer coefficients. A model based on so 
called dynamic thermal networks has been developed that takes into account radiation between 
the interior surfaces and the different boundary conditions at the outside and inside surfaces. 
The first step is to develop analytical solutions for the step responses for the whole attic 
including a composite roof. The second step is to create a dynamic thermal network based on 
these solutions. With the thermal network it is possible to do hourly (or any given time step) 
calculations for several years in a very short computer time which makes it possible to easily 
test different parameters: ventilation rate, insulation thickness, solar insolation etc. The 
analytical response solutions also provide good insight into the physics of the thermal problem. 
A simple parameter study of exterior roofing insulation is presented as an example. The work 
is part of a large project in Sweden investigating wooden constructions. 
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INTRODUCTION 
The points of interest for mould problems in a cold attic are e.g. the attic air and the interior 
attic roof surface. This is because one reason for the moisture problems is the cooling of ambient 
air when entering the attic. There are many possible ways to implement a thermal model of an 
attic. Using a one-dimensional model where the ventilated air space is modeled as a space 
between two parallel plates is especially common when the model includes moisture transport, 
Vahid (2012). Since even the thermal problem is quite complex given that the attic has many 
layers the methods used to solve the problem are typically numerical. The paper presented here 
deals with an analytical solution of the transient heat transfer problem of an attic based on a 
thermal network. With this solution it is possible to do fast parameter studies with hourly 
climate data. This includes the effect of shortwave absorbation coefficients, insulation 
thickness, ventilation rate etc.  

THERMAL MODELING OF AN ATTIC 
The model consists of an attic floor, roof and a ventilated space in between. The heat transfer 
in the floor and roof is one dimensional but the radiation exchange between the surfaces takes 
into account the two dimensional view factors between the floor and roof. The floor consists of 
insulation. The composite roof consists of wood, insulation, a non-ventilated air gap and roof 
tiles. This is described in Figure 1. The heat transfer process is a linear one, which therefore 
includes linearization of the convective and radiative heat transfer at the surfaces. 
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Figure 1. Left: Notations for an attic with radiation heat exchange between floor and roof. Right: 
Details of the composite roof involving two material layers and an air gap below roofing tiles. 

The following subscripts will be used: a = attic air, f = attic floor surface,  r = attic roof surface, 
v = ventilation air temperature, e = exterior air temperature,   i = interior air temperature,  rad = 
effective outdoor air temperature due to radiation, 1 = insulation slab in attic floor,  21 = wood 
slab in attic roof,  22 = insulation slab in attic roof,  rt =roofing tiles. 
The model can be represented as thermal network which is described in Figure 2. It is easy to 
see the possible paths of the heat flow. 

Figure 1. Network to represent the thermal interactions and equations in the attic components 

The thermal process is governed by the three prescribed boundary functions for ventilation, 
exterior and interior temperature: 

v e i
( ), ( ), ( ).T t T t T t

(1) 

These particular boundary conditions are chosen because they are simple but allow for a realistic 
treatment of the climate. Obvious simplifications are: constant ventilation rate, constant 
convective and radiative heat transfers coefficients, well mixed air in the attic space and that 
the influence of short and longwave radiation on the exterior surface can be simplified as an 
equivalent exterior temperature. The task is to calculate temperatures as functions of time at the 
four nodes (a, f, r, rt) and the temperature field through floor and roof: 

𝑇𝑎(𝑡), 𝑇𝑓(𝑡), 𝑇𝑟(𝑡), 𝑇𝑟𝑡(𝑡), 𝑇1(𝑥, 𝑡)  0 ≤ 𝑥 ≤ 𝐷1, 𝑇2(𝑥, 𝑡)  0 ≤ 𝑥 ≤ 𝐷2 (2)
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The temperature of the attic air, Ta(t), and the interior surface of the attic roof, Tr(t)= T2(0,t), are 
of particular interest for studies of moisture problems.There is a heat balance equation at each 
node (a, f, r, rt).  The equation for the air node, Ta(t), is: 

a v a r a f a
a

v ar af

( ) ( ) ( ) ( ) ( ) ( )
.

dT T t T t T t T t T t T t
C

dt R R R
- - -

× = + + (3) 

The equation for the node at the surface of the attic roof, Tr(t), is, Figure 2: 

𝑇𝑎(𝑡)−𝑇𝑟(𝑡)

𝑅𝑎𝑟
+

𝑇𝑓(𝑡)−𝑇𝑟(𝑡)

𝑅𝑓𝑟
= 𝑞2(0, 𝑡) = 𝐿2 ∙ (−𝜆21)

𝜕𝑇2

𝜕𝑥 𝑥=0 (4) 

The heat equation for the temperature T1(x,t) in the insulation slab of the attic floor reads: 

1

𝑎1
∙

𝜕𝑇1

𝜕𝑡
=

𝜕2𝑇1

𝜕𝑥2 ,    0 ≤ 𝑥 ≤ 𝐷1, 𝑎1 =
𝜆1

𝜌1𝑐1
(5) 

The heat equation for the temperature T2(x,t) of the composite roof is similar. The basic input 
data with values for the reference case are chosen as a relatively small attic: 

1 3
1 v a a

0 2
av f 1 1 1 1

i r 21 21 21 21 22 22

22 22 2-rt

8 m, 3 m, 2/ 3600 s , 1.29 kg/ m , 1000 J / kg, 0.9,
283 C, 4 W/ (K,m ), 0.4 m, 0.04 W/ (K,m), 20, 800,

8, 4, 0.02, 0.14, 500, 1200, 0.05, 0.04,
50, 800, 15

L H n c
T D c

D c D
c

r e
a l r

a a l r l
r a

-= = = = = =
= = = = = =

= = = = = = = =
= = = rt rt rt e, 0.015 m, 1500, 800, 15.D cr a= = = =

(6) 

STEP RESPONSES FOR THE THREE BASIC CASES 
The determination of the attic temperatures is based on the solutions for three basic cases, one 
for each boundary condition. In the first case associated with the ventilation boundary, the 
ventilation temperature experiences a unit temperature step from 0 to 1 at t = 0. The exterior 
and interior boundary temperatures are zero for all times. The temperature at the start t = 0 is 
zero in the whole attic. The three basic step-response problems (ventilation, exterior, interior) 
are defined by the following boundary conditions: 

v e i

e v i

i v e

Vent ilat ion: T ( ) ( ), ( ) 0, ( ) 0;
0 0

Exterior : ( ) ( ), T ( ) 0, ( ) 0; ( ) ;
1 0

Interior : ( ) ( ), T ( ) 0, ( ) 0.

t H t T t T t
t

T t H t t T t H t
t

T t H t t T t

= = =
ìï <ïï= = = = íï >ïïî

= = = (7) 

STEP RESPONSES FOR VENTILATION TEMPERATURE  
The solution for a step in the ventilation boundary temperature involves the following 
temperature components (using a bold face superscript v for the ventilation step response):  

𝑈𝑎
𝑣(𝑡), 𝑈𝑓

𝑣(𝑡), 𝑈𝑟
𝑣(𝑡), 𝑈𝑟𝑡

𝑣 (𝑡), 𝑈1
𝑣(𝑥, 𝑡)  𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝐷1, 𝑈2

𝑣(𝑥, 𝑡) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝐷2      (8) 

These functions describe the step response at all points in the thermal model. Some examples 
of solutions are given in Figure 3 .  
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Figure 3. Temperature distribution through roof (-0.07< x <0) and floor (0< x <0.4) for the 
ventilation step for t = 0.1,  …, 10 hours. The top curve shows the steady-state temperature. 

SOLUTION TECHNIQUES 
A methodology called dynamic thermal networks to solve thermal problems involving transient 
heat conduction have been presented by Claesson and co-workers in a number of papers. These 
networks represent the relations between boundary heat fluxes and  boundary temperatures. The 
current heat fluxes are obtained by integrals (or sums) of preceding boundary temperatures 
multiplied by weighting functions, Claesson (2002A, 2003). The theory is applied to composite 
walls in Wentzel and Claesson (2003), to a building with walls, roof and foundation in Wentzel 
and Claesson (2004) and Wentzel (2005). Solution techniques involving Laplace transforms 
and Fourier series with determination of eigenvalues are used. This whole system with all its 
complex interactions may be represented by a thermal network for the Laplace transform and 
for the eigenvalues. From these similar networks the Laplace transform and the equation for 
eigenvalues are readily obtained. The final Laplace solution is obtained by an integral inversion. 
The full thermal model for the attic requires some four pages of formulas and relations in 
Mathcad. The computer time for about five digits accuracy is a few minutes.    

General superposition formula 
Let P denote any considered point (node, point in floor or roof) for which the temperature is to 
be determined: 

𝐏: 𝑎, 𝑓, 𝑟, 𝑟𝑡, 𝑥 = 𝑥1 (0 ≤ 𝑥 ≤ 𝐷1), 𝑥 = 𝑥2  (0 ≤ 𝑥 ≤ 𝐷2 (9) 

The temperature at P as function of time t depends on the three boundary temperatures taken 
for preceding times up to time t. General superposition gives the following exact formula: 

𝑇𝐏(𝑡) = ∫ [𝑊𝐏
𝑣(𝜏) ∙ 𝑇𝑣(𝑡 − 𝜏) + 𝑊𝐏

𝑒(𝜏) ∙ 𝑇𝑒(𝑡 − 𝜏) + 𝑊𝐏
𝑖(𝜏) ∙ 𝑇𝑖(𝑡 − 𝜏)]𝑑𝜏

∞

0
(10) 

Here, the weighting functions are given by the time derivative of the three basic step-response 
solutions at the considered point P: 

𝑊𝐏
𝑣(𝜏) =

𝑑

𝑑𝜏
[𝑈𝐏

𝑣(𝜏)], 𝑊𝐏
𝑒(𝜏) =

𝑑

𝑑𝜏
[𝑈𝐏

𝑒(𝜏)],     𝑊𝐏
𝑖(𝜏) =

𝑑

𝑑𝜏
[𝑈𝐏

𝑖 (𝜏)], (11)
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The weighting factors are positive (or zero), since the U-functions increase monotonously with 
time, and the derivatives tend to zero (exponentially) for large times. Equation (10) thus 
expresses the full analytical solution of the problem. No discretization or numerical limitations 
are used at this point. 

Discretization 
In the discrete numerical model, the boundary temperatures are by assumption piecewise 
constant during each time interval n: 

𝑇𝑣(𝑡) = 𝑇𝑣,𝑛,     𝑇𝑒(𝑡) = 𝑇𝑒,𝑛,    𝑇𝑖(𝑡) = 𝑇𝑖,𝑛     𝑓𝑜𝑟 (𝑛 − 1)ℎ < 𝑡 < 𝑛 ∙ ℎ (12) 

Here, h is the time step, which often is typically h = 1 hour. Formula (10) gives: 

𝑇𝐏(𝑛𝑡) = 𝑇𝐏,𝑛 = ∑ ∫ [𝑊𝐏
𝑣(𝜏) ∙ 𝑇𝑣,𝑛−𝜐 + 𝑊𝐏

𝑒(𝜏) ∙ 𝑇𝑒,𝑛−𝜐 + 𝑊𝐏
𝑖(𝜏) ∙ 𝑇𝑖,𝑛−𝜐]𝑑𝜏

𝜐ℎ

𝜐ℎ−ℎ
∞
𝜐=1    (13) 

The sum of all weighting factors becomes equal to one. Equation (13) may therefore be written 
in the following way: 

∑ [𝑊𝐏,𝜐
𝑣 ∙ 𝑇𝑣,𝑛−𝜐 − 𝑇𝐏,𝑛 + 𝑊𝐏,𝜐

𝑒 ∙ 𝑇𝑒,𝑛−𝜐 − 𝑇𝐏,𝑛 + 𝑊𝐏,𝜐
𝑖 ∙ 𝑇𝑖,𝑛−𝜐 − 𝑇𝐏,𝑛]∞

𝜐=1 = 0 (14) 

This relation may be represented graphically as a kind of dynamic thermal network, Figure 4. 

Figure 4. Dynamic thermal network to represent the weighting formulas (14). 

Data from the reference case (6) gives that sum above may be truncated after 15 time steps of 
one hour each.  

PARAMETER STUDY. AN EXAMPLE 
With the model and solution described above it is easy to investigate the importance of the 
parameters in the model for any given boundary conditions. As an example has the importance 
of the exterior insulation thickness been studied using a climate in Lund for one year (1990). 
When investigating moisture related issues it is of interest to calculate the risk of high relative 
humidity on the attic roof surface which is directly dependent on the difference between the 
outdoor (ventilation) temperature and the roof surface Diff=Tr-Tv. The risk for mould problems 
increases with Diff. Figure 5 shows Diff for a year in Lund 1990 presented in cumulative 
histogram form. The x axis is Diff and the y axis is the number of hours the value is below Diff. 
The calculations show that 1cm of  exterior insulation does not reduce the number of hours with 
cooling of the ventilated air. There are about 4500 hours with cooling.  With 5 cm insulation, 
as in Figure 10 however, does the number of hours with  cooling of ventilates air go down to 
about 2500 hours. 
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Figure 5 Cumulative histogram of Diff from hourly simulation of year 1990 in Lund, Sweden. 
Left: Exterior insulation thickness 0cm. Right. Exterior insulation thickness 5cm. 

CONCLUSION 
The paper presents an analytical solution method based on dynamic thermal networks for the 
heat transfer problem in an attic with a pitched roof. Although there exists a number of 
numerical approaches to solve this problem (Energy+, IDA-ICE etc), no analytical solution has 
as far as the authors know been presented before. The solution shows the physical behavior of 
the different components in a very clear way. It is also easy to investigate the effect of the 
included parameters. The temperature at any point can be calculated using about 15 preceding 
boundary temperatures. A few examples of possible parameter studies are presented.  
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