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ABSTRACT

This dissertation explores the electromagnetic behavior of arbitrarily oriented
biaxially anisotropic media. An overview of wave behavior in biaxially anisotropic (or simply
biaxial) media is presented. The reflection and transmission behaviors of electromagnetic waves
from half-space and two-layer isotropic-biaxial interfaces are studied. The reflection and
transmission coefficients are used in the formulation of eigenvector dyadic Green’s functions.
These Green’s functions are employed in full-wave analyses of rectangular microstrip antennas

printed on biaxial substrates.

The general characteristics of electrically biaxially anisotropic (biaxial) media are
presented including permittivity tensors, optic axes, orientation of the medium, and
birefringence. After a detailed discussion of wave propagation, wave behavior at isotropic-
biaxial interfaces is investigated. The reflection and transmission of electromagnetic waves
incident upon half-space and two-layer interfaces, at which the waves may be incident from
either the isotropic region or the biaxial region, are investigated. The biaxial medium considered
may be aligned with the principal coordinate system or may be arbitrarily oriented. Critical
angle and Brewster angle effects are analyzed for the half-space case. Once the wave behavior is
well understood, the eigenvector dyadic Green’s function is presented for two-layer geometries
involving isotropic and biaxially anisotropic media. The symmetrical property of the dyadic
Green’s function is derived and used to generate an unknown Green’s function from a known
Green’s function for the two-layer geometry of interest. This new Green’s function is used to

model rectangular microstrip antennas.



Following the investigation of reflection and transmission, rectangular microstrip
antennas are analyzed using the eigenvector dyadic Green’s function and the method of
moments. Galerkin’s method is used to evaluate current distributions on gap-fed dipole antennas
and probe-fed patch antennas. The resulting current distributions are used to compute antenna
parameters such as input impedance, resonant length and principal polarization radiation
patterns. For the patch antennas, impedance bandwidth and cross-polarization patterns are also
investigated. Results are presented for biaxially anisotropic substrates of varying thickness,
permittivities, and orientations, providing the understanding of the complex behaviors of

microstrip antennas printed on biaxially anisotropic substrates.
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1 INTRODUCTION

1.1 Research Objectives

This work investigates wave phenomena in arbitrarily oriented biaxially anisotropic
media and the behavior of microstrip antennas on biaxial substrates. Pettis’ extensive work [1]
solved the problems of Hertzian dipoles positioned in and above a biaxial slab, an infinite
transmission line printed on a biaxial substrate and a microstrip dipole antenna printed on a
biaxial substrate. To arrive at solutions of these problems, Pettis studied propagation

characteristics, Green’s functions and singularities inherent in this type of media.

We intend to gain greater understanding of the wave behavior in this medium by
studying reflection and transmission from isotropic-anisotropic interfaces. We then use the
reflection and transmission coefficients in the eigenvector dyadic Green’s functions to study
microstrip antennas. We again solve the gap-fed microstrip dipole problem using the
eigenvector dyadic Green’s function, rather than the transition matrix dyadic Green’s function

(as was done by Pettis [1]). Finally, we solve the probe-fed rectangular microstrip patch antenna.

The motivation for studying biaxial materials is twofold. First, there are several
naturally occurring materials with biaxial properties. When we ignore this biaxial nature, we are
unable to accurately predict the behavior of circuits using these materials. However, more
interesting is the current research in material science. Material scientists are working on ways to
engineer new materials. Much of this research has been fueled by electromagnetic interests in
left-handed materials that have negative permittivity and/or permeability as well as other

metamaterials. Some studies have shown these materials to have biaxial properties. Secondly, if
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we understand biaxial media and show a real benefit, the technology is developing to make the
requisite materials a reality. Thus this research aims to be the next step to showing the

usefulness of engineered biaxial substrates.

1.2 Previous Work

Considerable work has been done in the study of anisotropic materials. This section
reviews what has been done and highlights places where additional contributions can be made,

specifically in the study of biaxially anisotropic materials.

1.2.1 Wave Behavior in Anisotropic Materials

Wave propagation and the reflection and transmission of electromagnetic waves from
an interface are fundamental to the study of electromagnetics. Most electromagnetics texts
contain detailed study of these phenomena when the interface is between two isotropic materials.
In his text, Kong [2] handles this problem for isotropic and uniaxial media. While the analysis of
wave propagation and reflection and transmission does not directly lend itself to application, it is

essential to the understanding of the physics of any electromagnetic problem.

Many authors have studied reflection and transmission in complex materials.
Bianisotropic media (in which there is cross-coupling between electric and magnetic fields [2])
has garnered particular attention [3]-[7]. In [3] Tsalamengas provides a formulation to compute
the reflection and transmission of an arbitrarily polarized wave incident upon a general
bianisotropic slab. This slab is described by four tensors, with no limitations on the tensors
themselves. Therefore, this formulation could be used to evaluate reflection and transmission
coefficients of an arbitrarily oriented biaxial slab. However, we have only one tensor and this

2
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formulation is unnecessary. Further, Tsalamengas does not analyze the results or provide
numerical examples. In [4] Semchenko and Khakhomov derive and compute reflection and
transmission coefficients for unrotated uniaxial bianisotropic material and explore the varying
incident wave polarizations. Yun Hee Lee [5] studied wave behavior in tilted and untilted
uniaxial media including a detailed study of reflection and transmission from an isotropic-
uniaxial interface. In [6] Rikte et al. present the coordinate free reflection and transmission
dyads for the two-layer problems of 1) a general bianisotropic medium with an isotropic
(vacuum) half-space on both sides and 2) a bianisotropic slab with a PEC (perfect electrical
conductor) backplane (reflection dyad only). In [7] the most general bianisotropic material is
considered by He et al. such that permittivity and permeability tensors may be in general biaxial
and/or chiral. A 2x2 matrix is used without formulating the fields explicitly in each region. This

provides good numerical results, but is not as good for studying the waves at the surface.

Metamaterials, recently a hot research area, have also been studied for their reflective
and refractive characteristics. Grzegorczyk et al. ([8, 9]) provide an extensive study of the
behavior of waves incident upon metamaterial layers. Their work is particularly relevant
because they first consider a general bianisotropic medium (with biaxial permittivity and
permeability tensors), and then apply the properties of left-handed materials. Therefore, their
formulation is general but their results are specific to negative epsilon materials. In fact, the
inclusions used to create negative epsilon (or mu) materials make the material anisotropic in

general so it is important to understand the anisotropic behaviors.

Researchers have also considered reflection and transmission from biaxial

boundaries. Stamnes and Sithambaranathan [10] considered reflection and refraction from a
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plane interface separating an isotropic and a biaxial medium. In their paper, they consider only
the unrotated biaxial medium with a diagonal permittivity tensor. Further, they do not present
numerical results but rather the formulation of the resulting fields when a plane TE (transverse
electric) or TM (transverse magnetic) wave is incident on the interface. Abdulhalim [11]
presents a 2x2 matrix approach to solving for reflection and transmission coefficients from
biaxial boundaries but does not present any numerical results. Landry [12, 13] studies
transmission and reflection at planar interface between arbitrarily oriented biaxial media. He
formulates reflection and transmission coefficients using characteristic angles. The formulation
is based on an interface between two arbitrarily oriented biaxial slabs; however, the resulting
analysis includes the special case where one of the slabs is isotropic. Landry considers wave
incident upon the boundary from each side (downward and upward incident). His analysis

includes a brief discussion of Brewster angle and critical angle.

While Landry’s analysis of reflection and transmission from an arbitrarily oriented
biaxial slab is fairly complete, his formulation is considerably different from our formulation.
We are using a form based on components of the propagation vector as this is how we use the
coefficients when computing the Green’s function. Further, he studied the reflection and
transmission of the incident wave in an isotropic region in terms of polarization angle. We are
more interested in considering that wave as either TE (transverse electric) or TM (transverse
magnetic). Finally, when he considered the layered problem, he analyzed reflection and
transmission as a series of bounces. We formulate the total upward and downward propagating
waves to obtain overall reflection and transmission coefficients. We also hope to more clearly

define the waves inside the biaxial medium. Landry does consider the two polarizations, but
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describes them only as “associated with inner surface” or “associated with outer surface.”
Finally, we perform a more in-depth study of the Brewster angle effect and critical angle effect

as material parameters are varied.

1.2.2 Microstrip Antennas

Microstrip circuits are ubiquitous in modern technology. Any printed wire above
some grounded substrate acts as a microstrip line. They are present everywhere from computer
chips to complex radar beamformers. Initially, microstrip circuits were designed and analyzed
for isotropic substrates. However, as research progressed it was found that many manmade and
natural substrates are not isotropic. In 1985, Alexopoulos [14] detailed known anisotropies and
provided analysis of integrated microstrip circuits on anisotropic substrates using existing
empirical, quasi-static and dynamic solution methods. Alexopoulos had two primary
motivations for studying the behavior of microstrip lines on anisotropic materials. The first
motivation stems from the fact that variations in the permittivity of a dielectric within an
individual slab or between different batches were known to produce errors and hinder circuit
repeatability. In fact, he showed that significant errors (over 8% for thin lines) in the
computation of effective permittivity exist if anisotropy is ignored. Secondly, Alexopoulos
believed that in some applications, “anisotropy serves to improve circuit performance.” This
sentiment is shared by many material researchers trying to create substrates that will provide
some special circuit performance. In [14] Alexopoulos considered primarily uniaxially
anisotropic substrates. Later, Tsalamengas et al. [15] investigated propagation modes in
microstrip lines printed on anisotropic substrates with general electric and magnetic anisotropies.

The substrates were described by 3x3 permittivity and permeability tensors with no restrictions
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on their elements. In our analysis, we are considering only electrically biaxial substrates.
Therefore, only the permittivity of the medium is a 3x3 tensor. The medium is magnetically
isotropic. Further, as will be shown, there are restrictions on the elements. We consider a
diagonal biaxial permittivity tensor that is then rotated, so the elements of the 3x3 tensor are
related by these rotation angles. In his dissertation Pettis [1] considered microstrip lines on

arbitrarily oriented biaxial substrates, the same type of medium we are studying here.

While the research into microstrip lines printed on anisotropic substrates laid the
ground work for all other microstrip circuits, in this work, we are primarily concerned with
microstrip antennas. Microstrip antennas have been of interest for well over 50 years and can be
printed on almost any substrate in a wide variety of shapes. They are used to make low profile
conformal arrays and used in small personal electronics such as cell phones and wireless internet
devices. In 1981, Carver and Mink [16] summarized over 25 years of work to date and
researchers have continued to study these types of antennas for 30 more years. At the time of
Carver and Mink’s report [16] research had primarily focused on microstrip dipoles and
conformal antennas printed on isotropic substrates. Early investigations of microstrip dipoles
include radiation properties [17] and mutual impedance [18]. Uzunoglu et al. [17] studied
radiation properties of microstrip dipoles. They used the Green’s function for a horizontal
Hertzian dipole on a grounded substrate combined with an assumed sinusoidal current
distribution to compute the input impedance using variation methods. Alexopoulos and Rana
[18] used the same method to compute the mutual impedance between microstrip dipoles in

broadside, collinear and echelon configurations.
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Many researchers studied the more general rectangular patch problem. As with
microstrip line research, the baseline research was for antennas printed on isotropic substrates.
Early research into microstrip patch antennas includes input impedance, mutual coupling [19]
and resonant frequencies [20]. Pozar [19] uses a method of moments approach to compute both
input impedance and mutual coupling of rectangular microstrip antennas in which a coaxial
probe type feed is used. In the moment method computation, an idealized probe feed is used. To
account for the probe self-inductance, an inductance term is added to the input impedance.
Bailey and Deshpande [20] compute resonant frequency of microstrip antennas using a method
based on the cavity model with the “grounded dielectric being approximated by an effective
dielectric constant.” As bandwidth of an antenna is a concern for any application, Kara [21]
presents simple closed-form equations for calculating the bandwidth of probe-fed rectangular
microstrip antennas. Kara’s formulas are based on the cavity model and transmission line model
and are valid for various substrate thicknesses and permittivities. Continued efforts produced
detailed research into how to feed rectangular microstrip patch antennas [22], [23], and [24].

From this base, applications were considered including arrays of microstrip antennas [25].

As research progressed, anisotropic substrates were considered. Pozar was one of the
first researchers to consider the rectangular microstrip patch on a uniaxial substrate [26]. Pozar
computes both radiation and scattering from a microstrip patch on an electrically uniaxial
substrate and compares these results to the same patch on an isotropic substrate. He formulates
the characteristic Green’s function in the spectral domain and then uses the moment method to
compute radiated power, power delivered to surface waves and radar cross section. He uses a

feed model similar to the one used in [19]. As with antennas on isotropic substrates, researchers
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sought solutions for parameters of interest for microstrip antennas on uniaxial substrates. Wong
et al. [27] computed the resonant frequency of a rectangular patch using Galerkin’s method with
sinusoidal basis functions. Resonant frequency and half-power bandwidth are compared for
isotropic, positive uniaxial (anisotropic ratio = &4/¢, < 1) and negative uniaxial (anisotropic ratio
> 1) substrates. The results show that both resonant frequency and half-power bandwidth
increase on a positive uniaxial substrate and decrease on a negative uniaxial substrate.
Broadband tapered microstrip patch antennas printed on uniaxial dielectric substrates are
considered in [28]. Full-wave spectral domain formulation by means of Galerkin’s method is
used along with the transmission line method to compute bandwidth. It is found that linear
variations in substrate height produce great influence on the bandwidth of microstrip antennas.
Other authors considered microstrip patches printed on layers of uniaxial materials with the
possibility of having uniaxial overlays [29] and [30]. These papers compute the input impedance

and resonant frequency of the microstrip patch, respectively.

1.3 Electromagnetic Definitions for Isotropic and Biaxial Media

The fundamental equations describing behavior of electromagnetic waves in a
biaxially anisotropic medium (or simply called biaxial) are more complex than the isotropic

equations we are familiar with. In isotropic media, the constitutive relations that relate the
electric flux density (D ) to the electric field intensity ( £ ) and the magnetic flux density (B ) to

the magnetic field intensity ( H ) are given by

D= ek B= ,uﬁ (1.3.1)
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The permittivity of the medium (g) describes the medium’s electrical properties and the

permeability (p) describes its magnetic properties.

If the medium is biaxially anisotropic, the permittivity and permeability of medium
take on a tensor form, changing (1.3.1) from a set of vector equations to a set of matrix

equations. These equations can be written as

E (1.3.2)

(‘QI‘

D=7F=¢,

)

r

and

B=puH =, H 1.3.3)

where £, and 1, are relative permittivity and permeability tensors, respectively.

The change in constitutive relations will also affect Maxwell’s equations in the

medium. The time-harmonic forms of Maxwell’s equations for isotropic media are given by

VxE =ioud (1.3.4)
VxH=—iwsE +J 1.3.5)
V-D=p, (1.3.6)
V-B=0 1.3.7)

—it

Equations (1.3.4) through (1.3.7) assume e time-harmonic variation. This is consistent with
the convention used in the optics community as well as the convention used by Pettis. We are

choosing this convention as well to readily compare our result with Pettis’.

In this work, we consider an electrically biaxial material. Therefore, the permittivity

takes on the tensor form while the permeability will remain scalar. In fact we are assuming that

9
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the permeability is equal to the permeability of free space. Given this assumption, Maxwell’s

equations in the media we are considering become

VxE =iouH (1.3.8)
VxH=—iwe, g E+J (1.3.9)
V-D=p, (1.3.10)
V.B=0 1.3.11)

1.3.1 Permittivity Tensor

The defining property of electrically biaxial media is the permittivity tensor.
Isotropic materials have a single permittivity. Uniaxially anisotropic materials have two
different permittivity values. Uniaxial materials have the same permittivity along two
dimensions and a different permittivity along the third dimension. The axis along the direction
of the unique permittivity value is called the optic axis. An unrotated uniaxial permittivity tensor

can be written as

Rl

I
S O M
S n O

0
0 (1.3.12)
gZ

The permittivity shown in (1.3.12) represents an unrotated uniaxial medium with

optic axis along the z-direction.

Biaxially anisotropic materials have three unique values in the permittivity tensor and

they have two optic axes. An unrotated biaxial permittivity tensor is given by

10
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e, 0 0
£=|0 ¢, 0 (1.3.13)
0 0 ¢

z

where & #¢,# &, . Equation (1.3.13) represents a biaxial medium whose principal axes are

aligned with the Cartesian coordinate system. If, however, the biaxial medium was arbitrarily
oriented with respect to the coordinate system, the permittivity tensor would not be as simple.
We can obtain the tensor for an arbitrarily oriented biaxial medium by applying rotations to the
tensor in equation (1.3.13).

Some man-made and natural materials known to be biaxially

anisotropic are shown in Table 1-1.

Table 1-1: Examples of Biaxial Media

Medium £« & g,

Extrinsically Biaxial (man-made materials) [31]

PTFE 245 2.89 2.95
cloth
Glass cloth 5.56 6.24 6.64
Intrinsically Biaxial (naturally occurring crystals)
[32]
Borax 2.093 2.158 2.167
Epsom 2.053 2.117 2.134
Salt
Mica 2.442 2.547 2.563
Perovskite 5.290 5.476 5.664
Topaz 2.220 2.280 2.310

11
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1.3.1.1 Permittivity Tensor Rotations

In our formulation we use the same tensor rotations used by Mudaliar and Lee [34].
Let us assume the permittivity tensor shown in (1.3.13) have principal axesx”,y",z" and we
want to transform the tensor to the system coordinates x, y, z. Throughout this research, we
consider the biaxial medium in a layered geometry. We define the layering such that one of the
principal axes lies in the plane of the boundary. We chose the x" axis to be in this plane. We
then define the reference coordinate system such that the z-axis is perpendicular to the planar
interface. The orientation of the medium coordinate system with respect to the reference

coordinate system can then be defined by 2 rotation angles.

We begin by performing a counter-clockwise transformation about the x” axis by an

angle y; as shown in Figure 1-1 (a). The rotation matrix for the y; rotation is given by

1 0 0

R, =10 cosy, siny, (1.3.14)
0 —siny, cosy,

The resulting tensor now has principal axesx’,)’,z". We then transform this tensor about the
z'axis by an angle y, as shown in Figure 1-1 (b) and described by
cosy, siny, 0

R, =|—-siny, cosy, O (1.3.15)
0 0 1

The resulting permittivity tensor has undergone a total rotation R computed by

12
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Figure 1-1
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siny, siny/,
cosy, siny,
cosy/,
§ z
L
X’ l'IJZ
X

(b)

: Rotation diagrams

(1.3.16)

to get to the laboratory coordinate system x, y, z. The permittivity tensor now is the full matrix

8xx xy Xz
gr =€ X & » yz
gzx zy zz

where

13

(1.3.17)
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2 2 .2 2
£,=¢&, cos’y, +(gy cos’ y, + ¢, sin y/l)sm v,
=(— £, +¢, 008"y, +¢&_sin’ wl)sin W, CosSy,
£ :(gz —gy)sm w, cos y, sin y,

_ .2 2 .2 2
£, =€ sIn"y, +(gy cos” i, +¢&, sin wl)cos v,

£, = (gz -£, )sm W, COS Y, COS |/, (1.3.18)
£,=¢&,sin’ y, +¢, cos’ y,
£, =&,
zx = gXZ
£,=¢,

1.4 Chapter Overview

The objectives of this research are to gain better understanding of electromagnetic
wave characteristics in biaxially anisotropic media and to understand how microstrip antennas
behave when printed on biaxial substrates. In Chapter 2, we study wave behavior in biaxial
media including birefringence and reflection and transmission behaviors. Biaxial media with
varying permittivities and rotation angles are used. The study of birefringence includes details of
how propagation roots are assigned to the two characteristic waves. In the analysis of reflection
and transmission, we consider half-space and two-layer geometries with waves impinging from
either isotropic or biaxial media. Phenomena such as the Brewster angle effect and critical angle

are then considered and conclusions about how waves behave at biaxial interfaces are made.

In Chapter 3 we introduce the eigenvector dyadic Green’s function (E-DGF) and

discuss our rationale for using this Green’s function to model microstrip antennas. We also

14
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apply the symmetric property of the dyadic Green’s function (DGF) to obtain an unknown

Green’s function needed in our Method of Moments solution.

In Chapter 4 we analyze microstrip antennas printed on biaxially anisotropic
substrates using the Method of Moments. First, we model gap-fed dipole antennas using the E-
DGF and show that our results agree with published results including those presented by Pettis
[1]. The largest contribution of this work is the study of the patch antenna on biaxially
anisotropic substrates. This antenna has never been modeled before. The Method of Moments is
used to compute unknown currents on the patch antenna excited by a coaxial probe source.
These currents are then used to evaluate antenna performance. The analysis focuses on the input
impedance and radiation behaviors. Input impedance is used to compute the resonant length and
impedance bandwidth of the antennas. The principal and cross polarization radiation patterns are
also analyzed. Antenna performance is evaluated as the relative permittivities and rotations of
the biaxial medium are changed. The patch antenna and substrate dimensions are changed as
well. With this body of results, we make some conclusions about the performance of probe-fed

rectangular microstrip antennas printed on biaxial substrates.

Finally, in Chapter 5, we conclude. We summarize our findings and provide some

context for our conclusions. We also provide some ideas for future work in this area.

15
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2 WAVE BEHAVIOR IN LAYERED BIAXIAL MEDIA

Waves in biaxially anisotropic media behave differently than waves in isotropic or
even uniaxially anisotropic media. In this chapter, we investigate this unique wave behavior.
We first analyze propagation in biaxial media and birefringence. Then we analyze reflection and

transmission characteristics for both half-space and two layer interfaces.

2.1 Birefringence

Born and Wolf [35] defined birefringence as the phenomenon in which a single
incident wave will give rise to two refracted waves. In biaxially anisotropic media birefringence
is observed. For a given wave incident upon the biaxial medium, two wave-normal directions
exist resulting in four distinct refracted waves. Birefringence can be observed via analysis of the
propagation vectors in biaxial media. The two characteristic waves observed in a biaxially

anisotropic medium are called the a-wave and the b-wave [34].

2.1.1 Propagation Vectors

Propagation vectors are crucial to understanding birefringence. The propagation

vectors of the a- and b-waves are given by

k =3k, + Vk, + 2k " (2.1.1)
K¢ =3k, + Pk, + 2k (2.1.2)
k" =3k + Pk, + 2k (2.1.3)
K =Xk, + Dk, + 2k} (2.1.4)
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where k-vectors are used for upward propagating waves (propagating in the +z direction) and «-
vectors are for downward propagating waves. Note that there are four distinct values for £, in
this region: two for each a-wave and two for each b-wave. A single fourth order equation,
known as the Booker quartic, provides the solutions for these propagation constants. In the
following sections we will solve the Booker quartic for unbounded biaxial media and layered

media.

2.1.1.1 Unbounded Media

Consider an unbounded region of biaxial media. We are interested in the propagation

vectors in this region to help understand birefringence. The propagation vectors (& ) in biaxial

media are governed by the fourth order dispersion relation [1]

(k-5 k) vk -adiE ) - (adfE ) T} k2 +[3 |k =0 2.1.5)

where ky is the free-space wave number (propagation constant in free-space) and the subscript ¢

indicates that the trace of the matrix is computed. If we factor out the magnitude of vector & ,

we obtain the Booker quartic

A~

k(-5 )+ 120k i E )~ (aaiE ) | /€k§)+\§,\k3 =0 (2.1.6)

where £ is a unit vector (magnitude of 1) in the direction of the propagation vector & .

For the unrotated case equation (2.1.6) is a biquadratic equation in k. For each
direction of propagation, there are four wave numbers or propagation constants. Two will
represent upward propagating waves while two represent downward propagating waves. We call

the two characteristic waves a-wave and b-wave. Solutions to the biquadratic are given by

17
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. \/_ B VB -44C @.1.7)
24 24
where
A=(k-Z -k
B =i -ladE )~ (ati(E) T} i) 2.1.8)
C=|g |k,

As defined by Pettis [1], we choose the solutions associated with the positive sign
under the radical to be the b-wave propagation constants. Thus, the solutions associated with the
negative sign under the radical are the a-wave propagation constants. While there are two
solutions for each wave, they are not unique; one solution having the opposite sign of the other.
When the medium is rotated, this is not the case and in fact the upward and downward

components for a given wave will not have the same magnitude.

The solutions represent two surfaces which we refer to as wave vector surfaces. If we

choose the direction of propagation, we can solve for the propagation constant for each wave and

both for each chosen direction. We will follow the technique used by Pettis [1] and define in

terms of spherical coordinates then sweep over the angular dimensions 6 and o.

First, consider the same simple unrotated case that Pettis considered. We will use the
same material parameters used by Pettis to compare results. The relative permittivity tensor for

this medium is given by

18
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To plot the wave vector surface, we first choose the direction (6 and @) to compute k which is
then used to compute 4, and k;. This propagation constant (k, or k) is then used to compute the
associated k., k, and k. for the a-wave and b-wave. Half of the resulting a- and b-wave vector
surfaces (angular sweep 0 <0 <m, 0 < ¢ <) are shown in Figure 2-1. The inner surface is the a-
wave vector surface and the outer surface is the b-wave vector surface. The intersecting line is
one of the optic axes. We can see from this plot that the optic axis intersects the wave vector
surfaces at some point. We can further see that the b-wave wave vector surface is at a local

minimum at the point of intersection.

Unrotated Bisxial Mediem Ware Vector SurEce

e=2e=8 =4

LRy TR

’
Yy s PP |

|

lz ko
-___._J---___II.- [ [

Latie]
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Figure 2-1: Wave vector surface: unrotated biaxial medium (g, &y, £,) = (2, 8, 4), plotted
over0<0<n,0<¢<nm
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We can gain more insight about this point of intersection from Figure 2-2. In this
figure we have plotted the surfaces over a more limited sweep (0 < 0 <, 1/9 < ¢ < n/3) to see
more detail. First, we note that Figure 2-1 and Figure 2-2 agree with the results presented by
Pettis [1]. We can also see that not only is the b-wave surface at a minimum, but the a-wave and
b-wave surfaces are touching. This point is termed the umbilical point [1]. The behavior of the
wave at this point is significant. The two propagation constants approach the same value when
the propagation vectors are parallel to the optic axis (i.e. when they are intersecting). When this
occurs, the wave will behave as if the medium is isotropic [36]. The medium is named biaxial
because it has two optic axes. We derive explicit equations for the optic axes in Section 2.1.2.
Also note that we treat the region for which k. becomes imaginary when considering layered

media.

Inrotated Biaxial Medium Wave Wector Suface ex=2, E,?FB, ez=4

kzfko
[}

kxfko ky/ko
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Figure 2-2: Wave vector surface: unrotated biaxial medium (g, &y, £,) = (2, 8, 4), plotted
over0<0<n,n/9<¢@=<n/3

The unbounded unrotated problem is easily understood because the roots of the
dispersion relation are simple to compute and assign. Studying the wave vector surfaces of the
unbounded region gives us insight into how the wave behaves in the medium and provides a
comparison for the layered problem. While we approach the unbounded and layered problems
differently, the wave should propagate the same way in the biaxial medium for both cases. Now

we turn to the layered case to formulate our propagation vector solutions.

2.1.1.2 Layered Media

Bounded electromagnetic problems present additional constraints on the assignment
of the propagation vector in each region. The phase matching boundary condition on
electromagnetic waves requires that the tangential components of the propagation vector be
continuous across layer boundaries. In the geometry we are interested in this means that &, and
k, are continuous. Whether we are considering reflection and transmission problems or source
specific problems involving the Green’s functions, the transverse components are fixed and
common to all of the propagation vectors. Therefore, for layered problems we want to compute
k. in the biaxial medium given k, and &, to evaluate the electric field vectors. We will use the

Booker quartic equation derived by Pettis [1] for k., given by

ek + NS +3k> + Xk, +T =0 (2.1.10)
where the coefficients .., A, Z, X, and I are defined by Pettis [1, Appendix I]. The solution of

this Booker quartic yields four unique roots for k.: two roots correspond to the upward

propagating waves and two to the downward propagating waves. Of the two upward one will be
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for the b-wave (k”*) and one for the a-wave (k). Similarly, there will be one downward

propagating b-wave root (k’*) and one downward propagating a-wave root (k*‘). The way we

assign these roots is important in understanding the way the a- and b-waves propagate.

We can see from Figure 2-1 that when all four roots are real, the magnitude £ is larger
for the b-wave than the a-wave. With the transverse components common to both waves the
magnitude of k”is greater than the magnitude of k¢ for four real roots. However, when £, and &,
get large, as they will when computing the Green’s function, the roots become complex and their

assignment is less intuitive.

If we track the four roots, we start with the k£ being smaller than the k” roots. This

means that the real a-wave roots approach zero before the real b-wave roots do as &,
(or\/k! +k. ) increases. As k, increases beyond some point, the a-wave roots will become

complex. This will happen before the b-wave roots become complex. Increase &, further and all
four roots will be complex. In this case, the a-wave propagation constant will be larger (although
complex) than the b-wave propagation constant because the imaginary part is greater for the a-

wave.

In defining the orientation of a biaxial medium (with rotated permittivity tensor)
Pettis used three rotation angles. Three angles are necessary for the unbounded biaxial medium
to be arbitrarily oriented, however in the bounded case, two angles are sufficient as the normal to
the boundary is fixed by the geometry. Therefore, we will use the two angle orientation of the

biaxial medium discussed in Chapter 1.
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The unrotated permittivity tensor is similar to the one given by equation (2.1.9) only

we switch g, and €, resulting in

)
I
N

2.1.11)

~

This permittivity tensor is put under a rotation of (y; y,) = (30°, 75°). We first look at the
behavior of the Booker quartic roots for a fixed k. (k. = 0.5k,) as £, is varied. The resulting plot
of the propagation constant in the k,-k; plane is shown in Figure 2-3. In Figure 2-3, we see that

for small values of %, all the roots are purely real. As k, reaches approximately 1.75k,, we see
that k, is no longer purely real. The real part of k* and £’ converge to zero as the imaginary
components grow from zero. As k, approaches 3k,, we see that all four roots are complex. The
real parts of &k’ and k’’ converge to zero and the imaginary parts grow from zero. We also
note that when the roots are purely real, k’is greater thank?. However, when the roots become
complex the imaginary part of k‘ is greater than the imaginary part of k. The logic for

assigning the roots is summarized in Table 2-1.

Table 2-1: Booker Quartic Root Assignment Summary

Root Type Action Assignment
4 purely real roots | Sort (descending) on real roots k:’” k™ kZ‘“’ k;’d
. b bu bd
2 purely real roots | Two real roots: k. roots Larger real root is X , smaller is X:
2 complex roots T . pa J
wo complex roots: k! roots e ke
Larger complex root is "z , smaller is "=

4 complex roots Sort (descending) on ke k:“ kjd k:d
imaginary parts of roots 77
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kz assignment, kz vs. ky for kot=0.5"ko
biaxial media: rotation (psi,.psi;}=(30.75) (ex, ey. ez)=(2.4.8)

5

kzfka

Figure 2-3: Booker quartic root assignment for biaxial medium, k, vs. ky (permittivity
tensor (&, &, £) = (2, 4, 8), rotated by (y; y2) = (30°, 75°%))

Using the root assignment rules shown in Table 2-1, we also show the £ roots plotted

as k, is varied in Figure 2-4. Here, we choose to fix k, at k, and therefore the roots become

complex at a lower value of &, than was observed for £, in Figure 2-3.

kz assignment, kz vs._ ko for ky=ko
biaxial media: rotation (psi,.psi;}=(30.75) (ex, ey. ez)=(2.4.8)

5

real kzau
imag kz_ |
real I-@zﬂcl

imag I-cziacl
real I-{zbIJ

imag kz, |

kz/ko

real kzbd

imag kz,

Figure 2-4: Booker quartic root assignment for biaxial medium, k;, vs. ky (permittivity
tensor (&, &, €,) = (2, 4, 8), rotated by (y; y2) = (30°, 75°))
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We can also plot the wave vector surface for this medium. The a- and b-wave vector

surfaces are plotted as k. and £, are varied. These wave vector surfaces are shown in Figures 2-5

through 2-8.

Wave Vectar Surface

kz/ko

kyfko

kxfko

Figure 2-5: Wave vector surface: wave vectors computed using Booker quartic
(permittivity tensor (g, &, &) = (2, 4, 8), rotated by (y v2) = (30°, 75°))

kziko

kyfko

kxfko

Figure 2-6: Wave vector surface showing umbilical point and optic axis 2: wave vectors
computed using Booker quartic (permittivity tensor (g, &y, £,) = (2, 4, 8), rotated by (y; y2)
=(30°,75%)
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In Figure 2-5 and Figure 2-6 the entire wave vector surface is shown. It is difficult to clearly see

the umbilical point and optic axes in these plots.

Figure 2-7 and Figure 2-8 more clearly

illustrate the behavior around the umbilical point by limiting the angular sweep of the wave

vector surfaces.

Wave Yector Su

kziko

kofko

rface
biaxial medium: rotation (psi psi)=(30,75)

Figure 2-7: Umbilical point at optic axis 1, (g, &, &) = (2, 4, 8), (1 y2) =(30°, 75°)

Wave Vector Surface
biaxial media: rotation (psi1.psi2)=(30.?5) (ex. ey

kzfko

Figure 2-8: Umbilical point at optic axis 2, (g, &, &) = (2, 4, 8), (y1 y2) =(30°, 75°)
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The complex k, values represent evanescent waves in the medium. It is as if a wave
is incident from some angle beyond 90° and the inverse sine of k, is greater than one. When we
evaluate the Green’s function (discussed in Chapter 3), we perform a doubly infinite integral

over k. and k, so the assignment of k. from the Booker quartic becomes important in this

complex region.

2.1.2 Electric Field Vectors
We define the electric field vectors as is done by Mudaliar and Lee [34]. The electric
field vectors used by Pettis are equivalent and are derived in detail in Appendix E and Chapter 2
of his dissertation [1]. As discussed, we have two waves traveling in the biaxial medium, the a-
wave and the b-wave and we want to compute the unit vector associated with each of them.

Each unit vector is defined as

5+ :(Vau )/; e (2.1.12)

a=0)"7-a (2.1.13)

b ="z B (2.1.14)

b =(""7-p 2.1.15)
where 7 is defined such that the elements y; is the ijth element of the matrix £ ' and v is a
normalization factor defined by

v =it 0t i=aorf (2.1.16)

Vil =i~ %*i" i=aorf (2.1.17)
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The ¢ and 3 in equations (2.1.12) through (2.1.17) are the unit vectors of the two characteristic

displacement vectors in the medium. We compute these unit vectors using

A

o 1|k x6, Kk, x0,

a =—| = ~ 2.1.18
h* ‘kaxél k,xo, ( )

o | R.x6, R x0, 2119

R, %6 |&, %6y o

A 'g”f('é”fal)+’€bf(’€bf52) (2.120)
h I kbxol‘ k, x o0,

p=—r % f('%bfé‘)ﬂ%b f('%bféz)} 2.1.21)
h |K'b x 01| |K'b X 02|

A

where /4 is a normalization factor for the displacement unit vectors, £ and K are propagation unit

vectors as defined by equations (2.1.1) through (2.1.4) and the 0 terms are the unit vectors in the

direction of the o

ptic axes as discussed in the previous section (and shown in the wave vector

surfaces). We compute / for each field vector using

n =2

- T

1+ (kiAX Ol)'(\ki X02) ,i — Cl,b (2.1.22)
k; x o,||k; x 0,

L Ex0)- (& x) 0 2.1.23)
| % 6,[1%, % 6,

We also need to compute the unit vectors 0, and 0,. Mudaliar and Lee assumed &, < g, < &,.

However we are

interested in a more general formulation. Continuing the notation, we define

constants g; and g, by
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e (ot~ i) |

g = (2.1.24)
gmid (8max - gmin )

gzz{

where &,y 1S the maximum permittivity value, emi, 1S the minimum and &n,;q 1s the middle value.

min (gmax B gmid ) .
e (2.1.25)
mid \® max min

M | ™

Note that when ¢, < g, <¢&,, g1 and g» reduce to the same expressions given by Mudaliar and Lee.
The first optic axis in the biaxial coordinate system is constructed by placing g; at the coordinate
associated with &y, and g, at the coordinate associated with en.x. The second optic axis is
constructed the same way only —g; is used. We then obtain the optic axes for any arbitrarily
oriented biaxial medium by applying the rotation matrix R (equation (1.3.16)) to both unrotated

optic axes. The resulting the optic axes in an arbitrarily oriented biaxial medium are given by

o . , : a : .
{51}:x(ig1 cosy, + g, smy, sml//2)+y(+g1 smy, + g, smy, COSl//2)+Zg2 cosy, (2.1.26)
2

Note that equation (2.1.26) is the same equation presented by Mudaliar and Lee except for the

correction to the z term; in their paper, the g> multiplier on the z term is left out.

2.2 Reflection and Transmission

The most extensive work on reflection and transmission from arbitrarily oriented
biaxial media is presented by Landry [12]. In his work, he studies half space reflection and
transmission characteristics for biaxial-biaxial, isotropic-biaxial and biaxial-isotropic

configurations. He also studies 2-layered and multi-layered problems. Landry’s approach is
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considerably different than the approach presented here. In his study of the half-space problems,
he computes the direction and magnitude of the reflected and refracted waves separately. In his
analysis of the 2-layered problem, Landry studies each bounce the incident wave undergoes and
uses that to compute reflection and transmission coefficients. The multi-layered problem is

treated similarly.

In our approach, we expand the plane waves in each medium then apply the boundary
conditions. We use the material parameters to determine the directions of each expansion wave
then apply boundary conditions to solve for the magnitude. We apply this treatment to both the
half-space and 2-layered problems. This is a familiar and straightforward formulation. Another
difference is that we define the electric field vectors in each medium based on the known
material parameters (permittivity matrix and rotation matrix) while Landry uses the refractive
index and a set of angles to define the relationship between the wave vector and fields. Landry
uses a formulation more commonly used in the physics and optics communities and not familiar
to most electrical engineers. Finally, we expand upon his research by analyzing the Brewster

angle effect and critical angle as functions of permittivity and rotation angles.

We begin by defining the half-space reflection and transmission coefficients for the
case of each incident wave on either side of an isotropic-biaxial boundary. We use these results
to analyze the critical angle. We then go on to formulate the 2-layer problem with a wave
incident from one isotropic layer onto the biaxial layer. We use these results to analyze the

Brewster angle effect.
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2.2.1 Half Space Reflection and Transmission Coefficients

2.2.1.1 Wave Incident from Isotropic Region 0

In general, the study of half-space (one interface) reflection and transmission
problems can be broken down into four main configurations as noted by Pettis [1, Appendix G].

These configurations are listed in Table 2-2 below.

Table 2-2: Half-Space Configurations

Case | Configuration

1 | horizontal or vertical wave downward incident on isotropic-biaxial interface
2 | a-wave or b-wave upward incident on biaxial-isotropic interface

3 | a-wave or b-wave downward incident on biaxial-isotropic interface

4 | horizontal or vertical wave upward incident on isotropic-biaxial interface

To derive the half-space reflection and transmission coefficients, we formulate the fields in each
region of interest, then apply the boundary conditions. Note that this derivation follows Pettis’

work.

2.2.1.1.1 Horizontally polarized wave downward incident upon isotropic-biaxial interface

A horizontally polarized (or TE) wave downward incident on the isotropic-biaxial
interface (region 0 — region 1) will give rise to two reflected waves (one horizontally polarized
and one vertically polarized in the isotropic region) and two transmitted waves (an a-wave and a

b-wave in the biaxial medium). This behavior is depicted in Figure 2-9.

z
Region 0 hO\A he v
y
X

z=0

A

Region 1 a

A

=

Figure 2-9: TE wave incident upon isotropic-biaxial interface
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We must formulate the fields in each region to solve for the half-space coefficients.

Based on Figure 2-9 we can write the electric fields in each region as

E,(F)=hye™" +hi Riie™” +9; R)le™”
2.2.1)

_ R . o (2.2.2)
E(F)=a X\e™ " +b X ™"

We are defining the reflection coefficients, R, such that m is the incident region, n is the

transmission region, i is the incident wave polarization and j is the reflected wave polarization.

mn
i o2

The transmission coefficients, X", are defined the same way with j as the transmitted wave

polarization. The electric field unit vectors are defined such that h is the horizontally polarized

(or TE) wave unit vector, v is the vertically polarized (or TM) wave unit vector, a is the a-wave

electric field unit vector and 4 is the b-wave electric field unit vector. We define 4 and ¥ in the
same manner as Kong [2] and use the equations he presented to calculate the unit vectors. The
superscript on the unit vectors indicate whether the wave is upward propagating (positive sign)
and downward propagating (negative sign). Finally, the subscript on the isotropic unit vectors
indicates which region the unit vector is in to differentiate when we consider the 2-layered

problem.

Given these fields, we can evaluate the unknown reflection and transmission
coefficients by applying the boundary conditions at the interface. For each half-space problem,
we put the interface at z=0 and assume there are no sources along the interface. The boundary

conditions are at this interface are given by
txE)(F)=2xE/(7), atz=0 (2.2.3)

32



33

EXITIO(F): éxﬁl(F)—>2xVxEO(F)= EXVXEI(F), atz=0 2.24)
We begin by applying the electric field boundary condition (equation (2.2.3)) to the
formulated fields. Taking the cross product of the z unit vector with the E-field in region 0 and

region 1, respectively, results in

2xEy(7q) =" g, s, )+ R, m e RO, w3 )] @29)

x B )= X0 (= 5ay + Fay )+ X0 (- by + 557 ) 2.2.6)
where the electric field unit vectors (l;, v,a andl;) have been decomposed. The first numerical
subscript on 4 and v indicates the region in which the vector exists; the alphabetical subscript
indicates the component of the vector and the superscript indicates whether the vector is

downward (—) or upward (+) propagating. Setting (2.2.5) equal to (2.2.6) per the electric field

boundary condition we obtain
(= g, + 3, )+ RO s, + s, )+ RO oy, + v, ) = Xonl- Sy + )+ X3 +507)  @2.2.7)
By grouping the x-directed components and the y-directed components and rearranging terms,

we obtain two equations

=Ry, = Rivo, + Xyua, + X;,b, =h,, (2.2.8)
= Riyhy = Ryvo, + Xjua, + Xub. =h,, 2.2.9)

This results in two equations for four unknown coefficients. The other two equations
come from the magnetic field boundary condition shown in equation (2.2.4). We note that for
plane wave propagation, the curl operator can be replaced by the propagation constant cross

product. Specifically
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vy f _ planevave ik xE  upwardpropagation 2.2.10)
ixxE downward propagation o

Now, applying equation (2.2.10) to the electric field in region 0 we obtain

L W R (S O |
2 (E <E, (i:o)): Gk ] R}?}:[”(k hi. — kozhgx)““ j/(k hy. — kb, )] (2.2.11)
+ ROl[x(k Vo — KoV, )+ y(k Vo: ~ kOZVOy )]

Applying the same equation to the field in region 1, we obtain

ik, x+k,y X,?;[x( —k“d ) y(ky Z—_kad _)]
‘ { x0&lk, b*—kjdb;) Sk, b7 — k27 )] (2.2.12)

Setting the right hand sides of equations (2.2.11) and (2.2.12) equal (thus applying the boundary

condition), results in

[2(k. hs, + Koy, )+ 5k Bo, + koo, )]
+ RO [k g, — ko, )+ 3, hy, — ko b, It =
+ R}?vl [fc(kxvgz - kav(-;x )+ j;y(kyv(-;z - kavg)f )]

{Xgr@ S —kar )+ il a7 —ka )

+ x 0 [&(k b7 — kb7 )+ 9k, b7 — kb )]} (2:2.13)

We now combine like components and rearrange remaining terms as we did with equation

(2.2.7) to obtain the two remaining equations

— Ropk g, = ko,hay )= ROk v —koove, )+ X ol az —k2a; )+ X0h(k b —k2b; )
= (k,hy, + ko g, )
(2.2.14)
— RO g = ko g, )= ROk v —kovg, )+ XMk, az —ka )+ X0k, b — kD)
= (k, . + Ko g, )

We can write the four equations in matrix form
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- - 01
y b}’ th

+ + - - 01
- hOx - va ax bx th

(e hy. ko) =i —kovi,) (ks —ka) (kb —k2,) | )
(ke by —kohg,) =l v —kovs,) (kyaz —k*a;) (ks kb )| X0

+ +
— hy, — Vo, a

(2.2.15)

(k, . + o 5,
The matrix equation in (2.2.15) can be solved to determine the half-space reflection and

transmission coefficients for a horizontally polarized incident wave.

2.2.1.1.2 Vertically polarized wave downward incident upon isotropic-biaxial interface

The next reflection and transmission condition we consider is a vertically polarized
(TM) wave downward incident on the same isotropic-biaxial interface. This incident wave will
also give rise to two reflected waves and two transmitted waves. This behavior is depicted in
Figure 2-10.

Region 0 % /v”

0> Yo

Region 1 a

A

b

Figure 2-10: TM wave incident upon isotropic-biaxial interface

Again, we formulate the fields in each region to solve for the half-space coefficients.

The electric fields in region 0 and region 1 respectively are given by

E,(F)="7,e"™" +hf RS'e™™ + 9 R e™” (2.2.16)
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E(F)=a X2 " +h X0l (2.2.17)
Observing equations (2.2.16) and (2.2.17), we see that the fields in each region are similar to the
fields in the previous case. Applying the boundary conditions in equations (2.2.3) and (2.2.4),
and performing the same algebraic procedure we did in the previous section, we obtain the four

equations

017 + 01, + 01 - 0lg— _ . —
=R, hy, —R, vy, + X ,a, + X ;b =V,

va "y

017 + 01, + 01— 01— _ _ —
_thhOX_va0x+X a +vabx _v0x

va X

= R ke g — kel )= ROk v —keg.ve, )+ X0k oz — k2a )+ X5 (k b7 — k267 (2.2.18)
= (k v+ kOngx)

X 0oz

— Rk, By, — ko, )= ROk vy, —ko,vg, )+ X0 Kk as —ka; )+ Xk, b7 — kD] )

= (kyvgz + kOngy)

We can write the four equations in matrix form

+ + - - 01
=y, Yoy y by Ry
+ + - - 01
- hOX - va ax bx RW

—ka;) (kb — kB )| X0

(ko —koohy,) = (kvy. —koovy,) (koa
—keay) (koo —kb)) | XY

(ki ko h) =k ve — ki) (k,a

(2.2.19)

This matrix equation can be solved numerically to obtain the half-space coefficients associated

with the TM wave downward incident on the isotropic-biaxial interface.
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2.2.1.1.3 Evaluation of Reflection and Transmission of Wave Incident from Region 0

Now we want analyze how the reflection and transmission coefficients behave. First,
we define the angle of incidence for the half space problem such that Zis normal to the
boundary. The incident wave propagation vector can have any orientation. We define the

incident propagation vector as

k =%k, + Pk, + 2k, (2.2.20)

where each component is computed using

k. =k,sin@cos¢
k, =k,sin&sing (2.2.21)
k, =k,cos0

The plane of incidence is defined by ¢. When ¢ is zero, the wave is incident from the x-z plane
and when ¢ is 90°, the wave is incident from the y-z plane. Intermediate values of ¢ will
describe some intermediate plane of incidence. The angle of incidence in the prescribed plane is
given by 0. The reflection and transmission coefficients are calculated and displayed as function
of 8. The plane of incidence and angle of incidence are shown in Figure 2-11. Due to the phase
matching condition, k, and k, are continuous across the boundary. We will use k, and £, as

described by equation (2.2.21) to compute the two k. values in region 1 using the Booker quartic.
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Plane of Incidence

angle 7 reflected wave

incident wave of k
Region 0 K; incidence r
Eos Hy
> or y
Region 1 (depends on o)
gl » My

transmitted waves

Figure 2-11: Diagram of plane and angle of incidence for wave incident from region 0

We begin this analysis by studying reflection and transmission characteristics in the
uniaxial limit. In his dissertation [5, Chapter 2] Yun Hee Lee studied reflection and transmission
from uniaxial media. Two waves propagate in uniaxial media: the ordinary wave and the
extraordinary wave. The ordinary wave behaves like a wave in isotropic media with a spherical
wave vector surface. The extraordinary wave has an ellipsoidal wave vector surface. If the
medium is positive uniaxial (g, > &) the wave vector surface of the ordinary wave is inside the
wave vector surface of the extraordinary wave. If the medium is negative uniaxial (&, < &), this
condition is reversed. Considering our biaxial formulation in the uniaxial limit, the a-wave will
act as the ordinary wave and the b-wave will act as the extraordinary wave in a positive uniaxial
medium. If the medium is negative uniaxial the a-wave will be the extraordinary wave and the

b-wave the ordinary wave.

With this knowledge of uniaxial media, we show that our reflection and transmission

formulation reduces to the uniaxial case by computing the coefficients for the same interface
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considered by Lee [5, Chapter 2]. A 13GHz wave is incident from air to the uniaxial medium
with unrotated relative permittivity tensor given by
4.32+1i0.01

4.32+i0.01 (2.2.22)
4.43+i0.03

Rl
I

In the first case we consider, this uniaxial medium is unrotated. The reflection and
transmission coefficients are computed and plotted versus angle of incidence (6;) in the ¢; = 70°

plane and shown in Figure 2-12.

Half-space Reflection and Transmission Coefficients: Wave Incident from Air (R0} upon
Anisotropic Medium (R1): (Ex.ey.ez}=(4.32+i[].01. 4.32+i0.01, 4.43+0.03), (psi,.psi;}=( 0, 0)

1

+  RO1-hh
0.9 +  RO01-w
& X0wb
0.7F--- — R01-hv
— — R01-vh
0.6 oo s gl e X01-hb
& 05 — - — - X01va
04
0.3
0.z
01
0 1 H L H
0 20 40 60 80

theta incident (degrees)

Figure 2-12: Reflection and transmission characteristics in uniaxial limit

The figure shows that the cross-polarization terms are approximately zero. The

horizontal reflection coefficient is always greater than the vertical reflection coefficient and the
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vertically polarized wave experiences zero reflection (Brewster angle) at approximately 64°. We
also observe that when the incident wave is horizontally polarized, the transmitted wave is “a”
polarized. In this positive uniaxial medium the a-wave acts like the ordinary wave. Also, when
the incident wave is vertically polarized, the transmitted wave is “b” polarized where the b-wave
acts like the extraordinary wave. These results agree exactly with the results presented in Lee’s

dissertation.

Yun Hee Lee also considered the tilted uniaxial medium. In the tilted medium case,
the permittivity tensor is rotated about the x-axis with respect to the primary coordinate system.
In our definition, this is a y; rotation. Keeping all parameters the same as in Figure 2-12, we

apply a 30° rotation (or tilt) and plot the results in Figure 2-13.

Half-space Reflection and Transmission Coefficients: Wave Incident from Air (R0} upon
Anisotropic Medium (R1): [Ex.ey.ez}=(4.32+i0.[]1. 4.32+i0.01, 4.43+0.03), (psi,.psi,)=(30, 0)

1

4+  R01-hh
0.9 s+ RO1-w
0.8 & X01-ha
. o X01+b
i — R01-hv
_ — — R01«h
AL 2 s R - - PR IEPEEEE X01-hb
—-—-X01va
o 05
0.4
0.3
0.2
01
0 ; ; A
0 20 40 60 a0

theta incident (degrees)

Figure 2-13: Reflection and transmission in uniaxial limit — tilted permittivity tensor
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First, we observe that the cross polarized reflection coefficients are still approximately zero but
the cross-polarized transmission coefficients are not. When the horizontally polarized wave is
incident both the a-wave (ordinary) and b-wave (extraordinary) are excited. Similarly when the
vertically polarized wave is incident, both anisotropic waves are excited. The co-polarized
reflection coefficients are the same with the same Brewster angle. These results agree with those

presented by Lee [5, Chapter 2].

Having shown that we accurately compute reflection and transmission coefficients in
the uniaxial limit, we return to the biaxial half-space case. In this first half-space problem, we
consider the plane of incidence to be the y-z plane (9=90°). The isotropic medium is again air

and the biaxial medium is unrotated with relative permittivity tensor

g=| 5 (2.2.23)

The reflection and transmission coefficients are plotted against angle of incidence in
Figure 2-14. Considering first the co-polarized reflection coefficients, we observe that at smaller
angles, the vertically polarized wave is reflected more strongly than the horizontally polarized
wave. For angles greater than approximately 40°, this behavior is reversed and the horizontally
polarized wave is reflected more strongly. This is in contrast with the typical behavior at an
isotropic-isotropic half space boundary where the horizontally polarized wave is reflected more
strongly for all incident angles. We can also observe the Brewster angle effect. At an incident
angle just above 60°, the vertically polarized wave has zero reflection and only the horizontally
polarized wave is reflected. The Brewster angle effect will be discussed in more detail in

Section 2.2.1.1.5. For this case, the cross-polarized reflection coefficients (R, and R.p) are
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nearly zero. This is consistent with the behavior at an isotropic-isotropic interface. Analyzing
the transmission coefficients we observe that when the horizontally polarized wave is incident,
the energy is transmitted to the a-wave but not the b-wave as Xy, is approximately zero.
Similarly, the vertically polarized wave transmits into the b-wave with X,, approximately zero.
The X}, and X, behave like co-polarized transmission coefficients while Xy, and Xy, behave
like cross-polarized transmission coefficients. In this manner, the a-wave is acting like a
horizontally polarized wave and the b-wave is acting like a vertically polarized wave for the

given medium parameters.

Half-space Reflection and Transmission Coeficients: Wave Incident from Air (R0} upon
Anisotropic Medium (R1): (ex.ey_ez}=(2_ﬂﬂ+i[]_[][]. 5.00+i0.00, 8.00+i0.00), (psi,.psi,)=( 0. 0)
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Figure 2-14: Half-space reflection and transmission coefficients for incident wave from
isotropic medium to unrotated biaxial medium (g, &y, £,) = (2, 5, 8).
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The calculated reflection and transmission coefficients can be verified by formulating
the waves in each region and showing that power is conserved. To observe power conservation,
we must calculate the time average Poynting vectors of the incident, reflected and transmitted
waves. We will derive the expressions for the Poynting vectors assuming a horizontally

polarized incident wave. The time average Poynting vector of the incident wave is given by

S (pyS—
(5,)= ERe{Ei <H'} (2.2.24)
where
E. =h E,e™" (2.2.25)
- K, XE _ ~_ E Ira
H =—""—"f=i, xh —%¢"™ (2.2.26)
W WL

By substituting equations (2.2.25) and (2.2.26) into equation (2.2.24), the expression for the time

average Poynting vector is

— 1 |E'0|2 &; — ~_ *}
(S,) S o Reli, X(KO xho) (2.2.27)
0

Similarly, we can formulate the reflected and transmitted waves to compute their time average

Poynting vectors. It can be shown that the time average Poynting vector of the reflected wave is

L R Ry L e R )

(5)-

(2.2.28)

2

2ty |y el sy ) RORELY +95 x (k9 ) |RY!

and the transmitted wave is
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Ar (= A2 L NI .o
L [l Vi +a (g, <6 x(xcy) e

* 2.2.29
2 o, +Z§‘X(’?aX&_)*XJ?Q(X;?;)*J(EFE“};+B—X(Ele;_)‘Xf?li‘z ( !

Power conservation is proved by showing that the z-directed components of all of the Poynting

vectors entering and leaving the interface are equal [2]. We show this using the power reflection

and transmission coefficients given by

(2.2.30)

and

(2.2.31)

respectively [2]. If power is conserved the sum of these coefficients is equal to 1. In Figure 2-15
we show that the sum of the power reflection and transmission coefficients is 1 for the
horizontally polarized wave incident and the vertically polarized wave incident. Therefore,

power is conserved and the calculated coefficients are verified.
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Power Conservation: horizontally polarized wave incident from Region 0 upon Region 1
Region 1: (ex,ey,ez)=(2,5,8), (psi1,psi2)=(0,0)
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Power Conservation: vertically polarized wave incident from Region 0 upon Region 1
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Figure 2-15: Power conservation for wave incident from region 0

We have considered the half-space reflection and transmission behavior when the
biaxial medium is unrotated. Now, we’d like to consider the same phenomena when region 2 is
rotated such that y; and y, are 45°. Given this new biaxial medium, we first consider the co-
polarized reflection coefficients shown in Figure 2-16. Here we see that the behavior has
changed. For all incident angles, the horizontally polarized wave is reflected more strongly than
the vertically polarized wave. Also of interest are the cross-polarized reflection coefficients
which are no longer zero. They are still small, but when the biaxial medium is rotated, there is
some cross-polarized reflection into the isotropic region. This means that a horizontally
polarized wave will reflect both horizontally and vertically polarized waves. This behavior is not
observed at an isotropic-isotropic boundary. Finally, we observe that the transmission
coefficients are also affected by this rotation. Energy is transmitted to both the a-wave and b-

wave when either the horizontally polarized wave or vertically polarized wave is incident. When
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the biaxial medium was unrotated, we saw that the horizontally polarized wave transmitted into
only the a-wave and the vertically polarized wave transmitted only into the b-wave. Now, both
biaxial waves are generated from either polarization. We can conclude then a wave incident
upon a rotated biaxial medium from an isotropic medium it will generate two transmitted and

two reflected waves.

Half-space Reflection and Transmission Coeficients: Wave Incident from Air (R0} upon
Anisotropic Medium (R1): (ex.ey.ez}=(2_[][]+i[]_[][]. 5.00+i0.00, 8.00+10.00), (psi,.psi,)=(45.45)
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Figure 2-16: Half-space reflection and transmission coefficients for incident wave from
isotropic medium to biaxial medium ((&y, &, €,) = (2, 5, 8), (Y1, ¥2) = (45°, 45%)).

In the unrotated case, we observed the unique behavior of the horizontally polarized
wave being reflected less than the vertically polarized wave. When the medium was rotated, this
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behavior is no longer present. We now analyze this behavior in more detail. First, we rotate by
1. As yjincreases from 0°, Ry, is not significantly changed while R,y increases thus enhancing
the unique behavior. However, when we increase y, we see more significant results. As y»
increases from 0° Ry, increases and Ry, decreases. When v, reaches 45° Ry, and R, are equal at
an incidence angle of 0° and diverge as the angle of incidence increases. When vy, increases
beyond 45°, the difference between Ry, and R,y at low angle increases with Ry, always greater

than Ry,. This behavior is shown in Figure 2-17.

Half-space ReSection Coeficients Half-space Reflection Coefeients Half-space Reflection Coefficients .
Biaxial Madium (R1): (excey.ez)={2.5.8). (psi, psiy={0.40) Biaxial Madium (R1): (exey.ez)={2.5.8). (psi_psijF=(0.45) Biaxial Medium (R1): (excey.ez)={2.5.8). (psi, psi,F={0.50)
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Figure 2-17: Half-space co-polarized reflection coefficients for incident wave from
isotropic medium to biaxial medium ((&y, &y, £,) = (2, 5, 8), (y1=0, Wy, varied)

The half-space reflection behavior changes when we move the angle of incidence to
the x-z plane (¢;=0). In this plane, when the biaxial medium is unrotated, Ry, is greater than Ry
for all incident angles. As y; increases from 0° Ry, decreases and R,y increases. When v,
reaches 45° Ry and Ry, are equal at zero incident angle and for y, greater than 45°, Ry is less
than R,y at low incident angles. Again changing v, results in less overall change, but in this

plane, this y; has a greater impact on Ry; than Ry,
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2.2.1.1.4 Critical Angle Analysis

The critical angle is related to the phenomenon of total internal reflection. When the
angle of incidence is larger than the critical angle, we have total reflection [2]. Total internal
reflection is an important practical phenomenon as it is used to implement dielectric waveguides
such as fiber optic cables. This phenomenon occurs when the transmitted wave becomes
evanescent. Evanescence occurs when the propagation vector becomes imaginary so as the wave
travels into the transmission medium, it decays as e®, where a is the imaginary part of the
propagation vector for the wave traveling in the -z direction. Therefore, the critical angle is the

angle of incidence for which the propagation vector becomes imaginary.

The critical angle effect is only observed when a wave is propagating from a denser
to less dense medium. First, we consider the critical angle in the uniaxial limit. In his
dissertation, Y. H. Lee [5] computes the critical angle for the ordinary and extraordinary wave
when the wave is downward incident from an isotropic medium to a uniaxial medium. For the
ordinary wave to experience total internal reflection (or zero real transmittance to the ordinary

wave), gy > & and the angle of incidence must be greater than or equal to the critical angle given

0, =sin" |<x (2.2.32)

The extraordinary wave can experience total internal reflection can occur if one of two sets of
conditions applies. These conditions are based on the modified permittivities derived by Lee [5]

and presented here
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£.&
g, = SF 2.2.33
£,c08’ ¢ +&,,sin’ @, ( )

£,
£ = s (2.2.34)
£4;,C08° @ +&_sin” ¢,

The extraordinary wave can experience total internal reflection if (g, —&. )sing >0

and ¢, >¢&,. If these conditions are met, the critical angle for the extraordinary wave is given

0. =sin" |Z* (2.2.35)

The extraordinary wave can also experience total internal reflection if (s, —¢&,)sing, <0 and

&, > ¢_. Under these conditions the critical angle is given by

. - &
0, =sin”' |~= (2.2.36)

€
As an example we consider the same case presented by Lee [5]. The incident
isotropic region has a relative permittivity (&) of 6. The uniaxial relative permittivity tensor is

given by

F= 4 2.2.37)

and a 30° rotation is applied. The incident wave has frequency 13GHz and is incident from ¢; =
60°. Lee computes an ordinary wave critical angle of 54.7° and an extraordinary wave critical

angle of 46.4°. We will use our computations to analyze this interface. Applying our biaxial
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definitions to this medium, the ordinary wave will be the b-wave and the extraordinary wave will
be the a-wave. The resulting reflection coefficients are shown in Figure 2-18. We observe
elbows at each critical angle. The imaginary part of X,, becomes large at the first critical angle
(associated with the a-wave or extraordinary wave) and the imaginary part of Xy, becomes large
at the second critical angle (associated with the b-wave or ordinary wave). We can gain further
insight into the critical angle observing the solutions to the Booker Quartic. In this medium, the

real part of k., becomes a minimum at the a-wave critical angle and £, reaches its minimum at

the b-wave critical angle. This behavior is shown in Figure 2-19.

Imaginary Transmission Coefficients, Uniaxial Limit:

Half-space Reflection: Air-Uniaxial Interface
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Figure 2-18: Reflection coefficients and imaginary transmission coefficients from isotropic-
uniaxial interface
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k_ Uniaxial Medium (R1) from Booker Quartic Solution
(ex,ey.ez)=(4.00,4.00.3.00), (psi,.psi,}=(30, 0}
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Figure 2-19: Solution to Booker quartic for uniaxial medium

After we have shown agreement of the critical angle behavior in the uniaxial limit,
we turn our analysis back to the biaxial interface. We have chosen a boundary between two real
materials to demonstrate the critical angle effect. The incident wave is propagating in Silicon
which has a relative permittivity of approximately 12. The transmission medium is PTFE cloth

(Teflon), which is biaxially anisotropic with relative permittivity tensor

2.45

M
Il

~

2.89 (2.2.38)
2.95

The co-polarized half-space reflection coefficients from the silicon-PTFE cloth are shown in
Figure 2-20. In this figure, the reflection coefficients go to 1 at approximately 30°. This is the

phenomenon of total internal reflection.
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Half-space Reflection Coefficients from Silicon to PTFE Cloth
Biaxial Medium (R1): (ex.ey.ez)=(2.45,2.83.2.95), (psi,.psi,}=(0.0)

' : ' ! ! ! ! !
—— RO1-hh
1 — —RrOtw [

R

] T S \ |.i ..... Brewster Angle [total transrhission); _____ i

Ji : : | s
A\ : : : :
J;f/s L

0 i i | | | | | |
0 10 20 30 40 50 &0 70 g0 80
theta incident (degrees)

Figure 2-20: Co-polarized reflection coefficients from Silicon-PTFE cloth boundary
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Figure 2-21: Booker quartic solutions in PTFE cloth
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To better understand the conditions that lead to total internal reflection, we again examine the
solutions to the Booker quartic (k, values) versus angle of incidence in Figure 2-21 in the PTFE
cloth. Here we see that at the same incident angle (approximately 30°) k, becomes imaginary.
The normal to the boundary is the z-direction so when the z component of the propagation vector

becomes imaginary, the wave in that medium will be evanescent and no real power will transmit.

Figure 2-20 clearly showed the critical angle effect. When we consider an isotropic-
isotropic interface the critical angle is calculated simply using Snell’s law. Grzegorczyk et al.
[9] show that in the x-z plane (@; = 0) for an unrotated biaxial medium, the critical angle for the

horizontal polarization can be computed by

&
0" =sin”| |2 (2.2.39)
Eoly

The equation for the critical angle for the vertical component can be found by duality which

results in

&
oy =sin| |2F (2.2.40)
Eo

In our analysis, we found that the angle computed in equation (2.2.39) corresponds to the angle
where k, for the a-wave becomes imaginary. Similarly, the angle computed in equation (2.2.40)
is the angle for which the b-wave propagation constant becomes imaginary. In our notation, we

denote these angles @'“and 6 respectively. Using (2.2.39) and (2.2.40), the horizontal

polarization critical angle is 29.4° and vertical polarization critical angle is 29.7°, which agrees
with our computed values for the unrotated medium as shown in Figure 2-22(a) and Figure

2-23(a).
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We are also interested in the behavior of the critical angle as the permittivity tensor is
rotated. In the first case, permittivity rotations are about the z-axis (y;) with no rotation about
the x-axis (y;=0) in a plane of incidence described by ¢; of 0° (x-z plane), 25° and 90° (y-z plane).
The results (in Figure 2-22 (a), (b), and (c)) show that when the medium is rotated about the z-
axis, the critical angle varies by less than 5°. When the plane of incidence is changed, the critical

angle behavior changes but the peak-to-peak variation over y, does not change.

Ciitical angle for wave incident from silicon (R0) to PTFE Claoth (R1): Critical angle for wave incident from silicon (R0) to PTFE Cloth (R1):  Critical angle for wave incident from silicon (R0) to PTFE Cloth (R1)
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Figure 2-22: Critical angle for wave incident from Silicon to PTFE cloth as v, is varied for
incident angle ¢; of 0° (a), 25° (b), and 90° (c).

In the second case, we consider rotations about the x-axis (y;) with no rotation about
the z-axis (y,=0) and the same incidence planes. The results for this case are shown in Figure
2-23 (a), (b), and (c). We observe that when the medium is rotated about the x-axis, the critical
angle varies by less than 1° when ¢; is 25° and not at all for other incident planes. When the
wave is incident from the y-z plane (¢;=90°), we see that the horizontal and vertical waves have
significantly different critical angles, a behavior not observed in previous cases. To investigate
this phenomenon, we computed critical angles for ¢; close to 90° and found that it is only

observed when ¢; is equal to 90°.
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Figure 2-23: Critical angle for wave incident from Silicon to PTFE cloth as v, is varied for
incident angle ¢; of 0° (a), 25° (b), and 90° (c¢).

2.2.1.1.5 Brewster Angle Effect

We are also interested in studying the Brewster angle effect. The Brewster angle is
defined as the angle of incidence for which there is no reflected power. At an isotropic-isotropic
half-space boundary, the vertically polarized (transverse magnetic) wave generally experiences
zero reflection at some angle. The horizontally polarized (transverse electric) wave generally
reflects more than the vertical wave and has non-zero reflection for all angles. The result is that
when an unpolarized wave (with both vertical and horizontal polarizations present) is incident
upon a boundary at the Brewster angle the reflected electromagnetic wave will be linearly
polarized (with horizontal polarization). The most common application of this effect is polarized
sunglasses in which the lenses filter out the horizontal polarization reducing the dominant
component of reflected sunlight (glare). A less common application is in the use of Brewster
window lasers. In this application, the horizontally polarized wave is filtered out using a

Brewster window resulting in vertically polarized laser light.

The Brewster angle has not been extensively studied for arbitrarily oriented biaxial

media. We can see the Brewster angle effect in Figure 2-14 and Figure 2-16. Figure 2-14
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shows that for an incident angle of approximately 62°, only the horizontally polarized wave is
reflected; the vertically polarized wave is not reflected at all (reflection coefficient goes to zero).
The Brewster angle for this unrotated biaxial substrate is approximately 62°. When we rotated
the medium as shown in Figure 2-16, the Brewster angle is approximately 57°. Thus we

conclude that the Brewster angle depends on rotation of the permittivity tensor.

We are also interested in how the Brewster angle behaves for a different substrate. In
this analysis we look at how changes to both the orientation of the biaxial layer and the
permittivity of the biaxial layer affect the Brewster angle. We consider the incident wave in the

y-z plane from air incident on the biaxial medium with permittivity tensor

g=| 4 (2.2.41)

and a fixed value of y, while we vary y;. As shown in Figure 2-24, the Brewster angle at this
interface is between 60° and 65° as v, is varied for y,=0° (a) and y,=45° (b). Changing the z-
axis rotation from 0° to 45° did not change the Brewster angle trend; it only shifted it down
slightly. We also consider the case where v, 1s fixed and v, 1s varied (Figure 2-25). We see that
the peak-to-peak variation is similar to what we observed when y; was varied except the
Brewster angle decreases as v, increases and changing y; from 0° to 45° shifts the trend upward
slightly. We can conclude from this analysis that the Brewster angle for this permittivity tensor

will increase as y; increases and decrease as \; increases,
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Figure 2-24: Brewster angle as vy, is varied for y; of 0° (a) and 45° (b). Biaxial permittivity
tensor (&, &, &) = (3,4, 5).
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Figure 2-25: Brewster angle as y; is varied for y; of 0° (a) and 45° (b). Biaxial permittivity
tensor (&, &, &) = (3,4, 5).

The results for this first permittivity tensor tell us something about how the Brewster
angle behaves as the optic axes of the medium are rotated with respect to the layers. We also
want to understand how the Brewster angle behaves for a medium with stronger biaxial

characteristics. In order to gain this understanding we change our permittivity tensor to the
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tensor shown in equation (2.2.23). As we did with the previous permittivity tensor, we will first
look at the Brewster angle as a function of y; rotation angle for fixed y, angles and then fix y;

and compute the Brewster angle as a function of 5.

We compute the Brewster angles for the same rotations that were analyzed previously
and show the results in Figure 2-26 and Figure 2-27. The first thing to note is that the variation
over y is more affected by a change in y; in this medium (Figure 2-26). When vy, is 0°, the total
variation is less than 10° (a) but when v, is 45°, the peak-to-peak variation is approximately 15°.
As , is varied (Figure 2-27), we see a peak to peak variation of approximately 15° for both v,
values (0° (a) and 45° (b)). We can conclude that for this permittivity tensor y, rotations have a
more significant impact than y, rotations and the total variation in Brewster angle is greater for

this stronger biaxial medium than it was for the previous medium.

Brewster Angle for psi, = 0 and psi, varied Brewster Angle for psi,, = 45 and psi, varied
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Figure 2-26: Brewster angle as y; is varied for y; of 0° (a) and 45° (b). Biaxial permittivity
tensor (g, &, &) = (2, 5, 8).
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Figure 2-27: Brewster angle as y; is varied for y; of 0° (a) and 45° (b). Biaxial permittivity
tensor (g, &, &) = (2, 5, 8).

2.2.1.2 Wave Incident from Biaxial Region 1

2.2.1.2.1 a-wave upward incident upon biaxial-isotropic interface

The third configuration from Table 2-2 is the case of an upward propagating a-wave
incident from region 1 upon region 0. This incident wave will generate two downward
propagating reflected waves (an a-wave and a b-wave in the biaxial medium) and two upward
propagating transmitted waves (one horizontally polarized and one vertically polarized in the

isotropic region). This phenomenon is depicted in Figure 2-28.

Region 0 4}*

Region 1 a

Figure 2-28: a-wave incident upon biaxial- isotropic interface
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As done in previous sections, the first step is to formulate the fields in each region to

solve for the half-space coefficients. Based on Figure 2-28 we can write

E, (77) =ae* T + &‘R;gei’(“'; + b_Rj,ge"’(”';
(2.2.42)
E,(F)=hi X'0e™" +9; X 0™

The four unknown coefficients are evaluated by applying the boundary conditions on the electric
fields and magnetic fields. Next we must evaluate the cross product of the normal with the

electric fields in regions one and zero. These cross products are given by

—2xE (7 ) = ¢ (ja’ — a? )+ R (%a; - §a; )+ R (&b, — 3b; )| (2.2.43)

~2xEy ()= "X sy, — g, )+ X0 vy, — v, )] (2.2.44)

z

To satisfy the electric field boundary condition, we set (2.2.43) equal to (2.2.44) yielding

(Ra; = pa? )+ RY(Ra; —a; )+ RO(5b; — 967 )= X\(&hg, — i )+ X\2ove, —dve)  (2.2.45)
As done previously, we combine like components and rearranging resulting terms. For this case,
P ging g

the two equations obtained from the electric field boundary condition are

10— 10 - 107 + 10, + _ _+
—Raaay —Rabby +Xahhoy +Xavv0y =a,

(2.2.46)
R a. —RYb- + Xnr + X!V =a

aa — x ox X

We repeat the process with magnetic field boundary condition. Evaluating the curl using the

propagation constant cross product, the tangential magnetic field in region 0 is given by

~[#lk.ar —kar )+ 3l ar +kar )
—2x (kB (7, )= = RO[i(k ar - kas )+ 3k 0z —ka )| 2.2.47)

a

—R[&(kb; —k2b; )+ 3k by — kb )]
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and the tangential magnetic field in region 1 is given by

(2.2.48)

i)

- Xi;? [ff(kxhol - kOZth )+ JA’(kyhgz - k02h0+y )
X0 [ilk g~ koovi )+ 3l vy kv )]

0z"y

If we set the right hand sides of equations (2.2.47) and (2.2.48) to be equal, combine like

components, and rearrange remaining terms the two resulting equations are

~ Rk a7 —kta; )~ Rk, b7 —K2b; )+ X0k b, — ks, )+ X2k vi — Ko,
= (kxaz+ + kz‘”’a:)

Rk az —ka; )= RSk, by — Kb )+ X0k By — koo, )+ X120 vy — kv, ) (2249
= (k,a! +k"a)
Again, we write the four equations in matrix form
~a, —-b, h,, v, R,,
—a, ~b, h,, Vo, Ry |_
(ko —kay) (ks —kB7) (kb — ko) (ki —kovi )| X200 |
~(k,a; ~k:“a;) —(kyb;—kfjb;) (ke — koot ) (b = kv, )| X0 250
a
a
(ka7 — ka?)
(k,a’ —k“a

This matrix can be solved numerically to obtain the half-space reflection and transmission

coefficients for this configuration.

2.2.1.2.2 b-wave upward incident upon biaxial- isotropic interface

The fourth case to consider is when an upward propagating b-wave is incident from

region 1 upon region 0. This phenomenon is depicted in Figure 2-29.
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Figure 2-29: b-wave incident upon biaxial- isotropic interface

z=0

Based on Figure 2-29 we can write the electric fields in each region as

E(F)=bte™" +a R %™ +b R%™" (2.2.51)
E,(F)=h¢ X10e™" + 97 X 0™ (2.2.52)
Again, we apply the boundary conditions and derive four equations for the four unknowns. We

can write the four equations in the matrix form

- - + + 10
-a, —b, h,, Vo R,

- - + + 10
- ax - bx hox vox th

(ks —ka;) — (ks —k0,) (e —kohy.) (kv —kovi) | X5
~(kyaz —kay) —br kD)) (k= kohs,) (kv = koo, )| X020
b,
b
(kb7 —k"5)
(k b7 —k57)

(2.2.53)

2.2.1.2.3 a- and b-waves downward incident upon biaxial-conductor interface
Lastly, we consider the case where a downward propagating is incident from region 1

upon region 2, the perfect electric conductor (PEC). Each incident wave will generate two
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upward propagating transmitted waves; however, there will be no transmitted fields as there are

no fields in a perfect conductor. This case is depicted in Figure 2-30.

: b*
Region 1 &_R <~
z=0

Region 2 PEC

Figure 2-30: a- or b-wave incident upon biaxial-perfect electric conductor interface

As done in previous sections, the first step is to formulate the fields in each region to
solve for the half-space coefficients. We first consider the case when the incident wave is the a-

wave. Formulating the fields to be consistent with Figure 2-30 results in

E(F)=ae™ " +a R2e™ " +b" R2e™ 7 (2.2.54)
E,(7F)=0 (2.2.55)
For this problem we do not know the current on the conductor. We cannot assume it is zero as
we did when we had a non-conducting boundary. Therefore, we cannot use the magnetic field
boundary condition. However, we only have two unknowns and can obtain two equations from
the electric field boundary condition to evaluate the two unknowns. The electric field boundary

condition at the perfect conductor interface is given by

txE (F)=2xE,(F)=0, atz=0 (2.2.56)

If we substitute the expression for E, (17 ) into equation (2.2.56) we obtain

ei(k"erk"'y)[(— Xa, +ya, )+ R’ (— Xa; +ya; )+ R, (_ xb; + by )] =0 (2.2.57)
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For equation (2.2.57) to hold for all &, and &, then the sum (inside the square brackets) must be

equal to zero. If we combine like terms, we obtain two equations for the two unknowns. This

set of equations can be written as the matrix equation

+ + 12 —
(ly by Raa _ — ay
LI b }{R;Z —a; (2.2.58)

The same boundary conditions can be used to generate a similar set of equations

when the b-wave is incident upon the perfect electrical conductor. The resulting set of equations

is given by the matrix

+ + 12 -
a, by R, | -b,
= ’ 2.2.59
Lz: bz}Le;z b, (2239

2.2.1.2.4 Evaluation of Reflection and Transmission of Wave Upward Incident from
Region 1
Now we want to repeat the analysis in Section 2.2.1.1.3 for a wave incident from

region 1. We once again choose the plane of incidence to be the x-z plane, setting ¢ equal to

zero, thus making k, zero. The angle of incidence in the prescribed plane is given by 0. The

plane of incidence and angle of incidence are shown in Figure 2-31.
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Plane of Incidence
Z transmitted wave
kt
Region 0
80 b /uo
> or y
Region 1 (depends on o)
EL MU -
1»
? ki, aorb angle
incident wave . ,Of
incidence

reflected waves

Figure 2-31: Diagram of plane and angle of incidence for wave incident from region 1

The definition of the propagation vectors is not as straightforward when the wave is

incident from the biaxial medium. We can define a direction of propagation as a unit vector

lg:—)%sinécos¢+j/sin6’sin¢+écos9 (2.2.60)
However, to compute the four k. values, we need k, and £, in the medium. We need to know the
wave number in the medium to compute the propagation vector from the direction given in
(2.2.60). When the wave was incident from region 0 (isotropic) we multiplied the direction unit
vector by the wave number ky. In the biaxial medium, we do not know the wave number
explicitly until we solve the Booker quartic, but we need k. and £, to solve the Booker quartic for
k.. However, if the direction of propagation is known, our task is not so difficult because %,
(wave number for the a-wave) and k;, (wave number for the b-wave) can be computed using the
biquadratic solution in equation (2.1.7) which comes directly from the wave equation. When the
medium is unrotated the solutions are valid for both upward and downward propagating waves.

However, when the medium is rotated, all four £.’s are unique (given the same k. and k,) so the
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solution is only valid for the wave propagating in the pre-determined direction. We set the
direction of propagation of the incident wave by the angles of incidence so the biquadratic can be
used to compute the wave number of the incident wave then we can use this to compute the four

k. values at the boundary. If we assume the a-wave is incident, then the method we employ is:

1. Compute the wave number for the a-wave (k,) from the biquadratic solution

2. Use this k, to obtain the k. and &, inputs to the Booker quartic

3. Compute k", k. and k. using the Booker quartic

This issue of defining the propagation vector raises many questions about how we

define propagation problems in a biaxial medium. We cannot simply define a wave number with
only the frequency and material parameters as we would in an isotropic medium. We also
cannot simply define the polarization of the wave. We cannot fix the polarization direction of
the electric field then change the direction of propagation while satisfying Maxwell’s equations.
As already discussed these definitions become more difficult when the medium is rotated. While
the governing equations throughout this text hold no matter how we define our incident wave,
our understanding of the results is affected. If our “wave number” multiplier to the direction of
propagation is not correct, the angles of incidence will not be true. Throughout the rest of this

section we choose to compute k, and k;, using

k —\/ B B -44C 2.2.61)

“ 2A 2A
2
ksz_LB_W 2262
2A 2A
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when the a-wave or b-wave is incident. Then the propagation vector for the incident wave is

given by

k:ij = —%k, sin @ cos ¢ + Pk, sin Osin ¢ + 2k (2.2.63)
where i is the wave polarization (a-wave or b-wave) and j is the direction (upward or downward).
It is also important to note that we must treat the a-wave incident and b-wave incident problems

separately as there is no single wave number in this medium.

We begin by analyzing the same interface considered by Landry and Maldonado [13].
Landry considers the biaxial-isotropic half-space as a special case. The biaxial relative

permittivity tensor under consideration is

122 0 0
e= 0 L7 0 (2.2.64)
0 0 22°

Landry defined three counter clockwise rotations, first around the z-axis (), then around the x-
axis (y;) and finally again around the z-axis (y;). We modified our equations to accommodate
this additional z-axis rotation (yo) and set yo = y; = 75° and y, = —75°. The wave is incident in
the x-z plane (¢; = 0°) while the angle of incidence ranges from —25° to 25° (where the negative
angles are equivalent to ¢; = 180°). Note, this modification only affects the permittivity tensor
and is used to generate the same tensor Landry used to verify our reflection and transmission

computations

The half-space reflection coefficients for the upward incident a-wave (Figure 2-32),

exactly match those published by Landry and Maldonado [13].
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Half-space Reflection Coefficients: a-wave Incident from Biaxial Medium (R1) to Air (R0}
to compare to Landry and Maldonado paper
T T T T T
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Rﬂﬂ
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-20 -10 0 10 20
theta incident (degrees)

Figure 2-32: Reflection coefficients a-wave upward incident from rotated biaxial medium
to air

We observe that an incident a-wave will reflect both an a-wave and a b-wave back into the
biaxial medium unless it is normal incidence (theta equal to zero). We also see that the reflection
coefficients are not symmetric about the normal incidence point. This is due to the rotation of
the permittivity matrix and it means that the reflection behavior is different in the x-z (¢; = 0°)
plane and the —x-z plane (¢; = 180%). The magnitude of the transmitted electric field (Figure
2-33) also exactly matches the result published by Landry and Maldonado. Here we again

observe that the transmitted field strength is not symmetric about 6 = 0°.
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Half-space Transmission: a-wave Incident from Biaxial Medium (R1) to Air (RO)
to compare to Landry and Maldonado paper
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Figure 2-33: Transmitted electric field magnitude for a-wave upward incident from rotated
biaxial medium to air

The half-space reflection coefficients and magnitude of the transmitted field for the
upward incident b-wave (Figure 2-34 and Figure 2-35, respectively) again exactly match those
published by Landry and Maldonado [13]. We observe the same type of asymmetry with respect
to 6 we saw in the case of the a-wave incident. We also see that the reflection is stronger when
the b-wave is incident and that the reflection of the a-wave goes to zero at —25°. This is
associated with the critical angle at this interface. Critical angle will be analyzed more
thoroughly later in this section. We also note that the transmitted field strength of the

transmitted wave is stronger for the b-wave as compared to the a-wave.
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Half-Space Reflection Coefficients: b-Wave Incident from Biaxial Mediuam (R1) to Air (R0)
to compare to Landry and Maldonado paper
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Figure 2-34: Reflection coefficients b-wave incident from biaxial medium to air

Half-space Transmission: b-wave Incident from Biaxial Medium (R1) to Air (RO)
to compare to Landry and Maldonado paper
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Figure 2-35: Transmitted electric field magnitude for b-wave upward incident from
rotated biaxial medium to air
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Now we would like to consider the co-polarized half space reflection coefficients for
the biaxial-isotropic interface for a different biaxial media using our own permittivity definitions.
The isotropic medium is again air and the biaxial medium has a permittivity tensor with relative
permittivities of &,=2, &,=5, and £,=8. Here, the plane of incidence has changed such that ¢ is
now 0°. As we did in the previous analysis, we start with an unrotated biaxial medium. As
discussed previously in this section, to make sense of the incident wave definitions, we consider
the b-wave incidence and a-wave incidence separately and start with the a-wave. The reflection
coefficients are plotted against angle of incidence in Figure 2-36. We observe total internal
reflection with R,, equal to 1 above the critical angle of 37.5°. The Brewster angle effect is also
evident where R,, goes to zero at an incident angle of 28°. Finally, the cross-polarized reflection

coefficients Ry, is approximately zero, a behavior observed at an isotropic-isotropic boundary.

Half-space Reflection Coefficients: a-Wave Incident from Biaxial Medium (R1) to Air (R0)
’ Region 1: (ex,ey,ez)=(2.00, 5.00, 8.00), (psi,.psi,)=( 0, 0}
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Figure 2-36: Reflection coefficients for a-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (&g, &, €,) = (2, 5, 8), (W1, y2) = (0°, 0°).

Next, we look at the half-space transmission coefficients shown in Figure 2-37 (recall
the plane of incidence is @ = 0°). Here we see that when the a-wave is incident, the energy is
transmitted to the vertically polarized wave and X,, behaves like co-polarized transmission
coefficient. There is no energy transmitted to the horizontally polarized wave as X,, behaves
like a cross-polarized transmission coefficient with values close to zero. This polarization
pairing is opposite of what we observed when the incident wave was from region 0 (in Figure
2-14). If the plane of incidence is changed, such that ¢ = 90°, the a-wave is transmitted to the h-
wave, as it was for the same plane of incidence when the wave was incident from region 0. The
reason for this behavior is that the horizontally polarized and vertically polarized waves are
defined with reference to the plane of incidence whereas the a- and b-waves are defined with
respect to the medium coordinate system. Therefore, when the plane of incidence changes the
isotropic wave that couples to the biaxial wave also changes. We also observe that the imaginary
part of the co-polarized transmission coefficient becomes non-zero beyond the critical angle.
This behavior results in an evanescent wave in region 0 that decays rapidly as it propagates and
is the cause of total internal reflection. To further illustrate the phenomenon of total internal
reflection, we plot the real and imaginary part of the Poynting vector in Figure 2-38. We see that
the imaginary part is zero up to the critical angle and non-zero beyond the critical angle. The

real part demonstrates the opposite behavior.
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Half-space Transmission Coefficients: a-Wave Incident from Biaxial Medium (R1) to Air (R0)

3 Region 1: (ex.ey.ez)=(2.00, 5.00, 8.00), (psi,.psi-}=( 0. 0)
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Figure 2-37: Transmission coefficients for a-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (&, &, £) = (2, 5, 8), (y1, y2) =(0°, 0°).

Transmitted Power Term, a-wave incident

20 T T T T T T
real
181 . ®* imag|]
[ )
L ]
16 b
[ ]
14+ . b
12r . b
N
"‘I i
X
1L

0 10 20 30 40 50 60 70 80 90
theta incident (degrees)

Figure 2-38: Transmitted Poynting vector for a-wave incident from biaxial medium to air.
Biaxial parameters: (g, &, &) = (2, 5, 8), (W1, y2) = (0°, 0°).

73



74

Again, we verify our result by showing that power is conserved. Therefore, we need
to formulate time average Poynting vectors for the incident, reflected and transmitted waves.

Considering the case when the a-wave is incident, the incident time average Poynting vector is

)< LAl pefis (i xa) )
<Si>:Ew—,u0Re <k, xa*) (2.2.65)

Similarly, it can be shown that the time average Poynting vector of the reflected wave is

2 A (= oA *Rlo2 i x b *Rlo Rm* i(k, -k, )7
<§>=%|:Z;—O|Re a AX(Ka_xa ) +a *X'(Kbx ) :m( a_b)eA o 2.2.66)
o +b” % (Ka x&_) R;,?(Rlo) AR SN (K’b xb_) R!)

aa

Iz

and the transmitted wave is

ey s g o0+ v < () ()

a

2
(5= p g

* * S (2.2.67)
20t | gl i ] x00(010) 5 x (fy x97)

2
10
X

av

As detailed previously, we prove that power is conserved by showing that the power
reflection and transmission coefficients (given in equations (2.2.30) and (2.2.31)) add to one. In
Figure 2-39 we show that the sum of the power reflection and transmission coefficients is in fact

one for the a-wave incident. Therefore, power is conserved.
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Power Conservation: a-wawe incident from Region 1 upon Region 0
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Figure 2-39: Power conservation for a-wave incident from biaxial medium to air. Biaxial
parameters: (g, &y, &) =(2, 5, 8), (W1, y2) =(0°, 0°).

Now we consider the same biaxial medium but we rotated the permittivity tensor
around the x-axis by 15° (y;) and around the z-axis by 35° (y;). The resulting reflection
coefficients are shown in Figure 2-40. We observe that depending on the angle of incidence,
either biaxial polarization may be reflected more strongly. Also, we do not clearly see the total
internal reflection as we did for the unrotated case. As the angle of incidence approaches 40°,
the absolute value of Ry, rises dramatically to 0.7 with an absolute value of Ry, at approximately
0.45. To better understand what is happening to the reflection coefficients, we also break them
out into their real and imaginary parts in Figure 2-41. In this plot we see that beyond 40°, the
imaginary parts of both reflection coefficients become non-zero. We will see in our transmission
and power analyses that 40° is the critical angle under this rotation. In the previous unrotated

case the critical angle was 37.5° so the critical angle is affected by rotation.

75



76

Half-space Reflection Coefficients: a-\Wave Incident from Biaxial Medium (R1) to Air (RO)
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Figure 2-40: Reflection coefficients for a-wave upward incident upon biaxial-air half-
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Figure 2-41: Real and imaginary reflection coefficients for a-wave upward incident upon
biaxial-air half-space. Biaxial parameters: (g, &, &) = (2, 5, 8), (W1, y2) = (15°, 35°).
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In Figure 2-42 we plot the transmission coefficients for the rotated half-space
problem. When the medium is rotated, energy is transmitted to both the horizontally polarized
and vertically polarized waves in the isotropic region. This transmission is purely real until the
angle of incidence reaches 40°. Beyond this critical angle, the transmission coefficients both
become complex resulting in two evanescent waves and total internal reflection. The Poynting
vector of the transmitted wave also shows that the critical angle occurs at 40° (Figure 2-43). This
figure also shows that the real and imaginary parts of the transmitted wave are both
approximately zero at 52.5°. Finally, we analyze the real transmitted and reflected power ratios
in Figure 2-44 and show that the total reflected power ratio goes to one at 40°, verifying that 40°
is the critical angle even if no one reflection coefficient is equal to 1. This plot also verifies that

power is conserved, showing that the sum of the two ratios is 1 for all angles of incidence.

Half-space Transmission Coefficients: a-Wave Incident from Biaxial Medium (R1) to Air (R0}
EEegiun 1: (ex.ey.ez)=(2.00, 5.00, 8.00), (psi,.psi,}=(15,35)
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Figure 2-42: Transmission coefficients for a-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (g, &, &) = (2, 5, 8), (y1, y¥2) = (15°, 35°).
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Transmitted Power Term, a-wave incident
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Figure 2-43: Transmitted Poynting vector for a-wave incident from biaxial medium to air.
Biaxial parameters: (g, &, &) = (2, 5, 8), (W1, y2) = (15°, 35°).

Transmitted and Reflected Power Ratio: a-Wave Incident from Biaxial Medium (R1) to Air (R0)
Region 1: (ex,ey.ez)=(2.00, 5.00, 8.00), (psi,.psi;}=(15.35)

1 —— PP
_____ T — — PP
A — PRI+ PP
08 L g
\
06} ll ]
04f ]
|
|
02} ]
|
\
U 1 1 | | 1 L L 1

Figure 2-44: Transmitted and reflected power ratios for a-wave upward incident from
rotated biaxial medium to air
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Consider now the b-wave incident from the same biaxial medium considered in the a-
wave incidence analysis with ¢ = 0°. We begin again with the unrotated case. The reflection
coefficients are plotted against angle of incidence (Figure 2-45). We observe total internal
reflection above the critical angle of 27°. The cross-polarized reflection coefficients Ry, is
approximately zero just as we observed when the wave was incident from the isotropic region.
The b-wave does not experience the Brewster effect as Ry, never goes to zero; the b-wave is

reflected for all incidence angles.

Half-space Reflection Coefficients: b-Wave Incident from Biaxaal Medium (R1) to Air (RO}
1 Region 1: (ex,ey.ez)=(2.00, 5.00, 8.00), (psi,.psi,}=( 0, 0}
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Figure 2-45: Reflection coefficients for b-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (g, &, £) = (2, 5, 8), (y1, y2) =(0°, 0°).

Next, we look at the half-space transmission coefficients shown in Figure 2-46. Here
we see that when the b-wave is incident, the energy is transmitted to the horizontally polarized

wave and Xp,, behaves like co-polarized transmission coefficient. There is no energy transmitted
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to the vertically polarized wave as X, is approximately zero. We also observe that the
imaginary part of Xy, becomes non-zero beyond the critical angle. This behavior results in an
evanescent wave in region zero that decays rapidly as it propagates and is the cause of total
internal reflection. To further illustrate the phenomenon of total internal reflection, we plot the
real and imaginary part of the Poynting vector in Figure 2-47. We see that the imaginary part is
zero up to the critical angle and non-zero beyond the critical angle. The real part has opposite

behavior.

Half-space Transmission Coefficients: b-Wave Incident from Biaxial Medium (R1) to Air (R0)
Region 1: (ex.ey.ez)=(2.00, 5.00, 8.00), (psi,.psi;)=( 0. 0)
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Figure 2-46: Transmission coefficients for b-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (g, &, £) = (2, 5, 8), (W1, y2) =(0°, 0°).
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Transmitted Power Term, b-wawe incident
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Figure 2-47: Transmitted Poynting vector for b-wave incident from biaxial medium to air.
Biaxial parameters: (g, &, &) = (2, 5, 8), (W1, y2) =(0°, 0°).

Again, we want to verify our results showing that power is conserved. Therefore, we
formulate time average Poynting vectors for the incident, reflected and transmitted waves when
the b-wave is incident in the same manner as for the a-wave incident. As we did previously, we
prove that power is conserved by showing that the power reflection and transmission coefficients

(given in equations (2.2.30) and (2.2.31)) add to one. In this way Figure 2-48 shows that power

is conserved when the b-wave is incident.
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Power Conservation: b-wave incident from Region 1 upon Region 0
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Figure 2-48: Power conservation for b-wave incident from biaxial medium to air. Biaxial
parameters: (&, &, &) =(2,5, 8), (Y1, y2) =(0°, 0°).

Now that we have observed reflection and transmission characteristics for a b-wave
incident from an unrotated biaxial layer, we will analyze the same behaviors if we rotate the
biaxial permittivity tensor. Again, we choose rotation angles y; and y, of 15 and 35°
respectively. First, we analyze the reflection coefficients (Figure 2-49). We see that the cross-
polarized reflection coefficient is significant. In fact, we see that the absolute value of both
reflection coefficients become greater than one for some incident angles. The first incident angle
that this behavior is demonstrated is at 25.5° where the absolute value Ry, increases sharply to
almost 1.2. Figure 2-49 also shows the absolute value of the reflection coefficients are greater
than 1. Figure 2-50 shows that the imaginary part of Ry, becomes non-zero (and large) at this
same angle which contributes to the large absolute value. We will see when we analyze the

transmission characteristics that 25.5° is the critical angle for this case. Again this is a change
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from the unrotated case in which the critical angle was 27°. Rotating the biaxial medium (by
y1=15" and y»,=35") results in a larger critical angle for a-wave incidence and a smaller critical
angle for b-wave incidence. Figure 2-49 shows that the absolute value of the co-polarized
reflection coefficient (Ryp) also increases sharply at an incident angle of 47° which is where the

imaginary part becomes non-zero (Figure 2-50).

Half-space Reflection Coefficients: b-VWave Incident from Biaxial Medium (R1) to Air (R0)
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Figure 2-49: Reflection coefficients for b-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (g, &, &) = (2, 5, 8), (y1, y¥2) = (15°, 35°).
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Real Reflection Coefficients: b-Wave Incident Imaginary Reflection Coefficients: b-Wave Incident
Region 1: (ex.ey.ez)=(2.00, 5.00, 8.00), (psi,.psi,)=(15.35) Region 1: (ex,ey.ez)=(2.00, 5.00, 8.00), (psi,.psi,)=(15.35)

1.2 T T T T T T 1.2 T7 T T T T T
real(R10) : P \3 : : : : : ; : : :

\mag(Rgg} /

10
— —imag(Ry )

I 1 =
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
theta incident (degrees) theta incident (degrees)

Figure 2-50: Real and imaginary reflection coefficients for b-wave upward incident upon
biaxial-air half-space. Biaxial parameters: (g, &, &) = (2, 5, 8), (W1, y2) = (15°, 35°).

The transmission coefficients in Figure 2-51 show that energy is transmitted to both
the horizontally polarized and vertically polarized waves in the isotropic region when the b-wave
is incident. This transmission is purely real until the angle of incidence reaches 25.5°. Beyond
this critical angle, the transmission coefficients both become complex resulting in two
evanescent waves and total internal reflection. The Poynting vector of the transmitted wave also
shows that the critical angle occurs at 25.5° (Figure 2-52). When the b-wave is incident, we do
not observe an angle beyond the critical angle where both the real and imaginary parts of the
transmitted wave go to zero. This is in contrast to what we observed when the a-wave was

incident.
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Half-space Transmission Coefficients: b-Wave Incident from Biaxial Medium (R1) to Air (RD)
Region 1: (ex.ey.ez)=(2.00, 5.00, 8.00). (psi,.psi,}=(15.35)
' I : : ' ' '

Ireal(x. ")

D s = o
! ! : : | = dreal(d D)

12 oo

———————————————————————————————————

%]

' '
__________________________________

0.8

_________________

......................

] SO S

_______

02

0 10 20 30 40 50 60 70O 80 90
theta incident (degrees)

Figure 2-51: Transmission coefficients for b-wave upward incident upon biaxial-air half-
space. Biaxial parameters: (&, &, &) = (2, 5, 8), (y1, y2) = (15°, 35°).
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Figure 2-52: Transmitted Poynting vector for b-wave incident from biaxial medium to air.
Biaxial parameters: (g, &, &) = (2,5, 8), (W1, y2) = (15°, 35°).
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Finally, we analyze the real transmitted and reflected power ratios. We observed that
the absolute values of the reflection coefficients were greater than one for some angles (Figure
2-49). However, when we analyze the power ratios in Figure 2-53, we see that the reflected
power ratio never exceeds 1 and in fact is equal to 1 beyond the critical angle. Figure 2-53 also
verifies that power is conserved, showing that the sum of the two ratios is 1 for all angles of

incidence.

Transmitted and Reflected Power Ratio: b-Wave Incident from Biaxial Medium (R1) to Air (R0)
Region 1: (ex,ey.ez)=(2.00, 5.00, 8.00). (psi,.psi,)}=(15.35)

—— PP
sk T~ —— PP
: \ —— PP+ PP

06} | .

04r .

0.2t | .

0 10 20 30 40 50 60 70 80 490

Figure 2-53: Transmitted and reflected power ratios for b-wave upward incident from
rotated biaxial medium to air
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2.2.2 Two Layer Coefficients

We can use the half-space coefficients derived previously to define two-layer
coefficients. First, we use the half-space coefficients to define four half-space matrices. We
note that in our derivation of half-space coefficients, we assumed all boundaries were at z = 0.
However, for the two layer problem the second boundary (between region 1 and region 2) is
located at z = —h. Therefore, a phase shift related to this z transformation will have to be added

to the region 1 —region 2 coefficients. The resulting half-space matrices are given by

— ROl ROI
(z=0) __ hh vh
Ry ™ = { R RY (2.2.68)
— 'X01 x
Xoi =5 2.2.69
"l x (2269
— X yo
(z=0) _ ah bh
X = |y xo (2.2.70)
— RlO RlO
R =% o 2.2.71
‘° [Rzg RS @270
_ 12 ik -k Yo 12 ik -k Yo
Rl(zzth) — RaaeA(kbu kad)h Rbae'(kbu kbd)h (2.2.72)
Rk plzes

We define the upward and downward propagating waves in each region as Pettis did

[1]. These waves are shown in Figure 2-54.
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Figure 2-54: Incident, transmitted and reflected waves for two layer problem.

We want to describe all of our two-layer coefficients as if a downward wave is
incident from region O (the p-wave). We can then write each remaining wave in terms of the

half-space matrices in equations (2.2.68) through (2.2.72). The resulting equations are

g=| R+ SR -RORE] X | (2.2.73)
P [= _RORO X0, (2.2.74)
0=RNT-RYRS| Xp (2.2.75)
s= X[ -RORS X0, (2.2.76)

We consider overall reflection and transmission coefficients for this geometry with the wave

incident from region 0. From equation (2.2.73) we define the overall reflection coefficient as

R= [Ro( )+)=(10§ [I RIO I Xm :l (2.2.77)

From equation (2.2.76) we define the overall transmission coefficient as

- = .= -1 =
X = X{;“[z - Rl((?)Rl(;h)} X (2.2.78)
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2.2.2.1 Evaluation of Two Layer Coefficients

In this section, we analyze the two-layer coefficient in the same manner as detailed in
Section 2.2.1 for the half-space coefficients. The biaxial layer (regionl) has a thickness of 0.4,
(where A is the free-space wavelength) and is situated between two isotropic regions both with
permittivity and permeability of &, and L, respectively (air). In this analysis the biaxial medium

has permittivity given by

g = 4 (2.2.79)

The first case we consider is the unrotated case in the x-z plane (¢=0°). The two layer reflection
and transmission coefficients are shown in Figure 2-55. The co-polarized reflection coefficients
show that for all incident angles, the horizontal polarization is reflected more strongly, as is
normally observed at an isotropic boundary. This is the same behavior discussed (but not
shown) at the isotropic-biaxial half-space interface when the wave is incident from the x-z plane.
The cross-polarized reflection coefficients are approximately zero. Therefore, we observe
similar behavior at the two-layer interface, with a different biaxial permittivity tensor, as we did
in the half-space case. We also see that the vertically polarized wave undergoes zero reflection
at the Brewster angle of 57.5°. Figure 2-55 also shows the calculated transmission coefficients.
The co-polarized transmission coefficients have an inverse relationship to the reflection
coefficients. =~ We also see that the cross polarized transmission coefficients are also
approximately zero. Once again, this is the same type of behavior observed in the half-space
analysis where the a-wave acted as if it were co-polarized with the horizontal polarization and

the b-wave co-polarized with the vertical polarization. Finally, as a means of verifying our
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results we compute the power reflection and transmission coefficients to prove that power is
conserved. Figure 2-56 verifies that the sum of the two coefficients is one, proving that power is

conserved and the calculated coefficients are verified.

2 Layer Reflection and Transmission Coefficients
Biaxial layer (R1): (ex.ey.ez)=(3.00. 4.00. 5.00), (psi,.psi,)={ 0, 0). h=0.40lambda,,
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Figure 2-55: Two-layer coefficients for wave incident from the isotropic medium unrotated
biaxial substrate

Power Conservation: horizontally polarized wave incident upon 2-layer interface
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Figure 2-56: Power conservation for two-layer system

Once again we rotate the biaxial medium and observe the changes to the reflection
and transmission coefficients. In this case, we consider the same phenomena when region 1 is
rotated by y; = 30° and y, = 75°. Given this new biaxial medium, we first look at the co-
polarized reflection coefficients shown in Figure 2-57. We observe that when the permittivity
tensor is rotated, the vertically polarized wave is reflected more strongly than the horizontally
polarized wave for small incident angles and that this behavior is reversed for larger incident
angles. This behavior was discussed in the half-space problem where we observed this behavior
with a rotation of 45° or more around the z-axis (y,). Also, there is no true Brewster angle. The
vertically polarized reflection coefficient has a minimum around 61° but does not go to zero.
This is true in general of 2-layer problems. The co-polarized transmission coefficients have an
inverse relationship to the co-polarized reflection coefficients. We also can see in Figure 2-58

that cross-polarized coefficients are non-zero. Note that the transmission coefficients overlap.

2 Layer Co-polarized Reflection and Transmission Coefficients
Biaxial layer (R1): (ex.ey.ez)=(3.00. 4.00, 5.00), {psi,.psi,;}=(30.75), h=0.40lambda
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Figure 2-57: Two-layer co-polarized reflection coefficients for wave incident from the
isotropic medium (region 0); rotated biaxial substrate (y, y,) = (30°, 75°)
2 Layer Cross-polarized Reflection and Transmission Coefficients
Biaxial layer (R1): (ex.ey.ez)=(3.00, 4.00, 5.00), (psi,.psi;}=(30.75), h=0.40lambda
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Figure 2-58: Two-layer cross-polarized reflection coefficients for wave incident from the
isotropic medium (region 0); rotated biaxial substrate (y, y2) = (30°, 75°)

The two-layer reflection and transmission analysis is not complete unless we analyze
the effect of thickness (or height) of the biaxial layer. We consider the same unrotated biaxial
medium with results shown in Figure 2-55, this time with thicknesses of 0.022, and 1.2A,. First,
we consider the case of the very thin substrate (thickness is very small, 0.024,). The vertically
polarized reflection coefficient (R,y) is always less than the horizontally polarized coefficient
(Run). The Brewster angle is the same as it was when the layer was 0.4, thick (57.5%). The
transmission coefficients are nearly 1 for low angles and zero for large incident angles and the

cross-polarized coefficients are all approximately zero.
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2 Layer Co-polarized Reflection and Transmission Coefficients
Biaxial layer (R1): (ex.ey.ez)=(3.00, 4.00, 5.00}, (psi,.psiy)=( 0, 0), h=0.02lambda
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Figure 2-59: Two-layer co-polarized reflection coefficients for wave incident from the
isotropic medium (region 0) with biaxial substrate height of 0.022,

When substrate is very thick (1.2A,) the vertically polarized reflection coefficient
(Ryy) 1s still always less than the horizontally polarized coefficient (Ry,) and the cross-polarized
coefficients are still nearly zero. Interestingly with this thick layer, we see what looks like two
Brewster angles. One is at approximately the same angle observed at other thicknesses (57.5%),
but there is another Brewster angle at 37.5°. This behavior is primarily due to the thickness of

the layer as it may be observed when a thick middle layer is isotropic.
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2 Layer Co-polarized Reflection and Transmission Coefficients
Biaxial layer (R1): (ex,ey.ez)=(3.00, 4.00, 5.00), (psi,.psi,)=( 0. 0). h=1.2lambda
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Figure 2-60: Two-layer co-polarized reflection coefficients for wave incident from the
isotropic medium (region 0) with biaxial substrate height of 1.2,

For completeness, we also want to consider the effect of varying the height of the
biaxial layer when the medium is rotated. The results are shown in Figure 2-61. For all three
heights, the cross-polarized reflection and transmission coefficients are significantly larger than
in the unrotated case. As the height increases, these cross-polarized coefficients increase and
may be greater than the co-polarized terms when the height is 1.2A,. Not only do the cross-pol
terms increase, but the minimum reflection coefficient for the vertically polarized wave is not
zero. Finally, we observe that when the height of the anisotropic layer is 1.2A,, both the

horizontally and vertically polarized waves experience a type of Brewster angle effect.
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2 Layer Reflection and Transmission Coefficients 2 Layer Reflection and Transmission Coefficients
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2 Layer Reflection and Transmission Coefficients
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Figure 2-61: Two-layer co-polarized reflection coefficients for wave incident from the
isotropic medium (region 0) with rotated biaxial substrates of varying heights
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3 EIGENVECTOR DYADIC GREEN’S FUNCTION

In this work, we will be using the eigenvector dyadic Green’s function (E-DGF) to
compute the electric fields generated by a current in the presence of a biaxially anisotropic
medium. Pettis used the transition matrix dyadic Green’s function (T-DGF). There are benefits
to using each and we have chosen the E-DGF for two reasons. First, the E-DGF is more general
than the T-DGF. Once formulated, the source can be located anywhere within the specified
region whereas the T-DGF requires that the source be placed on a boundary surface. This is a
powerful property of the E-DGF. For example, the E-DGF can handle a z-directed source that
extends through the entire region which allows us to model a coaxial probe feed. The T-DGF
would not be able to handle this source as the current is (1) not tangential to the boundary and (2)
exists within the layer, not solely on the surface. Further, the E-DGF applies to the solution of a
stripline problem since the source may be embedded in the substrate. If using the T-DGF, one
would have to re-formulate a stripline problem with another layer. The second reason for using
the E-DGF formulation (as discussed in the next section) is that it is rooted in the fundamental
physical properties of the problem. It is based on half-space or two-layer reflection coefficients
and the electric field vectors (eigenvectors) of the media. Understanding the E-DGF provides
greater insight into the physical behavior of the waves generated in and around the biaxial

medium.

3.1 Formulation of Dyadic Green’s Functions

In this work, we propose to use the eigenvector dyadic Green’s function (E-DGF) to
compute electric field quantities. Lee and Kong [33] derived the unbounded eigenvector dyadic

Green’s function (E-DGF) for uniaxial media. Based on this work, Mudaliar and Lee [34]
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formulated of the E-DGF for unbounded and two-layer biaxial geometries. In this work, we use
the two-layer Green’s function from [34] and have adopted the layer conventions from the
Mudaliar and Lee paper: region 0 is the isotropic medium above the biaxial layer, region 1 is the
biaxial medium, and region 2 is another isotropic region below the biaxial layer. This two-layer

geometry is shown in Figure 3-1.

Eo» My Region 0
z=0

& Region 1
(Biaxially Anisotropic Medium)

z=—hy

&yl Region 2

Figure 3-1: Two layer geometry used in Green’s function formulation

Given this geometry, the E-DGF equations for a source in region 0 are [34]

iy T + lkn A+ lko -
G(OO)(F 17' :_J'dzk 1 oo [h e +thh +R, P’O ’
ko e e R e 4 R 5T (3.1.1)
O<Z<i
GO (F, ) = (3.1.2)
P R [Aha”‘ STy BN T+ A,b e + B b "’5”}?0-
S 2 d kp—e o o
87" =, k. +[Ama e+ B ate i +A,b e +B,be & ’]&0’
-h,<z<0
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GO 5 i T o L —iky 7’ [Xhhﬁz_ei’?z'; +thﬁz_ei’?z'F};()_ (3.1.3)
( ) ¢ [ — ik, T N PN
+[thhze T+ X Ve ]Vo

z<—h,
Equations (3.1.1) through (3.1.3) depend on the propagation vectors (discussed in
Section 2.1.1), the two layer reflection and transmission coefficients (R;;, Xj;, 4;, and Bj;), and the
electric field unit vectors (discussed in Section 2.1.2). The two layer coefficients come from
equations (2.2.73) through (2.2.76). For example, the matrix multiplier in equation (2.2.73)

gives us R;. Similarly, the 4 matrix comes from equation (2.2.74); the B matrix from (2.2.75)

and the X matrix from (2.2.76). Note that j d’k, = I _[ dk dk .

P

—0o0 —00 —00

3.2 Symmetrical Property of Dyadic Green’s Function

When solving new electromagnetic problems using dyadic Green’s function (DGF)
techniques, we often do not have the appropriate Green’s functions at our disposal. This is true
in our case as only three of the nine possible E-DGFs have been solved. We know the E-DGF to
compute the field in region 1 given a source in region 0. However, to study antenna problems of
interest, we would like to know the field in region 0 given a source in region 1. Fortunately, we
can utilize the symmetric property of the DGF to transform a known Green’s function into the
Green’s function needed to solve the problem. First, we will derive the symmetric property of

the DGF. We will then use this property to derive the Green’s function needed.

C. T. Tai [37] derived symmetrical property of dyadic Green’s Function (DGF) for
free space problems, half-space problems and bounded half-space problems including conductor

backed dielectric applications. He did not consider the general 2-layer problem or anisotropic
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materials (all materials were assumed isotropic). J. K. Lee [38] considered this case and derived
the symmetrical property of the DGF for the 2-layer problem with an anisotropic medium in the
middle layer, which we rederive here. First, we define the inhomogeneous wave equations for
DGFs given a source in each region. Next, we apply electromagnetic boundary conditions at
each interface then generate suitable integrals via application of the dyadic-dyadic Green’s
theorem of the second kind. Finally, the resulting integrals are simplified using distribution
theory and appropriate vector identities in order to derive the desired symmetry relation for the

dyadic Green’s function.

First, we define inhomogeneous wave equations for the Green’s functions for a

source in region 0 as

VxVxG (7,7 )- w0 u,6,G " (7,7 )= 16(F -7,), z>0
VxVxG " (F i) -0’ 1,56 "(F,7)=0, —h<z<0 (3.2.1)

VxVxG (7,7 )-w’ i,6,G @7, 7 ) =0, z<—h,
where the first numerical superscript on the DGF denotes the field region and the second
numerical superscript is the source region. Similarly, the inhomogeneous wave equations for

Green’s functions with source in region 1 are given by

VXVXE(O’I)(F,F])—COZ,UO%G(0’1)(77,771):0, z20
VxVxG W77 )=’ 1,5G (7 7)=16(F-F), —h <z<0 (3.2.2)
VxVxG (7 7 ) -0’ 16,6 > (7,7 )=0, z<—h
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Next, we define electromagnetic boundary conditions in terms of the dyadic Green’s functions.
We will apply the boundary conditions at z = 0 which relates the tangential field components to a

source in region 0 by

2xGOF 7 ) = 2xG M7, )
— — 3.2.3
EXLVXG(OO)(F,FO)zéxiVxG(lo)(F,Fo) ¢ )
Hy H
If the source is in region 1 the boundary conditions can be written as
2xGOVF,7) = 2x G (7, 7)
= = 3.2.4
éxLVxG(Ol)(F,Fl):éxiVxG(”)(F,Fl) ¢ )
Hy H

Next, we want to relate the Green’s functions for a source in region 0 to the Green’s
functions for a source in region 1. We will do that via the application of the vector Green’s
theorem. To generate integrals via application of the vector Green’s theorem we need to define a

set of vector functions in each region. We define the vectors as

R=G"(.5)a s
_ 2.5
Qo :C_;(O’l)(_’_l)'l; ( )
R=G" 5 )a
_ 3.2.6
0,=G"F.7)b G20
P, =G .7)a
(3.2.7)

where @ and b are arbitrary point source vectors, in region 0 and 1 respectively, post-

multiplying the dyadic Green’s functions. Vectors P. and Q, are the resulting vectors in each
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region from this post multiplication. We now apply the vector Green’s theorem to each set of

two functions resulting in

I_U[EVXVXQ_QVXVXE]d ﬁ XVXP PXVXQ) i=0,12 (328)

The volume refers to the region in which the field exists (denoted by subscript i) and the closed
surface is the surface bounding that volume. We apply the integral to all three sets of vector
relationships. We then simplify the integrals using common vector identities and the boundary

conditions defined in (3.2.3) and (3.2.4) to show

i LG 7). b =5 G 5 )@ (3.2.9)
This relationship in (3.2.9) must hold for any arbitrary vectors @and & . If this
condition holds, then

| = -
ﬂ—OG(O")(rom " [G (0 ”15”0)]7 (3.2.10)

Equation (3.2.10) is the symmetrical property of the dyadic Green’s function for 2-layer

anisotropic geometry. If all media are non-magnetic then

GO 7 )= [Eum(f] 7 )]7 (3.2.11)

In this derivation, the most critical assumption is that the anisotropic medium is

reciprocal. Consider some general bianisotropic medium whose fields are related by

D=g-E+¢-H
B=pu-H+C -E

(3.2.12)

Kong [2] defines the medium as reciprocal if
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' (3.2.13)

R
I I

|

TN =

N

We considered an electrically anisotropic medium (condition 1). In general, for the symmetric
property of the DGF to hold, the medium should be reciprocal. Uniaxial and biaxial media are
reciprocal, so we can use this property for our purposes. However, gyrotropic media are not
reciprocal so an alternate form of the symmetrical property would need to be derived. We are

not handling gyrotropic media here, so this alternate form is not needed.

3.2.1 Application of Symmetrical Property of DGF

We are interested in computing the electric fields in region 0 given a source in region
1. In (3.1.2), we have the eigenvector dyadic Green’s function for the field in region 1 given a
source in region 0. We can apply the symmetrical property of the DGF from equation (3.2.10) to

obtain the required Green’s function.

We begin by taking the DGF in equation (3.1.2) and placing the unprimed (field)
position vector (7 ) in region 1 and the primed (source) position vector (7") in region 0. This

manipulation results in

Ge(l 0)(’71”70) =
i T PR [A,m&‘e”?l"""l +B, 4™ + 4, b + B, bt }t?o- (3.2.14)
87’ S Pk, 4 Avacﬂl_ei’?‘”ﬂ +Bva&+eik1“<a 4 AVbl;_ei,?{’.;l +Bv}7b'\+eik]h4;l ]‘;(;
where I d 2_p = I Idkxdky . Now, we must take the transpose of (3.2.14)
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Gror) -
L % dz,; Le,i,;04r0 [Ahaa em A +B a+ ik 7 +Ahb1;feir?1b'7'1 +Bhbb+ezk1 ;1] (3.2.15)
87 e pkoz +V0 [Av 4 ez o +B At zk, 7 +Avbl’)‘7€i,;lb.;l +Bvbl;+eik‘b‘;“

From equation (3.2.10), we know that this gives us the eigenvector dyadic Green’s function for

the field in region O given a source in region 1. Using our primed and unprimed notation for

source and field regions, respectively, equation (3.2.15) can be written as

— ik + ik [ — ikl F A+ ik, -r
[A,m ! +B aer +Ahbbe " +B,be™ ]

o 1
12 .[ k . *lKO
7 Tk, +v, [Ama """ + B a

This form is mathematically correct; however, it is not physically meaningful

k7 (3.2.16)
+lk,~ +A b—u(,~r+Bb+zk1

. The

source in region 1 would generate an upward propagating field in region 0, but in this form we

have a downward propagating wave in that isotropic region. To write (3.2.16) in a more

physically meaningful form we make the change of variables

k. ——k,
k, -k, (3.2.17)
dk, = dk dk, — (- dk, Y- dk, )= dk,,

In his thesis Pettis [1, Appendix M] derived relationships for the electric field vectors and the

propagation vectors under the same change of variables. The electric field vectors in region 0

are given by

jl\()_(_ kx’_ky): _ég(kx’ky)
5o, )= e, G219

Under the same change of variables, the electric field vectors in region 1 are given by
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i (k)= —a" (k)
it~k k)= -a (k,.k,)
bk )= 5l k) o
5+(_kx’_ky)=b7(kx’k})

Finally, the propagation vectors can simply be rewritten
_0 (_kx’_ky): _kx)%_ky.j)-’_kaé = _’?0 (kx’ky)
_0(_kx’_ky)z_kx)’e_kyj\}_kOZéZ_EO (kx’ky) 3.2.20
o/ (—kmk, )=~k &=k, p+ ki (~k o~k ) = =i/ (k, K, ), j=ab (3:2.20)
i/ (—k k)= —k R =k, P+ ki (~k ~k, =—ki (k k) j=ab

where the superscript j indicates whether the a- or b-wave is propagating in region 1. The

relationships shown in equation (3.2.20) were confirmed numerically for several biaxial tensors

under multiple rotations. Making all of the substitutions related to the k. and k, change of

variables into equation (3.2.16) results in

—00

~ [_ A,k =k, Jate
|

If we rearrange the terms

=1

7
_Bha

=1

(— kx’_ky)é_ef"’?l“"? + Ahb(_ kx,_ky)éer—iEf,F’ + Bhb(_ kx,k})l;e”(lb"'?

-4, (— kx,_ky)&*e’i’;f"?' - B, (_ kx’_ky)&—e—n?,“‘;' + 4, (_ kx,—kyﬁ+eiilglhm +B, (_ kx,—ky)l;fefi'?lh‘?]

(3.2.21)
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. — 1 o
G (0,1) ’7’ ’7! — l de elk‘, -
7.7) 87’ " k.

[A’: k—k )h+ —kx,—ky ){}8’}34'6—1‘];1”.?’
[B’“’ keh, iy = Bk, I ]&’e""?f’” (3.2.22)
[_ Ahb —k,,—k )h+ + Avb _kx,_ky)og]l%e,ﬂ;{n;/

[ Bhb —kok )h+ +B kxa_ky)ﬁg]{;_e"“?lb"?

The equation is nearly consistent with the physics of a source in region 1. The only additional
manipulation involves simplifying the coefficients 4 and B and making the notation consistent

with conventions previously used. We define a set of primed coefficients (as did Pettis [1]) as

A,k ok, g = A;h%kx,kv) 4, E— kook, g = —A;kax,kyg

By \-k,=k,)=B,\k, .k, B, \-k..—k,)=-B,\k, .k,

Ahb(_ kx ’_ky): _Al:h kx’ky Avb <_ kx ’_ky): Algv(kx’ky) (3.2.23)
Bhb(_ kx’_ky): _B;;h(kx’ky) B, (_ kx’_ky): Bbv(kxaky)

These new coefficients are then substituted into the Green’s function in equation (3.2.22). The
result is a Green’s function for computing electric fields in the isotropic region 0 when a source

is in region 1 in a physically meaningful form; this form is given by

[A' k .k )h+ Ly k k )9— zkor]a+ e

A G
- k [Abh kxaky )ﬁgeﬂ%f + Allw(kxaky )";geilgo?k‘_,_e,ﬂglb.?
w18y, (ke Vo™ + B (k. o, Jope™ e 7

5(01 — —r

(3.2.24)

The symmetrical property of the DGF is a powerful tool in obtaining unknown Green’s functions
from known Green’s functions. In this section, we use the property to derive the E-DGF for the
fields in region 0 given a source in region 1. The property could also be used to obtain the

Green’s function for the field above a source when only the Green’s function for fields below the
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source is known. This property is a valuable tool in solving new, complex electromagnetic
problems and will be used later in this work to compute fields generated by a probe-fed

microstrip patch antenna.
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4 PRINTED RECTANGULAR MICROSTRIP ANTENNAS

A significant contribution of this work is the study of rectangular microstrip antennas
printed on arbitrarily oriented biaxial substrates as shown in Figure 4-1. The rectangular patch
antenna has some width (W) in the y-dimension and some length (L) in the x-dimension and is
infinitely thin (in the z-direction although depicted with some thickness for illustrative purposes
only). Before treating this general case, we address the dipole problem in which the width of the
antenna is much smaller than the length. Note that we continue with our notation in which the
biaxial substrate is region 1 and the isotropic region above the antenna is region 0. The
conductor ground for the substrate is region 2 and considered a perfect conductor for this

problem. Further note that we are considering non-magnetic materials all with permeability .

Microstrip Patch
Y L
Eo» My @%
_z=0
_ /
15l h
Sy z=-h

X h/
PEC

Figure 4-1: Rectangular microstrip antenna diagram

We begin by discussing solution techniques and our choice of the Method of
Moments (MoM). We then derive a reaction equation for a general probe-fed rectangular
microstrip antenna. We use this reaction equation to solve two microstrip antenna problems: the

delta-gap fed dipole antenna and the coaxial probe fed rectangular patch antenna.
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4.1 Solution Techniques
4.1.1 Method of Moments

4.1.1.1 Variational Methods

Many physical phenomena are governed by differential equations. In general, the
solution to this class of problem requires integrating the differential equation. However, when
this integration becomes very complicated, we can employ variational methods to find a function
that will give us the minimum of a related integral [40]. Variational methods are common to
both the method of moments and the finite element method used to solve electromagnetic
problems [40]. Therefore, a study of variational methods is important in this research to ensure

that an appropriate method is chosen for the solution of the microstrip patch problem.

The set of problems solved using variational methods are deterministic, meaning that
for a given known source, there is one unique solution [41]. The deterministic equation we wish

to solve is a simple inhomogeneous operator equation that can be written as

L(f)=g @.1.1)

where L is a linear operator, f'is some unknown function and g is a known source function [41].
The goal is to find /. For some physical problems f can be found directly. However, for many
electromagnetic problems, we cannot find f analytically so we need a computational method to
find an approximation of /. To use a variational method we must define the inner product. The
definition used by Sadiku [40] is given by

(a,b)=[ab"dQ (4.1.2)

Q
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which satisfies the conditions set out by Harrington [41].

The function f'is approximated with basis functions such that the approximation (]7)

is given by

f=>au, (4.1.3)

where each u, is a known basis function and each a, is an unknown constant. The objective of
the variational method then is to solve for the unknown coefficients when sufficient N is used to
approximate the original function. If the solution method is appropriate for the problem, the
error between the approximate solution and the actual solution will decrease as N increases to

some limit.

The method of moments is based on an indirect variational method or weighted
residual method. This residual represents the difference between the exact solution (the

excitation g) and the operator L acting upon the approximate solution. The residual is given by

R=L(7-r)=LF)-¢ (4.1.4)
Note that while we do not know the exact solution f, we can still know the error because we

know the excitation. In the weighted residual method a weighting function is chosen to

minimize the residual.

(w,,R)=0 (4.1.5)
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Substituting the expression for R from equation (4.1.4) and performing some manipulations, we

have

<wm,R> = <wm,L(f)— g> =0

- (4.1.6)
(9, 2(7)) = (w, )
Then, by applying equation (4.1.3) we obtain
N
<Wm’zanLun> = <Wm’g>
" 4.1.7)

ZN:a:<wm,Lun> = <wm,g>

n=1
In equation (4.1.6), we forced the residual to zero thus minimizing the error. Thus, the final
representation of equation (4.1.7) is what we will use in our method of moments formulation.
This is the same equation presented by Harrington [41]. We will use this method to solve N
simultaneous equations for the N unknown coefficients a,. This set of equations is written in

matrix form (by Harrington [41]) as

1,.]a;]=1G,] (4.1.8)

where

(4.1.9)

If the matrix [/,,] is nonsingular, its inverse exists and the unknown coefficients a, are given by
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[a,1=11,.]"[2,] (4.1.10)

The matrix equation in (4.1.10) is the fundamental equation solved by the method of moments

To implement this method the weighting functions w, must be properly chosen.

There are predefined methods for choosing the weighting function when using the weighted
residual method. The first is collocation, also known as point-matching [40]. In this method, the
weighting functions are Dirac delta functions. Computationally, this is the simplest weighted
residual method because the inner product of the weighting function with the residual is equal to
the residual evaluated at the center of the Dirac delta function. However, the validity of
collocation depends on the choice of the collocation points [40]. While original MoM codes
applied this method successfully, it can be difficult to know where the appropriate points are a

priori. Therefore, collocation will not be used.

The next type is the subdomain method where subdomain basis functions are chosen
as weighting functions. Commonly used functions include piecewise uniform (pulse), piecewise
linear (triangular) and piecewise sinusoidal [40]. In general, these subdomain basis functions
may be chosen independently of the expansion basis function u,. A special case of the
subdomain method is Galerkin’s method. In Galerkin’s method the weighting functions are
chosen to be the same as the expansion functions. The advantage of this method is that you only
have to choose one basis function as long as that basis function spans both the domain and range
of the operator L [40]. We will be using Galerkin’s method for the solution of the rectangular

microstrip patch.
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4.1.1.2 Basis Functions

As discussed in the previous section, the choice of basis function with which to
expand the current is critical in the accuracy of Galerkin’s method. Specifically, the choice of
basis function directly affects the stability, efficiency and convergence of a moment method
solution [22]. Basis functions come in two varieties: entire domain basis functions and
subdomain basis functions. A single entire domain basis function is defined over a large section
of the structure, and a set of these functions forms an efficient basis. However, they cannot
approximate arbitrary current distributions and are only useful for unloaded patches [22].
Subdomain basis functions require more basis functions to cover the entire patch, making them
less efficient. They are, however, capable of modeling any arbitrary current distribution and any
arbitrary patch shape. Subdomain basis functions are used in this analysis to maintain maximum

generality of the basis function given the complexity of the medium.

The most common subdomain basis functions are: pulse basis functions, piecewise
sinusoidal basis functions and rooftop (triangular) basis functions. In much of his work, Pozar
uses piecewise sinusoidal basis functions. However, we will use piecewise constant “pulse” and
“rooftop” basis functions. This choice provides a more general solution as orientation is not

assumed and is consistent with the formulation Pettis [1] used in his work.

In this chapter, we will derive the general reaction equations for a rectangular
microstrip antenna with currents flowing in two dimensions. The general two-dimensional
current formulation requires x-directed and y-directed currents. Each of these currents will have

a component that varies in x and a component that varies in y. Therefore, we have four
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expansion functions to define. We can write these four expansion functions as the single

expression:

J(F) =3 a, W)+ 526,75 () () @.1.11)

4.2 Reaction Formulation

4.2.1 Reaction Equation Derivation

The printed microstrip antenna problem is described by the reaction equation.
Fundamentally, we are trying to compute the currents induced on a conductor given some source
current. The currents generate electric fields in the surrounding region. The reaction equation is
based on satisfying the boundary conditions for these fields along the conducting antenna. On a

conductor, the total tangential electric field is zero, therefore,

itan =0 4.2.1)

¢ tan

The electric field due to the impressed (or source) current (J,) is E, (impressed) and the electric
field due to the induced conduction current (J,) isE,. In this problem the conduction current is

unknown so we approximate it using known expansion currents. We then apply the weighting
functions and take the inner product as shown in (4.1.5). In this section, we will derive a general
reaction equation for a rectangular microstrip antenna printed on an arbitrarily oriented biaxial

substrate. We start by rewriting (4.2.1) as

o
|

ctan ~ _Ei tan (4'2°2)
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and expand this simple equation to formulate the reaction equation. We know that the dyadic
Green’s function can be used to calculate the electric field generated by an electric current [2]

using

E = la),LlJ:”. (_;(17,7) j(?')dv' (4.2.3)
o
Where G is the dyadic Green’s function and J is the current source. Applying (4.2.3) to both

sides of (4.2.2), we obtain

o m G. (7 (7 )dv' = —zawm G (7 7)- T ()" (4.2.4)

The volume integral is taken over the source region, in this case the region over which the
currents exist. In the general case of (4.2.4) the current could be a volume current, however, in
the case of the microstrip antenna the conduction current is a surface current density. Therefore,
we change this volume current density to a surface current density that exists over the entire

surface of the antenna. We keep the impressed current as a volume current density.

la)uﬂ - 7 )ds' ——zwﬂm o )-J, (7 )av' 4.2.5)

In equation (4.2.5) we are using G ©%on the conduction side of the equation and
G ) on the source side. As was shown in Chapter 3, if a current is placed at the boundary, in
region 0 (at z = 0), G *Yand G™ produce the same tangential electric fields along the

boundary. We choose G ") to calculate the electric field in region 0 so that when we apply the
weighting function (which must be in the same region as the conduction current), it is in the

same region as the field.
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The fields on either side of the reaction equation (4.2.2) should be in the same region

so we need to compute the electric field in region 0 on the source side as well. G O is used
since we assume the source is in region 1 as would be consistent with a coaxial probe. This E-

DGF was derived using the symmetrical property of the dyadic Green’s function in Chapter 3.

Equation (4.2.5) expresses the boundary condition governing the tangential electric
fields along the antenna. Now, we wish to apply the method described in Section 4.1.1. The
Method of Moments requires that we compute the inner product of a weighting function with
both sides of the governing equation (as shown in equation (4.1.7)). To do this we pre-multiply
the fields by a testing, or weighting, function and integrate over that function. The testing

function will be a current function equivalent to the expansion functions. We call this current the

test current./,. The test current integration must be applied over both sides of equation (4.2.5)

which, in general, results in

] 47, 0) o =[] 7,7) .o w26

Equation (4.2.6) i1s a general form for any test current. We already know our induced
(conduction) current will be a surface current distribution. Therefore, the expansion functions
and testing functions will also be surface currents. Applying this integral dimension reduction

and the field expression to (4.2.6) results in

lwﬂﬂ dsJ (7 ISI G (7, 7)- (7 )ds’ = ~icou H dsJ (7 m G "' 7)- ()Y (427)

In the following sections, we will expand the terms of (4.2.7) further, concentrating on one side

of the equation at a time. We begin by defining the current functions we will use.
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4.2.1.1 Currents

The expansion function in any variational method should approximate the unknown
induced current. One must use some knowledge about how the surface current should behave to
choose an appropriate expansion function. The expansion function should model this known
behavior (for example, the current goes to zero at the end of a dipole antenna). When using

Galerkin’s method, the testing function is the same as the expansion function. Therefore, in this

problem, we define three currents, the impressed (or source) current./,, the induced conduction

current./ , and the test current.J,. The basis functions used to expand the conduction current and

the test current are the same by Galerkin’s method, however they will be evaluated at different

locations so are treated separately.

4.2.1.1.1 Expansion and Weighting Functions

As previously stated, the choice of basis functions is important. We are choosing the
same basis functions used by Pettis [1] in his analysis. For the basis function that describes the x

variation in the x-directed current we will use overlapping triangular subdomain basis functions

as defined by [1]:
Yoo —a); (v —a)<x<x,
a
Jx(x) = l((xc + a)—x); X, <x< (xc + a) 4.2.8)
a
0 ; elsewhere

where a=L/N, L is the length of the antenna and N is the number of subsections in the x-

dimension. We will use the same function to describe the y variation in the y-directed current.
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%(y—(yc -b)); (v, —b)<y <y,
J,(y)= %((yc +b)=y); y. <y <(y.+b) (4.2.9)

0 ; elsewhere

where b=W /M , W is the width of the antenna and M is the number of subsections in the y-
dimension. Next, we define the y variation in the x-directed current. We will use the simple

square pulse function given by

M.

J)=w
0 ; elsewhere

W
b-r)<3y (4.2.10)

Similarly, the x variation in the y-directed current is a square pulse defined by:

N

Jy(x)z L;
0 ; elsewhere

(r—x ) <&
2N 4.2.11)

The centers of each basis function are x. and y. respectively.

We note that the width of each triangular basis function is two segments (where a
segment is either a or b wide for the x-directed and y-directed function, respectively). Therefore,
the total number of triangular basis functions is one less than the number of divisions (i.e. N-1 or
M-1 for the x-directed and y-directed function, respectively). The rectangular pulse basis
functions, however, are only one segment wide (a or b), so the number of basis functions is equal
to the number of divisions (N or M). The basis surface functions must cover the entire

conducting patch.
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In the formulation of the reaction equation, we will need the Fourier transform of the
current distribution to evaluate the electric field integral. The x-oriented dipole antenna will
consider only x-directed currents. The spectral domain functions were derived and the x-directed

currents for the x-oriented dipole are given by:

O s

N ey, sin(13k,b)
Tl )= oy

4.2.12)

In the patch antenna problem, we consider both x and y directed currents resulting in four basis

functions. The spectral domain basis functions for the patch antenna are given by

sin’(/4k,b)

T, (k, )=be " (7—?]
G (4.2.13)

Tilk)=e ( (14k.a) j

7 (k) ge | S U2K,a)
Jx(kx)_ae ( (%kxa)z J

‘ 4.2.14)
Tk )=e™ sin(/4k,b)
A (% kybi
We can write the combined spectral domain current density as
_ Mx(N-1) N NxM-1) ~
Tlek,)=% Ya, Tk Tk, )+ 5 36,770k Jr(k,) 4.2.15)
m=1 n=1

This expression will be used in the reaction formulation. Note that as we develop the reaction
equation, we will be integrating with respect to k. and £, so these current functions are for all

values of k, and k, in a plane wave expansion.
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4.2.1.1.2 Probe Model

Application of Galerkin’s method also assumes we know the excitation described by
the function g. Many options are available for exciting the microstrip patch antenna. In his
previous work, Pozar [25] discussed the feeding of the microstrip patch noting “the most difficult
aspect of the patch radiator problem is the modeling of the feed. For one thing many different
types of feeds are possible.” Among the feed types are: probes, coplanar microstrip feeds,
proximity coupling to the microstrip patch by a line underneath the patch and aperture coupling
[22]. While not always the most practical in actual antennas, probe feeds are most often used in

full-wave modeling as they are computationally the simplest to model.

The probe is based on a coaxial line feed. In practice, the center conductor is fed
through the substrate and attached to the patch antenna at some point exciting the antenna to
radiate. The outer conductor is then attached to the ground plane below. In the literature, probe
feeds are treated in two ways; the idealized model and the rigorous model. The idealized model
is used extensively by Pozar [19, 25 and 26] notably in his analysis of radiation from a microstrip

patch on a uniaxial substrate.

However, this idealized model ignores the probe self-impedance and the rapidly
varying patch current in the vicinity of the feed. To account for this, Pozar adds a term for the
probe self-inductance to the computed input impedance of the patch. This self-inductance term
is based on the inductance of a short-circuited transmission line [43]. For a more accurate
answer, Pozar also modifies his excitation by a term to account for the edge effects of the
microstrip line as derived by Carver and Mink [16]. This still does not account for current

variation on the patch in the vicinity of the probe. To accurately account for the effect of the

119



120

probe, the probe inside the substrate must be modeled [39]. In a rigorous model of the probe
feed, the probe is treated as a wire with finite diameter, rather than a filament. The interaction of

the probe with the patch at the feed point is then modeled in detail.

In this work, we will model the probe-feed excitation of the patch antenna with the
idealized probe feed model. The entire length of the probe will be modeled through the biaxial
substrate; however the real diameter of the coaxial line will be ignored, using the delta functions
at the feed point as used by Pozar. This model is sufficient to evaluate the resonant length,
impedance bandwidth and far field patterns of the antenna. Our analysis focuses on these key
performance parameters so the idealized model is sufficient. This model would not be sufficient,
however to fully characterize the probe behavior, specifically the probe self impedance term. A
proper treatment of probe impedance calls for modeling fields within the substrate due to sources
within the substrate. That model is outside the scope of this work, but offers an area of future
work. This model does take full advantage of the generality of the E-DFG. Therefore impressed

current source for the probe fed antennas modeled in this work is given by:

(4.2.16)

i

J = fé(x—xs)é(y_ys), -h<z<0
0, elsewhere

where (x;, y5) is the point at which the probe is attached to the microstrip patch (the source point)
and 4 is the height of the substrate. Essentially, this is a rectangular pulse in the z-direction,
centered at —4/2 with width 4. Again, we will need the Fourier transform of this current function

to evaluate the reaction equation. The Fourier transform of this type of rectangular pulse is given

by
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~ =ik, +h,y, )e_ikz 2 Sin(kz %)

J =e 4217
K % ( )

4.2.1.2 Induced Field Integral

The left hand side of the reaction equation (4.2.7) is an integral describing the
interaction between the test current and the electric field due to the induced current. We are
interested in the general reaction formulation for a rectangular microstrip antenna, therefore, we
will assume the test and induced currents have both x and y directed components. We want to
develop a more specific relationship than the one described by (4.2.7) so we need to expand that

expression and simplify wherever possible.

We begin expanding (4.2.7) by substituting the expression for G as presented in

equation (3.1.1) and repeated here for convenience

© iKyr + lko A4 lko .
E(OO — —l I 'R Le_i’((lr [h e +R1hh +R V }’O
—00 ka + [\366”(0 + th hgelko " + va(;relko-r ]\’}6 (3.1.1)
If we substitute this expression into the left hand side of equation (4.2.7), we obtain
la),uo_[ dsJ (¥ J.j— d’ k —ef”(“ a
P ~ 4.2.18
[h— iKy T + thh+ Iko + th’H— zko 1&’0— _ ( )
-J(7)ds’

+[ iKyr + &hh+ lko + R '\+ lkO r:IOO—

We can expand the exponents to factor out common terms. The propagation vectors are given by
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K, = %k _+ k, — k,. 210
ky = %k, + Pk, + £k, (4.2.19)

Our reaction equation is based on the tangential electric field boundary condition along the
conducting antenna. The induced conduction current is located at the boundary between region 0
and region 1 as shown in Figure 4-1. This interface is at z’' equal to zero so we can substitute

!

zero for z' into the expression for 7'. By expanding the 7' exponents and making the

z' substitution, we obtain

—ikx'+k, '~k 0)

iou, J.SJ. dsJ I

P
87 = kOZ
iKyr + ik, '\+ ik, r—
[h e +thh "+ R, vie™” }ho
— Ik + lk A+ lk PR S
+[ " 4 R, hie™ + R, Vie™ ]Vo

(4.2.20)
T (', y")ds’

We can move the surface integral inside the spectral integral. The terms that do not depend on
any primed position variables stay outside of the surface integral, while the exponent with

primed x and y must stay inside the surface integral along with the induced current term.

- ,Lw 25 L [h e +thh+ o + R, lko }L;O_ .
[ ss,(7) w’ [Od g ko. +[A’ T 4 R e + R Dle "“"]% 4.2.21)

J'J’ kx+k} xy)ds

We recognize the surface integral over the primed region as the Fourier transform of the
conduction current. Therefore, we replace the surface integral with J, (kx,ky), the Fourier

transform of the conduction current J_(x,)’) (note, the bar indicates that the current is a vector

and the tilde indicates the Fourier transform).
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iK + iky- A+ iky7

[h e’ +thh " + R, Vye™ 1510
A— ik + iky- fur lk T P
[0 or +thh o7 +R, v,e” ]vo

[[ ds7,(7)- “’”O _[d k,— A { } J k., 4.2.22)
S z

The exponents of equation (4.2.22) can be expanded as shown previously. We can simplify the
exponentials again because the fields we are interested in are again along the boundary making

the z-component of the field-vector 7 zero (z=0). Equation (4.2.22) simplifies to

- T (ke xik v) = hy +R, bl +R, Vil | =

" [ak L ([ ds "7, (x, ). iy + R + i -Jc(kx,ky) (4.2.23)
+05 + R, b + R VE Py

The surface integral in equation (4.2.23) is the complex conjugate of the Fourier transform of the

test current.

_a)luo k2T Chk [ﬁ‘+thﬁ++th”1l;‘ F ek 5
[o pkoz ( y) L Vo + R, h +R, Vv, Py C(x y) (4.2.29)

We can now substitute the expression for the spectral domain test currents and

expansion currents from equation (4.1.11) to obtain
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(4.2.25)

AMxﬁJ:l) N _
{[h +R, Al +R, D ]h } 2 adik k)

+[v0+R h +R, ”]C‘ .

We can first evaluate the dot products of the Green’s function dyad with the current distributions.
We can then write the two integrals in (4.2.25) as four integrals by separating the x and y
components of the expansion currents. Finally, we can pull out the unknown constants @, and

bn. We are left with the four integrals (we are calling Z)

= _Saﬂ).’tzlo T ]C_ dkvdky ij);p (_ kx )j);p (_ ky){[hOX + thhgr + thvgx y’o; }jn (kx )jn (ky)

m 0z + [v0x +R,hg, + R, VOX]V 0x ' ’
_ —ou, ® ® L ol Vir( [hO_x + R, g, + R, Vo, y’o_} ~ ~
Zp,(N'+m) - V[o_[odkxdky k()z Jf( kx)pr( ky){_'_ [V(;x +thth +vagx]v(;y} y (kx) y (ky)

Te (k)7 (k)

87 02 o

){[hov + thh + thv0y ]hm }
¥

o, T v (-
Zoogy = —2Ho jw L dk.dk, -—J( k)T (- +[v0)+Rth0)+vaoy]V,

_ % - - hy, + Ryho, + Ry vo, By, | ~ ~
e = e | bt LT L kyﬁ[ e fr )
o0 —o0 z 0y w0y f70y

(4.2.26)

where A, is the x-component of the upward (+) and downward (—) propagating, horizontally

polarized wave, hoiy is the y-component, v, is the x-component of the upward (+) and
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downward (—) propagating, vertically polarized wave, andv(fy is the y-component. The

subscripts represent the location of the basis functions along the antenna and are given by

N'=Mx(N-1)
M'=Nx(M -1)
=1...N'
P 4.2.27)
n=1...N'
g=1...M'
m=1...M'
Finally, we write the left hand side of the reaction equation in the following matrix form
i Z, Z, Z, Zl,(N'+1) Zl,(N’+M’) T a, ]
Z Z . YA AT Zy (vamr a,,
N1 N',2 N'.N N'(N'+1) N'(N'+M") N (4.2.28)
Z(N'H),l Z(N'+1),2 Z(N'+1),N’ Z(N’+1),(N'+1) Z(N'+1),(N'+M’) b1
_Z(N’+M’),1 Z(N’+M'),2 Z(N’+M'),N' Z(N'+M’),(N’+1) e Z(N’+M’),(N'+M')__bM'_

where the Z matrix is filled in by the appropriate Z integral and the vector of unknown

coefficients will be solved in our method of moments routine.

4.2.1.3 Excitation Integral

The right hand side of the reaction equation (4.2.7) is an integral describing the
interaction between the test current (weighting function) and the electric field due to the
impressed (source) current. We must use the same test current that we did for the induced field
integral. We will be using both a delta gap and probe source to evaluate the rectangular
microstrip antennas. The gap source is a simple, well known source function commonly used in

dipole antenna problems. The details will not be presented here but can be found in Pettis’
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dissertation [1, Chapter7]. Therefore, we will derive the excitation integral using the probe
source. We will follow the same fundamental steps as described in Section 4.2.1.2 to get the

right hand side of equation (4.2.7) in a form similar to (4.2.26).

We begin expanding the right hand side of equation (4.2.7) by substituting the
expression for the Green’s function into the integral. This Green’s function was derived in
Chapter 3 using the symmetrical property of the dyadic Green’s function. We repeat the

equation here for convenience.

E 01)(— — . kl ik T
—o0 0z
- N T St ik [— iktr L+ ikpF (3-2-16)
{ho [Ahaa e +B,ae"" +4,be"" +B,b"e™ ]‘}
A N o J ,k< [ — ik L+ ikpF
+v0[Amae +B ae"" +A4,b7e™" +B,b"e™

Note this is not the final form derived in Chapter 3, it is still mathematically correct. If we

substitute this expression into the left had side of equation (4.2.7), we obtain

- 1 s
iou, _UdsJ Hj 2k —e 0
[A;m T4 BT 4 e 4 B e ] T(7) R
A b PR [ r
+V0 [Ama euq . +B At lk] ! +Avbb_€”(' - +Bvbb+€lk' 7

We can expand the exponents to factor out common terms. The propagation vectors are given by
equations (2.1.1) through (2.1.4). Our reaction equation is based on the tangential electric field
boundary condition along the conducting antenna. The antenna is located at the boundary
between region 0 and region 1 as shown in Figure 4-1. The source is a coaxial probe with

volume current distribution described by equation (4.2.16). First, we manipulate the source
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terms (associated with the primed position vector). If we factor out the common exponential

terms we obtain

iou, IJ. dsjt (F)

= = "_ ~A_ ipad A pbd A o bu_y
szlg e—z,(o.- [Aha ik?%z' +Bhaa+etk ‘2 +Ahbb e:k: z +Bhbb+elkz z
. Ge A abd AL agbus
(k xX'+k y) -
e ()

(4.2.30)
The primed terms are grouped together. The unprimed (field point) terms are not dependent on
the primed terms. While the primed terms do depend on the values of k., and k,, we can change
the order of integration. We move the volume integral over V' inside the spectral integral

resulting in

iy T

J‘! dsJ . (77 ) kOZ

[A a e +B, ave™ + 4, l;’e"kfdzy +B, bA+ ’Ik?nzy] rxer ) = 4.2.31)
J.J.J. dv ha e (kx k‘.y).Ji (F,)
+V0 [ af\— lk z' +B '\+ lk z' +A b etk z' +B b+ lk z'

Unlike the induced field integral, the source here has a z variation. Previously, the field was
evaluated only at the patch surface (z=0) so the k. terms fell out after the substitution. We must
keep the k. terms and, in the biaxial medium, 4. is polarization dependent. While this does
complicate the integration, each term has the same form so we can consider one and apply the

result to all. The downward propagating a-wave term in (4.2.31) is given by
III dV’hAO_AhaaA_eikzadZ,ei(kqu—kyy’) . ji (]7!) (4.2.32)
o
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The field polarization };0_ does not depend on source position, so it acts as a constant in this
integral. The term 4,, enforces that the boundary conditions are satisfied between regions 0 and

1, so this term is a constant with respect to 7’as well. The remaining terms in (4.2.32) represent
the complex conjugate of the Fourier transform of the impressed current. The downward

propagating a-wave term reduces to

hy Aya: T (ko ~k) 4.2.33)
where a_ is the z-component of the downward propagating a-wave and the Fourier transform of

the impressed (excitation) current is given in (4.2.17). Each term in (4.2.31) can be decomposed

in a similar manner resulting in

—ikyT

i 2.5
o[ a. T~k —~k, ~k“ )+ B,,a’ T, (~k,~k, k)

ha™“zY i ha™z

"N A b T (ke k2 )+ B b T~ Kk, k) 4.2.34)

(4,a:T <k, ~k, k' )+ B a’ T (~k ~k, k)

va~ z 1 va~z

+ A, b T kK, ~k )+ Bb T~k ~k, k)

A

+V,

Now we manipulate the field terms (unprimed components). First, we expand the exponents
then simplify the z-component because the fields we are interested in are along the z = 0
boundary; the z-component of the field-vector 7 zero. To further simplify equation (4.2.34), we

can move the surface integral inside the spectral integral because:

1. The volume integral becomes a surface integral with respect to x and y because the test

current is a surface current density in the x-y plane
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2. With the exception of the exponential term, the integrand of the spectral integral does

not depend on x or y.

When we make these simplifications, we obtain

“’”0 jd i k—ﬂd learkn) 7 (x, 3).-

0z

40T~k ~k, ~k™)+ B,,a: T (- k,~k, ~k")
2
"\ A, b Tk —k, kP )+ By b T (- Kk, k™) (4.2.35)
aa T kK, k) + Bal T (- kK, k)
+ 9y N
+ A,b T~k o~k ~k" )+ B, b T (< &, ~k, ~k")
The surface integral in equation (4.2.35) is the Fourier transform of the test current, thus
— ® _ 1 ~
8‘7"[‘2‘ J'd2kaJ,(kx,ky)
A0 Tk~ k) + Bl T~k o~k k™)
n Ahbbz‘ji( k, —k, k" )+ Bhbb;z (— k. —k, k") (4.2.36)

We can now substitute the expression for the spectral domain test currents from equation (4.2.15)
into our field integral as we did for the induced field integral. We call the vector comprised of

each test current term V. Each component of V' is computed using the integral above and is

defined by
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—a)ﬂo 00 00 1 AMX(N_Q ~ jl\_[therms]
V)= [] dkxdkya{x Jf(kx)/f(ky)}' +090_[R1

terms ]

) )} h [R1,,,,]

+ "}(; [Rl terms ]

o 4.2.37)

In) . 0 1 ANx(M—Q N
VN'+£{ - 87;21 I Idkxdky k_{y "]yq (_kx )];] (_

b

represents the region 1 terms within the square brackets in

terms

where N'=M x(N~1) and Rl

equation (4.2.36). Combining equations (4.2.28) and (4.2.37), the entire reaction equation can

now be written in the matrix form

Z Z5 aE Ziy Z, (ya) e Z () a, "
Zy, Zya o Ly Zy (va) o Ly | aw | | Ve (4.2.38)
Z(N’+1),l Z(N’+1),2 e Z(N'+l),N’ Z(N’+l),(N’+1) e Z(N’+1),(N’+M’) bl Vi o
_Z(N’+M’),1 Z(N’+M'),2 e Z(N'+M’),N’ Z(N’+M’),(N'+l) e Z(N’+M'),(N’+M') i _bM’ i _VN’+M’ i

where the Z matrix is filled in by the appropriate Z integral and the vector of unknown

coefficients will be solved in our method of moments routine.

4.2.2 Numerical Integration

The induced field integral and the excitation integral are both solved numerically
using trapezoidal integration. The step size was determined in a 2 step process. We begin with
the minimum sampling rates in &, and k, as derived by Pettis [1, Chapter 7]. These sampling
rates are given by

min —10££N—_1J 4.2.39
e v\ 4 4.2.39)
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S =10K[

(4.2.40)

M 27

2M + 1)
We then refine these sampling rates by observing convergence of the integral. We choose the
minimum frequency (or maximum step size) for which the integration has converged. We also
need to choose the limits of the doubly infinite integral. To do this, we observe the integrands

and choose limits in k. and k, for which the integrand has converged to zero. Figure 4-2 shows

an example integrand. We choose for this case to limit &, at 150k, and k. at 500k,.

x 10° Patch Antenna Integrand vs. ky x 10 Patch Antenna Integrand vs. kx

3.5 1

0.8}
0.6
25+ 1 04

021

ot

-0.2F

-0.4r

-0.61

0.51
-0.81

. . . . R I I I I I I I
-300 -200 -100 0 100 200 300 -800 -600 -400 -200 0 200 400 600 800

KYyals KXyals

(@ (b)
Figure 4-2: Patch antenna integrand example (a) vs. ky, (b) vs. Kk

Singularities are important to consider in the numerical integration. If they are not
handled properly, the integration will not converge. Integrals such as these can have pole
singularities and branch point singularities. A pole singularity exists within the integrand when
the direction of propagation is parallel to one of the optic axes. In this case, the denominator of
the electric field vectors in the biaxial medium becomes zero. However, we know that if the
direction of propagation is parallel to one of the optic axes, the wave will behave as if it were in
an isotropic medium with vertical and horizontal polarization. This special case can be handled

analytically by making the field vectors consistent with vertical and horizontal polarization when
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the pole singularity is reached. Branch point singularities, however, do not pose an issue with the
form of the Green’s function we are using. We are using the layered Green’s function. In
bounded regions the integrand of the Green’s function be single valued [44]. This would not be
true for a single layered problem or unbounded problems, but it does hold for the layered case we

are considering.

4.3 Microstrip Dipole Antennas

We begin our study of microstrip antennas with the analysis of microstrip dipole
antennas. We will treat the dipole fed by a delta gap source. The delta gap source is an adequate
theoretical model and in fact Pettis used this source in his dipole analysis [1]. For a real dipole
antenna, usually microstrip feed lines lead to the “arms” of the dipole. The arms are equivalent
to the strip we are modeling. The feed lines mimic the voltage gap source. This model is the

most widely used for excitation for dipole antennas.

4.3.1 Dipole with Delta Gap Source

The series voltage gap generator is one of a few sources whose excitation fields are

known directly [22]. This known electric field is given in [1] as

s D)

where the location of the feed point is (x, y5) and u(y) is the Heaviside step function defined as
unity for y > 0 and zero for y < 0. Given this well known electric field, we can construct the V-
vector for a delta gap. We have a value of 1 at the point of the source and zero elsewhere. We

are placing the source at x,=0, so our V-vector looks like
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V=|1 4.3.2)

_0_

We will use the vector in (4.3.2) for the right hand side excitation vector in our reaction

formulation of the gap-fed dipole.

4.3.1.1 Modified Reaction Equation

The microstrip dipole has a length (L) in the x-direction and a width (W) in the y-
direction with W << A. The dipole will have only x-directed currents. Therefore, of the four Z
integrals defined by equation (4.2.26), only the first one will be used. Further, we need only the
x-directed basis functions as defined in section 4.1.1.2. This simplifies the Z-matrix from

equation (4.2.28). For convenience, we repeat this reduced form of equation (4.2.26) here

=~ | fakak, Tk (k)

N 2
r 8

—00—00 0z

(4.2.26)

ha™ x ha™"x

+ [Ama; +B,a. +A,b. +B,b; ]VO_x

va X

{[A a; +B,,a’ +A,b. +B,b |,

}J; (k)72 (k,)
This reduces the size of the Z-matrix to one forth the size of the generic matrix. We can rewrite

our governing matrix equation as

_| 4.3.3)

The method of moments solution to the matrix equation in (4.3.3) will give us the coefficients for

the induced current basis functions.
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In the method of moments solution for the dipole problem, we used the Green’s
function for the field in region 0 given a source in region 0. This means that the source and field
points are essentially on the same plane (z and z” both equal zero). In general, the field is not
well defined at the source point and a singularity may be observed when computing fields at this

point. Therefore, when formulating the Green’s function, this point is often avoided.

When using the method of moments, we are, in general, interested in field and source
points in the same plane. When using Galerkin’s method, we choose the expansion functions
and weighting functions to be in the same region. In the reaction integral, we compute the
reaction of the field with the weighting function at the location of the weighting function.

Therefore, the field and source points will be in the same location at least with respect to z.

If we choose the Green’s function for the field in region 1 with the source in region 0
(G'"), the field and source points may both be located at z = 0, but the physics of the Green’s
function formulation essentially means that the field point in region 1 is at z =0 while the source
point is at z' = 0". When using G this is not true. For the gap fed dipole on a biaxially
anisotropic substrate, we compute the currents using the method of moments with G'® and G
respectively to show that in this numerical solution, G* may be used. Our results showed that
the two Green’s functions agreed with each other and with published results, indicating that in

this numerical solution, the restriction on z # z' is unnecessary.

4.3.1.2 Analysis

While computing the current coefficients from (4.3.3) is the most computationally

complex portion of the antenna analysis, it tells us little about how the antenna performs.
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Common metrics for antenna performance are input impedance, resonant length, impedance
bandwidth and directivity. In our analysis of the gap-fed microstrip dipoles, we will compute the
current distribution on the dipole, the input impedance, resonant length, directivity and directive
gain. Impedance bandwidth is treated in detail for the patch antenna. We compare our results to
those presented in published works including Pettis [1, Chapter 7], and then observe antenna

behavior as we change the permittivity tensor and rotation angles.

4.3.1.2.1 Current Distributions

The first parameter we analyze is the current distribution along the dipole. We use
the current coefficients computed using the moment method. The current distribution is the sum
of the current expansion functions each multiplied by the appropriate coefficient. As the number
of expansion functions increases, the approximation to the actual current distribution should
improve. We are primarily interested in how the current distribution converges as number of
expansion functions increases. We consider the case of an unrotated biaxial substrate shown in
Figure 4-3. This case was run with 6, 12, 18 and 24 basis functions. The conduction currents for
all three cases are plotted. Note that the currents are very close for both 6 and 12 basis functions
and change even less as the number of basis functions increase. Therefore, we use 12 basis
functions for the remaining dipoles. Also note that for the unrotated case, the current peaks at
the center (as expected with the delta gap source) and that the current is symmetric about the
source (x = 0). As a final note, Pettis [1] also concluded that 12 basis functions were sufficient

for modeling the biaxial dipole using a different biaxial substrate.
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Figure 4-3: Current distribution for half wave gap-fed dipole: N = 6, 12, 18 and 24
expansion functions with biaxial permittivity (g, &, &) = (2, 5, 8) and no rotation

4.3.1.2.2 Input Impedance

Input impedance is itself an important performance metric in evaluating any antenna.
However, a more important metric may be the resonant length. We can use input impedance to
determine resonant length as the resonant length of an antenna is the length for which it has zero
reactance (imaginary impedance). We will compute input impedance for all of the dipoles we
consider. Further, we will determine the resonant length of several dipoles and compare our
results to those computed by Pettis [1]. We note that Pettis used the transition matrix dyadic

Green’s function while we use the eigenvector dyadic Green’s function

The input impedance of a network can be calculated using [1]

n= T 4.3.4)
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where P; is the input power and 7, is the total input current. Harrington [41] defines the complex

input power delivered to an antenna as

P =-[[E, -J.ds’ 4.3.5)

where E_ is the tangential electric field produced by the induced (conduction) current (J, ). As

shown in equation (4.2.2), the tangential electric field induced on the antenna is equal to the
negative of the tangential impressed electric field. This is due to the boundary condition along
the perfectly conducting antenna. Making this substitution into (4.3.5) results in

P=(E .7 (4.3.6)

N

We can write the induced conduction current as the sum of the basis functions multiplied by the
coefficient we computed by the method of moments. In the introduction to this section, we
discussed the electric field produced by the voltage gap source. Substituting the expression for
induced current and the impressed electric field (given in equation (4.3.1)) into the power

equation results in

5 4.3.7)

When we integrate with respect tox’, only the basis function containing x; is non-zero. We have
selected x; to be the center of the dipole. Therefore, the only x-varying basis functions remaining

after integration occur when p =74. With this understanding, the result of integrating (4.3.7) is
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M va o
_ [(g-n(v-1)+2] ]’ M
F= Z_:t [a[(q—l)(zv_l)w;’]‘]x (xs ) I dy W
. o (4.3.8)

M
_ [(g-D)(v-1)+2] ]’
B Z [a[(ql)(N1)+';’]Jx (‘xs )
g=1
Because we are using the triangular basis function, J_(x,) is unity. With this final substitution
we obtain

M
Po=2 [, 1y ] 4.3.9)

q=1

for the total power delivered by the source.

Input impedance also depends on total current. The total current, /;,, is given by the

integral of the surface current at x =x; [1] or

:jwdij( i[ _ +]] jdy— Za[ql (4.3.10)

1

Substituting the results in equations (4.3.9) and (4.3.10) into equation (4.3.4) results in

M *
Z“[(q—n(w—l)%]
q=1

P 1
zZ, A T =— (4.3.11)
S DA D I IS R DT A
gq=1 g=1 q=1
For the dipole problem where M=1, the input impedance reduces to
1
Zins1 = p (4.3.12)

vz
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To verify our results, we first consider a gap-fed dipole printed on an isotropic
substrate. James and Hall [45, p.290] plots the input reactance and resistance versus antenna
length for a center fed strip dipole printed on a substrate with relative permittivity 2.45 and
height 0.229. The results in James and Hall show antennas of varying widths and we have

chosen to recreate the case with a width of 0.0014y. Our results are shown in Figure 4-4.

Input Impedance Gap Fed Microstrip Dipale:
Isotropic substrate Er:2_45_ height=[]_2}.0_ ‘u"u’=[].[][]1}.|:|

1000 T T T T T T
. . . real
L = ime
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: o N
(] i i i b '
5 : : : : :
= : : : : :
@ : : : : :
b : ' : : :
I e e e e
v Vi
o L
\ P
: : : : : .\/;r/ 5
500 L L L t L L L |
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Length (LF}.G}

Figure 4-4: Input impedance for gap-fed dipole with width of 0.001% printed on an
isotropic substrate with g, = 2.45, height = 0.2},

Our results for the isotropic comparison very closely match the published results with a resonant
length between 0.6\, and 0.7, and peak input reactance close to 500Q2. Our peak resistance is
slightly lower than the published result which looks to be just over 10002 whereas ours is just
under 1000Q, but the overall agreement is very good given differences in computational

accuracies.

Proving that the moment method routine is arriving at the correct input impedance for

the isotropic substrate, we want to compute the input impedance of the dipole when the substrate
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is biaxial. We can then use this information to determine resonant length dipoles by finding the
length where the reactance goes to zero. The computed input impedance for an unrotated and a

rotated example are shown in Figure 4-5 and Figure 4-6.

Dipole Input Impedance, Biaxial Substrate:
0 x10 (5,.5,.8,) = (2.5.8), height=0.20%,
T T T

TS

04 0.45 05 0.55 0.6
Length/3.

Figure 4-5: Input impedance for gap-fed dipole printed on a biaxial substrate with
permittivity (g, &, £) = (2, 5, 8) and no rotation and height 0.23,
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Dipole Input Impedance, Biaxial Substrate:

g

6

Z )
[ ]

4
x10 (g,.8,8)=
T T

(2.58). (4. v,) = (30°, T5°), height=0 207,

| ' i '
025 03 035 04 045 05

Length/A,

Figure 4-6: Input impedance for gap-fed dipole printed on a biaxial substrate with
permittivity (g, &, &) = (2, 5, 8) rotated by y; = 30° y, = 75" and height 0.22,

From the plots of input impedance, we can find the resonant length of the dipole. The

antenna is resonant when the reactance is zero. We observe in Figure 4-5 and Figure 4-6 that the

reactance goes to zero twice. For comparison purposes, we are choosing the length where the

reactance is zero and the resistance is a maximum. The resulting resonant lengths for unrotated

and rotated, strongly and weakly biaxial substrates are shown in Table 4-1. The results show that

in both cases rotating the medium results in a longer resonant antenna.

Table 4-1: Resonant Lengths for Microstrip Dipoles Printed on Biaxial Substrates

(W=0.0012,)

Permittivity (&, €y, €,) Rotation (y, y2) Height Resonant Length
(2,5,8) 0°,0 0.2 0.4736 Ao
(2,5,8) 30°, 75° 0.2 0.4878 Ao
PTFE (2.45, 2.89,2.95) |0°0 0.2 0.5637 A,
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PTFE (2.45,2.89,2.95) |30°,75° 0.2 0.6035 %o

4.3.1.2.3 Radiation Behavior

The radiation behavior of the dipole antenna can be understood by analyzing the
directive gain. In this section we analyze the directive gain for dipoles printed on biaxial

substrates with two different permittivity tensors and two different rotations.

Before we can compute the radiation parameters of interest, we must formulate the
radiated field. In our reaction formulation, we place the expansion current in the isotropic region
(region 0). To compute the electric field in region 0 generated by this source, we need the dyadic
Green’s function for a field in region 0 given the source in region 0. This Green’s function was

given in Chapter 3 and is repeated here for convenience

Q

— . o _ _ h- elK(] +R h+ iky T +R D A+ lko I
e(o,o)(};jr) _ ! 2 Leﬂxo [ hh Y\ }’o L 0<z<7
02 + [A— 11(0 + Rth+ lko + R/V ot o lko r ]"}7 (3.1.1)

The Green’s function in equation 3.1.1 can be used to compute the field below the source point.
However, for the far field, we are interested in the field above the field point. We can use the
symmetrical property of the DGF to change the Green’s function we have into the Green’s

function we need. Using this property we obtained

At A+ zko

: o l. o0 _ 1 i7 - A+[h"+ 7[];0_17/ +R hA—e*l‘K‘O +Rv1 - ll(o';']

Goo( r): J‘dzk ek hh? o h S 7> 7 (4.3.13)
8 +v, [vo e +R, hye ™" +R vje "

for the field in region O at points above a source in region 0. Note that in the derivation of

(4.3.13), the order of the subscripts on the reflection coefficients is reversed. Now, by applying

the property shown in equation (4.2.3), the electric field is given by
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E (7 __ 0) ! K 'R 1 [7 - jl\+ |:hA+eii];0';' + R }}l\_eii,?o'? + 1"}_e*il?0~F':| -
Eo(l’) = /L;U J.J- ds _[ d2kpk—eko 0A+0A+ . hh E, o R, Aoi L 'Jc(r ) 4314)
87[ S’ —0 0z + VO [Voe 0 + thhoe 0 + vavoe o

We expand the source vector exponentials resulting in

2 P
8z & k.
S e o (4.3.15)
h(.; [hge l(kxx+k),y +k022) +th Oe l(kXX +kyy kOZz) +RVhV0€ t(ka-ﬁ—kyy ko_,z)] j (F’)
At |As i(kxx'+k‘,y'+k Zz') N —i(kxx'Jrkvy'—k zz') A —i(kxx'Jrkvy'—k zz') ¢
+V, [voe "+ R, hje T+ R Ve ’

We note that the source current is located at the boundary between region 0 and region 1 making
z’ zero. After this substitution, the source terms only contain x and y components, the same
components of the surface integral. We can move the surface integral inside the spectral

integral. The result of these manipulations is

i lhe + Ry by + R, |

At A+

k. +v, [Vo +R, hy +R, v,

= [ — U, ° - 1 i 7
Eo(r):# [ak, —e™

(4.3.16)

—i(k x'+k v')M 1)
” ds'e " ifcamJ)’f (x')J;" (y')
&

m

Next, we change the order of the summation and integration of the source term. The coefficient
can be pulled out of the integral as it does not directly depend on position. We see then that the
integral is simply the Fourier transform of the x-directed basis functions. The field can thus be

expressed by
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EO(F)— _a)luo J.d k lkof A+[}’l\+ +th}’l\_ +th{}(;] .
koZ +Ag[ﬁg+R hy + RV,
M(N-1)

Y ﬂ ds'e ) g () g (31) 4.3.17)

m=1

a)ﬂo PP k 1 o7 hy [h(;r+thh(;+th‘;(;] .AM(N_I) T (e T (k
8’ J koz {+G§[ﬁg+thﬁo+wazo * Za ( ) (y)

In the far field we assume 7 >>7' so the ¢ terms will be rapidly varying such that
integral contributions are zero on average. This allows us to apply the method of stationary
phase. When the field is written in the form of (4.3.17) we can obtain the stationary phase
approximation in two steps as derived by Pettis [1, Appendix L]. First, we extract the slowly

varying terms from the integrand which yields

At A+
m=1

+ Vv, +R, voh +R, Vv,

© B o N1+ r 71— A+A— -1) N _
] depkielka[h o+ Ry o + Rohy ¥ ]‘}.xMNZmJ:(kX)Jf(ky) 4.3.18)
0 0z

1272. lkor

Then we replace the remaining integral over &, and k, with —k, This gives us the final

radiated electric field

E,(r)=

iou, {[h ho 4 Ryhihe + Ry heo; ]

4 r

M(N-1) - -
2 Ya, Tk k) @319
m=1

+[ﬁgvg+R Dihy R DIV,

When we consider far field radiation patterns we usually consider the 6 and ¢
directed fields. Furthermore, we want to evaluate 4, ¥, and R at k. =k,cosOcos¢ and
k, =k, sin@sin g where 6 and ¢ are the observation angles. Therefore, we want to convert from

Cartesian to spherical coordinates. Pettis [1, Appendix Q] showed that
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h* =-a,
(4.3.20)
v =-a,
So, we can write
— o e |a,\ht + R, hy +R,0; M) ~
E,(r)=—2F S ol o1 P s Da, Tl )Tk) @32
47[ r + &‘9 [A(-)'— + thh()_ + va{}(; m=1
The 0-directed field ( £, ) and phi-directed field ( £, ) can be expressed by
(N-1) N
E¢9 = kO I:vgx + thh(;x + vav(;x :IMZamep (kx )pr (ky ) (4-3-22)
m=1
(N-1) -
E, =yl + Ry, + Ryva ] 2, T2 (6,77 (k,) (4.3.23)
m=1
which gives us the final electric field formulation
4.3.24)

ikyr

— . e . .
Eo(r):_l o 4 [aeEa +a¢E¢]
w
First, we want to use these results to compute directive gain. According to Balanis

[46] directive gain is the ratio of radiation strength in a specific direction to the radiation strength

of a reference antenna. This ratio is given by [46]

D(@, ¢) =4r 27 U(0’¢)
[[U(6.¢)sinaioap (4.3.25)

where

2 1 = 17r*) A 2 1 0 2 2 1 0 2 2
U(6,¢)=r {ERC(EXH )-a,}zr {5(4:;)2 hE9| +‘E¢‘ ]}25(47;)2 hE6| +‘E¢‘ ] (4.3.26)
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Substituting (4.3.26) into (4.3.25) we obtain

|Ee|2 +‘E¢

‘2

D(6.¢) = 4m5—
] ﬁEQF +\E¢\2]sin 0d6dp

00

(4.3.27)

for the directive gain of the antenna. Directivity is the peak directive gain in the given direction.

Directivity is computed using

D(0.4) =47~ Bl +E Lo
j j MEHF +\E¢\2]sin9d9d¢
00

(4.3.28)

Katehi and Alexopoulos [47] considered the effect of substrate thickness for a printed
dipole on an isotropic substrate with & of 2.35. They modeled resonant length half-wave wire
dipoles with radius 10™*A,. According to Stutzman and Thiele [23], a wire dipole of radius r can
be approximated by a flat printed dipole of width 4». We will consider the same dipole lengths

and substrate thicknesses but we will model the flat printed dipole with a width of 4x10™A,.

The first case is the thinnest substrate with thickness of 0.2, Katehi and
Alexopoulos give the exact length of this dipole as 0.369345),. Our result, shown in Figure 4-7,

agrees with the published result in [47].
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Half-wave Dipole Radiation Pattern, Antenna Printed on Isotropic Substrate
length=0.3693"lambda ;. substrate height=0.200"lambda,

— E-plane
— — H-plane

Figure 4-7: Radiation pattern of half-wave dipole printed on isotropic substrate of height
0.22, (£,=2.35)

Katehi and Alexopoulos were interested in the effect of substrate thickness (or height)
on the antenna behavior. Specifically, they analyzed the lobing effect of increasing substrate
thickness. When the substrate is increased to 0.9751,, Katehi and Alexopoulos show two lobes
in the radiation pattern. We also show two lobes (Figure 4-8) for this substrate thickness. In this
case, the actual length is not specified in paper. Using the published figure of resonant length
versus substrate height, we modeled the dipole with length 0.38A,. Clearly, this is not as precise
a value as what was published for the previous case, but it is a good enough approximation to
recreate the radiation patterns published by Katehi and Alexopoulos, as shown in Figure 4-8.
Finally the substrate thickness is increased to 1.05A, resulting in three lobes in the radiation

pattern. The simulated dipole had a length of 0.375), and again the input reactance is on the
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order of 10™'°. Our result shows three lobes (Figure 4-9) and again agrees with the published

result.

Half-wave Dipole Radiation Pattern, Antenna Printed on Isotropic Substrate
length=0.3800"1ambda ;. substrate height=0.375%lambda,

-90°

E-plane
— — H-plane

Figure 4-8: Radiation pattern of half-wave dipole printed on isotropic substrate of height
0.9754, (£,=2.35)

Half-wave Dipole Radiation Pattern, Antenna Printed on |sotropic Substrate
Iength=[]_3?5[]*lambdau_ substrate height=1.[]5[]”Iaml:}c|aU

-90°

— E-plane
— — H-plane
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Figure 4-9: Radiation pattern of half-wave dipole printed on isotropic substrate of height
1.05%, (e:=2.35)

We also present the published results in Figure 4-10 for comparison. The substrate

heights are 0.2A,, 0.975 A, and 1.05 A, for plots (b), (c) and (d), respectively.

- ‘

0-10-20 2610 0 dB 0 -10 20 =20 40 odB
(c) (d)

Fig. 6. Printed dipole radiation patterns. — E-plane. —~- H-plane.

Figure 4-10: Patterns for dipole printed on isotropic substrates of varying heights — from
[47] P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and
permittivity on printed circuit dipole properties”, IEEE Trans. Ant. Prop. vol. 31, no. 1, pp.
34-39, January 1983.

This analysis verifies our code against dipoles printed on isotropic substrates. We
will now focus on dipoles printed on biaxial substrates. First, we again verify our code against
existing results. In his dissertation, Pettis [1] studied gap-fed microstrip dipoles printed on a
biaxial substrate. He presented directive gain patterns for dipoles printed on an unrotated biaxial

substrate with permittivity tensor (&, €y, €,) = (5, 3, 4). Pettis presented patterns for resonant
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length dipoles on substrates of three thicknesses. We repeated his analysis and found that our

results agree. Our directive gain patterns are shown in Figure 4-11.

Half-wave Dipole Directive Gain (dBi), Antenna on Biaxial Substrate (e, €, , €,) = (5, 3, 4)

y

(¢]
15dB

.......
~.

-90° 90°

L=O.331510, height=0.2k0
----------- L=0.32824, height=0.225M

....... L=0.3164%, height=0.251,

Figure 4-11: Directive gain for gap-fed dipole with biaxial permittivity (e, &, ;) = (5, 3, 4)
as height is varied

The biaxial substrate considered by Pettis is somewhat weakly biaxial. We consider a
strongly biaxial medium with permittivity tensor (g, &y, &) = (2, 5, 8) and the very weakly
biaxial PTFE cloth. In Figure 4-12 we present the directivity patterns for resonant dipoles
printed on both unrotated and rotated strongly biaxial substrates (thickness 0.20A,) and Figure
4-13 we present the same results using PTFE cloth. We note that upon rotation, the directive
gain of the antenna on the strongly biaxial substrate becomes considerabley wider. However, on
the weakly biaxial substrate, the difference is negligible. We observed a similar behavior with
PTFE when studying the resonant length. We can then conclude that the orientation of the

biaxial medium is increasingly important as the strength of the biaxial anistropy increases.
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Half-wave Dipole Radiation Pattern, Antenna on Biaxial Substrate

(g, gy g,) = (2, 5. B). thickness=0.20%.

W v mmaman s e,
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L vwnane s s
LI - W e s £
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Pl 12 e
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Figure 4-12: Directive gain for resonant half wavelength gap-fed dipole printed on a
biaxial substrate with permittivity (e, &y, €,) = (2, 5, 8)

Half-wave Dipole Radiation Pattern, Antenna on Biaxial Substrate
PTFE Cloth, thickness=0.20%

90°

—— (v, Wy(0%, 07)

— - — (. w,)=(30°, 75%)

Figure 4-13: Directive gain for resonant half wavelength gap-fed dipole printed on PTFE
cloth
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4.4 Rectangular Microstrip Patch Antenna

We now focus on the more general rectangular microstrip patch antenna fed by a
coaxial probe. A diagram of the geometry is shown in Figure 4-14. In the case of the patch, the
width (W) can be much larger than that of the dipole. This additional size makes the problem
more complex. We will consider currents directed in both x and y. Therefore, we will need the
entire matrix described by equation (4.2.38). The complexity of the solution will increase as
there will be four complex integrals to solve instead of one. Additionally, the patch antenna will
be fed by a coaxial probe as described in Section 4.2.1.1.2. The probe feed is a more complex
excitation than the delta gap source. Modeling the probe feed requires a different Green’s

function and normal field components in additions to the tangential components.

Microstrip Patch

(]

_z=0

. .
CLLa VAL
feed point

probe

Figure 4-14: Rectangular Microstrip Patch Antenna Geometry

The analysis of the microstrip patch antenna focuses primarily on the effects of
varying patch parameters on the input impedance and resonant length of the patch. We also
consider the radiation behavior of the patch antenna, as we did for the dipole. A majority of
references surveyed analyzed patch antennas with a 1.5 width-to-length ratio so we also consider

patches with these dimensions. Two approaches to resonance analysis were represented in the
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literature. In the first, a given physical patch dimension is set and the frequency is varied until
the resonant frequency can be determined. In the second, the width-to-length ratio is fixed and
the electrical length of the antenna is varied to determine the resonant length. The later approach
was used in the input impedance analysis of the dipole antenna in the previous section and will
be used again for the patch antenna analysis. This provides a general design solution that could

be applied to any frequency of operation.

4.4.1 Reaction Equation

The microstrip patch antenna currents are computed using the method of moments.
The governing reaction equation was derived in Section 4.2.1. To compute the patch antenna
currents, we use all four integrals in the Z-matrix as described by equation (4.2.26) and the V-
vector is computed using the integral described by equation (4.2.36). The resulting currents are

used in our analysis of the patch antenna.

4.4.2 Basis Function Convergence

Determining the proper number of basis functions required to accurately model the
rectangular patch antenna is necessary to know that we are arriving at accurate solutions. The
number of basis functions is deemed sufficient if there is convergence in the solution. In the
dipole section, we showed that the current coefficients converged as we increased the number of
basis functions. Current coefficient convergence is more difficult to show in the patch antenna
case as the currents are two dimensional. A more straight forward metric to monitor is the input

resistance. As will be derived in this section, the input impedance uses the current coefficients
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and the voltage vector elements. It then follows that if the impedance is converging, these

elements will be converging as well.

We primarily consider a rotated ((¥;, ¥,) = (30°, 75%)) biaxial medium of length
175X, width W=1.5L, and height 0.02,. In this case the width is larger than the length and we
have the most general type of a permittivity tensor (full matrix due to the rotation). We
investigate this antenna in rigorous detail to understand the basis function convergence. First, we
observe the effect of increasing the number of basis function on the current coefficients when
M=1 as shown in Figure 4-15. We observe that the current is converging as N increases to 18
basis functions (N=18), but with 20 basis functions, the solution becomes unstable. A triangular
current basis function gives rise to a step discontinuity in the charge (charge being the derivative
of current). As the basis functions become very small, this charge discontinuity becomes a larger
portion of the basis function, making the solution unstable. We do not want our solution to be
dominated by this discontinuity, so ideally we want to back off of N=18 and use N=12. Also
note that, in this instance, the probe is positioned at x = 0.25A,. The real part of the current
coefficients, in Figure 4-15(a), shows a discontinuity at 0.25A,. This is to account for the
continuity of current from the probe. We do not see this discontinuity in the imaginary part of

the current because we assumed the current on the probe was real (1A).
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Real current coefficients along Length (x) Imaginary current coefficients along Length (x)
2 T

——— N=8 —— N=8

15 -=%-- N=10 1.5 ==%-- N=10 4
N=12 N=12
=== N=14 ) === N=14

1 1 4 : M
——0-- N=16 H H -=0--N=16

-=9--N=18

-=0-- N=18

real( o )
imag( o C)

x position x position
(a) (®

Figure 4-15: Current coefficients along the length of a rectangular microstrip antenna
(W/L=1.5) on rotated biaxial substrate (a) real, (b) imaginary

Next, we modeled the input impedace versus electrical length for N=10, 12 and 14.
The results are shown in Figure 4-16. Note, we normalized the x-axis to a length of 0.1733A4, to
demonstrate the relative electrical lengths (frequency shifts). The figure shows that the
resonance is shifting slightly as the number of basis fucntions change. However, this change is
less than 0.5%. Also, we see that the peak impedance values also change only slightly (by less
than 5Q). We conclude then that with 12 basis functions the solution is adequately converged

(which is the same thing concluded for the dipole).

155



156

Input Impedance for patch on Rotated Biaxial Substrate (W=1.5*L)
90 T
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0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
Normalized Electrical Length (L/(.1733*k0))

Figure 4-16: Input impedance behavior for M=1 and N is increased from 10 to 14

Up to this point our analysis has concentrated on the number of basis functions along
the length (in the x-direction). We also need to know how many basis functions are necessary
along the width. Figure 4-17 shows the input impedance behavior as M (the number of basis
functions along the width) is increased. Here we see that for M= 1, 3 and 4 there is even less
variation than there was when we changed N from 10 to 14. This implies that there is little
variation in the current along the width. This most likely is due to the fact that the probe is
centered along the width and the dominant cavity mode excited has uniform H-field in the y-
direction. The result is a nearly uniform current distribution along the width of the antenna.
Future work, as will be discussed in Chapter 5, could investigate further the modal behavior of

resonant structures in biaxial media.
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Input Impedance for patch on Rotated Biaxial Substrate (W=1.5"L)
90 I

M=1
A M=3
—e— M=4
70
60
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® 50
[}
c
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B 40
£ \
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0 | |
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Normalized Electrical Length (L/(.1733*k0))

Figure 4-17: Input impedance behavior for N=12 and M is increased from 1 to 4

We performed the same analysis with a patch on an isotropic substrate (the same
antenna in reference [48]), and an unrotated biaxial substrate with a narrow patch antenna.
These analyses reached the same conclusion; very little change in input impedance was observed
as M increased and N=12 was sufficiently converged. Therefore, for our purposes, we conclude
that 12 basis functions along the length of the antenna and 1 basis function along the width will
be adequate for modeling the input impedance behavior of a patch antenna. As previously
discussed, the x-directed currents will have a triangular variation in the x-direction and a uniform
(rectangular pulse) variation in the y-direction. Note that the uniform y-dependence is required.
This is not the same as saying there is no y-dependence. If there were no y-dependence, we
would not be bounding the antenna in the y-direction. The single uniform pulse is necessary to

define the width of the antenna.
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We also analyze the radiation patterns of the patch antennas. We want to be sure that
the patterns are converging as we increase the number of basis functions as well. Figure 4-18(a)
shows that as the number of basis functions in y (M) increases from 1 to 4, the principal
polarized radiation pattern does not change. This would be expected if the dominant current is
along the x-dimension as was concluded in our investigation of the input impedance
convergence. Figure 4-18(b) shows the cross-polarized radiation field. We observe that the
magnitude is small and peak magnitude varies little as M increases. However, there is a change
in the shape of the cross-pol pattern when increasing M from 1 to 2; the shape remains the same
as M is increased beyond two. Therefore, when computing currents for radiation analysis we

will use N=12 and M=2.

Ant G P | Polarization Substrate (biaxial) Antenna Gain - Cross Polanzation Substrate (biaxial):
ntenna ain - Frincipal Folanzation substrate (blaxial): = = = = =
(5, 2,) = (2 6. 8), (u;. wy)=(30%, T5), W=1.6L (B, £y 8,) = (2. 6. 8). (. w)=(30° 757). W=1.5L

® Sy Tz

o
o 10 dB
10 dB M H :

gp° 90°

— =1
----- M=2
....... M=1

- M4

(a) (b)

Figure 4-18: Radiation patterns for V=12 and M is increased from 1 to 4 (a) principal
polarization (b) cross polarization

4.4.3 Performance Analysis

The analysis of the rectangular microstrip patch antenna primarily focuses on input
impedance and resonant length. We also analyze the radiation behavior considering both the

principal polarized fields and the cross-polarized fields. Cases of varying substrate thicknesses
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(heights), patch widths and substrate permittivities are computed and discussed to better

understand the behavior of antennas printed on biaxially anisotropic substrates.

4.4.3.1 Input Impedance, Resonant Length and Impedance Bandwidth

The focus of the patch antenna analysis is input impedance, resonant length and
impedance bandwidth. All of these parameters will be computed from the input impedance of
the antenna. The delta gap source model we applied to the dipole antenna is not applicable to the

patch antenna. Therefore, we must derive a new expression, beginning again from [1]

P

Z =t
n=T7 (4.4.1)

in"in

where P; is the input power and /;, is still the total input current and, again, the complex input

power delivered to the antenna is given by [41]

R=gimuf%' (4.4.2)

Ei,tan

is the impressed tangential electric field along the conductor (antenna) due to the vertical

probe current (impressed current) while J_ is the complex conjugate of the induced conduction

current along the antenna. The impressed tangential field is not known, as it was for the gap
feed. As discussed in Section 4.2.1.3, this field can be computed using the DGF presented in

(2.2.16). The electric field is computed using

E’i = ia),uoﬂj dv'é T dzl€p ée""“("r
V' -0 z

7 N o N [— ikl [+ il;lb-r]
{ho [Ahaa e +B,,ae"" +4,be +B,be

A A ikfF At ikl [— iklr L+ ikl -F
+V, [Awa e +B,ae"" +A4,be +B,b'e

(4.4.3)
&?W)
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Note that the primed (source) terms are grouped together. The unprimed (field) terms are not
dependent on the primed terms. While the primed terms do depend on the values of &, and k,, we
can change the order of integration. We move the volume integral over V' inside the spectral

integral resulting in

iy T

m.d [A,m”‘ G +B,,a ™" +Ahbb‘ ik +Bhbb+ ik 2] ei(
n

v, |4 [ &‘e”‘ “+B ate™ " + Avbb‘ e Bvbb+e”‘z ?

4.4.4)

The volume integral is the same integral we manipulated in the excitation integral of the reaction
equation. In Section 4.2.1.3 the volume integral reduced to the complex conjugate of the Fourier
transform of the impressed current for the spectral expansion of each biaxial wave. Following

the same steps as outlined in Section 4.2.1.3 we can rewrite equation (4.4.4) in the form

[A T (=, K )+ Byl T (= ko ke Aybi T (= ek, k) B T (- e, k)

ha"z

vl (— kx,—k k) Byal T (- ko, k) A T (ke k)4 BybI T~ k)|

va~z

(4.4.5)

Now we substitute the expression in equation (4.4.5) into the power equation (4.4.2) which

yields

—ikyT

P = jjd' “’”0 jdkp o
{h [A a J( ko—k, . k“d)+B a T (= ko mk, k™ )+ AybT (- bk, k" )+ Bhbbz*j[(—kx,—ky,—kf”)]} )
r

ha™*z Y i hazi

w5, [T (ko ko )+ B T (- ke, ke k™ )+ AT (- ke, k) B b2 T (ke ke, k)]

va~z% i
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(4.4.6)

The induced conduction current is known after the method of moments solution is complete.

This current is given by

)= 2R, W)+ T2 ) (4.4.7)

Since we are using Galerkin’s method the expansion and test functions have the same form. The

expansion functions in (4.4.7) are given by J" and J and so the induced conduction current is

the same as the test current multiplied by the current coefficients computed by the method of

moments. If we let the terms inside the square brackets associated with region 1 in the integral

equal R1, . substitute (4.4.7) into (4.4.6) and let z'=0 (along the antenna), we obtain
(k).x’+k},y') h— [Rl ]
a)ﬂ 27 m*( 1\ ym*( 1 0x terms
P=||lds'—== | d k D> a J ./
= ffa fak e |
(4.4.8)
(k x+k y h* Rl )
—I—J-j‘ds a)ﬂo J‘dzk anjn* Jn* ,) Oy[ te/ms]

+V,, [Rl

terms ]

where £, is the x-component of the downward propagating, horizontally polarized wave, 4, is
the y-component, v, is the x-component of the downward propagating, vertically polarized

wave, and v, is the y-component. The current coefficients are constants that do not depend on

any of the integration parameters. Removing these coefficients from the integral and integrating

over X" and y’ yields
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gt [, L)
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0z + v(;x [therms ] (4 4 9)
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n —0 z Oy terms

The resulting integral is exactly the integral we computed for the V-vector in the method of
moments solution (see equation (4.2.37)). The power then can be written as the sum of the

product of each term in the current coefficient vector and voltage vector (or dot product)

P=YaV,+>bY, (4.4.10)
The current on the probe is assumed to be 1 A, therefore the input impedance of a probe-fed

microstrip patch antenna is given by

P * *
Z, = =Y aV,+>.bV, 4.4.11)

in~in

This is the same equation presented by Pozar in [19] and will be used in our input impedance

analysis.

4.4.3.1.1 Isotropic and Uniaxial Substrates

The first antennas modeled are reference antennas used to verify our results against
published results. We have chosen two reference patch antennas, one on an isotropic substrate
and one on a uniaxial substrate. The chosen isotropic reference is a rectangular microstrip patch
antenna by W. F. Richards [48]. In his section on microstrip antennas, Richards uses the

reference antenna to demonstrate an empirical method of determining the probe self recactance.
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We use this method in our analysis to help determine resonant length. The probe reactance can
be approximated using a simple equation presented by Pozar [19] for isotropic substrates.
However, this expression is not applicable in complex media. In fact, in Pozar’s paper on
microstrip antennas printed on uniaxial substrates, he ignores probe reactance when computing
input impedance. As discussed previously, our idealized model does not lend itself to analyzing

the probe self impedance term in detail.

The isotropic reference used is a rectangular patch with length of 7.62 cm and width
of 11.43 cm. The substrate has permittivity of 2.62¢, and height of 0.16 cm. The frequency is
varied in the 1200 MHz region. Our results are shown in Figure 4-19(a). Observe the sharp drop
in the imaginary part of the input impedance around 1205 MHz. While this is a resonant type of
behavior, the reactance does not actually pass through zero. According to Richards [48], this
offset is due to the probe self impedance (which is ignored in Figure 4-19(a)) and the probe
reactance can be determined by finding the center of this drop off. After subtracting the probe
reactance from the computed input reactance, the input impedance plot changes to a more

recognizable resonant behavior (as shown in Figure 4-19(b)).
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Input Impedance for Microstrip Patch on Isotropic Substrate: Input Impedance for Microstnip Patch on Isotropic Substrate:
45 &= 2.52. h= 0.1|Gcm. L= TI.E2cm. W‘= 11.43ch 40 L= 2.62|. h= 0.1Gc|m. L= T.E?cm. W= I11.43cr1’| :
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Figure 4-19: Input impedance for isotropic microstrip antenna (a) prior to probe
reactance compensation, (b) with probe reactance compensation

We do note a few deviations in our result from Richard’s published result [48]. First,
the resonant frequency here is approximately 1205MHz whereas in the published result it is
1225MHz. This is a 25MHz or 2% difference. This may be attributed to several sources. First,
the medium permittivity is not explicitly described as lossless and there is no loss tangent
attributed to it. We assumed it to be lossless, but there may have been a loss that could account
for some deviation. Also, an altogether different model was used, which could account for some
additional deviations. Finally, in all of the patch modeling, our substrates are very weakly
isotropic. While this is likely to be a smaller contribution, all together these sources could
account for the 2% difference. The other deviation is in the approximated probe reactance. The
reference shows a probe reactance of approximately 7.5Q2 while we arrive at 22.5Q. However,

the reference does not describe the model used for the probe. If their probe diameter is larger
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(less inductance) than our idealized model, this would account for the difference in probe

reactance.

We also consider the patch antenna printed on a uniaxial substrate as investigated by
Pozar [26]. The material of interest is “Epsilam-10", which is known to be a negative uniaxial
material with (g, &y, €,) = (13, 13, 10.2). Pozar considered three media, all with €, of 10.2. He
considered a positive uniaxial medium with &, of 6, an isotropic medium with € of 10.2 and the
negative uniaxial Epsilam-10. He plots the resonant length of all three versus substrate height.
We consider a subset of his analysis. We compute the resonant length for three heights of
Epsilam-10, then compare the other two media at a height of 0.02X,. We have chosen these
points to show that our code provides similar resonant length results and the same trends

demonstrated by Pozar.

Input Impedance for Microstrop Patch on Uniaxial Substrate: Ex:E\,-zﬁ- e,=10.2, h=0.02. _ Input Impedance for Microstrop Patch on Uniaxial Substrate: Ex:?\,-:ﬂ- e,=102 h=0.02.
15 T T T 13 T T T T 13 40 T T T T T T I
: : : : : : : real : : : : : '

— —imag

Impedance (ca)
Impedance ()

A0 i i i ; i i i i ; i | | i | H
015 0151 0152 0153 0.154 0155 0156 0157 0158 0159 016 139 0.14 0.141 0142 0143 014 0145 0146
Length [U},a) Length (U},D}

(@) (b)

Figure 4-20: Input impedance for microstrip patch antenna with width of 0.23, printed
on uniaxial substrate with height of 0.02),. (a) positive uniaxial: (g, &, €,) = (6, 6, 10.2), (b)
negative uniaxial: (&, &, &,) = (13, 13, 10.2)

Figure 4-20 shows the input impedance for the two uniaxial substrates at height

0.02A,. Note that the scales for impedance for the two cases are different. Also note that the
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“probe reactance” approximation proposed by Richards [48] has been used here; a reactance
term has been subtracted out of the computed reactance at the resonant point. Figure 4-21 shows
the summary of the 5 patch antennas considered. We observe the same trend as demonstrated by
Pozar. As height increases, resonant length decreases. We also see that as €, decreases, resonant
length increases. The isotropic medium resonant length is closer to the resonant length of
Epsilam-10 than to the uniaxial medium with & of 6. These are the same behaviors published in
Pozar’s paper [26] and the lengths themselves appear to match as closely as can be discerned
from the figure provided. However, a more important note of comparison is with measured
results. Pozar published a chart with measured results from an antenna printed on Epsilam-10
(substrate height of 0.02,) and used this measured result to verify his computation. The
measured resonant length is .1423), and Pozar’s computed resonant length is .1431A,. Our
computed resonant length is .1429), which compares very well with Pozar’s computed result and

is actually slightly closer to the measured result than Pozar’s.

Resonant Length: Probe-fed Rectangular Patch Resonant Printed on Uniaxial Substrate
0.16

€ =6
0.155 e positive uniaxial
0.15
. '\ g =10.2
<L e * istropic
S 0.145 ~
< € =13
[}
5 014
S negative uniaxial
% 0.135 Epsilam-10
0.13 e
0.125
0.12

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
substrate height (h/ko)

Figure 4-21: Resonant length of probe fed patch antennas on uniaxial (one isotropic)
substrates of varying heights
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This verifies our results against simulated and measured data. It also confirms that
Richards’ method for subtracting out a probe reactance, or “residual reactance”, term at
resonance is an adequate method for determining resonant length. In effect, Richards’ method is
defining resonant length as the point of peak resistance and a discontinuity in reactance then
forcing the input reactance to zero at that point. We have chosen to ignore probe impedance (as
Pozar did as well) with the idealized probe model. Therefore, we will not verify whether or not
this term is equal to the probe reactance. We continue to use this method in our analyses as it
proved useful in the uniaxial case, but we call this term residual reactance so as not to confuse it

with the probe reactance that may be computed with a rigorous probe model.

4.4.3.1.2 Biaxial Substrates

The isotropic and uniaxial results verified our methodology for modeling a microstrip
patch antenna. This method is used to model patch antennas printed on biaxial substrates. The
substrates considered have biaxial permittivities of (g, &y, €,) = (2, 5, 8) and are either unrotated
or rotated by y; = 30° and y, = 75°. The substrate height varies for different cases. For most
cases, the typical width-to-length ratio of 1.5 was used. We also consider two special cases of
the square antenna where the width is equal to the length and a narrow patch antenna where the

width-to-length ratio is 0.55. This width is larger than a dipole, but still smaller than the length.

We are primarily interested in the resonant length and impedance bandwidth of the
antennas. We have already defined resonant length. The impedance bandwidth is determined

from the return loss. Return loss is computed from the voltage reflection coefficient [49] given

by
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Zin _Zo

Ir=——2
Z,+7Z,

(4.4.12)

where " is the reflection coefficient, Z;, is the input impedance and Z, is the characteristic
impedance (we are using 50Q), a common standard). Then the return loss (RL) in dB is

computed using

RL =20log,|I (4.4.13)
For each antenna we first determined the resonant length with the probe at some arbitrary
location. Next, the antenna length was fixed at resonance and the probe was moved until we
located the point where the input resistance was approximately 50Q. We then ran these
parameters across electrical lengths. We determined the 10dB impedance bandwidth of the
antenna from the -10dB points on the return loss figure. Figure 4-22 through Figure 4-25 are
representative of the input impedance and return loss results obtained for the antennas modeled.
In these representative cases the thickness of all four substrates is 0.02A, and the width-to-length
ratio is 1.5. A total of 16 cases have been considered. Table 4-2 summarizes the behaviors of all
of the antennas modeled. Note that we have included the residual reactance term (X,.s) as

previously discussed.
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Return Loss vs. Electrical Length Normalized to Resonant Length RL=O.1691“Iambda°
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Figure 4-22: Input impedance (a) and return loss (b) of rectangular patch printed on

Input Impedance for Microstrop Patch on Biaxial Substrate:
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Figure 4-23: Input impedance (a) and return loss (b) of rectangular patch printed on
rotated (y = 30" y, = 75%) biaxial substrate of height 0.02%,
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Input Impedance for Microstrop Patch on Biaxial Substrate:
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Figure 4-24: Input impedance (a) and return loss (b) of rectangular patch printed on
PTFE cloth of height 0.022,
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Figure 4-25: Input impedance (a) and return loss (b) of rectangular patch printed on
isotropic substrate (g, = 8) of height 0.023,

Table 4-2: Half-Wave Resonant Lengths of Rectangular Microstrip Patch Antennas

X/ Res.
Permittivity Rotation probe | X, | Length | BW
Case (&x &y €2) (W1, ¥Y,2) | W/L | height/a, pos. () L/k) | (%)

1 2,5,8 %09 1.5 0.02 0.394 80 0.169 | 1.06

2 2,5,8 %09 1.5 0.01 0.405 35 0.175 | 0.65

3 2,5.8) 0,0) | 1.5 0.03 0392 | 70 | 0168 | 1.75
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4 2,5.8) 0,0 | 1.5 0.10 0430 | 17 | 0142 | 7.20
5 2,5.8) 0,0 | 1 0.02 0.390 | 184 | 0.174 | 0.80
6 2,5.8) 05,0 | 0.55] 0.02 0.126 | 285 | 0.182 | 0.55
7 2,5.8) (30°,75) | 1.5 0.02 0.040 | 160 | 0.173 | 1.16
8 2,5.8) (30°,75°) | 1.5 0.10 0407 | 18 | 0.142 | 9.70
9 8,5,2) 0,0 | 1.5 0.02 0359 | 20 | 0217 | 0.50
(2.45, 2.89, 2.95)
10 [PTFE] 0,0 | 1.5 0.02 0.404 | 50 | 0274 | 2.17
(2.45, 2.89, 2.95)
11 [PTFE] (30°,75°) | 1.5 0.02 0.402 | 58 | 0274 | 2.19
12 8 [isotropic] ; 1.5 0.02 0.178 | 107 | 0.154 | 0.87
13 8 [isotropic] ] 1.5 0.01 0.283 | 235 | 0.172 | 0.58
14 8 [isotropic] ] 1.5 0.03 0244 | 64 | 0156 | 1.70
15 2 [isotropic]| : 1.5 0.02 0412 | 30 | 0330 | 2.70
16 5 [isotropic] ; 1.5 0.02 0350 | 86 | 0.208 | 1.65

The first parameter we investigated was the height of the substrate. We modeled
patch antennas on unrotated biaxial substrates with heights 0.01X,, 0.02X,, 0.03A,, and 0.102,
(Cases 1 through 4). First, we observe that increasing the thickness of the substrate decreases the
resonant length and increases the bandwidth. The same is true when the medium is rotated
(Cases 7 and 8); the thinner substrate (Case 7) has a longer resonant length and narrower
bandwidth. This resonant length behavior as a function of substrate thickness is the same

behavior shown for the uniaxial substrate (in Figure 4-21).

The next investigation was on the effect of the width on the resonant length. We
varied the width of the antenna printed on the unrotated biaxial substrate with a fixed height of
0.02A, (Case 1, Case 5 and Case 6). As width increases from 0.55L to 1.5L, the resonant length
decreased. If we consider the case of the dipole antenna as a special case of the rectangular
patch, this trend is further verified as the resonant length of the very thin dipole is considerably

greater than the patch.
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The third parameter investigated is rotation. When the strongly biaxial medium is
rotated, the resonant length changed very little but the bandwidth increased by 2% (see Cases 1
and 7). This behavior is not observed when the medium is PTFE (Teflon cloth), which is weakly
biaxial (Cases 10 and 11). This behavior upon rotation raises the question of what controls the

resonant length of the antenna on a biaxial substrate.

Several additional antennas were investigated in an attempt to correlate the resonant
behaviors of patches with biaxial substrates to those with isotropic substrates and answer the
question of what is controlling the resonant length. First, we ran isotropic antennas with
permittivities equal to the individual permittivities in the unrotated biaxial tensor. Observe for
Cases 12, 15 and 16 in Table 4-2 that the resonant length of the patch on the unrotated biaxial
substrate has a resonant length between the resonant lengths of the isotropic antennas with &, of 5
and 8, but is closer to &, of 8 (Case 12). We might have expected to observe a resonant length
similar to an isotropic antenna with permittivity close to the average of the biaxial values, but

this is not the case.

The question is then “is the resonant length governed by the largest value in the
tensor, the z-directed permittivity or some combination?” To answer this question, we changed
the biaxial medium from “positive” biaxial (increasing permittivity from &, to €, to “negative”
biaxial such that the maximum permittivity is € and the minimum is ¢, as in Case 9 shown in
Table 4-2. If the resonant length is governed by the z-directed permittivity we expect the
resonant length of this antenna to be closest to the resonant length of the antenna printed on the
isotropic medium with &=2. The resonant length of this antenna is greater than the case where

the permittivities are in the opposite order, it is closer to the &=5 case. While this change did
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increase the resonant length significantly, it is not clear that the z-directed permittivity is
dominating the resonant length. It does however show that if you are looking for a shorter

resonance, the z-component should be larger than the x-component.

4.4.3.2 Radiation Behavior

The radiation behavior of the patch antennas is also of interest. We compute the far
fields the same way we did in Section 4.3.1.2.3, using the method of stationary phase. However,
for the patch antenna we are interested in both the principal polarization pattern and the cross
polarization pattern. There are several definitions of cross polarization. In his paper, Ludwig

[50] proposes three definitions of reference (or primary) polarization and cross polarization:

1. “In a rectangular coordinate system, one unit vector is taken as the direction of the

reference polarization, and another as the direction of cross polarization”

2. “In a spherical coordinate system the same thing is done using the unit vectors tangent

to a spherical surface”

3. “Reference and cross polarization are defined to be what one measures when antenna

patterns are taken in the usual manner”

Definitions one and two are antenna-centric while definition three is receiver-centric.
For example, the rectangular unit vector in definition one is taken such that a transmitting
antenna is at the center of and x-y-z coordinate system. In the third definition, the coordinate
system is centered at some receiving antenna position. Schuman [51] provides a straightforward

way of computing the principal and cross polarization by defining the polarization vectors as

p =cos(¢, —¢,)a, —sin(g, — ¢, )a, (4.4.14)
¢ =sin(g, — ¢, )a, —cos(4, — ¢, )a, (4.4.15)
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where ¢, is angle for the dominant electric current, chosen to align with the antenna orientation

and ¢, is the angle to the far field point (or the receiver). If the far-field electric field is given by

E =a4,E,+a,E, (4.4.16)

then the principal and cross polarization electric fields are given by

E,=E-p=cos(¢ —¢)E, —sin(¢, — ¢ )E, (4.4.17)

E,=E-¢=sin(¢, —¢)E, —cos(¢, — ¢, )E, (4.4.18)
respectively. This is a general formulation for principal and cross polarized fields of a reference

antenna. In our analysis, we assume ¢, and ¢, are equal. For this case the principal-pol reduces
to £, and the cross-pol reduces to E, . The principal and cross polarization fields are normalized

by reference field as was done for the total directive gain shown in equation (4.3.25). For all

cases, we modeled the resonant length, 50Q antennas from Table 4-2.

The first set of radiation patterns are for the patches printed on unrotated biaxial
substrates with permittivity (ex, €y, €,) = (2, 5, 8). The antenna width-to-length ratio is fixed at
1.5 and the height (thickness) is varied with respect to wavelength. Figure 4-26(a) shows the
resulting principal polarization field and Figure 4-26(b) shows the cross polarized field. We note
that when the substrate is very thin (0.014), the cross-pol field is very small (approximately —35
dBi). When the substrate is thicker, the cross-pol is larger. For all three heights, the principal

polarization pattern is essentially unchanged.
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Figure 4-26: Radiation patterns, unrotated biaxial substrate with permittivity (&, &y, &,) =
(2, 5, 8) and varied height (a) principal polarization, (b) cross polarization

The patterns generated by the patch on the biaxial substrate can best be understood
within the context of similar antennas on isotropic substrates. Patterns generated by patches
printed on isotropic substrates with & = 8 and the same heights are shown in Figure 4-27 (a) and
(b). First, we observe that the principal polarization field (a) is again unchanged by changing the
height. We also note that these fields are approximately equal to the principal-pol fields
generated by the biaxial patch. The cross-polarized fields (b) however are different. For a height
of 0.022, the cross-polarized field when the substrate is biaxial is approximately 7 dB smaller
than when the substrate is isotropic. When the height is increased to 0.032,, the cross-pol is
again larger than it was when the substrate is biaxial, but the difference is smaller (2 dB). Again,
we observe that when the height is 0.01, the cross-pol is very small and approximately the same
as in the biaxial case. We can say then, the cross polarized field of the patch on the biaxial
substrate is less than the cross polarized field of the patch on the isotropic substrate with relative

permittivity of 8. Another point of comparison is isotropic substrates of varying relative
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permittivities (Figure 4-28 (a) and (b)). Close inspection of the cross-polarized fields show that
when the isotropic relative permittivity is 5, the cross-pol field most closely matches the patch on
the biaxial substrate. This indicates that, with respect to the cross-polarized far field, the biaxial
patch is acting most like it is an isotropic substrate of permittivity 5. This indicates some
interesting complex behavior of the patch printed on the biaxial medium. We noted previously
that the input impedance behavior more closely resembled the isotropic medium with
permittivity 8. Here we observe the radiated fields more closely resemble the isotropic medium
with permittivity 5.
e Sanprncp Pratesion, A etrat (st 5. = 5 Wit 5L

0° 10 0B
10 dB T v 3

_gp° e riens 900 -
---------- height=.017, weeeeeenes hgight=_013
— height=02% hewght=.[]2}.c|
----- height=.03% ===-= height=03}
(a) b

Figure 4-27: Radiation patterns, substrate with isotropic permittivity ¢, = 8 and varied
height (a) principal polarization, (b) cross polarization

176



177

Antenna Gain - Cross Polarization
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Figure 4-28: Radiation patterns, substrate thickness 0.022, varied isotropic permittivity (a)
principal polarization, (b) cross polarization

The orientation of the biaxial substrate is also of interest. In Figure 4-29 the principal
(a) and cross (b) polarization patterns are plotted for the rotated and unrotated biaxial substrate
with permittivity (ex, &y, €) = (2, 5, 8) and height 0.02A, The cross-pol behavior of the antenna
on the rotated case is significantly different than any of the other patterns. There are two wide
lobes off boresight and nulls in the patterns at approximately +10°. There may be some
applications in which suppressing the cross polarized field at some angle is important. The

orientation of a biaxial substrate could be modified to achieve this.
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Antenna Gain - Principal Polarization Antenna Gain - Cross Polarization
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Figure 4-29: Radiation patterns, biaxial substrate with permittivity (e, &y, &) = (2, 5, 8)
and two rotations (a) principal polarization, (b) cross polarization

Again when the medium is PTFE cloth, a weakly biaxial medium, we observe a change in the
shape of the cross polarized field as shown in Figure 4-30(b). The figure shows a small dip or
null in the cross-pol pattern at boresight and two wide lobes. Also of interest is that the overall
cross-pol pattern is much larger when the medium is rotated. In our previous analyses, rotation
of PTFE resulted in little change in antenna performance, however, here we observe that the

cross-pol pattern is sensitive to medium rotation even when it is weakly biaxial.

Antenna Gain - Principal Polarization Antenna Gain - Cross Polarization
Substrate (biaxial): PTFE Cloth, height = 0.02% . W=1.5L Substrate (biaxial): PTFE Cloth, height = 0.02A , W=1.5L
o o

10 dB 10 dB

— (v w07, 0) — (. w0, 09)

————— (1w, wo)=(30°, 759 -—-m- (W, w,)=(30°, 757)
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@ (b)

Figure 4-30: Radiation patterns, biaxial PTFE cloth substrate with two rotations (a)
principal polarization, (b) cross polarization

We conclude our analysis of microstrip patch antennas printed on biaxially
anisotropic substrates. We have observed that the behavior of these antennas is quite complex.
They cannot be simply predicted based on the individual permittivities that make up the substrate
tensor. Conclusions drawn from this work and future extensions of this work are discussed in

Chapter 5.
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S CONCLUSIONS AND FUTURE WORK

This research had two primary objectives. The first was to provide a better
understanding of the behavior of electromagnetic waves at interfaces with biaxially anisotropic
materials. The second was to understand the behavior of microstrip antennas printed on biaxially
anisotropic substrates. The first objective provided the framework for all subsequent analyses.
In this chapter we summarize the primary contributions of this research and provide suggestions

for future research in this area.

In Chapter 2, we studied the reflection and transmission behaviors of electromagnetic
waves at isotropic-biaxial interfaces. We considered half-space cases with waves impinging
from either medium type and consider the two-layer case. We showed that if a wave is incident
from an isotropic region to a biaxial region, the wave which is more strongly reflected can
change. At small angles of incidence the vertically polarized wave may be more strongly
reflected; as the angle of incidence increases, the horizontally polarized wave may be more
strongly reflected. Although the vertically polarized wave may be more strongly reflected at
small angles of incidence, it can still experience the Brewster angle effect and reach an angle of
total transmission. This is completely different from anything observed at an isotropic-isotropic
boundary. At these boundaries the horizontally polarized wave is always more strongly reflected
than the vertically polarized wave. We also showed that when there are two layers (a biaxially
anisotropic layer bounded by two isotropic layers), the vertically polarized wave can experience
total transmission at more than one angle of incidence. This multiple Brewster angle effect was

observed primarily due to the layer thickness.
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In Chapter 3 we introduced the eigenvector dyadic Green’s function (E-DGF). We
also applied the symmetric property of the dyadic Green’s function (DGF) to obtain the Green’s
function for the electric field in region 0 generated by a source in region 1. We also discussed
the benefits of using this Green’s function. This work was the first to use this Green’s function
to model microstrip antennas. Pettis [1] used the same Green’s function to model Hertzian
dipoles, but this work takes the E-DGF a step further in using it in a method of moments

solution.

In Chapter 4 we presented our results for microstrip antennas printed on biaxially
anisotropic substrates. First, we modeled gap-fed dipole antennas. We showed that our results
agreed with many published results including Pettis’s [1] results for the same type of dipoles.
Pettis used a transition matrix dyadic Green’s function to model his dipole. The agreement
shown between the two is verification of the two methods. We also showed that rotating the
medium with respect to the reference coordinate system had little effect on the medium with
weak anisotropy (PTFE cloth) but did have a significant effect on the medium with strong

anisotropy.

The largest contribution of this work is the study of the patch antenna on biaxially
anisotropic substrates. This antenna had never been modeled before. First, we showed that
increasing the number of basis functions along the width of the antenna had little effect on input
impedance and radiation performance. This is revealing of the fundamental behavior of the
medium as will be discussed later. Next, we analyzed the input impedance behaviors as medium
properties changed. The results revealed that the resonant dimensions of a patch printed on a

biaxial substrate are smaller than when the substrate is isotropic with the average permittivity of
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the three biaxial values. Similar to antennas printed on isotropic and uniaxial substrates, when
the height of a biaxial substrate increases, the resonant length decreases and the impedance
bandwidth increases. Changing the orientation of the substrates with respect to the principal
axes also changes the resonant length and bandwidth; for the cases we investigated, the rotation
decreased the resonant length and increased the bandwidth. These behaviors could be very

valuable when designing individual microstrip antennas or even microstrip arrays.

Antenna modeling also requires analysis of radiation patterns. In Chapter 4, the
principal and cross polarization patterns of the resonant patch antennas were analyzed. The
principal polarization pattern changed little for all of the cases we considered. This is likely due
to the fact that the currents along a half-wave resonant structure generally have the same
behavior. The cross polarization patterns, however, did vary considerably. The orientation of
the biaxial medium had a major impact on the shape of the cross-polarization patterns and the
thickness of the substrate had a major impact on the magnitude. The patterns also revealed that
the cross-pol pattern of the antennas with a biaxial substrate did behave similarly to those of an
antenna on an isotropic substrate whose permittivity is the average of the biaxial permittivities.
The patch antenna analyses suggest that the biaxial substrate acts like a high permittivity
substrate in some ways and a lower permittivity substrate in others. This feature could offer
benefits to antenna designers. In the future, substrates could be engineered so that patch

antennas would have specific cross-pol properties.

Future work could further solidify the potential benefits of biaxially anisotropic
material. As discussed the resonant length of the patch antenna imitates that of an isotropic

material with the largest value in the biaxial permittivity tensor. This is valuable in that it
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translates into a smaller resonant structure. One drawback to using isotropic materials with large
permittivities is that, in an array, mutual coupling increases with permittivity. An extension of
this work would be to consider two antenna systems (first two dipoles; then two patches) on
biaxial substrates and analyze the mutual coupling between them. The two antenna analysis
could then be extended to arrays of antennas printed on biaxially anisotropic substrates. The
hope would be that biaxial media would suppress surface modes and other phenomena that limit

the scan range of microstrip phased array antennas.

Another application of biaxial materials with respect to microstrip antennas is using
them as a superstrate. The E-DGF could be modified to include a fourth layer. The third layer
could then be an isotropic substrate and the fourth layer ground. With this structure, an antenna
element could then be placed between an isotropic substrate and biaxial superstrate. There could
be some beam shaping properties of a biaxial superstrate that would be advantageous in antenna

design.

Another area of future work would be the rigorous modeling of the coaxial probe.
This would require modeling the currents and the fields inside the biaxial medium. It could also
include modeling the fields at the probe-antenna junction. This may require new basis functions
that provide for better modeling of the discontinuity of current at the feed point. All of this
modeling effort would provide information about the probe self impedance, which was ignored

in our study of the patch antenna.

In our analysis of basis function convergence to model a patch antenna, we concluded
that one basis function along the width was sufficient to compute input impedance of the patch

antenna. This suggests that the mode set up in the cavity is somewhat uniform along the width.
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This behavior warrants further investigation. To determine how the modes are set up, one would
set up a cavity using equivalent currents on the boundaries and the equivalence principle used to
determine the fields within the cavity. This procedure could be extended to a moment methods
solution for a microstrip antenna printed on a finite biaxial substrate. This work would be an

excellent area for future research.

This dissertation has extended research in the area of biaxially anisotropic materials.
As metamaterials become increasingly popular, materials we can only imagine today may be
available in the near future. When these materials mature, material properties will be one
additional parameter in the antenna designer’s arsenal. Understanding how to model these types

of materials and being able to predict their behavior will be increasingly important.

We have used a new, versatile Green’s function to develop electric field formulation
and model microstrip antennas with the method of moments. Research such as this provides the
groundwork for this new and exciting area of antenna design. This powerful algorithm provides
the framework for future research in the area of biaxially anisotropic materials and their use in

antenna applications.
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