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ABSTRACT 
The goal of Building Information Modeling (BIM) is the continuous use of digital 
construction models from the planning stage onwards. The affected processes are iterative and 
involve multiple stakeholders who work at varying pace and in varying levels of detail. These 
stakeholders require highly specific tools based on diverging data models. To satisfy all those 
requirements one of the best known Open BIM implementations – IFC – offers a data model 
containing more than one thousand different types – from basic to highly specific. Due to its 
complexity, potential users must undergo prolonged training. The even bigger challenge for 
IFC, however, is keeping up with the updates of building regulations or with the ever 
expanding state of the art in simulation tools. Our approach, SIMULTAN, in contrast to IFC, 
consist of 26 different basic types. They can be combined to increasingly complex models, 
which can themselves be used as types for other models. This enables each domain expert to 
create a custom data structure for any specific task, which is automatically compatible with 
the data structure of any other domain expert using the same basic types. It shortens the 
training time and facilitates the loss-, corruption-, and conflict-free exchange of information 
between domain experts, which is a key aspect of BIM. As a use case, we present the 
calculation of the U-Value of a multi-layered wall. We compare number, complexity and 
adequacy of the necessary data modelling steps in IFC4 and in SIMULTAN. The result shows 
that the flexible data model of SIMULTAN can be better adapted to the task. Another 
significant advantage of SIMULTAN is its inbuilt separation of responsibilities at the level of 
the most basic types, which, when combined with secure transaction technologies, can enable 
safe, effective and easily traceable interaction among stakeholders. 
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INTRODUCTION 
The idea of the Building Information Modeling (BIM) is the consistent use of digital building 
models from planning to realization, from the operational phase to demolition. Already in the 
70s, Eastman (1975) published a concept for the construction and the use of virtual building 
models. In 1992, van Needervan and Tolman (1992) first used the term BIM. One huge 
advantage of digital building models is the lossless information exchange. However, to ensure 
this exchange, the whole model must be interoperable, including all information such as 
climate data, usage information, variants, etc. 

The interoperability of BIM models is present to varying degrees depending on the type of 
BIM. Little BIM refers to the use of a specific BIM software by a single planner. In this case, 
BIM is used without external communication (Jernigan, 2008). Big BIM refers to consistent 
model-based communication between all stakeholders involved in all phases of a building's 
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life cycle. In addition, a distinction is made between closed and open BIM, depending on 
whether vendor-neutral data exchange formats are used or not (Borrmann 2015). 

An existing and already widely used standard for BIM is the Industry Foundation Classes 
(IFC) (buildingSMART, 2018) definition. The IFC models hold geometric data as well as 
metadata about building objects and are designed to support interoperability. Steel et al. 
(2012) investigate various issues of model-based interoperability in exchanging building 
information models between different tools, with particular focus on the use IFC. The authors 
pointed out that one of the greatest challenges with regard to interoperability is the 
inconsistency of modelling styles. The modeling language should clearly describe all 
possibilities so that unexpected alternatives are not possible. The authors Polit-Casillas and 
Howe (2013) also take up the issue of complex systems and the synchronization of different 
types of information. In their work, they combine BIM with a systems engineering approach 
to obtain a model based engineering approach. Thereby, they focus on the interoperability and 
validation of information in different planning phases, from requirements modelled in a 
modelling language such as the systems modeling language (SysML) to models drawn in, 
e.g., Computer Aided Design (CAD) tools.

In this paper, we move towards a big open BIM data model where the information is available 
at the level of detail at which it is required. This means that general information or 
information placeholders can be defined at the beginning of planning and later on be refined 
to become a realistic model that depicts the system behaviour. Our approach has the 
advantage that the complexity of the data model itself does not increase with the complexity 
of the represented buildings. 

MOTIVATING EXAMPLE 
Let us consider the case of a wall that consists of material layers and has a geometry, which 
sets an upper limit to its total thickness. The wall, the material layers and their respective 
materials have properties that are necessary for various calculations (e.g. of the U-Value). Fig. 
1 displays an excerpt of the IFC4 data model (buildingSMART, 2013) in Universal Modelling 
Language (UML) notation (OMG, 2017) that enables the storage of that information. The 
coloured paths show all types and associations involved in establishing various relationships 
between objects. In the case of linking a wall with a property set we have just two objects that 
require the maintenance of 13 types and 3 associations (path 2 in Fig. 1). It must be taken into 
account that type and object are not synonyms. The distinction between a type material and an 
object m1 of type material, for example, is as follows: The type material requires all objects 
conforming to it to have a text parameter Name. Object m1 conforms to type material and 
therefore has a specific text value (e.g. Wood) associated with the parameter Name. In other 
words, the type can be regarded as a template for the creation of (an unlimited number of) 
objects and the associations between types – as information exchange contracts between the 
corresponding objects. Fig. 1 contains only types. 

Our objective is to decrease complexity by minimizing the number of types and associations 
required for the production of any object. 

MULTI-LEVEL DATA MODEL 
The complete data model of IFC4 contains a total of 1167 type definitions and tens of 
thousands of associations among them (see Fig. 1). This data model has to be implemented 
and maintained in each software that manipulates IFC4 object models. Partial 
implementations carry the risk of loss of information across software boundaries. 
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Fig. 1. An abbreviated excerpt of the IFC4 specification. The coloured paths show all types 
and associations necessary to establish a relationship between two objects: path 1 (in red) - 
between a wall and a material, path 2 (in blue) - between a wall and its properties, path 3 (in 
light red) – between a product and a material, and path 4 (in light blue) – between a material 
and its properties. 

IFC4 has a fixed type structure. The information-carrying part – the parameters - are provided 
as property and quantity sets and are maintained separately (e.g., hosted on a server). It is 
possible to associate any type with any property or quantity set – a significant loosening of the 
constraints of the previous IFC version, 2x3. In essence, IFC4 provides a two-part data model 
that separates data structure from data content. The content has practically unlimited 
flexibility, since users can create their own property and quantity sets. The structure is rigid 
and can only be used as a container, but not as a carrier of information. 

The SIMULTAN data model takes the next step and uses the type structure as an information 
carrier in addition to numerical and textual parameters. The type structure of any data model 
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is its ontology (Liu et al. 2013). A flexible, or editable, ontology allows the continuous 
incorporation of expert knowledge, as opposed to the development iterations of a data model 
with a fixed ontology that allows this once every few years (Laakso and Kiviniemi, 2012). 
Fig. 2 shows the SIMULTAN data model. Its central concept is the Component - a type that 
allows the definition of other types. The definition of Component includes a recursive 
relationship named Subcomponents (see Fig. 2), which enables each component to have an 
arbitrary number of sub-components, each with its own name and set of Parameters and 
Calculations. In this way, each component depicts its own ontology (or formal type 
definition) in its structure. On the one hand, the values of its parameters can be set to a 
default, in which case the component plays the role of a type or a template (e.g., Material). On 
the other hand, they can be set to values specific for light concrete, in which case it plays the 
role of an object (e.g., object Light Concrete conforming to type Material). The refinement of 
types (inheritance level) and the production of objects (instantiation level) are both possible 
within the same data model and can be applied an arbitrary number of times. For that reason, 
SIMULTAN is a multi-level data model. 

Fig. 2. SIMULTAN data model (the 5 subclasses of MultiValue were omitted). The coloured 
paths show the same relationships as in Fig. 1. 

The main advantage of SIMULTAN’s simple structure is its ability to depict any data model 
more complex than itself (e.g., IFC4) through nesting and referencing of components or their 
incorporation in a flow network (for multivalent dependencies). Thus, it is a universal 
translator between data models, as it is very easy to implement, maintain and map to and from 
other structures. It is also flexible enough to incorporate any data structure necessary for any 
calculation or simulation method. We will demonstrate this in the next section. 
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PROOF OF CONCEPT 
As demonstration case for our proof of concept, we use the calculation of the U-Value of a 
multi-layered wall according to EN ISO 6946:2017. As shown in Fig. 1, the association of a 
wall with a material in IFC4 involves 14 types and 5 associations. For the same purpose in 
SIMULTAN we need a component wall referencing a component wall construction (see path 
1 in Fig. 1, Fig. 2 and Table 1). Table 1 summarizes the difference in complexity of the IFC4 
and SIMULTAN data models and their limitations. 

Table 1. Quantitative comparison between the IFC4 and the SIMULTAN data models. 
Comparison Criteria IFC4 Data Model SIMULTAN Data Model 
total no of type definitions 776 entities and 391 types, 

including 206 enumerations and 
59 select types: 1167 in total 

19 classes and 7 enumerations: 
26 in total 

total no of pre-defined 
parameter collections 

408 property sets and 91 
quantity sets: 499 in total (not 
contained in the formal IFC4 
specification) 

- 

total no of user-defined 
parameter collections 

unlimited unlimited 

total no of user-defined 
calculations 

- unlimited 

min. no of types, objects and 
associations included in path 1 

14 types, 2 objects, 5 
associations 

1 type, 2 objects, 1 association 

min. no of types, objects and 
associations included in path 2 

13 types, 2 objects, 3 
associations 

2 types, 2 objects, 1 association 

For the U-Value calculation we now need the following parameters – the external and internal 
surface resistance Rse and Rsi, and, for each homogenous material layer, the thickness d and 
the design thermal conductivity λ. In IFC4, this calculation requires the association of a 
material object with the property set 8.10.5.10 Pset_MaterialThermal, containing a 
ThermalConductivity property in addition to BoilingPoint, FreezingPoint and 
SpecificHeatCapacity. The wall object also needs to be associated with 6.1.4.23 
Pset_WallCommon, containing a ThermalTransmittance property (according to the 
documentation, corresponding to the U-Value) in addition to 10 others (buildingSMART, 
2013). The thickness of each material layer is a direct attribute of the type IfcMaterialLayer 
(see Fig.1). IFC4 has a type IfcThermalResistanceMeasure but no pre-defined property or 
quantity set containing a property corresponding to Rse or Rsi, which necessitates the definition 
of a custom property set. In summary, in order to depict the calculation of the U-Value in 
IFC4, we need two pre-defined and one user-defined property set, we need to maintain 14 
redundant entries in these property sets, and any calculation method using this structure has to 
read and write both to object values (material layer thickness, total wall thickness) and to 
parameter sets. 

The SIMULTAN data model, on the other hand, allows the user to define exactly the 
parameters needed for the specified calculation, since additional parameters or calculations 
can be added later. One possible expression of such data structure can consist of the 
following: A component wall construction contains parameters Rse, Rsi and U-Value. Each 
material layer is a sub-component of it, with parameters d and the thermal resistance of the 
layer R, references a component carrying the material properties, in this case only λ, and 
calculates R on its own. The component wall construction gathers the information from its 
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sub-components into its own calculation(s) and determines its own U-Value. In this way, 
SIMULTAN enables not just the efficient storage of information but also manages its flow. 

CONCLUSION AND OUTLOOK 
In order to be able to incorporate new methods and technologies data models need flexibility. 
IFC4 has already made the first step by decoupling data structure from data content. 
SIMULTAN takes the next step and introduces an adaptable data structure that can define any 
domain-specific ontology (e.g. building physics) in addition to the traditional numeric and 
textual parameters and can act as a universal translator. However, with a greater flexibility 
comes also a greater responsibility for the domain experts defining new data structures. 
Therefore, SIMULTAN incorporates an access tracking system (see ComponentAccessProfile 
in Fig. 2) as the mandatory equivalent of IFC4’s IfcActorResource, where each component 
has an owner solely responsible for its development. Other actors (or stakeholders) can have 
supervision or publication rights. Thus, our data structure enables the stakeholders to view 
and modify all necessary information within their workflow. Applications using this data 
structure adapt to the user’s workflow instead of forcing the user to adapt to the application. In 
a future development step, this system can be coupled with secure transaction technologies, 
such as BlockChains (Puthal et al. 2018), to provide a solid foundation for reliable and 
effective interactive work in real time. 
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