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Abstract 

 As environmental and economic forces push for movement away from traditional 

petroleum-sourced chemical and fuel production, it becomes essential for technologies in 

renewable carbon resources to be developed. In particular, the production of chemical 

commodities from renewable lignocellulosic biomass provides a unique path away from the use 

of petrol. Considering the high density of functional groups present in biomass feedstocks, new 

technologies must be developed to selectively target the removal of functional groups through 

the application of supported metal catalysts. The ability to target specific functional group 

removal would allow for biomass feedstocks to produce higher yields of desired commodities 

without the production of undesired, lower value chemicals. Through the use of promoter metals, 

such as Sn, it is possible to shift the selectivities of noble metal catalysts (e.g. Pt, Ru, Pd, etc.), 

often without greatly reducing the intrinsic activity of the monometallic catalyst. While the 

usefulness of bimetallic catalysts has been observed in many applications, the actual mechanisms 

by which promoter metals alter the catalyst’s performance is largely left unknown. This gap in 

knowledge is largely due to the fact that the traditional methods of catalyst synthesis lack the 

ability to control exact compositions and geometries of surface metal complexes. The synthesis 

method of strong electrostatic adsorption (SEA) utilizes the surface charging properties of metal 

oxides to selectively adsorb promoter metals to primary metal sites, potentially allowing for 

greater control of the composition of metal complexes. This work employs the SEA technique to 

develop a realistic method for the synthesis of Pt-Sn/Al2O3 bimetallic catalysts. The addition of 

Sn had profound effects on the selectivity of propionic acid hydrodeoxygenation (HDO), an 

analog for succinic acid HDO, suppressing nearly all unwanted byproduct production. Through 

the use of temperature programmed reductions (TPR), ambient-pressure photoemission 



 

 

spectroscopy (AP-PES), chemical and physical adsorptions, and electron microprobe 

characterization techniques, this work shows that the changes in propionic acid HDO is likely 

attributed to the changes in oxidation states of Pt metal sites upon the addition of Sn.
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Chapter 1. Literature Review 

1.1 Biofuels and Biochemicals 

 With growing concerns regarding the environmental, political, and societal impacts of 

chemicals and fuels produced from petrol, it is essential that new sources of these commodities 

be developed[1,2]. The factors necessitating the development of new sources include the rising 

prices of crude oil, the effects of carbon emissions on the global climate, and the desire for the 

United States to become energy self-sufficient[1,3]. Historically, the production of many of the 

chemical building blocks used to produce high value commodities have been the byproducts of 

ethylene production via naphtha cracking[4]. Due to the abundance of natural gas, ethylene 

production has shifted from the traditional petrol feedstock and has subsequentially diminished 

the production of the chemical building blocks produced as byproducts[4]. In an effort to both 

reduce carbon emissions and counter the reduced production of naphtha cracking coproducts, the 

use of biomass as a chemical feedstock has come to the forefront of research in the chemical 

industry[2,4].  

Biomass is the only available renewable source of fixed carbon for the production of 

chemical commodities and fuels, but due to the high density of oxygenated functional groups it is 

difficult to upgrade into useful chemical building blocks[5,6]. Specifically, this functionality 

makes it difficult to synthesize the liquid alkanes used as fuels because they require the removal 

of many of the functional groups present in bio-oil[5]. It more likely that biomass feedstocks will 

be competitive in markets where the functional groups of bio-oil are an advantage over petrol 

feedstocks that require the addition of these groups[5]. The development of technologies that will 

allow for the targeted removal of specific functional groups is essential to the competitiveness of 

biomass-derived chemical feedstocks. 
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1.2 Succinic Acid and Propionic Acid 

 In 2004, the United States Department of Energy named succinic acid (Figure 1) as one 

of the 12 potential building blocks for synthesizing chemical commodities from biomass[7]. 

Succinic acid is a C4-diacid containing two carboxylic acid functional groups[4]. Succinic acid is 

synthesized from lignocellulosic biomass through microbial fermentation and recovered from the 

fermentation broth through methods of membrane separation, chromatography, direct 

crystallization, and precipitation[8,9]. This building block is of particular interest due to use in 

the synthesis of a variety of commodities, such as coatings, surfactants, green solvents, and 

biodegradable plastics[8,10]. Some notable upgraded products of succinic acid include, 1,4-

butanediol, tetrahydrofuran, and gamma-butyrolactone, which are acquired through 

hydrodeoxygenation reactions. [9,10]. HDO is the removal of oxygen containing functional 

groups through hydrogenolysis and is the pathway utilized to produce higher value commodities 

from succinic acid[4]. Due to the high activity of noble metal catalysts used in HDO reactions, 

there are several undesired side reactions that occur, such as decarboxylation and 

decarbonylation, leading to decreased yields of targeted products. This motivates a deeper study 

of succinic acid HDO and how tuning catalysts with secondary promoter metals might increase 

the yield of upgraded commodities. 

To understand the mechanisms of catalytic hydrodeoxygenation (HDO) reactions, 

propionic acid (Figure 1) was selected as an analog to succinic acid. Like succinic acid, 

Figure 1: Succinic acid (left) and propionic acid (right) 
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propionic acid contains a carboxylic acid functional group, but has a lower boiling point and is 

therefore more easily vaporized for gas phase reactions conducted in packed bed reactors (PBR). 

The proposed network for propionic acid HDO and subsequent reactions is shown in Figure 2.  

1.3 Monometallic and Bimetallic Catalysts 

 Due to the high number of functional groups present in lignocellulosic biomass 

feedstocks it can be difficult to target specific products with traditional monometallic 

catalysts[2]. To improve catalyst performance in these applications, it is useful to apply the 

concept of bimetallic catalysts, where a promoter metal is added to the primary active metal to 

affect catalyst stability, selectivity, and catalytic activity[2,11].  

One category of secondary metals that is of interest is the oxophilic promoter. An 

oxophilic metal, such as Sn, may perturb the electronic or physical environment of the primary 

metal by remaining partially oxidized under reaction conditions[12]. Bimetallics are most 

commonly synthesized through either incipient wetness sequential impregnation and co-

impregnation[13–15]. The issue with this synthesis method lies within the methods inability to 

Figure 2: Proposed reaction network for propionic acid HDO and subsequent reactions 
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control the placement secondary metals to ensure the homogeneity of active sites[13]. Often, the 

surface will be covered in monometallic and bimetallic clusters that have migrated to their 

thermodynamically stable formations and have large average sizes that reduce the amount of 

active metal available for reaction[13,14]. Gaining a deeper understanding of kinetic information 

from these different surface sites can prove to be not only challenging, but often impossible. 

Changes may be able to be inferred based on the addition of a secondary metal, but the true 

reaction rates, barriers, and other kinetic properties cannot be parsed from the mix of active site 

available[2,14]. In order to understand the chemical and physical changes that allow these 

changes in reaction kinetics, one must target the controlled synthesis of bimetallic active sites 

through a method that allows for the selective deposition of secondary metals.  

1.4 Strong Electrostatic Adsorption 

Strong electrostatic adsorption (SEA) is a proven method for monometallic and 

bimetallic supported catalysts that leverages the charging properties of oxides when placed in 

solution[13,15]. The oxide supports, such as alumina and silica, will have a net charge, centered 

around the point of zero charge (PZC), based on the pH of solution they are placed in. The PZC 

is the pH at which a support oxide will have a net zero charge over its surface and is a property 

that varies with the chosen support. By raising the pH above the PZC, one can deprotonate the 

surface hydroxyls creating a net negative support charge with the opposite being true for solution 

pH’s below the PZC. This ability to leverage surface charge allows for the selection of cationic 

and anionic metal complexes that will be adsorbed to the support surface. For example, a 

platinum anion complex in solution, such as hexachloroplatinate, will adsorb to the surface of 

silica or alumina if the pH of solution is below the PZC of the support oxide[15]. This is due to 
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the protonation of the support’s surface oxides, creating a net positive charge that drives the 

anions to adsorb to the surface[15].  

The SEA method has been proven to produce highly dispersed metal nanoparticles that 

have a much narrower size distribution than traditional methods of catalyst synthesis[11]. 

Current research has shown that the application of SEA extends past the synthesis of 

monometallic catalysts and has the potential to create bimetallics through selective 

adsorption[11,13,15]. By selecting supports and primary metals that have different PZC’s, it is 

possible to manipulate the pH of synthesis solution and produce a surface where the primary 

metal and support oxides have opposite charges. This difference in surface charge would create 

the potential for selective secondary metal ion adsorption to the primary metal oxides through a 

set of sequential SEA syntheses[15]. The method by which to synthesize these bimetallics is 

varied and can have effects on the structure of nanoparticles (e.g. core-shell and mixed alloy 

structures)[15]. As discussed in the previous section, the potential to selectively adsorb 

secondary promoter metals is appealing to those who want to study reaction kinetics because it 

would ensure that active sites are homogeneous in their metal composition.  

The motivation for this project is to develop a method for the controlled synthesis of 

supported Pt-Sn catalysts to generate a suite of materials that will be tested to determine their 

ability to tune the selectivity of propionic acid hydrodeoxygentation (HDO). It is our hypothesis 

that the SEA method can be used to produce these catalysts and that through characterization and 

probe reactions, we will gain a deeper understanding of how oxophilic promoters change the 

performance of noble metal catalysts under practical reaction conditions.   
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Chapter 2. Platinum Adsorption 

2.1 Materials and Methods 

2.1.1 Catalyst Synthesis 

Platinum supported catalysts were synthesized via the method of strong electrostatic 

adsorption (SEA). Alumina supports were sourced from Strem Chemicals and Inframat 

Advanced Materials in powdered and pellet forms with a minimum 97% purity and were sieved 

to select for 45 to 90 micron sized particles. All supports were prepared for synthesis by 

calcination under flowing air (Airgas, Ultra Zero Air) at a minimum of 50 mL/min for 3 hours at 

623 K with a 3 K/min ramping. Hydrogen hexachloroplatinate(IV) hydrate (Acros Organics) was 

used as a metal precursor for the synthesis of catalysts on alumina supports and synthesis 

solutions were made to have a Pt concentration of 200 μg/mL in deionized water. An initial pH 

measurement was taken using a Milwaukee MW 102 pH/Temp Meter with a SE220 probe. The 

meter was calibrated using pH 4.01 and pH 7.01 (Milwaukee) buffer solutions prior to every 

synthesis. The pH of synthesis solutions was adjusted to the target starting conditions using 

hydrochloric acid (Fisher Scientific, Trace Metal Grade) solutions. Synthesis solutions were 

poured over supports and placed on an orbital shaker for 1 hour at 80 rpm. The synthesized 

catalysts were then filtered from solution and dried in an oven at 373 K for a minimum of 12 

hours. Catalysts were then calcined in air at 623 K for 3 hours and subsequently reduced in 

hydrogen (Airgas, Ultra High Purity) at 673 K for 4 hours. After reduction, catalysts were 

passivated by flowing a 1%Ar/1%O2/98%He blend (Airgas) for a minimum of 15 minutes. All 

temperature ramps were 3 K/min with minimum gas flows of 50 mL/min. 
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2.1.2 Physical Adsorption 

A Micromeritics ASAP 2020 system was used to perform physical adsorption 

experiments on alumina supports to estimate the available surface area for metal precursors to 

adsorb on during catalyst synthesis. Samples of 100 – 200 mg were loaded into a Micromeritics 

quartz physisorption analysis cell with an initial sample mass measured on a Denver Instrument 

TP-214 analytical balance. Samples are degassed on the Micromeritics ASAP 2020 by initially 

evacuating the sample to a vacuum setpoint of 500 μmHg while increasing the temperature to 

363 K at a ramp rate of 3 K/min and holding for 1 hour. After the initial evacuation phase the 

sample temperature was ramped to 523 K at 3 K/min and evacuated for 4 hours, then cooled and 

backfilled with gaseous N2 (Airgas, Ultra High Purity). After degassing, the samples were 

reweighed, and a more accurate sample mass was obtained due to the removal of adsorbed water 

from atmospheric exposure. 

To obtain the Brunauer-Emmett-Teller (BET) surface area, samples were lowered into a 

liquid N2 (Airgas) bath and evacuated to a setpoint of 10 μmHg and held for 6 minutes. Samples 

were then dosed incrementally with gaseous N2 from 0 – 1 relative pressure and the BET surface 

area was obtained from the quantity adsorbed at relative pressures from 0.06 – 0.3. Relative 

pressure is defined as the pressure of N2 dosed divided by the measured vapor pressure of N2.  

2.1.3 Chemical Adsorption 

A Micromeritics ASAP 2020 system was used to perform chemical adsorption 

experiments on catalysts to estimate the number of Pt surface sites and metal dispersion. Carbon 

monoxide was used as the analysis gas for all catalysts in this chapter. 

Chemisorption Method 1: 
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Samples were loaded into a Micromeritics quartz chemisorption analysis cell with an 

initial sample mass measured on a Denver Instrument TP-214 analytical balance. Samples were 

degassed on the Micromeritics ASAP 2020 by initially evacuating the sample to a vacuum 

setpoint of 10 μmHg while increasing the temperature to 363 K at a ramp rate of 3 K/min. After 

the initial evacuation phase the sample temperature was ramped to 523 K at 3 K/min and 

evacuated for 2 hours, then cooled and backfilled with gaseous N2 (Airgas, Ultra High Purity). 

After degassing, the samples were reweighed to obtain a dry sample mass. 

For analysis, the system was initially evacuated to a vacuum setpoint of 10 μmHg at 308 

K for 30 minutes and backfilled with He (Airgas, Ultra High Purity). The sample temperature 

was then ramped to 383 K at 3 K/min and evacuated for an additional 30 minutes, then cooled to 

373 K. The system was evacuated for 30 minutes, then cooled to 308 K and evacuated for an 

additional 30 minutes. The sample was reduced in pure H2 (Airgas, Ultra High Purity) for 2 

hours at 673 K. The system was evacuated for 30 minutes, then cooled to 308 K and evacuated 

for an additional 30 minutes. A leak test was performed to ensure that the outgas rate was below 

the acceptable limit of 10 μmHg/min. The system was evacuated for 10 minutes before 

performing sample analysis. CO analysis was performed at 308 K with data being extrapolated 

from dosing pressures of 100, 150, 200, 250, 300, 350, 400, 450 mmHg. An initial analysis was 

performed giving a combined quantity of both chemically and physically adsorbed gas species. A 

repeat analysis was performed to determine a quantity for only physically adsorbed species after 

evacuating the sample for 30 minutes. The repeat analysis was then subtracted from the initial 

analysis, providing the quantity of chemically adsorbed gas species. 
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2.1.4 Metal Loadings by AAS 

 To obtain metal loadings of Pt/Al2O3 catalysts, synthesis solution concentrations were 

measured before and after catalyst synthesis by atomic absorption spectroscopy (AAS). 

Measurements were made on a Perkin Elmer AAnalyst 300 and quality control samples were 

created with primary and secondary stock solutions from High-Purity Standards and Sigma-

Aldrich respectively. Sources were diluted by weight to a curve range from 2 – 200 μg/mL using 

a 5% HCl and 1% LaCl3 in HCl solutions. Samples were also diluted using the same solutions to 

be within the curve range. 

2.2 Results and Discussion 

Support Selection 

 For selective electrostatic adsorption of promoter metals onto monometallic supported 

catalysts, it is vital to select a support whose PZC is distant enough from that of the primary 

metal on the surface. Having significant separation between the PZC’s should ensure that there is 

some optimal range of pH’s where the net charges of the primary metal oxides and support 

oxides will be opposite when placed in the synthesis solution. In the case of Sn adsorption, Sn 

cations are available in solution for adsorption to the surface and for the ions to selectively 

adsorb to platinum oxide (PtOx) species it is essential that the net charge of Pt species is negative 

while the support charge is positive. Being that the charge of metal oxides is a net charge and not 

an absolute one, means that if the PZC’s of primary metal and support are too close, selective 

adsorption is likely to be unobtainable. Adsorption of Pt metal complexes has been extensively 

researched on both alumina and silica, therefore these were considered as support candidates for 

Pt-Sn bimetallics[13,15,16]. A literature search revealed that the PZC of PtOx species would be 

at approximately pH of 1 and therefore alumina, which has a PZC of approximately 8.5, was 
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determined to be a better candidate than silica, which has a PZC of approximately 4[15]. The 

wider difference in pH between alumina and PtOx should be sufficient enough to produce a 

range of pH’s where selective Sn adsorption can be achieved. Figure 3 is a representation of 

what the hypothesized charge distributions would be over a Pt/Al2O3 surface for optimal Sn 

adsorption. 

 The available support surface area for metal ion complexes to adsorb to was determined 

to be of importance. This is due to the fact that if the support surface area is too low, very little 

metal will adsorb to the surface and the metal loadings of the catalysts will be reduced. This 

would in turn increase the size of reactor beds required to achieve the targeted conversions for 

reactor performance studies.  

Physical adsorption studies were conducted on three alumina supports to determine BET 

surface area, shown in Table 1. From this data, it is clear that the powder support sourced from 

Figure 3: Representation of charge distribution for optimal Sn adsorption on a Pt/Al2O3 

base catalyst 

Table 1: BET surface areas of three potential Al2O3 supports 

Sample BET Surface Area (m2/g) 

Inframat Powder 40.0 ± 0.2 

Ground Strem Pellets 231.3 ± 0.4 

Strem Powder 206.5 ± 0.5 
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Inframat would have a surface area that was far too low, making it difficult to achieve metal 

loadings above 0.5%, to be discussed later. Since the surface was comparable to that of the 

ground pellets, it was concluded that the Strem powder source would be selected due it already 

being a powdered form, thus limiting the possible contamination of the support powder from 

grinding pellets in a ceramic mortar and pestle. Metal loadings calculated from AAS confirmed 

that under similar conditions, the Inframat powder’s lower surface area hindered the adsorption 

of Pt complexes when compared with the Strem powder, as seen in Table 2. Metal loadings are 

defined as: 

 

𝑀𝑒𝑡𝑎𝑙 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 =  
𝑚𝑃𝑡

𝑚𝑃𝑡 + 𝑚𝑠𝑢𝑝𝑝𝑜𝑟𝑡
× 100  

𝑚𝑃𝑡 = (∆𝐶𝑜𝑛𝑐) × 𝑉𝑠𝑦𝑛 

 

where ΔConc is the difference of the initial and final concentrations of the synthesis solution, 

Vsyn is the volume of synthesis solution, and msupport
 is the mass of support used. 

Differential SEA 

 A differential SEA experiment was performed to verify the parameters that control the 

adsorption of metal precursors to the surface of support oxides. This experiment sought to prove 

that by controlling the pH of synthesis solution, it is possible to control the adsorption of metal 

ions regardless of the amount of support provided for synthesis. A minimal amount of support 

Table 2: Comparison of two Al2O3 powdered supports 

Support Mass of Support (g) Synthesis pH Pt Weight (%) 

Inframat Powder 0.8 2.56 0.43 

Strem Powder 0.5 2.78 2.5 
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was placed in solution with an excess amount of Pt precursor to prevent changes in pH 

throughout the experiment. As an added control, the pH of solution was maintained using diluted 

hydrochloric acid. The minor changes in Pt concentration during adsorption were beyond the 

limits of the AAS and therefore results were reliant upon the chemical adsorption of CO. As the 

results in Table 3 show, the two catalysts yielded comparable CO chemical adsorption results 

despite the differences in masses provided during synthesis. This confirmed that the driving force 

of SEA is the pH of the synthesis solution and that when providing an excess of metal precursor 

ions, reproducible catalyst site counts could be maintained independent of the amount of catalyst 

being synthesized. 

2.3 Conclusion 

 When selecting supports for the synthesis of bimetallic supported catalysts by SEA, it is 

necessary to choose a support whose PZC properties will provide a range for optimal adsorption 

to the support that is separate from that of the primary metal oxide. For this reason, alumina was 

selected over silica as the preferred support for Pt-Sn bimetallic synthesis. The surface area 

available for metal complex adsorption is essential in increasing loadings when synthesizing 

Pt/Al2O3 monometallic catalysts. It should also be noted that regardless of the mass of support 

provided, reproduceable Pt complex adsorption can be achieved when controlling synthesis 

solution pH, confirming pH to be the driving force of SEA synthesis. 

  

Table 3: Differential SEA Pt adsorptions 

Mass of Support (g) Initial pH Final pH CO Uptake 

(μmol/gcat) 

0.0443 2.41 2.41 91.9 ± 1.0 

0.0232 2.40 2.43 94.4 ± 1.4 
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Chapter 3. Tin Adsorption 

3.1 Materials and Methods 

3.1.1 Catalyst Synthesis 

Strong Electrostatic Adsorption 

 Platinum catalysts were synthesized to serve as base catalysts for the synthesis of 

platinum-tin bimetallic catalysts and followed the same procedure from section 2.1.1. However, 

after passivation, platinum catalysts were calcined again prior to use in Sn adsorption 

experiments. This extra calcination was found to be necessary to aid in the prevention of 

platinum leaching when exposed to Sn synthesis solutions. Tin(II) chloride dihydrate (Acros 

Organics, 98+%) solutions were prepared in deionized water to a concentration of 300 μg/mL 

and adjusted to the experimental pH using hydrochloric acid (Fisher Scientific, Trace Metal 

Grade) and sodium hydroxide (Sigma-Aldrich, ≥98%) solutions. Sn adsorption experiments were 

conducted and catalysts were prepared for use in reaction experiments using the same method 

outlined in section 2.1.1 with the pH meter being calibrated using pH 7.01 (Milwaukee) and 

10.01 (Oakton) buffer solutions for experiments conducted in the basic range. 

Incipient Wetness Impregnation 

For the purposes of comparing traditional synthesis methods with SEA, mono and 

bimetallic catalysts were synthesized by incipient wetness impregnation (IW). Aqueous solutions 

of tin(II) chloride and hydrogen hexachloroplatinate(IV) hydrate were made at varying 

concentrations based on desired metal loading. The solutions were then added dropwise onto 

alumina support until incipient volume was reached and then briefly sonicated to ensure 

complete dispersion of the solution. The catalysts were then allowed to air dry for 12 hours and 

then placed in a drying oven at 323 K for an additional 12 hours. Catalysts were then calcined in 
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air at 623 K for 3 hours and subsequently reduced in H2 at 673 K for 4 hours. After reduction, 

catalysts were passivated by flowing a 1%Ar/1%O2/98%He blend (Airgas) for a minimum of 15 

minutes. All temperature ramps were 3 K/min with minimum gas flows of 50 mL/min. Pt-Sn 

bimetallic catalysts were synthesized by sequential addition of Sn onto prepared Pt/Al2O3 

catalysts. 

3.1.2 Chemical Adsorption 

Chemical adsorption experiments were performed on catalysts to estimate the number of 

catalytically active sites and metal dispersion. Initially CO chemisorption was used on 

monometallic Pt catalysts, but as Sn was added to these catalysts it was necessary to acquire H2 

and O2 chemisorption data. This is due to the fact that Sn is unable to chemically adsorb CO and 

the changes in H2 and O2  may indicate the adsorption of Sn to Pt base catalysts[14]. For this 

reason, there are two separate methods used in this phase of the project, Method 1 (refer to 

section 2.1.3) being used during preliminary Sn experiments and Method 2 being a more refined 

study used to characterize monometallic and bimetallic catalysts synthesized for the Sn 

adsorption study. 

Chemisorption Method 2: 

Loading and degas methods are the same as mentioned for Chemisorption Method 1 

referenced in section 2.1.3. The system was initially purged with He at 308 K for 5 minutes and 

then the temperature was ramped to 373 K at 3 K/min and held for 10 minutes. The system was 

evacuated for 30 minutes, then cooled to 308 K and evacuated for an additional 30 minutes. All 

method evacuations were performed by evacuating to a maximum pressure of 5 μmHg. H2 was 

flown for 5 minutes and then ramped to 673 K at 3 K/min for 240 minutes to reduce the catalyst. 

The system was evacuated for 30 minutes, then cooled to 308 K and evacuated for an additional 
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30 minutes. A leak test was performed to ensure that the outgas rate was below the acceptable 

limit of 10 μmHg/min. The system was evacuated for 10 minutes before performing sample 

analysis. CO, H2, and O2 analyses were performed at 308 K with data being extrapolated from 

dosing pressures of 100, 150, 200, 250, 300, 350, 400, 450 mmHg. An initial analysis was 

performed giving a combined quantity of both chemically and physically adsorbed gas species. A 

repeat analysis was performed to determine a quantity for only physically adsorbed species after 

evacuating the sample for 60 minutes. The repeat analysis was then subtracted from the initial 

analysis, providing the quantity of chemically adsorbed gas species. 

3.1.3 Metal Loadings by ICP-MS 

 To acquire metal loadings of Pt and Pt-Sn supported catalysts it was necessary to perform 

an aqua regia digestion to completely dissolve the sample for analysis by inductively coupled 

plasma mass spectrometry. Digestions were performed by weighing 25 – 30 mg of catalyst into a 

round bottom flask and then dissolved in aqua regia. Aqua regia solution was produced by 

mixing 7 mL of hydrochloric acid (Fisher Scientific, TraceMetal Grade) and 3 mL of nitric acid 

(Fisher Scientific, TraceMetal Grade) in a graduated cylinder. Digestion was maintained at a 

uniform 373 K using a mineral oil bath. The reactants were constantly mixed by a teflon stir bar 

and evaporated solution was condensed in a reflux system cooled to 288 K by a Neslab RTE-111 

circulator pumping at 15 L/min. After 12 hours the reactants were rinsed from the round bottom 

flask using deionized water and diluted to 25 mL in a volumetric flask. Digestions were further 

diluted by mass in 1% nitric acid for ICP-MS analysis. Pt and Sn primary and secondary sources 

were obtained from High-Purity Standards and Sigma-Aldrich and diluted by mass using 1% 

nitric acid (Fisher Scientific, OPTIMA Grade) to a curve range of 10 – 300 ng/mL. Sample 
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digestions were also diluted by mass in a 1% nitric acid solution to be with the curve range. ICP-

MS analysis was conducted on a Perkin Elmer Elan 6100. 

3.1.4 Electron Microprobe 

 Electron microprobe experiments were conducted on a Cameca SXFive equipped with a 

LaB6 cathode and five wavelength dispersive spectrometers. Powdered catalysts were set in 

epoxy and then ground flat and polished before being loaded into the instrument. Pt Lα and Sn 

Lα x-rays were counted and complied into a map of metal dispersion on the surface of an 

individual Pt-Sn/Al2O3 support particle.  

3.1.5 Ambient Pressure Photoemission Spectroscopy 

 Experiments were conducted on an ambient pressure photoemission spectrometer (AP-

PES) equipped with a PHOIBOS NAP (near-ambient pressure) analyzer, manufactured by 

SPECS Surface Nano Analysis GmbH, in collaboration with the Center for Functional 

Figure 4: Calibration curve for actual sample temperature based on sample temperature 

reading 
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Nanomaterials at Brookhaven National Laboratory. Samples were pressed onto copper plates 

using minimal force, ensuring the powdered catalyst would remain in place during analysis, and 

loaded into the analysis chamber at pressure of less than 5 x 10-9 mbar. Analysis was conducted 

using a monochromated Al Kα photon beam, focused to 300 μm, separated from the analysis 

chamber by an aluminum coated silicon nitride membrane. Photoelectrons were collected 

through a 300 μm conical aperture and focused with electrostatic lenses before reaching the 

analyzer. Samples were dosed with 1 mbar of H2 via precision leak valves. Temperature was 

controlled using a heating lamp and monitored with a thermocouple in contact with the sample 

holder. Figure 4 shows the calibration curve, provided by the manufacturer, for actual sample 

temperature with respect to the temperature reading[17].  

3.1.7 Temperature Programmed Reductions 

 Pt/Al2O3 and Pt-Sn/Al2O3 catalysts were loaded into a quartz cell with the target mass 

being 200 – 300 mg. Catalyst samples were dried in flowing He (Airgas Ultra High Purity) at a 

rate of 30 mL/min at 393 K for 120 minutes. Samples were then allowed to cool to 323 K while 

remaining in He flow. Temperature programmed reductions (TPR) were performed from 323 K 

to between 1073 K and 1173 K, depending metal composition, at a rate of 10 K/min. TPR 

samples were exposed to a continuous flow of a 1%Ar/5%H2/94%He blend (Airgas) at a rate of 

30 mL/min. Partial pressures of gases and hydrogen uptake were measured using an SRS 

RGA100 residual gas analyzer. 

3.1.8 Reactor Performance 

Liquid reactants were sent for pretreatment from glass syringes (Hamilton) using a 

syringe pump (Cole Parmer) via capillary PEEK tubing (McMaster) where it was vaporized and 

swept to a fully reduced packed bed reactor by H2. Gas Feeds were delivered using digital mass 
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flow controllers (Brooks); the experimental volumetric flow rate was measured using a bubble 

flow-meter since in some instances, the digital volumetric flow rate on the mass flow controller 

did not match the actual volumetric flow rate. The temperature of the vaporizer was maintained 

at conditions in accordance with Antoine Coefficients to ensure that all liquid feeds entered and 

remained in the gas phase. The vaporizer consisted of stainless-steel furnace that was heated 

using a band heater (McMaster), which encapsulated a 0.25-inch diameter dead volume that was 

filled with quartz chips. The dead volume served as a medium where the liquid feed came into 

contact with the reactant/carrier gas, quartz chips served to ensure dispersion and uniform 

vaporization. The temperature of the vaporizer furnace was measured using type-K 

thermocouples (Omega) and power was supplied to the band heater using a temperature 

controller (Omega). Species flowed through a two-position 6 port valve that directed reactants to 

the reactor or a bypass leading straight to the gas chromatograph. Before sending reactants to the 

reactor system, reactant signals were observed in the bypass to be certain the liquid feed was 

completely vaporized. Bypass signals coupled with the volumetric flow rate from the bubble 

meter also serves as a final leak test before sending species to the reactor. 

The reactor system consisted of a 1/2-inch stainless steel tube (McMaster) that was used 

as an up-flow packed bed reactor. The reactor consisted of quartz chips to achieve full dispersion 

across the diameter of the tubing to ensure the entire gaseous species came into maximum 

contact with the catalyst bed. The bed was sandwiched between quartz wool to keep it intact and 

prevent catalyst loss. The reactor was placed in a stainless-steel furnace controlled by a band 

heater. The temperature of the reactor furnace was measured using type-K thermocouples 

(Omega) and power was supplied to the band heater using a temperature controller (Omega). The 

temperature was also measured at the catalyst bed to account for the temperature gradient that 
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exists between the bed and walls of the furnace; this was measured by a type-K thermocouple. 

Tubing between reactor and the analysis systems was 1/8-inch stainless steel (McMaster) that 

was heat traced using nichrome wire (McMaster), which was fed power by a variac transformer; 

the heating of the tubing served the purpose of making sure all chemicals remained in the gas 

phase for proper analysis. The chemical species were analyzed by gas chromatography (HP5890) 

using a HP-PONA column for the flame-ionized detection and a Restek ShinCarbon ST 

Micropacked column for thermal conductivity detection.  

Figure 5: Experimental reactor setup  
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Carbon atom balances were performed at each reaction condition to make sure that all 

species were accounted for towards atom conservation; data points reported consisted of the 

average of multiples ones that exhibited a carbon balance of 95% or greater.  

3.2 Results and Discussion 

3.2.1 Tin Adsorption and Relation to pH 

Platinum Leaching 

 The leaching of Pt into synthesis solution was observed in preliminary Sn adsorption and 

quantified using the AAS method in section 2.1.4. Upon an initial Sn adsorption experiment, it 

was found that over 30% of Pt had been lost from the base catalyst. It is believed that leaching 

occurred due to residual Pt species on the surface of the catalysts that were soluble under the 

acidic conditions used in the adsorption experiment. Literature has shown that PtOx surface 

species are dependent on the temperature at which the metal is oxidized[18]. It was hypothesized 

that in order to prevent Pt leaching, an additional calcination step was required to oxidize Pt 

species after reduction in hydrogen. Upon a second calcination step at 623 K, leaching was 

reduced from 30% to under 10% under the same synthesis conditions on the same batch of 

Pt/Al2O3 seen in Table 4. This led to the addition of a calcination step after reducing and 

passivating catalysts in the preparation of Pt/Al2O3 catalysts to be used as supports for future Sn 

adsorption experiments. With the addition of this step it can be assumed that Pt leaching should 

 

Table 4: Platinum leaching in initial Sn adsorption experiments quantified by AAS 

Solution Initial pH Final pH Pt Lost (μg) %Pt Lost from 

Pt Catalyst 

200 μg/mL Sn in 

HCl 

1.05 1.06 2315 33.4 

200 μg/mL Sn in 

HCl (calcined) 

1.00 1.01 485 7.2 
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not be at level that will significantly impact the normalization of Sn cation uptake in the 

adsorption study discussed in the next section. 

Sn Uptake and Chemical Adsorption 

 Given that SEA is a process dependent on pH of solution, it was necessary to conduct 

adsorption studies over a wide range of pH conditions. A series of Pt/Al2O3 catalysts were 

synthesized by SEA to serve as base catalysts for Sn adsorption experiments. The ratio of base 

catalyst mass to synthesis solution was maintained at 4 g/L to ensure that the buffering effects of 

the alumina support and Pt nanoparticles remained comparable throughout the experiments. 

Synthesis solutions were adjusted to an initial pH from 0 to 12 and the metal loadings were 

determined by aqua regia digestion. As discussed earlier, the PZC of PtOx is at a pH of 1 and it 

was hypothesized that selective Sn adsorption to PtOx nanoparticles would occur at pH’s 

between 1 and 4 [15]. In this range, the net charge of PtOx should be sufficiently negative while 

Figure 6: Sn adsorption normalized by the amount of Pt on the base catalyst surface over a 

range of synthesis pH’s. Significant Sn uptake can be seen in the range of pH 1 – 3. 
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the charge of the alumina support remained positive and would not adsorb appreciable amounts 

of Sn. To compare the uptake of Sn metal complexes over the experimental range, the mass of 

Sn adsorbed was normalized by the mass of Pt on the base catalyst used for the bimetallic 

synthesis. Figure 5 shows that significant Sn adsorption occurred in range of pH 1 – 3 and that 

some Sn appeared to be adsorbed in neutral to basic conditions. As NaOH was added to 

synthesis solutions, tin oxide species began precipitating out of solution and it is likely that the 

adsorption observed in the neutral and basic ranges is due to the presence of this particulate after 

filtration of the catalyst from solution. Due to the formation of solid Sn precipitates when adding 

NaOH, it was necessary to add only the required amount to reach the desired synthesis solutions 

to prevent significant loss of Sn in solution available for adsorption. This limitation prevented 

the pH of the synthesis solution from being controlled after the synthesis had started, therefore 

only the initial pH values were controlled. Table 5 shows the metal loadings of Pt and Sn 

determined by aqua regia digestion and ICP-MS analysis as well as the leaching of Pt during 

bimetallic synthesis. Observed leaching was determined insignificant in conditions of pH 1 – 12 

and within the error of the digestion method. Signficant leaching was seen at pH 0 and is likely 

due to the highly acidic synthesis conditions. 

 To gain a clearer picture of selective Sn adsorption it is necessary to observe the effects 

Sn has on the chemical adsorption of CO, H2, and O2 gases on the surface of the catalyst. CO and 

H2 will chemically adsorb to Pt at 308 K but will not chemically adsorb to Sn[14,19]. This is not 

the case for O2, which will adsorb to both Pt and Sn nanoparticles and therefore may be used to 

detect the presence of Sn on the surface when CO and H2 adsorption has been suppressed from 

the quantities observed on Pt base catalysts[14,19]. Table 5 shows the changes in gas adsorptions 

and active metal dispersions with respect to the addition of Sn onto the catalyst surface. The 



23 

 

 

mass of Pt in the base catalyst was compared with the mass of Pt recovered after Sn adsorption 

experiments to monitor the amount of Pt leached during synthesis. All Pt-Sn catalysts had a Pt 

recovery within 10% when compared to the original base catalysts, which is within the error of  

  

 

Table 5: Metal loadings of Pt/Al2O3 and Pt-Sn/Al2O3 catalysts. Pt-Sn/Al2O3 catalysts are 

named for the initial pH of synthesis solution and the percent of Pt recovered from the base 

catalyst is provided to indicate when leaching has occurred during synthesis 

Catalyst Base Catalyst Pt weight (%) / 

Sn weight (%) 

Pt Recovered (%) 

Pt/Al2O3 1 - 3.39 / - - 

Pt/Al2O3 2 - 3.38 / - - 

Pt/Al2O3 3 - 2.34 / - - 

Pt/Al2O3 4 - 2.76 / - - 

-0.05 Pt/Al2O3 1 1.67 / 0.09 49 

1.02 Pt/Al2O3 4 2.49 / 3.04 90 

2.05 Pt/Al2O3 2 3.36 / 1.46 100 

3.00 Pt/Al2O3 4 3.04 / 1.24 110 

4.00 Pt/Al2O3 4 2.73 / 0.12 99 

5.14 Pt/Al2O3 3 2.47 / 0.03 106 

6.02 Pt/Al2O3 3 2.30 / 0.43 99 

6.93 Pt/Al2O3 4 2.55 / 0.39 93 

8.33 Pt/Al2O3 4 2.65 / 0.16 96 

12.00 Pt/Al2O3 3 2.37 / 0.51 102 
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Table 6: Chemical adsorptions of CO, H2, and O2 on Pt/Al2O3 base catalysts and Pt-Sn/Al2O3 

bimetallic catalysts. Metal dispersion was calculated using CO adsorption data. 

Catalyst Base 

Catalyst 

CO Adsorption 

(μmol/gcat) 

H2 Adsorption 

(μmol/gcat) 

O2 Adsorption 

(μmol/gcat) 

Metal 

Dispersion 

(%) 

Pt/Al2O3 1 - 149.8 ± 0.3 51.0 ± 0.2 70.6 ± 0.5 86.2 

Pt/Al2O3 2 - 128.4 ± 0.2 51.6 ± 0.2 75.7 ± 0.5 74.1 

Pt/Al2O3 3 - 96.0 ± 0.3 34.8 ± 0.2 55.1 ± 0.5 80.0 

Pt/Al2O3 4 - 107.4 ± 0.2 42.4 ± 0.3 59.3 ± 0.4 76.0 

-0.05 Pt/Al2O3 1 66.3 ± 0.2 20.4 ± 0.1 39.1 ± 0.2 77.4 

1.02 Pt/Al2O3 4 53.1 ± 0.4 8.0 ± 0.3 94.6 ± 0.7 41.6 

2.05 Pt/Al2O3 2 101.9 ± 0.3 44.5 ± 0.2 72.2 ± 0.6 59.2 

3.00 Pt/Al2O3 4 83.0 ± 0.4 29.0 ± 0.3 67.2 ± 0.4 53.3 

4.00 Pt/Al2O3 4 98.1 ± 0.4 36.6 ± 0.2 60.1 ± 0.5 70.1 

5.14 Pt/Al2O3 3 90.1 ± 0.2 35.1 ± 0.3 51.3 ± 0.4 71.2 

6.02 Pt/Al2O3 3 83.5 ± 0.4 29.1 ± 0.1 57.2 ± 0.5 70.8 

6.93 Pt/Al2O3 4 94.4 ± 0.7 33.0 ± 0.3 54.9 ± 0.5 72.2 

8.33 Pt/Al2O3 4 95.4 ± 0.3 36.7 ± 0.2 56.7 ± 0.5 70.2 

12.00 Pt/Al2O3 3 79.8 ± 0.2 27.5 ± 0.2 68.9 ± 0.5 65.7 
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the digestion method. Only the Pt-Sn catalyst synthesized at pH 0 had significant Pt loss which is 

likely due to the highly acidic environment during Sn adsorption. 

 The percent metal dispersion of active metals was calculated using the quantities 

obtained from CO adsorption and is defined as: 

 

%𝑀DISP =
100% × 100%

22414
 × 

V × 𝑆𝐹

%weight Pt
WPt

 

 

where V (cm3/g STP) is the quantity of gas chemically adsorbed to the surface, SFCALC is the 

calculated stoichiometry factor (1 for CO), %weight Pt is the weight percent of Pt in the sample, 

WPt is the atomic weight of Pt (195.090 g/mol), and 22414 (cm3 STP/mole of gas) is the volume 

occupied by one mole of gas. CO adsorption data shows very high metal dispersions, 75 – 85%, 

in base Pt catalysts, which is indicative of the small nanoparticle sizes predicted by the SEA 

method.  In conditions where little to no Sn is expected to adsorb to PtOx surface species, it was 

found that the amount of Pt that was available for CO adsorption remained above 70%, 

remaining comparable to the base catalysts used for synthesis. This change can be attributed to 

the multiple calcination and reduction cycles that Pt nanoparticles underwent from base catalyst 

and bimetallic catalyst synthesis, as shown in Table 6, where multiple chemisorption 

experiments on the same Pt monometallic catalyst displayed an initial decrease in metal 

dispersion before reaching a stable surface environment. CO and H2 adsorptions were suppressed 

at synthesis pH’s 1 – 3 when compared to the adsorptions on base catalysts, which corresponds 

with the Sn uptakes observed in Figure 5 and confirms that there is some degree of Pt-Sn 

interaction on the surface. 
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Electron Microprobe X-ray Mapping 

Electron microprobe experiment were conducted on a 2.56wt%/2.53wt% Pt-Sn/Al2O3 

catalyst synthesized at a pH of 1 to collect Pt Lα and Sn Lα x-ray data and construct a surface 

map of Pt and Sn regions seen in Figure 6. While the resolution of the microprobe is not 

sufficient enough to scan individual nanoparticles, it does confirm Sn adsorption to the surface of 

the Pt/Al2O3 base catalyst. In order to determine the extent of selective Sn adsorption to Pt 

nanoparticles, it would be necessary to conduct a similar experiment using transmission electron 

microscopy (TEM), which would be capable of resolving individual nanoparticles on the surface 

of the catalyst. It is worth noting that there appears to be a correlation between regions with 

significant Sn Lα x-ray response and those with higher Pt Lα response.  

 

Table 7: Pt/Al2O3 1 CO adsorption results showing initial drops in metal dispersion with 

multiple reductions. 

Trial CO Adsorption (μmol/gcat) Metal Dispersion (%) 

1 149.8 ± 0.3 86.2 

2 126.1 ± 0.3 72.6 

3 120.7 ± 0.6 69.5 

4 117.4 ± 0.3 67.5 

5 115.9 ± 0.4 66.7 
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3.2.2 Effects of Tin on Platinum Catalysts 

 Though chemisorption and metal loading experiments are capable of showing the 

adsorption of Sn and the possibility of Pt-Sn interactions, it was necessary to conduct more 

detailed characterizations of the effects Sn has on Pt active sites. This section will discuss the use 

of different characterization techniques, along with probe reaction experiments conducted in a 

packed bed reactor (PBR) aimed at testing the performance of bimetallic catalysts in a practical 

setting. The use of these techniques should provide insights on the changes in reaction chemistry 

when Sn is present on the surface. 

Reactor Performance 

 Pt/Al2O3 and Pt-Sn/Al2O3 catalysts were loaded into a packed bed reactor (PBR) and used 

to for propionic acid hydrodeoxygenation (HDO). The desired products of this reaction are the 

partially oxygenated species, propanol and propionaldehyde. Figure 7 is a comparison of the 

Figure 7: Pt Lα (left) and Sn Lα (right) x-ray mapping of a 2.56%Pt/2.53%Sn bimetallic 

catalyst. Circled areas indicate regions of possible corresponding Pt and Sn intensities.  
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products formed during propionic acid HDO over monometallic and bimetallic catalysts. There 

was a higher product diversity over Pt/Al2O3 compared to Pt-Sn/Al2O3 at comparable 

conversions which is indicative of undesired chemistries occurring over the monometallic 

surface. The products of these undesired pathways include carbon monoxide, carbon dioxide, 

methane, ethane, and propane. It is observed that the addition of Sn drastically changes the 

selectivity of propionic acid HDO products as the undesired pathways were suppressed while the 

selectivity of the partially oxygenated species increased. This provides useful insight into the 

potential impact of bimetallic catalysts in the area of catalysts used in the industrial production of 

chemicals. Further characterization of Pt-Sn/Al2O3 catalysts would shed light on the 

interaction(s) between Pt and Sn nanoparticles on the catalyst surface, which can further 

elucidate the reason for the better product selectivity over bimetallic catalysts.  

Figure 8: Changes in selectivity of HDO, methanation, hydrogenolysis, and water-gas shift 

reactions at 469 K, 5 torr propionic acid, and 755 torr H2. 
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Temperature Programed Reduction (TPR) 

Temperature programmed reductions (TPR) provide information regarding the 

reducibility of surface metals and may be able to be linked to the changes observed in reaction 

chemistry. For instance, PtOx species may be prevented from reducing to a completely metallic 

state due to the oxophilic properties of Sn present on the surface[12]. This change in the reduced 

state of PtOx may alter the adsorptive properties of active sites and provide an answer to the 

changes in propionic acid HDO selectivies seen in the previous section. Figure 8 shows the 

reduction profiles of the alumina support, three catalysts synthesized using the commonly used 

method of incipient wetness impregnation (IW), and two catalysts synthesized using the SEA 

method. The metal loading of these catalysts is summarized in  

Table 7.  

Catalysts containing Pt all show two H2 uptake peaks in the 350 – 450 K range. These 

peaks can be attributed to the reduction of two separate Pt oxidation states. For instance, the 

initial consumption of H2 may be reducing Pt4+ species to Pt2+ followed by a second H2 

consumption peak where Pt is being reduced to a metallic state[20–22]. The third reduction peak 

shown for Pt samples, 650 – 750 K, may be attributed to the partial reduction of the alumina 

support where it is in contact with Pt nanoparticles[12]. For completeness, TPR analysis was 

 

Table 8: Metal loadings of SEA and IW catalysts used in TPR experiments 

Catalyst Pt Weight (%) / Sn Weight (%) 

SEA Pt/Sn 2.49 / 3.04 

SEA Pt 2.69 / - 

IW Pt/Sn 3.33 / 1.22 

IW Sn - / 4.08 

IW Pt 3.37 / - 
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conducted on a Sn IW catalyst which shows no appreciable H2 uptake within the temperature 

ranges of the experiment. This can be attributed to the extreme temperatures needed to reduce Sn 

when it is the only metal on the catalyst surface[23]. Both the SEA and IW Pt-Sn catalysts show 

an increase in the second reduction peak which may indicate that Pt species are in a higher 

oxidation state and therefore require higher temperatures for complete reduction. The increased 

H2 consumption 650 – 750 K is possibly due to Sn being reduced to a metallic state as other 

works have shown that it possible to reduce Sn at lower temperatures when it is proximity of 

metal capable of hydrogen dissociation at lower temperatures[12,23]. The SEA bimetallic shows 

a third reduction peak within the realm of initial platinum reduction, which may be attributed to 

H2 spilling, indicating the possible alloying Pt and Sn nanoparticles[12,20]. This third peak may 

also imply that a third oxidation state of Pt is present and requires higher temperatures to be 

reached before reducing to a metallic state. This would imply that changes in propionic acid 
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HDO selectivities may be attributed to Pt species remain partially oxidized under reaction 

conditions, therefore altering the adsorptive properties of active sites on Pt-Sn/Al2O3 catalysts. 

Ambient Pressure Photoemission Spectroscopy 

Ambient pressure photoemission spectroscopy (AP-PES) data was collected on three 

catalysts, metal loadings summarized in Table 8, in 1 mbar H2 at 575 K to simulate reaction 

conditions after the catalysts has been reduced to its active state. Scans were focused on the Al2p 

and Pt4f lines and referenced to the position of the maximum intensity of the Al2s line to 

account for charging effects and interference from the electronic current passing through the 

heating element under the sample holder. All scans were found to have a difference of 44.7 ± 0.4 

eV in binding energy between the maximum Al2s line and maximum Al2p line suggesting that 

the changes in Pt oxidation states are real. AP-PES scans were deconvoluted using KolXPD 

software. The spectra of the Pt/Al2O3 catalyst, Figure 9a, shows a large response at the Al2p line 

with a smaller shoulder at the Pt4f line. The same is seen in the fresh PtSn/Al2O3 catalyst,  

Figure 9b, but with a greater shoulder due to a shift in binding energy at the Pt4f line. The spent 

PtSn/Al2O3 spectra, Figure 9c, has two shoulders at the Pt4f line, indicating that some surface 

change has occurred while in the reactor during probe reactions, causing Pt to be in two separate 

oxidation states on the surface[20,24,25].  

  

 

Table 9: Metal loadings of SEA catalysts used in AP-PES experiments 

Catalyst Pt Weight (%) / Sn Weight (%) 

Pt/Al2O3 3.39 / - 

Fresh Pt-Sn/Al2O3 2.56 / 2.53 

Spent Pt-Sn/Al2O3 2.56 / 2.53 
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Similar to the TPR experiments discussed in the previous section, the presence of multiple Pt 

oxidation states in AP-PES spectra may imply that changes in propionic acid HDO selectivities 

are attributed to Pt species remaining partially oxidized under reaction conditions. 

3.3 Conclusion 

 It is clear that the SEA method of catalyst synthesis is useful in the adsorption of Sn over 

Pt/Al2O3 base catalysts as shown by metal loadings and confirmed by electron microprobe 

analysis. Sn adsorption was seen across a wide range of both acidic and basic conditions, with 

the observed maximum uptake between pH’s 1 and 3. Pt-Sn/Al2O3 catalysts exhibit reduced 

chemical adsorption of CO and H2 gases, which suggests that Sn addition has caused a geometric 

and/or an electronic change to the base monometallic surface, and is reflected in the shifts in 

selectivity observed in propionic acid HDO experiments. TPR and AP-PES data suggest that Pt 

metal sites are present in multiple oxidation states under reaction conditions, providing a 

plausible explanation for the shifts in selectivities.  
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Chapter 4. Conclusion 

4.1 Current Work 

 This work has shown that SEA method is a simple and useful tool for the controlled 

synthesis of Pt-Sn bimetallic catalysts that have profound effects on the selectivity of propionic 

acid HDO. These catalysts are capable of suppressing the unwanted pathways of methanation, 

hydrogenolysis, and decarbonylation, allowing for almost 100% of selectivity to be shifted 

toward desired products. Through AP-PES and TPR experiments, this work has shown it is likely 

that Sn is perturbing the oxidation state of Pt active sites under reaction conditions, thus enabling 

the observed shifts in reaction selectivity.  

This work has shown promise in the ability to tune catalysts to be selective toward 

propionic acid HDO products and provides a useful first step in their application in targeting 

specific functional groups in the upgrading of biomass sourced succinic acid. A number of 

groups have shown significantly improved selectivity of succinic acid HDO products in 

bimetallic systems: Ru-Sn/PAC (powder active carbon), Pt-Sn/PAC, Ir-Re/C, Pd-Re/TiO2, Pd-

Cu/AX (alumina xerogel), Pd-Re/C, and Ru-Re/C[4,19,26–28]. The results of these studies lend 

promise to the observed changes in propionic acid HDO selectivities directly translating to 

succinic acid feedstocks. 

4.2 Future Work 

 While current work proves SEA to be a viable method for synthesizing Pt-Sn bimetallic 

supported catalysts, further characterization is still necessary to provide a clearer picture as to the 

extent of selective Sn adsorption at the observed optimal synthesis conditions.  

Transmission electron microscopy (TEM) coupled with energy-dispersive x-ray 

spectroscopy (EDXS) would provide greater insight into the extent of selective adsorption and 
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confirm the particle size and tight distribution hypothesized by the method. EDXS would also 

provide information on the structure of bimetallic nanoparticles (core-shell or mixed alloy) and 

the homogeneity of surface species. Higher resolution XRD analysis would also be a useful tool 

to circumvent the issue of alumina background signal in the bulk catalyst powder. This analysis 

would allow for the identification of Pt, Sn, and Pt-Sn species on the surface of the catalyst, as 

well as identify the presence of any bulk Sn precipitate that was formed during synthesis at pH’s 

requiring the addition of NaOH to reach targeted conditions. 

Further experimentation with the controlled synthesis of Pt-Sn nanoparticles may provide 

more insight into the tuning of catalysts for HDO selectivity. With information on the optimal 

synthesis conditions for selective secondary metal adsorption, it may be possible to control 

catalyst synthesis to obtain more exact metal loading ratios through multiple adsorptions to 

optimize reactor performance. 
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