
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

8-2012

Exploiting Data Locality in Dynamic Web Applications Exploiting Data Locality in Dynamic Web Applications

Paul Talaga
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Talaga, Paul, "Exploiting Data Locality in Dynamic Web Applications" (2012). Electrical Engineering and
Computer Science - Dissertations. 323.
https://surface.syr.edu/eecs_etd/323

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs_etd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/323?utm_source=surface.syr.edu%2Feecs_etd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

The Internet has grown from a static document retrieval system to a

dynamic medium where users are both consumers and producers of

information. Users may experience above-average website latencies

due to the physical distances information must travel. Because user

satisfaction is related to a website’s responsiveness, e-commerce may

be hindered and prevent online businesses from reaching their full

potential.

This dissertation analyzes how temporal and relational dependencies

in web applications limit their ability to become distributed. Two

contributions are made, the first showing the location of data inside

a datacenter influences the web system’s performance, and secondly,

that relaxing strict consistency inside the web application at a fine-

grained level can greatly lower latencies for geographically diverse

users. Experiments are used to show when and how much these

optimizations can benefit a dynamic web application.

Exploiting Data Locality in
Dynamic Web Applications

by

Paul Talaga

B.S, St.Lawrence University, 2003

M.S, Syracuse University, 2006

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Computer & Information Science.

Syracuse University
August 2012

c�2012 Paul Talaga

ALL RIGHTS RESERVED

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Why Latency Matters . 2

1.2 Sources of Web Latency . 3

1.3 Data Dependencies . 7

1.3.1 Temporal Dependencies 8

1.3.2 Relational Dependencies 8

1.3.3 Data Consistency . 10

1.3.4 Relational Relaxation . 11

1.4 Thesis & Contributions . 12

1.5 Organization . 13

2 Internet Architecture and Technologies 14

2.1 Location-Aware Client Routing 15

2.2 Web Farm Architecture . 17

2.3 Web Server Software Architecture 19

2.4 Summary . 21

3 Location-Aware Memcache 22

3.1 Introduction . 22

3.2 Memcache Background . 25

iv

CONTENTS

3.3 Memcache Performance Prediction Model 27

3.3.1 Assumed Network Topology 27

3.3.2 Model Constants and Calculation 28

3.4 MemcacheTach . 32

3.5 Memcache Architectures . 33

3.5.1 Standard Deployment Central - SDC 34

3.5.2 Standard Deployment Spread - SDS 34

3.5.3 Standard Deployment Replicated - SDR 35

3.5.4 Snooping Inspired - Snoop 35

3.5.5 Directory Inspired - Dir 36

3.6 Latency Estimation . 37

3.7 Experimental Results . 40

3.7.1 Latency . 42

3.7.2 Network Load . 43

3.7.3 Review . 45

3.8 Discussion . 46

3.8.1 Latency, Utilization, and Distributed Load 46

3.8.2 Multi-Datacenter Usage 46

3.8.3 Selective Replication . 47

3.8.4 Object Expiration . 48

3.8.5 User Space Caching . 48

3.8.6 Overflow . 48

3.8.7 System Management . 49

3.9 Summary . 49

v

CONTENTS

4 Tentacle 50

4.1 Background . 51

4.1.1 Web Application Architecture 51

4.1.2 Relaxing Consistency . 52

4.1.3 Database Replication . 53

4.2 Tentacle . 55

4.2.1 Architecture . 57

4.2.2 Operation . 59

4.3 Experimental Results . 62

4.3.1 osCommerce . 63

4.3.2 Application State . 64

4.3.3 Simulated Tra�c . 64

4.3.4 Results . 65

4.4 Discussion . 68

4.4.1 Alternate Consistency Specifications 68

4.4.2 Database Considerations 69

4.4.3 Cache Pre-warming . 69

4.4.4 Stampede Mitigation . 69

4.4.5 Pattern-Based Homing 70

4.5 Summary . 70

5 Experimental Results Details 71

5.1 User Simulation & Response Time 71

5.2 Web Server Configurations . 72

5.3 Database Configuration . 74

5.4 Memcache Performance Measurement 74

vi

CONTENTS

5.4.1 Data Capture . 75

5.4.2 Data Analysis . 76

5.5 Network Utilization Measurement 78

5.6 Memcache Evaluation Progression 79

5.7 Tentacle Evaluation Progression 80

5.8 Summary . 82

6 Related Work 84

6.1 Caching & Distributed Computation 84

6.2 Distributed Datastores . 87

6.2.1 Keystores . 87

6.2.2 Distributed Filesystems 90

6.2.3 Distributed Databases 91

6.3 Other Systems . 93

6.4 Database Middleware Systems 94

6.4.1 DBProxy . 94

6.4.2 Ganymed . 95

6.4.3 GlobeCBC . 96

6.4.4 GlobeDB . 97

6.4.5 GlobeTP . 98

6.5 Asynchronous Database Writes 98

6.6 Content Delivery Networks . 100

6.7 Summary . 103

7 Conclusion & Future Work 104

7.1 Conclusions . 104

7.2 Summary of Contributions . 105

vii

CONTENTS

7.3 Future Work . 106

7.3.1 Performance-Aware Caching 106

7.3.2 Rich Application-Datastore Interactions 106

Appendix A Memcache Latency Formula 108

Appendix B SDR: Mem dup.php 110

Appendix C Mem RackAware.php 114

Appendix D Snoop: Mem snoop.php 116

Appendix E Dir: Mem dir.php 119

Appendix F MemcacheTach: memcache-logging.php 122

Appendix G MemcacheTach: analyse.php 125

Appendix H Tentacle: tentacle.php 133

Appendix I Tentacle: loop.php 139

Appendix J Tentacle: tentacle-daemon.php 140

Appendix K Tentacle: remoteaccess.php 143

References 145

viii

List of Figures

1.1 WAN activity to request web content 3

1.2 Worldwide Latencies on Verizon’s Network, Feb 2012 7

2.1 Webserver architecture with PHP, Database, and Memcache . . 19

3.1 Assumed Network Topology . 28

3.2 Latency Estimation Calculation 29

3.3 MediaWiki profile under di↵erent switch speeds and ps values. . 39

3.4 MediaWiki profile under di↵erent ps values. 39

3.5 Varying read/write ratio and ps values. 40

3.6 Varying read/write ratio and ps values with an East and West

coast DC . 47

4.1 Database Replication & Query Routing 58

4.2 HTTP Request Processing Using Tentacle 60

4.3 Evaluation Hardware Configuration 62

4.4 Average Per Page Response Times (ms) 67

5.1 Memcache Data Capture . 80

5.2 Memcache Data Processing . 81

6.1 Categories of Database Middleware Systems [85] 95

ix

List of Tables

3.1 Network Performance Variables 30

3.2 Web Application Profile Variables 30

3.3 19 monitored Memcache commands 31

3.4 MediaWiki usage values (full caching) 33

3.5 MemcacheTach Overhead . 33

3.6 MediaWiki usage for each configuration 42

3.7 Expected and Measured Memcache Latency 43

3.8 Expected and Measured Network Load 44

4.1 osCommerce Page Access Proportions 65

4.2 Aggregate osCommerce Latency with 100ms WAN 66

x

Chapter 1

Introduction

The Internet has grown from an academic and military research endeavor into

a system for commerce and information transmission. What began as a static

document delivery and navigation system has transformed into a rich user-

centric medium powered by dynamic web applications.

As the geographic reach of the Internet grows throughout the globe, user-

perceived performance in the form of page response time has increased due to

the larger size. Because the speed of signal propagation is limited, websites

hosted farther away take longer to load than nearby ones.

Between 2009 and 2010 wordwide e-commerce revenue grew at an estimated

18.9% to $680 billion, and within the US e-commerce continues to take a larger

share of retail purchases[75]. In 2009, 13.7% of all US advertising was done

online. This demonstrates an increasing trend of commerce moving online.

Due to the worldwide reach of the Internet, a business can now greatly expand

into new markets by going online. Unfortunately, as will be described in de-

tail later, a website’s response time is directly related to user satisfaction and

the customer’s willingness to conduct business. Lower response times result in

increased visitation, participation, and sales.

1

1. INTRODUCTION

Lowering latency for web content is a large academic and business area. In

this work we explore how data locality, where data is stored and manipulated,

can impact a web application’s performance for geographically distributed users.

1.1 Why Latency Matters

End-user latency, or the elapsed time to completely load a web page, has been

directly linked to user satisfaction. A study by Google in 2009 showed when

page generation slowed from 400ms to 900ms in order to return 30 search results

rather than 10, visitors reduced their searches by 25%. A similar Google study

showed when page results were delayed by 2% due to additional content, searches

per user droped an equivalent 2% [56].

From a revenue perspective, Shopzilla reported at Velocity 2009 that, when

their site was redesigned, their page latency dropped from 7 to 2 seconds [34].

After deployment of the new site, page views increased by 25% compared to

their old high-latency version and revenue increased between a 7% and 12%.

The increased speed also reduced their server load, allowing a 50% reduction in

hardware while still able to provide the lower latency for the high tra�c volume.

Simply by lowering latency they significantly lowered their costs while raising

revenue.

User expectation of page latency has also changed. A study done in 2003

found that users would tollerate a load time of 8.6 seconds [46], while another

study done in 2006 found a customer would leave an e-commerce site after only

a 4 second delay [2]. A survey done in 1984, concerning users reactions to

computer responsiveness, found no single value for maximum latency, but in

many cases users would become frustrated or think there was an error if the

2

1.2 Sources of Web Latency

DNS

Time

TCP
Setup

SY
N SYN/ACK

AC
K

HT
TP

 G
ET

First
Byte

…

DATA

DATA

DATA

Download
& Parse

Retrieve
Referenced

Content

Figure 1.1: WAN activity to request web content

delay was significant. They found a delay of more than twice the average delay

without progress notification would concern users. Thus, as high bandwidth

Internet connections become more prevalent, average page latency will decrease

and lower a users toleration time.

1.2 Sources of Web Latency

Web page latency occurs due to a sequence of time-consuming events. A user

request is issed by the user entering a URL, or clicking an existing link, followed

by the retrieval of the content. This process can be broken down into five steps:

a DNS query, connection establishment, time to get the first byte, download

time & page parsing, and downloading of embedded content [38, 19, 29, 76],

detailed below. Figure 1.1 shows a timeline of the process.

1. DNS: If the URL does not contain an IP address, a DNS query must be

issued to resolve the name. DNS entries are heavily cached throughout

the web as well as on a user’s computer, making queries fast but still

3

1. INTRODUCTION

measurable. A detailed study done in 2002 found non-locally cached DNS

latencies ranging from 950ms to 2.31s [53].

2. TCP Connection: Once the IP address is found, a TCP link is estab-

lished with the remote HTTP server. Due to the three-way-hanshake to

set up a TCP connection, this will take at least one round-trip to the

server. Latency for this step will depend on proximity to the server, net-

work tra�c, network devices, and server utilization.

3. Time to First Byte: Immediately following the last acknowledgement

(ACK) to the server of the TCP three-way handshake, the HTTP request

can be sent. The server then processes the request and replies with data.

Latency involves one round-trip plus any server processing time.

4. Download and Parsing: Depending on the size of the returned page,

multiple packets may be sent each with appropriate verification ACK re-

sponses or retransmissions. Browsers may begin parsing the HTML page

in the middle of transmission, speeding the page display to the user, and

lowering perceived latency. Prior work has noted that users accommo-

date longer page latencies if some sort of progress feedback is displayed

[38], supporting immediate parsing technology to minimize user dissat-

isfaction. Latency is dependent on the server’s page production speed,

network conditions, and the bandwidth between the client and server.

5. Embedded Content: The HTML page downloaded from the server may

contain references to other documents needed for page display, such as

style sheets, Javascript, or images. During HTML parsing, these refer-

4

1.2 Sources of Web Latency

ences are found and the same download process described here is used for

each.

Once the original HTML page is downloaded and parsed and all referenced

content is downloaded and displayed, the user can view the complete page. The

time from the initial user click to the completed page is the page latency time.

The absolute minimal latency time for a web page is thus the time of two

round-trips to the HTTP server.

Referenced content can be retrieved faster using HTTP Keep-Alive (intro-

duced in HTTP 1.1 and uno�cially added to HTTP 1.0), which allows a TCP

connection to remain open after the HTTP transaction has completed. Subse-

quent requests to the same server can use this already open TCP link rather

than su↵er the additional latency of the three-way startup of a new connection.

Another feature in HTTP 1.1, HTTP Pipelining, allows a browser to send mul-

tiple HTTP requests simultaneously over a TCP link to a server to download

content in parallel. Most browsers only support 8 simultaneous connections per

domain. The average page in the Top-100 contain 40 separate download re-

quests per page, leading to additional latencies because of serialization [14, 72].

Even with these two optimizations in place, the distance to web server still

heavily dictates page latencies [15].

A study in 1998 found the TCP connection stage took at least 25% of the

total page latency time for non-persistent (non-HTTP Keep-Alive) requests for

actual web tra�c comprising 1 million requests [54]. This demonstrates latencies

due to network conditions contribute significantly to overall page latency.

5

1. INTRODUCTION

A popular method for lowering latency addresses the referenced content in

an HTML page. Static or seldom-changed content is placed in a content delivery

network (CDN), which replicates the data throughout the globe allowing fast

retrieval for the end-user[43, 73, 104]. Such services also provide DNS routing

capabilities to direct requests to the nearest CDN edge node. CDNs identify a

key optimization, locality of data, for reducing web page latency.

For an example of how physical distance influences latency, consider a user in

India requesting a web page from a server in New York, a distance of 12,500 kilo-

meters (km). Based on optimal signal propagation in optical fiber (60% speed of

light), one round-trip would take 125ms on the surface of the earth. Therefore,

the best latency possible for the requested page would be 250ms (two round-

trips), ignoring all server processing, network congestion, bandwidth limitations,

and referenced content download latency. This best-case page time presents a

physical limit to web page latency that can’t be overcome with advances in

technology.

Figure 1.2 shows current latencies between select cities on the Verizon net-

work in February 2012 [103]. Due to a non-direct path, network utilization, and

equipment-introduced delays, the current latency between India and New York

is 267ms, more than twice the theoretical minimum, resulting in 534ms just to

set up the TCP connection. Note the high latencies in Asia and India. Users

in these locations, where the Internet is growing rapidly, will experience high

loading times for US web content.

A report by Google similarly claims web page load times are linearly related

to the round trip time (RTT) to the web server [15]. The e↵ect of increased

bandwidth is investigated and found to have little e↵ect on page download

6

1.3 Data Dependencies

80 ms41 ms

111 m
s

187 ms
137 ms

165 ms

117 m
s

155 m
s

Figure 1.2: Worldwide Latencies on Verizon’s Network, Feb 2012

time. Reducing the RTT is far more productive than increasing bandwidth. An

alternate approach is to reduce the number of round-trips necessary for a page

load, which is a goal of their SPDY project [72].

Each of the five sources of page latency o↵ers opportunity to optimize. As

mentioned before, CDNs handle static referenced page content well, as does

caching of DNS data to speed DNS lookup. The remaining three sources of

latency can benefit from two optimizations: (1) moving the HTML generation

closer to the user to reduce distance latencies and (2) producing the HTML

faster. By optimizing these first crucial steps, pages will load faster and allow

referenced content to be retrieved that much sooner.

1.3 Data Dependencies

User modifiable data is vital to a dynamic web application. Mutable state allows

a user’s actions to a↵ect others or the real world, through (for example) forum

posts, webmail messages, video responses, product orders, or financial trans-

7

1. INTRODUCTION

actions. Interactability requires some user-initiated application state change,

which can be di�cult to process reliably for large sites or in a distributed web

application due to the inevitability of hardware failure and data duplication[82].

Dependencies inside the web application and its data increase the complexity

of building a large distributed web application.

1.3.1 Temporal Dependencies

Computer programs rely on causality of actions. If a command changes the ap-

plication’s state, all subsequent commands must observe this change. Causality

is trivial when state is stored in a single location, but causality requires addi-

tional resources when state is replicated. In the case when multiple simultaneous

users operate on shared data, much e↵ort must go into assuring data is read

and written in order so that errors do not occur.

1.3.2 Relational Dependencies

Web applications may contain data that require the storage of relationships

between internal data. For example, consider an e-commerce site that allows

items to be purchased. An order consists of multiple items to be shipped to

the same user. Each order therefore must contain links to the items, as well

as the user who placed the order, so that the shipping department can process

the order. Using a Relational Database Management System (RDBMS) allows

storage of this interrelated data and let complex queries access it. Retrieving all

items ordered by a specific user on a specific day requires the access of multiple

data sets (database tables) as well as knowledge of their dependencies.

Other queries accessing the RDBMS, such as listing all the current users, or

information about a specific product, do not require access to all the data. These

8

1.3 Data Dependencies

queries may only access one or two data sets or tables. Even though relational

dependencies exist in the database, they are not always used for every query.

Relational Database Management Systems (RDBMS) were developed as a

way of storing and retrieving relational data. To assure reliable operation in a

multiuser environment, RDBMS implement a set of guaranteed properties. Such

guarantees are needed for many mission-critical applications such as banking,

airline, insurance, and other businesses where a computing error may result in

loss of life or financial ruin. The four properties, known as the ACID properties,

are:

1. Atomicity: Commands sent to the database can be grouped into trans-

actions. If during the execution of a transaction a command fails or the

transaction is aborted, all previous commands in the transaction must be

undone, with no e↵ect on the data. This property gives transactions an

all-or-nothing capability.

2. Consistency: Data in a database must never be allowed to be in an

ambiguous state. Relational and temporal dependencies are obeyed.

3. Isolation: Operations in a transaction must only observe state changes

initiated within the same transaction, even if other queries are being si-

multaneously applied. This property assures temporal dependencies are

obeyed inside a transaction.

4. Durability: Successful transactions are permanent, and all subsequent

actions will observe the changes. This property assures hardware or net-

work failures do not e↵ect the result of completed transactions. This

property assures temporal dependencies.

9

1. INTRODUCTION

By obeying these ACID properties, a RDBMS can be used reliably by mul-

tiple simultaneous users. The widespread use of RDBMS before and during the

development of the web made it a natural data-storage system for web applica-

tions, even though it was never intended to be used in that area [91]. Relaxing

any of the ACID properties, or the dependencies above, can increase perfor-

mance. The recent NoSQL class of storage technologies sacrifices consistency

for increased performance [65]. Next, consistency relaxation is discussed.

1.3.3 Data Consistency

Data consistency assures that all operations performed on a datastore are view-

able by all users thereafter, and at no point in time the data is corrupt. This

is assuring temporal dependencies, and a strongly consisten data-store respec-

tively. There exists many di↵erent ways consistency can be relaxed. Any policy

that assures all users view the actions of previous operations at some point

thereafter are considered weakly consistent. Vogels identifies several variants of

weakly consistent policies [106]:

Eventual Consistency: After a change to the data, there is some calculable

time in the future when all users will observe the change.

Causal Consistency: A stronger form of eventual consistency where, if one

client updates an item and notifies another client of the action, the new

client will observe the change and further writes by each will follow the

original update. Clients with no knowledge of the update will follow even-

tual consistency.

Read-your-writes Consistency: If a client makes an update, subsequent

10

1.3 Data Dependencies

accesses by that client will reflect the change. Other clients will follow

eventual consistency.

Session Consistency: An isolated version of read-your-writes where a single

client has read-your-writes consistency for specific session-related data.

Data is not durable and must be regenerated in the event of an error.

Monotonic Read Consistency: After a client reads a particular piece of

data, subsequent accesses by that client will not return older versions of

the same data.

Monotonic Write Consistency: A policy where all modifications done by

a client are serialized with respect to that, and only that client.

Because any consistency relaxation can cause non-typical application be-

havior, the developer must be aware of the dangers and be sure the application

preforms as expected. Any type of consistency relaxation is a form of temporal

dependency relaxation. Next we look at relational dependency relaxation.

1.3.4 Relational Relaxation

As discussed previously, RDBMS’s provide a storage and retrieval system for

related data. Some queries may be complex, by accessing multiple data sets,

while others are simple, by only accessing one or two sets. In order for the

database system to be prepared for any query, all data must be available.

Relaxing dependencies inside the data can be done by selective storage of

data. If a dataset or some relationship between data will never be queried or

required then its storage is not useful.

11

1. INTRODUCTION

1.4 Thesis & Contributions

This dissertation’s thesis states:

The locality of data in a dynamic web application can

influence and improve the performance for geographically

diverse users by exploiting temporal and relational depen-

dencies inside the application.

We present two contributions supporting our thesis:

1. Location-aware Memcache Architectures:[92] This work develops a

set of location-aware caching strategies for the popular object caching sys-

tem Memcache. Based on multi-CPU cache architectures, we show how,

for certain uses, these strategies can lower latency, decrease network usage,

and increase availability for object caches that support HTML generation.

This work shows that in the physical distances of a LAN in a datacenter,

latency reductions can be made, showing larger promise for geographically

larger installations. To predict application performance under these and

other Memcache configurations, a network and application model is devel-

oped. Predictive measurements are made and then compared to analytical

results obtained from a mock-datacenter running a popular open-source

web application. Results support the models and usefulness of our pre-

sented Memcache architectures.

2. Tentacle: This developed software layer enables a generic database-

backed web application written in PHP to easily transition from a central

serving system to a global application providing lower average latency

12

1.5 Organization

to any user worldwide. This latency reduction is accomplished via five

complementing components that allow placement of web servers near the

end user while obeying consistency constraints. Key to this work is the

observation that state need not be consistent for all database queries in

the entire application. As an example, we applied our layer and modifi-

cations to a popular e-commerce application and found that many of the

database queries and pages could allow stale information. By exploiting

relaxed consistency requirements, the resulting latency was better on av-

erage than the original application deployed for local or geographically

distributed users. This work shows that relaxing temporal and relational

dependencies for a web application, when the application allows, can lower

latency for geographically distributed users.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 discussed

relevant Internet technologies and architectures necessary for our contributions.

Chapter 3 details our location-aware Memcache architectures, performance pre-

diction models, and performance evaluation. Chapter 4 discusses our Tentacle

system, its application to an e-commerce application, and resulting performance.

Chapter 6 discussed in-depth the tools and configurations of all experimental

data, as well as the use of our developed software. Chapter 7 contains future

work and concluding remarks. Appendices A through K exhibit formula and

code for our contributions.

13

Chapter 2

Internet Architecture and
Technologies

These contributions are most applicable in a web system setting, though they

could be used anywhere distributed data is needed quickly in a high latency

environment. This chapter discusses background Internet and software archi-

tectures in which the contributions are best suited, plus a discussion of relevant

web technologies.

The Internet is made up of many parts, but this work concentrates on sup-

plying the end-user with the requested HTML document. More specifically,

this work concentrates on the transmission of HTTP requests from an end-user

to a webserver, the generation of the HTML response, and the return of the

HTTP response to the end-user. Many technologies support this interaction.

Below, three important advanced web technologies necessary for our work are

discussed: routing requests to the closest serving location, web farm architec-

ture for serving high web-request load, and the web server’s internal software

architecture for satisfying dynamic requests.

14

2.1 Location-Aware Client Routing

2.1 Location-Aware Client Routing

Due to distance-induced latencies discussed in Section 1.2, a website can lower

the end-user response time by satisfying a request close in network proximity to

the requestor. This section discusses techniques for routing an HTTP request

to a local server with no additional user action. In all cases it is assumed the

website has servers spread throughout the Internet and users request a common

URL. These distributed servers are called edge servers as they exist at the edge

of the Internet, very close to the users.

One of these methods is necessary for the Tentacle contribution in Chapter

4 to be e↵ective. Below are four options for implementing client routing, with

more details available by Barbier et al.[13]:

1. Application Implemented: Clients can be forwarded to a local server

after first contacting a central server. Here, each web server or webfarm

has a unique dns subdomain, such as us.mydomain.com, uk.mydomain.com,

au.mydomain.com. Requests to mydomain.com go to a single server where

the source address is used to calculate the closest local server or sub-

domain. Alternate client location methods based on IP address have

been investigated including by autonomous system (AS) number[63] or

others[66]. An HTTP redirect is then issued and all further communica-

tion is done with the local subdomain. The first page request, such as

to mydomain.com, will be slow due to the further network distance, but

subsequent requests with location-specific subdomains will be fast.

2. DNS: Due to DNS request resolution at an owner-controlled facility, cus-

tom responses can be given using specialized DNS software. Based on

15

2. INTERNET ARCHITECTURE AND TECHNOLOGIES

the IP address and location of the request, the DNS server can provide a

custom response which resolves the DNS entry to a local location. Unfor-

tunately, this method can provide erroneous results due to DNS resolution

not always being location specific[108].

3. Anycast DNS: Anycast provides a way for a single IP address to be

used for multiple devices on the Internet. Internet routing techniques then

route requests for that IP to the nearest location to the requestor. As In-

ternet routing changes, so will the routing for that IP, making connection-

oriented communication di�cult. DNS uses UDP, which does not rely

on a TCP connection. In Anycast DNS, multiple DNS servers are used

world-wide, all with the same IP, but responding with di↵erent name-to-

IP mappings. This allows webservers or webfarms throught the word to

have unique IPs. In this way, the same URL will resolve to di↵erent IP

address wherever the requestor is, and optimally to the closest web server

to the user.

4. Anycast IP: Similar to Anycast DNS, this configuration uses multiple

servers with identical IP address spread over the Internet. Rather than

serving connection-less DNS requests, this method uses anycast for the

HTTP web tra�c. All DNS entries are identical. Again, requests will be

routed to the closest server, but due to HTTP’s longer-lived TCP con-

nection over DNS’s UDP, the possibility exists a TCP connection will be

interrupted due to a routing change. Nonetheless, the speed and flexibility

of this configuration has made it popular for CDNs.

Barbir et. al. discuss these routing techniques in detail.

16

2.2 Web Farm Architecture

2.2 Web Farm Architecture

Multiple webservers may be needed if tra�c is high or the computational load of

serving requests overburdens a single webserver. A web farm is a single location

containing more than one webserver serving identical content. Applications

using local data storage may require modification to be used in a web farm

setting by using central data storage.

A load balancing mechanism is needed in order to optimally utilize all web

serving resources. Balancing the web load over all webservers in a web farm can

be done in one of three ways[40]:

1. DNS: The DNS system allows for multiple prioritized A entries, which

can be reported in any order. Thus, di↵erent clients will resolve the same

URL to di↵erent IP addresses. These di↵erent IP addresses belong to

di↵erent webservers inside the the web farm, and thus load is distributed.

This method does not allow balancing based on server utilization, or allow

easy removal or addition of webservers as new DNS entries must be created

and distributed.

2. Level 4 Loadbalancer: This method operates on level 4 of the OSI

model and deals with TCP. The DNS resolves to a single IP address be-

longing to the load balancing device in the web farm. The load balancer’s

purpose is to accept incoming TCP connections and route them to one of

the available web servers. Internal state is stored in the load balancer to

route future packets from the same TCP session to the samer webserver.

Routing for new connections can be done in many ways, such as round-

robin, weighted round-robin, lowest utilization, or the lowest number of

17

2. INTERNET ARCHITECTURE AND TECHNOLOGIES

current TCP connections to name a few.

3. Level 7 Loadbalancer: Operating at a higher level allows inspection

of the HTTP request itself. URL parameters, HTTP header information,

cookie values, or any other information at level 7 or lower can help the

load balancer route tra�c to the best host. Routing based on URL is a

popular method of keeping web cache hit-rates high[40].

Sticky session support is an important feature of this type of load bal-

ancer. This feature routes requests in the same HTTP session to the

same server or rack of servers. HTTP session data is needed in many dy-

namic web applications to keep track of a user’s state in the application.

Session information can be conveyed in the HTTP request either in the

URL or as an attached cookie value. The load balancer’s configuration

must specify how sessions are identified in the specific application. Stor-

age of session data can either be in a centralized database, local file, or

other location. A truly scalable web application would not require local

data storage, but some applications may require it. The location-aware

Memcache contribution in Chapter 3 requires sticky sessions and exploits

data-usage patterns.

Additional equipment is also needed in a web farm, such as routers, switches,

file servers, and database servers. Chapter 4 discusses databases in a web farm

setting in detail. The next section discusses the software architecture in a web

server.

18

2.3 Web Server Software Architecture

Apache Web Server

GET image.jpg
image.jpg

Internet

GET index.php
HTML

PHP
Module

Database

Memcache

Operating System

Figure 2.1: Webserver architecture with PHP, Database, and Memcache

2.3 Web Server Software Architecture

Any software able to respond to HTTP requests can be considered a web server.

The web’s original purpose was serving static content, but through the progres-

sion of web scripts, server gateway interfaces (SGI), and web scripting languages,

custom HTML serving has become more popular. Due to the this progression,

static web serving applications are still used, but with additional modules pro-

viding dynamic capabilities. This research uses the PHP module in the Apache

web server to respond to PHP page requests, with the Apache server satisfying

all static content. If needed, PHP can contact a database or any external re-

source, including a Memcache server. Figure 2.1 depicts how web requests are

handled by the operating system, Apache, and possibly PHP.

PHP is an interpreted web scripting language developed for dynamic page

generation. In practice, a PHP script is an HTML-like file with embedded code.

19

2. INTERNET ARCHITECTURE AND TECHNOLOGIES

The PHP interpreter scans this file when requested and preforms the listed

instructions, finally returning the generated HTML to the requestor. Since its

beginning in 1994, PHP as gone through many modifications and now supports

object-oriented programming and is a major scripting language used on the

web[90].

Web applications written in PHP do not need to adhere to any software

architecture rules. Depending on the need, a small amount of script code could

be used on a single HTML page, or an entire web application could be devel-

oped. Built-in libraries allow database-interaction, image creation, email sup-

port, HTTP session handeling, PDF manipulation, as well as many other web-

related features useful in building a dynamic web application[109]. The Model-

View-Controller construction and architecture method is popular for large ap-

plications in order to allow many developers to contribute simultaneously.

Caching is a popular method of speeding dynamic web serving. During

execution of the application, expensive or often-used data is cached to speed

future execution. In a web farm setting where multiple webservers execute

application code, a common cache can be beneficial. The next chapter discusses

Memcached1, a whole-datacenter caching system extensively used at Facebook,

Wikipedia, Flickr, Twitter, and others. The web developer can store any string

or serialize-able object in Memcache by key, retrievable by any Memcache client

in the system. By only storing data in RAM, great speed is possible.

1http://memcached.org/

20

2.4 Summary

2.4 Summary

The Internet has seen many advances and changes since its original development

in the 1980s. This, as well as the Introduction chapter, review necessary tech-

nologies in order to understand how these contributions fit into and advance a

fully-functioning web serving system. Specific contributions are discussed next.

21

Chapter 3

Location-Aware Memcache

Caches, by design, speed processing by keeping frequently used data easily ac-

cessible. The principle of locality enables typical in-computer caches to increase

the performance of the entire system. This chapter examines how a popular

web caching system, Memcache, can be extended to increase performance by

storing data close to where it may be used. Relational dependencies within the

cached data must be handled by the application, allowing flexible cache designs

such as these.

3.1 Introduction

Originally developed at Danga Interactive for LiveJournal, the Memcache sys-

tem is designed to reduce database load and speed page construction by provid-

ing a scalable key/value caching layer available to all web servers. The system

consists of Memcache servers (memcached instances) for data storage and client

libraries that provide a storage API to the web application over a network or

local file socket connection. No persistence guarantees are made in the case

of failure, and thus Memcache is best used to cache regenerable content. The

storage location of data in a set of Memcache servers is determined via a hash

function applied to the key. High scalability and speed are achieved with this

22

3.1 Introduction

scheme as a key’s location (data location) can easily be computed locally. Com-

plex hashing functions allow addition and removal of Memcache servers without

severely a↵ecting the location of the already stored data.

A key/value storage system such as Memcache contains no relational de-

pendencies internally, thereby allowing data units to be stored and managed

independently. This freedom allows Memcache’s performance to grow linearly

as resources are added.

As web farms and cloud services grow and use faster processors, the relative

delay from network access increases because signal propagation is physically

constrained by the speed of light and network technology. Developing methods

for measuring and minimizing network latencies is necessary to continue to

provide rich web experiences with fast, low latency interactions.

As an example, consider a webserver and Memcache server on opposite ends

of a datacenter the size of a football field. The speed of light limits the fastest

round-trip time (RTT) in fiber to about 1µs. Current network hardware claim

a RTT for this example between 22µs and 3.7 ms [80], more than an order of

magnitude slower than the physical minimum. Assuming Memcache uses op-

timal network transport, 100 Memcache requests would take between 2.2 ms

and 370 ms, ignoring all processing time. This range is supported by multi-

ple measurements of latencies in both Google App Engine and Amazon EC2

showing between 300µs and 2 ms RTT between two instances for a single mes-

sage [61, 25]. Section 1.1 discusses why fast web responses are important. Any

reduction in server processing time will benefit users and therefore the site.

Latency is related to network load. More network utilization will translate

into more latency due to collisions and bu↵ering, leading to costly network

23

3. LOCATION-AWARE MEMCACHE

hardware to keep utilization low [80]. Reducing network load, especially over

utilized links, will keep latency low.

This work explores how data locality can be exploited to benefit Memcache

by reducing latency and core network utilization. Non-uniform cache usage-

patterns allow these optimizations. While modern LAN networks in a data-

center environment allow fast transmission, locating data close to where it is

used can lower latency and distribute network usage, resulting in better system

performance [107]. When looking at inter-datacenter communication, latency

becomes more pronounced.

We present five Memcache architecture variants, the typical architecture, two

natural extensions, and two novel to this area based on prior multi-processor

caching schemes. A network and usage model is developed to predict the per-

formance of all variants under di↵erent configurations. This model allows a

mathematical derivation of best and worst case situations, as well as the ability

to predict performance.

This work makes five significant contributions:

1. A model for predicting Memcache performance

2. A tool for gathering detailed Memcache usage statistics

3. Two novel Memcache architectures based on multi-CPU caching methods

4. Mathematical comparison between five Memcache architectures

5. Experimental comparison of five Memcache architectures using MediaWiki

24

3.2 Memcache Background

3.2 Memcache Background

As previously mentioned, Memcache is built using a client-server architecture.

Clients, in the form of an instance of a web application, store or request data

from a Memcache server. A Memcache server consists of a daemon listening on

a network interface for TCP client connections, UDP messages, or alternatively

through a file socket. Daemons do not communicate with each other, but rather

perform the requested Memcache commands from a client. A per-entry expira-

tion time can be set to remove stale data. If the allocated memory is consumed,

data is generally evicted in a least-recently-used manner. Data is only stored in

memory (RAM) rather than permanent media for speed.

The location of a Memcache daemon can vary. Small deployments may use

a single daemon on the webserver itself. Larger multi-webserver deployments

generally use dedicated machines to run multiple Memcache daemons configured

for optimal performance (large RAM, slow processor, small disk). This facil-

itates management and allows webservers to use as much memory as possible

for web processing.

The Memcache daemon recognizes 16 commands as of version 1.4.13 (2/2/2012),

categorized into storage, retrieval, and status commands. Various APIs written

in many languages communicate with a Memcache daemon via these commands,

but not all support every command.

Below is an example of a PHP snippet which uses two of the most popular

commands, set and get, to quickly return the number of users and retrieve the

last login time.

function get_num_users(){
$num = memcached_get(’num_users’);

25

3. LOCATION-AWARE MEMCACHE

if($num === FALSE){
$num = get_num_users_from_database();
memcached_set("num_users", $num, 60);

}
return $num;

}
function last_login($user_id){

$date = memcached_get(’last_login’ . $user_id);
if($date === FALSE){

$date = get_last_login($user_id);
memcached_set(’last_login’ . $user_id, $date, 0);

}
return $date;

}

These functions cache data in Memcache, rather than query the database

on every function call. In get_num_users, a cache timeout is set for 60 seconds

which causes the cached value to be invalidated 60 seconds after the set, trig-

gering a subsequent database query when the function is called next. Thus, at

most once a minute the database will be queried, with the function returning

a value at most a minute stale. To cache session information, the last_login

function stores the time of last login by including the $user_id in the key. This

will store separate data per user/session. Periodically, or on logout, another

function clears the cached data. During an active session the last_login func-

tion will only access the current session’s data with no other user needing the

data. Thus, if sticky load balancing (requests from the same session are routed

to the same web server or rack) is used the data could be stored locally to speed

access and reduce central network load. Alternatively, as in get_num_users,

some data may be used by all clients. It may make sense for a local copy to

be stored, rather than each webserver requesting commonly used data over the

network. Caching data locally, when possible, is the basis for the proposed

architectures.

26

3.3 Memcache Performance Prediction Model

3.3 Memcache Performance Prediction Model

When evaluating di↵erent Memcache architectures it is useful to be able to

predict performance of any proposed system. Using the constants and formula

developed here allows a rough estimation of latency and network utilization for

a Memcache system.

To simplify our model we assume the following traits:

1. Linear Network Latency: Network latency is linearly related to net-

work device traversal count [80].

2. Sticky Sessions: A web request in the same session can be routed to a

specific rack or webserver.

The result of applying the model to a specific application, network, and

Memcache configuration is an average per-Memcache-command latency.

3.3.1 Assumed Network Topology

Network topology greatly influences the performance of any large interconnected

system. A physical hierarchical star network topology is assumed consisting of

multiple web, database, and Memcache servers.

Web servers, running application code, are grouped into racks. Racks can

describe a group of physical machines, separate webserver threads in a single

machine, or an entire data center. Instances within the same rack can commu-

nicate quickly over at most two network segments, or within the same machine.

The choice of what a rack describes depends on the overall size of the web farm.

Whatever the granularity, communication is faster intra-rack than inter-rack.

27

3. LOCATION-AWARE MEMCACHE

Rack n

Rack 1

...
Router/

Load Balancer
Backbone

Switch

Rack
Switch

Rack
Switch

Figure 3.1: Assumed Network Topology

Racks are connected through a backbone link. Thus, for one webserver in a

rack to communicate to another in a di↵erent rack at least 4 network segments

connected with 3 switches must be traversed.

Figure 3.1 depicts this configuration.

3.3.2 Model Constants and Calculation

To generalize the di↵erent possible configurations, we assume network latency

is linearly related to the switch count a signal must travel through, or any

other devices connecting segments. Thus, in our rack topology the estimated

round-trip-time (RTT) from one rack to another is l3 because three switches are

traversed, where l3 = 3⇤ 2⇤ switch+ base for some switch and base delay times

described later.

Similarly l2 represents a request traversing 2 switches, such as from a rack

28

3.3 Memcache Performance Prediction Model

Web Application
Command Weights

Network
Performance

Memcache
Architecture

Formulas

Web Application
Profile

Latency
Result

Memcache Command Latencies

Figure 3.2: Latency Estimation Calculation

to a node on the backbone and back. l1 represents traversing a single switch

and llocal is used to represent this closest possible network distance. In some

cases llocalhost is used to represent l0, where no physical network layer is reached.

This metric di↵ers from hop count as every device a packet must pass through

is counted, rather than only routers.

Figure 3.2 depicts the data-flow through the model to calculate a final la-

tency estimate.

Each block represents a set of variables or formula in the model. Table 3.1

describes variables in the Network Performance block.

The Web Application Profile contains variables inherent to the web ap-

plication, such as the size of objects, key distribution throughout the web ap-

plication, percent of Memcache commands which are reads, Memcache com-

mands used, and command distribution. The command distribution dictates

29

3. LOCATION-AWARE MEMCACHE

llocalhost or l0 Average RTT (ms) to localhost for the smallest

size packet possible

llocal or l1 Average RTT (ms) to a nearby node through one network device

l
n

Average RTT (ms) traversing n devices

r Number of racks used in system

k Data replication value used when possible

size
note

Average size of data location note (bytes)

switch Delay time (ms) per switch or network device traversed

base Constant OS, network delay, and Memcache overhead (ms)

bw Minimum network bandwidth in system (Mbps)

Table 3.1: Network Performance Variables

ps Proportion of Memcache commands used on the average page that

are only referenced by a single HTTP session [0-1]

rw
cmd

Percent of Memcache commands which are reads [0-1]

rw
net

Percent of network tra�c based on data transfer which are reads [0-1]

size
object

Average size of typical on-wire object (bytes)

usage
m

For a specific application usage scenario, proportion of each Memcache

command used plus duplicates for command failures (Table 3.3) [0-1]

where m = 0 to 19 and
P19

m=0 usagem = 1

Table 3.2: Web Application Profile Variables

the Command Weights, used later. Table 3.2 describes each variable in detail.

The ps value is central to our approaches. It gives a measure of how many

session specific Memcache requests are used per web page. If an application

only stores session information in Memcache ps = 1. If half the Memcache

requests on a page are session specific and half used by other users/sessions,

then ps = 0.5. For example, if an application used the above get_num_users()

and last_login($id) in Section 3.2 once per page then for 100 user sessions

Memcache would store 101 data items, of which 100 are session specific. Even

30

3.3 Memcache Performance Prediction Model

Set Add Hit Add Miss
Replace Hit Replace Miss Delete Hit Delete Miss

Increment Hit Increment Miss Decrement Hit Decrement Miss
Get Hit Get Miss App/Prepend Hit App/Prepend Miss

CAS11 CAS21 CAS31 Flush

Table 3.3: 19 monitored Memcache commands

though session data will consume 99% of all stored data, our ps value will still

be 0.5.

The usage
m

variable captures how often each of the Memcache commands

are used. Only commands that manipulate data are tracked, of which there are

13. The append and prepend commands are combined. Of these 13 Memcache

commands, 7 have di↵erent latency performance if the the command was suc-

cessful or not, thus we break these into a Hit or Miss variants. Table 3.3 lists

all 19 tracked Memcache commands and variants. Note CAS commands are not

fully tracked at this time.

The Memcache Architecture Formulas block contains 19 formula, each

using the Network Performance and Web Application Profile variables to

estimate the latency for a specific Memcache command. These formula are

specific to the Memcache architecture being used. Section 3.5 discusses standard

and proposed architectures, with a mathematical comparison using this model

in Section 3.6. Appendix A lists all formula.

The final Latency Result value is calculated by obtaining latency values

for each of the Memcache Architecture Formulas and weighting each using

usage
m

Command Weights and summing.

1CAS - Compare-and-Swap
CAS1 = Key exists, correct CAS value.
CAS2 = Key exists, wrong CAS value.
CAS3 = Key does not exist.

31

3. LOCATION-AWARE MEMCACHE

3.4 MemcacheTach

Predicting Memcache usage is not easy. User demand, network usage, and

network design all can influence the performance of a Memcache system. In-

strumentation of a running system is therefore needed. The Memcache server

itself is capable of returning the keys stored, number of total hits, misses, and

their sizes. Unfortunately, this is not enough information to answer important

questions: What keys are used the most/least? How many clients use the same

keys? How many Memcache requests belong to a single HTTP request? How

much time is spent waiting for a Memcache request? Which Memcache servers

are responding slowly?

To answer these and other questions we developed MemcacheTach, a Mem-

cache client wrapper which intercepts and logs all requests. Source code is

listed in Appendix F and G, with usage and implementation details in Section

5.4. While currently analyzed after-the-fact, the log data could be streamed

and analyzed live to give insight into Memcache’s performance and allow live

tuning. Values for the Network Performance and Web Application Profile

model variables above are provided via MemcacheTach analysis, plus the ratio

of the 19 Memcache request types, and other useful information about a set

of Memcache requests. Figure 3.4 shows the measured values for MediaWiki

from a single run in our mock datacenter with full caching enabled for 100 users

requesting 96 pages each. See Section 3.7 for further run details. Section 5.4

provides a detailed discussion of MemcacheTach and its use.

The average MediaWiki page used 16.7 Memcache requests, waited 46 ms

for Memcache requests, and took 1067 ms on average to render a complete page.

32

3.5 Memcache Architectures

switch (ms) : 0.21 (ms) ps : 0.56 Avg. data size (Kbytes): 3.3

base (ms) : 3.0 (ms) rw

cmd

: 0.51 Mem. requests per page: 16.7

Avg. net size (bytes): 869

Set hit: 24% Replace hit : 0% Inc hit : 0%

Set miss : 0% Replace miss : 0% Inc miss : 21%

Add hit : 0% Delete hit : 2% Dec hit : 0%

Add miss : 0% Delete miss : 0% Dec miss : 0%

Get hit : 44% CAS1 : 0% App/Prepend hit : 0%

Get miss : 7% CAS2 : 0% App/Prepend miss : 0%

Flush : 0% CAS3 : 0%

Table 3.4: MediaWiki usage values (full caching)

State Avg page generation time (ms) std.dev samples (pages)

O↵ 1067 926 13,800

Logging 1103 876 13,800

Table 3.5: MemcacheTach Overhead

56% of keys used per page were used by a single webserver (ps = 0.56), showing

good use of session storage and thus a good candidate for location-aware caching.

As implemented, MemcacheTech is written in PHP, not compiled as a mod-

ule, and writes uncompressed log data. Thus, performance could improve with

further development. Additionally, every Memcache request issues a logfile

write for reliability. Two performance values are given in Figure 3.5. Off is

our Memcache baseline, while Logging used MemcacheTech and saved data on

each Memcache call. See Section 3.7 for implementation details. On average

MemcacheTech had an overhead of 36 ms.

3.5 Memcache Architectures

Described and compared here are Memcache architectures currently in use, two

natural extensions, and our two proposed versions. All configurations are im-

33

3. LOCATION-AWARE MEMCACHE

plemented on the web server(s) via wrappers around existing Memcache clients,

thus requiring no change to the Memcache server. Source code is available in

Appendix B, D, E, with Appendix C providing common functions to Snoop and

Dir.

Estimation formula for network usage of the central switch and space usage

e�ciency for all variants are given using the variables defined in Section 3.3.2.

An in-depth discussion of latency is given in Section 3.6.

3.5.1 Standard Deployment Central - SDC

The typical deployment consists of a dedicated set of memcached instances

existing on the backbone (l2). Thus, all Memcache requests must traverse to

the Memcache server(s) typically over multiple network devices. Data is stored

in one location, not replicated.

This forms the standard for network usage as all information passes through

the central switch:

Network Usage: 100%

All available Memcache space is used for object storage:

Space E�ciency: 100%

3.5.2 Standard Deployment Spread - SDS

This deployment places Memcache servers in each webserver rack. Thus, some

portion of data (1/r) exists close to each webserver (l1), while the rest is farther

away (l3). The key dictates the data storage location, which could be in any

rack, not only the local. This architecture requires no code changes compared

to SDC, but distributes Memcache servers into each rack.

34

3.5 Memcache Architectures

With some portion of the data local, the central switch will experience less

tra�c:

Network Usage:

r�1
r

⇤ 100%

All available space is used for object storage:

Space E�ciency: 100%

3.5.3 Standard Deployment Replicated - SDR

Durability is added by storing k copies of the data on di↵erent Memcache dae-

mons, preferably on a di↵erent machine or rack. While solutions do exist for

data duplication in the server (repcached [47]), duplication is done here on the

client and uses a locality metric to read from the closest resource possible. This

can be implemented either through multiple storage pools or in our case by

modifying the key in a known way, essentially creating a hash chain, to choose

a di↵erent servers or racks[7, 102]. A write must be applied to all replicas, but

a read contacts the closest replica first, reducing latency and core network load.

Appendix B contains PHP code for this variant.

Reading locally can lower central switch usage over pure duplication:

Network Usage: rw
net

⇥ (1� k

r

) + (1� rw
net

)⇥ (k � k

r

) ⇤ 100%

The replication value lowers space e�ciency:

Space E�ciency: 100/k%

3.5.4 Snooping Inspired - Snoop

Based on multi-CPU cache snooping ideas, this architecture places Memcache

server(s) in each rack allowing fast local reads [41, 51]. Writes are done locally

35

3. LOCATION-AWARE MEMCACHE

with a data location note sent to all other racks under the same key. Thus,

all racks contain all keys, but data is stored only in the rack where it was

written last. This scheme is analogous to a local-write protocol using forwarding

pointers [93]. An update overwrites all notes and data with the same key. To

avoid race conditions deleting data, notes are first stored in parallel, followed by

the actual data. Thus, in the worst case multiple copies could exist, rather than

none. A retrieval request first queries the local Memcache server, either finding

the data, a note, or nothing. If a note is found the remote rack is queried and

the data returned. If nothing is found then the data is not stored in the system.

Appendix D contains PHP code for this variant.

The broadcast nature of a set could be more e�cient if UDP was used

with network broadcast or multicast. Shared memory systems have investigated

using a broadcast medium, though none in the web arena [94].

Based on the metric ps, the proportion of keys used during one HTTP

request which are session specific, and the message size size
message

, we have the

following estimation for central switch tra�c:

Network Usage: (rw
net

⇥ (1� ps) + (1�rw

net

)⇥size

message

⇥r

size

object

) ⇤ 100%

Storage e�ciency depends on the size of the messages compared to the av-

erage object size:

Space E�ciency:

size

object

⇤100
size

message

⇥(r�1)+size

object

%

3.5.5 Directory Inspired - Dir

An alternate multi-CPU caching system uses a central directory to store location

information [41, 51]. Here, a central Memcache cluster is used to store sharing

36

3.6 Latency Estimation

information. Each rack has its own Memcache server(s) allowing local writes,

but reads may require retrieval from a distant rack. A retrieval request will

contact the local server first, and on failure query the directory and subsequent

retrieval from the remote rack. A storage request first checks the directory for

information, clears the remote data if found, writes locally, and finally sends a

note to the directory with its current location. Appendix E contains PHP code

for this variant.

Rather than sending many notes on the central switch per write as with

Snoop, Dir is able to operate with three central requests, one to retrieve the

current note, the second to clear the old data, and the last to set the new note,

no matter how many racks are used. This allows Dir to stress the central switch

the least especially when many racks are used.

Network Usage: (rw
net

⇥(1�ps)⇥ size

message

+size

object

size

object

+
(1�rw

net

)⇥size

message

⇥3
size

object

)⇤100%

Likewise with Snoop, message size dictates storage e�ciency:

Space E�ciency: (rw
net

⇥(1�ps)⇥ size

message

+size

object

size

object

+
(1�rw

net

)⇥size

message

⇥3
size

object

)⇤100%

3.6 Latency Estimation

The above architecture options are evaluated by estimating latency using the

model described in Section 3.3.2. The Memcache Architecture Formulas were

derived for each architecture variant, provided in Appendix A.

In general, each formula estimates the latency for a specific Memcache com-

mand using the following components:

37

3. LOCATION-AWARE MEMCACHE

• Bandwidth: Time the average sized object will require to traverse the

network given the provided bandwidth, if data is transferred.

• Switching: Time needed to traverse the network given a specific network

distance.

• Architecture: Time for additional communication due to the architec-

ture.

• Read/Write: Time weighting for the proportion of reads to writes.

• Location: Additional time if data is not stored locally.

As an example, the set hit command would have a latency (ms) of l2 +

size

object

bw⇥conv

, where conv = 1024 ⇤ 1024/8/1000, under SDC, factoring in distance

and bandwidth. SDS would have 1
r

⇥ l
local

+ r�1
r

⇥ l3 +
size

object

bw⇥conv

for a set hit

because some portion of the keys would be local (1
r

), and thus faster, while the

rest (r�1
r

) would need to travel farther. The same bandwidth calculation applies.

SDR would take l3+
size

object

bw⇥conv

because multiple sets can be issued simultaneously.

Snoop would need l
local

+ l3+
size

object

+size

message

bw⇥conv

with data being sent to the local

rack and messages sent to all others in parallel.

Using a specific Web Application Profile and Network Performance statis-

tics, here from a run of MediaWiki[58], we can vary individual parameters to

gain an understanding of the performance space under di↵erent environments.

A bandwidth (bw) value of 100 Mbps was used for all.

We first look at how network switch speed can e↵ect performance. Recall we

assumed the number of devices linearly relates to network latency, so we vary

the single device speed between 12.7µs and 1.85ms, with an additional 4.4ms

38

3.6 Latency Estimation

Figure 3.3: MediaWiki profile under di↵erent switch speeds and ps values.

Figure 3.4: MediaWiki profile under di↵erent ps values.

OS delay, in the Fig. 3.3 plots. Latency measures round trip time, so our X axis

varies from 0.025ms to 3.7ms. Three plots are shown with ps values of 10%,

50%, and 90% with weightings derived from our MediaWiki profile.

As seen in Fig. 3.3, as ps increases the latency for the location-aware schemes

improve. When ps=0.9 and a switch latency of 0.3ms, SDS and Snoop are

equivalent, with Snoop preforming better as switch latency increases further.

Next we take a closer look at how ps changes response time in Fig. 3.4 using

a fixed switch latency of 1.0ms and our MediaWiki usage profile.

Predictably all 3 location-averse schemes (SDC, SDS, and SDR) exhibit no

change in performance as ps increases. Snoop and Dir improve as ps increases,

but are not able to out-perform the other architectures in this situation.

39

3. LOCATION-AWARE MEMCACHE

Figure 3.5: Varying read/write ratio and ps values.

So far we’ve analyzed performance using MediaWiki’s usage profile. Next,

the more general case where the 19 commands are split into two types: read

and write, where read consists of a get request hit or miss, and write is any

command which changes data. MediaWiki had 51% reads when fully caching,

or about one read per write. Figure 3.5 varies the read/write ratio while looking

at three ps values.

With high read/write ratios, Snoop is able to outperform SDC, here when

switch = 1.0 ms and ps = 0.9 at rw = 0.9.

These plots show when ps is near one and slow switches are used, Snoop

is able to outperform all other configurations. In some situations, like session

storage (ps = 1) across a large or heavily loaded datacenter, Snoop may make

larger gains. From an estimated latency standpoint Dir does not preform well,

though as we’ll see next, its low network usage is beneficial.

3.7 Experimental Results

To validate our model and performance estimation formula, we implemented our

alternate Memcache schemes and ran a real-world web application, MediaWiki[58],

with real hardware and simulated user tra�c. MediaWiki allows users to create,

edit, search, and view content through a web interface. MediaWiki was chosen

40

3.7 Experimental Results

due to its built-in Memcache support, freely available source code, and mature

codebase which powers Wikipedia.

Multiple caching configurations are possible depending on the intended in-

stallation and use. Three MediaWiki configurations were used:

1. Full: All caching options were enabled and set to use Memcache.

2. Limited: Message and Parser caches were disabled, with all other caches

using Memcache.

3. Session: Only session data was stored in Memcache.

The simulated tra�c consisted of 100 users registering for an account, creat-

ing 20 pages each with text containing links to other pages, browsing 20 random

pages, and finally logging out. Tra�c was generated with JMeter 2.5 generat-

ing 9600 pages per run. The page request rate was tuned to stress Memcache

the most, keeping all webservers busy, resulting in less-than optimal average

page generation times. A run consisted of a specific MediaWiki and Memcache

configuration.

The mock datacenter serving the content consisted of 23 Dell Poweredge

350 servers running CentOS 5.3, Apache 2.2.3 with PHP 5.3, APC 3.1, PECL

Memcache 3.0, 800MHz processors, 1GB RAM, partitioned into 4 racks of 5

servers each. The remaining 3 servers were used for running the HAProxy load

balancer, acting as a central Memcache server, and a MySQL server respectively.

Four servers in each rack produced web pages, with the remaining acting as the

rack’s Memcache server.

To measure Memcache network tra�c accurately the secondary network card

in each server was placed in separate subnet for Memcache tra�c only. This

41

3. LOCATION-AWARE MEMCACHE

Parameter Full Limited Session Parameter Full Limited Session

Set 24% 23% 50% ps .56 .59 1

Delete hit 2% 3% 0% rw

cmd

.51 .49 .5

Inc miss 22% 24% 0% rw

net

.61 .78 .54

Get hit 44% 42% 50% Avg. net size (bytes) 870 973 301

Get miss 8% 8% 0%

Table 3.6: MediaWiki usage for each configuration

subnet was joined by one FastEthernet switch per rack, with each rack connected

to a managed FastEthernet (10/100 Mb/s) central switch. Thus, we could

measure intra-rack Memcache tra�c using SNMP isolated from all other tra�c.

Section 5.5 discusses network tra�c measurement in detail. To explore how our

configurations behaved under a more utilized network we reran all experiments

with the central switch set to Ethernet (10 Mb/s) speed for Memcache tra�c.

MediaWiki was measured in all configurations using MemcacheTach with

results presented in Table 3.6. Only non-zero Memcache commands are listed

for brevity.

3.7.1 Latency

To predict latency we require two measurements of network performance, switch

& base. These were found using an SDS run and calculating the relative time dif-

ference between Memcache commands in-rack (l
local

) and a neighboring rack (l3)

and subtracting the delay from limited bandwidth. For the 100Mbps network,

switch = 0.21ms and base = 3.0ms. The 10Mbps network had, switch = 0.22ms

and base = 4.0ms. The resulting predicted and observed per Memcache com-

mand latences are given in Table 3.7.

The resulting predicted and observed per Memcache command latences are

42

3.7 Experimental Results

Predicted Latency (ms) Observed Latency Predicted Latency Observed Latency

Scheme Full Limited Session Full Limited Session Full Limited Session Full Limited Session

100Mb/s Central Switch 10Mb/s Central Switch

SDC 3.5 3.5 3.4 3.5 3.9 3.2 5.2 5.2 4.7 12.1 13.9 3.5

SDS 4.2 3.6 3.6 3.8 4.1 3.6 5.3 5.4 4.8 20.1 20.6 4.6

SDR 5.7 5.0 3.5 5.1 5.4 5.3 7.0 7.4 4.8 35.6 29.5 9.2

Snoop 5.9 5.2 5.1 6.1 6.6 7.3 6.3 7.0 6.9 15.6 17.0 10.9

Dir 8.4 7.5 8.5 5.5 5.8 5.8 9.2 9.5 11.6 9.3 9.9 6.3

Table 3.7: Expected and Measured Memcache Latency

given in Figure 3.7. Each configuration was run 4 times and averaged.

In the case of fast switching, SDC was the best predicted and observed

performer. The location-aware schemes, Dir and Snoop, both don’t fit the

expected values as close as the others. This is likely due to the interpreted

nature of the architecture logic in PHP. Future work will explore native C

implementations.

When the central switch was slowed to 10Mb/s, utilization and latency in-

creased. Dir was able to outperform SDC in the Full and Limited caching cases

due to the lower central switch utilization, as described in the next section.

Snoop still performed worse than expected, though still beating SDS and Dup

in the Full caching case.

3.7.2 Network Load

Using the formula developed in Section 3.5, combined with the MediaWiki usage

data, we can compute the expected load on the central switch and compare it

to our measured values. We used a size
message

value of 100 bytes, higher than

the actual message to include IP and TCP overhead. The comparison is given

in Table 3.8 with 4 samples per configuration.

43

3. LOCATION-AWARE MEMCACHE

Predicted Usage (%) Observed Usage Predicted Usage Observed Usage

Scheme Full Limited Session Full Limited Session Full Limited Session Full Limited Session

100Mb/s Central Switch 10Mb/s Central Switch

SDC 100 100 100 100 100 100 100 100 100 100 100 100

SDS 80 80 80 80 81 73 80 80 80 83 82 81

SDR 99 81 105 101 87 106 99 81 105 106 89 110

Snoop 49 43 76 45 48 116 49 43 76 47 50 118

Dir 38 39 30 35 34 69 38 39 30 37 35 71

Table 3.8: Expected and Measured Network Load

Notice SDR’s low network usage even though data is duplicated. This is

a result of a location-aware strategy that writes to di↵erent racks and reads

from the local rack if a duplicate is stored there. The low rack count, 5 in our

configuration, assures that almost half the time data is local.

The actual central switch usage measurements match well with the predicted

values. Note the location-aware rows. These show the largest skew due to the

small message size and therefore the higher relative overhead of TCP/IP. This

was validated by a packet dump during SDC/Full and the SDC/Session runs

in which absolute bytes and Memcache bytes were measured. For SDC/Full,

with an average network object size of 870 bytes, 86MB was transfered on the

wire containing 61MB of Memcache communication, roughly a 30% overhead.

SDC/Session transferred 9.8MB with 301 byte network objects, yet it contained

5.7MB of Memcache communication giving an overhead of 41%. Additional

traces showed that for small messages, like the notes transferred for Dir and

Snoop, 70% of the network bytes were TCP/IP overhead. This is shown by

the higher than expected Session column when location-aware was used due to

the smaller average object size. This shows that Memcache using TCP is not

network e�cient for small objects, with our location-aware schemes an excellent

44

3.7 Experimental Results

example. Future work measuring network utilization for Memcache using UDP

would be a good next step, as has been investigated by Facebook[81, 99].

If size
message

was 50 bytes, which may be possible using UDP, we should

see Dir and Snoop use only 24% and 33% respectively as much as SDC on

the central switch. Using the binary protocol may reduce message size further,

showing less network usage.

3.7.3 Review

These results show that the model, application profile, and performance estima-

tion formulas do provide a good estimate for latency and network usage. While

the actual Memcache latency values did not show an improvement over the typ-

ical configuration on our full speed hardware, they did support our model. In

some cases, as shown by our slower network hardware configuration as well as

described in Section 3.6, we’d expect locality-aware schemes to perform bet-

ter than the typical. High rack densities and modern web-servers, even with

modern network hardware, may increase network utilization to a point simi-

lar to our Ethernet speed runs and show increased latency under high load.

Location-aware configurations lower core network utilization allowing more web

and Memcache servers to run on the existing network. Network usage proved

di�cult to predict due to additional TCP/IP overhead, but nonetheless the ex-

perimental data backed up the model with all architectures reducing core tra�c,

and the best reducing it to 34% of the typical SDC case.

45

3. LOCATION-AWARE MEMCACHE

3.8 Discussion

3.8.1 Latency, Utilization, and Distributed Load

Through this work we assumed network latency and utilization are indepen-

dent, but as we saw in the last section they are closely related. A heavily

utilized shared-medium will experience higher latencies than an underutilized

one. Thus, SDC, SDS, and SDR’s latency when used on the slow network were

much higher than predicted due to congestion. Unfortunately, predicting the

saturation point would require dozens of parameters such as link speeds, specific

network devices, server throughput, as well as an estimation of other tra�c on

the network. At some point simulation and estimation outweigh actual imple-

mentation and testing.

3.8.2 Multi-Datacenter Usage

Thus far we have assumed a Memcache installation within the same datacenter

with appropriate estimates on latency. In general, running a standard Mem-

cache cluster spanning datacenters is not recommended due to high (relative)

latencies and expensive bandwidth. The location-agnostic architectures, SDC,

SDS, and partly SDR would not be good choices for this reason. We can apply

our same analysis to the multi-datacenter situation by viewing the datacenter

as a rack, with a high l3 value for intra-datacenter latency. SDC is no longer

possible with its l2 latency, with SDS taking its place as the typical o↵-the-shelf

architecture. Assume an l3 value of 40ms, a best case CA to NY latency, with

l1 = 5ms inside the datacenter. For Dir’s directory we assume it spans both

datacenters like SDS. See Fig. 3.6 for the plotted comparison.

Here the di↵erence between locality aware and averse is more pronounced.

46

3.8 Discussion

Figure 3.6: Varying read/write ratio and ps values with an East and West coast
DC

Snoop and Dir are able to outperform SDS when ps is above 0.5, especially

for high read/write ratios. SDR preforms poorly due to consistency checks and

multiple writes. Interestingly as more datacenters are added SDS becomes worse

due to a higher proportion of data being farther away while the location aware

architectures can keep it close when ps is high.

3.8.3 Selective Replication

Replication of a relational database can increase performance by distributing

reads. Unfortunately entire tables must be replicated, possibly including seldom

used data. In a key/value system such as Memcache, replication can o↵er speed

benefits as we saw in SDR. We looked at the static case where all data is

replicated, but selectively replicating frequently used data could save space while

increasing speed. Snoop and Dir could be easily augmented to probabilistically

copy data locally. Thus, frequently used but infrequently changed data would

be replicated allowing fast local reads. Unused Memcache memory is a waste,

so by changing the probability of replication on the fly, memory could be used

more optimally. We intend to investigate this in further work.

47

3. LOCATION-AWARE MEMCACHE

3.8.4 Object Expiration

In Memcache, objects are generally removed in a least-recently-used manner if

the allocated memory is consumed. In a standard deployment this works well,

but in our case where meta information is separate from data, the possibility

exists where meta expiration may cause orphaned data. The new Memcache

command touch, which renews an object’s expiration time, can be used to

update the expiration of meta information reducing the chance of orphaned

data, though the possibility does still exist. In a best-e↵ort system such as

Memcache such errors are allowed and should be handled by the client.

3.8.5 User Space Caching

As mentioned in Section 3.2, the Memcache server is a separate process even

when used on the same machine as the client. Inter-process communication is

therefore necessary, either through the loopback or file socket interfaces, using

the standard Memcache protocol. Either way, transportation costs and proto-

col overhead are incurred. By moving the Memcache server, emulating it, or

allowing shared memory within the same process space as the client, the extra

costs could be eliminated. Object serialization overhead may also be reduced.

Research done in 2009 using memory mapping between virtual machine (VM)

hosts in a cloud environment demonstrated that an 86% reduction in Memcache

latency for read operations is possible, supporting these methods [110].

3.8.6 Overflow

The location-agnostic configurations (SDC, SDS, and SDR) all fill the available

memory evenly over all servers due to the hashing of keys. Location aware

48

3.9 Summary

configurations will not fill evenly, as is the case when some racks set more than

others. Data will be stored close to the sets, possibly overflowing the local

Memcache server while others remain empty. Thus, it is important to evenly

load all racks, or employ some Memcache balancing system.

3.8.7 System Management

Managing a Memcache cluster requires providing all clients a list of possible

Memcache servers. Central to our location-aware strategies is some method

for each Memcache client to prioritize Memcache servers based on the number

of network devices traversed. This can be easily computed automatically in

some cases. In our configuration, IP addresses were assigned systematically per

rack. Thus, a client can calculate which Memcache servers were within the same

rack and which were farther away based on its own IP address. Using this or

similar method would minimize the added management necessary to implement

a location-aware caching scheme.

3.9 Summary

Placing cache data close to where it will be used, as demonstrated, can lower

latency and reduce network utilization inside a web datacenter. This leads to

faster page response times, higher capacity, and more satisfied users.

Data dependencies can be identified for a running application using Memca-

cheTach and exploited, leading to better cache performance. Using application

usage data, as well as the developed model and formula, the developer can

estimate performance for alternate Memcache caching strategies.

49

Chapter 4

Tentacle

This chapter explores the limits of data locality by augmenting web applications

to generate as much content near the web user as possible. Processing and

data storage are distributed to edge servers in close proximity to the end users.

Temporal and relational dependencies limit the extent to which an application

can be distributed. Relaxing these dependencies, when possible, can allow a

non-distributed web application to be used in a distributed way. The goal is to

lower end-user page latencies as much as possible by serving dynamic content

locally.

As discussed in Section 1.3, dependencies inside a web application can limit

its ability to be distributed. Some applications, such as a webmail client, do

not have any dependencies preventing it from being distributed. In this case,

temporal dependencies exist, but relational ones do not: a user’s email data is

not used by anyone else in the system. Other applications, such as a bulletin

board system, contains both temporal and relational dependencies that limit

their ability to grow. This chapter concentrates on the harder latter case where

data is needed by many users.

Pivotal to the work presented here is the exploitation of allowable consistency

50

4.1 Background

relaxation inside a web application, otherwise known as temporal dependencies,

freshness of data, or bounded staleness[23, 98]. This chapter presents a solution

that attempts to lower user latencies by distributing computation geographically

for a web application which was not developed to do so. More specifically, it

is designed to benefit standalone web applications using a single DBMS for all

storage. Large web businesses such as Google, Amazon, and Facebook have

designed their web systems with global reach and scalability in mind. This

chapter demonstrates that significant performance gains can be made without

application redesign by selectively relaxing consistency requirements.

4.1 Background

Presented here are topics and current practices which are necessary for this sys-

tem. Web application architecture, consistency relaxation in web applications,

and database replication techniques are covered. Similar, more general, topics

are covered in Chapter 2.

4.1.1 Web Application Architecture

The structure of a web application and how it uses data dictates the applica-

tion’s temporal and relational dependencies. Numerous web architectures are

possible, including Model-View-Controller (MVC) [50], Service Oriented [79],

or the layered approach [40].

This chapter is aimed at applications using the layered approach to applica-

tion design. Three layers are typical, with the bottom layer storing state in a

RDBMS. Business logic implementing a general application actions sits above

the RDBMS. On top is the view layer which generates the HTML and uses

51

4. TENTACLE

the business logic layer to interact with the application. Each layer could be

executed on separate machines, but typically the business and view layers are

contained within the web server itself. Thus, even though a three layer archi-

tecture is used, there are only two parts: a stateless web server and a database

to store data. In this configuration the computationally intensive application

logic can be distributed over many servers.

4.1.2 Relaxing Consistency

Data dependencies in web applications must not always be strictly followed. As

detailed in Section 1.3, variations in weakly consistent policies may be allowable.

The recent NoSQL storage movement uses eventual consistency resulting in

scalability and performance gains. Rather than the typical SQL language inter-

face, the NoSQL interface uses simpler set or get methods following a key/value

structure. Due to the limited interface and lack of built-in comparison mech-

anisms, complex data queries such as the SQL’s JOIN command must be done

in the application, or use some other storage system. By relaxing temporal and

relational dependencies, as well as removing data computation facilities inside

the database, scalability and global reach can be accomplished. Unfortunately,

using a NoSQL-type system requires drastic changes to the application or a

complete rewrite [65].

This chapter explores how simple consistency relaxing modifications to a

RDBMS-backed web application can yield a more distributed system. Tentacle

exploits consistency at the database query level. As an example, consider three

read queries in an e-commerce web application:

1. Retrieve the user’s current shopping cart.

52

4.1 Background

2. Retrieve a random banner advertisement.

3. Show all available products.

For a specific application, displaying a stale banner advertisement may be ac-

ceptable, or a slightly outdated product list. Conversely, the user will quickly

notice an error in their shopping cart.

Each of the above queries can and are typically retrieved using a single SQL

query. This demonstrates an opportunity to expose consistency relaxation at

the individual SQL query level. For an in-depth discussion on how freshness

varies between applications, see the LazyBase work[23].

4.1.3 Database Replication

Due to relational dependencies in a web application’s database, scaling can be

di�cult [82]. Scalability is the ability for a system to continually increase per-

formance as computing or storage resources are added. Scaling vertically, by

using a faster machine, has an upper limit on performance based on hardware

technology. Scaling horizontally, by adding more machines, is optimal but not

always possible due to the dependencies discussed in Section 1.3.3. Horizon-

tally scaling a database is di�cult because any read query may require a JOIN

between any table, requiring all data to be stored on the same machine. Sim-

ilarly, modifications may require the entire dataset to be available and queries

serialized so temporal and relational dependencies are upheld.

Scaling RDBMS’s horizontally is a rich research area, but typically perfor-

mance, ACID properties, or relational dependencies are degraded for size. Using

database replication, additional performance can be gained without changing

the application significantly.

53

4. TENTACLE

Database replication separates read queries from write queries, and directs

each to a separate database system. Reads query a copy of the write’s database.

Many duplicate databases can exist allowing read queries to be distributed over

all. Database writes can be handled in a synchronous or asynchronous man-

ner. A synchronous system will block a modification query until all replicas

acknowledge the change, and an asynchronous will not [5]. Modification con-

flicts between separate databases are caught before a query is committed in

synchronous system whereas conflicts must be repaired after-the-fact in non-

synchronous systems. A common way to mitigate conflicts (consistency viola-

tions) in non-synchronous systems is to modify only a single database, thereby

serialized the modification queries [82]. All replica databases can then be used

for read-only queries.

When replication is used in a non-synchronous replication scheme, care must

be taken to avoid temporal dependency violations. A delay exists, called repli-

cation lag, between when a write query is performed and when a subsequent

read on a replica will reflect the change. The exact lag time depends on server

load, network conditions, or distance induced network latencies.

This chapter concentrates on database replication using MySQL, a com-

monly used database for web applications. Two general types of replication

configurations are possible in MySQL: Master/Slave and Master/Master [59].

1. Master/Slave: This scheme directs all database writes to a single mas-

ter database. Temporal dependencies are assured for all writes. Master

changes are sent to one or more slave databases by using some replication

technique [82]. Read requests can be sent to any of the slave databases,

54

4.2 Tentacle

increasing performance by distributing the read load. All slave databases

contain all data and each must be able to handle the entire write load of

the system.

2. Master/Master: Here two databases act as a master and a slave to each

other. Writes can be directed to either, and subsequently replicated to

the other. To prevent a write from being applied multiple times, a source

database identifier is sent with each replication command. Commands

containing an identical source identifier to the database’s own are not

applied or forwarded. More than two databases can be used if placed in a

ring topology. Reads can be sent to any database. Temporal dependencies

may be violated due to duplication lag. Configurations having higher lag

times will be more prone to such violations.

4.2 Tentacle

Tentacle is a database middleware client, forwarding agent, and caching system

which uses per-query consistency information. Its goal is to minimize page

latency for end users while assuring consistency requirements.

The Tentacle system lowers end-user latencies by using local data when-

ever possible. Edge datacenter nodes are placed throughout the Internet, each

datacenter containing database and web servers.

Of all datacenter nodes, one is selected to be the master with all database

writes applied to it. All other installation’s databases become slaves to this

master using MySQL Master/Slave database replication. Database reads are

directed to the local database when possible, otherwise routed to the master

database, though rarely as discussed later.

55

4. TENTACLE

Consistency requirements are conveyed by modifying the application’s query

template calls. A query template is a string which contains the majority of

the query, with important information inserted at runtime. The templates are

custom in nature to their purpose, such as retrieving a shopping cart, or buying

an item. Thus, this presents a good location to specify consistency requirements

based on the template and surrounding application logic.

To quantify the consistency requirements per query template, Tentacle uses

a time measurement in positive or zero seconds. For read queries (SELECT state-

ments) this value signifies how stale the result can be. For example, a shopping

cart query would have a value of 0, to show the current state, whereas a product

query might use 30 seconds. Thus, if a change is made to the product listing

all clients will see the modification in 30 seconds or less. Choosing a consis-

tency requirement time is arbitrary and dependent on the desired application’s

performance. Care should be taken to assure user-induced write actions follow

read-your-own-writes consistency. If consistency requirements are in doubt, a

value of 0 can be used.

Similarly, write queries (UPDATE, INSERT, and DELETE statements) are la-

beled, but signify the maximum delay time allowable until the master database

is updated. Any time greater than 0 is considered an asynchronous update

query which will not return any response code. In many cases this is possible,

such as incrementing the view count of a specific banner advertisement, or up-

dating the number of online users. In other cases, such as final order placement,

no lag can occur.

Because Tentacle aims to lower response times for diverse users, it must

avoid any possibility of slowing the application over a centralized approach.

56

4.2 Tentacle

The central master database must handle those queries which do not allow any

consistency relaxation (0 consistency time value), possibly requiring multiple

round-trips from the edge per page. A forwarding feature is used to send the

entire HTTP request to the central node for all processing in this situation.

Thus, the maximal time a page request will be returned is no greater than a

centralized approach.

Session data, originally stored in the database, exhibits no relational depen-

dencies with other data and can be removed. Storing sessions locally at the

edge allows faster access and does not hinder the application as long as the

session is consistently routed to that edge location. A local database or object

storage system such as Memcache can be used for session handling. If an HTTP

request requires forwarding to the central node, the local session information is

sent as well, with any session update returned with the response. Forwarding

code should be inserted in the application before any data is sent to the user so

that new HTTP headers may be inserted correctly.

4.2.1 Architecture

A sample database replication and query routing scheme overlaid on possible

locations are shown in Figure 4.1. Edge nodes should be placed at maximal

network distance from each other to minimize latency for the most users.

Tentacle consists of 5 components which work together to provide a dis-

tributed web application. The 5 components are listed and described below.

1. Local Session Storage: Sessions should be stored in the edge location,

if not already done so. This can be done with a local database or a Mem-

cache session system. Sessions and application data do not mix within the

57

4. TENTACLE

Slave DB

Slave DB

Slave DB
Master DB

Web Server

Web ServerWeb Server

Write Query

Write
Query

Write
Query

Web Server

Replication

Replication

Read

Read

Read

Replication

R/W

Figure 4.1: Database Replication & Query Routing

database allowing easy separation.

2. Database Replication with Local Reads: By replicating the master

database, read requests with a time larger than the slave lag time can

query locally.

3. Local Database Query Caching: To speed local reads, query/response

pairs are cached in Memcache locally with an expire time equal to the

allowed consistency time minus the slave lag time.

4. Asynchronous Writes: Write queries with consistency times larger than

the WAN latency to the master location are queued locally and periodi-

cally applied to the master database. No return status code is provided

to the application.

5. HTTP Forwarding: Queries with low (or 0 time) consistency times must

be sent directly to the master node. To prevent multiple database round-

58

4.2 Tentacle

trips to the master node, any page containing strict consistency times are

forwarded before any data is sent to the user. A list of URLs and minimal

consistency times are kept in each web server for this purpose. Updating

the list can be done by Tentacle at runtime or by an administrator.

The current version of Tentacle consists of four files tentacle.php, loop.php,

tentacle-daemon.php, and remoteaccess.php, listed in Appendix H, I, J and

K respectively. The PHP class Tentacle is defined in tentacle.php and

contains the majority of the functionality. This class is called by the web

application and preforms the HTTP forwarding and database access. The

remoteaccess.php file is used on the central HTTP servers to accept HTTP for-

warding requests and responds with the page result. The two remaining files,

loop.php and tentacle-daemon.php support background SQL update com-

mands. When Tentacle allows, SQL update queries are saved to a temporary

file(s) on the local webserver. These two files periodically check the tempo-

rary file(s) for updates and send the query to the central server’s database for

immediate application.

4.2.2 Operation

The flowchart for a single page request using Tentacle is given in Figure 4.2. A

walkthrough of the process follows.

An HTTP request enters the edge node and the forwarding list is queried for

any URL matches. If so, the stored lowest latency time value is compared with

the current replication and write queue lag times. If current system performance

can not satisfy the requirement then the HTTP request is bundled with the

current session state and sent to the central node for processing. When the

59

4. TENTACLE

HTTP
Request
Arrives

Does URL Match
Forwarding List?

Lag > Max
Consistency?

Return Data

Yes

Receive SQL
Query

Replication Lag >
Consistency?

WAN Lag >
Consistency?

Queue Write

Send Query to
Central Node

Log URL in
Forwarding List

Query in
Cache?

Read from Cache

Read from Local
DB

Store Result in
Cache

Forward Request
W/ Session Data

Save Upldated
Session Data

Central
Processing

No

Yes

No

No Query

ReadWrite

No
YesYes

No

Yes
No

Figure 4.2: HTTP Request Processing Using Tentacle

response returns, the updated session state is unbundled and saved locally,

followed by returning the page data to the user.

If system performance is better than the required consistency time, the re-

quest is handled locally, just as URL’s which did not match the forwarding

list. The application code is executed at the node and Tentacle waits for SQL

queries. Queries are separated into read and write as they arrive. Those read

queries which can be handled locally, having a consistency query time higher

than the current replication lag time, will first query the cache. If a match is

found it will be returned, otherwise it will query the local database followed by

60

4.2 Tentacle

storage within the cache. To assure correct consistency relaxation, a cache ex-

piration time is used for each item in the cache equal to the query’s consistency

time minus the current replication lag. Thus, if a cached query result is found

it must be still valid according to its allowed lag time.

A read query not able to be handled locally are sent to the central node’s

database, followed by logging of the URL and consistency time in the forwarding

list. The next time the same URL arrives the entire HTTP request will be sent

to the central node rather than su↵er possible multiple round-trips to satisfy

database requests.

Local write queries having a consistency time of zero are considered syn-

chronous and will be sent to the central database for processing. Queries having

a consistency time greater than zero but less than the current WAN latency must

also be sent to the central database. The remaining write queries are bu↵ered

locally and applied to the master database at a later time. These bu↵ered

queries are considered asynchronous and will not return any value. SQL queries

are repeatedly handled until the page is complete.

All edge nodes except for the central node preform the process outlined

above for all web requests. The central node uses Tentacle’s query caching

system only, with all remaining database requests handled by the database.

The central node must also handle forwarding requests from edge nodes.

These requests contain HTTP requests for which the edge node could not satisfy

given their consistency requirements. Session information, stored locally at the

edge nodes, must also be sent to the central node in order to it properly handle

the request. Any session changes are sent back to the edge node with the page

response. Back at the edge node, local session data is stored and the page data

61

4. TENTACLE

WANem
100ms Delay

Central Web &
Database Server
(San Francisco)

Edge Web &
Database Server
(New Zealand)

Web Client
JMeter

(New Zealand)

Figure 4.3: Evaluation Hardware Configuration

is sent to the user.

The forwarding of HTTP requests from an edge location is a common method

of accelerating dynamic web applications[113, 12, 71]. As mentioned in Section

1.2, establishing the TCP link can take one round trip. By keeping a persistent

TCP connection open to an origin server, tunneling can reduce latencies. Future

work on Tentacle will implement persistent connections.

4.3 Experimental Results

Tentacle was evaluated on a simulated Wide Area Network (WAN) environment

using a modified e-commerce web application and timed automated browsing

sessions. Simulation was done using multiple VMware virtual machines com-

municating over a simulated network. Figure 4.3 shows network topology for

the simulation.

Two server machines were emulated, each able to serve web-content via PHP,

provide a MySQL database, and handle Memcache tra�c. See Section 5.7 for

details.

Communication was delayed 100ms between the two via a WANem[45, 60]

installation which approximates the latency seen across the Pacific on Verizon’s

62

4.3 Experimental Results

network [103]. Bandwidth was unlimited. For simplicity, these are labeled as

NZ (New Zealand server node) and SF (SanFrancisco server node).

Browsing sessions were directed to the NZ host to simulate an edge serving

location, through a delayed connection to the SF host, or directly to SF to

simulate minimal network latency for comparison. The SF location served as

the central web and database location.

4.3.1 osCommerce

The popular open source e-commerce PHP application osCommerce [32] was

chosen as an example application. A business can present their sellable items

online, manage their shop, and sell to users using many online payment schemes

using this MySQL backed application. osCommerce was chosen for its mixture

of strict and loose consistency requirements. System requirements for running

osCommerce are low, only requiring PHP and a PHP supported database. os-

Commerce 2.3.1, downloaded in January 2012, was used.

The application consists of two parts, a user and admin codebase folders.

This allows easy folder-based security as well removal of administration code

from exterior facing servers if desired. User code was concentrated on in this

chapter. Modification of admin code is possible, but would have no impact on

the customer’s latency.

osCommerce’s session handling uses a database, which needed modification.

The session table is not accessed by any other module besides the session, nor

will any session require access to another session. This allows a distributed

session storage system to be used without e↵ecting the operation of the appli-

cation. The session module was modified to use a local Memcache server for all

63

4. TENTACLE

session handling.

Database access throughout the application uses functions declared in a sin-

gle file, database.php, allowing other database engines to be retrofitted easily.

Tentacle’s database querying hooks are placed here. The old query function,

tep_db_query($query), was replaced with a new function requiring a stal-

eness value, tep_db_query_stale($consistency_time,$query). The entire

codebase was then searched for references to the old function and replaced with

the new after choosing a staleness value.

To enable forwarding of requests, the Tentacle class is instantiated early

in the application before any data is sent to the client, and the doForward()

function called. This function searches the forwarding list for matches against

the current URL and preforms forwarding if necessary.

4.3.2 Application State

osCommerce is an e-commerce application with the majority of the content sup-

plied by the shop owner, such as product categories and all details of products.

Evaluation was done from an end user’s perspective, so a prefilled shop was

used. 15 categories were created each containing between 1 and 20 items. Items

contained a textual description to represent a non-trivial database load.

4.3.3 Simulated Tra�c

Tra�c emulated a typical visitor browsing categories, items, and finally checking

out. 50 users were simulated using Apache JMeter 2.6 with at most 10 simul-

taneous sessions. Each session navigated to the home page, selected a category,

and looked at an item description, followed by viewing other items, categories,

or the home page. One tenth of the items viewed were put in the shopping

64

4.3 Experimental Results

Page Proportion Page Proportion

Enter Category 38% New Account Form 1%

View Product 38% Login Page 1%

Home Page 7% Attempt Login 1%

Add to Cart 4% Checkout Shipping 1%

Check Reviews 4% Click Next 1%
Check Shopping Cart 1% Select Payment 1%

Checkout & Login 1% Confirm Order 1%

Create New Account 1%

Table 4.1: osCommerce Page Access Proportions

cart, averaging 5 purchased items. The session then checked out by creating

a new account, selecting a shipping method, supplying payment information,

and finally finalizing the order. Each session viewed 131 pages on average. The

dwell delay between pages is set to a Gaussian distribution with average of 1

second and standard deviation of 300ms. HTTP Keep-Alive was enabled to

reduce reconnection delays between the simulated browser and the webserver.

Table 4.1 shows the proportion of pages viewed per session.

4.3.4 Results

Multiple configurations were tested using the above layout, shop state, and

user load. Table 4.2 presents the aggregate results. Five configurations were

chosen. For comparison the LAN No Optimization is our baseline best-case

configuration where the user, web server, and database all exist in SF with no

introduced latency. The All WAN configuration moves the user 100ms away to

NZ with the datacenter in SF. Syncronized Writes uses an edge server in NZ

where all reads are local, but all database writes communicate with the central

database in SF 100ms away. Multiple round-trips may be introduced per page

65

4. TENTACLE

Configuration Latency (ms) Median 90% St.Dev Samples

WAN w/Tentacle 212 131 413 320 6560

Tunnel All 937 890 1051 322 6535
Sync. Writes 1732 1750 1947 476 6534

All WAN 681 670 791 97 6585
LAN No Optimization 257 222 383 277 6556

Table 4.2: Aggregate osCommerce Latency with 100ms WAN

if multiple write queries are issued. Tunnel All encapsulates all HTTP tra�c

at the edge and tunnels it to the central datacenter in SF for all processing.

Lastly WAN W/Tentacle uses an edge server in NZ, central datacenter in SF,

and uses all five features of Tentale.

The results show that even in a WAN environment Tentacle can decrease

latency over a local configuration. This is due to practically non-existant delay

for the majority of write queries and the caching of read queries. The speedup is

significant enough to o↵set the forwarding cost for some of the pages as shown.

Note the near 400ms slowdown between LAN and All WAN,when all trafic is sent

over the 100ms WAN. This highlights the ine�ciencies of TCP in short-lived

connections over high-latency links. Tunneling has the possibility of reducing

the overhead using persistent TCP connections, though our Tunnel All con-

figuration did not use persistent connections from the edge to central servers.

This may explain the slower Tunnel All configuration compared to the All WAN

where HTTP Keep-Alive was used. Adding persistent connections and optimiz-

ing the session encapsulation/decapsulation would lower the tunneled latency

for better Tunnel All and WAN w/Tentacle configurations.

Sending all query writes to the central database is the worst performing

option as every page request has at least one write. Using HTTP forwarding

66

4.3 Experimental Results

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

Home"
Page"

Enter"
Category"

View"
Product"

Check"
Reviews"

Add"to"
Cart"

Check"
Shopping"

Cart"

Checkout"
C>"Login"

Create"
New"

Account"

Fill"in"
New"

Account"
Form"

Login"
Page"

AIempt"
Login"

Checkout"
Shipping"

Click"Next" Select"
Payment"

Confirm!"

Re
sp
on

se
'T
im

e'
(m

s)
'

Average'Per3Page'Response'Times'

WAN"w/"Tentacle" Tunnel"All" Sync."Writes" All"WAN" LAN"

Figure 4.4: Average Per Page Response Times (ms)

to mitigate this write latency is unique to this work. In this application, few

of the common write queries are time sensitive, updating banner advertisement

counts or removing old sessions, allowing Tentacle to queue these and respond

to the query call much faster. Figure 4.4 shows per-page average response times.

Due to Tentacle’s superior performance for the frequently accessed Home Page,

Enter Category, View Product, and Check Review pages the aggregate av-

erage response time is lower than that of any other configuration. Many of

the other pages, including Add to Cart and the checkout procedure, are slower

with Tentacle than the user directly contacting the central datacenter due to

the session and request encapsulation.

These results show latency can be lowered for geographically diverse users

67

4. TENTACLE

for some pages in a dynamic web application by selectively relaxing consistency

constraints. Other configurations and consistency relaxation schemes are pos-

sible, discussed next.

4.4 Discussion

The five components of Tentacle listed in Section 4.2.1 describe a single solution

to lowering latency. Alternate consistency rules, di↵erent database configura-

tions, cache pre-warming, stampede mitigation, and dynamic central database

movement could be used to increase performance in specific applications. Each

application may need features enabled or disabled for optimal performance.

4.4.1 Alternate Consistency Specifications

Tentacle relaxes temporal consistency for individual query templates in the form

of a relaxation time. This requires some knowledge of the query calling pattern

in the application in order for read-your-own-writes consistency to be enforced.

Because adding an item to your cart shows the shopping cart page, all read

queries must use strict consistency, otherwise the new product will not be shown.

Had the user just navigated to the View Cart page otherwise, the request will

still be serviced by the central datacenter and su↵er the increased latency.

An alternate scheme could specify which previous update queries are re-

quired to be reflected in the local database before a local read query can be

used. In the case of the View Cart page, local data could be used, if possi-

ble, to prevent an unneeded central database query or forward. A combination

dependency and time-related consistency scheme would support this.

68

4.4 Discussion

4.4.2 Database Considerations

As described, Tentacle uses entire-database replication. If scalability and high

performance are needed, typical database sharding techniques could be used

with Tentacle [82, 40]. By moving unrelated database tables into separate

databases, write load can be split between the two increasing capacity. This

exploits relational dependencies in the database’s schema. Tentacle would need

to be modified to route queries to the correct database.

4.4.3 Cache Pre-warming

Most caches store data after the first miss. Subsequently, the cache will pro-

vide the data until it is invalidated or expires. In this case the cache can be

application-logic independent. Optimally, all read queries will be handled by the

fast and scalable caching layer. Tentacle already has knowledge of page URLs,

read queries they contain, individual query consistency values, and a database

query time for each query. If a graph of accessible pages in the application could

be provided to Tentacle, it could predict future read queries and their cost, if

not already cached. Tentacle could pre-issue read queries, filling the cache, to

minimize user latency based on past application use.

4.4.4 Stampede Mitigation

Tentacle presents a database middleware solution that should provide consistent

performance. If computationally expensive read queries exist on a heavily used

website, a possibility exists for periodic high-latency events due to the caching

layer. Cache entries, representing database read queries, will expire after a set

time derived from the query’s consistency requirement. Once expiration occurs

69

4. TENTACLE

subsequent queries will be satisfied by the database until the cache is refilled.

While the database is queried, other cache misses could occur for the same

query and issue identical database reads. The result is a deluge of identical read

queries which persists until the first cache miss query can fill the cache. Long-

running queries are more susceptible to this behavior, known in the industry as

a dog pile, thundering herd, or stampede [42]. Mitigating this behavior would

beneficial to Tentacle.

4.4.5 Pattern-Based Homing

For consistent-strict pages, encapsulation will direct the query to the central

datacenter. To minimize the average response time for all users, the central

datacenter location could be dynamically moved. Due to full replication, each

edge and central location must be able to handle the full write load of the

system. Thus, any should be able to be the central datacenter. As user load

shifts, perhaps hourly or daily, the central datacenter could shift in response to

minimize average user latencies.

4.5 Summary

Tentacle lowers response time for geographically disperse users by serving dy-

namic content locally when possible. Placing all data at edge locations is not

su�cient to reduce latency due to consistency constraints. By exploiting allowed

consistency relaxations for individual query templates, local stale data can be

used safely. Using HTTP forwarding, Tentacle is able to limit the page latency

to one round-trip time to the central datacenter or less for all page requests.

70

Chapter 5

Experimental Results Details

This chapter presents tools, technologies, and techniques used to evaluate the

contributions above. Chapters 3 and 4 provide a discussion of the contributions,

but this chapter describes in detail how they fit into a complete web-serving

system, and how the results were measured.

A working knowledge of web technologies is assumed, such as TCP/IP,

HTTP, HTML, and the client-server model of the web. Tools which simulate

web users are discussed first, followed by the serving components, and ending

with specific contribution measurement methods.

5.1 User Simulation & Response Time

Reducing end-user page latency is our goal. User behavior varies, as does their

computing resources, making realistic simulation and measurement a di�cult

task. Both contributions rely an users visiting an HTML page and clicking

a link to another page. As discussed in Section 1.2, the process of viewing a

complete page typically requires multiple resources in addition to the original

HTML. For simplification, only the page HTML is requested and the response

time of that HTTP request is measured. In our case all additional resources

were static and could be serviced using an alternative system such as a CDN.

71

5. EXPERIMENTAL RESULTS DETAILS

Latency for static content falls outside the scope of our work.

Simulating users for both contributions was done using Apache JMeter1.

By specifying a browsing sequence using this tool, any number of simultaneous

web clients can be simulated. Browsing sequences are described in Sections

3.7 and 4.3.3. Many features are supported such as sessions, page validation,

page content searching, conditional statements, and delays. JMeter monitors

per-request response times, aggregates and graphs the results, and allows saving

to an external CSV datafile. Our page latency statistics were generated by a

custom Perl script using this datafile.

JMeter was used on a separate workstation than the serving system. This

configuration assured JMeter’s overhead was not inadvertently measured, while

also including realistic network overhead in the latency measurements.

To simulate users on aWAN for Tentacle, a network delay device, WANem[45,

60], was inserted between JMeter and the serving system, as described in Sec-

tion 4.3.4. This approximated users from New Zealand browsing a site located

in San Francisco; about a 100ms round-trip time as reported on the Verizon

network in March 2012[103].

5.2 Web Server Configurations

All web content was served using minimal CentOS 5.x operating systems, con-

figured for optimal webserver performance. All packages and services not used

for web serving or administration were removed. Apache httpd 2.x responded

to HTTP requests, with PHP 5.3.x handeling all dynamic code as an Apache

module. The APC 3.1.x PHP module was installed to speed PHP by caching

1Apache JMeter - http://jmeter.apache.org/

72

5.2 Web Server Configurations

PHP bytecode for later use, leading to a 30% reduction in page generation la-

tency, as suggested by [101]. A MySQL database was accessed in php using the

php-mysql 5.3.x module.

NTP1 was used to keep server time correct, vital to merging multiple log files.

NTP’s behavior was not consistent when used in a virtualized environment due

to multi-hour time o↵sets when pausing and resuming virtual machines. The

tinker panic 0 directive was inserted into the /etc/ntp.conf file to allow

NTP to synchronize time in this configuration[105].

To simulate a web-farm for our Memcache evaluation, a set of 23 identical

Dell Poweredge 350 servers servers was used, with specifications given in Sec-

tion 3.7. Installation and configuration of all machines were automated using

PXE boot2 and a CentOS kickstart3 file, customized per machine based on its

MAC address. This allowed static IP addresses and hostnames to be assigned

with all other configurations identical. After operating system installation, a

shell script using password-less SSH was used to run commands on all servers

simultaneously. Files were pushed to all webservers via a looped rsync UNIX

command.

Of the 23 Dell servers, one was chosen as the web load-balancer. HAProxy4

1.4.18 was installed and forwarded web requests in a round-robin fashion to the

web servers. Sticky sessions were enabled, allowing sessions to be routed to

the same webserver for the duration of the session. Sticky sessions was enabled

using HTTP cookie detection in HAProxy’s configuration file.

Tentacle was evaluated using the same web serving software configuration

1http://www.ntp.org/
2http://wiki.centos.org/HowTos/PXE/PXE Setup
3http://wiki.centos.org/TipsAndTricks/KickStart
4http://haproxy.1wt.eu/

73

5. EXPERIMENTAL RESULTS DETAILS

above, but on two VMware virtual machine instances with 4GB ram and four

processing cores each. Both contained web and MySQL database servers, with

one as master and the other slave. A Dell Precision 690 with dual Xenon

processors and 12GB RAM was used as a host machine, running Fedora Core

16 and VMware Workstation 7.1.5.

5.3 Database Configuration

A fast server was used for the database, moving the typical bottleneck from

the database to the webservers. MySQL 5.1.x was used, running on an CentOS

6 server with a dual-core AMD Opteron 248 processor and 756MB RAM. A

200MB RAM disk was used to store the database’s data files to increase per-

formance as much as possible. During all trials the CPU utilization stayed low,

showing the database was not the bottleneck.

For each trial run the database was restored to an identical state. This was

done by by halting the database server daemon, replacing the current database

data files with a previous state, restarting the database daemon, and finally

running the SQL command OPTIMIZE ALL TABLES. As a positive site e↵ect, all

persistent TCP database connections from the web applications were terminated

and forced to reconnect on the next run. Without reseting the TCP connections

the per-page latency results would not have been consistent.

5.4 Memcache Performance Measurement

Section 3.4 discussed MemcacheTach’s purpose and use briefly. This section

goes into more detail about its use and implementation.

MemcacheTach’s purpose is to capture and analyse the performance of a

74

5.4 Memcache Performance Measurement

Memcache system. It consists of two parts: (1)Data capture, and (2) Data

analysis.

5.4.1 Data Capture

The Memcache_Logging PHP class (memcache-logging.php in Appendix F) is

a wrapper around a standard php memcache module. As written, it uses the

PECL Memcache PHP module rather than the Memcached module. To use this

logging class, import the class and use it like the PECL Memcache PHP module.

By default the log file is saved to /tmp/stress_validate_log.txt on the local

filesystem, changeable by using the log_file($filename) function in the class.

All Memcache commands which would modify the cache are logged. For

reliability, a log entry line is appended to the file after every command, with

a single writer mutex attached to the file-handle. Care should be taken in a

heavily parallel web serving system that a single log file mutex does not become

a bottleneck. To mitigate such a possibility, per-thread log files could be used,

or some other high performance logging service such as Ganglia1. In our case

mutex contention was not an issue.

The log file consists of one Memcache request per line, containing ten fields

each, stored as a serialized PHP array. Only commands which modify the cache

are logged. Below are descriptions of each field in order of their appearance:

1. Timestamp: Server time in tenth of seconds when response was received

from the Memcache server and log was written.

2. Session Identifier: First two characters of the hashed cookie value for

the current page.

1http://ganglia.sourceforge.net/

75

5. EXPERIMENTAL RESULTS DETAILS

3. Webserver IP Address: Dotted decimal string representation of web-

server’s IP.

4. Memcache Server IP:Dotted decimal string representation of the Mem-

cache server contacted for this request.

5. Command: Memcache command sent (=get=, set, ...).

6. Key: Key used for storage or retrieval command.

7. Data Length: Number of characters of data portion stored or retrieved.

8. Found: 0/1 if data was found, or storage succeeded.

9. Parameters: Serialized array of extra Memcache command arguments

provided.

10. Delay: Elapsed seconds for Memcache command to return.

11. Conversation ID: Five alphanumeric characters common to all Mem-

cache commands issued from a single page request.

Due to the log file’s simple textual serialized PHP format, custom analysis

programs can easily be written for the specific need. Multiple log files can

be combined by simple concatenation. If a time-ordered log is needed the Unix

sort command can be used. Each log entry line begins with identical characters,

followed by the Unix time of the event with tenths of seconds, allowing sort

to be used. An analysis script extracting the useful statistics for this work was

written and is documented next.

5.4.2 Data Analysis

The analysis.php file in Appendix G is the analysis script used in our Mem-

cache work. The script is written to read a single log file described above,

76

5.4 Memcache Performance Measurement

specified as the first script argument. The script reports the following statistics

for a given log file/run:

1. Run Time, Start, Stop: Tenth of seconds since Epoch

2. All Webserver-to-Memcache Server Network Stats: For every web-

server to Memcache server daemon pairing, average data size, average re-

sponse time, number of Memcache requests, estimated bandwidth, and

estimated latency. Bandwidth and latency based on linear regression of

data size and response time.

3. Total Message Sent/Received: Number of messages sent from each

webserver and received by each Memcache server daemon.

4. Individual Rack Statistics: Based on rack organization specified in

top of script, average Memcache response times for requests inside and

outside a rack, with variance, for each rack.

5. Aggregate Rack Statistics: Averaged intra and inter-rack statistics.

6. Conversation Statistics: Per-page Memcache statistics such as number

of pages served with Memcache requests, average number of Memcache

requests per page, and total time elapsed waiting for Memcache requests

per page.

7. Key Usage: Number of unique keys seen, key usage distribution between

all webservers.

8. ps Value: Of all Memcache keys used on the average web page, the

average proportion of session only keys. [0-1]

9. Aggregate Request Statistics: Total Memcache requests sent, average

77

5. EXPERIMENTAL RESULTS DETAILS

number of Memcache bytes sent per request, proportion of read requests

to write requests, number of bytes for read and write requests.

10. Object Storage Statistics: Number of bytes stored in cache, number

of objects, and average size object.

11. Memcache Command Usage: Number and proportion of each Mem-

cache command seen.

All results are printed to the command line with textual descriptions. If a

second command line argument is provided to the script, the computed results

in CSV form are exported to this file. See source file for column labels.

5.5 Network Utilization Measurement

The Memcache evaluation required accurate measurement of network tra�c.

This was done using a secondary Memcache-only network. The second network

interface on each server was placed into a separate subnet and connected to

servers within the same simulated rack via a small 10/100 switch. Each rack

switch was then connected to each other via a managed 10/100 switch. SNMP

was enabled in the managed switch with each port’s tra�c queried once per

minute via MRTG1 2.9.17, and logged in RRDtool2. MRTG was modified to

provide minute resolution of SNMP data rather than the default 5 minute. A

Perl script was used to query the RRD database for total per-port data transfer

based on the beginning and ending times listed in the MemcacheTach log file.

Together with the MemcacheTach report, these values were useful in measuring

the proportion of backbone Memcache tra�c to inter-rack Memcache tra�c for

1http://oss.oetiker.ch/mrtg/
2http://oss.oetiker.ch/rrdtool/

78

5.6 Memcache Evaluation Progression

each configuration.

5.6 Memcache Evaluation Progression

Each of the above tools provide some insight into the performance of a running

Memcache system. The results in Chapter 3 combine each and report on the

aggregate. This section describes the way all data was captured and processed.

Each Memcache configuration was evaluated using di↵erent application con-

figurations, di↵erent switching speeds, and repeated four times for a larger sam-

ple size. In total 120 data runs was captured: 5 architectures x 3 application

configurations x 2 switch speeds, x 4 = 120. See Section 3.7 for details of the

configurations.

The log data flow for each run is depicted in Figure 5.1. A single bash script,

RunAll.sh resets the MySQL database for each run and starts requesting pages

through JMeter. Next, JMeter issues HTTP requests to the load balancer ac-

cording to the specified run file and logs individual page data to a log file. The

load balancer routes HTTP sessions evenly over all webservers where Memca-

cheTach creates a log file on each webserver. On completion of the run, all

MemcacheTach log files are concatenated, sorted, and saved as an aggregate

log file. As the run progressed the backbone network switch was queried every

minute for per-port byte counts and saved to a database. When a run is com-

plete, the RunAll.sh script saves all logs using a specific run name, changes

a configuration file in all webservers to reflect the next run, and the process

repeats for all 120 runs.

Once all runs were complete, analyse.php is used to extract relevant run

data from the MemcacheTach logs, JMeter logs, and the network usage database,

79

5. EXPERIMENTAL RESULTS DETAILS

RunAll.sh

jMeter

MySQL
HAProxy

Load Balancer

Network
Usage

Log

M

MemcacheTach
Aggregate Log

M

jMeter Page
Log

Webservers

MemcacheTach Logs

...

Figure 5.1: Memcache Data Capture

process the data, and save the result to a single CSV file. Afterwards, MS Excel

is used to analyse this CSV file and report the final results. Figure 5.2 depicts

this process.

5.7 Tentacle Evaluation Progression

Tentacle’s performance was evaluated using page latency statistics from various

simulated WAN configurations of MediaWiki. Apache JMeter simulated users

interacting with the site, described in detail in Section 4.3.3.

Four computers were used for evaluation, three virtual and the fourth the

host system. Figure 4.3 depicts the information flow between the machines.

One minimal virtual machine (512MB RAM, single core) with dual network

cards ran the WANem[45, 60] operating system and forwarded packets between

interfaces while emulating a desired WAN performance. The other two virtual

machines both ran Apache web servers and MySQL servers with specifics in

80

5.7 Tentacle Evaluation Progression

M M

M M

M M

Network
Usage

Log

M

MemcacheTach
Aggregate Log

M

jMeter Page
Log

analyse.php

M

All Run Results (CSV)

Figure 5.2: Memcache Data Processing

Sections 5.2 and 5.3 above. All machines were placed in the same network

subnet. When a WAN delay was needed, the ARP routing tables were changed

to funnel tra�c through the WANem machine. A 100ms delay, 0ms jitter, was

applied for packets in both directions. This delay approximates a transoceanic

New Zealand to San Francisco traversal observed on the Verizon network in

March 2012[103].

Five configurations were tested, with results give in Section 4.3.4. Each

configuration changed either Tentacle features or the simulated network config-

uration. Each of the five configurations are described below.

1. WAN w/Tentacle: A user in New Zealand is simulated by directing the

JMeter tra�c to the NZ server with no delay. Communication is delayed

between the NZ and SF servers. All Tentacle features are enabled, with

the central database server residing in SF.

2. Tunnel All: The same New Zealand user is simulated, with appropriate

81

5. EXPERIMENTAL RESULTS DETAILS

delay between the NZ and SF servers. The NZ server receives all web

tra�c, but tunnels all data to SF with no other features enabled. This

measures the tunneling delay.

3. Sync. Writes: The same New Zealand user is simulated, with appropri-

ate delay between the NZ and SF servers. All Tentacle features are en-

abled, but database writes are not bu↵ered and thus the database query

call delays the page until the write returns from the distant database

server. This measures the e↵ect of write bu↵ering.

4. All WAN: A New Zealand user is simulated communicating with the

SF server over the WAN link. No Tentacle features are enabled. This

measures the long-distance TCP WAN delay.

5. LAN No Optimization: A user is simulated with no delay to the web

and central database server. This measures the best-case latency scenario.

Each of the five configurations were run three times. JMeter was configured

to output a log showing per-request information such as page requested, bytes

returned, request latency, request time, and if the request returned a successful

HTTP response (200). A Perl script was used to analyze the log file and gather

statistics on per-page response times, and overall average response times. Plots

were generated using Microsoft Excel. Results and plots are given in Sections

4.3.3 and 4.3.4.

5.8 Summary

The tools and measurement techniques described in this chapter allow repro-

duction of our contributions, or evaluation of any similar web system. Memca-

82

5.8 Summary

cheTach allows detailed Memcache statistics to be gathered and calculated for

a running Memcache system.

83

Chapter 6

Related Work

Accelerating web applications has been heavily researched in academia as well

as industry ever since the introduction of the web. This work is based on a wide

range of computing topics, many predating the Internet. This chapter starts by

addressing data-locality with respect to caching in computing, with an emphasis

on multi-processor systems. A brief overview of distributed keystores, filesys-

tems, databases, and other systems are discussed next. Database-middleware

systems are discussed next, along with databases which employ asynchronous

database writes, similar to our Tentacle system. Content delivery networks pro-

viding dynamic application support, which Tentacle can be considered as being,

are discussed last.

6.1 Caching & Distributed Computation

Data-locality, or where data is stored, has impacted CPU and computer designs

since the beginning of computing. The IBM System/360 upgrade from model

67 to 85 in the early 1970s was the first implementation to incorporate a CPU

bu↵er[27, 52, 28]. This was needed due to memory and processing occurring in

separate racks. The CPU bu↵er reduced the memory cycle by a third to one

quarter of non-bu↵ered models and increased processor performance. Typical

84

6.1 Caching & Distributed Computation

memory access times of between 10ns and 250ns were typical, fast enough for

distance-induced latency to be significant. The IBM System/360 used write-

through caching/bu↵ering. Bu↵ering data close to the cpu, in this case in the

same cabinet, rather than across the room or building, o↵ered significant speed

improvements.

When multiple processing units use a common memory, there exists multiple

caching possibilities. Smith[89] identifies four cache types in the literature: (1)

Shared Cache, (2) Broadcast Writes, (3) Software Control, and (4) Directory

Methods.

1. Shared Cache: This design, such as in the UNIVAC 1100/80 where two

CPUs share a single cache[16], is functionally equivalent to the typical

Memcache architecture where all processors (clients) operate on the same

single cache.

2. Broadcast Writes: This design keeps caches consistent by informing all

other caches of any update operation and either invalidating the data, or

removing it. This broadcast idea inspired the Snoop Memcache architec-

ture variant where all caches are kept consistent by informing all caches

of every write operation. This is typically done with a common bus archi-

tecture, but our implementation sends individual messages. The current

Snoop implementation does not allow duplication of data, but using con-

sistency methods in the caching area may allow such an extension. Extra

book-keeping information would be needed for duplication, analogous to

the dirty, presence, modified, shared, invalid, owned, exclusive, or other

consistency bits used in cache coherency protocols[67, 8, 36, 21].

85

6. RELATED WORK

3. Software Controlled: This type allows the operating-system to manage

the location of stored data in the caches to keep consistent[57]. A Mem-

cache architecture of this nature would be possible, but knowledge of the

specific usage pattern of data would be needed by the programmer and

specified to Memcache. In practice, multiple caches could serve the same

purpose, such as session storage only, or those shared by all.

4. Directory: This method uses a central location for cache state information[44,

95]. Our Dir Memcache architecture is based on a simplified version of

this idea. In our case, when a write occurs all copies of data are updated,

removing the need for additional status information in the directory. An

interesting modification of the directory scheme, suggested by Drimak et

al.[35], called broadcast search, requests data from all caches and the di-

rectory on a cache read miss. If the data is in any cache, it is retrieved

faster than waiting for the directory and then contacting main memory.

In the Memcache case such a method would always work because all data

resides somewhere in the various racks and so would return faster than a

directory lookup and subsequent retrieval. The network overhead of such

a design may be prohibitive, suggesting a random-subset search may be

beneficial.

As mentioned above, multi-cpu caching research has greatly influenced our

Memcache architectures. Ironically, the issue of distance-induced latencies in

mainframes spanning entire rooms or buildings in the 1960s and 1970s is still

relevant in modern web datacenters, which is why this work is based on the

research and lessons learned from that era.

86

6.2 Distributed Datastores

6.2 Distributed Datastores

Accessing a common data-source with multiple clients is very common in com-

puting. Many names exist to describe functionally similar storage systems.

Keystores, or key/value storage systems, store pieces of data retrievable via a

key. Similarly, filesystems store data accessible via a filename, like a key, but

support a hierarchical naming scheme. The naming scheme and meta-file data

is the only relational data stored in such systems. Databases allow more com-

plex relationships between stored data and provide methods of querying data

based on the relations. Additionally, manipulations are allowed in databases,

which process subsets of data into a more useful form. Common to all these

systems are data and how it is accessed, stored, and manipulated. Thus, these

systems are all related to this work and those which exhibit some data-locality

component are of interest.

The remainder of this section discusses datastores ordered from the least

relational, to the most, followed by other storage systems.

6.2.1 Keystores

Keystores, or storage systems which reference data though a key-value only,

contain no relational aspect other than the key/value mapping, and are the

simplest storage system related to our work. This type of storage system has

seen a recent explosion of growth, known as the NoSQL movement, due to their

ability to store large amounts of data and scale well compared to other storage

systems. Performance is gained from the lack of internal data-dependencies and

a relaxation of consistency.

Both contributions are heavily influenced by advances in this type of storage

87

6. RELATED WORK

system. Discussed below are keystore systems and papers which are similar to

our work.

Dynamo[33] is a proprietary key/value datastore developed and used by

Amazon.com to run their online web business. The goal is to assure high-

availability for data spread throughout the world. Assuring high-availability

not only applies to access to data, but how fast it can be accessed. When

serving their online web business, strict latency requirements are made and any

data access not able to meet them is not considered available. By relaxing

consistency, high-availability is achieved, similar to our own Tentacle work.

While Dynamo allows the developer to specify consistency parameters at the

database level, Tentacle extends the granularity to each operation allowing much

finer control. Dynamo does not write data to the closest storage location, as our

Memcache architectures do, but can contact the storage server which responded

fastest to the last read request. This leads to fast local reads and the possibility

for local writes. The Riak system[96, 48] duplicates many of the design decisions

from Dynamo.

The COPS[55] key/value system proposes a new version of consistency called

causal+, where not only are causal events in the same thread of execution or-

dered, but those within the same datacenter as well. COPS is designed to

operate in a multi-datacenter configuration where values are asynchronously

replicated, similar to our Tentacle system, but version numbering assures causal

consistency. Their view of consistency is convenient for programmers as causal-

ity assures correct ordering of commands in each web request call. Tentacle’s

time-based consistency view is weaker than causality+ and can such make pro-

gramming di�cult, but for the majority of datastore calls a time-based view

88

6.2 Distributed Datastores

is su�cient and provides superior performance. Future work will investigate

either an explicit causality parameter, allowing the programmer to force causal-

ity between a set of operations, or a transparent one using source-code analysis.

Unlike our Tentacle system that allows full SQL queries, COPS is purely a key/-

value system capable of only put and get calls. To port a typical SQL-backed

web application to use COPS would require a significant application rewrite, or

complete rewrite, whereas the Tentacle system would require fewer changes.

Voldemort [78, 107] is an open-source persistent key-value datastore which

handles replication and locality parameters using zones. Zones can group servers

within a rack, or servers within a datacenter such that replication occurs in

separate zones for reliability and availability. Replication is done using a chain

replication method[7, 102], like our SDR Memcache architecture. Data-locality

is exploited for read requests by accessing a local replica if possible. Writes

are based on hashing, unlike our Snoop and Dir Memcache architectures, and

thus may place data far away. Storage in this fashion is analogous to our SDR

architecture which has the advantage of no data-location overhead compared to

Snoop and Dir.

Microsoft’s AppFabric [62] provides an object caching system across many

computers using key/value lookup . Key hashing is not used to locate data,

rather, a routing table is used to locate data requiring some organized manage-

ment. Replication is supported via failover, and thus a read can not access the

closest replica. A local cache can be maintained providing fast access for future

reads. Durability can be added by configuring backup nodes to replicate data,

though failover is used, rather than allowing the closest replica to be read. Due

to the local cache, successive reads will be satisfied by the local cache, but any

89

6. RELATED WORK

write will be sent over the network.

6.2.2 Distributed Filesystems

Distributed filesystems provide a hierarchical structure for organized storage

and retrieval of data for a large number of users. Filesystems which use a

central server are not covered here, but those with a distributed, non-centralized

structure are. These systems spread data throughout the clients and therefore

allow data-locality to influence performance. Filesystems contain more data

dependencies than keystores.

The Hadoop Distributed File System [17, 18] is designed to serve distributed

applications over extremely large data sets while using commodity hardware.

High availability is attained through replication, which allows fast access by

reading from the closest replica, similar to our Memcache architectures. Replicas

are placed specifically to improve reliability, availability, and lower network

utilization. Primary data placement is dependent on a master node, which does

not take the writer’s location into account at this time. Thus, writes are not

location-aware, but reads take advantage of nearby replica placement. Network

utilization will be localized to the read replica while a write will e↵ect the central

network.

Peer-to-peer (p2p) distributed filesystems are related to our Memcache work

due to their data-locality aspects, such as Napster, Gnutella, Freenet[24] , and

CFS[30]. These decentralized systems allow locally stored data (files) to be

found and retrieved by any member participating in the system. Just like the

Memcache Snoop and Dir architectures, data is stored locally, but available

to all. The main advantage of such p2p filesystems is their e�cient file query

90

6.2 Distributed Datastores

schemes. Unlike Snoop, file-location information is not replication on all nodes,

nor is it centrally stored like Dir. Instead, these p2p systems query a subset

(typically O(logN)) of the N servers to obtain the location of the stored data.

Incorporating such a system into a new Memcache architecture would be pos-

sible, but may not be faster than the typical architecture due to the multiple

hops to locate data. Web applications with a high ps value, or installations with

high server turnover, may be a good fit for such a caching system.

6.2.3 Distributed Databases

Increasing the data dependencies further leads to databases. These systems

allow complex interdependent data to be stored, manipulated, and queried.

Database systems are typically non-distributed due to the interdependencies

within the data. Database replication, discussed in Section 4.1.3, allows a cen-

trally located database to increase read capacity by replicating the database

allowing duplicates to satisfy read queries. The Tentacle system uses database

replication. In this section we discuss related database systems which are more

distributed than the replication approach. More specifically, systems which in-

corporate dependency relaxing techniques or scalable writes (non-centralized).

The LazyBase database system[23] provides high throughput by allowing

each read query to specify how fresh the result will be, similar to our Tentacle

system. Less recent data will have lower query latency. Unlike the Tentale sys-

tem, LazyBase is designed for high-volume, low-update batch-oriented queries.

Data flows through LazyBase in a pipeline fashion, with older data at then

end. The LazyBase system is not designed for a multi-cite configuration, but

rather a high performance single-site. Their results show per-query freshness

91

6. RELATED WORK

specification can increase performance, supporting our Tentacle system.

Cassandra [11] allows the storage and manipulation of large amounts of

structured data through an eventually consistent storage policy. Stored data

can contain common traits (columns) and queried on such traits, but full rela-

tional semantics are not supported. The absence of strong internal relational

dependencies allows this system to scale to thousands of nodes. Replicas are

used for durability and accessibility. Reads can either query the closest replica,

or query all replicas and return when a quorum is reached. Likewise, writes can

return after the master location plus any number of replicas have been written

to. The master location of data is dictated by a hashing strategy with no local-

ity information. Replicas of data can follow ’Rack Unaware’, ’Rack Aware’, or

’Datacenter Aware’ policies thereby allowing fast local reads. Due to the hash-

ing master location scheme, writes may require costly distant communication.

Network utilization will be localized to the read replica while a write will e↵ect

the central network.

The TACT system[112, 111] similarly identifies per-query consistency as an

opportunity to increase database performance. Their work centers around many

geographically distributed databases with each using local reads and writes, un-

like Tentacle which centralizes writes. To keep the probability of a write conflict

low, a per-query consistency value is used (a conit) incorporating allowed nu-

merical, order, and temporal errors. The conit is a more complex specification

than the time-only consistency value in Tentacle. The advantage of TACT is

the ability to write locally and quickly read the result thereafter, increasing

performance for applications with high ps values.

92

6.3 Other Systems

6.3 Other Systems

Other systems and works which do not fit into the previous sections are discussed

here.

Time-based consistency, as used in our Tentacle work, has been investigated

in other areas besides web applications, such as in concurrent programming in

the Beehive system[83], and in distributed objects[100].

EHCACHE Terracotta [97] is a cache system for Java, containing a Big-

Memory module permitting serializable objects to be stored in memory over

many servers. Java’s garbage collection (GC) can become a bottleneck for large

in-application caching, thus a non-garbage collected self-managed cache system

is useful. BigMemory implements a key/value store using key hashing for Java

objects. A local cache can be used in a multi-layered configuration. Due to the

local cache, successive reads will be satisfied by the local cache, but any write

will be sent over the network. Our proposed Memcache architectures could

prove beneficial for this type of system.

The HOC system [4] is designed as a distributed object caching system

for Apache, specifically to enable separate Apache processes to access others’

caches. Of note is their use of local caches to speed subsequent requests and a

broadcast-like remove function. A write will distribute the object to all nodes

in the system, like the Snoop Memcache architecture, with reads subsequently

reading locally.

93

6. RELATED WORK

6.4 Database Middleware Systems

Many database middleware systems have been proposed which aim to speed

query resolution. Tentacle can be considered such a system. Database middle-

ware systems provide a database interface to an application, identical to stan-

dard RDBMS interfaces, yet provide increased performance by use of caches,

multiple databases, or some other method. Applications require no or minimal

changes to switch from a standard RDBMS to such a system.

Database middleware systems can be broken down into two types: query

caching and database replication, though many exhibit features of both [85, 86].

Query caches store the results of queries where database replication replicates

the database. Further di↵erentiation can occur by breaking query caching into

content-aware and content-blind, and database replication into full and partial

replication. Each have their benefits to application performance by increasing

scalability in some way, thereby lowering end-user latency. Not all are targeted

toward distributed deployment, though many can be used in that way. Tentacle

is a full database replication system along with a local content-blind query

cache. Middleware systems which relax temporal or relational dependencies or

can be distributed are of particular interest. Figure 6.1 breaks down the relevant

systems and their classifications.

6.4.1 DBProxy

DBProxy [6] presents an intermediate database layer exhibiting content-aware

query caching and partial data replication. This layer intercepts all SQL queries

and either services them locally or forwards them to a central database. For read

queries a local query cache is kept, as well as a database containing enough data

94

6.4 Database Middleware Systems

Query
Caching

Database
Replication

Database
Middleware

Systems

Content-
Blind

GlobeCBC

Content-
Aware
DBProxy
Ganymed

Full
Partial
DBProxy
GlobeDB
GlobeTP

Figure 6.1: Categories of Database Middleware Systems [85]

to satisfy the cached requests. As new read queries are observed, a decision is

made weather the current database state can satisfy the request. If so, the local

database is queried. If not, a request is made to the central database to return

enough data to satisfy the request. All update queries are passed to the central

database, incurring significant delays if geographically distant. To mitigate

delays for writes, Tentacle locally bu↵ers writes when possible. Changes to

the central database are pushed to all edge databases. Tentacle replaces this

system’s query analysis feature with a time-consistency value, allowing fast

routing of queries.

This scheme exploits relational dependencies by only replicating enough data

to satisfy common queries locally. In doing so it minimizes replication tra�c.

When deployed in a distributed environment this scheme would work well for

read heavy applications, but su↵er whenever a write occurs.

6.4.2 Ganymed

Ganymed [69] presents a database driver to an application which di↵erentiates

between read and write requests, but routes queries to a set of databases to

maintain master and replica databases. It can be categorized as a full data

95

6. RELATED WORK

replication strategy which is query-content aware. Unlike database replication

discussed in Section 4.1.3, Ganymed assures strict consistency by analyzing

each query and directing it to a replica with the most recent data pertinent to

the query. Relational dependencies are exploited by routing queries to specific

databases based on the query’s content and the database schema.

A distributed application would be undesirable because all queries are di-

rected through a central manager. Depending on the application, database

schema, and manager complexity, the manager could be replicated and placed

on edge nodes.

6.4.3 GlobeCBC

GlobeCBC [85] is a content-blind query caching system with relaxed consistency.

By using database query templates a developer can specify which update tem-

plates would invalidate cached read templates, thus keeping results consistent.

This exploits temporal dependencies at the query level. To allow weak con-

sistency per template, a developer can specify TTI (Time To Invalidate), or

U , the number of updates a query can ignore before being invalidated. This

allows consistency to be relaxed whenever possible, allowing the system to use

the cache as much as possible. Fine-grained invalidation is implemented so an

update template does not invalidate all cached queries for an entire table. All

write queries are sent to the database.

They report when consistency is lowered (TTI from 0 to 1 minute on all read

queries) latency drops between 30% and 200% depending on load attributed to

internal latencies. This clearly shows that relaxing consistency, when possible,

can have large benefits, supporting our work. Unfortunately they do not report

96

6.4 Database Middleware Systems

on the performance resulting from custom TTI per template.

In a distributed environment GlobeCBC will su↵er due to the synchronous

database calls on a cache miss. If replicated databases were placed at the edge

nodes, read queries would have similar performance to our proposed system.

Write queries would su↵er due to the high latency round-trip to the central

database. The Tentacle system described in Chapter 4 is based on GlobeCBC,

augmented with features to keep latencies low in a distributed environment.

6.4.4 GlobeDB

GlobeDB [84] is a partial replicating middleware database layer. To minimize

replication tra�c, local databases hold a subset of the entire database di↵er-

entiated by the table’s primary key. They note that 80% of read queries are

simple, which would result in a unique record having been found by primary

key. A replication strategy dictates what and when records are copied locally.

Queries which are not simple, or any which modify the database, are sent to

a master database and modifications pushed down to database replicas. The

strategy is similar to a multi-layer cache system. Future work with Tentacle

may incorporate such a partial database replication stratgegy.

Relational dependencies are relaxed for data in specific databases. Appro-

priate queries are then directed toward these minimal databases to alleviate

load on the central database. Consistency is not relaxed.

Due to a centralized database this system may not perform better in a

distributed environment over a non-distributed one. For pages with simple

(those satisfy-able by the local database) queries only, the scheme could work,

but if any write queries or complex read queries exist, several round-trip delays

97

6. RELATED WORK

would be incurred. Tentacle handles high write latency by bu↵ering localy when

possible.

6.4.5 GlobeTP

GlobeTP [37] is a partial replicating middleware database which takes advantage

of templated queries in typical web applications. By knowing a priori the types

of queries that will be issued, and therefore the relational dependencies, it can

break up one large database containing many tables into a set of databases.

A query router detects which table(s) are used in a query and directs it to a

suitable database. By breaking up the database into smaller pieces the write

capacity over a single database is increased. Based on query execution time,

WAN latencies, and other metrics, individual tables can be replicated further or

even replicated at edge nodes. This flexibility of duplication and locality allows

optimization of resources.

6.5 Asynchronous Database Writes

Allowing asynchronous database access relaxes temporal dependencies in an

application. Asynchronous database writes are not assured to be applied in

the actual order of queries. In some cases this may be allowable, but in others

a conflict may occur. The advantage of asynchronous database access is by

allowing an application to issue a database query and continue execution. The

systems described below all reply back to the application when the query has

completed, unlike our Tentacle system. Asynchronous database access increases

parallelism in the system thereby lowering end-user latency.

Use of a asynchronous database interface typically requires the use of a

98

6.5 Asynchronous Database Writes

callback or other event subsystem to notify the application the result of the

query is complete. No work could be found which uses asynchronous database

connections in web applications, probably due to the overhead of a callback

system. Tentacle removes the overhead of a callback system by not returning

any value.

The Adobe Flex system allows local databases to be accessed in either syn-

chronous or asynchronous modes [1]. In asynchronous mode queries are sent to

the database and the application continues. At a later time the database will no-

tify the application that the operation has completed. In our web environment

where pages are served in hundreds of milliseconds, waiting for a database reply

may slow the application. perl-mysql-async is another asynchronous database

driver which allows Perl scripts to send a query and specify a callback function

to be triggered when complete [68]. A similar Java driver exists as well [39].

Asynchronous connections to Microsoft SqlServer have also been proposed in

C# by creating new connections in threads [26]. Due to the short-lived na-

ture of serving pages in a web server the creation of threads per-request may

outweigh the benefit. PostgreSQL contains Application Programming Inter-

face (API) functions to interact asynchronously, though only one query can be

running at a time [64, 70]. To obtain parallelism multiple connections must

be made. Also, the caller will block until Postgres acknowledges the request,

incurring distance latencies.

Using asynchronous database access can also speed multiple queries by send-

ing many in parallel [10]. This method allows an application to issue a list of

database queries to execute. Rather than using a single database connection and

preforming them serially, this scheme creates multiple connections and issues

99

6. RELATED WORK

all queries at once. In a WAN environment, where the client and database are

separated by a significant distance, this technique can remove multiple round-

trips. The Tentacle system uses a similar technique by bundling multiple queries

together to be executed on the central database. Since write queries are only

allowed, no return value is sent to the application.

6.6 Content Delivery Networks

Content delivery networks, as discussed in Section 1.2, provide distributed web

serving capabilities throughout the world[43, 73, 104, 87]. Static or streaming

content can currently be served by these services. This section discusses ad-

vances in CDN technology to add dynamic generation of content at their edge

locations. Such services would allow non-distributed websites to be deployed

worldwide, much like the goal of Tentacle.

When the web application is solely read-only, such as the case when web

pages are generated from a database and no user-interaction can a↵ect it, world-

wide replication is straightforward[88]. The DUP system[22] builds a depen-

dency graph between generated pages and data in a database. Thus, when the

database is changed, the appropriate pages can be regenerated and cached until

the next update is detected. In this manner the entire web application can be

distributed and only database updates must be propagated. Further research

has investigated the tradeo↵ between precomputing each page on a database

change, or generation on-demand[49]. While individual page caching is not a

feature of Tentacle, it could be used to serve read-only content at the edges and

forward all interactive content to a central location by setting the consistency

time to zero for all insert or update database calls. Database query caching

100

6.6 Content Delivery Networks

would also speed page construction.

The vMatrix system[9] proposes encapsulating web server instances inside

virtual machines and distributing them throughout the world. The vMatrix

system then provides a virtual private network to all running virtual machines so

communication over great distances is transparent, though still high in latency.

Applications providing static or seldom changed content work well, but frequent

communication with a central database slow this system down. Performance will

be analogous to the sync. wites Tentacle configuration in Section 4.3.4. Many

of the current cloud computing services such as Amazon EC2 and Microsoft

Azure provide near identical features.

Rather than encapsulate an entire server, the system outlined by Rabinovich

et al.[74] replicates CGI handlers over many webservers. Each CGI handler is

capable of completely processing a single HTTP request, no other support soft-

ware is available. This design allows fast scale-up and down of applications as

only CGI files need to be changed, rather than an entire operating system. In

practice this technique would work for dynamic content generation in a CDN

environment, but high-latency database connections would negate the speed

gain for most complex applications. Tentacle is able to reuse database connec-

tions between HTTP requests, which would not be possible in a mobile CGI

environment.

Akamai Technologies has a similar feature to the previous Rabinovich sys-

tem called EdgeComputing which allows a customer to deploy applications to

edge nodes[31]. Applications can be Java (J2EE) or Microsoft .NET applica-

tions, with future work to bring C, PHP, and Perl support. Only small pieces of

dynamic information can be stored at the edge, with session information most

101

6. RELATED WORK

suitable. Large non-changing data can be deployed bundled with the applica-

tion. Thus, splitting of an application is neccessary to isolate stand-alone parts

and those which require dynamic database access. Similar drawbacks to the

Rabinovich system apply, with local session storage a convenient feature.

A similar system to Tentacle’s forwarding feature is ActiveCache[20]. This

system uses a worldwide collection of intelligent proxy caches, capable of exe-

cuting small java applets on each cache hit. A proxy cache miss will request

the web content from a central server which will respond with the content and

a small java applet. Future proxy cache hits will execute this applet and either

modify the returned page, or preform some other action. The proxy is able to

selectively reply with a cached version, or forward the request to the central

server, just like our Tentacle system. ActiveCache can’t be used for a complete

database-backed web application as remote database access would negate all

advantages, as shown in our Sync. Writes Tentacle configuration in Section

4.3.4.

A new business area for dynamic web serving are products o↵ering dynamic

site acceleration[77, 3]. Rather than generating dynamic content at the edge,

as some of the above works and Tentacle does, dynamic site acceleration pro-

vides faster transport of content to an origin server. As mentioned in Section

1.2, establishing the TCP link can take one round trip. These services speed

client access by redirecting users to an edge location where the request is com-

pressed and tunneled over an already-connected TCP link to the origin server.

This removes the initial full-distance round trip to set up the TCP link. Ten-

tacle employs compression on tunneled data and future work will investigate

persistent connections.

102

6.7 Summary

6.7 Summary

Tentacle and our proposed Memcache architectures use techniques and advances

in computing from a wide range of computing, not just from the web area.

Problems observed in mainframe systems due to distance latencies in the 1960’s

and 1970’s are still problematic in today’s web serving datacenter, with many

past solutions applicable today. Tentacle is able to provide low latency service

for geographically distant users by combining many web technologies into a

simple database middleware and caching system.

103

Chapter 7

Conclusion & Future Work

The staggering growth of the Internet has transformed our society. Communica-

tion has become near-instantaneous, ideas can be shared easily between people

all over the world, and now the barrier for international business has been low-

ered. As the number of users have grown, the physical reach of the Internet

has also grown. Despite all our technological advances in communication, we

are still bound and must adapt to physical limits. Providing fast responses to

web requests in an environment where users are geographically distributed is

investigated.

This chapter summarizes the findings in this work. Section 7.1 discusses the

conclusions that can be drawn, Section 7.2 reviews the supporting contributions,

and Section 7.3 suggests future directions for research in this area.

7.1 Conclusions

We have shown that non-trivial distance-induced latencies exist both in a dat-

acenter and on the Internet. Reducing latency in these situations has been

addressed by academia and industry, with this work o↵ering a new perspective.

Data within a dynamic web application is constantly modified and must obey

temporal and relational dependencies, but not all data or queries of such data

104

7.2 Summary of Contributions

must follow these dependencies all the time.

Identifying locations within a web application where dependency relaxation

can occur allows flexibility in data caching and storage location. Locating data

close to where it can be used most e↵ectively, due to the flexibility of storage,

lowers end-user latencies and reduces overall network utilization.

7.2 Summary of Contributions

Supporting our thesis are the following two contributions:

1. By recognizing usage patters in Memcache requests using MemcacheTach,

alternate locality-aware storage policies can be used to decrease cache la-

tency and lower network utilization. A model is developed to predict

cache performance using a specific application’s usage profile under vari-

ous configurations. Experimental data supports the developed model and

alternate Memcache storage policies.

2. The design and implementation of Tentacle, a database middleware sys-

tem using application provided consistency constraints to quickly provide

an application with database access. When fast database access is not

possible, the HTTP request is forwarded to a location capable of a fast

response. Tentacle allows an application using a single SQL database to

be deployed worldwide using edge nodes placed close to the users, while

conforming to consistency constraints.

These contributions show that exploiting temporal and relational depen-

dencies allow location-aware storage to be used, lowering end user latencies,

reducing network utilization, all while obeying consistency requirements.

105

7. CONCLUSION & FUTURE WORK

7.3 Future Work

The steady geographical growth of the Internet and the insatiable need for low-

latency web interactions by users will drive academic and industry research

in this area. New computational theories, storage technologies, programming

styles, and businesses will undoubtedly emerge to satisfy the need. The perfor-

mance of computers will only increase, while physical laws limiting communi-

cation will always be the same. Developing distributed systems able to quickly

communicate with distributed users is therefore necessary to continue the ad-

vancement of the Internet.

Discussed below are possible research directions based on our work.

7.3.1 Performance-Aware Caching

Chapter 3 used relational dependencies and cache usage behavior to place data

close to where it is used, thereby reducing latency and network utilization.

Multiple schemes were discussed, each with unique performance characteristics.

Rather than apply a single scheme to a cache system, a dynamic approach

could be taken to optimize the cache configuration during runtime to maximize

performance. Per-data configurations could be used to best optimize the system.

7.3.2 Rich Application-Datastore Interactions

The recent popularity of NoSQL storage systems has shown that one-size-fit-all

storage systems are not always the best solution. Application specific perfor-

mance has driven NoSQL’s popularity with their myriad features, configura-

tions, and architectures. Each type of storage system represents a set of fea-

tures which are provided by an implementation following physical and logical

106

7.3 Future Work

constraints. Physical laws, such as the speed of light, force this wide array of

storage systems.

Each application requires specific data storage requirements. An ACID com-

pliant datastore allows applications to be written with predictable results. As

shown in Chapter 4, allowing the developer to provide consistency relaxation

can improve performance. The more information the storage system can obtain

about how the data will be used, what constraints can be relaxed, and the ac-

cess patterns of clients, the better a storage system can optimize itself for best

performance. Data storage systems should be developed which can use these

and other parameters to increase performance while balancing constraints.

107

Appendix A

Memcache Latency Formula

Where bw
m

= 2⇥size

message

bw⇥1024⇤1024/8/1000

bw
o

= size

message

+size

object

bw⇥1024⇤1024/8/1000

SDC SDS SDR
Set l2 + bw

o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

l3 + bw
o

Add hit l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

2⇥ l3 + bw
o

Add miss l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

2⇥ l3 + bw
o

Replace hit l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

2⇥ l3 + bw
o

Replace miss l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

2⇥ l3 + bw
o

CAS hit match l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

2⇥ l3 + bw
o

CAS hit no l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

l3 + bw
o

CAS miss l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

l3 + bw
o

Delete hit l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

k ⇥ l3 + bw
m

Delete miss l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

k ⇥ l3 + bw
m

Inc hit l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

k ⇥ l3 + bw
m

Inc miss l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

l3 + bw
m

Dec hit l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

k ⇥ l3 + bw
m

Dec miss l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

l3 + bw
m

Flush l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

l3 + bw
m

Get hit l2 + bw
o

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
o

k

r

⇥ l
local

+ r�k

r

⇥ l3+
bw

o

Get miss l2 + bw
m

1
r

⇥ l
local

+ r�1
r

⇥ l3 + bw
m

k ⇥ l3 + bw
m

108

Snoop Dir
Set l3 + bw

o

2⇥ l2 + l3 + bw
o

Add hit l
local

+ bw
o

l2 + bw
o

Add miss l
local

+ l3 + bw
o

l2 + l
local

+ bw
o

Replace hit l
local

+ ps ⇥ l
local

+ (1 � ps) ⇥
l3 + bw

o

l2+ps⇥l
local

+(1�ps)⇥l3+bw
o

Replace miss l
local

+ bw
o

l2 + bw
o

CAS hit match l
local

+ ps ⇥ l
local

+ (1 � ps) ⇥
l3 + bw

o

2⇥ l2 + l3 + bw
o

CAS hit no l
local

+ ps ⇥ l
local

+ (1 � ps) ⇥
l3 + bw

o

l2 + bw
o

CAS miss l
local

+ bw
o

l2 + bw
o

Delete hit l3 + bw
m

2⇥ l2+ps⇥ l
local

+(1�ps)l3+
bw

m

Delete miss l3 + bw
m

l2 + bw
m

Inc hit l
local

+ ps ⇥ l
local

+ (1 � ps) ⇥
l3 + bw

m

ps⇥l
local

+(1�ps)(l2+l3)+bw
m

Inc miss l
local

+ bw
m

l2 + bw
m

Dec hit l3 + bw
m

ps⇥l
local

+(1�ps)(l2+l3)+bw
m

Dec miss l
local

+ bw
m

l
local

+ l2 + bw
m

Flush l3 + bw
m

l3 + bw
m

Get hit ps⇥ l
local

+ (1� ps)l3 + bw
m

ps⇥l
local

+(1�ps)(l2+l3)+bw
o

Get miss l
local

+ bw
o

l
local

+ l2 + bw
m

109

Appendix B

SDR: Mem dup.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

// Wrapper c l a s s to PECL memcache , p r o v i d e s d u p l i c a t i o n wi th no l o c a l i t y
// advantage (y e t) .
// We use t h e f i n d S e r v e r f u n c t i o n o f t h e PECL Memcache c l i e n t to d e t e c t t h e
// s t o r a g e s e r v e r . Thus , t o d u p l i c a t e data we append data to t h e key
// u n t i l a d i f f e r e n t s e r v e r i s chosen . I f your d u p l i c a t i o n va l u e i s e qua l
// to or g r e a t e r than the number o f s e r v e r s we ’ l l j u s t s t o r e on a l l .
// A GET w i l l choose randomly from the d u p l i c a t e d key s u n t i l a l l r e t u rn
// f a l s e , thus , a read miss w i l l query your d u p l i c a t i o n
// l e v e l number o f s e r v e r s u n t i l i t f a i l s . Cons ider l i m i t i n g ? Thus t h i s
// i s i s l i k e RAID 1 .
// NOTE: Due to a read p o s s i b l y t a k i n g a l ong t ime (t imeou t x d u p l i c a t i o n) ,
// con s i d e r r educ ing t h e t imeou t .
c l a s s Memcache Dup {

// c on s t r u c t o r f u n c i t o n
f unc t i on c on s t r u c t () {

$th i s�>num dups = 2 ;
$th i s�>num servers = 0 ;
$th i s�>mem = new MemcachePool () ;
// $ t h i s �>mem = new Memcache () ;
// echo ’Dup ’ ;

}
f unc t i on d e s t r u c t () {

unset ($th i s�>mem) ;
}
f unc t i on setDups ($num){

$th i s�>num dups = $num ;
}
f unc t i on getDups () {

re turn $th i s�>num dups ;
}
f unc t i on setCompressThreshold ($val){

re turn $th i s�>mem�>setCompressThreshold ($val) ;
}

/⇤⇤/
f unc t i on getKeys(&$key , $ s e t = 0){

// Returns an array o f key s to s t o r e (or g e t) based on the
// d u p l i c a t i o n f a c t o r and # o f s e r v e r s .
// F i r s t in r e tu rned array shou l d be in l o c a l rack

110

// NOTE: f i n d S e r v e r r e t u rn s i p : port , so t h i s w i l l NOT garun t ee
// d u p l i c a t e s on d i f f e r e n t machines !
$ s l i s t = array (0 => $th i s�>mem�>f i ndSe rve r ($key)) ;
$ r e t = array (0 => $key) ;
$append = 0 ;
while (count ($ s l i s t) < $th i s�>num dups && count ($ s l i s t) < $th i s�>num servers){

$append++;
$new key = $key . ’ # ’ . $append ;
$s = $th i s�>mem�>f i ndSe rve r ($new key) ;
i f (! in array ($s , $ s l i s t ,TRUE)){

$ s l i s t [] = $s ;
$ r e t [] = $new key ;

}
}
// Sor t in i n c r e a s i n g order , then r o t a t e so nex t l a r g e s t i p i s f i r s t .
// Assuming your IP ’ s are g i v en in order th rough a l l racks ,
// nex t l a r g e s t memcache s e r v e r IP may be in same rack
// NOT ELEGANT!
$re t2 = array () ;
$sv = explode (’ . ’ ,$ SERVER[’ S E R V E R _ A D D R ’]) ;
a r r ay mu l t i s o r t ($ s l i s t , $ r e t) ;
$m = explode (’ . ’ , $ s l i s t [0]) ;
$m = explode (’ : ’ ,$m [3]) ;
$ i = 0 ;
while ($sv [3] > $m[0] && $ i < 50){

$s = array shift ($ s l i s t) ;
array push ($ s l i s t , $s) ;
$s = array shift ($ r e t) ;
array push ($ret , $s) ;
$m = explode (’ . ’ , $ s l i s t [0]) ;
$m = explode (’ : ’ ,$m [3]) ;
$ i++;

}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on addServer ($host , $ t cp por t = 11211 , $udp port = 0 , $ p e r s i s t e n t = true ,
$weight = 1 , $timeout = 1 , $ r e t r y i n t e r v a l = 15 , $ s ta tu s = true , $rack = �1){
// Add a s e r v e r . Rack doesn ’ t mat ter . Future r e l e a s e s w i l l use !
$th i s�>num servers++;
$ re t = $th i s�>mem�>addServer ($host , $tcp port , $udp port , $p e r s i s t en t , $weight ,

$timeout , $ r e t r y i n t e r v a l) ;
r e turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on connect ($host , $ t cp por t = 11211 , $udp port = 0 , $ p e r s i s t e n t = true ,
$weight = 1 , $timeout = 1 , $ r e t r y i n t e r v a l = 15 , $rack = �1){
re turn $th i s�>mem�>connect ($host , $tcp port , $udp port , $p e r s i s t en t , $weight ,

$timeout , $ r e t r y i n t e r v a l) ;
}

/⇤⇤/
f unc t i on add(&$key ,&$value , $ f l a g = 0 , $exp i r e = 0){

// Add item wi th key
// Return t r u e i f ANY c a l l r e t u rn s true , and w i l l s e t f a i l e d adds
// v i a s e t so t h ey a l l match
// TODO: l o o k a t u se s f o r add and de c i d e i f t h i s i s t h e b e s t p o l i c y !
$re t = FALSE;
$ r epa i r = array () ;
foreach ($th i s�>getKeys ($key) as $k){

i f ($th i s�>mem�>add ($k , $value , $ f l ag , $exp i r e) === TRUE){
$re t = TRUE;

} else {
$ r epa i r [] = $k ;

}
}
i f ($ r e t && count ($ r epa i r) > 0){

foreach ($ r epa i r as $k){
$th i s�>mem�>s e t ($k , $value , $ f l ag , $exp i r e) ;

}
}
re turn $ re t ;
// WHOA! Need to d ea l w i t h $key b e e i n g an array a l r e a d y !

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on delete ($key , $timeout = 0){
// De l e t e data w i th key .
$keys = $th i s�>getKeys ($key) ;
re turn $th i s�>mem�>delete ($keys , $timeout) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on f lush () {
// f l u s h
re turn $th i s�>mem�>f lush () ;

}

111

B. SDR: MEM DUP.PHP

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on get (&$key , &$ f l a g s = 0 , &$cas = ’ ’){

// Randomly p i c k a key to r e t r i e v e , and keep p i c k i n g i f i t f a i l s
foreach ($th i s�>getKeys ($key) as $k){

$re t = $th i s�>mem�>get ($k) ;
i f ($ r e t !== FALSE){

re turn $ re t ;
}

}
re turn FALSE;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on r ep l a c e ($key , $value , $ f l a g = 0 , $exp i r e = 0){
// Rep lace shou l d r e t u rn f a l s e i f t h e i tem doesn ’ t a l r e a d y e x i s t .
// Return f a l s e i f a l l r e t u rn f a l s e
$re t = FALSE;
$ r epa i r = array () ;
foreach ($th i s�>getKeys ($key) as $k){

i f ($th i s�>mem�>r ep l a c e ($k , $value , $ f l ag , $exp i r e) === TRUE){
$re t = TRUE;

} else {// i f any succeded , s e t t h e broken ones to match
$ r epa i r [] = $k ;

}
}
i f ($ r e t == TRUE && count ($ r epa i r) > 0){

foreach ($ r epa i r as $k){
$th i s�>mem�>s e t ($k , $value , $ f l ag , $exp i r e) ;

}
}
re turn $ re t ;
$keys = $th i s�>getKeys ($key) ;
re turn $th i s�>mem�>r ep l a c e (array combine ($keys , ar ray f i l l (0 , count ($keys) , $value

)) , $ f l ag , $exp i r e) ;
}

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on decrement ($key , $amt = 1){ // TODO: d ea l w i t h d e f v a l and exp t ime ! ! ! !

// Decrement
// Wi l l r e t u rn decremented va l u e i f any r e t u rn a va l u e (and a l l same) ,
// o t h e rw i s e f a l s e
// Those which r e t u rn f a l s e (does not e x i s t) , w i l l be s e t w i th t h e
// va l u e
$re t = FALSE;

$ r epa i r = array () ;
foreach ($th i s�>getKeys ($key) as $k){

$val = $th i s�>mem�>decrement ($k , $amt) ;
i f ($ r e t == FALSE && $val !== FALSE){ // F i r s t t ime around

$re t = $val ;
} else i f ($ r e t !== FALSE && $val !== FALSE && $re t != $val){

// Got someth ing e a r l i e r , and d i f f e r e n t now , f i x
$ r epa i r [] = $k ;

}
}
i f ($ r e t !== FALSE && count ($ r epa i r) > 0){

foreach ($ r epa i r as $k){
$th i s�>mem�>s e t ($k , $ r e t) ;

}
}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on increment(&$key , $amt = 1){
// Increment
// Wi l l r e t u rn incremented va l u e i f a l l are equa l , o t h e rw i s e f a l s e
$re t = FALSE;
$ r epa i r = array () ;
foreach ($th i s�>getKeys ($key) as $k){

$val = $th i s�>mem�>increment ($k , $amt) ;
i f ($ r e t == FALSE && $val !== FALSE){ // F i r s t t ime around

$re t = $val ;
} else i f ($ r e t !== FALSE && $val !== FALSE && $re t != $val){

// Got someth ing e a r l i e r , and d i f f e r e n t now , f i x
$ r epa i r [] = $k ;

}
}
i f ($ r e t !== FALSE && count ($ r epa i r) > 0){

foreach ($ r epa i r as $k){
$th i s�>mem�>s e t ($k , $ r e t) ;

}
}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on s e t (&$key ,&$value , $ f l a g = 0 , $exp i r e = 0){
// Se t f o r a l l k ey s

112

// Can use s e tMu l t i !
$keys = $th i s�>getKeys ($key , 1) ;
$ r e t = $th i s�>mem�>s e t (array combine ($keys , ar ray f i l l (0 , count ($keys) , $value)) ,

nu l l , $ f l ag , $exp i r e) ;
r e turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on ge tS ta t s ($type , $s lab id , $ l im i t = 100){
re turn $th i s�>mem�>ge tS ta t s ($type , $s lab id , $ l im ig) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on f i ndSe rve r ($key){
re turn $th i s�>mem�>f i ndSe rve r ($key) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on setLocalRack ($rack){
// Dummy f un c t i o n to ease t e s t i n g o f o t h e r c o n f i g s

}
}

?>

113

Appendix C

Mem RackAware.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

// This c l a s s d e c l a r e s common f u n c t i o n a l i t y f o r many o f t h e rack�aware memcache c l i e n t s
.

c l a s s Memcache RackAware{
// c on s t r u c t o r f u n c t i o n
f unc t i on rackConstruct ($opt ions = 0){

$th i s�>racks = array () ; // Where we ’ l l s t o r e each memcache in s t ance , one per
rack

$th i s�>l o c a l = �1; // The l o c a l rack number
$th i s�>opt ions = $opt ions ;

}
f unc t i on d e s t r u c t () {

// Ca l l d e s t r u c t on a l l memcache i n s t a n c e s
foreach ($th i s�>racks as $k=>&$r){

// use s unse t
unset ($th i s�>racks [$k]) ;

}
}
f unc t i on addServer ($host , $ t cp por t = 11211 , $udp port = 0 , $ p e r s i s t e n t = true ,

$weight = 1 , $timeout = 1 , $ r e t r y i n t e r v a l = 15 , $ s ta tu s = true , $rack = �1){
//PECL Memcache

// f un c t i o n addServer ($hos t , $por t , $we i g h t = 1 , $ rack = �1){ //PECL Memcached
// Add a memcache s e r v e r to use . There are numerous ways to
// d i f f e r e n t i a t e which ’ rack ’ a s e r v e r s hou l d be added too , t h e
// e a s i e s t b e i n g a parameter , rack .
// To make t h e i n t e r f a c e c o n s i s t e n t w i th o t h e r imp lementa t ions , we
// o p t i o n a l l y d i f f e r e n t i a t e v i a modulo t h e l a s t o c t e t o f t h e s e r v e r
// addre s s p l u s t h e po r t .
// The l o c a l rack i s t h e f i r s t added , u n l e s s e x p l i c i t l y s p e c i f i e d
// wi th se tLoca lRack
// Host i s a s t r i n g , so conve r t l a s t c h a r a c t e r s to i n t e g e r
// (must be in d o t t e d addre s s form) .
i f ($rack == �1){

$parts = explode (’ . ’ , $host) ;
$rack = ($parts [3] + $tcp por t) % 50 ;

}
i f (count ($th i s�>racks) == 0 && $th i s�>l o c a l == �1){

// f i r s t add i t i on , save as l o c a l !
$th i s�>l o c a l = $rack ;

}

114

i f (! i s set ($th i s�>racks [$rack])){
// rack poo l not s e t up yet , s t a r t !
// $ t h i s �>ra c k s [$ rack] = new Memcached ;

// Required by Memcache Dir (Mem dir . php) & Memcache Dup
// (Mem dup . php) f o r append and getServerByKey

// $ t h i s �>ra c k s [$ rack] = new Memcache ;
// OK f o r Memcache Snoop (Memcache snoop . php)
$th i s�>racks [$rack] = new MemcachePool () ;

}
// Add to t h a t rack poo l
$re t = $th i s�>racks [$rack]�>addServer ($host , $tcp port , $udp port , $p e r s i s t en t ,

$weight , $timeout , $ r e t r y i n t e r v a l) ;
r e turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on setLocalRack ($rack){

$th i s�>l o c a l = $rack ;
}

}
?>

115

Appendix D

Snoop: Mem snoop.php

<?php
/⇤ a
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

// Wrapper c l a s s to memcache , p r o v i d e s snoop ing based cache l o c a l i t y u s ing
// no t e s d i s t r i b u t e d to a l l o t h e r memcache c l u s t e r s . No data redundancy !
// Due to t h i s b e i n g in PHP, we can ’ t i s s u e s imu l t aneous r e q u e s t s to a l l
// rac k s a t once . Thus , we ’ l l j u s t have to d e a l w i t h t h e slowdown u n t i l a
// C imp lementa t ion i s done .
i n c lude once (’ M e m _ R a c k A w a r e . php ’) ;
c l a s s Memcache Snoop extends Memcache RackAware{

// c on s t r u c t o r f u n c t i o n
f unc t i on c on s t r u c t () {

// A note i s s t o r e d under t h e a pp r o p r i a t e key , w i th data
// ’< s e c r e t><rack id > ’ , where rack i d i s where to f i n d t h e
// a c t u a l da ta .
$th i s�>s e c r e t = ’ S ! ’ ; // Shou ld be complex enough to p r e v en t

// c o l l i s i o n s w i th a c u t a l da ta .
$th i s�>rackConstruct () ; // c on s t r u c t o r f o r RackAware ,

// p r o v i d e s $ t h i s �> l o c a l which i s t h e rack number t h i s
// machine shou l d use , and $ t h i s �>ra c k s which
// i s an array o f Memcache i n s t a n c e s indexed by rack number .
// So $ t h i s �>ra c k s [$ t h i s �> l o c a l] would be t h e c l o s e s t
// memcache i n s t an c e .

// echo ’ Snoop ’ ;
}
// addServer p rov i d ed by Memcache RackAware

/⇤⇤/
f unc t i on add ($key , $value , $ f l a g = 0 , $exp i r e = 0){

// Add item wi th key
// Add note to a l l o t h e r ra c k s
$return = $th i s�>racks [$ th i s�>l o c a l]�>add ($key , $value , $ f l ag , $exp i r e) ;
i f (! $return){ re turn fa l se ;} // Fa i l i f da ta or note a l r e a d y t h e r e .
foreach ($th i s�>racks as $k => &$r){

i f ($k != $th i s�>l o c a l){ // Don ’ t o v e rw r i t e a c t u a l da ta !
$r�>s e t ($key , $th i s�>s e c r e t . $ th i s�>l o c a l , $ f l ag , $exp i r e) ;

// We do a s e t j u s t t o be sure we don ’ t f a i l somewhere e l s e .
}

}
re turn true ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on connect ($host , $port , $timeout = 1){

116

re turn s e l f : : addServer ($host , $port ,TRUE, 1 , $timeout) ;
}

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on delete ($key , $timeout = 0){

// De l e t e data w i th key . We ’ l l on l y r e t u rn f a i l u r e i f l o c a l f a i l e d
foreach ($th i s�>racks as $k => &$r){

i f ($k != $th i s�>l o c a l){
$r�>delete ($key , $timeout) ;

}
}
re turn $th i s�>racks [$ th i s�>l o c a l]�>delete ($key , $timeout) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on f lush () {
// f l u s h a l l r a c k s !

foreach ($th i s�>racks as &$r){
$r�>f lush () ;

}
}

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on get ($key , $ f l a g s = ’ ’){

// Get l o c a l , and i f no te found go g e t a c t u a l .
$re t = $th i s�>racks [$ th i s�>l o c a l]�>get ($key , $ f l a g s) ;
$ l en = strlen ($th i s�>s e c r e t) ;
i f ($ r e t != FALSE && i s s t r ing ($ r e t) && strlen ($ r e t) > $ len && substr ($ret , 0 ,

strlen ($th i s�>s e c r e t)) == $th i s�>s e c r e t){
$re t = $th i s�>racks [substr ($ret , $ l en)]�>get ($key , $ f l a g s) ;
i f ($ r e t === FALSE){

// Data not where i t s hou l d be ! remove a l l no t e s !
foreach ($th i s�>racks as $k => &$r){

$r�>delete ($key) ;
}

}
}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on r ep l a c e ($key , $value , $ f l a g s = ’ ’ , $ exp i r e = 0){
// Rep lace shou l d r e t u rn f a l s e i f t h e i tem doesn ’ t a l r e a d y e x i s t .
// But , so t h a t we don ’ t e r r o r to e a r l y (new rack b e in g b rough t up) ,
// we ’ l l on l y e r r o r i f t h e l o c a l copy doesn ’ t e x i s t
// and use s e t s o t h e rw i s e
$return = $th i s�>racks [$ th i s�>l o c a l]�> r ep l a c e ($key , $value , $ f l a g s , $exp i r e) ;
i f (! $return){ re turn fa l se ;}
// un f o r t u n a t l y we must update t h e e x p i r e t imes on a l l no t e s
foreach ($th i s�>racks as $k => &$r){

i f ($k != $th i s�>l o c a l){ // Don ’ t update tw i c e !
$r�>s e t ($key , $th i s�>s e c r e t . $ th i s�>l o c a l , $ f l a g s , $exp i r e) ;

}
}
re turn true ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on decrement ($key , $amt = 1){
// Decrement wherever i t i s , i f l o c a l re�s e t a l l no t e s
// Return va l u e shou l d be r e s u l t a f t e r decrement , bu t p o s s i b i l i t y
// e x i s t s f o r i n c o n s i s t e n t r e s u l t .
$re t = $th i s�>racks [$ th i s�>l o c a l]�>get ($key) ;
$ l en = strlen ($th i s�>s e c r e t) ;
i f ($ r e t != FALSE && i s s t r ing ($ r e t) && strlen ($ r e t) > $ len && substr ($ret , 0 ,

strlen ($th i s�>s e c r e t)) == $th i s�>s e c r e t){
// i t s somewhere e l s e ! decrement t h a t !
$re t = $th i s�>racks [substr ($ret , $ l en)]�>decrement ($key , $ f l a g s) ;
i f ($ r e t === FALSE){

// Data not where i t s hou l d be ! remove a l l no t e s !
foreach ($th i s�>racks as $k => &$r){

$r�>delete ($key) ;
}

}
} else i f ($ r e t != FALSE){

// must be l o c a l , t r y to decrement
$re t = $th i s�>racks [$ th i s�>l o c a l]�>decrement ($key , $amt) ;
$ f l a g s = 0 ;
$exp i r e = 0 ; // PGT FIX
// Touch no t e s to premote in LRU
foreach ($th i s�>racks as $k => &$r){

i f ($k != $th i s�>l o c a l){
$r�>s e t ($key , $th i s�>s e c r e t . $ th i s�>l o c a l , $ f l a g s , $exp i r e) ;

}
}

}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

117

D. SNOOP: MEM SNOOP.PHP

f unc t i on increment ($key , $amt = 1){
// Increment on a l l r a c k s
// Return va l u e shou l d be r e s u l t a f t e r increment , bu t p o s s i b i l i t y
// e x i s t s f o r i n c o n s i s t e n t r e s u l t .
// Here we r e t u rn th e l o c a l va lue , though we cou l d a l s o r e t u rn
// f a l s e i f ANY re tu rned a non�c o n s i s t e n t v a l u e .
$re t = $th i s�>racks [$ th i s�>l o c a l]�>get ($key) ;
$ l en = strlen ($th i s�>s e c r e t) ;
i f ($ r e t != FALSE && i s s t r ing ($ r e t) && strlen ($ r e t) > $ len && substr ($ret , 0 ,

strlen ($th i s�>s e c r e t)) == $th i s�>s e c r e t){
// i t s somewhere e l s e ! decrement t h a t !
$re t = $th i s�>racks [substr ($ret , $ l en)]�> increment ($key , $ f l a g s) ;
i f ($ r e t === FALSE){

// Data not where i t s hou l d be ! remove a l l no t e s !
foreach ($th i s�>racks as $k => &$r){

$r�>delete ($key) ;
}

}
} else i f ($ r e t != FALSE){

// must be l o c a l , t r y to decrement
$re t = $th i s�>racks [$ th i s�>l o c a l]�> increment ($key , $amt) ;
$ f l a g s = 0 ;
$exp i r e = 0 ; // PGT FIX
// Touch no t e s to premote in LRU
foreach ($th i s�>racks as $k => &$r){

i f ($k != $th i s�>l o c a l){
$r�>s e t ($key , $th i s�>s e c r e t . $ th i s�>l o c a l , $ f l a g s , $exp i r e) ;

}
}

}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on s e t ($key ,&$value , $ f l a g = 0 , $exp i r e = 0){
// Se t data on l o c a l , and note on a l l o t h e r s
$return = $th i s�>racks [$ th i s�>l o c a l]�> s e t ($key , $value , $ f l ag , $exp i r e) ;
i f ($return == FALSE){ re turn FALSE;}
foreach ($th i s�>racks as $k => $r){

i f ($k != $th i s�>l o c a l){ // Don ’ t update tw i c e !
$th i s�>racks [$k]�> s e t ($key , $th i s�>s e c r e t . $ th i s�>l o c a l , $ f l ag , $exp i r e) ;

}
}
re turn true ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on setCompressThreshold ($ l im i t){
// Se t l i m i t in a l l r a c k s
foreach ($th i s�>racks as &$r){

$r�>setCompressThreshold ($ l im i t) ;
}

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on ge tS ta t s ($type , $s lab id , $ l im i t = 100){
re turn $th i s�>racks [$ th i s�>l o c a l]�>ge tS ta t s ($type , $s lab id , $ l im ig) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on f i ndSe rve r ($key){
re turn $th i s�>racks [$ th i s�>l o c a l]�> f i ndSe rve r ($key) ;

}
}
?>

118

Appendix E

Dir: Mem dir.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

// Wrapper c l a s s to memcache , p r o v i d e s d i r e c t o r y based cache l o c a l i t y u s ing
// a c e n t r a l i z e d memcache c l u s t e r f o r note s t o r a g e which keeps t r a c k o f where
// a l l a c t u a l da ta i s s t o r e d or r e p l i c a t e d . This c e n t r a l i z e d c l u s t e r i s
// s p e c i f i e d w i th rack 0 , and the Loca l rack can ’ t be 0 ! Hard coded i s a
// r e p l i c a t i o n
// va l u e so l o c a l c o p i e s don ’ t t a k e over e v e r y i n g . This makes d e l e t i o n a
// l i t t l e e a s i e r and a l s o a l l ow s c l i e n t s to choose t h e ’ c l o s e s t ’ l o c a l copy
// to use .
// The f i r s t l i s t e d c l u s t e r i s where t h e t r u t h i s , so i f any e r r o r occurs ,
// r e p l a c e t h e v a l u e from t h e r e .
// Due to t h i s b e i n g in PHP, we can ’ t i s s u e s imu l t aneous r e q u e s t s to a l l
// rac k s a t once (c r o s s p o o l s) . Thus , we ’ l l j u s t have to d e a l w i t h t h e
// slowdown u n t i l a C imp lementa t ion i s done .
// Compression i s turned OFF f o r c e n t r a l i z e d note s t o r a g e so append works
// as d e s i r e d .
// For atomic c e n t r a l i z e d note update we need append , t hu s
// we need PECL Memcache > 3 . 0 . 0 .
// TODO: Think about what e x p i r e t ime to use on l o c a l copy .
// Actua l e x p i r e v a l u e not a v a i l a b l e , maybe s t o r e in note ?
i n c lude once (’ M e m _ R a c k A w a r e . php ’) ;
c l a s s Memcache Dir extends Memcache RackAware{

// c on s t r u c t o r f u n c t i o n
f unc t i on c on s t r u c t () {

$th i s�>dupLimit = 2 ;
// A note i s o f t h e form <rack>,<rack > , . . . ,< rack> up to dupLimit .
$th i s�>rackConstruct () ;
// c on s t r u c t o r f o r RackAware , p r o v i d e s $ t h i s �> l o c a l which i s t h e rack
// number t h i s machine shou l d use , and $ t h i s �>ra c k s which
// i s an array o f Memcache i n s t a n c e s indexed by rack number .
// So $ t h i s �>ra c k s [$ t h i s �> l o c a l] would be t h e c l o s e s t memcache
// i n s t an c e .

// echo ”Dir\n ” ;
}
// addServer p rov i d ed by Memcache RackAware

/⇤⇤/
f unc t i on add ($key , $value , $ f l a g s = 0 , $exp i r e = 0){

// Add item wi th key
// F i r s t check to see i f i t s in l o c a l by do ing an append o f ’ ’ .
// This w i l l r e t u rn t r u e i f i t e x i s t s (and won ’ t touch i t , or

119

E. DIR: MEM DIR.PHP

// change e x p i r e)
// or f a l s e i f i t doesn ’ t e x i s t .
i f ($th i s�>racks [$ th i s�>l o c a l]�>append ($key , ’ ’) === TRUE){

re turn fa l se ; // e x i s t s in l o c a l cache , so must e x i s t in
// c e n t r a l i z e d c l u s t e r as w e l l

}
// now add note to c e n t r a l i z e d , r e t u rn f a l s e i f i t f a i l s (s t o r e d e l s ewhe r e)
i f (! $ th i s�>racks [0]�>add ($key , $th i s�>l o c a l , $ f l a g s , $exp i r e)){

// Jus t s t o r e t h i s rack number , r e p l i c a t e d rack s w i l l use comma
re turn fa l se ; // e x i s t s in c e n t r a l i z e d c l u s t e r , so r e t u rn f a l s e

}
// Now we ’ ve go t to put t h e data in l o c a l , so use a s e t to be sure
$th i s�>racks [$ th i s�>l o c a l]�> s e t ($key , $value , $ f l a g s , $exp i r e) ;
r e turn true ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on connect ($host , $port , $timeout = 1){
re turn s e l f : : addServer ($host , $port ,TRUE, 1 , $timeout) ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on delete ($key , $timeout = 0){
// De l e t e data w i th key . We ’ l l on l y r e t u rn f a i l u r e i f
// c e n t r a l i z e d f a i l e d
// Get d u p l i c a t i o n i n f o
$dup = $th i s�>racks [0]�> get ($key) ;
i f ($dup === FALSE){

re turn fa l se ; // doesn ’ t e x i s t s in c e n t r a l i z e d c l u s t e r ,
// so r e t u rn f a l s e

}
// De l e t e c e n t r a l i z e d and d u p l i c a t e s

$th i s�>racks [0]�>delete ($key , $timeout) ;
foreach (explode (’ , ’ , $dup) as $d){

$th i s�>racks [$d]�>delete ($key , $timeout) ;
}
re turn TRUE;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on f lush () {
// f l u s h a l l r a c k s !

foreach ($th i s�>racks as $r){
$r�>f lush () ;

}
}

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
f unc t i on get ($key , &$ f l a g s = 0 , &$cas = ’ ’){

// Va l i d a t e a l l t h e s e f l a g s and cas s t u f f works
// Get l o c a l , o t h e rw i s e g e t note and g e t i t
$re t = $th i s�>racks [$ th i s�>l o c a l]�>get ($key , $ f l a g s , $cas) ;
i f ($ r e t !== FALSE){

re turn $ re t ;
}
// go g e t note
$note = $th i s�>racks [0]�> get ($key) ;
i f ($note === FALSE){

re turn FALSE;
}
$rep = explode (’ , ’ , $note) ;
$order = range (0 , count ($rep) � 1) ;
// here we cou l d op t im i z e by choo s ing a c l o s e copy
shuff le ($order) ;
$succ = 0 ;
foreach ($order as $o){

$re t = $th i s�>racks [$rep [$o]]�> get ($key , $ f l a g s , $cas) ;
i f ($ r e t !== FALSE){$succ = 1 ; break ;}

}
i f ($succ == 0){ re turn FALSE;}
// move l o c a l ?
i f (count ($rep) < $th i s�>dupLimit){

$th i s�>racks [0]�>append ($key , ’ , ’ . $ th i s�>l o c a l) ;
$ th i s�>racks [$ th i s�>l o c a l]�> s e t ($key , $ r e t) ; // never e x p i r e

}
re turn $ re t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on r ep l a c e ($key , $value , $ f l a g = 0 , $exp i r e = 0){
// Rep lace shou l d r e t u rn f a l s e i f t h e i tem doesn ’ t a l r e a d y e x i s t .
// So check to see i f a note e x i s t s on the c en t r a l , and i f so j u s t
// do a s e t so i t a lways works
i f ($th i s�>racks [0]�> get ($key) !== FALSE){

re turn $th i s�>s e t ($key , $value , $ f l ag , $exp i r e) ;
}
re turn fa l se ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

120

f unc t i on decrement ($key , $amt = 1 , $exptime = 0){
// F i r s t g e t note , i f i t e x i s t s do a decrement on a l l , and i f t h e
// o t h e r s don ’ t match t h e f i r s t , s e t them to match
// Opt iona l y we cou l d remove a l l dups and l e t g e t s re�d i s t r i b u t e
$ f l a g s = 0 ;
$note = $th i s�>racks [0]�> get ($key , $ f l a g s) ;
i f ($note === FALSE){

re turn FALSE;
}
$rep = explode (’ , ’ , $note) ;
$ c o r r e c t = $th i s�>racks [$rep [0]]�> decr ($key , $amt , $exptime) ;
foreach ($rep as $r){

i f ($r =! $rep [0]) {
$n = $th i s�>racks [$r]�>decr ($key , $amt , $exptime) ;
i f ($n =! $ co r r e c t){

$th i s�>racks [$r]�> s e t ($key , $cor rec t , $exptime) ;
}

}
}
re turn $ co r r e c t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on increment ($key , $amt = 1 , $exptime = 0){
// F i r s t g e t note , i f i t e x i s t s do a increment on a l l , and i f t h e
// o t h e r s don ’ t match t h e f i r s t , s e t them to match
// Opt iona l y we cou l d remove a l l dups and l e t g e t s re�d i s t r i b u t e
$ f l a g s = 0 ;
$note = $th i s�>racks [0]�> get ($key , $ f l a g s) ;
i f ($note === FALSE){

re turn FALSE;
}
$rep = explode (’ , ’ , $note) ;
$ c o r r e c t = $th i s�>racks [$rep [0]]�> i n c r ($key , $amt , $exptime) ;
foreach ($rep as $r){

i f ($r =! $rep [0]) {
$n = $th i s�>racks [$r]�> i n c r ($key , $amt , $exptime) ;
i f ($n =! $ co r r e c t){

$th i s�>racks [$r]�> s e t ($key , $cor rec t , $exptime) ;
}

}
}
re turn $ co r r e c t ;

}
/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

f unc t i on s e t ($key , $value , $ f l a g s = 0 , $exp i r e = 0){
// a Se t c l e a r s out d u p l i c a t e s !
// we must g e t t h e note b e f o r e o v e rw r i t i n g i t so to d e l e t e
$note = $th i s�>racks [0]�> get ($key) ;
i f ($note !== FALSE){

$rep = explode (’ , ’ , $note) ;
foreach ($rep as $r){

$th i s�>racks [$r]�>delete ($key) ;
}

}
// now add note to c e n t r a l i z e d
i f (! $ th i s�>racks [0]�> s e t ($key , $th i s�>l o c a l , $ f l a g s , $exp i r e)){

// Jus t s t o r e t h i s rack number , r e p l i c a t e d rac k s w i l l use comma
re turn FALSE;

}
// Now we ’ ve go t to put t h e data in l o c a l
i f (! $ th i s�>racks [$ th i s�>l o c a l]�> s e t ($key , $value , $ f l ag s , $exp i r e)){

// hm, l o c a l f a i l e d , so remove c e n t r a l no te
$th i s�>racks [0]�>delete ($key) ;
re turn FALSE;

}
//we ’ l l r e t u rn f a l s e i f any r e t u rned f a l s e , though you won ’ t know
// which rack f a i l e d .
re turn TRUE;

}
f unc t i on f i ndSe rve r ($key){

re turn $th i s�>racks [$ th i s�>l o c a l]�> f i ndSe rve r ($key) ;
}

}
?>

121

Appendix F

MemcacheTach:
memcache-logging.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

// Wrapper c l a s s to PECL memcache , which l o g s a l l memcache commands
error reporting (E ALL) ;
c l a s s Memcache Logging extends Memcache{

// c on s t r u c t o r f u n c i t o n
f unc t i on c on s t r u c t () {

$th i s�>log = ’ ’ ;
$ th i s�>unique = rand () ;
$ th i s�>s av e l o g = ’ / tmp / s t r e s s _ v a l i d a t e _ l o g . txt ’ ;
$ th i s�>s e r v e r s = array () ;
$ th i s�>counter = 0 ;

}
f unc t i on d e s t r u c t () {

$th i s�>s av e l o g () ;
}
f unc t i on s av e l o g () {

$fp = fopen ($th i s�>save log , ’ a ’) ;
f lock ($fp , LOCK EX) ;
fw r i t e ($fp , $th i s�>log) ; // P la in t e x t ou tpu t . Cons ider compress ing
// f o r space . Compressing each l i n e i s n ’ t ve ry e f f i c i e n t .
f lock ($fp , LOCK UN) ;
fc lose ($fp) ;
$ th i s�>log = ’ ’ ;

}
f unc t i on log ($cmd , $key , $out len , $found , $params , $delay){

$th i s�>counter++;
$cook ie = var export ($ COOKIE , true) ;
// 1/10 second accuracy f o r t ime
i f ($key !== ’ ’){ $de s t s r v = parent : : f i ndSe rve r ($key) ;} else{ $de s t s r v=’ all ’ ;}
l i s t ($usec , $sec) = explode (" " , microtime ()) ;
$time = $sec ⇤ 10 + round($usec ⇤ 10) ;
$data = ser ia l i z e (array ($time , substr (md5($cook ie) , 0 , 2) , i s set ($ SERVER[’

S E R V E R _ A D D R ’]) ?$ SERVER[’ S E R V E R _ A D D R ’] : ’ 0 . 0 . 0 . 0 ’ , $de s t s rv , $cmd , $key ,
$out len , $found , $params , $delay , substr (md5($ SERVER[" R E Q U E S T _ T I M E "] .
$ SERVER[’ S E R V E R _ A D D R ’] . $ SERVER[" R E M O T E _ A D D R "]) , 0 , 5))) ;

$ th i s�>log .= $data . " \ n " ;

122

}
f unc t i on l o g f i l e ($ log){

i f ($ log){
$th i s�>s av e l o g = $log ;

}
re turn $th i s�>s av e l o g ;

}
f unc t i on add(&$key ,&$value , $ f l a g s = 0 , $exp i r e = 0){

$now = microtime (true) ;
$ r e s u l t = parent : : add ($key , $value , $ f l a g s , $exp i r e) ;
s e l f : : log (’ add ’ , $key , s e l f : : getNet length ($value) , $ r e su l t , ser ia l i z e (array (

$ f l ag s , $exp i r e)) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on delete(&$key , $exp i r e = 0){// TODO: Handle array

$now = microtime (true) ;
$data = parent : : delete ($key , $exp i r e) ;
s e l f : : log (’ d e l e t e ’ , $key , 0 , $data , ser ia l i z e (array ($exp i r e)) ,microtime (true)�$now)

;
re turn $data ;

}
f unc t i on f lush () { // We shou l d r e a l l y f i n d out how many memcache s e r v e r s

// t h e r e are to p r e d i c t t o t a l network b y t e s s en t
$now = microtime (true) ;
$return = parent : : f lush () ;
s e l f : : log (’ f l u s h ’ , ’ ’ , 0 , ’ ’ , ser ia l i z e (array ()) ,microtime (true)�$now) ;
re turn $return ;

}
f unc t i on get (&$key ,& $ f l a g s = nul l ,& $cas = nu l l){

i f (is array ($key)){ // mu l t i g e t � we save e v e r y t h i n g as one entry ,
// w i th o v e r a l l t ime recorded

$succ = array () ; // the key s g e t saved as i nd e x e s to t h e
// d e s t i n a t i o n s e r v e r

$ l engths = array () ;
$dest = array () ;
$now = microtime (true) ;
$data = parent : : get ($key , $ f l a g s , $cas) ;
$ i = 0 ;
foreach ($data as $k => $v){

$key2 [$ i] = $k ;
i f ($v === FALSE){$succ [$k] = FALSE;
} else{$succ [$ i] = TRUE;}
$ l engths [$ i] = s e l f : : getNet length ($v) ;
$ i++;

}
s e l f : : log (’ m u l t i g e t ’ , ser ia l i z e ($key2) , ser ia l i z e ($ l engths) , ser ia l i z e ($succ)

,0 ,microtime (true)�$now) ;
} else { // s i n g l e g e t

$now = microtime (true) ;
$data = parent : : get ($key , $ f l a g s , $cas) ;
s e l f : : log (’ get ’ , $key , s e l f : : getNet length ($data) , ! ($data === FALSE) , ser ia l i z e

(array ($ f l a g s , $cas)) ,microtime (true)�$now) ;
}
re turn $data ;

}
f unc t i on r ep l a c e (&$key , &$value , $ f l a g s = 0 , $exp i r e = 0){

$now = microtime (true) ;
$ r e s u l t = parent : : r ep l a c e ($key , $value , $ f l a g s , $exp i r e) ;
s e l f : : log (’ r e p l a c e ’ , $key , s e l f : : getNet length ($value) , $ r e su l t , ser ia l i z e (array (

$ f l ag s , $exp i r e)) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on decrement(&$key , $amt = 1){ // TODO: Handle array

$now = microtime (true) ;
$ r e s u l t = parent : : decrement ($key , $amt) ;
s e l f : : log (’ d e c r ’ , $key , s e l f : : getNet length ($amt) + s e l f : : getNet length ($ r e s u l t) ,

$ r e su l t , ser ia l i z e (array ()) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on increment(&$key , $amt = 1){ // TODO: Handle array

$now = microtime (true) ;
$ r e s u l t = parent : : increment ($key , $amt) ;
s e l f : : log (’ i n c r ’ , $key , s e l f : : getNet length ($amt) + s e l f : : getNet length ($ r e s u l t) ,

$ r e su l t , ser ia l i z e (array ()) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on s e t (&$key ,&$value , $ f l a g s = 0 , $exp i r e = 0){

$now = microtime (true) ;
$ r e s u l t = parent : : s e t ($key , $value , $ f l a g s , $exp i r e) ;
i f ($ r e s u l t == FALSE){ trigger error (" Set f a i l on $ k e y ") ; } ;
s e l f : : log (’ set ’ , $key , s e l f : : getNet length ($value) , $ r e su l t , ser ia l i z e (array ($ f l a g s

, $exp i r e)) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

123

F. MEMCACHETACH: MEMCACHE-LOGGING.PHP

}
f unc t i on append(&$key ,&$value , $ f l a g s = 0 , $exp i r e = 0){

$now = microtime (true) ;
$ r e s u l t = parent : : append ($key , $value , $ f l a g s , $exp i r e) ;
s e l f : : log (’ a p p e n d ’ , $key , s e l f : : getNet length ($value) , $ r e su l t , ser ia l i z e (array (

$ f l ag s , $exp i r e)) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on prepend(&$key ,&$value , $ f l a g s = 0 , $exp i r e = 0){

$now = microtime (true) ;
$ r e s u l t = parent : : prepend ($key , $value , $ f l a g s , $exp i r e) ;
s e l f : : log (’ p r e p e n d ’ , $key , s e l f : : getNet length ($value) , $ r e su l t , ser ia l i z e (array (

$ f l ag s , $exp i r e)) ,microtime (true)�$now) ;
re turn $ r e s u l t ;

}
f unc t i on getNet length (&$value){

// r e t u rn s t h e number o f b y t e s which shou l d be put on the wire f o r
// t h i s o b j e c t
i f (i s s tr ing ($value)){

re turn strlen ($value) ;
} else i f (i s in t ($value)){

re turn strlen (strval ($value)) + 2 ; // f o r f l a g s
} else i f (i s f l o a t ($value)){

re turn strlen (sprintf (’ % . 1 4 g ’ , $value)) + 3 ; // f o r f l a g s
} else i f (i s bool ($value)){

re turn 1 ; // 0 or 1
} else {

re turn strlen (ser ia l i z e ($value)) ;
}

}
}

?>

124

Appendix G

MemcacheTach: analyse.php

#!/ usr / b in /php
<?php
/⇤

Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

⇤/
/⇤

ana l y s e . php � Command� l i n e PHP s c r i p t t o ana l y s e MemcacheTACH l o g ou tpu t .
Usage (t y p i c a l) : php ana l y s e . php l o g . t x t � Analyze l o g . t x t

(CSV expo r t) : php ana l y s e . php l o g . t x t out . c s v � Analyze l o g . t x t and e xpo r t
r e s u l t (append) to out . c s v

For c o r r e c t rack a n a l y s i s be sure to f i l l in be low .
⇤/
// Rack c o n f i g f o r rack l a t e n c y a n a l y s i s
/⇤ $ rack i s an a s s o c i a t i v e array which maps an IP addre s s to a rack number . The IP can be

o f t h e web s e r ve r or t h e
memcache s e r v e r . For memcache be sure to i n c l u d e t h e po r t number as w e l l . The rack

number can be any i n t e g e r , bu t
memcache s e r v e r s use a n e g a t i v e o f t h e rack in which i t b e l o n g s .

⇤/
$pre = ’ 1 2 8 . 2 3 0 . 1 0 9 . ’ ; // He l p f u l p r e f i x v a l u e s
$pre2 = ’ 1 9 2 . 1 6 8 . 1 . ’ ;

$rack = array () ;
$rack [$pre . 49] = 1 ;
$rack [$pre . 50] = 1 ;
$rack [$pre . 51] = 1 ;
$rack [$pre . 52] = 1 ;
$rack [$pre2 . 52 . ’ : 1 1 2 1 1 ’] = �1;
$rack [$pre . 70] = 2 ;
$rack [$pre . 53] = 2 ;
$rack [$pre . 54] = 2 ;
$rack [$pre . 55] = 2 ;
$rack [$pre . 56] = 2 ;
$rack [$pre2 . 56 . ’ : 1 1 2 1 1 ’] = �2;
$rack [$pre . 69] = 3 ;
$rack [$pre . 57] = 3 ;
$rack [$pre . 58] = 3 ;
$rack [$pre . 59] = 3 ;
$rack [$pre . 60] = 3 ;
$rack [$pre2 . 60 . ’ : 1 1 2 1 1 ’] = �3;
$rack [$pre . 61] = 4 ;
$rack [$pre . 62] = 4 ;
$rack [$pre . 63] = 4 ;
$rack [$pre . 64] = 4 ;

125

G. MEMCACHETACH: ANALYSE.PHP

$rack [$pre2 . 64 . ’ : 1 1 2 1 1 ’] = �4;
$rack [$pre . 65] = 5 ;
$rack [$pre . 66] = 5 ;
$rack [$pre . 67] = 5 ;
$rack [$pre . 68] = 5 ;
$rack [$pre2 . 68 . ’ : 1 1 2 1 1 ’] = �5;

$rack [$pre2 . 71 . ’ : 1 1 2 1 1 ’] = �6;

// ⇤⇤⇤
i f (i s set ($argv [1])){

$ l o g f i l e = $argv [1] ;
echo " A n a l y z i n g $ l o g _ f i l e . . . \ n \ n " ;

} else{
echo " E n t e r log f i l e to a n a l y z e as c o m m a n d l i n e a r g u e m e n t .\ n " ;
die ;

}
i f (i s set ($argv [2])){

$ c s v f i l e = $argv [2] ;
echo " U s i n g $ c s v _ f i l e for row o u t p u t . " ;

} else{
$ c s v f i l e = FALSE;

}
$ s im f i l e = FALSE;

$wnf = FALSE; // Warn when an item was found by memcache , bu t not seen p r e v i o u s l y in our
l o g f i l e

// $ f u d g e s k i p = array (0 ,421177 , 421267) ; // F i l l w i t h l i n e number to s k i p
$ fudge sk ip = array () ;

// Network l a t e n c y / bandwidth c a l c u l a t i o n

// $ s t a t s = array (’ h i t s l o g ’ => 0 , ’ h i t s s im ’ => 0 , ’ m i s s l o g ’ => 0 , ’ miss s im ’ => 0 , ’
t o t a l t i m e l o g ’ => 0 , ’ t o t a l t im e s im ’ => 0 , ’ s e t s ’ => 0 , ’ g e t s ’ => 0 , ’ s t ’ => 0) ;

$tspan = array (’ s t a r t ’ => 0 , ’ end ’ => 0 , ’ l a s t ’ => 0) ;
$p l o t s = array () ; // h i t r e a l , h i t s im , h i t d i f f , m i s s r e a l , miss s im , m i s s d i f ,

h t t p num reque s t s , h t t p l a t e n c y , h t t p
$conv = array () ;
$xmean = array () ;
$ymean = array () ;
$changecnt = 0 ;
$num samples = array () ;
$num samples mult iget = 0 ; // mu l t i g e t f o r now does not keep t r a c k o f t h e s e r v e r t h e

r e q u e s t s go to , so sum s e p a r a t e l y
$sum top = array () ;
$sum bottom = array () ;
$sum objects = 0 ;
$num ob j ec t t rans f e r = 0 ;
$ i = 0 ;
$mymiss = 0 ;
$mysetmiss = 0 ;
$ s i ng l e count = 0 ;
$wr i t ebyte s = 0 ;
$readbytes = 0 ;
$ l a s t n e t = 0 ;

$ s i z e = array () ; // s t o r e how l a r g e o b j e c t s are f o r use in l a t e r g e t s
/⇤ b1 = [(x i � xb) (y i � yb)] / [(x i � xb) 2]
b1 = r ⇤ (sy / sx)
b0 = yb � b1 ⇤ xb
t h r e e pa s s e s : 1 : means , 2 : r e g r e s s i on , 3 : Re s i dua l c a l c u l a t i o n
a l s o do h i t and miss c a l c u l a t i o n

⇤/
$fh = fopen ($ l o g f i l e , ’ r ’) ; // assume f i l e i s in t ime order ! You can ca t each l o g f i l e

t o g e t h e r then do s o r t
while ($ l i n e = f g e t s ($fh)){

$ i++;
i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;

$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i - " , strlen ($ l i n e) , " ! ! ! \ n \ n $ d a t a \

n \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
// i f ($msvo == ’ ’) { echo ”Time : $ t ime \nCookie : $ c oo k i e \nFrom Serve r : $ s v \nMemcache Serve r

: $msvo\nCommand : $cmd\nKey : $key \nLength : $ o u t l e n \nFound? $ found\n Params:��\
nDelay : $d e l a y \nConv : $ c on v e r s a t i o n \n”;}

// Make sure t ime goes forward !
i f ($tspan [’ s t a r t ’] == 0 | | $tspan [’ s t a r t ’] > $time){$tspan [’ s t a r t ’] = $time ;}
// i f ($ t s pan [’ end ’] < $ t ime && $ s v != ’ 1 28 . 2 30 . 1 09 . 6 9 ’) { $ t s pan [’ end ’] = $ t ime ;} //

PGT 69 removal ! ! ! ! !
i f ($tspan [’ l a s t ’] > $time){echo " Log e r r o r ! Not s o r t e d ! C o n t i n u i n g a n y w a y .\ n " ; }
$tspan [’ l a s t ’] = $time ;
// con v e r s a t i o n t r a c k i n g
i f (! i s set ($conv [$conver sa t i on])){$conv [$conver sa t i on] = array (’ n u m _ a c t i o n s ’ => 0 , ’

t o t _ t i m e ’ => 0 , ’ e n d _ t i m e ’ => 0 , ’ h i t s ’ => 0 , ’ m i s s e s ’ => 0 , ’ t o t _ s i m _ t i m e ’ => 0) ;}
$conv [$conver sa t i on] [’ n u m _ a c t i o n s ’]++;
$conv [$conver sa t i on] [’ t o t _ t i m e ’] += $delay ;
$conv [$conver sa t i on] [’ e n d _ t i m e ’] = $time ; // l a s t w i l l s t i c k

//

126

// $ o u t l e n needs to be more comp l i c a t ed so to measure t h e e n t i r e l e n g t h on network
// a l so , a g e t o f a found key needs to t r a n s f e r data , so keep t r a c k
$msv = $sv . ’ - > ’ . $msvo ; // t r a c k each web se r ve r to each memcache s e r v e r
i f (! i s set ($xmean [$msv])){$xmean [$msv] = 0 ; $ymean [$msv] = 0 ; $num samples [$msv] = 0 ;

$sum top [$msv] = 0 ; $sum bottom [$msv] = 0 ; } ; // i n i t i a l i z e to z e ro
$ l a s t n e t = $xmean [$msv] ; // f o r read / w r i t e b y t e coun t ing
i f ($cmd == ’ set ’){

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) +13 + 8 ; //8 i s r e sponse
$ s i z e [$key] = $out l en ;
$sum objects += $out l en ;
$num ob j ec t t rans f e r += 1 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}
i f ($found == FALSE){

echo " Set bad : $ k e y $ m y s e t m i s s $sv $ m s v o Len : $ o u t _ l e n \ n " ;
$mysetmiss++;

} else i f ($out l en == 0){
echo " Z e r o l e n g t h !!\ n " ;

}
} else i f ($cmd == ’ add ’){

i f ($found){
$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 21 ;

} else{
$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 25 ;

}
$ s i z e [$key] = $out l en ;
$sum objects += $out l en ;
$num ob j ec t t rans f e r += 1 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ r e p l a c e ’){
i f ($found){

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 25 ;
} else{

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 29 ;
}
$ s i z e [$key] = $out l en ;
$sum objects += $out l en ;
$num ob j ec t t rans f e r += 1 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ a p p e n d ’){
i f ($found){

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 24 ;
} else{

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 28 ;
}
$ s i z e [$key] = +$out l en ;
// $ s um ob j e c t s += $ o u t l e n ;
// $num o b j e c t t r a n s f e r += 1 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ p r e p e n d ’){
i f ($found){

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 25 ;
} else{

$xmean [$msv] += $out l en + strlen ($key) + strlen ($out l en) + 29 ;
}
$ s i z e [$key] += $out l en ;
// $ s um ob j e c t s += $ o u t l e n ;
// $num o b j e c t t r a n s f e r += 1 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ get ’){
i f ($found && i s set ($ s i z e [$key])){

$xmean [$msv] += strlen ($key) + $ s i z e [$key] + strlen ($key) + strlen ($ s i z e [$key]) +
30 ; // i n c l u d e s 4 d i g i t cas

$sum objects += $ s i z e [$key] ;
$num ob j ec t t rans f e r += 1 ;

} else i f (i s set ($ s i z e [$key])){
i f ($found && $wnf){echo " $ k e y not d e f i n e d - get \ n " ;}
$xmean [$msv] += strlen ($key) + 12 ;

} else{
i f ($found && $wnf){echo " $ k e y not d e f i n e d - get \ n " ;}
$xmean [$msv] += strlen ($key) + 12 ;

}
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ m u l t i g e t ’){
$keys = un s e r i a l i z e ($key) ;
$ l engths = un s e r i a l i z e ($out l en) ;
$founds = un s e r i a l i z e ($found) ;
$num ob j ec t t rans f e r += 1 ;
foreach ($keys as $ i => $k){

i f ($founds [$ i] && i s set ($ s i z e [$k])){

127

G. MEMCACHETACH: ANALYSE.PHP

$xmean [$msv] += strlen ($ s i z e [$k]) + $ s i z e [$k] + $ l engths [$ i] ;
$sum objects += $ s i z e [$k] ;

} else {
i f ($founds [$ i] && $wnf){echo " $ k e y not d e f i n e d - m u l t i g e t \ n " ;}
$xmean [$msv] += 4 + strlen ($k) + 2 + 5 ;

}
i f ($founds [$ i]) {$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ h i t s ’

]++;}
}
// $num samp l e s mu l t i g e t++;

} else i f ($cmd == ’ d e l e t e ’){
i f ($found){

$xmean [$msv] += strlen ($key) + 18 ;
} else {

$xmean [$msv] += strlen ($key) + 20 ;
}
i f (i s set ($ s i z e [$key])){

// unse t ($ s i z e [$key]) ; // Don ’ t d e l e t e , compute s t a t s l a t e r
}
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else{$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ i n c r ’){
i f ($found){$xmean [$msv] += strlen ($key) + $out l en + 6 ;
} else {$xmean [$msv] += strlen ($key) + $out l en + 17 ;} ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ d e c r ’){
i f ($found){$xmean [$msv] += strlen ($key) + $out l en + 6 ;
} else {$xmean [$msv] += strlen ($key) + $out l en + 17 ;} ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d
i f ($found){$conv [$conver sa t i on] [’ h i t s ’]++;} else {$conv [$conver sa t i on] [’ m i s s e s ’]++;}

} else i f ($cmd == ’ f l u s h ’){
$xmean [$msv] += 15 ;
$changecnt += 1 ; // count t h e number o f ’ s e t s ’ i s s u e d

} else{
echo " Did not u n d e r s t a n d $ c m d !!\ on l i n e $i n " ;
die ;

}
$ymean [$msv] += $delay ;
$num samples [$msv]++;
// Read/ w r i t e data coun t ing
i f ($cmd == ’ get ’){ // read attemp !

$readbytes += ($xmean [$msv] � $ l a s t n e t) ;
} else{ // w r i t e attemp

$wr i t ebyte s += ($xmean [$msv] � $ l a s t n e t) ;
}

}
foreach ($xmean as $k => $d){

$xmean [$k] = $xmean [$k] / $num samples [$k] ;
$ymean [$k] = $ymean [$k] / $num samples [$k] ;

}
rewind ($fh) ;
$ i = 0 ;
while ($ l i n e = f g e t s ($fh)){

$ i++;
i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;
$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i ! ! ! \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
$msv = $sv . ’ - > ’ . $msvo ; // t r a c k each web se r ve r to each memcache s e r v e r
$sum top [$msv] += ($out l en � $xmean [$msv]) ⇤($delay � $ymean [$msv]) ;
$sum bottom [$msv] += pow($out l en � $xmean [$msv] , 2) ;
// f i l l in s e t s and g e t s in p l o t
$pi = round (($time � $tspan [’ s t a r t ’]) /($tspan [’ end ’] � $tspan [’ s t a r t ’]) ⇤ $pimax) ;
i f ($cmd == ’ set ’ | | $cmd == ’ add ’){ $p l o t s [$pi] [’ w r i t e s ’]++;} // d ea l w i t h d e l e t e
i f ($cmd == ’ get ’){ $p l o t s [$pi] [’ r e a d s ’]++;}
i f ($cmd == ’ m u l t i g e t ’){$keys = un s e r i a l i z e ($key) ; foreach ($keys as $key){ $p l o t s [$pi] [’

r e a d s ’]++;} ;} ;
// Sim s t u f f
i f ($ s im f i l e){

i f (i s set ($sim [substr (md5($ l i n e) ,0 ,10)])){$s = $sim [substr (md5($ l i n e) ,0 ,10)] ; } else {
echo " sim not f o u n d !\ n " ;}

i f ($cmd == ’ get ’ && $s [’ h ’]) $p l o t s [$pi] [’ h i t _ s i m ’]++;
i f ($cmd == ’ get ’ && ! $s [’ h ’]) $p l o t s [$pi] [’ m i s s _ s i m ’]++;

}
}
echo " T i m e s t a r t (x10) : " , $tspan [’ s t a r t ’] , " end : " , $tspan [’ end ’] , " t o t a l s e c o n d s : " , ($tspan

[’ end ’] � $tspan [’ s t a r t ’]) /10 , " \ n \ n " ;
echo " N e t w o r k a n a l y s i s for all p a t h s b a s e d on l a t e n c y and p a c k e t s i z e \ n " ;

$ c s v l i n e .= ($tspan [’ end ’] � $tspan [’ s t a r t ’]) /10 . " , " ;

$ l a t e n cy p r ed i c t = array () ; // used l a t e r

128

$server memserver num requests = array () ;
$ l a t ency rack = array () ;
// p r e f i l l in z e r o s f o r rack a n a l y s i s
foreach ($rack as $rn){

i f ($rn < 0){$rn = �$rn ;}
$ l a t ency rack [$rn] = array (’ i n t e r s u m ’ => 0 , ’ i n t e r s u m 2 ’ => 0 , ’ i n t e r c n t ’ => 0 , ’

i n t r a s u m ’ => 0 , ’ i n t r a s u m 2 ’ => 0 , ’ i n t r a c n t ’ => 0) ;
}
foreach ($xmean as $k => $d){

$s l ope = $sum top [$k] / $sum bottom [$k] ;
$ in t = $ymean [$k] � $s l ope ⇤ $xmean [$k] ;
i f ($num samples [$k] == 1 | | $s l ope == 0){// Can ’ t do r e g r e s s i o n on a s i n g l e po i n t !

echo " $k s l o p e : - -(s i n g l e s a m p l e) m b p s l a t e n c y : " , round($ in t ⇤ 1000000) / 1000 , " (
ms) \ n s i z e _ m e a n : " ,round($xmean [$k] / 1024 ⇤ 1000) /1000 , " (kB) t i m e _ m e a n : " ,
round($ymean [$k] ⇤ 1000000) / 1000 , " (ms) n u m _ r e q u e s t s *: " , $num samples [$k] , " \ n
\ n " ;

} else{
echo " $k s l o p e : " ,round(1/ $s l ope /1024 / 1024 ⇤ 8 ⇤ 10) / 10 , " m b p s l a t e n c y : " ,

round($ in t ⇤ 1000000) / 1000 , " (ms) \ n s i z e _ m e a n : " ,round($xmean [$k] / 1024
⇤ 1000) /1000 , " (kB) t i m e _ m e a n : " ,round($ymean [$k] ⇤ 1000000) / 1000 , " (ms)
n u m _ r e q u e s t s *: " , $num samples [$k] , " \ n \ n " ;

}
// ana l y z e ra c k s we i gh t w i th # samples , n o t i c e square f i x be low
$u s e t h i s l a t e n c y = $ in t ⇤ 1000 ⇤ $num samples [$k] ; // $ i n t i s p r e d i c t e d based on s l o p e

(0 c r o s s i n g) , $ymean [$k] i s ave rage o f a l l l a t e n c i e s
l i s t ($from , $to) = explode (’ - > ’ , $k) ;
// hand l e from and to coun t ing
i f (! a r r a y k e y e x i s t s ($from , $server memserver num requests)){

$server memserver num requests [$from] = 0;}
i f (! a r r a y k e y e x i s t s ($to , $server memserver num requests)){

$server memserver num requests [$to] = 0;}
$server memserver num requests [$from] += $num samples [$k] ;
$server memserver num requests [$to] += $num samples [$k] ;
// update rack coun t s
i f (! (a r r a y k e y e x i s t s ($from , $rack)) | | ! a r r a y k e y e x i s t s ($to , $rack)){echo " W h a t r a c k is

$ f r o m or $to ? ! ? \ n " ; continue ;}
i f ($rack [$from] == �$rack [$to]) {// same rack

// echo ”Same Rack\n ” ;
$ l a t ency rack [$rack [$from]] [’ i n t r a s u m ’] += $u s e t h i s l a t e n c y ;
$ l a t ency rack [$rack [$from]] [’ i n t r a s u m 2 ’] += $u s e t h i s l a t e n c y ⇤ $u s e t h i s l a t e n c y /

$num samples [$k] ; // Used f o r va r i ance c a l c u l a t i o n
$ l a t ency rack [$rack [$from]] [’ i n t r a c n t ’]+= $num samples [$k] ;

} else{
$ l a t ency rack [$rack [$from]] [’ i n t e r s u m ’] += $u s e t h i s l a t e n c y ;
$ l a t ency rack [$rack [$from]] [’ i n t e r s u m 2 ’] += $u s e t h i s l a t e n c y ⇤ $u s e t h i s l a t e n c y /

$num samples [$k] ;
$ l a t ency rack [$rack [$from]] [’ i n t e r c n t ’]+= $num samples [$k] ;

}
}
echo " \ n M e m c a c h e C l i e n t & S e r v e r m e s s a g e s p a s s e d \ n " ;
ksort ($server memserver num requests) ;
foreach ($server memserver num requests as $k => $d){

echo " $k $d m e s s a g e s (s e n t / r e c e i v e d) \ n " ;
}
echo " \ n \ n R a c k L a t e n c y Stats , b a s e d on a c c u m u l a t e d s o u r c e / d e s t s \ n " ;
// l a t e n c y c l u s t e r i n g and av e ra g in g
// In t r a rack mean/ va ra in c e
// I n t e r rack mean/ va r i ance
$ l t o t a l s = array (’ i n t e r c n t ’ => 0 , ’ i n t e r s u m ’ =>0, ’ i n t r a c n t ’ => 0 , ’ i n t r a s u m ’ =>0) ;
$ i n t e r cn t = 0 ;
$ i n t r a cn t = 0 ;
foreach ($ l a t ency rack as $r => $d){

i f ($d [’ i n t r a c n t ’] == 0) {$d [’ i n t r a c n t ’] = 1 ;}
i f ($d [’ i n t e r c n t ’] == 0) {$d [’ i n t e r c n t ’] = 1 ;}
$intramean = $d [’ i n t r a s u m ’] / $d [’ i n t r a c n t ’] ;
$intermean = $d [’ i n t e r s u m ’] / $d [’ i n t e r c n t ’] ;
echo " R a c k $r , w i t h i n " , round(1000 ⇤ $intramean) /1000 , ’ (ms) var ’ , round(1000 ⇤ ($d [

’ i n t r a s u m 2 ’] / $d [’ i n t r a c n t ’] � $intramean ⇤ $intramean)) /1000 , " \ n " ;
echo " l e a v i n g " , round(1000 ⇤ $intermean) /1000 , ’ (ms) var ’ , round(1000 ⇤ ($d [’

i n t e r s u m 2 ’] / $d [’ i n t e r c n t ’] � $intermean ⇤ $intermean)) /1000 , " \ n " ;
echo " i n t r a c n t : " , $d [’ i n t r a c n t ’] , " i n t e r c n t : " , $d [’ i n t e r c n t ’] , " \ n \ n " ;
$ l t o t a l s [’ i n t e r c n t ’] += $d [’ i n t e r c n t ’] ;
$ l t o t a l s [’ i n t r a c n t ’] += $d [’ i n t r a c n t ’] ;
$ l t o t a l s [’ i n t e r s u m ’] += $intermean ⇤ $d [’ i n t e r c n t ’] ;
$ l t o t a l s [’ i n t r a s u m ’] += $intramean ⇤ $d [’ i n t r a c n t ’] ;

}
echo " A v e r a g e d o v e r all r a c k s (c o u n t w e i g h t e d) , w i t h i n is " ,round(1000⇤ $ l t o t a l s [’ i n t r a s u m ’

] / $ l t o t a l s [’ i n t r a c n t ’]) /1000 , ’ , l e a v i n g is ’ ,round(1000⇤ $ l t o t a l s [’ i n t e r s u m ’] /
$ l t o t a l s [’ i n t e r c n t ’]) /1000 , " \ n \ n " ;

$ c s v l i n e .= (1000⇤ $ l t o t a l s [’ i n t r a s u m ’] / $ l t o t a l s [’ i n t r a c n t ’]) /1000 . ’ , ’ ;
$ c s v l i n e .= (1000⇤ $ l t o t a l s [’ i n t e r s u m ’] / $ l t o t a l s [’ i n t e r c n t ’]) /1000 . ’ , ’ ;

// Do the same , bu t l o o k a t each da t a po i n t

129

G. MEMCACHETACH: ANALYSE.PHP

$ i n t r a i n t e r r a c k = array (’ i n t e r s u m ’ => 0 , ’ i n t e r s u m 2 ’ => 0 , ’ i n t e r c n t ’ => 0 , ’ i n t r a s u m ’
=> 0 , ’ i n t r a s u m 2 ’ => 0 , ’ i n t r a c n t ’ => 0) ;

rewind ($fh) ;
$ i = 0 ;

while ($ l i n e = f g e t s ($fh)){
$ i++;
i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;
$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i ! ! ! \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
$from = $sv ;
$to = $msvo ;
i f (! (a r r a y k e y e x i s t s ($from , $rack)) | | ! a r r a y k e y e x i s t s ($to , $rack)){echo " W h a t r a c k is

$ f r o m or $to ? ! ? \ n " ; continue ;}
$delay = $delay ⇤ 1000 ;
i f ($rack [$from] == �$rack [$to]) {// same rack

$ i n t r a i n t e r r a c k [’ i n t r a s u m ’] += $delay ;
$ i n t r a i n t e r r a c k [’ i n t r a s u m 2 ’] += $delay ⇤ $delay ; // Used f o r va r i ance c a l c u l a t i o n
$ i n t r a i n t e r r a c k [’ i n t r a c n t ’]+= 1 ;

} else{
$ i n t r a i n t e r r a c k [’ i n t e r s u m ’] += $delay ;
$ i n t r a i n t e r r a c k [’ i n t e r s u m 2 ’] +=$delay ⇤ $delay ; // Used f o r va r i ance c a l c u l a t i o n
$ i n t r a i n t e r r a c k [’ i n t e r c n t ’]+= 1 ;

}
}
i f ($ i n t r a i n t e r r a c k [’ i n t r a c n t ’] == 0){ $ i n t r a i n t e r r a c k [’ i n t r a c n t ’] = 1 ; } ;
$intramean = $ i n t r a i n t e r r a c k [’ i n t r a s u m ’] / $ i n t r a i n t e r r a c k [’ i n t r a c n t ’] ;
$intermean = $ i n t r a i n t e r r a c k [’ i n t e r s u m ’] / $ i n t r a i n t e r r a c k [’ i n t e r c n t ’] ;
echo " A v e r a g e d o v e r all m e s s a g e s , w i t h i n a r a c k is " ,round(1000⇤ $ i n t r a i n t e r r a c k [’

i n t r a s u m ’] / $ i n t r a i n t e r r a c k [’ i n t r a c n t ’]) /1000 , ’ (’ , $ i n t r a i n t e r r a c k [’ i n t r a s u m 2 ’] /
$ i n t r a i n t e r r a c k [’ i n t r a c n t ’] � $intramean ⇤ $intramean , ’ var , ’ , $ i n t r a i n t e r r a c k [’

i n t r a c n t ’] , ’ s a m p l e s) , l e a v i n g is ’ ,round(1000⇤ $ i n t r a i n t e r r a c k [’ i n t e r s u m ’] /
$ i n t r a i n t e r r a c k [’ i n t e r c n t ’]) /1000 , ’ (’ , $ i n t r a i n t e r r a c k [’ i n t e r s u m 2 ’] /
$ i n t r a i n t e r r a c k [’ i n t e r c n t ’] � $intermean ⇤ $intermean , " var , " , $ i n t r a i n t e r r a c k [’
i n t e r c n t ’] , " s a m p l e s) \ n \ n " ;

$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t r a s u m ’] / $ i n t r a i n t e r r a c k [’ i n t r a c n t ’] . ’ , ’ ;
$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t r a s u m 2 ’] / $ i n t r a i n t e r r a c k [’ i n t r a c n t ’] � $intramean ⇤

$intramean . ’ , ’ ;
$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t r a c n t ’] . ’ , ’ ;
$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t e r s u m ’] / $ i n t r a i n t e r r a c k [’ i n t e r c n t ’] . ’ , ’ ;
$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t e r s u m 2 ’] / $ i n t r a i n t e r r a c k [’ i n t e r c n t ’] � $intermean ⇤

$intermean . ’ , ’ ;
$ c s v l i n e .= $ i n t r a i n t e r r a c k [’ i n t e r c n t ’] . ’ , ’ ;

// Reques t a n a l y s i s
// c a l c a v e ra g e s
$num actions = 0 ;
$de lays = 0 ;
$ i = 0 ;
foreach ($conv as $c){

$num actions += $c [’ n u m _ a c t i o n s ’] ;
$de lays += $c [’ t o t _ t i m e ’] ;
$ i++;

}
$num actions = $num actions / $ i ;
$de lays = $de lays / $ i ;
echo " $i c o n v e r s a t i o n s , w i t h $ n u m _ a c t i o n s m e m c a c h e r e q u e s t s average , t a k i n g " ,round($de lays

⇤ 1000000) / 1000 , " (ms) per c o n v e r s a t i o n .\ n \ n " ;

$ c s v l i n e .= $ i . ’ , ’ ;
$ c s v l i n e .= $num actions . ’ , ’ ;
$ c s v l i n e .= $de lays ⇤ 1000 . ’ , ’ ;

// Key t r a c k i n g . What p r opo r t i on o f key s are on l y used by one s e r v e r ?
⇤⇤

$key track = array () ;
rewind ($fh) ;
$ i = 0 ;
while ($ l i n e = f g e t s ($fh)){

$ i++;
i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;
$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i ! ! ! \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
i f (i s set ($key track [$key])){ // Seen be f o r e , so s e t s e r v e r

$key track [$key] [$sv] = 1 ;
} else{

// New key seen , add
$key track [$key] = array ($sv => 1) ;

}
}
$key counts = array () ;
foreach ($key track as $on){

i f (! i s set ($key counts [count ($on)])){ $key counts [count ($on)] = 0;}

130

$key counts [count ($on)]++;
}
echo " Of " ,count ($key track) , " k e y s m e n t i o n e d , \ n " ;
$ c s v l i n e .= count ($key track) . ’ , ’ ;
foreach ($key counts as $k => $c){

echo " $c w e r e u s e d by $k s e r v e r (s) \ n " ;
}
// More Key t r a c k i n g . Of a l l k ey s mentioned dur r in g a conve r sa t i on , how many were unique

to one s e r v e r ?⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
$conv track = array () ;
rewind ($fh) ;
$ i = 0 ;
while ($ l i n e = f g e t s ($fh)){

$ i++;
i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;
$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i ! ! ! \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
i f (! i s set ($conv track [$conver sa t i on])){ // Seen be f o r e , so s e t s e r v e r

$conv track [$conver sa t i on] = array (’ s i n g l e ’ => 0 , ’ all ’ => 0) ;
}
i f (count ($key track [$key]) == 1){ $conv track [$conver sa t i on] [’ s i n g l e ’] ++;}
$conv track [$conver sa t i on] [’ all ’] ++;

}
$num conv = 0 ;
$sum s conv = 0 ;
foreach ($conv track as $on){

$sum s conv += $on [’ s i n g l e ’] / $on [’ all ’] ;
// echo $on [’ s i n g l e ’] , ’ �> ’ , $on [’ a l l ’] , ’ ’ , $num conv ,”\n ” ;
$num conv++;

}
echo " \ n G i v i n g a ps v a l u e of " ,round($sum s conv / $num conv ⇤ 100) , " %. (C o u n t s all keys ,

e v e n a get m i s s) \ n " ;
echo " (Per S e s s i o n ps , so of all k e y s m e n t i o n e d for a p a g e r e q u e s t \ n w h a t ’

s the p e r c e n t a g e t h a t are o n l y u s e d on one c l i e n t) \ n \ n " ;

$ c s v l i n e .= $sum s conv / $num conv . ’ , ’ ;

// Ob j ec t s i z e c a l c u l a t i o n
⇤⇤

// Average o b j e c t s i z e , t o t a l ’ w r i t e s ’
$ t o t a l o b j e c t b y t e s = 0 ;
$ t o t a l r e q u e s t s = 0 ;
foreach ($xmean as $k => $d){

$ t o t a l o b j e c t b y t e s += $d ⇤ $num samples [$k] ;
$ t o t a l r e q u e s t s += $num samples [$k] ;

}
echo " $ t o t a l _ r e q u e s t s r e q u e s t s sent , w i t h an a v e r a g e n e t w o r k s i z e of " , $ t o t a l o b j e c t b y t e s

/ $ t o t a l r e qu e s t s , " b y t e s per request , and " , $changecnt , " writes ,\ n " ;
echo " or " , round (($ t o t a l r e q u e s t s � $changecnt) / $ t o t a l r e q u e s t s ⇤ 100) , " % r e a d s \ n " ;
echo " T o t a l n e t w o r k b y t e s s e n t : $ t o t a l _ o b j e c t _ b y t e s \ n " ;

echo " \ n \ n R e a d b y t e s : $ r e a d b y t e s W r i t e b y t e s : $ w r i t e b y t e s \ n " ;

$ c s v l i n e .= $readbytes / ($readbytes + $wr i t ebyte s) . ’ , ’ ;
$ c s v l i n e .= $ t o t a l o b j e c t b y t e s / $ t o t a l r e q u e s t s . ’ , ’ ;
$ c s v l i n e .= $changecnt . ’ , ’ ;
$ c s v l i n e .= $ t o t a l o b j e c t b y t e s . ’ , ’ ;

$ s um ob j e c t s i z e s = 0 ;
foreach ($ s i z e as $k => $s){

$ sum ob j e c t s i z e s += $s ;
}
echo " In cache , $ s u m _ o b j e c t _ s i z e s b y t e s stored , " ,count ($ s i z e) , " objects , avg s i z e " ,

$ s um ob j e c t s i z e s / count ($ s i z e) , " b y t e s \ n \ n " ;

echo " C o u n t i n g o n l y r e q u e s t s w i t h o b j e c t s t r a n s f e r ($ n u m _ o b j e c t _ t r a n s f e r) , $ s u m _ o b j e c t s
b y t e s s e n t on network , or " , $sum objects / $num objec t t rans f e r , " b y t e s (o b j e c t) per
r e q u e s t . \ n " ;

echo " \ n " ;
$ c s v l i n e .= $ sum ob j e c t s i z e s . ’ , ’ ;
$ c s v l i n e .= count ($ s i z e) . ’ , ’ ;

// Command usage
rewind ($fh) ;
$ i = 0 ;
$cmd usage = array () ; // We ’ l l be l a z y and j u s t do i nd e x e s
for ($ i = 0 ; $i <=19; $ i++){$cmd usage [$ i] = 0 ;}
$ i = 0 ;
$reqs = 0 ;
while ($ l i n e = f g e t s ($fh)){

i f (strlen ($ l i n e) < 10 | | in array ($i , $ fudge sk ip)) continue ;
$ i++;
$reqs++;
$data = un s e r i a l i z e ($ l i n e) ;
i f ($data === FALSE){echo " U n s e r i a l i z e e r r o r on l i n e $i ! ! ! \ n " ; continue ;}
l i s t ($time , $cookie , $sv , $msvo , $cmd , $key , $out len , $found , $params , $delay , $conver sa t i on) =

$data ;
i f ($cmd == ’ set ’&& $found){$cmd usage [0]++;
} else i f ($cmd == ’ set ’ && ! $found){$cmd usage [19]++;

131

G. MEMCACHETACH: ANALYSE.PHP

} else i f ($cmd == ’ add ’ && $found){$cmd usage [1]++;
} else i f ($cmd == ’ add ’ && ! $found){$cmd usage [2]++;
} else i f ($cmd == ’ r e p l a c e ’ && $found){$cmd usage [3]++;
} else i f ($cmd == ’ r e p l a c e ’ && ! $found){$cmd usage [4]++;
} else i f ($cmd == ’ c a a a a a a a a s ’){ // todo : f i x ! !
} else i f ($cmd == ’ d e l e t e ’ && $found){$cmd usage [8]++;
} else i f ($cmd == ’ d e l e t e ’ && ! $found){$cmd usage [9]++;
} else i f ($cmd == ’ i n c r ’ && $found){$cmd usage [10]++;
} else i f ($cmd == ’ i n c r ’ && ! $found){$cmd usage [11]++;
} else i f ($cmd == ’ d e c r ’ && $found){$cmd usage [12]++;
} else i f ($cmd == ’ d e c r ’ && ! $found){$cmd usage [13]++;
} else i f ($cmd == ’ f l u s h ’){$cmd usage [14]++;
} else i f ($cmd == ’ get ’ && $found){$cmd usage [15]++;
} else i f ($cmd == ’ get ’ && ! $found){$cmd usage [16]++;
} else i f ($cmd == ’ m u l t i g e t ’){ // we t r e a t a mu l t i g e t as mu l t i p l e s i n g l e g e t s

$founds = un s e r i a l i z e ($found) ;
$h i t = 0 ;
foreach ($founds as $ f){

i f ($ f){ $h i t++;}
}
i f ($h i t > count ($founds) /2){$cmd usage [15]++;
} else {$cmd usage [16]++;}

} else i f ($cmd == ’ a p p e n d ’ && $found){$cmd usage [17]++; // Combine append/ prepend s i n c e
t h ey have t h e same b eha v i o r

} else i f ($cmd == ’ a p p e n d ’ && ! $found){$cmd usage [18]++; // from our po i n t o f v iew .
} else i f ($cmd == ’ p r e p e n d ’ && $found){$cmd usage [17]++;
} else i f ($cmd == ’ p r e p e n d ’ && ! $found){$cmd usage [18]++;
} else{ echo $cmd , " not k n o w n ! ! ! ! ! ! \ n " ;
}

}
echo " C o m m a n d U s a g e out of $ r e q s r e q u e s t s (m u l t i g e t t r e a t e d as s i n g l e get , w i t h

m a j o r i t y hit / m i s s) :\ n " ;
$ c s v l i n e .= $reqs . ’ , ’ ;
echo " Set Hit (0) : " , $cmd usage [0] , " or " ,round($cmd usage [0] / $reqs ⇤ 100) , " %\ n " ;
echo " Set M i s s (1 9) : " , $cmd usage [1 9] , " or " ,round($cmd usage [1 9] / $reqs ⇤ 100) , " %\ n " ;
echo " Add Hit (1) : " , $cmd usage [1] , " or " , round($cmd usage [1] / $reqs ⇤ 100) , " %\ n " ;
echo " Add M i s s (2) : " , $cmd usage [2] , " or " ,round($cmd usage [2] / $reqs ⇤ 100) , " %\ n " ;
echo " R e p l a c e Hit (3) : " , $cmd usage [3] , " or " ,round($cmd usage [3] / $reqs ⇤ 100) , " %\ n " ;
echo " R e p l a c e M i s s (4) : " , $cmd usage [4] , " or " ,round($cmd usage [4] / $reqs ⇤ 100) , " %\ n " ;
echo " C A A A A 1 (5) : " , $cmd usage [5] , " or " ,round($cmd usage [5] / $reqs ⇤ 100) , " %\ n " ;
echo " C A A A A 2 (6) : " , $cmd usage [6] , " or " ,round($cmd usage [6] / $reqs ⇤ 100) , " %\ n " ;
echo " C A A A A 3 (7) : " , $cmd usage [7] , " or " ,round($cmd usage [7] / $reqs ⇤ 100) , " %\ n " ;
echo " D e l e t e Hit (8) : " , $cmd usage [8] , " or " ,round($cmd usage [8] / $reqs ⇤ 100) , " %\ n " ;
echo " D e l e t e M i s s (9) : " , $cmd usage [9] , " or " ,round($cmd usage [9] / $reqs ⇤ 100) , " %\ n " ;
echo " Inc Hit (1 0) : " , $cmd usage [1 0] , " or " ,round($cmd usage [1 0] / $reqs ⇤ 100) , " %\ n " ;
echo " Inc M i s s (1 1) : " , $cmd usage [1 1] , " or " ,round($cmd usage [1 1] / $reqs ⇤ 100) , " %\ n " ;
echo " Dec Hit (1 2) : " , $cmd usage [1 2] , " or " ,round($cmd usage [1 2] / $reqs ⇤ 100) , " %\ n " ;
echo " Dec M i s s (1 3) : " , $cmd usage [1 3] , " or " ,round($cmd usage [1 3] / $reqs ⇤ 100) , " %\ n " ;
echo " F l u s h (1 4) : " , $cmd usage [1 4] , " or " ,round($cmd usage [1 4] / $reqs ⇤ 100) , " %\ n " ;
echo " Get Hit (1 5) : " , $cmd usage [1 5] , " or " ,round($cmd usage [1 5] / $reqs ⇤ 100) , " %\ n " ;
echo " Get M i s s (1 6) : " , $cmd usage [1 6] , " or " ,round($cmd usage [1 6] / $reqs ⇤ 100) , " %\ n " ;
echo " Ap / Pre Hit (1 7) : " , $cmd usage [1 7] , " or " ,round($cmd usage [1 7] / $reqs ⇤ 100) , " %\ n " ;
echo " Ap / P r e M i s s (1 8) : " , $cmd usage [1 8] , " or " ,round($cmd usage [1 8] / $reqs ⇤ 100) , " %\ n " ;

for ($ i = 0 ; $i <=19; $ i++){ $ c s v l i n e .= $cmd usage [$ i] . ’ , ’ ;}
// CSV
i f ($ c s v f i l e){

$ f = fopen ($ c s v f i l e , ’ w ’) ;
$ c s v l i n e .= " 0\ n " ;
fw r i t e ($f , $ c s v l i n e) ;
fc lose ($ f) ;
echo " \ n \ n $ c s v _ f i l e csv f i l e w r i t t e n \ n " ;

}

132

Appendix H

Tentacle: tentacle.php

<?php

/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

/⇤
t e n t a c l e . php � PHP Clas s imp lement ing a MySQL midd leware c l i e n t , f o rward ing agen t

and cach ing sys tem .

Deve loped to enab l e a non�d i s t r i b u t e d web a p p l i c a t i o n to be d i s t r i b u t e d , i t r e l y s
on a l l da t a ba s e query c a l l s a l s o p r o v i d i n g a c on s i s t e n c y t ime va l u e . This v a l u e
r e p r e s e n t s how s t a l e t h e data can be i f a read r e que s t , or how much t ime can be
a l l owed to e l a p s e b e f o r e t h e w r i t e query i s a p p l i e d .

Using t h e c on s i s t e n c y t ime va lue , t e n t a c l e can d i r e c t read q u e r i e s to a l o c a l
da t a ba s e or query cache . I f some page i s known to con ta in low c on s i s t e n c y va lue s ,
not s a t i s f y a b l e l o c a l l y , t h e e n t i r e HTTP query i s forwarded w i th s e s s i o n in f o rma t i on
to t h e c e n t r a l web s e r v in g / da t a ba s e l o c a t i o n where i t i s hand l ed . In t h i s manner a l l
HTTP qu e r i e s are garuneed to t r a v e l a t most one round t r i p to t h e c e n t r a l s e r v e r .

Con f i g u r a b l e s in t h i s c l a s s dur ing i n i t i a l i z a t i o n :
1 . Cen t ra l HTTP IP
2 . Loca l MySQL da taba s e IP
3 . Cen t ra l MySQL da taba s e IP
4 . Database name
5 . Databaes username
6 . Database password
7 . P e r s i s t e n t DB connec t i on
8 . Loca l Memcache s e r v e r IP
9 . Loca l temp f i l e p r e f i x (f o r que ing w r i t e q u e r i e s)
10 . Loca l e x e c u t a b l e to f l u s h w r i t e q u e r i e s

Notes : APC i s r e q u i r e d f o r f a s t l o c a l s t o r a g e .
See be low f o r r e q u i r e d c on s t an t s .

⇤/
define (’ T E N T _ C A C H E _ R E A D S ’ , true) ; // Cache read q u e r i e s ?
define (’ T E N T _ Q U E U E _ W R I T E S ’ , true) ; // Queue w r i t e s i f t ime > 0?
define (’ T E N T _ P R O X Y _ A L L ’ , fa l se) ; // Shou ld a l l HTTP r e q u e s t s be forwarded ?
define (’ D B _ Q U E R Y _ S A V E _ F I L E ’ , ’ / tmp / db . txt ’) ;
define (’ F O R W A R D _ L I S T _ F I L E ’ , ’ / tmp / f o r w a r d . txt ’) ;

c l a s s Tentacle{
pr i va t e $ i n i t = fa l se ;
// IP or Domain to send impor tan t r e q u e s t s to
pr i va t e $ c en t r a l h t t p = nu l l ;
// DB i n f o
pr i va t e $localDB = nu l l ;
p r i va t e $localDBhost = nu l l ;
pub l i c $centralDB = nu l l ;
p r i va t e $centra lDB host = nu l l ;

133

H. TENTACLE: TENTACLE.PHP

pr i va t e $db user = nu l l ;
p r i va t e $db password = nu l l ;
p r i va t e $db name = nu l l ;
p r i va t e $use pconnect = nu l l ;
// Memcache
pub l i c $memcache = nu l l ;
p r i va t e $memcache servers = nu l l ;
// Loca l exe i n f o
pr i va t e $ ex e l o c a t i on = nu l l ;
p r i va t e $ l o c a l f i l e = nu l l ;
// Forwarding l i s t
pr i va t e $ f o rwa r d i n g l i s t = nu l l ;

// Can prewarm wi th an array o f s t r i n g s on l i n e 121
pr i va t e $ c en t r a l = fa l se ;
// Debug
pr i va t e $query count = 0 ;

func t i on c on s t r u c t ($cen t ra l h t tp , $ loca l db , $centra l db , $db name , $db user ,
$db password , $db pconnect , $memcache servers , $ l o c a l t emp f i l e p r e f i x , $exe){

// We r e q u i r e APC f o r f a s t l o c a l s t o r a g e o f s t a t e
i f ($th i s�>i n i t) re turn ; // b a i l i f a l r e a d y i n i t i a l i z e d
i f (! extension loaded (’ apc ’))die (’ APC M o d u l e r e q u i r e d for T e n t a c l e , not f o u n d ’) ;
$ th i s�>db user = $db user ;
$ th i s�>db password = $db password ;
$th i s�>db name = $db name ;
$th i s�>c en t r a l h t t p = $centralDB ;
$th i s�>centra lDB host = $cent ra l db ;
i f ($ c en t r a l h t t p == $ SERVER[’ S E R V E R _ A D D R ’]) {

$th i s�>localDBhost = $cent ra l db ;
} else{

$th i s�>localDBhost = $ l o ca l db ;
}
$th i s�>use pconnect = $db pconnect ;
$ th i s�> l o c a l f i l e = $ l o c a l t emp f i l e p r e f i x ;
$ th i s�>e x e l o c a t i o n = $exe ;
$th i s�>c en t r a l h t t p = $c en t r a l h t t p ;
// I f we ’ re t h e c e n t r a l s e r v e r don ’ t worry about f o rward ing l i s t
i f ($ c en t r a l h t t p == $ SERVER[’ S E R V E R _ A D D R ’]) {

$th i s�>c en t r a l = true ;
} else{

// g e t f o rward ing l i s t from apc
i f (a p c e x i s t s (’ f o r w a r d i n g _ l i s t ’)){

$th i s�>f o rw a r d i n g l i s t = apc f e t ch (’ f o r w a r d i n g _ l i s t ’) ;
} else i f (f i l e ex i s t s (FORWARD LIST FILE)){// We r e a l l y s hou l d p u l l t h e l i s t from a

memcache , bu t t h i s w i l l be e a s i e r
$ f i l e = fopen (FORWARD LIST FILE, ’ r ’) ; // NOT TESTED
$contents = fread ($ f i l e , f i l e s i z e (FORWARD LIST FILE)) ;
fc lose ($ f i l e) ;
$ th i s�>f o rw a r d i n g l i s t = u n s e r i a l i z e ($contents) ;
ap c s t o r e (’ f o r w a r d i n g _ l i s t ’ , $ th i s�>f o rw a r d i n g l i s t) ;

} else{// no th ing s t o red , s t a r t from s c r a t c h
$th i s�>f o rw a r d i n g l i s t = array () ; // w i l l be hash map
apc s t o r e (’ f o r w a r d i n g _ l i s t ’ , $ th i s�>f o rw a r d i n g l i s t) ;

}
}
// connec t memcache
$return = true ;
$ th i s�>memcache servers = $memcache servers ;
$ th i s�>connectMemcache ($th i s�>memcache servers) ;
$ th i s�>i n i t = true ;

}
f unc t i on d e s t r u c t () {

// Close connec t i on s to DB’ s TODO
// $ t h i s �>c l o s e () ;

}
f unc t i on doForward () {

// This f u n c t i o n shou l d be c a l l e d in t h e a p p l i c a t i o n b e f o r e ANY response i s s en t to t h e
c l i e n t .

// Otherwise custom HTTP header s can ’ t be s en t !

// i f in forward l i s t , forward r e q u e s t t o c e n t r a l
i f ($th i s�>c en t r a l){ re turn ;} // don ’ t forward to y o u r s e l f !
// do forward ?
// to speed matching we t a k e t h e r e q u e s t e d URI and see i f
// one o f t h e s t o r e d e n t r i e s in t h e f o rward ing l i s t s i s a s u b s t r i n g
// i f so , we forward .
$ur i = $ SERVER[’ R E Q U E S T _ U R I ’] ;
$ t r i p = fa l se ;
foreach ($th i s�>f o rw a r d i n g l i s t as $ f ind){

i f (strpos ($ur i , $ f i nd) !== FALSE) $ t r i p = true ;
}
i f ($ t r i p == fa l se && !TENT PROXY ALL) return ;
// g e t s e s s i o n & header s
$headers = apache reques t heade r s () ;
$sessname = tep se s s i on name () ;
$ s e s s i d = t e p s e s s i o n i d () ;

134

// g e t t h e s e s s i o n i n f o from beh ind PHP ’ s back !
$sessData = $th i s�>memcache�>get (t e p s e s s i o n i d ()) ;

// what k ind o f r e q u e s t was i t ?
$rtype = $ SERVER[’ R E Q U E S T _ M E T H O D ’] ;
$postvars = $ POST ;
// package up th e r e q u e s t i n c l u d i n g headers , type , and s e s s i o n i n f o
$tosend = array ($ur i , $headers , $rtype , $postvars , array (array (’ key ’ => t e p s e s s i o n i d () , ’

v a l u e ’ => $sessData))) ;
$tosend = ser i a l i z e ($tosend) ;
$tosend = gzcompress ($tosend) ;
// Forward packaged r e q u e s t t o c e n t r a l / remoteacce s s . php
// Ev en t u a l l y s e c u r i t y s hou l d be added !
$response = $th i s�>u r l r e q u e s t (’ P O S T ’ , ’ h t t p :// ’ . $ th i s�>c en t r a l h t t p . ’ / r e m o t e a c c e s s .

php ’ ,array (’ r ’ => $tosend)) ;
$response = $response [’ c o n t e n t ’] ;
// Unpackage re sponse
l i s t ($response , $responseheaders , $newsess ion) = un s e r i a l i z e (gzuncompress ($response)) ;
// Update s e s s i o n s t a t e
foreach ($ SESSION as $key => $value){

unset ($ SESSION [$key]) ;
}
foreach ($newsess ion as $s){

s e s s i on de code ($s [’ v a l u e ’]) ;
}
// Se t reponse header s
$h = explode (" \ n " , $ re sponseheaders) ;
foreach ($h as $ i){

i f (strpos ($i , ’ c h u n k e d ’) === FALSE)
header ($ i) ;

}
// Send the re sponse !
echo $response ;
t e p e x i t () ;

}
f unc t i on getLoca lResource () {

i f ($th i s�>localDB != nu l l) re turn $th i s�>localDB ;
i f ($th i s�>centralDB != nu l l) re turn $th i s�>centralDB ;
$th i s�>connectLocalDB () ;
re turn $th i s�>localDB ;

}
f unc t i on query ($delay t ime , $query){

// A l l MySQL qu e r i e s in t h e a p p l i c a t i o n shou l d c a l l t h i s i n s t ead , w i th a
// d e l a y t ime (in seconds) s e t .
$pageId = $ SERVER[’ R E Q U E S T _ U R I ’] ;
$ th i s�>printQuery ($delay t ime , $query) ; // Logs query i f needed
i f ($de lay t ime <= 0 && ! $th i s�>c en t r a l){ // need immediate , go to c e n t r a l !

// TODO: need to dynamica l l y change t h e above based on r e p l i c a t i o n l a g
$th i s�>f o rw a r d i n g l i s t [] = $pageId ;
$th i s�>updateForwardingList () ;

}
// Decide i f read or w r i t e
i f (strpos ($query , ’ s e l e c t ’) === FALSE){ // w r i t e

i f (TENT QUEUE WRITES && ! $th i s�>c en t r a l){
$handle = @fopen (’ / tmp / t o U s e . txt ’ , " r ") ; // the w r i t e query l o g i s r o t a t e d
$myi = rtrim (f g e t s ($handle , 4096)) ;
fc lose ($handle) ;
$handle = @fopen (’ / tmp / q u e r i e s ’ . $myi . ’ . txt ’ , " a ") ;
fw r i t e ($handle , ser ia l i z e (array (’ now ’ => time () , ’ q u e r y ’ => $query)) . " \ n ") ;
fc lose ($handle) ;
$ r e s u l t = 1 ;

} else{
i f ($th i s�>centralDB == nu l l) $th i s�>connectCentralDB () ;
$ r e s u l t = mysql query ($query , $th i s�>centralDB) ;

}
} else{// read

i f (TENT CACHE READS && $de lay t ime > 1){
$ r e s u l t = $th i s�>getReadQueryWCache ($delay t ime , $query) ;

} else{
i f ($th i s�>localDB == nu l l) $th i s�>connectLocalDB () ;
$ r e s u l t = mysql query ($query , $th i s�>localDB) ;

}
}
re turn $ r e s u l t ;

}
f unc t i on getReadQueryWCache ($delay t ime , $query){

// To m i t i g a t e t h e t hunde r in g herd problem , we embed the e x p i r e t ime
// in t h e cached data so we know how much t ime i s l e f t and r e f r e s h t h e data
// During t h e l a s t minute we p r o b a b i l i s t i c a l l y f a i l (1/(sec t ime l e f t + 1))
// so h e a v i l y used key s w i l l g e t r e f r e s h e d a t most a second ear l y , bu t h o p e f u l l y
// by on l y by 1 c l i e n t . OR, on a r e f r e s h f a i l , cause t h e background DB wr i t e daemon
// to do th e c a l l TODO
g l oba l $db po inter ;
g l oba l $db cache ;

135

H. TENTACLE: TENTACLE.PHP

g l oba l $cache debug ;
$ r e s u l t = $th i s�>memcache�>get ($th i s�>hashMe($query)) ;
i f ($ r e s u l t === FALSE){

i f ($th i s�>localDB == nu l l) $th i s�>connectLocalDB () ;
$r = mysql query ($query , $th i s�>localDB) ;
$ r e s u l t a r r a y = $th i s�>getArrayfromResource ($r) ;
$ th i s�>memcache�>s e t ($th i s�>hashMe($query) ,array ($de lay t ime + time () , $ r e s u l t a r r a y)

,0 , $de lay t ime) ;
$cache debug [’ m i s s ’]++;
return $r ;

}
$cache debug [’ hit ’]++;
// found !
$exp i r e t ime = $ r e s u l t [0] ;
$returned = $ r e s u l t [1] ;
// var dump ($ r e t u rned) ;
// echo ”

\n ” ;
$ l e f t = $exp i r e t ime � time () ;
i f ($ l e f t < 60 && 0){ // D i s a b l e d pending v e r i f i c a t i o n

// preempt update !
i f ($ l e f t < 0 | | (1000 / ($ l e f t + 1) > rand (1 ,1000))){

$r = mysql query ($query , $th i s�>localDB) ;
$ r e s u l t a r r a y = $th i s�>getArrayfromResource ($r) ;
$ th i s�>memcache�>s e t (’ q ’ .md5($query) , ser ia l i z e (array ($query , $de lay t ime + time () ,

$ r e s u l t a r r a y)) ,0 , $de lay t ime) ;
re turn $r ;

}
}
$db po inter = 0 ;
$db cache = $returned ;
re turn array (’ p o i n t e r ’ => 0 , ’ r o w s ’ => 0) ;

}
f unc t i on hashMe($pre){

re turn md5($pre) .md5($pre . $pre) ;
}
f unc t i on getArrayfromResource ($r){

$re t = array () ;
$ i = 0 ;
while ($row = mysq l f e t ch a r ray ($r ,MYSQL ASSOC)){

$re t [$ i] = $row ;
$ i++;

}
i f ($ i > 0)mysql data seek ($r , 0) ;
r e turn $ re t ;

}
f unc t i on connectCentralDB () {

// we don ’ t a u t oma t i c a l l y connec t to t h e c e n t r a l da t a ba s e because u s u a l l y we don ’ t have
to , e v e r

// Once running a l l 0 t imed q u e r i e s are e l im i n a t e d and the HTTP r e q u e s t i s s en t to
c e n t r a l anyway

i f ($th i s�>use pconnect == ’ t r u e ’) {
$th i s�>centralDB = mysql pconnect ($th i s�>centralDB host , $th i s�>db user , $ th i s�>

db password) ;
} else {

$th i s�>centralDB = mysql connect ($th i s�>centralDB host , $th i s�>db user , $ th i s�>
db password) ;

}
i f (! $ th i s�>centralDB){die (" Can ’ t c o n n e c t to (c e n t r a l) " . $ th i s�>centra lDB host . " !\ n ")

;}
mysql select db ($th i s�>db name , $th i s�>centralDB) ;

}
f unc t i on connectLocalDB () {
// we don ’ t a u t oma t i c a l l y connec t to t h e c e n t r a l da t a ba s e because u s u a l l y we don ’ t have

to , e v e r
// Once running a l l 0 t imed q u e r i e s are e l im i n a t e d and the HTTP r e q u e s t i s s en t to

c e n t r a l anyway
i f ($th i s�>use pconnect == ’ t r u e ’) {

$th i s�>localDB = mysql pconnect ($th i s�>localDBhost , $th i s�>db user , $ th i s�>
db password) ;

} else {
$th i s�>localDB = mysql connect ($th i s�>localDBhost , $th i s�>db user , $ th i s�>db password

) ;
}
i f (! $ th i s�>localDB){die (" Can ’ t c o n n e c t to (l o c a l) " . $ th i s�>localDBhost . " !\ n ") ;}
mysql select db ($th i s�>db name , $th i s�>localDB) ;

}
f unc t i on connectMemcache ($memcache servers){

$th i s�>memcache = new MemcachePool () ;
i f (is array ($memcache servers)){

foreach ($memcache servers as $s){
l i s t ($l1 , $l2 , $l3 , $l4 , $l5 , $ l6) = $s ;
$th i s�>memcache�>addServer ($l1 , $l2 , $l3 , $l4 , $l5 , $ l 6) ;

}

136

} else{
l i s t ($l1 , $l2 , $l3 , $l4 , $l5 , $ l6) = $memcache servers ;
$ th i s�>memcache�>addServer ($l1 , $l2 , $l3 , $l4 , $l5 , $ l 6) ;

}
}
f unc t i on updateForwardingList () {

apc s t o r e (’ f o r w a r d i n g _ l i s t ’ , $ th i s�>f o rw a r d i n g l i s t) ;
// todo : c onve r t t o memcache
$content = ser ia l i z e ($th i s�>f o rw a r d i n g l i s t) ;
f lock ($f , LOCK EX) ;
$ f i l e = fopen (FORWARD LIST FILE, ’ w ’) ;
fw r i t e ($ f i l e , $content) ;
fc lose ($ f i l e) ;
f lock ($f , LOCK UN) ;

}
// Debug f u n c t i o n s

f unc t i on printQuery ($time , $query){
i f ($time > 20) return ;
$ f = fopen (DB QUERY SAVE FILE, ’ a ’) ;
i f ($ f == FALSE){die (’ f i l e o p e n e r r o r D B _ Q U E R Y _ S A V E _ F I L E ’) ; } ;
$query = $query ;
$dSmall = substr ($query , 0 , 4 0) ;
$output = $time . ’ : ’ . ’ ’ . $ SERVER[’ R E Q U E S T _ U R I ’] . ’ - ’ . $dSmall . " \ n " ;
f lock ($f , LOCK EX) ;
fw r i t e ($f , $output) ;
f lock ($f , LOCK UN) ;
fc lose ($ f) ;

}
f unc t i on u r l r e q u e s t ($type , $ur l , $data , $headers = ’ ’) {

// Convert t h e data array i n t o URL Parameters l i k e a=b&foo=bar e t c .
$data = ht tp bu i l d que ry ($data) ;
// parse t h e g i v en URL
$ur l = parse url ($ur l) ;
i f ($ur l [’ s c h e m e ’] != ’ h t t p ’) {

die (’ E r r o r : O n l y H T T P r e q u e s t are s u p p o r t e d ! ’) ;
}
// e x t r a c t ho s t and path :
$host = $ur l [’ h o s t ’] ;
$path = $ur l [’ p a t h ’] ;
// open a s o c k e t connec t i on on por t 80 � t imeou t : 30 sec
$fp = fsockopen ($host , 80 , $errno , $ e r r s t r , 30) ;
i f ($fp){

// send the r e q u e s t header s :
i f ($type == ’ P O S T ’){

fputs ($fp , " P O S T $ p a t h H T T P / 1 . 0 \ r \ n ") ;
} else {

fputs ($fp , " GET $ p a t h H T T P / 1 . 0 \ r \ n ") ;
}
fputs ($fp , " H o s t : $ h o s t \ r \ n ") ;

i f ($headers != ’ ’){
foreach ($headers as $k => $d){

i f ($k != ’ Content - L e n g t h ’){
fputs ($fp , " $k : $d \ r \ n ") ;}

}
}
i f ($type == ’ P O S T ’){

fputs ($fp , " Content - t y p e : a p p l i c a t i o n / x - www - form - u r l e n c o d e d \ r \ n ") ;
fputs ($fp , " Content - l e n g t h : " . strlen ($data) . " \ r \ n ") ;
fputs ($fp , " C o n n e c t i o n : c l o s e \ r \ n \ r \ n ") ;
fputs ($fp , $data) ;

}
$ r e s u l t = ’ ’ ;
while (! feof ($fp)) {

// r e c e i v e t h e r e s u l t s o f t h e r e q u e s t
$ r e s u l t .= f g e t s ($fp , 1024) ; // 128

}
}
else {

fc lose ($fp) ;
r e turn array (

’ s t a t u s ’ => ’ err ’ ,
’ e r r o r ’ => " $ e r r s t r ($ e r r n o) "

) ;
}
// c l o s e t h e s o c k e t connec t i on :
fc lose ($fp) ;

// s p l i t t h e r e s u l t header from the con t en t
$ r e s u l t = explode (" \ r \ n \ r \ n " , $ r e su l t , 2) ;

$header = i s set ($ r e s u l t [0]) ? $ r e s u l t [0] : ’ ’ ;
$content = i s set ($ r e s u l t [1]) ? $ r e s u l t [1] : ’ ’ ;

// r e t u rn as s t r u c t u r e d array :
re turn array (

137

H. TENTACLE: TENTACLE.PHP

’ s t a t u s ’ => ’ ok ’ ,
’ h e a d e r ’ => $header ,
’ c o n t e n t ’ => $content

) ;
}

}
?>

138

Appendix I

Tentacle: loop.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

while (1) {
$fh = fopen (’ h t t p :// l o c a l h o s t / t e n t a c l e - d a e m o n . php ’ , ’ r ’) ;

while (($bu f f e r = f g e t s ($fh , 4096)) !== fa l se) {
echo $bu f f e r ;

}
fc lose ($fh) ;
sleep (1) ;

}
?>

139

Appendix J

Tentacle: tentacle-daemon.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Paul G Talaga BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

/⇤
Background Database Ca l l e r
Given a queue o f da t a ba s e s t a t emen t s saved v i a f i l e , send them out eve ry second .

APC i s not used as t h e r e i s no way to s t a r t a s c r i p t and garun t e e i t e x i s t s in t h e
same p ro c e s s as t h e c a l l e r

and thu s see t h e same data . A d d i t i o n a l l y memory i s not shared between p r o c e s s e s /
t h r e ad s .

We use 3 f i l e s in /tmp , toUse . t x t which con t a i n s a s i n g l e d i g i t , and que r i e s<d i g i t
>. t x t . toUse a c t s as a sw i t c h so c l i e n t s can w r i t e

to t h e f i l e wh i l e t h e c l e an e r e x e c u t e s t h e q u e r i e s in t h e o t h e r d i g i t f i l e s . On
comp l e t i on i t changes toUse . t x t .

⇤/
include (’ i n c l u d e s / c o n f i g u r e . php ’) ;
g l oba l $ l i nk ;

$toUse = ’ / tmp / t o U s e . txt ’ ;
$que rypre f i x = ’ / tmp / q u e r i e s ’ ;

// connec t to da t a ba s e
$ l i nk = mysql pconnect (DB SERVER, DB SERVER USERNAME, DB SERVER PASSWORD) ;
i f (! $ l i nk){die (" Can ’ t c o n n e c t to $ s e r v e r !\ n ") ;}
i f ($ l i nk) mysql select db (DB DATABASE, $ l i nk) ;

$que r i e s = array () ;

//
$num f i l e s = 3 ;
$ i = 0 ; // we a lways c l e an i �1, so many query f i l e s can e x i s t and we c l e a r t h e o l d e s t
while (1) {

$ to c l e an = ($ i + $num f i l e s + 1) % $num f i l e s ;
echo " i : $i t o c l e a n : $ t o _ c l e a n \ n " ;
$c l ean = fopen ($toUse , ’ w ’) ;
fw r i t e ($clean , $ i) ;
fc lose ($c l ean) ;
$min write = PHP INT MAX;
// do q u e r i e s
$handle = @fopen ($que rypre f i x . $ i . ’ . txt ’ , " r ") ;
i f ($handle) {

while (($bu f f e r = f g e t s ($handle , 4096)) !== fa l se) {
$q = un s e r i a l i z e (rtrim ($bu f f e r)) ;
$query = $q [’ q u e r y ’] ;
i f ($q [’ now ’] < $min write) $min write = $q [’ now ’] ; // keep t r a c k o f t h e

o l d e s t query t ime

140

i f (strlen ($query) > 0) $que r i e s [] = $query ;
}
i f (count ($que r i e s) > 0) executeQuer i e s ($quer i e s , $min write) ;
$que r i e s = array () ;
i f (! feof ($handle)) {

echo " E r r o r : u n e x p e c t e d f g e t s () f a i l \ n " ;
}
fc lose ($handle) ;

}
// c l e a r f i l e
$handle = @fopen ($que rypre f i x . $ i . ’ . txt ’ , " w ") ;
fc lose ($handle) ;

$ i++;
$ i = $ i % $num f i l e s ;
usleep (200000) ;

}
f unc t i on executeQuer i e s (&$quer i e s , $min write){

$tosend = ser i a l i z e (array (’ m i n _ w r i t e ’ => $min write , ’ q u e r i e s ’ => $quer i e s , ’ c l i e n t ’ =>
TENT CLIENT ID)) ;

$tosend = gzcompress ($tosend) ;
// send i t !
echo " S e n t \ n " ;
$ response = u r l r e q u e s t (’ P O S T ’ , ’ h t t p :// ’ . TENT CENTRAL HTTP . ’ / remote - sql - a c c e s s . php ’

,array (’ r ’ => $tosend)) ;
echo $response [’ c o n t e n t ’] ;
echo " B a c k \ n " ;

}
f unc t i on executeQuery ($query){

g l oba l $ l i nk ;
$return = mysql query ($query , $ l i nk) or t ep db e r r o r ($query . ’ (w r i t e r e q u e s t) ’ ,

mysql errno () , mysql error ()) ;
echo " R e t u r n e d $ r e t u r n \ n " ;
r e turn $return ;

}
f unc t i on u r l r e q u e s t ($type , $ur l , $data , $headers = ’ ’) {

// Convert t h e data array i n t o URL Parameters l i k e a=b&foo=bar e t c .
$data = ht tp bu i l d que ry ($data) ;

// parse t h e g i v en URL
$ur l = parse url ($ur l) ;

i f ($ur l [’ s c h e m e ’] != ’ h t t p ’) {
die (’ E r r o r : O n l y H T T P r e q u e s t are s u p p o r t e d ! ’) ;

}
// e x t r a c t ho s t and path :
$host = $ur l [’ h o s t ’] ;
$path = $ur l [’ p a t h ’] ;

// open a s o c k e t connec t i on on por t 80 � t imeou t : 30 sec
$fp = fsockopen ($host , 80 , $errno , $ e r r s t r , 30) ;

i f ($fp){
// send the r e q u e s t header s :
i f ($type == ’ P O S T ’){

fputs ($fp , " P O S T $ p a t h H T T P / 1 . 1 \ r \ n ") ;
} else {

fputs ($fp , " GET $ p a t h H T T P / 1 . 1 \ r \ n ") ;
}
fputs ($fp , " H o s t : $ h o s t \ r \ n ") ;

i f ($headers != ’ ’){
foreach ($headers as $k => $d){

i f ($k != ’ Content - L e n g t h ’){
fputs ($fp , " $k : $d \ r \ n ") ;}

}
}
i f ($type == ’ P O S T ’){

fputs ($fp , " Content - t y p e : a p p l i c a t i o n / x - www - form - u r l e n c o d e d \ r \ n ") ;
fputs ($fp , " Content - l e n g t h : " . strlen ($data) . " \ r \ n ") ;
fputs ($fp , " C o n n e c t i o n : c l o s e \ r \ n \ r \ n ") ;
fputs ($fp , $data) ;

}
$ r e s u l t = ’ ’ ;
while (! feof ($fp)) {

// r e c e i v e t h e r e s u l t s o f t h e r e q u e s t
$ r e s u l t .= f g e t s ($fp , 128) ;

}
}
else {

re turn array (
’ s t a t u s ’ => ’ err ’ ,
’ e r r o r ’ => " $ e r r s t r ($ e r r n o) "

) ;
}
// c l o s e t h e s o c k e t connec t i on :
fc lose ($fp) ;

141

J. TENTACLE: TENTACLE-DAEMON.PHP

// s p l i t t h e r e s u l t header from the con t en t
$ r e s u l t = explode (" \ r \ n \ r \ n " , $ r e su l t , 2) ;

$header = i s set ($ r e s u l t [0]) ? $ r e s u l t [0] : ’ ’ ;
$content = i s set ($ r e s u l t [1]) ? $ r e s u l t [1] : ’ ’ ;

// r e t u rn as s t r u c t u r e d array :
re turn array (

’ s t a t u s ’ => ’ ok ’ ,
’ h e a d e r ’ => $header ,
’ c o n t e n t ’ => $content

) ;
}

?>

142

Appendix K

Tentacle: remoteaccess.php

<?php
/⇤
Copyr i gh t (c) 2012 , Paul G Talaga
A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use in source and b ina ry forms , w i t h or w i t hou t
mod i f i c a t i on , are p e rm i t t e d p ro v i d ed t h a t t h e f o l l o w i n g c on d i t i o n s are met :
⇤ Re d i s t r i b u t i o n s o f source code must r e t a i n t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r .
⇤ Re d i s t r i b u t i o n s in b ina ry form must reproduce t h e above c o p y r i g h t
no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a im e r in t h e
documentat ion and/ or o t h e r ma t e r i a l s p ro v i d ed w i th t h e d i s t r i b u t i o n .
⇤ Ne i t h e r t h e name o f t h e <o r gan i z a t i on> nor t he
names o f i t s c o n t r i b u t o r s may be used to endorse or promote p roduc t s
d e r i v e d from t h i s s o f twa r e w i t hou t s p e c i f i c p r i o r w r i t t e n pe rmi s s i on .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
⇤/

include (’ i n c l u d e s / c o n f i g u r e . php ’) ;
// responds to r e q u e s t s from edge s e r v e r s
// TODO: add a u t h e n t i c a t i o n !
// php in f o () ;
i f (! i s set ($ POST [’ r ’]))die ;
$ r eques t = $ POST [’ r ’] ;
$ r eques t = gzuncompress ($reques t) ;
l i s t ($rUri , $headers , $rtype , $postvars , $ s e s s i on) = un s e r i a l i z e ($ reques t) ;
// Connect to Memcache and s e t s e s s i o n i n f o
$return = true ;
$ s e r v e r s = explode (’ , ’ , MEMCACHE SERVERS) ;
$memcache = new MemcachePool () ;
foreach ($ s e r v e r s as $sv){

l i s t ($s , $p) = explode (’ : ’ , $sv) ;
$ r e t = $memcache�>addServer ($s , $p) ;
$return = $return && $re t ;

// echo ” Serve r $s , po r t $p ok? $ r e t \n ” ;
}
i f (! $return){error log (’ c o u l d not c o n n e c t to m e m c a c h e ’) ; die (’ C o u l d not c o n n e c t to

m e m c a c h e ’) ;}
foreach ($ s e s s i o n as $s){

s e s s i on de code ($s [’ v a l u e ’]) ;
}

//
$cook ie = $headers [’ C o o k i e ’] ;
i f ($rtype == ’ GET ’){

$opts = array (
’ h t t p ’ =>array (

’ m e t h o d ’ =>$rtype ,
’ h e a d e r ’ => " C o o k i e : $ c o o k i e \ r \ n ")) ;

$context = s t r eam cont ex t c r ea t e ($opts) ;
$ rep ly [’ c o n t e n t ’] = f i le get contents (’ h t t p :// ’ . $ SERVER[’ S E R V E R _ A D D R ’] . $rUri , fa lse

, $context) ;
$ rep ly [’ h e a d e r ’] = ’ ’ ;

} else{

143

K. TENTACLE: REMOTEACCESS.PHP

$rep ly = u r l r e q u e s t ($rtype , ’ h t t p :// ’ . $ SERVER[’ S E R V E R _ A D D R ’] . $rUri , $postvars ,
$headers) ;

}
$newsess ion = array () ;
$debug = ’ ’ ;
foreach ($ s e s s i o n as $s){

$newsess ion [] = array (’ key ’ => $s [’ key ’] , ’ v a l u e ’ => $memcache�>get ($s [’ key ’])) ;
}
$return = gzcompress (ser ia l i z e (array ($ rep ly [’ c o n t e n t ’] , $ r ep ly [’ h e a d e r ’] , $newsess ion))

) ;

echo $return ;
exit () ;

// //

f unc t i on u r l r e q u e s t ($type , $ur l , $data , $headers = ’ ’) {
// Convert t h e data array i n t o URL Parameters l i k e a=b&foo=bar e t c .
$data = ht tp bu i l d que ry ($data) ;

// parse t h e g i v en URL
$ur l = parse url ($ur l) ;

i f ($ur l [’ s c h e m e ’] != ’ h t t p ’) {
die (’ E r r o r : O n l y H T T P r e q u e s t are s u p p o r t e d ! ’) ;

}
// e x t r a c t ho s t and path :
$host = $ur l [’ h o s t ’] ;
i f (i s set ($ur l [’ q u e r y ’])){

$path = $ur l [’ p a t h ’] . ’ ? ’ . $u r l [’ q u e r y ’] ;
} else{

$path = $ur l [’ p a t h ’] ;
}
// open a s o c k e t connec t i on on por t 80 � t imeou t : 30 sec
$fp = fsockopen ($host , 80 , $errno , $ e r r s t r , 30) ;

i f ($fp){
// send the r e q u e s t header s :
i f ($type == ’ P O S T ’){

fputs ($fp , " P O S T $ p a t h H T T P / 1 . 1 \ r \ n ") ;
} else {

fputs ($fp , " GET $ p a t h H T T P / 1 . 1 \ r \ n ") ;
}
fputs ($fp , " H o s t : $ h o s t \ r \ n ") ;

i f ($headers != ’ ’){
foreach ($headers as $k => $d){

i f ($k != ’ Content - L e n g t h ’){
fputs ($fp , " $k : $d \ r \ n ") ;}

}
}
i f ($type == ’ P O S T ’){

fputs ($fp , " Content - t y p e : a p p l i c a t i o n / x - www - form - u r l e n c o d e d \ r \ n ") ;
fputs ($fp , " Content - l e n g t h : " . strlen ($data) . " \ r \ n ") ;
fputs ($fp , " C o n n e c t i o n : c l o s e \ r \ n \ r \ n ") ;
fputs ($fp , $data) ;

}
$ r e s u l t = ’ ’ ;
while (! feof ($fp)) {

// r e c e i v e t h e r e s u l t s o f t h e r e q u e s t
$ r e s u l t .= f g e t s ($fp , 128) ;

}
}
else {

re turn array (
’ s t a t u s ’ => ’ err ’ ,
’ e r r o r ’ => " $ e r r s t r ($ e r r n o) "

) ;
}
// c l o s e t h e s o c k e t connec t i on :
fc lose ($fp) ;

// s p l i t t h e r e s u l t header from the con t en t
$ r e s u l t = explode (" \ r \ n \ r \ n " , $ r e su l t , 2) ;

$header = i s set ($ r e s u l t [0]) ? $ r e s u l t [0] : ’ ’ ;
$content = i s set ($ r e s u l t [1]) ? $ r e s u l t [1] : ’ ’ ;

// r e t u rn as s t r u c t u r e d array :
re turn array (

’ s t a t u s ’ => ’ ok ’ ,
’ h e a d e r ’ => $header ,
’ c o n t e n t ’ => $content

) ;
}

?>

144

References

[1] Adobe. Flex 3 - adobe flex 3, http://livedocs.adobe.com/flex/3/

html/help.html?content=SQL_14.html, 2012.

[2] Akamai. Retail web site performance - customer reaction to a poor on-

line shopping experience, http://www.akamai.com/dl/reports/Site_

Abandonment_Final_Report.pdf, 2006.

[3] Akamai. Dynamic site accelerator, http://www.akamai.com/dl/

brochures/Product_Brief_Aqua_DSA.pdf, 2012.

[4] M. Aldinucci and M. Torquati. Accelerating Apache Farms Through Ad-

HOC Distributed Scalable Object Repository, volume 3149 of Lecture Notes

in Computer Science. Springer Berlin / Heidelberg, 2004.

[5] Y. Amir, C. Danilov, M. Miskin-amir, J. Stanton, and C. Tutu. On the

performance of wide area synchronous database replication. Technical

report, Johns Hopkins University, 2003.

[6] K. Amiri, S. Park, and R. Tewari. Dbproxy: A dynamic data cache for

web applications. In In Proc. ICDE, pages 821–831, 2003.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and

V. Vasudevan. Fawn: a fast array of wimpy nodes. In Proceedings of the

145

http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_14.html
http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_14.html
http://www.akamai.com/dl/reports/Site_Abandonment_Final_Report.pdf
http://www.akamai.com/dl/reports/Site_Abandonment_Final_Report.pdf
http://www.akamai.com/dl/brochures/Product_Brief_Aqua_DSA.pdf
http://www.akamai.com/dl/brochures/Product_Brief_Aqua_DSA.pdf

REFERENCES

ACM SIGOPS 22nd symposium on Operating systems principles, SOSP

’09, pages 1–14, New York, NY, USA, 2009. ACM.

[8] J. Archibald and J.-L. Baer. Cache coherence protocols: evaluation using

a multiprocessor simulation model. ACM Trans. Comput. Syst., 4(4):273–

298, Sept. 1986.

[9] A. Awadallah and M. Rosenblum. The vmatrix: A network of virtual ma-

chine monitors for dynamic content distribution. In In 7th International

Workshop on Web Content Caching and Distribution, 2002.

[10] G. Ayuso. Speed up php scripts with asynchronous database

queries, http://gonzalo123.wordpress.com/2010/10/11/speed-up-

php-scripts-with-asynchronous-database-queries/, 2009.

[11] N. Bailey. Frontpage - cassandra wiki, http://wiki.apache.org/

cassandra/, 2011.

[12] A. Bakre and B. Badrinath. I-tcp: indirect tcp for mobile hosts. In Dis-

tributed Computing Systems, 1995., Proceedings of the 15th International

Conference on, pages 136 –143, may-2 jun 1995.

[13] A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known Content Network

(CN) Request-Routing Mechanisms. RFC Editor, United States, 2003.

[14] M. Belshe. A client-side argument for changing tcp slow

start, https://docs.google.com/viewer?a=v&pid=sites&srcid=

Y2hyb21pdW0ub3JnfGRldnxneDo0NDEyNDM3MzRiZDk4YTE4, 2010.

146

http://gonzalo123.wordpress.com/2010/10/11/speed-up-php-scripts-with-asynchronous-database-queries/
http://gonzalo123.wordpress.com/2010/10/11/speed-up-php-scripts-with-asynchronous-database-queries/
http://wiki.apache.org/cassandra/
http://wiki.apache.org/cassandra/
https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDo0NDEyNDM3MzRiZDk4YTE4
https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDo0NDEyNDM3MzRiZDk4YTE4

REFERENCES

[15] M. Belshe. More bandwidth doesn’t matter (much),

https://docs.google.com/viewer?a=v&pid=sites&srcid=

Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2, 2010.

[16] B. R. Borgerson, M. D. Godfrey, P. E. Hagerty, and T. R. Rykken. The

architecture of the sperry univac 1100 series systems. In Proceedings of

the 6th annual symposium on Computer architecture, ISCA ’79, pages

137–146, New York, NY, USA, 1979. ACM.

[17] D. Borthakur. Hdfs architecture guide, http://hadoop.apache.org/

common/docs/current/hdfs_design.html, 2012.

[18] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,

H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,

and A. Aiyer. Apache hadoop goes realtime at facebook. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of

data, SIGMOD ’11, pages 1071–1080, New York, NY, USA, 2011. ACM.

[19] J. Brutlag. Speed matters for google web search, http://code.google.

com/speed/files/delayexp.pdf, 2009.

[20] P. Cao, J. Zhang, and K. Beach. Active cache: caching dynamic contents

on the web. In Proceedings of the IFIP International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing, Middleware

’98, pages 373–388, London, UK, UK, 1998. Springer-Verlag.

[21] L. M. Censier and P. Feautrier. A new solution to coherence problems

in multicache systems. IEEE Transactions on Computers, 27:1112–1118,

1978.

147

https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://code.google.com/speed/files/delayexp.pdf
http://code.google.com/speed/files/delayexp.pdf

REFERENCES

[22] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consis-

tently caching dynamic web data. In INFOCOM ’99. Eighteenth Annual

Joint Conference of the IEEE, 1999.

[23] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A. Soules, and

A. Veitch. Lazybase: trading freshness for performance in a scalable

database. In Proceedings of the 7th ACM european conference on Com-

puter Systems, EuroSys ’12, pages 169–182, New York, NY, USA, 2012.

ACM.

[24] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A dis-

tributed anonymous information storage and retrieval system. In INTER-

NATIONAL WORKSHOP ON DESIGNING PRIVACY ENHANCING

TECHNOLOGIES: DESIGN ISSUES IN ANONYMITY AND UNOB-

SERVABILITY, pages 46–66. Springer-Verlag New York, Inc., 2001.

[25] Cloudkick. Visual evidence of amazon ec2 network issues, https://www.

cloudkick.com/blog/2010/jan/12/visual-ec2-latency/, 2011.

[26] M. Cochran. Multi-threaded asynchronous programming in c#.

async database calls. part iii., http://www.c-sharpcorner.com/

UploadFile/rmcochran/multithreadedasyncdb05132007005938AM/

multithreadedasyncdb.aspx, 2007.

[27] C. J. Conti, D. H. Gibson, and S. H. Pitkowsky. Structural aspects of

the system/360 model 85 i: General organization. IBM Systems Journal,

7(1):2–14, 1968.

148

https://www.cloudkick.com/blog/2010/jan/12/visual-ec2-latency/
https://www.cloudkick.com/blog/2010/jan/12/visual-ec2-latency/
http://www.c-sharpcorner.com/UploadFile/rmcochran/multithreadedasyncdb05132007005938AM/multithreadedasyncdb.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/multithreadedasyncdb05132007005938AM/multithreadedasyncdb.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/multithreadedasyncdb05132007005938AM/multithreadedasyncdb.aspx

REFERENCES

[28] I. B. M. Corporation. IBM System/360 Model 85, Functional Character-

istics. IBM systems reference library. IBM, 1968.

[29] Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts

and Design (4th Edition) (International Computer Science). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[30] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-

area cooperative storage with cfs. In Proceedings of the eighteenth ACM

symposium on Operating systems principles, SOSP ’01, pages 202–215,

New York, NY, USA, 2001. ACM.

[31] A. Davis, J. Parikh, and W. E. Weihl. Edgecomputing: extending en-

terprise applications to the edge of the internet. In Proceedings of the

13th international World Wide Web conference on Alternate track papers

& posters, WWW Alt. ’04, pages 180–187, New York, NY, USA, 2004.

ACM.

[32] H. P. de Leon. oscommerce, open source online shop e-commerce solutions,

http://www.oscommerce.com/, 2012.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

amazon’s highly available key-value store. In Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, SOSP ’07,

pages 205–220, New York, NY, USA, 2007. ACM.

[34] P. Dixon. Shopzilla’s site redo - you get what you measure:

Velocity 2009 - o’reilly conferences, june 22 - 24, 2009, san

149

http://www.oscommerce.com/

REFERENCES

jose, ca, http://velocityconf.com/velocity2009/public/schedule/

detail/7709, 2009.

[35] E. G. DRIMAK, P. F. DUTTON, and W. R. SITLER. Attached processor

simultaneous data searching and transfer via main storage controls and

intercache transfer controls. IBM Tech. Disclosure Bull., 24:26–27, 1981.

[36] S. Frank. Tightly coupled multiprocessor system speeds memory-access

times. Electronics, 57:164–169, 1984.

[37] T. Groothuyse, S. Sivasubramanian, and G. Pierre. GlobeTP: Template-

based database replication for scalable web applications. In Proceedings

of the 16th International World Wide Web Conference, Ban↵, Canada,

May 2007. http://www.globule.org/publi/GTBDRSWA_www2007.html.

[38] M. A. Habib and M. Abrams. Analysis of sources of latency in download-

ing web pages. In PROCEEDINGS OF WEBNET 2000, 2000.

[39] M. Heath. Asynchronous database connectivity in java, http://code.

google.com/p/adbcj/, 2012.

[40] C. Henderson. Building Scalable Web Sites: Building, Scaling, and Op-

timizing the Next Generation of Web Applications. O’Reilly Media, Inc.,

2006.

[41] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edi-

tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

150

http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://www.globule.org/publi/GTBDRSWA_www2007.html
http://code.google.com/p/adbcj/
http://code.google.com/p/adbcj/

REFERENCES

[42] T. Ho↵. High scalability - strategy: Break up the memcache

dog pile, http://highscalability.com/strategy-break-memcache-

dog-pile, 2009.

[43] S. Hull. Content Delivery Networks: Web Switching for Security, Avail-

ability, and Speed. McGraw-Hill, Inc., New York, NY, USA, 2002.

[44] J. D. JONES and D. M. JUNOD. Cache address directory invalidation

scheme for multiprocessing system. IBM Tech. Disclosure Bull., 20:295–

296, 1997.

[45] H. K. Kalitay and M. K. Nambiarz. Designing wanem : A wide area

network emulator tool. In COMSNETS, pages 1–4, 2011.

[46] A. King and J. Nielsen. Speed Up Your Site: Web Site Optimization.

Pearson Education, 2003.

[47] KLab. repcached - add data replication feature to memcached, http:

//repcached.lab.klab.org/, 2011.

[48] R. Klophaus. Riak core: building distributed applications without shared

state. In ACM SIGPLAN Commercial Users of Functional Programming,

CUFP ’10, pages 14:1–14:1, New York, NY, USA, 2010. ACM.

[49] A. Labrinidis and N. Roussopoulos. Webview materialization. In Proceed-

ings of the 2000 ACM SIGMOD international conference on Management

of data, SIGMOD ’00, pages 367–378, New York, NY, USA, 2000. ACM.

[50] A. Le↵ and J. Rayfield. Web-application development using the mod-

el/view/controller design pattern. In Enterprise Distributed Object Com-

151

http://highscalability.com/strategy-break-memcache-dog-pile
http://highscalability.com/strategy-break-memcache-dog-pile
http://repcached.lab.klab.org/
http://repcached.lab.klab.org/

REFERENCES

puting Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE Interna-

tional, pages 118 –127, 2001.

[51] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.

ACM Trans. Comput. Syst., 7:321–359, November 1989.

[52] J. S. Liptay. Structural aspects of the system/360 model 85 ii: The cache.

IBM Systems Journal, 7(1):15–21, 1968.

[53] R. Liston, S. Srinivasan, and E. Zegura. Diversity in dns performance

measures. In Proceedings of the 2nd ACM SIGCOMM Workshop on In-

ternet measurment, IMW ’02, pages 19–31, New York, NY, USA, 2002.

ACM.

[54] B. Liu and E. A. Fox. Web tra�c latency: Characteris-

tics and implications. In In WebNet98. Online]. Available: cite-

seer.ist.psu.edu/liu98web.html, 1998.

[55] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage with

cops. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011.

ACM.

[56] M. Mayer. Keynote: Velocity 2009 - o’reilly conferences, june 22 - 24,

2009, san jose, ca, http://velocityconf.com/velocity2009/public/

schedule/detail/8913, 2009.

152

http://velocityconf.com/velocity2009/public/schedule/detail/8913
http://velocityconf.com/velocity2009/public/schedule/detail/8913

REFERENCES

[57] G. Mazare. A few examples of how to use a symmetrical multi-micro-

processor. SIGARCH Comput. Archit. News, 5(7):57–62, Mar. 1977.

[58] mediawiki. Mediawiki, http://www.mediawiki.org/wiki/MediaWiki,

2011.

[59] MySQL. Mysql :: Mysql 5.0 reference manual :: 15 replication, http:

//dev.mysql.com/doc/refman/5.0/en/replication.html, 2012.

[60] M. Nambiar, H. K. Kalita, D. Mishra, and S. Rane. Wanem - wide area

network emulator, http://wanem.sourceforge.net/, 2009.

[61] S. Newman. Three latency anomalies, http://amistrongeryet.

blogspot.com/2010/04/three-latency-anomalies.html, 2011.

[62] A. N. Nithya Sampathkumar, Muralidhar Krishnaprasad. Introduction

to caching with windows server appfabric, http://msdn.microsoft.com/

en-us/library/cc645013(en-us).aspx, 2009.

[63] J. Oberheide, M. Karir, and D. Blazakis. Vast: visualizing autonomous

system topology. In Proceedings of the 3rd international workshop on

Visualization for computer security, VizSEC ’06, pages 71–80, New York,

NY, USA, 2006. ACM.

[64] oldmoe. oldmoe: Faster io for ruby with postgres, http://oldmoe.

blogspot.com/2008/07/faster-io-for-ruby-with-postgres.html,

2008.

153

http://www.mediawiki.org/wiki/MediaWiki
http://dev.mysql.com/doc/refman/5.0/en/replication.html
http://dev.mysql.com/doc/refman/5.0/en/replication.html
http://wanem.sourceforge.net/
http://amistrongeryet.blogspot.com/2010/04/three-latency-anomalies.html
http://amistrongeryet.blogspot.com/2010/04/three-latency-anomalies.html
http://msdn.microsoft.com/en-us/library/cc645013(en-us).aspx
http://msdn.microsoft.com/en-us/library/cc645013(en-us).aspx
http://oldmoe.blogspot.com/2008/07/faster-io-for-ruby-with-postgres.html
http://oldmoe.blogspot.com/2008/07/faster-io-for-ruby-with-postgres.html

REFERENCES

[65] K. Orend. Analysis and classification of nosql databases and evaluation of

their ability to replace an object-relational persistence layer. Architecture,

page 100, 2010.

[66] V. N. Padmanabhan and L. Subramanian. An investigation of geographic

mapping techniques for internet hosts. SIGCOMM Comput. Commun.

Rev., 31(4):173–185, Aug. 2001.

[67] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for

multiprocessors with private cache memories. SIGARCH Comput. Archit.

News, 12(3):348–354, Jan. 1984.

[68] perl-mysql async. Pure perl asynchronous mysql driver, http://code.

google.com/p/perl-mysql-async/, 2012.

[69] C. Plattner and G. Alonso. Ganymed: Scalable replication for transac-

tional web applications. In In Proceedings of the 5th ACM/IFIP/Usenix

International Middleware Conference, pages 155–174, 2004.

[70] PostgreSQL. Postgresql: Documentation: Manuals: Asynchronous

command processing, http://www.postgresql.org/docs/8.3/static/

libpq-async.html, 2012.

[71] A. Prof and D. Duchamp. Abstract analytical characterization of the

throughput of a split tcp connection, http://www.cs.northwestern.

edu/~ais/ms_thesis.pdf, 2001.

[72] G. S. Project. Spdy: An experimental protocol for a faster web, http:

//dev.chromium.org/spdy/spdy-whitepaper, 2012.

154

http://code.google.com/p/perl-mysql-async/
http://code.google.com/p/perl-mysql-async/
http://www.postgresql.org/docs/8.3/static/libpq-async.html
http://www.postgresql.org/docs/8.3/static/libpq-async.html
http://www.cs.northwestern.edu/~ais/ms_thesis.pdf
http://www.cs.northwestern.edu/~ais/ms_thesis.pdf
http://dev.chromium.org/spdy/spdy-whitepaper
http://dev.chromium.org/spdy/spdy-whitepaper

REFERENCES

[73] M. Rabinovich and O. Spatscheck. Web Caching and Replication.

Addison-Wesley, 2001.

[74] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on the edge: A plat-

form for replicating internet applications. In In International Workshop

on Web Caching and Content Distribution (WCW, pages 57–77, 2003.

[75] L. Rao. J.p. morgan: Global e-commerce revenue to grow by 19 percent in

2011 to $680b — techcrunch, http://techcrunch.com/2011/01/03/j-

p-morgan-global-e-commerce-revenue-to-grow-by-19-percent-

in-2011-to-680b/, 2011.

[76] J. Ravi, Z. Yu, and W. Shi. A survey on dynamic web content generation

and delivery techniques. J. Netw. Comput. Appl., 32(5):943–960, Sept.

2009.

[77] D. Rayburn. How dynamic site acceleration works, what akamai and

cotendo o↵er, http://blog.streamingmedia.com/the_business_of_

online_vi/2010/10/how-dynamic-site-acceleration-works-what-

akamai-and-cotendo-offer.html, 2010.

[78] rsumbaly. Voldemort topology awareness capability, https://github.

com/voldemort/voldemort/wiki/Topology-awareness-capability,

2011.

[79] R. Ruggaber. Internet of services sap research vision. Enabling Technolo-

gies, IEEE International Workshops on, 0:3, 2007.

155

http://techcrunch.com/2011/01/03/j-p-morgan-global-e-commerce-revenue-to-grow-by-19-percent-in-2011-to-680b/
http://techcrunch.com/2011/01/03/j-p-morgan-global-e-commerce-revenue-to-grow-by-19-percent-in-2011-to-680b/
http://techcrunch.com/2011/01/03/j-p-morgan-global-e-commerce-revenue-to-grow-by-19-percent-in-2011-to-680b/
http://blog.streamingmedia.com/the_business_of_online_vi/2010/10/how-dynamic-site-acceleration-works-what-akamai-and-cotendo-offer.html
http://blog.streamingmedia.com/the_business_of_online_vi/2010/10/how-dynamic-site-acceleration-works-what-akamai-and-cotendo-offer.html
http://blog.streamingmedia.com/the_business_of_online_vi/2010/10/how-dynamic-site-acceleration-works-what-akamai-and-cotendo-offer.html
https://github.com/voldemort/voldemort/wiki/Topology-awareness-capability
https://github.com/voldemort/voldemort/wiki/Topology-awareness-capability

REFERENCES

[80] RuggedCom. Latency on a switched ethernet network, http:

//www.ruggedcom.com/pdfs/application_notes/latency_on_a_

switched_ethernet_network.pdf, 2011.

[81] P. Saab. Scaling memcached at facebook, http://www.facebook.com/

note.php?note_id=39391378919, 2008.

[82] B. Schwartz, P. Zaitsev, V. Tkachenko, J. D. Zawodny, A. Lentz, and D. J.

Balling. High Performance MySQL: Optimization, Backups, Replication,

and Load-Balancing. O’Reilly Media, 2.a. edition, 2008.

[83] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of syn-

chronization and consistency in beehive. In Proceedings of the ninth an-

nual ACM symposium on Parallel algorithms and architectures, SPAA ’97,

pages 211–220, New York, NY, USA, 1997. ACM.

[84] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. Globedb:

autonomic data replication for web applications. In A. Ellis and T. Hagino,

editors, Proceedings of the 14th international conference on World Wide

Web, WWW 2005, Chiba, Japan, May 10-14, 2005, pages 33–42. ACM,

2005.

[85] S. Sivasubramanian, G. Pierre, and M. V. Steen. Globecbc: Content-

blind result caching for dynamic web applications. Technical report, Vrije

University, 2006.

[86] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. Analysis of

caching and replication strategies for web applications. IEEE INTERNET

COMPUTING, 11:60–66, 2007.

156

http://www.ruggedcom.com/pdfs/application_notes/latency_on_a_switched_ethernet_network.pdf
http://www.ruggedcom.com/pdfs/application_notes/latency_on_a_switched_ethernet_network.pdf
http://www.ruggedcom.com/pdfs/application_notes/latency_on_a_switched_ethernet_network.pdf
http://www.facebook.com/note.php?note_id=39391378919
http://www.facebook.com/note.php?note_id=39391378919

REFERENCES

[87] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. Web

replica hosting systems. Technical report, Vrije Universiteit, 2003.

[88] S. Sivasubramanian, M. . Szymaniak, G. Pierre, and M. V. Steen. Repli-

cation for web hosting systems. ACM Computing Surveys, 36:291–334,

2004.

[89] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, Sept.

1982.

[90] C. Snyder and M. Southwell. Pro PHP Security (Pro). Apress, Berkely,

CA, USA, 2005.

[91] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,

and P. Helland. The end of an architectural era: (it’s time for a complete

rewrite). In Proceedings of the 33rd international conference on Very large

data bases, VLDB ’07, pages 1150–1160. VLDB Endowment, 2007.

[92] P. G. Talaga and S. J. Chapin. Exploring non-typical memcache architec-

tures for decreased latency and distributed network usage. In WEBIST,

pages 36–46, 2012.

[93] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and

Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition,

2001.

[94] A. S. Tanenbaum, A. S. Tanenbaum, M. F. Kaashoek, M. F. Kaashoek,

H. E. Bal, and H. E. Bal. Using broadcasting to implement distributed

157

REFERENCES

shared memory e�ciently. In Readings in Distributed Computing Systems,

pages 387–408. IEEE Computer Society Press, 1994.

[95] C. K. Tang. Cache system design in the tightly coupled multiprocessor

system. In Proceedings of the June 7-10, 1976, national computer con-

ference and exposition, AFIPS ’76, pages 749–753, New York, NY, USA,

1976. ACM.

[96] B. Technologies. Basho: Welcome to the riak wiki, http://wiki.basho.

com/Riak.html, 2012.

[97] Terracotta. Ehcache documentation cache-topologies, http://ehcache.

org/documentation/distributed_caching.html, 2011.

[98] D. Terry. Replicated data consistency explained through baseball. Tech-

nical Report MSR-TR-2011-137, Microsoft Research, October 2011.

[99] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,

R. Murthy, and H. Liu. Data warehousing and analytics infrastructure

at facebook. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, SIGMOD ’10, pages 1013–1020, New

York, NY, USA, 2010. ACM.

[100] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for

shared distributed objects. In Proceedings of the eighteenth annual ACM

symposium on Principles of distributed computing, PODC ’99, pages 163–

172, New York, NY, USA, 1999. ACM.

158

http://wiki.basho.com/Riak.html
http://wiki.basho.com/Riak.html
http://ehcache.org/documentation/distributed_caching.html
http://ehcache.org/documentation/distributed_caching.html

REFERENCES

[101] S. Trent, M. Tatsubori, T. Suzumura, A. Tozawa, and T. Onodera. Per-

formance comparison of php and jsp as server-side scripting languages. In

Proceedings of the 9th ACM/IFIP/USENIX International Conference on

Middleware, Middleware ’08, pages 164–182, New York, NY, USA, 2008.

Springer-Verlag New York, Inc.

[102] R. van Renesse and F. B. Schneider. Chain replication for supporting

high throughput and availability. In Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation - Volume 6,

OSDI’04, pages 7–7, Berkeley, CA, USA, 2004. USENIX Association.

[103] Verizon. Ip latency statistics - verizon business, http://www.

verizonbusiness.com/about/network/latency/, 2012.

[104] D. C. Verma. Content Distribution Networks: An Engineering Approach.

John Wiley & Sons, Inc., New York, NY, USA, 2002.

[105] VMware. Vmware kb: Timekeeping best practices for linux guests, http:

//kb.vmware.com/kb/1006427, 2012.

[106] W. Vogels. Eventually consistent. Commun. ACM, 52:40–44, Jan. 2009.

[107] P. Voldemort. Project voldemort, http://project-voldemort.com/

design.php, 2011.

[108] D. Warne. Why using google dns / opendns is a bad idea, http://apcmag.

com/why-using-google-dns-opendns-is-a-bad-idea.htm, 2010.

[109] L. Welling and L. Thomson. PHP and MySQL Web Development. Sams,

Indianapolis, IN, USA, 2003.

159

http://www.verizonbusiness.com/about/network/latency/
http://www.verizonbusiness.com/about/network/latency/
http://kb.vmware.com/kb/1006427
http://kb.vmware.com/kb/1006427
http://project-voldemort.com/design.php
http://project-voldemort.com/design.php
http://apcmag.com/why-using-google-dns-opendns-is-a-bad-idea.htm
http://apcmag.com/why-using-google-dns-opendns-is-a-bad-idea.htm

REFERENCES

[110] A. Wolfe Gordon and P. Lu. Low-Latency Caching for Cloud-Based Web

Applications. In Proceedings of the 6th International Workshop on Net-

working Meets Databases (NetDB ’11), Athens, Greece, 2011.

[111] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency

model for replicated services. In Proceedings of the 4th conference on

Symposium on Operating System Design & Implementation - Volume 4,

OSDI’00, pages 21–21, Berkeley, CA, USA, 2000. USENIX Association.

[112] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous

consistency model for replicated services. ACM Trans. Comput. Syst.,

20(3):239–282, Aug. 2002.

[113] Y. Zhang, N. Ansari, M. Wu, and H. Yu. On wide area network optimiza-

tion. Communications Surveys Tutorials, IEEE, PP(99):1 –24, 2011.

160

Paul G. Talaga

Contact
Information

130 Beech Grove Rd.
Honesdale, PA 18431 USA

|
|
|

Mobile:+1 570-906-4071
E-mail: pgtalaga@syr.edu
WWW: www.fuzzpault.com

Research
Interests

Data locality in geographically distributed dynamic web applications, dis-
tributed caching, assuring HTML compliance for dynamic web applications, functional
programming for the web, evolutionary robotics, neural network systems, artificial life,
chaos and fractals, super image resolution

Education Syracuse University, Syracuse, NY

PhD, Computer and Information Science, August 2012

• Thesis: Exploiting Data Locality in Dynamic Web Applications
• Adviser: Professor Stephen Chapin
• GPA: 3.89/4

Master of Science, Computer Science, May 2006

• GPA: 3.91/4

St.Lawrence University, Canton, NY

B.S., Dual Majors: Computer Science & Math, May 2003

• CS Honors Project: Raytracing as a Scene Rendering Technique
• Minor: Physics
• GPA: 3.4/4

Conference
Publications

[1] P Talaga, S Chapin. Exploring Non-typical Memcache Architectures for Decreased
Latency and Distributed Network Usage. Accepted for presentation & publication
at WEBIST 2012

[2] P Talaga, S Chapin. Guaranteeing Strong (X)HTML Compliance for Dynamic Web
Applications WEBIST 2011, Proceedings of the 7th International Conference on
Web Information Systems and Technologies, Noordwijkerhout, Netherlands, 6-9
May, 2011. Pages 71-79, SciTePress, 2011.

[3] P Talaga, J Oh. Combining AIMA and LEGO Mindstorms in an Artificial Intel-
ligence Course to Build Real World Robots Journal of Computing Sciences in
Colleges, Vol 24, Issue 3, Pages 56-64, January 2009

[4] K Jayaraman, G Lewandowski, P Talaga, S Chapin. Enforcing Request Integrity
in Web Applications In Proceedings of 24th Annual Working Conference on Data
and Applications Security 2010.

[5] K Jayaraman, P Talaga, G Lewandowski, S Chapin. Modeling User Interactions
for (Fun and) Profit: Preventing Workflow-based Attacks in Web Applications
In Proceedings of the 16th Pattern Languages of Programs Conference (Chicago,
Aug 28-30, 2009.). PLoP 09.

Other
Publications

[6] P Talaga, S Chapin. Towards a Guaranteed (X)HTML Compliant Dynamic Web
Application WEBIST 2011 (Selected Papers), Lecture Notes in Business Infor-
mation Processing, Springer 2012

1 of 5

mailto:pgtalaga@syr.edu
http://www.fuzzpault.com/
http://www.syr.edu/
http://www.lcs.syr.edu/
http://www.lcs.syr.edu/
http://www.stlawu.edu/
http://www.stlawu.edu/academics/programs/math-computer-science-and-statistics

Technical
Reports

[7] P Talaga, S Chapin. Exploring Non-typical Memcache Architectures for Decreased
Latency and Distributed Network Usage Syracuse University Technical Report
SYR-EECS-2011-10, Sept. 15, 2011

[8] P Talaga, S Chapin. Strong (X)HTML Compliance with Haskells Flexible Type
System Syracuse University Technical Report SYR-EECS-2010-04, Oct. 22, 2010

Teaching
Experience

Syracuse University, Syracuse, NY

Instructor Summer 2006

CPS 181: Introduction to Computing
• Taught online course through Blackboard System
• Handled all aspects of course including online content creation, management,
and grading

Teaching Assistant September 2004 to May 2009

CIS 275: Discrete Mathematics
• Autumn 2004 & Autumn 2005
• Responsible for two 45-minute recitation sessions per week, weekly o�ce hours
• Grading of all student work excluding exams
• Blackboard course management

CIS 321: Probability and Statistics
• Spring 2005 & Spring 2007
• Responsible for two 45-minute recitation sessions per week, weekly o�ce hours
• Solutions & grading of all student work excluding exams
• Blackboard course management

CIS 352: Programming Languages
• Spring 2006 & Spring 2008
• Responsible for two 45-minute recitation/lab sessions per week, weekly o�ce
hours

• Solutions & grading of all student work excluding exams
• Blackboard course management

CIS 467/667: Introduction to Artificial Intelligence
• Fall 2006 & Fall 2007
• Responsible for two 45-minute lab sessions per week, weekly o�ce hours
• Solutions & grading of all student work excluding exams
• Management of LEGO robotics AI lab
• Creation & guideance of robotic labs
• Course website administration

CIS 252: Introduction to Computer Science
• Spring 2008
• Responsible for three 45-minute lab sessions per week, weekly o�ce hours
• Solutions for HW
• Blackboard course management

CIS 453/454: Software Specification & Design
• Fall 2008, Spring 2009
• Assist with project selection & implementation
• Grading of all student work

2 of 5

http://www.lcs.syr.edu/media/documents/2011/9/EECS_TR_2011_10_Talaga.pdf
http://www.lcs.syr.edu/media/documents/2010/10/EECS_TR_2010_04_Talaga.pdf
http://www.syr.edu

Professional
Experience

Fuzzpault Technologies, LLC, Honesdale, PA

Owner/Operator 2003 to present

• Provide web design, maintenance, and hosting services to local businesses (client
list available)

• Provide on-site system maintenance, repair, and management of computing, net-
work, and printing systems

• Computer hardware and software repair

VA Hospital - Research Division, Syracuse, NY

Research Programmer May 2008 to May 2009

• Develop test suite for visual stimulus research using Matlab, OpenGL, & iView
gaze capture system

• Integrate reliable iView remote control via ethernet from Matlab while satisfying
real-time constraints

US Air Force Research Lab (AFRL), Rome, NY

Mathematics Technician May 2005 to August 2005

• Develop melodic sensing algorithms using wavelet theory for use in sensor systems

Himalayan Institute, Honesdale, PA

Assistant Network Administrator May 2003 to August 2004

• Provide tech support and manage 200+ MS Windows & Mac systems in two
locations

• Assist with Cisco network enhancements & NORTEL PBX maintenance
• Upgrade and patch MS Windows Servers (2003) used for order processing and
shipping

Segway LLC., Manchester, NH

Control Systems Intern Summer 2001, Summer 2002

• Test, capture, and analyze data from algorithm modifications to the Human
Transporter (HT)

• Provide hardware support for software and controls departments, including HT
repair and rebuild

• Develop Matlab test suites for e�ciency, performance, and stability measurement

Professional
Memberships

Association for Computing Machinery (ACM), Member, 2004–present

Awards St. Lawrence University - 2003
• Pi Mu Epsilon - Mathematics Honor Society
• Society of Physics Students
• Kurt Douglas Award for Technical Theater

Hardware and
Software Skills

Computing and Networking Systems:
• Desktop, server, and laptop repair/upgrade
• Installation/troubleshooting switches, routers, firewalls
• LAN management, printer installation/repair

3 of 5

http://www.fuzzpault.com/
http://www.fuzzpault.com/webdesign/
http://himalayaninstitute.org/
http://segway.com/
http://www.stlawu.edu/

Information/Internet Technologies:
• Networking (UDP, TCP, ARP, DNS, Dynamic routing), Services (Apache, SQL,
MediaWiki, osCommerce, POP, IMAP, SMTP, application-specific daemon design)

• Installation/management of Linux based web servers
• IPTables firewall, MySQL administration
• PHP and Perl scripting

Computer Programming:
• C, C++, Objective C, Java, JavaScript, Perl (/TK), PHP, Lisp, Haskel, UNIX shell
scripting, SQL, MySQL, Matlab, LATEX, and others

Matlab skill set:
• Linear algebra, Fourier transforms, Wavelet analysis, Monte Carlo analysis, GPU
computation, OpenGL visualization, polynomials, statistics, genetic algorithms, neu-
ral networks

• Toolboxes: genetic algorithms and neural networks

Productivity Applications:
• TEX (LATEX, BibTEX), emacs, most common productivity packages (for Windows,
OS X, and Linux platforms)

• MS O�ce: Word, Excel
• Photoshop CS5, Dia, OmniGra✏e

Operating Systems:
• Microsoft Windows family, Apple OS, Apple iOS, Linux, and other UNIX variants

Expertise Mathematics:
• Applied Mathematics, Graph Theory, Statistics, Combinatorics

Computer Science:
• Programming Languages, Artificial Intelligence, Computer Architecture, Operating
Systems, Algorithms, Data Structures, Web Security, Artificial Life, Web Program-
ming

Projects • Tentacle:
Database middleware system for PHP and MySQL web applications allowing geo-
graphical distribution of a non-distributed web application. Uses database replica-
tion, query caching, and per-SQL-template consistency specifications.

• MemcacheTach:
Detailed Memcache logging and analysis tool. Provides data on key usage, key dis-
tribution, command usage, Memcache server response times, as well as many other
parameters. Published in WEBIST 2012

• Location-aware Memcache:
Developed and evaluated 2 new Memcache storage architectures providing decreased
latency and network usage in specific applications. Published in WEBIST 2012

• MindStorms Rubix Cube Solver:
AI class project in which I built a robot and managed software development. Used
neural network-based vision system, external student-designed solver, and command
playback. User-interface written in Perl/TK. YouTube video available.

• InfBB:
Implementation of an infinite-depth web bulletin board system demonstrating secu-

4 of 5

http://www.mathworks.com/products/matlab/
http://www.youtube.com/watch?v=9eXU83RQbOg

rity patterns. Published in PloP 2009.

• Evolutionary Robotic System:
Design and implementation of neural network-based evolutionary robotic software
using C++, Bullet physics engine, and Lua on a grid system. Resulting networks
were evaluated in hardware with LEGO Mindstorms running Lua.

• Bayawak:
Implemented proof-of-concept URL rewriting system for web application security
based on Perlbal. Continued work produced the Bayawak implementation published
in DBSec 2010.

References
Available to
Contact

Dr. Stephen Chapin chapin@ecs.syr.edu (315) 443-4457
• Associate Professor, L.C. Smith College of Engineering and Computer Science,
Syracuse University

• Ph.D. advisor

Dr. Kishan Mehrotra mehrotra@syr.edu (315) 443-2811
• Professor, L.C. Smith College of Engineering and Computer Science,
Syracuse University

• Dr. Mehrotra taught many of the classes for which I was a TA.

Dr. Jae Oh jcoh@syr.edu (315) 443-4740
• Associate Professor, L.C. Smith College of Engineering and Computer Science,
Syracuse University

• Dr. Oh taught AI, which I was a TA and robotics lab manager.

Dr. Brad C. Motter Brad.Motter@va.gov (315) 425-4873
• Research Health Scientist,
Veterans A↵airs Medical Center,
Syracuse, NY

• I developed vision testing software to support Dr. Motter’s research.

More
Information

More information and auxiliary documents can be found at
http://www.fuzzpault.com.

5 of 5

mailto:chapin@ecs.syr.edu
http://ecs.syr.edu/
http://syr.edu/
mailto:mehrotra@syr.edu
http://ecs.syr.edu/
http://syr.edu/
mailto:jcoh@syr.edu
http://ecs.syr.edu/
http://syr.edu/
mailto:Brad.Motter@va.gov
http://www.fuzzpault.com

	Exploiting Data Locality in Dynamic Web Applications
	Recommended Citation

	List of Figures
	List of Tables
	1 Introduction
	1.1 Why Latency Matters
	1.2 Sources of Web Latency
	1.3 Data Dependencies
	1.3.1 Temporal Dependencies
	1.3.2 Relational Dependencies
	1.3.3 Data Consistency
	1.3.4 Relational Relaxation

	1.4 Thesis & Contributions
	1.5 Organization

	2 Internet Architecture and Technologies
	2.1 Location-Aware Client Routing
	2.2 Web Farm Architecture
	2.3 Web Server Software Architecture
	2.4 Summary

	3 Location-Aware Memcache
	3.1 Introduction
	3.2 Memcache Background
	3.3 Memcache Performance Prediction Model
	3.3.1 Assumed Network Topology
	3.3.2 Model Constants and Calculation

	3.4 MemcacheTach
	3.5 Memcache Architectures
	3.5.1 Standard Deployment Central - SDC
	3.5.2 Standard Deployment Spread - SDS
	3.5.3 Standard Deployment Replicated - SDR
	3.5.4 Snooping Inspired - Snoop
	3.5.5 Directory Inspired - Dir

	3.6 Latency Estimation
	3.7 Experimental Results
	3.7.1 Latency
	3.7.2 Network Load
	3.7.3 Review

	3.8 Discussion
	3.8.1 Latency, Utilization, and Distributed Load
	3.8.2 Multi-Datacenter Usage
	3.8.3 Selective Replication
	3.8.4 Object Expiration
	3.8.5 User Space Caching
	3.8.6 Overflow
	3.8.7 System Management

	3.9 Summary

	4 Tentacle
	4.1 Background
	4.1.1 Web Application Architecture
	4.1.2 Relaxing Consistency
	4.1.3 Database Replication

	4.2 Tentacle
	4.2.1 Architecture
	4.2.2 Operation

	4.3 Experimental Results
	4.3.1 osCommerce
	4.3.2 Application State
	4.3.3 Simulated Traffic
	4.3.4 Results

	4.4 Discussion
	4.4.1 Alternate Consistency Specifications
	4.4.2 Database Considerations
	4.4.3 Cache Pre-warming
	4.4.4 Stampede Mitigation
	4.4.5 Pattern-Based Homing

	4.5 Summary

	5 Experimental Results Details
	5.1 User Simulation & Response Time
	5.2 Web Server Configurations
	5.3 Database Configuration
	5.4 Memcache Performance Measurement
	5.4.1 Data Capture
	5.4.2 Data Analysis

	5.5 Network Utilization Measurement
	5.6 Memcache Evaluation Progression
	5.7 Tentacle Evaluation Progression
	5.8 Summary

	6 Related Work
	6.1 Caching & Distributed Computation
	6.2 Distributed Datastores
	6.2.1 Keystores
	6.2.2 Distributed Filesystems
	6.2.3 Distributed Databases

	6.3 Other Systems
	6.4 Database Middleware Systems
	6.4.1 DBProxy
	6.4.2 Ganymed
	6.4.3 GlobeCBC
	6.4.4 GlobeDB
	6.4.5 GlobeTP

	6.5 Asynchronous Database Writes
	6.6 Content Delivery Networks
	6.7 Summary

	7 Conclusion & Future Work
	7.1 Conclusions
	7.2 Summary of Contributions
	7.3 Future Work
	7.3.1 Performance-Aware Caching
	7.3.2 Rich Application-Datastore Interactions

	Appendix A Memcache Latency Formula
	Appendix B SDR: Mem_dup.php
	Appendix C Mem_RackAware.php
	Appendix D Snoop: Mem_snoop.php
	Appendix E Dir: Mem_dir.php
	Appendix F MemcacheTach: memcache-logging.php
	Appendix G MemcacheTach: analyse.php
	Appendix H Tentacle: tentacle.php
	Appendix I Tentacle: loop.php
	Appendix J Tentacle: tentacle-daemon.php
	Appendix K Tentacle: remoteaccess.php
	References

