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ABSTRACT 

This dissertation explores the electromagnetic behavior of arbitrarily oriented 

biaxially anisotropic media.  An overview of wave behavior in biaxially anisotropic (or simply 

biaxial) media is presented.  The reflection and transmission behaviors of electromagnetic waves 

from half-space and two-layer isotropic-biaxial interfaces are studied.  The reflection and 

transmission coefficients are used in the formulation of eigenvector dyadic Green’s functions.  

These Green’s functions are employed in full-wave analyses of rectangular microstrip antennas 

printed on biaxial substrates. 

  The general characteristics of electrically biaxially anisotropic (biaxial) media are 

presented including permittivity tensors, optic axes, orientation of the medium, and 

birefringence.  After a detailed discussion of wave propagation, wave behavior at isotropic-

biaxial interfaces is investigated.  The reflection and transmission of electromagnetic waves 

incident upon half-space and two-layer interfaces, at which the waves may be incident from 

either the isotropic region or the biaxial region, are investigated.  The biaxial medium considered 

may be aligned with the principal coordinate system or may be arbitrarily oriented.  Critical 

angle and Brewster angle effects are analyzed for the half-space case.  Once the wave behavior is 

well understood, the eigenvector dyadic Green’s function is presented for two-layer geometries 

involving isotropic and biaxially anisotropic media.  The symmetrical property of the dyadic 

Green’s function is derived and used to generate an unknown Green’s function from a known 

Green’s function for the two-layer geometry of interest.  This new Green’s function is used to 

model rectangular microstrip antennas.  



 

Following the investigation of reflection and transmission, rectangular microstrip 

antennas are analyzed using the eigenvector dyadic Green’s function and the method of 

moments.  Galerkin’s method is used to evaluate current distributions on gap-fed dipole antennas 

and probe-fed patch antennas.  The resulting current distributions are used to compute antenna 

parameters such as input impedance, resonant length and principal polarization radiation 

patterns.  For the patch antennas, impedance bandwidth and cross-polarization patterns are also 

investigated.  Results are presented for biaxially anisotropic substrates of varying thickness, 

permittivities, and orientations, providing the understanding of the complex behaviors of 

microstrip antennas printed on biaxially anisotropic substrates. 
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1 INTRODUCTION 

1.1 Research Objectives 

This work investigates wave phenomena in arbitrarily oriented biaxially anisotropic 

media and the behavior of microstrip antennas on biaxial substrates.  Pettis’ extensive work [1] 

solved the problems of Hertzian dipoles positioned in and above a biaxial slab, an infinite 

transmission line printed on a biaxial substrate and a microstrip dipole antenna printed on a 

biaxial substrate.  To arrive at solutions of these problems, Pettis studied propagation 

characteristics, Green’s functions and singularities inherent in this type of media.   

We intend to gain greater understanding of the wave behavior in this medium by 

studying reflection and transmission from isotropic-anisotropic interfaces.  We then use the 

reflection and transmission coefficients in the eigenvector dyadic Green’s functions to study 

microstrip antennas.  We again solve the gap-fed microstrip dipole problem using the 

eigenvector dyadic Green’s function, rather than the transition matrix dyadic Green’s function 

(as was done by Pettis [1]).  Finally, we solve the probe-fed rectangular microstrip patch antenna. 

The motivation for studying biaxial materials is twofold.  First, there are several 

naturally occurring materials with biaxial properties.  When we ignore this biaxial nature, we are 

unable to accurately predict the behavior of circuits using these materials.  However, more 

interesting is the current research in material science.  Material scientists are working on ways to 

engineer new materials.  Much of this research has been fueled by electromagnetic interests in 

left-handed materials that have negative permittivity and/or permeability as well as other 

metamaterials.  Some studies have shown these materials to have biaxial properties.  Secondly, if 
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we understand biaxial media and show a real benefit, the technology is developing to make the 

requisite materials a reality.  Thus this research aims to be the next step to showing the 

usefulness of engineered biaxial substrates. 

1.2 Previous Work 

  Considerable work has been done in the study of anisotropic materials.  This section 

reviews what has been done and highlights places where additional contributions can be made, 

specifically in the study of biaxially anisotropic materials. 

1.2.1 Wave Behavior in Anisotropic Materials 

Wave propagation and the reflection and transmission of electromagnetic waves from 

an interface are fundamental to the study of electromagnetics.  Most electromagnetics texts 

contain detailed study of these phenomena when the interface is between two isotropic materials.  

In his text, Kong [2] handles this problem for isotropic and uniaxial media.  While the analysis of 

wave propagation and reflection and transmission does not directly lend itself to application, it is 

essential to the understanding of the physics of any electromagnetic problem.     

Many authors have studied reflection and transmission in complex materials.  

Bianisotropic media (in which there is cross-coupling between electric and magnetic fields [2]) 

has garnered particular attention [3]-[7].  In [3] Tsalamengas provides a formulation to compute 

the reflection and transmission of an arbitrarily polarized wave incident upon a general 

bianisotropic slab.  This slab is described by four tensors, with no limitations on the tensors 

themselves.  Therefore, this formulation could be used to evaluate reflection and transmission 

coefficients of an arbitrarily oriented biaxial slab.  However, we have only one tensor and this 
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formulation is unnecessary.  Further, Tsalamengas does not analyze the results or provide 

numerical examples.   In [4] Semchenko and Khakhomov derive and compute reflection and 

transmission coefficients for unrotated uniaxial bianisotropic material and explore the varying 

incident wave polarizations.  Yun Hee Lee [5] studied wave behavior in tilted and untilted 

uniaxial media including a detailed study of reflection and transmission from an isotropic-

uniaxial interface.  In [6] Rikte et al. present the coordinate free reflection and transmission 

dyads for the two-layer problems of 1) a general bianisotropic medium with an isotropic 

(vacuum) half-space on both sides and 2) a bianisotropic slab with a PEC (perfect electrical 

conductor) backplane (reflection dyad only).  In [7] the most general bianisotropic material is 

considered by He et al. such that permittivity and permeability tensors may be in general biaxial 

and/or chiral.  A 2x2 matrix is used without formulating the fields explicitly in each region.  This 

provides good numerical results, but is not as good for studying the waves at the surface.    

Metamaterials, recently a hot research area, have also been studied for their reflective 

and refractive characteristics.  Grzegorczyk et al. ([8, 9]) provide an extensive study of the 

behavior of waves incident upon metamaterial layers.  Their work is particularly relevant 

because they first consider a general bianisotropic medium (with biaxial permittivity and 

permeability tensors), and then apply the properties of left-handed materials.   Therefore, their 

formulation is general but their results are specific to negative epsilon materials.  In fact, the 

inclusions used to create negative epsilon (or mu) materials make the material anisotropic in 

general so it is important to understand the anisotropic behaviors.   

Researchers have also considered reflection and transmission from biaxial 

boundaries.  Stamnes and Sithambaranathan [10] considered reflection and refraction from a 
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plane interface separating an isotropic and a biaxial medium.  In their paper, they consider only 

the unrotated biaxial medium with a diagonal permittivity tensor.  Further, they do not present 

numerical results but rather the formulation of the resulting fields when a plane TE (transverse 

electric) or TM (transverse magnetic) wave is incident on the interface.  Abdulhalim [11] 

presents a 2x2 matrix approach to solving for reflection and transmission coefficients from 

biaxial boundaries but does not present any numerical results.  Landry [12, 13] studies 

transmission and reflection at planar interface between arbitrarily oriented biaxial media.  He 

formulates reflection and transmission coefficients using characteristic angles.  The formulation 

is based on an interface between two arbitrarily oriented biaxial slabs; however, the resulting 

analysis includes the special case where one of the slabs is isotropic.  Landry considers wave 

incident upon the boundary from each side (downward and upward incident).  His analysis 

includes a brief discussion of Brewster angle and critical angle.  

While Landry’s analysis of reflection and transmission from an arbitrarily oriented 

biaxial slab is fairly complete, his formulation is considerably different from our formulation.  

We are using a form based on components of the propagation vector as this is how we use the 

coefficients when computing the Green’s function.  Further, he studied the reflection and 

transmission of the incident wave in an isotropic region in terms of polarization angle.  We are 

more interested in considering that wave as either TE (transverse electric) or TM (transverse 

magnetic).  Finally, when he considered the layered problem, he analyzed reflection and 

transmission as a series of bounces.  We formulate the total upward and downward propagating 

waves to obtain overall reflection and transmission coefficients. We also hope to more clearly 

define the waves inside the biaxial medium.  Landry does consider the two polarizations, but 
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describes them only as “associated with inner surface” or “associated with outer surface.”  

Finally, we perform a more in-depth study of the Brewster angle effect and critical angle effect 

as material parameters are varied.     

1.2.2 Microstrip Antennas 

Microstrip circuits are ubiquitous in modern technology.  Any printed wire above 

some grounded substrate acts as a microstrip line.  They are present everywhere from computer 

chips to complex radar beamformers.  Initially, microstrip circuits were designed and analyzed 

for isotropic substrates.  However, as research progressed it was found that many manmade and 

natural substrates are not isotropic.  In 1985, Alexopoulos [14] detailed known anisotropies and 

provided analysis of integrated microstrip circuits on anisotropic substrates using existing 

empirical, quasi-static and dynamic solution methods.  Alexopoulos had two primary 

motivations for studying the behavior of microstrip lines on anisotropic materials.  The first 

motivation stems from the fact that variations in the permittivity of a dielectric within an 

individual slab or between different batches were known to produce errors and hinder circuit 

repeatability.  In fact, he showed that significant errors (over 8% for thin lines) in the 

computation of effective permittivity exist if anisotropy is ignored.  Secondly, Alexopoulos 

believed that in some applications, “anisotropy serves to improve circuit performance.”  This 

sentiment is shared by many material researchers trying to create substrates that will provide 

some special circuit performance.  In [14] Alexopoulos considered primarily uniaxially 

anisotropic substrates.  Later, Tsalamengas et al. [15] investigated propagation modes in 

microstrip lines printed on anisotropic substrates with general electric and magnetic anisotropies.  

The substrates were described by 3x3 permittivity and permeability tensors with no restrictions 
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on their elements.  In our analysis, we are considering only electrically biaxial substrates.  

Therefore, only the permittivity of the medium is a 3x3 tensor.  The medium is magnetically 

isotropic.  Further, as will be shown, there are restrictions on the elements.  We consider a 

diagonal biaxial permittivity tensor that is then rotated, so the elements of the 3x3 tensor are 

related by these rotation angles.  In his dissertation Pettis [1] considered microstrip lines on 

arbitrarily oriented biaxial substrates, the same type of medium we are studying here.    

While the research into microstrip lines printed on anisotropic substrates laid the 

ground work for all other microstrip circuits, in this work, we are primarily concerned with 

microstrip antennas.  Microstrip antennas have been of interest for well over 50 years and can be 

printed on almost any substrate in a wide variety of shapes.  They are used to make low profile 

conformal arrays and used in small personal electronics such as cell phones and wireless internet 

devices.  In 1981, Carver and Mink [16] summarized over 25 years of work to date and 

researchers have continued to study these types of antennas for 30 more years.  At the time of 

Carver and Mink’s report [16] research had primarily focused on microstrip dipoles and 

conformal antennas printed on isotropic substrates.  Early investigations of microstrip dipoles 

include radiation properties [17] and mutual impedance [18].  Uzunoglu et al. [17] studied 

radiation properties of microstrip dipoles.  They used the Green’s function for a horizontal 

Hertzian dipole on a grounded substrate combined with an assumed sinusoidal current 

distribution to compute the input impedance using variation methods.  Alexopoulos and Rana 

[18] used the same method to compute the mutual impedance between microstrip dipoles in 

broadside, collinear and echelon configurations.     
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Many researchers studied the more general rectangular patch problem.  As with 

microstrip line research, the baseline research was for antennas printed on isotropic substrates.  

Early research into microstrip patch antennas includes input impedance, mutual coupling [19] 

and resonant frequencies [20].  Pozar [19] uses a method of moments approach to compute both 

input impedance and mutual coupling of rectangular microstrip antennas in which a coaxial 

probe type feed is used.  In the moment method computation, an idealized probe feed is used.  To 

account for the probe self-inductance, an inductance term is added to the input impedance.  

Bailey and Deshpande [20] compute resonant frequency of microstrip antennas using a method 

based on the cavity model with the “grounded dielectric being approximated by an effective 

dielectric constant.”  As bandwidth of an antenna is a concern for any application, Kara [21] 

presents simple closed-form equations for calculating the bandwidth of probe-fed rectangular 

microstrip antennas.  Kara’s formulas are based on the cavity model and transmission line model 

and are valid for various substrate thicknesses and permittivities.  Continued efforts produced 

detailed research into how to feed rectangular microstrip patch antennas [22], [23], and [24].   

From this base, applications were considered including arrays of microstrip antennas [25]. 

As research progressed, anisotropic substrates were considered.  Pozar was one of the 

first researchers to consider the rectangular microstrip patch on a uniaxial substrate [26].  Pozar 

computes both radiation and scattering from a microstrip patch on an electrically uniaxial 

substrate and compares these results to the same patch on an isotropic substrate.  He formulates 

the characteristic Green’s function in the spectral domain and then uses the moment method to 

compute radiated power, power delivered to surface waves and radar cross section.   He uses a 

feed model similar to the one used in [19].  As with antennas on isotropic substrates, researchers 
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sought solutions for parameters of interest for microstrip antennas on uniaxial substrates.  Wong 

et al. [27] computed the resonant frequency of a rectangular patch using Galerkin’s method with 

sinusoidal basis functions.  Resonant frequency and half-power bandwidth are compared for 

isotropic, positive uniaxial (anisotropic ratio = εx/εz < 1) and negative uniaxial (anisotropic ratio 

> 1) substrates.  The results show that both resonant frequency and half-power bandwidth 

increase on a positive uniaxial substrate and decrease on a negative uniaxial substrate.   

Broadband tapered microstrip patch antennas printed on uniaxial dielectric substrates are 

considered in [28].  Full-wave spectral domain formulation by means of Galerkin’s method is 

used along with the transmission line method to compute bandwidth.  It is found that linear 

variations in substrate height produce great influence on the bandwidth of microstrip antennas.  

Other authors considered microstrip patches printed on layers of uniaxial materials with the 

possibility of having uniaxial overlays [29] and [30].  These papers compute the input impedance 

and resonant frequency of the microstrip patch, respectively.    

1.3 Electromagnetic Definitions for Isotropic and Biaxial Media 

The fundamental equations describing behavior of electromagnetic waves in a 

biaxially anisotropic medium (or simply called biaxial) are more complex than the isotropic 

equations we are familiar with.  In isotropic media, the constitutive relations that relate the 

electric flux density ( D ) to the electric field intensity ( E ) and the magnetic flux density ( B ) to 

the magnetic field intensity ( H ) are given by 

HBED         ;  (1.3.1) 
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The permittivity of the medium (ε) describes the medium’s electrical properties and the 

permeability (μ) describes its magnetic properties. 

If the medium is biaxially anisotropic, the permittivity and permeability of medium 

take on a tensor form, changing (1.3.1) from a set of vector equations to a set of matrix 

equations.  These equations can be written as 

EED ro 
 (1.3.2) 

and 

HHB ro 
 (1.3.3) 

where r and r are relative permittivity and permeability tensors, respectively. 

The change in constitutive relations will also affect Maxwell’s equations in the 

medium.  The time-harmonic forms of Maxwell’s equations for isotropic media are given by 

HiE   (1.3.4) 

JEiH    (1.3.5) 

vD 
 (1.3.6) 

0 B  (1.3.7) 

Equations (1.3.4) through (1.3.7) assume tie   time-harmonic variation.  This is consistent with 

the convention used in the optics community as well as the convention used by Pettis.  We are 

choosing this convention as well to readily compare our result with Pettis’. 

In this work, we consider an electrically biaxial material.  Therefore, the permittivity 

takes on the tensor form while the permeability will remain scalar.  In fact we are assuming that 
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the permeability is equal to the permeability of free space.  Given this assumption, Maxwell’s 

equations in the media we are considering become 

HiE   (1.3.8) 

JEiH ro  
 (1.3.9) 

vD 
 (1.3.10) 

0 B  (1.3.11) 

1.3.1 Permittivity Tensor 

The defining property of electrically biaxial media is the permittivity tensor.  

Isotropic materials have a single permittivity.  Uniaxially anisotropic materials have two 

different permittivity values.  Uniaxial materials have the same permittivity along two 

dimensions and a different permittivity along the third dimension.  The axis along the direction 

of the unique permittivity value is called the optic axis.  An unrotated uniaxial permittivity tensor 

can be written as 
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(1.3.12) 

The permittivity shown in (1.3.12) represents an unrotated uniaxial medium with 

optic axis along the z-direction.   

Biaxially anisotropic materials have three unique values in the permittivity tensor and 

they have two optic axes.  An unrotated biaxial permittivity tensor is given by  
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(1.3.13) 

where 
zyx   .  Equation (1.3.13) represents a biaxial medium whose principal axes are 

aligned with the Cartesian coordinate system.  If, however, the biaxial medium was arbitrarily 

oriented with respect to the coordinate system, the permittivity tensor would not be as simple.  

We can obtain the tensor for an arbitrarily oriented biaxial medium by applying rotations to the 

tensor in equation (1.3.13).  Some man-made and natural materials known to be biaxially 

anisotropic are shown in Table 1-1. 

Table 1-1:  Examples of Biaxial Media 

Medium εx εy εz 

Extrinsically Biaxial (man-made materials) [31] 

PTFE 

cloth 

2.45 2.89 2.95 

Glass cloth 5.56 6.24 6.64 

Intrinsically Biaxial (naturally occurring crystals) 

[32] 

Borax 2.093 2.158 2.167 

Epsom 

Salt 

2.053 2.117 2.134 

Mica 2.442 2.547 2.563 

Perovskite 5.290 5.476 5.664 

Topaz 2.220 2.280 2.310 
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1.3.1.1 Permittivity Tensor Rotations 

In our formulation we use the same tensor rotations used by Mudaliar and Lee [34].  

Let us assume the permittivity tensor shown in (1.3.13) have principal axes zyx  ,,  and we 

want to transform the tensor to the system coordinates x, y, z.  Throughout this research, we 

consider the biaxial medium in a layered geometry.  We define the layering such that one of the 

principal axes lies in the plane of the boundary.  We chose the x   axis to be in this plane.  We 

then define the reference coordinate system such that the z-axis is perpendicular to the planar 

interface.  The orientation of the medium coordinate system with respect to the reference 

coordinate system can then be defined by 2 rotation angles. 

We begin by performing a counter-clockwise transformation about the x   axis by an 

angle ψ1 as shown in Figure 1-1 (a).  The rotation matrix for the ψ1 rotation is given by 





















11

111

cossin0

sincos0

001



R

 

(1.3.14) 

The resulting tensor now has principal axes zyx  ,, .  We then transform this tensor about the 

zaxis by an angle ψ2 as shown in Figure 1-1 (b) and described by 


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
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(1.3.15) 

The resulting permittivity tensor has undergone a total rotation R computed by  



13 

13 

 





















11

12122

12122

12

cossin0

sincoscoscossin

sinsincossincos







RRR

 

(1.3.16) 
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Figure 1-1:  Rotation diagrams 

to get to the laboratory coordinate system x, y, z.  The permittivity tensor now is the full matrix 
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(1.3.17) 

where 
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(1.3.18) 

 
 

1.4 Chapter Overview 

The objectives of this research are to gain better understanding of electromagnetic 

wave characteristics in biaxially anisotropic media and to understand how microstrip antennas 

behave when printed on biaxial substrates.  In Chapter 2, we study wave behavior in biaxial 

media including birefringence and reflection and transmission behaviors.  Biaxial media with 

varying permittivities and rotation angles are used.  The study of birefringence includes details of 

how propagation roots are assigned to the two characteristic waves.  In the analysis of reflection 

and transmission, we consider half-space and two-layer geometries with waves impinging from 

either isotropic or biaxial media.  Phenomena such as the Brewster angle effect and critical angle 

are then considered and conclusions about how waves behave at biaxial interfaces are made. 

In Chapter 3 we introduce the eigenvector dyadic Green’s function (E-DGF) and 

discuss our rationale for using this Green’s function to model microstrip antennas.   We also 
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apply the symmetric property of the dyadic Green’s function (DGF) to obtain an unknown 

Green’s function needed in our Method of Moments solution.     

In Chapter 4 we analyze microstrip antennas printed on biaxially anisotropic 

substrates using the Method of Moments.   First, we model gap-fed dipole antennas using the E-

DGF and show that our results agree with published results including those presented by Pettis 

[1].  The largest contribution of this work is the study of the patch antenna on biaxially 

anisotropic substrates.  This antenna has never been modeled before.  The Method of Moments is 

used to compute unknown currents on the patch antenna excited by a coaxial probe source.  

These currents are then used to evaluate antenna performance.  The analysis focuses on the input 

impedance and radiation behaviors.  Input impedance is used to compute the resonant length and 

impedance bandwidth of the antennas.  The principal and cross polarization radiation patterns are 

also analyzed.  Antenna performance is evaluated as the relative permittivities and rotations of 

the biaxial medium are changed.  The patch antenna and substrate dimensions are changed as 

well.  With this body of results, we make some conclusions about the performance of probe-fed 

rectangular microstrip antennas printed on biaxial substrates.   

Finally, in Chapter 5, we conclude.  We summarize our findings and provide some 

context for our conclusions.  We also provide some ideas for future work in this area. 
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2 WAVE BEHAVIOR IN LAYERED BIAXIAL MEDIA 

Waves in biaxially anisotropic media behave differently than waves in isotropic or 

even uniaxially anisotropic media.  In this chapter, we investigate this unique wave behavior.  

We first analyze propagation in biaxial media and birefringence.  Then we analyze reflection and 

transmission characteristics for both half-space and two layer interfaces. 

2.1 Birefringence 

Born and Wolf [35] defined birefringence as the phenomenon in which a single 

incident wave will give rise to two refracted waves.  In biaxially anisotropic media birefringence 

is observed.  For a given wave incident upon the biaxial medium, two wave-normal directions 

exist resulting in four distinct refracted waves.  Birefringence can be observed via analysis of the 

propagation vectors in biaxial media.  The two characteristic waves observed in a biaxially 

anisotropic medium are called the a-wave and the b-wave [34]. 

2.1.1 Propagation Vectors 

Propagation vectors are crucial to understanding birefringence.  The propagation 

vectors of the a- and b-waves are given by 

au

zyx

a kzkykxk ˆˆˆ 
 

(2.1.1) 

ad

zyx

a kzkykx ˆˆˆ 
 

(2.1.2) 

bu

zyx

b kzkykxk ˆˆˆ 
 

(2.1.3) 

bd

zyx

a kzkykx ˆˆˆ 
 

(2.1.4) 
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where k-vectors are used for upward propagating waves (propagating in the +z direction) and κ-

vectors are for downward propagating waves.  Note that there are four distinct values for kz in 

this region: two for each a-wave and two for each b-wave.  A single fourth order equation, 

known as the Booker quartic, provides the solutions for these propagation constants.  In the 

following sections we will solve the Booker quartic for unbounded biaxial media and layered 

media. 

2.1.1.1 Unbounded Media 

Consider an unbounded region of biaxial media.  We are interested in the propagation 

vectors in this region to help understand birefringence.  The propagation vectors ( k ) in biaxial 

media are governed by the fourth order dispersion relation [1] 

        04
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2

0

2  kkkIadjadjkkkk rtrrr 
 

(2.1.5) 

where k0 is the free-space wave number (propagation constant in free-space) and the subscript t 

indicates that the trace of the matrix is computed.  If we factor out the magnitude of vector k , 

we obtain the Booker quartic 

         0ˆˆˆˆ 4
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0

24  kkkIadjadjkkkkk rtrrr 
 

(2.1.6) 

where k̂  is a unit vector (magnitude of 1) in the direction of the propagation vector k . 

For the unrotated case equation (2.1.6) is a biquadratic equation in k.  For each 

direction of propagation, there are four wave numbers or propagation constants.  Two will 

represent upward propagating waves while two represent downward propagating waves.  We call 

the two characteristic waves a-wave and b-wave.  Solutions to the biquadratic are given by 
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(2.1.8) 

As defined by Pettis [1], we choose the solutions associated with the positive sign 

under the radical to be the b-wave propagation constants.  Thus, the solutions associated with the 

negative sign under the radical are the a-wave propagation constants.  While there are two 

solutions for each wave, they are not unique; one solution having the opposite sign of the other.  

When the medium is rotated, this is not the case and in fact the upward and downward 

components for a given wave will not have the same magnitude.   

The solutions represent two surfaces which we refer to as wave vector surfaces.  If we 

choose the direction of propagation, we can solve for the propagation constant for each wave and 

both for each chosen direction.  We will follow the technique used by Pettis [1] and define k̂ in 

terms of spherical coordinates then sweep over the angular dimensions θ and φ. 

First, consider the same simple unrotated case that Pettis considered.  We will use the 

same material parameters used by Pettis to compare results.  The relative permittivity tensor for 

this medium is given by  



19 

19 

 



















4

8

2

r

 

(2.1.9) 

To plot the wave vector surface, we first choose the direction (θ and φ) to compute k̂  which is 

then used to compute ka and kb.  This propagation constant (ka or kb) is then used to compute the 

associated kx, ky and kz for the a-wave and b-wave.  Half of the resulting a- and b-wave vector 

surfaces (angular sweep 0 ≤ θ ≤ π, 0 ≤ φ ≤ π) are shown in Figure 2-1.  The inner surface is the a-

wave vector surface and the outer surface is the b-wave vector surface.  The intersecting line is 

one of the optic axes.  We can see from this plot that the optic axis intersects the wave vector 

surfaces at some point.  We can further see that the b-wave wave vector surface is at a local 

minimum at the point of intersection.   

 

Figure 2-1:  Wave vector surface:  unrotated biaxial medium (εx, εy, εz) = (2, 8, 4), plotted 

over 0 ≤ θ ≤ π, 0 ≤ φ ≤ π 
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We can gain more insight about this point of intersection from Figure 2-2.  In this 

figure we have plotted the surfaces over a more limited sweep (0 ≤ θ ≤ π, π/9 ≤ φ ≤ π/3) to see 

more detail.  First, we note that Figure 2-1 and Figure 2-2 agree with the results presented by 

Pettis [1].  We can also see that not only is the b-wave surface at a minimum, but the a-wave and 

b-wave surfaces are touching.  This point is termed the umbilical point [1].  The behavior of the 

wave at this point is significant.  The two propagation constants approach the same value when 

the propagation vectors are parallel to the optic axis (i.e. when they are intersecting).  When this 

occurs, the wave will behave as if the medium is isotropic [36].  The medium is named biaxial 

because it has two optic axes.  We derive explicit equations for the optic axes in Section 2.1.2.  

Also note that we treat the region for which kz becomes imaginary when considering layered 

media. 
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Figure 2-2:  Wave vector surface:  unrotated biaxial medium (εx, εy, εz) = (2, 8, 4), plotted 

over 0 ≤ θ ≤ π, π/9 ≤ φ ≤ π/3 

The unbounded unrotated problem is easily understood because the roots of the 

dispersion relation are simple to compute and assign.  Studying the wave vector surfaces of the 

unbounded region gives us insight into how the wave behaves in the medium and provides a 

comparison for the layered problem.  While we approach the unbounded and layered problems 

differently, the wave should propagate the same way in the biaxial medium for both cases.  Now 

we turn to the layered case to formulate our propagation vector solutions. 

2.1.1.2 Layered Media 

Bounded electromagnetic problems present additional constraints on the assignment 

of the propagation vector in each region.  The phase matching boundary condition on 

electromagnetic waves requires that the tangential components of the propagation vector be 

continuous across layer boundaries.  In the geometry we are interested in this means that kx and 

ky are continuous.  Whether we are considering reflection and transmission problems or source 

specific problems involving the Green’s functions, the transverse components are fixed and 

common to all of the propagation vectors.  Therefore, for layered problems we want to compute 

kz in the biaxial medium given kx and ky to evaluate the electric field vectors.  We will use the 

Booker quartic equation derived by Pettis [1] for kz, given by 

0234  zzzzzz kkkk  (2.1.10) 

where the coefficients εzz, Δ, Σ, Χ, and Γ are defined by Pettis [1, Appendix I].  The solution of 

this Booker quartic yields four unique roots for kz: two roots correspond to the upward 

propagating waves and two to the downward propagating waves.  Of the two upward one will be 
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for the b-wave ( bu

zk ) and one for the a-wave ( au

zk ).  Similarly, there will be one downward 

propagating b-wave root ( bd

zk ) and one downward propagating a-wave root ( ad

zk ).  The way we 

assign these roots is important in understanding the way the a- and b-waves propagate.   

We can see from Figure 2-1 that when all four roots are real, the magnitude k is larger 

for the b-wave than the a-wave.  With the transverse components common to both waves the 

magnitude of b

zk is greater than the magnitude of a

zk  for four real roots.  However, when kx and ky 

get large, as they will when computing the Green’s function, the roots become complex and their 

assignment is less intuitive. 

 If we track the four roots, we start with the a

zk  being smaller than the b

zk  roots.  This 

means that the real a-wave roots approach zero before the real b-wave roots do as kρ 

(or 22

yx kk  ) increases.  As kρ increases beyond some point, the a-wave roots will become 

complex.  This will happen before the b-wave roots become complex.  Increase kρ further and all 

four roots will be complex.  In this case, the a-wave propagation constant will be larger (although 

complex) than the b-wave propagation constant because the imaginary part is greater for the a-

wave.   

In defining the orientation of a biaxial medium (with rotated permittivity tensor) 

Pettis used three rotation angles.  Three angles are necessary for the unbounded biaxial medium 

to be arbitrarily oriented, however in the bounded case, two angles are sufficient as the normal to 

the boundary is fixed by the geometry.  Therefore, we will use the two angle orientation of the 

biaxial medium discussed in Chapter 1.   
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The unrotated permittivity tensor is similar to the one given by equation (2.1.9) only 

we switch εy and εz resulting in 
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(2.1.11) 

This permittivity tensor is put under a rotation of (ψ1 ψ2) = (30˚, 75˚).  We first look at the 

behavior of the Booker quartic roots for a fixed kx (kx = 0.5ko) as ky is varied. The resulting plot 

of the propagation constant in the ky-kz plane is shown in Figure 2-3.    In Figure 2-3, we see that 

for small values of ky, all the roots are purely real.  As ky reaches approximately 1.75ko, we see 

that ka is no longer purely real.  The real part of au

zk  and ad

zk converge to zero as the imaginary 

components grow from zero.  As ky approaches 3ko, we see that all four roots are complex.  The 

real parts of bu

zk  and bd

zk  converge to zero and the imaginary parts grow from zero.  We also 

note that when the roots are purely real, b

zk is greater than a

zk .  However, when the roots become 

complex the imaginary part of a

zk  is greater than the imaginary part of b

zk .  The logic for 

assigning the roots is summarized in Table 2-1. 

 

Table 2-1:  Booker Quartic Root Assignment Summary 

Root Type Action Assignment 

4 purely real roots Sort (descending) on real roots bu

zk ,
au

zk  , 
ad

zk  , 
bd

zk  

2 purely real roots 

2 complex roots 
Two real roots: b

zk  roots 

Two complex roots: a

zk  roots 
Larger real root is 

bu

zk , smaller is 
bd

zk  

Larger complex root is
au

zk , smaller is
ad

zk  

4 complex roots Sort (descending) on 

imaginary parts of roots 

au

zk ,
bu

zk ,
bd

zk ,
ad

zk  
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Figure 2-3:  Booker quartic root assignment for biaxial medium, kz vs. ky (permittivity 

tensor (εx, εy, εz) = (2, 4, 8), rotated by (ψ1 ψ2) = (30˚, 75˚)) 

Using the root assignment rules shown in Table 2-1, we also show the kz roots plotted 

as kx is varied in Figure 2-4.  Here, we choose to fix ky at ko and therefore the roots become 

complex at a lower value of kx than was observed for ky in Figure 2-3.   

 

Figure 2-4:  Booker quartic root assignment for biaxial medium, kz vs. kx (permittivity 

tensor (εx, εy, εz) = (2, 4, 8), rotated by (ψ1 ψ2) = (30˚, 75˚)) 
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We can also plot the wave vector surface for this medium.  The a- and b-wave vector 

surfaces are plotted as kx and ky are varied.  These wave vector surfaces are shown in Figures 2-5 

through 2-8.  

 

Figure 2-5:  Wave vector surface:  wave vectors computed using Booker quartic 

(permittivity tensor (εx, εy, εz) = (2, 4, 8), rotated by (ψ1 ψ2) = (30˚, 75˚)) 

 

Figure 2-6:  Wave vector surface showing umbilical point and optic axis 2:  wave vectors 

computed using Booker quartic (permittivity tensor (εx, εy, εz) = (2, 4, 8), rotated by (ψ1 ψ2) 

= (30˚, 75˚)) 
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In Figure 2-5 and Figure 2-6 the entire wave vector surface is shown.  It is difficult to clearly see 

the umbilical point and optic axes in these plots.  Figure 2-7 and Figure 2-8 more clearly 

illustrate the behavior around the umbilical point by limiting the angular sweep of the wave 

vector surfaces. 

 

Figure 2-7: Umbilical point at optic axis 1, (εx, εy, εz) = (2, 4, 8), (ψ1 ψ2) = (30˚, 75˚) 

 

Figure 2-8: Umbilical point at optic axis 2, (εx, εy, εz) = (2, 4, 8), (ψ1 ψ2) = (30˚, 75˚) 
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The complex kz values represent evanescent waves in the medium.  It is as if a wave 

is incident from some angle beyond 90˚ and the inverse sine of kz is greater than one.  When we 

evaluate the Green’s function (discussed in Chapter 3), we perform a doubly infinite integral 

over kx and ky so the assignment of kz from the Booker quartic becomes important in this 

complex region.     

2.1.2 Electric Field Vectors 

We define the electric field vectors as is done by Mudaliar and Lee [34].  The electric 

field vectors used by Pettis are equivalent and are derived in detail in Appendix E and Chapter 2 

of his dissertation [1].  As discussed, we have two waves traveling in the biaxial medium, the a-

wave and the b-wave and we want to compute the unit vector associated with each of them.  

Each unit vector is defined as 

      ˆˆ 2
1

ua  
(2.1.12) 

      ˆˆ 2
1

da  
(2.1.13) 

      ˆˆ 2
1

ub  
(2.1.14) 

      ˆˆ 2
1

db  
(2.1.15) 

where  is defined such that the elements χij is the ij
th

 element of the matrix 1  and ν is a 

normalization factor defined by 

 or          ˆˆ 2   iiiiu

 (2.1.16) 

 or          ˆˆ 2   iiiid

 (2.1.17) 
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The ̂  and ̂  in equations (2.1.12) through (2.1.17) are the unit vectors of the two characteristic 

displacement vectors in the medium.  We compute these unit vectors using 
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(2.1.21) 

where h is a normalization factor for the displacement unit vectors, ̂ and k̂  are propagation unit 

vectors as defined by equations (2.1.1) through (2.1.4) and the ô  terms are the unit vectors in the 

direction of the optic axes as discussed in the previous section (and shown in the wave vector 

surfaces).  We compute h for each field vector using  

   
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(2.1.23) 

We also need to compute the unit vectors 1ô  and 2ô .  Mudaliar and Lee assumed εx < εy < εz.  

However we are interested in a more general formulation.  Continuing the notation, we define 

constants g1 and g2 by 
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where εmax is the maximum permittivity value, εmin is the minimum and εmid is the middle value.   

Note that when εx < εy < εz, g1 and g2 reduce to the same expressions given by Mudaliar and Lee.  

The first optic axis in the biaxial coordinate system is constructed by placing g1 at the coordinate 

associated with εmin and g2 at the coordinate associated with εmax.  The second optic axis is 

constructed the same way only –g1 is used.  We then obtain the optic axes for any arbitrarily 

oriented biaxial medium by applying the rotation matrix R (equation (1.3.16)) to both unrotated 

optic axes.  The resulting the optic axes in an arbitrarily oriented biaxial medium are given by 

    122122121221

2

1
cosˆcossinsinˆsinsincosˆ

ˆ

ˆ
 gzggyggx

o

o
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








 

(2.1.26) 

Note that equation (2.1.26) is the same equation presented by Mudaliar and Lee except for the 

correction to the z term; in their paper, the g2 multiplier on the z term is left out. 

 

2.2 Reflection and Transmission 

The most extensive work on reflection and transmission from arbitrarily oriented 

biaxial media is presented by Landry [12].  In his work, he studies half space reflection and 

transmission characteristics for biaxial-biaxial, isotropic-biaxial and biaxial-isotropic 

configurations.  He also studies 2-layered and multi-layered problems.  Landry’s approach is 
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considerably different than the approach presented here.  In his study of the half-space problems, 

he computes the direction and magnitude of the reflected and refracted waves separately.  In his 

analysis of the 2-layered problem, Landry studies each bounce the incident wave undergoes and 

uses that to compute reflection and transmission coefficients.  The multi-layered problem is 

treated similarly. 

In our approach, we expand the plane waves in each medium then apply the boundary 

conditions.  We use the material parameters to determine the directions of each expansion wave 

then apply boundary conditions to solve for the magnitude.  We apply this treatment to both the 

half-space and 2-layered problems.  This is a familiar and straightforward formulation.  Another 

difference is that we define the electric field vectors in each medium based on the known 

material parameters (permittivity matrix and rotation matrix) while Landry uses the refractive 

index and a set of angles to define the relationship between the wave vector and fields.  Landry 

uses a formulation more commonly used in the physics and optics communities and not familiar 

to most electrical engineers.  Finally, we expand upon his research by analyzing the Brewster 

angle effect and critical angle as functions of permittivity and rotation angles.    

We begin by defining the half-space reflection and transmission coefficients for the 

case of each incident wave on either side of an isotropic-biaxial boundary.  We use these results 

to analyze the critical angle.  We then go on to formulate the 2-layer problem with a wave 

incident from one isotropic layer onto the biaxial layer.  We use these results to analyze the 

Brewster angle effect.   
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2.2.1 Half Space Reflection and Transmission Coefficients 

2.2.1.1 Wave Incident from Isotropic Region 0 

In general, the study of half-space (one interface) reflection and transmission 

problems can be broken down into four main configurations as noted by Pettis [1, Appendix G].  

These configurations are listed in Table 2-2 below. 

Table 2-2:  Half-Space Configurations 

Case Configuration 

1 horizontal or vertical wave downward incident on isotropic-biaxial interface 

2 a-wave or b-wave upward incident on biaxial-isotropic interface 

3 a-wave or b-wave downward incident on biaxial-isotropic interface 

4 horizontal or vertical wave upward incident on isotropic-biaxial interface 

To derive the half-space reflection and transmission coefficients, we formulate the fields in each 

region of interest, then apply the boundary conditions.  Note that this derivation follows Pettis’ 

work.  

2.2.1.1.1 Horizontally polarized wave downward incident upon isotropic-biaxial interface 

A horizontally polarized (or TE) wave downward incident on the isotropic-biaxial 

interface (region 0 – region 1) will give rise to two reflected waves (one horizontally polarized 

and one vertically polarized in the isotropic region) and two transmitted waves (an a-wave and a 

b-wave in the biaxial medium).  This behavior is depicted in Figure 2-9. 

Region 1

Region 0

z=0



00
ˆ,ˆ vh



0ĥ

b̂

â
x

y

z

 

Figure 2-9:  TE wave incident upon isotropic-biaxial interface 
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We must formulate the fields in each region to solve for the half-space coefficients.  

Based on Figure 2-9 we can write the electric fields in each region as 

  rki

hv

rki

hh

ri
eRveRhehrE

  000 01

0

01

000
ˆˆˆ 

 

  ri

hb

ri

ha
ba eXbeXarE
 

 0101

1
ˆˆ

 

(2.2.1) 

(2.2.2) 

We are defining the reflection coefficients,
mn

ijR , such that m is the incident region, n is the 

transmission region, i is the incident wave polarization and j is the reflected wave polarization.  

The transmission coefficients,
mn

ijX , are defined the same way with j as the transmitted wave 

polarization.  The electric field unit vectors are defined such that ĥ  is the horizontally polarized 

(or TE) wave unit vector, v̂  is the vertically polarized (or TM) wave unit vector, â is the a-wave 

electric field unit vector and b̂ is the b-wave electric field unit vector.  We define ĥ  and v̂  in the 

same manner as Kong [2] and use the equations he presented to calculate the unit vectors.  The 

superscript on the unit vectors indicate whether the wave is upward propagating (positive sign) 

and downward propagating (negative sign).  Finally, the subscript on the isotropic unit vectors 

indicates which region the unit vector is in to differentiate when we consider the 2-layered 

problem. 

Given these fields, we can evaluate the unknown reflection and transmission 

coefficients by applying the boundary conditions at the interface.  For each half-space problem, 

we put the interface at z=0 and assume there are no sources along the interface.  The boundary 

conditions are at this interface are given by 

    0zat       ,ˆˆ
10  rEzrEz

 (2.2.3) 
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        0zat      ,ˆˆˆˆ
1010  rEzrEzrHzrHz

 
(2.2.4) 

We begin by applying the electric field boundary condition (equation (2.2.3)) to the 

formulated fields.  Taking the cross product of the z unit vector with the E-field in region 0 and 

region 1, respectively, results in 

          

  xyhvxyhhxy
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z vyvxRhyhxRhyhxerEz yx
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(2.2.5) 

        

  xyhbxyha

ykxki

z bybxXayaxXerEz yx ˆˆˆˆˆ 0101

01  
(2.2.6) 

where the electric field unit vectors ( ĥ , v̂ , â  and b̂ ) have been decomposed.  The first numerical 

subscript on h and v indicates the region in which the vector exists; the alphabetical subscript 

indicates the component of the vector and the superscript indicates whether the vector is 

downward (–) or upward (+) propagating. Setting (2.2.5) equal to (2.2.6) per the electric field 

boundary condition we obtain 

           xyhbxyhaxyhvxyhhxy bybxXayaxXvyvxRhyhxRhyhx ˆˆˆˆˆˆˆˆˆˆ 0101

00

01

00

01

00  (2.2.7) 

By grouping the x-directed components and the y-directed components and rearranging terms, 

we obtain two equations 

  oyyhbyhayhvoyhh hbXaXvRhR 0101

0

0101

 
(2.2.8) 

  oxxhbxhaxhvoxhh hbXaXvRhR 0101

0

0101

 (2.2.9) 

This results in two equations for four unknown coefficients.  The other two equations 

come from the magnetic field boundary condition shown in equation (2.2.4).  We note that for 

plane wave propagation, the curl operator can be replaced by the propagation constant cross 

product.  Specifically     



34 

34 

 










 

npropagatio downward     

npropagatio upward      waveplane

Ei

Eki
E


 

(2.2.10) 

Now, applying equation (2.2.10) to the electric field in region 0 we obtain 
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Applying the same equation to the field in region 1, we obtain 

         
    
























y

bd

zzyx

bd

zzxhb

y

ad

zzyx

ad

zzxhaykxki

z
bkbkybkbkxX

akakyakakxX
erEkz yx

ˆˆ

ˆˆ
ˆ

01

01

01

 

(2.2.12) 

Setting the right hand sides of equations (2.2.11) and (2.2.12) equal (thus applying the boundary 

condition), results in 
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We now combine like components and rearrange remaining terms as we did with equation 

(2.2.7) to obtain the two remaining equations 
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We can write the four equations in matrix form 
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(2.2.15) 

The matrix equation in (2.2.15) can be solved to determine the half-space reflection and 

transmission coefficients for a horizontally polarized incident wave. 

2.2.1.1.2 Vertically polarized wave downward incident upon isotropic-biaxial interface 

The next reflection and transmission condition we consider is a vertically polarized 

(TM) wave downward incident on the same isotropic-biaxial interface.  This incident wave will 

also give rise to two reflected waves and two transmitted waves.  This behavior is depicted in 

Figure 2-10. 
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Figure 2-10:  TM wave incident upon isotropic-biaxial interface 

 

Again, we formulate the fields in each region to solve for the half-space coefficients.  

The electric fields in region 0 and region 1 respectively are given by 
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Observing equations (2.2.16) and (2.2.17), we see that the fields in each region are similar to the 

fields in the previous case.  Applying the boundary conditions in equations (2.2.3) and (2.2.4), 

and performing the same algebraic procedure we did in the previous section, we obtain the four 

equations 
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We can write the four equations in matrix form 

       
       

 
 


























































































yzzy

xzzx

x

y

vb

va

vv

vh

y

bd

zzyy

ad

zzyyzzyyzzy

x

bd

zzxx

ad

zzxxzzxxzzx

xxxx

yyyy

vkvk

vkvk

v

v

X

X

R

R

bkbkakakvkvkhkhk

bkbkakakvkvkhkhk

bavh

bavh

000

000

0

0

01

01

01

01

000000

000000

00

00

 

(2.2.19) 

This matrix equation can be solved numerically to obtain the half-space coefficients associated 

with the TM wave downward incident on the isotropic-biaxial interface. 
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2.2.1.1.3 Evaluation of Reflection and Transmission of Wave Incident from Region 0 

Now we want analyze how the reflection and transmission coefficients behave.  First, 

we define the angle of incidence for the half space problem such that ẑ is normal to the 

boundary.  The incident wave propagation vector can have any orientation.  We define the 

incident propagation vector as  

zyy kzkykxk ˆˆˆ 
 

(2.2.20) 

where each component is computed using 
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(2.2.21) 

 

The plane of incidence is defined by φ.  When φ is zero, the wave is incident from the x-z plane 

and when φ is 90˚, the wave is incident from the y-z plane.  Intermediate values of φ will 

describe some intermediate plane of incidence.  The angle of incidence in the prescribed plane is 

given by θ.  The reflection and transmission coefficients are calculated and displayed as function 

of θ.  The plane of incidence and angle of incidence are shown in Figure 2-11.  Due to the phase 

matching condition, kx and ky are continuous across the boundary.  We will use kx and ky as 

described by equation (2.2.21) to compute the two kz values in region 1 using the Booker quartic.   



38 

38 

 

z

11,

Region 1

Region 0

00 ,

x or y

(depends on    )

i



angle

of

incidence

Plane of Incidence



incident wave

transmitted waves

a

b

reflected wave

rk

 

Figure 2-11:  Diagram of plane and angle of incidence for wave incident from region 0 

 

We begin this analysis by studying reflection and transmission characteristics in the 

uniaxial limit.  In his dissertation [5, Chapter 2] Yun Hee Lee studied reflection and transmission 

from uniaxial media.  Two waves propagate in uniaxial media: the ordinary wave and the 

extraordinary wave.  The ordinary wave behaves like a wave in isotropic media with a spherical 

wave vector surface.  The extraordinary wave has an ellipsoidal wave vector surface.  If the 

medium is positive uniaxial (εz > εx) the wave vector surface of the ordinary wave is inside the 

wave vector surface of the extraordinary wave.  If the medium is negative uniaxial (εz < εx), this 

condition is reversed.  Considering our biaxial formulation in the uniaxial limit, the a-wave will 

act as the ordinary wave and the b-wave will act as the extraordinary wave in a positive uniaxial 

medium.  If the medium is negative uniaxial the a-wave will be the extraordinary wave and the 

b-wave the ordinary wave.  

With this knowledge of uniaxial media, we show that our reflection and transmission 

formulation reduces to the uniaxial case by computing the coefficients for the same interface 
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considered by Lee [5, Chapter 2].  A 13GHz wave is incident from air to the uniaxial medium 

with unrotated relative permittivity tensor given by 
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(2.2.22) 

In the first case we consider, this uniaxial medium is unrotated.  The reflection and 

transmission coefficients are computed and plotted versus angle of incidence (θi) in the φi = 70˚ 

plane and shown in Figure 2-12.   

 

Figure 2-12:  Reflection and transmission characteristics in uniaxial limit 

 

The figure shows that the cross-polarization terms are approximately zero.  The 

horizontal reflection coefficient is always greater than the vertical reflection coefficient and the 
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vertically polarized wave experiences zero reflection (Brewster angle) at approximately 64˚.  We 

also observe that when the incident wave is horizontally polarized, the transmitted wave is “a” 

polarized.  In this positive uniaxial medium the a-wave acts like the ordinary wave.  Also, when 

the incident wave is vertically polarized, the transmitted wave is “b” polarized where the b-wave 

acts like the extraordinary wave.  These results agree exactly with the results presented in Lee’s 

dissertation.   

Yun Hee Lee also considered the tilted uniaxial medium.  In the tilted medium case, 

the permittivity tensor is rotated about the x-axis with respect to the primary coordinate system.  

In our definition, this is a ψ1 rotation.  Keeping all parameters the same as in Figure 2-12, we 

apply a 30˚ rotation (or tilt) and plot the results in Figure 2-13.   

 

Figure 2-13:  Reflection and transmission in uniaxial limit – tilted permittivity tensor 
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First, we observe that the cross polarized reflection coefficients are still approximately zero but 

the cross-polarized transmission coefficients are not.  When the horizontally polarized wave is 

incident both the a-wave (ordinary) and b-wave (extraordinary) are excited.  Similarly when the 

vertically polarized wave is incident, both anisotropic waves are excited.  The co-polarized 

reflection coefficients are the same with the same Brewster angle.  These results agree with those 

presented by Lee [5, Chapter 2].  

Having shown that we accurately compute reflection and transmission coefficients in 

the uniaxial limit, we return to the biaxial half-space case.  In this first half-space problem, we 

consider the plane of incidence to be the y-z plane (φ=90˚).  The isotropic medium is again air 

and the biaxial medium is unrotated with relative permittivity tensor  
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(2.2.23) 

The reflection and transmission coefficients are plotted against angle of incidence in 

Figure 2-14.  Considering first the co-polarized reflection coefficients, we observe that at smaller 

angles, the vertically polarized wave is reflected more strongly than the horizontally polarized 

wave.  For angles greater than approximately 40˚, this behavior is reversed and the horizontally 

polarized wave is reflected more strongly.  This is in contrast with the typical behavior at an 

isotropic-isotropic half space boundary where the horizontally polarized wave is reflected more 

strongly for all incident angles.   We can also observe the Brewster angle effect.  At an incident 

angle just above 60˚, the vertically polarized wave has zero reflection and only the horizontally 

polarized wave is reflected.  The Brewster angle effect will be discussed in more detail in 

Section 2.2.1.1.5.  For this case, the cross-polarized reflection coefficients (Rhv and Rvh) are 
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nearly zero.  This is consistent with the behavior at an isotropic-isotropic interface.  Analyzing 

the transmission coefficients we observe that when the horizontally polarized wave is incident, 

the energy is transmitted to the a-wave but not the b-wave as Xhb is approximately zero.  

Similarly, the vertically polarized wave transmits into the b-wave with Xva approximately zero.  

The Xha and Xvb behave like co-polarized transmission coefficients while Xhb and Xva behave 

like cross-polarized transmission coefficients.  In this manner, the a-wave is acting like a 

horizontally polarized wave and the b-wave is acting like a vertically polarized wave for the 

given medium parameters.   

 

Figure 2-14:  Half-space reflection and transmission coefficients for incident wave from 

isotropic medium to unrotated biaxial medium (εx, εy, εz) = (2, 5, 8).     
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The calculated reflection and transmission coefficients can be verified by formulating 

the waves in each region and showing that power is conserved.  To observe power conservation, 

we must calculate the time average Poynting vectors of the incident, reflected and transmitted 

waves.  We will derive the expressions for the Poynting vectors assuming a horizontally 

polarized incident wave.  The time average Poynting vector of the incident wave is given by  
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(2.2.26) 

By substituting equations (2.2.25) and (2.2.26) into equation (2.2.24), the expression for the time 

average Poynting vector is  
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(2.2.27) 

Similarly, we can formulate the reflected and transmitted waves to compute their time average 

Poynting vectors.  It can be shown that the time average Poynting vector of the reflected wave is  
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(2.2.28) 

and the transmitted wave is  
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(2.2.29) 

Power conservation is proved by showing that the z-directed components of all of the Poynting 

vectors entering and leaving the interface are equal [2].  We show this using the power reflection 

and transmission coefficients given by  
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and 

i

t

Sz

Sz
t






ˆ

ˆ

 

(2.2.31) 

respectively [2].  If power is conserved the sum of these coefficients is equal to 1.  In Figure 2-15 

we show that the sum of the power reflection and transmission coefficients is 1 for the 

horizontally polarized wave incident and the vertically polarized wave incident.  Therefore, 

power is conserved and the calculated coefficients are verified. 
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Figure 2-15:  Power conservation for wave incident from region 0 

 

We have considered the half-space reflection and transmission behavior when the 

biaxial medium is unrotated.  Now, we’d like to consider the same phenomena when region 2 is 

rotated such that ψ1 and ψ2 are 45˚.  Given this new biaxial medium, we first consider the co-

polarized reflection coefficients shown in Figure 2-16.  Here we see that the behavior has 

changed.  For all incident angles, the horizontally polarized wave is reflected more strongly than 

the vertically polarized wave.  Also of interest are the cross-polarized reflection coefficients 

which are no longer zero.  They are still small, but when the biaxial medium is rotated, there is 

some cross-polarized reflection into the isotropic region.  This means that a horizontally 

polarized wave will reflect both horizontally and vertically polarized waves.  This behavior is not 

observed at an isotropic-isotropic boundary.  Finally, we observe that the transmission 

coefficients are also affected by this rotation.  Energy is transmitted to both the a-wave and b-

wave when either the horizontally polarized wave or vertically polarized wave is incident.  When 
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the biaxial medium was unrotated, we saw that the horizontally polarized wave transmitted into 

only the a-wave and the vertically polarized wave transmitted only into the b-wave.  Now, both 

biaxial waves are generated from either polarization.  We can conclude then a wave incident 

upon a rotated biaxial medium from an isotropic medium it will generate two transmitted and 

two reflected waves.  

 

 

Figure 2-16:  Half-space reflection and transmission coefficients for incident wave from 

isotropic medium to biaxial medium ((εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (45˚, 45˚)).   

 

In the unrotated case, we observed the unique behavior of the horizontally polarized 

wave being reflected less than the vertically polarized wave.  When the medium was rotated, this 
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behavior is no longer present.  We now analyze this behavior in more detail.  First, we rotate by 

ψ1.  As ψ1 increases from 0˚, Rhh is not significantly changed while Rvv increases thus enhancing 

the unique behavior.  However, when we increase ψ2 we see more significant results.  As ψ2 

increases from 0˚ Rhh increases and Rvv decreases.  When ψ2 reaches 45˚ Rhh and Rvv are equal at 

an incidence angle of 0˚ and diverge as the angle of incidence increases.  When ψ2 increases 

beyond 45˚, the difference between Rhh and Rvv at low angle increases with Rhh always greater 

than Rvv. This behavior is shown in Figure 2-17.       

 

Figure 2-17:  Half-space co-polarized reflection coefficients for incident wave from 

isotropic medium to biaxial medium ((εx, εy, εz) = (2, 5, 8), (ψ1=0, ψ2 varied) 

 

The half-space reflection behavior changes when we move the angle of incidence to 

the x-z plane (φi=0).  In this plane, when the biaxial medium is unrotated, Rhh is greater than Rvv 

for all incident angles.  As ψ2 increases from 0˚ Rhh decreases and Rvv increases.  When ψ2 

reaches 45˚ Rhh and Rvv are equal at zero incident angle and for ψ2 greater than 45˚, Rhh is less 

than Rvv at low incident angles.  Again changing ψ1 results in less overall change, but in this 

plane, this ψ1 has a greater impact on Rhh than Rvv. 
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2.2.1.1.4 Critical Angle Analysis 

The critical angle is related to the phenomenon of total internal reflection.  When the 

angle of incidence is larger than the critical angle, we have total reflection [2].  Total internal 

reflection is an important practical phenomenon as it is used to implement dielectric waveguides 

such as fiber optic cables.  This phenomenon occurs when the transmitted wave becomes 

evanescent.  Evanescence occurs when the propagation vector becomes imaginary so as the wave 

travels into the transmission medium, it decays as ze , where α is the imaginary part of the 

propagation vector for the wave traveling in the -z direction.  Therefore, the critical angle is the 

angle of incidence for which the propagation vector becomes imaginary.   

The critical angle effect is only observed when a wave is propagating from a denser 

to less dense medium.  First, we consider the critical angle in the uniaxial limit.  In his 

dissertation, Y. H. Lee [5] computes the critical angle for the ordinary and extraordinary wave 

when the wave is downward incident from an isotropic medium to a uniaxial medium.  For the 

ordinary wave to experience total internal reflection (or zero real transmittance to the ordinary 

wave), ε0 > εx and the angle of incidence must be greater than or equal to the critical angle given 

by 

0

1sin



 x

c



 

(2.2.32) 

The extraordinary wave can experience total internal reflection can occur if one of two sets of 

conditions applies.  These conditions are based on the modified permittivities derived by Lee [5] 

and presented here   
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(2.2.34) 

The extraordinary wave can experience total internal reflection if    0sin  izx   

and   0  .  If these conditions are met, the critical angle for the extraordinary wave is given 

by 

0

1sin



 c

 

(2.2.35) 

The extraordinary wave can also experience total internal reflection if    0sin  izx   and 

  0 .  Under these conditions the critical angle is given by 

0

1sin



 c

 

(2.2.36) 

As an example we consider the same case presented by Lee [5].  The incident 

isotropic region has a relative permittivity (εr) of 6.  The uniaxial relative permittivity tensor is 

given by   
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(2.2.37) 

and a 30˚ rotation is applied.  The incident wave has frequency 13GHz and is incident from φi = 

60˚.  Lee computes an ordinary wave critical angle of 54.7˚ and an extraordinary wave critical 

angle of 46.4˚.  We will use our computations to analyze this interface.  Applying our biaxial 
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definitions to this medium, the ordinary wave will be the b-wave and the extraordinary wave will 

be the a-wave.  The resulting reflection coefficients are shown in Figure 2-18.  We observe 

elbows at each critical angle.  The imaginary part of Xva becomes large at the first critical angle 

(associated with the a-wave or extraordinary wave) and the imaginary part of Xhb becomes large 

at the second critical angle (associated with the b-wave or ordinary wave).   We can gain further 

insight into the critical angle observing the solutions to the Booker Quartic.  In this medium, the 

real part of kza becomes a minimum at the a-wave critical angle and kzb reaches its minimum at 

the b-wave critical angle.  This behavior is shown in Figure 2-19. 

 

Figure 2-18:  Reflection coefficients and imaginary transmission coefficients from isotropic-

uniaxial interface 
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Figure 2-19:  Solution to Booker quartic for uniaxial medium 

 

After we have shown agreement of the critical angle behavior in the uniaxial limit, 

we turn our analysis back to the biaxial interface.  We have chosen a boundary between two real 

materials to demonstrate the critical angle effect.  The incident wave is propagating in Silicon 

which has a relative permittivity of approximately 12.  The transmission medium is PTFE cloth 

(Teflon), which is biaxially anisotropic with relative permittivity tensor 



















95.2

89.2

45.2

r

 

(2.2.38) 

The co-polarized half-space reflection coefficients from the silicon-PTFE cloth are shown in 

Figure 2-20.  In this figure, the reflection coefficients go to 1 at approximately 30˚.  This is the 

phenomenon of total internal reflection. 
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Figure 2-20:  Co-polarized reflection coefficients from Silicon-PTFE cloth boundary 

 

 

Figure 2-21:  Booker quartic solutions in PTFE cloth 
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To better understand the conditions that lead to total internal reflection, we again examine the 

solutions to the Booker quartic (kz values) versus angle of incidence in Figure 2-21 in the PTFE 

cloth.  Here we see that at the same incident angle (approximately 30˚) kz becomes imaginary.  

The normal to the boundary is the z-direction so when the z component of the propagation vector 

becomes imaginary, the wave in that medium will be evanescent and no real power will transmit.   

Figure 2-20 clearly showed the critical angle effect.  When we consider an isotropic-

isotropic interface the critical angle is calculated simply using Snell’s law.  Grzegorczyk et al. 

[9] show that in the x-z plane (φi = 0) for an unrotated biaxial medium, the critical angle for the 

horizontal polarization can be computed by 

  













 

00

111sin





zyhh

c

 

(2.2.39) 

The equation for the critical angle for the vertical component can be found by duality which 

results in 
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
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


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 

00
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
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

yzvv

c

 

(2.2.40) 

In our analysis, we found that the angle computed in equation (2.2.39) corresponds to the angle 

where kz for the a-wave becomes imaginary.  Similarly, the angle computed in equation (2.2.40) 

is the angle for which the b-wave propagation constant becomes imaginary.  In our notation, we 

denote these angles ha

c and vb

c  respectively.  Using (2.2.39) and (2.2.40), the horizontal 

polarization critical angle is 29.4˚ and vertical polarization critical angle is 29.7˚, which agrees 

with our computed values for the unrotated medium as shown in Figure 2-22(a) and Figure 

2-23(a). 
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We are also interested in the behavior of the critical angle as the permittivity tensor is 

rotated.  In the first case, permittivity rotations are about the z-axis (ψ2) with no rotation about 

the x-axis (ψ1=0) in a plane of incidence described by φi of 0˚ (x-z plane), 25˚ and 90˚ (y-z plane).  

The results (in Figure 2-22 (a), (b), and (c)) show that when the medium is rotated about the z-

axis, the critical angle varies by less than 5˚.  When the plane of incidence is changed, the critical 

angle behavior changes but the peak-to-peak variation over ψ2 does not change.   

 

Figure 2-22:  Critical angle for wave incident from Silicon to PTFE cloth as ψ2 is varied for 

incident angle φi of 0˚ (a), 25˚ (b), and 90˚ (c).   

In the second case, we consider rotations about the x-axis (ψ1) with no rotation about 

the z-axis (ψ2=0) and the same incidence planes.  The results for this case are shown in Figure 

2-23 (a), (b), and (c).  We observe that when the medium is rotated about the x-axis, the critical 

angle varies by less than 1˚ when φi is 25˚ and not at all for other incident planes.  When the 

wave is incident from the y-z plane (φi=90˚), we see that the horizontal and vertical waves have 

significantly different critical angles, a behavior not observed in previous cases.  To investigate 

this phenomenon, we computed critical angles for φi close to 90˚ and found that it is only 

observed when φi is equal to 90˚. 
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Figure 2-23:  Critical angle for wave incident from Silicon to PTFE cloth as ψ1 is varied for 

incident angle φi of 0˚ (a), 25˚ (b), and 90˚ (c).   

2.2.1.1.5 Brewster Angle Effect 

We are also interested in studying the Brewster angle effect.  The Brewster angle is 

defined as the angle of incidence for which there is no reflected power.  At an isotropic-isotropic 

half-space boundary, the vertically polarized (transverse magnetic) wave generally experiences 

zero reflection at some angle.  The horizontally polarized (transverse electric) wave generally 

reflects more than the vertical wave and has non-zero reflection for all angles.  The result is that 

when an unpolarized wave (with both vertical and horizontal polarizations present) is incident 

upon a boundary at the Brewster angle the reflected electromagnetic wave will be linearly 

polarized (with horizontal polarization).  The most common application of this effect is polarized 

sunglasses in which the lenses filter out the horizontal polarization reducing the dominant 

component of reflected sunlight (glare).  A less common application is in the use of Brewster 

window lasers.  In this application, the horizontally polarized wave is filtered out using a 

Brewster window resulting in vertically polarized laser light. 

  The Brewster angle has not been extensively studied for arbitrarily oriented biaxial 

media.  We can see the Brewster angle effect in Figure 2-14 and Figure 2-16.   Figure 2-14 
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shows that for an incident angle of approximately 62˚, only the horizontally polarized wave is 

reflected; the vertically polarized wave is not reflected at all (reflection coefficient goes to zero).  

The Brewster angle for this unrotated biaxial substrate is approximately 62˚.  When we rotated 

the medium as shown in Figure 2-16, the Brewster angle is approximately 57˚.  Thus we 

conclude that the Brewster angle depends on rotation of the permittivity tensor.  

We are also interested in how the Brewster angle behaves for a different substrate.  In 

this analysis we look at how changes to both the orientation of the biaxial layer and the 

permittivity of the biaxial layer affect the Brewster angle.  We consider the incident wave in the 

y-z plane from air incident on the biaxial medium with permittivity tensor  
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(2.2.41) 

and a fixed value of ψ2 while we vary ψ1.  As shown in Figure 2-24, the Brewster angle at this 

interface is between 60˚ and 65˚ as ψ1 is varied for ψ2=0˚ (a) and ψ2=45˚ (b).  Changing the z-

axis rotation from 0˚ to 45˚ did not change the Brewster angle trend; it only shifted it down 

slightly.  We also consider the case where ψ1 is fixed and ψ2 is varied (Figure 2-25).  We see that 

the peak-to-peak variation is similar to what we observed when ψ1 was varied except the 

Brewster angle decreases as ψ2 increases and changing ψ1 from 0˚ to 45˚ shifts the trend upward 

slightly.  We can conclude from this analysis that the Brewster angle for this permittivity tensor 

will increase as ψ1 increases and decrease as ψ2 increases. 
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Figure 2-24:  Brewster angle as ψ1 is varied for ψ2 of 0˚ (a) and 45˚ (b).  Biaxial permittivity 

tensor (εx, εy, εz) = (3, 4, 5).   
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Figure 2-25:  Brewster angle as ψ2 is varied for ψ1 of 0˚ (a) and 45˚ (b).  Biaxial permittivity 

tensor (εx, εy, εz) = (3, 4, 5).   

 

The results for this first permittivity tensor tell us something about how the Brewster 

angle behaves as the optic axes of the medium are rotated with respect to the layers.  We also 

want to understand how the Brewster angle behaves for a medium with stronger biaxial 

characteristics.  In order to gain this understanding we change our permittivity tensor to the 
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tensor shown in equation (2.2.23).  As we did with the previous permittivity tensor, we will first 

look at the Brewster angle as a function of ψ1 rotation angle for fixed ψ2 angles and then fix ψ1 

and compute the Brewster angle as a function of ψ2. 

We compute the Brewster angles for the same rotations that were analyzed previously 

and show the results in Figure 2-26 and Figure 2-27.  The first thing to note is that the variation 

over ψ1 is more affected by a change in ψ2 in this medium (Figure 2-26).  When ψ2 is 0˚, the total 

variation is less than 10˚ (a) but when ψ2 is 45˚, the peak-to-peak variation is approximately 15˚.  

As ψ2 is varied (Figure 2-27), we see a peak to peak variation of approximately 15˚ for both ψ1 

values (0˚ (a) and 45˚ (b)).   We can conclude that for this permittivity tensor ψ2 rotations have a 

more significant impact than ψ1 rotations and the total variation in Brewster angle is greater for 

this stronger biaxial medium than it was for the previous medium. 
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Figure 2-26:  Brewster angle as ψ1 is varied for ψ2 of 0˚ (a) and 45˚ (b).  Biaxial permittivity 

tensor (εx, εy, εz) = (2, 5, 8).   
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Figure 2-27:  Brewster angle as ψ2 is varied for ψ1 of 0˚ (a) and 45˚ (b).  Biaxial permittivity 

tensor (εx, εy, εz) = (2, 5, 8).   

 

2.2.1.2 Wave Incident from Biaxial Region 1 

2.2.1.2.1 a-wave upward incident upon biaxial-isotropic interface 

The third configuration from Table 2-2 is the case of an upward propagating a-wave 

incident from region 1 upon region 0.  This incident wave will generate two downward 

propagating reflected waves (an a-wave and a b-wave in the biaxial medium) and two upward 

propagating transmitted waves (one horizontally polarized and one vertically polarized in the 

isotropic region).  This phenomenon is depicted in Figure 2-28.   

Region 1

Region 0

z=0



00
ˆ,ˆ vh

b̂

â
â

 

Figure 2-28:  a-wave incident upon biaxial- isotropic interface 
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As done in previous sections, the first step is to formulate the fields in each region to 

solve for the half-space coefficients.  Based on Figure 2-28 we can write 

  ri
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aa

rki baa eRbeRaearE
 

 1010
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(2.2.42) 

The four unknown coefficients are evaluated by applying the boundary conditions on the electric 

fields and magnetic fields.  Next we must evaluate the cross product of the normal with the 

electric fields in regions one and zero.  These cross products are given by 

          
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(2.2.44) 

To satisfy the electric field boundary condition, we set (2.2.43) equal to (2.2.44) yielding 
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(2.2.45) 

As done previously, we combine like components and rearranging resulting terms.  For this case, 

the two equations obtained from the electric field boundary condition are 
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10101010
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10101010

 

(2.2.46) 

We repeat the process with magnetic field boundary condition.  Evaluating the curl using the 

propagation constant cross product, the tangential magnetic field in region 0 is given by 
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(2.2.47) 
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and the tangential magnetic field in region 1 is given by 

         
     
























yzzyxzzxav

yzzyxzzxahykxki

z
vkvkyvkvkxX

hkhkyhkhkxX
erEkz yx

00000

10

000000

10

01
ˆˆ

ˆˆ
ˆ

 

(2.2.48) 

If we set the right hand sides of equations (2.2.47) and (2.2.48) to be equal, combine like 

components, and rearrange remaining terms the two resulting equations are 
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(2.2.49) 

Again, we write the four equations in matrix form 
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(2.2.50) 

This matrix can be solved numerically to obtain the half-space reflection and transmission 

coefficients for this configuration. 

2.2.1.2.2 b-wave upward incident upon biaxial- isotropic interface 

The fourth case to consider is when an upward propagating b-wave is incident from 

region 1 upon region 0.  This phenomenon is depicted in Figure 2-29.  



62 

62 

 

Region 1

Region 0

z=0



00
ˆ,ˆ vh

b̂

â
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Figure 2-29:  b-wave incident upon biaxial- isotropic interface 

 

Based on Figure 2-29 we can write the electric fields in each region as 
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(2.2.52) 

Again, we apply the boundary conditions and derive four equations for the four unknowns.  We 

can write the four equations in the matrix form 
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(2.2.53) 

 

2.2.1.2.3 a- and b-waves downward incident upon biaxial-conductor interface 

Lastly, we consider the case where a downward propagating is incident from region 1 

upon region 2, the perfect electric conductor (PEC).  Each incident wave will generate two 
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upward propagating transmitted waves; however, there will be no transmitted fields as there are 

no fields in a perfect conductor.  This case is depicted in Figure 2-30.   
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â ba ˆ,ˆ
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Figure 2-30:  a- or b-wave incident upon biaxial-perfect electric conductor interface 

 

As done in previous sections, the first step is to formulate the fields in each region to 

solve for the half-space coefficients.  We first consider the case when the incident wave is the a-

wave.  Formulating the fields to be consistent with Figure 2-30 results in 
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(2.2.54) 

  02 rE  (2.2.55) 

For this problem we do not know the current on the conductor.  We cannot assume it is zero as 

we did when we had a non-conducting boundary.  Therefore, we cannot use the magnetic field 

boundary condition.  However, we only have two unknowns and can obtain two equations from 

the electric field boundary condition to evaluate the two unknowns.  The electric field boundary 

condition at the perfect conductor interface is given by 

    0zat       0,ˆˆ
21  rEzrEz  (2.2.56) 

If we substitute the expression for  rE1  into equation (2.2.56) we obtain 
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(2.2.57) 
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For equation (2.2.57) to hold for all kx and ky then the sum (inside the square brackets) must be 

equal to zero.  If we combine like terms, we obtain two equations for the two unknowns.  This 

set of equations can be written as the matrix equation 
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(2.2.58) 

The same boundary conditions can be used to generate a similar set of equations 

when the b-wave is incident upon the perfect electrical conductor.  The resulting set of equations 

is given by the matrix 
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(2.2.59) 

2.2.1.2.4 Evaluation of Reflection and Transmission of Wave Upward Incident from 

Region 1 

Now we want to repeat the analysis in Section 2.2.1.1.3 for a wave incident from 

region 1.  We once again choose the plane of incidence to be the x-z plane, setting φ equal to 

zero, thus making ky zero.  The angle of incidence in the prescribed plane is given by θ.  The 

plane of incidence and angle of incidence are shown in Figure 2-31. 
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Figure 2-31:  Diagram of plane and angle of incidence for wave incident from region 1 

 

The definition of the propagation vectors is not as straightforward when the wave is 

incident from the biaxial medium.  We can define a direction of propagation as a unit vector 

 cosˆsinsinˆcossinˆˆ zyxk   
(2.2.60) 

However, to compute the four kz values, we need kx and ky in the medium.  We need to know the 

wave number in the medium to compute the propagation vector from the direction given in 

(2.2.60).  When the wave was incident from region 0 (isotropic) we multiplied the direction unit 

vector by the wave number k0.  In the biaxial medium, we do not know the wave number 

explicitly until we solve the Booker quartic, but we need kx and ky to solve the Booker quartic for 

kz.  However, if the direction of propagation is known, our task is not so difficult because ka 

(wave number for the a-wave) and kb (wave number for the b-wave) can be computed using the 

biquadratic solution in equation (2.1.7) which comes directly from the wave equation.  When the 

medium is unrotated the solutions are valid for both upward and downward propagating waves.  

However, when the medium is rotated, all four kz’s are unique (given the same kx and ky) so the 
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solution is only valid for the wave propagating in the pre-determined direction.   We set the 

direction of propagation of the incident wave by the angles of incidence so the biquadratic can be 

used to compute the wave number of the incident wave then we can use this to compute the four 

kz values at the boundary.  If we assume the a-wave is incident, then the method we employ is:  

1.  Compute the wave number for the a-wave (ka) from the biquadratic solution 

2.  Use this ka to obtain the kx and ky inputs to the Booker quartic 

3.  Compute kz
au

 , kz
ad

 and kz
bd

 using the Booker quartic 

This issue of defining the propagation vector raises many questions about how we 

define propagation problems in a biaxial medium.  We cannot simply define a wave number with 

only the frequency and material parameters as we would in an isotropic medium.  We also 

cannot simply define the polarization of the wave.  We cannot fix the polarization direction of 

the electric field then change the direction of propagation while satisfying Maxwell’s equations.  

As already discussed these definitions become more difficult when the medium is rotated.  While 

the governing equations throughout this text hold no matter how we define our incident wave, 

our understanding of the results is affected.  If our “wave number” multiplier to the direction of 

propagation is not correct, the angles of incidence will not be true.  Throughout the rest of this 

section we choose to compute ka and kb using 
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(2.2.61) 
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(2.2.62) 



67 

67 

 

when the a-wave or b-wave is incident.  Then the propagation vector for the incident wave is 

given by 

ij

zii

j

i kzkykxk ˆsinsinˆcossinˆˆ  
 

(2.2.63) 

where i is the wave polarization (a-wave or b-wave) and j is the direction (upward or downward).  

It is also important to note that we must treat the a-wave incident and b-wave incident problems 

separately as there is no single wave number in this medium. 

We begin by analyzing the same interface considered by Landry and Maldonado [13].  

Landry considers the biaxial-isotropic half-space as a special case.  The biaxial relative 

permittivity tensor under consideration is 
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(2.2.64) 

Landry defined three counter clockwise rotations, first around the z-axis (ψ0), then around the x-

axis (ψ1) and finally again around the z-axis (ψ2).  We modified our equations to accommodate 

this additional z-axis rotation (ψ0) and set ψ0 = ψ1 = 75˚ and ψ2 = –75˚.  The wave is incident in 

the x-z plane (φi = 0˚) while the angle of incidence ranges from –25˚ to 25˚ (where the negative 

angles are equivalent to φi = 180˚).  Note, this modification only affects the permittivity tensor 

and is used to generate the same tensor Landry used to verify our reflection and transmission 

computations 

The half-space reflection coefficients for the upward incident a-wave (Figure 2-32), 

exactly match those published by Landry and Maldonado [13].     
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Figure 2-32:  Reflection coefficients a-wave upward incident from rotated biaxial medium 

to air 

We observe that an incident a-wave will reflect both an a-wave and a b-wave back into the 

biaxial medium unless it is normal incidence (theta equal to zero).  We also see that the reflection 

coefficients are not symmetric about the normal incidence point.  This is due to the rotation of 

the permittivity matrix and it means that the reflection behavior is different in the x-z (φi = 0˚) 

plane and the –x-z plane (φi = 180˚).  The magnitude of the transmitted electric field (Figure 

2-33) also exactly matches the result published by Landry and Maldonado.  Here we again 

observe that the transmitted field strength is not symmetric about θ = 0˚. 
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Figure 2-33: Transmitted electric field magnitude for a-wave upward incident from rotated 

biaxial medium to air 

 

The half-space reflection coefficients and magnitude of the transmitted field for the 

upward incident b-wave (Figure 2-34 and Figure 2-35, respectively) again exactly match those 

published by Landry and Maldonado [13].  We observe the same type of asymmetry with respect 

to θ we saw in the case of the a-wave incident.  We also see that the reflection is stronger when 

the b-wave is incident and that the reflection of the a-wave goes to zero at –25˚.  This is 

associated with the critical angle at this interface.  Critical angle will be analyzed more 

thoroughly later in this section.  We also note that the transmitted field strength of the 

transmitted wave is stronger for the b-wave as compared to the a-wave. 
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Figure 2-34:  Reflection coefficients b-wave incident from biaxial medium to air 
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Figure 2-35:  Transmitted electric field magnitude for b-wave upward incident from 

rotated biaxial medium to air 
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Now we would like to consider the co-polarized half space reflection coefficients for 

the biaxial-isotropic interface for a different biaxial media using our own permittivity definitions.  

The isotropic medium is again air and the biaxial medium has a permittivity tensor with relative 

permittivities of εx=2, εy=5, and εz=8.  Here, the plane of incidence has changed such that φ is 

now 0˚.  As we did in the previous analysis, we start with an unrotated biaxial medium.  As 

discussed previously in this section, to make sense of the incident wave definitions, we consider 

the b-wave incidence and a-wave incidence separately and start with the a-wave.  The reflection 

coefficients are plotted against angle of incidence in Figure 2-36.  We observe total internal 

reflection with Raa equal to 1 above the critical angle of 37.5˚.  The Brewster angle effect is also 

evident where Raa goes to zero at an incident angle of 28˚.  Finally, the cross-polarized reflection 

coefficients Rab is approximately zero, a behavior observed at an isotropic-isotropic boundary. 
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Figure 2-36:  Reflection coefficients for a-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 

Next, we look at the half-space transmission coefficients shown in Figure 2-37 (recall 

the plane of incidence is φ = 0˚).  Here we see that when the a-wave is incident, the energy is 

transmitted to the vertically polarized wave and Xav behaves like co-polarized transmission 

coefficient.  There is no energy transmitted to the horizontally polarized wave as Xah behaves 

like a cross-polarized transmission coefficient with values close to zero.  This polarization 

pairing is opposite of what we observed when the incident wave was from region 0 (in Figure 

2-14).  If the plane of incidence is changed, such that φ = 90˚, the a-wave is transmitted to the h-

wave, as it was for the same plane of incidence when the wave was incident from region 0.  The 

reason for this behavior is that the horizontally polarized and vertically polarized waves are 

defined with reference to the plane of incidence whereas the a- and b-waves are defined with 

respect to the medium coordinate system.  Therefore, when the plane of incidence changes the 

isotropic wave that couples to the biaxial wave also changes. We also observe that the imaginary 

part of the co-polarized transmission coefficient becomes non-zero beyond the critical angle.  

This behavior results in an evanescent wave in region 0 that decays rapidly as it propagates and 

is the cause of total internal reflection.  To further illustrate the phenomenon of total internal 

reflection, we plot the real and imaginary part of the Poynting vector in Figure 2-38.  We see that 

the imaginary part is zero up to the critical angle and non-zero beyond the critical angle.  The 

real part demonstrates the opposite behavior.   
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Figure 2-37:  Transmission coefficients for a-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 
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Figure 2-38:  Transmitted Poynting vector for a-wave incident from biaxial medium to air.  

Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚).  



74 

74 

 

 

Again, we verify our result by showing that power is conserved. Therefore, we need 

to formulate time average Poynting vectors for the incident, reflected and transmitted waves.  

Considering the case when the a-wave is incident, the incident time average Poynting vector is  

  *

0

2

0
ˆˆRe

2

1   aka
E

S ai
  

(2.2.65) 

Similarly, it can be shown that the time average Poynting vector of the reflected wave is  

       

        
























2
10

**1010*

*1010
*2

10*

0

2

0

ˆˆˆˆ

ˆˆˆˆ
Re

2

1

abb

ri

aaaba

ri

abaabaaa

r

RbbeRRab

eRRbaRaaE
S

ab

ba





 



 

(2.2.66) 

and the transmitted wave is  
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(2.2.67) 

As detailed previously, we prove that power is conserved by showing that the power 

reflection and transmission coefficients (given in equations (2.2.30) and (2.2.31)) add to one.  In 

Figure 2-39 we show that the sum of the power reflection and transmission coefficients is in fact 

one for the a-wave incident.  Therefore, power is conserved. 
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Figure 2-39:  Power conservation for a-wave incident from biaxial medium to air.  Biaxial 

parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 

 

Now we consider the same biaxial medium but we rotated the permittivity tensor 

around the x-axis by 15˚ (ψ1) and around the z-axis by 35˚ (ψ2).  The resulting reflection 

coefficients are shown in Figure 2-40.  We observe that depending on the angle of incidence, 

either biaxial polarization may be reflected more strongly.   Also, we do not clearly see the total 

internal reflection as we did for the unrotated case.  As the angle of incidence approaches 40˚, 

the absolute value of Rab rises dramatically to 0.7 with an absolute value of Raa at approximately 

0.45.  To better understand what is happening to the reflection coefficients, we also break them 

out into their real and imaginary parts in Figure 2-41.  In this plot we see that beyond 40˚, the 

imaginary parts of both reflection coefficients become non-zero.  We will see in our transmission 

and power analyses that 40˚ is the critical angle under this rotation.  In the previous unrotated 

case the critical angle was 37.5˚ so the critical angle is affected by rotation.   
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Figure 2-40:  Reflection coefficients for a-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 

 

Figure 2-41:  Real and imaginary reflection coefficients for a-wave upward incident upon 

biaxial-air half-space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 
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In Figure 2-42 we plot the transmission coefficients for the rotated half-space 

problem.  When the medium is rotated, energy is transmitted to both the horizontally polarized 

and vertically polarized waves in the isotropic region.  This transmission is purely real until the 

angle of incidence reaches 40˚.  Beyond this critical angle, the transmission coefficients both 

become complex resulting in two evanescent waves and total internal reflection.  The Poynting 

vector of the transmitted wave also shows that the critical angle occurs at 40˚ (Figure 2-43).  This 

figure also shows that the real and imaginary parts of the transmitted wave are both 

approximately zero at 52.5˚.  Finally, we analyze the real transmitted and reflected power ratios 

in Figure 2-44 and show that the total reflected power ratio goes to one at 40˚, verifying that 40˚ 

is the critical angle even if no one reflection coefficient is equal to 1.  This plot also verifies that 

power is conserved, showing that the sum of the two ratios is 1 for all angles of incidence. 

 

Figure 2-42:  Transmission coefficients for a-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 
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Figure 2-43:  Transmitted Poynting vector for a-wave incident from biaxial medium to air.  

Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚).   

 

Figure 2-44:  Transmitted and reflected power ratios for a-wave upward incident from 

rotated biaxial medium to air 
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Consider now the b-wave incident from the same biaxial medium considered in the a-

wave incidence analysis with φ = 0˚.  We begin again with the unrotated case.  The reflection 

coefficients are plotted against angle of incidence (Figure 2-45).  We observe total internal 

reflection above the critical angle of 27˚.  The cross-polarized reflection coefficients Rba is 

approximately zero just as we observed when the wave was incident from the isotropic region.  

The b-wave does not experience the Brewster effect as Rbb never goes to zero; the b-wave is 

reflected for all incidence angles. 

 

Figure 2-45:  Reflection coefficients for b-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 

 

Next, we look at the half-space transmission coefficients shown in Figure 2-46.  Here 

we see that when the b-wave is incident, the energy is transmitted to the horizontally polarized 

wave and Xbh behaves like co-polarized transmission coefficient.  There is no energy transmitted 
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to the vertically polarized wave as Xbv is approximately zero.  We also observe that the 

imaginary part of Xbh becomes non-zero beyond the critical angle.  This behavior results in an 

evanescent wave in region zero that decays rapidly as it propagates and is the cause of total 

internal reflection.  To further illustrate the phenomenon of total internal reflection, we plot the 

real and imaginary part of the Poynting vector in Figure 2-47.  We see that the imaginary part is 

zero up to the critical angle and non-zero beyond the critical angle.  The real part has opposite 

behavior.   

 

Figure 2-46:  Transmission coefficients for b-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 
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Figure 2-47:  Transmitted Poynting vector for b-wave incident from biaxial medium to air.  

Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚).  

 

Again, we want to verify our results showing that power is conserved.  Therefore, we 

formulate time average Poynting vectors for the incident, reflected and transmitted waves when 

the b-wave is incident in the same manner as for the a-wave incident.  As we did previously, we 

prove that power is conserved by showing that the power reflection and transmission coefficients 

(given in equations (2.2.30) and (2.2.31)) add to one.  In this way Figure 2-48 shows that power 

is conserved when the b-wave is incident.   
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Figure 2-48:  Power conservation for b-wave incident from biaxial medium to air.  Biaxial 

parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (0˚, 0˚). 

 

Now that we have observed reflection and transmission characteristics for a b-wave 

incident from an unrotated biaxial layer, we will analyze the same behaviors if we rotate the 

biaxial permittivity tensor.  Again, we choose rotation angles ψ1 and ψ2 of 15˚ and 35˚ 

respectively.  First, we analyze the reflection coefficients (Figure 2-49).  We see that the cross-

polarized reflection coefficient is significant.  In fact, we see that the absolute value of both 

reflection coefficients become greater than one for some incident angles.  The first incident angle 

that this behavior is demonstrated is at 25.5˚ where the absolute value Rba increases sharply to 

almost 1.2.  Figure 2-49 also shows the absolute value of the reflection coefficients are greater 

than 1.  Figure 2-50 shows that the imaginary part of Rba becomes non-zero (and large) at this 

same angle which contributes to the large absolute value.  We will see when we analyze the 

transmission characteristics that 25.5˚ is the critical angle for this case.  Again this is a change 
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from the unrotated case in which the critical angle was 27˚.  Rotating the biaxial medium (by 

ψ1=15˚ and ψ2=35˚) results in a larger critical angle for a-wave incidence and a smaller critical 

angle for b-wave incidence.  Figure 2-49 shows that the absolute value of the co-polarized 

reflection coefficient (Rbb) also increases sharply at an incident angle of 47˚ which is where the 

imaginary part becomes non-zero (Figure 2-50).      

 

Figure 2-49:  Reflection coefficients for b-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 
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Figure 2-50:  Real and imaginary reflection coefficients for b-wave upward incident upon 

biaxial-air half-space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 

 

The transmission coefficients in Figure 2-51 show that energy is transmitted to both 

the horizontally polarized and vertically polarized waves in the isotropic region when the b-wave 

is incident.  This transmission is purely real until the angle of incidence reaches 25.5˚.  Beyond 

this critical angle, the transmission coefficients both become complex resulting in two 

evanescent waves and total internal reflection.  The Poynting vector of the transmitted wave also 

shows that the critical angle occurs at 25.5˚ (Figure 2-52).  When the b-wave is incident, we do 

not observe an angle beyond the critical angle where both the real and imaginary parts of the 

transmitted wave go to zero.  This is in contrast to what we observed when the a-wave was 

incident.   
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Figure 2-51:  Transmission coefficients for b-wave upward incident upon biaxial-air half-

space.  Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 
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Figure 2-52:  Transmitted Poynting vector for b-wave incident from biaxial medium to air.  

Biaxial parameters:  (εx, εy, εz) = (2, 5, 8), (ψ1, ψ2) = (15˚, 35˚). 
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Finally, we analyze the real transmitted and reflected power ratios.  We observed that 

the absolute values of the reflection coefficients were greater than one for some angles (Figure 

2-49).  However, when we analyze the power ratios in Figure 2-53, we see that the reflected 

power ratio never exceeds 1 and in fact is equal to 1 beyond the critical angle.  Figure 2-53 also 

verifies that power is conserved, showing that the sum of the two ratios is 1 for all angles of 

incidence.     

 

Figure 2-53:  Transmitted and reflected power ratios for b-wave upward incident from 

rotated biaxial medium to air 
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2.2.2 Two Layer Coefficients 

We can use the half-space coefficients derived previously to define two-layer 

coefficients.  First, we use the half-space coefficients to define four half-space matrices.  We 

note that in our derivation of half-space coefficients, we assumed all boundaries were at z = 0.  

However, for the two layer problem the second boundary (between region 1 and region 2) is 

located at z = –h.  Therefore, a phase shift related to this z transformation will have to be added 

to the region 1 – region 2 coefficients.  The resulting half-space matrices are given by 
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(2.2.72) 

We define the upward and downward propagating waves in each region as Pettis did 

[1].  These waves are shown in Figure 2-54.   
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Figure 2-54:  Incident, transmitted and reflected waves for two layer problem. 

 

We want to describe all of our two-layer coefficients as if a downward wave is 

incident from region 0 (the p-wave).  We can then write each remaining wave in terms of the 

half-space matrices in equations (2.2.68) through (2.2.72).  The resulting equations are 
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(2.2.76) 

We consider overall reflection and transmission coefficients for this geometry with the wave 

incident from region 0.  From equation (2.2.73) we define the overall reflection coefficient as 
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(2.2.77) 

From equation (2.2.76) we define the overall transmission coefficient as 
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2.2.2.1 Evaluation of Two Layer Coefficients 

In this section, we analyze the two-layer coefficient in the same manner as detailed in 

Section 2.2.1 for the half-space coefficients.  The biaxial layer (region1) has a thickness of 0.4λ0 

(where λ0 is the free-space wavelength) and is situated between two isotropic regions both with 

permittivity and permeability of εo and μo respectively (air).  In this analysis the biaxial medium 

has permittivity given by 
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(2.2.79) 

The first case we consider is the unrotated case in the x-z plane (φ=0˚).  The two layer reflection 

and transmission coefficients are shown in Figure 2-55.  The co-polarized reflection coefficients 

show that for all incident angles, the horizontal polarization is reflected more strongly, as is 

normally observed at an isotropic boundary.   This is the same behavior discussed (but not 

shown) at the isotropic-biaxial half-space interface when the wave is incident from the x-z plane.  

The cross-polarized reflection coefficients are approximately zero.  Therefore, we observe 

similar behavior at the two-layer interface, with a different biaxial permittivity tensor, as we did 

in the half-space case.  We also see that the vertically polarized wave undergoes zero reflection 

at the Brewster angle of 57.5˚.  Figure 2-55 also shows the calculated transmission coefficients.  

The co-polarized transmission coefficients have an inverse relationship to the reflection 

coefficients.  We also see that the cross polarized transmission coefficients are also 

approximately zero.  Once again, this is the same type of behavior observed in the half-space 

analysis where the a-wave acted as if it were co-polarized with the horizontal polarization and 

the b-wave co-polarized with the vertical polarization.  Finally, as a means of verifying our 
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results we compute the power reflection and transmission coefficients to prove that power is 

conserved.  Figure 2-56 verifies that the sum of the two coefficients is one, proving that power is 

conserved and the calculated coefficients are verified. 

 

Figure 2-55:  Two-layer coefficients for wave incident from the isotropic medium unrotated 

biaxial substrate 
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Figure 2-56:  Power conservation for two-layer system 

Once again we rotate the biaxial medium and observe the changes to the reflection 

and transmission coefficients.  In this case, we consider the same phenomena when region 1 is 

rotated by ψ1 = 30˚ and ψ2 = 75˚.  Given this new biaxial medium, we first look at the co-

polarized reflection coefficients shown in Figure 2-57.  We observe that when the permittivity 

tensor is rotated, the vertically polarized wave is reflected more strongly than the horizontally 

polarized wave for small incident angles and that this behavior is reversed for larger incident 

angles.  This behavior was discussed in the half-space problem where we observed this behavior 

with a rotation of 45˚ or more around the z-axis (ψ2).  Also, there is no true Brewster angle.  The 

vertically polarized reflection coefficient has a minimum around 61˚ but does not go to zero.  

This is true in general of 2-layer problems.  The co-polarized transmission coefficients have an 

inverse relationship to the co-polarized reflection coefficients.  We also can see in Figure 2-58 

that cross-polarized coefficients are non-zero.  Note that the transmission coefficients overlap.   
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Figure 2-57:  Two-layer co-polarized reflection coefficients for wave incident from the 

isotropic medium (region 0); rotated biaxial substrate (ψ1, ψ2) = (30˚, 75˚) 

 

Figure 2-58:  Two-layer cross-polarized reflection coefficients for wave incident from the 

isotropic medium (region 0); rotated biaxial substrate (ψ1, ψ2) = (30˚, 75˚) 

 

The two-layer reflection and transmission analysis is not complete unless we analyze 

the effect of thickness (or height) of the biaxial layer.  We consider the same unrotated biaxial 

medium with results shown in Figure 2-55, this time with thicknesses of 0.02λo and 1.2λo.  First, 

we consider the case of the very thin substrate (thickness is very small, 0.02λo).  The vertically 

polarized reflection coefficient (Rvv) is always less than the horizontally polarized coefficient 

(Rhh).  The Brewster angle is the same as it was when the layer was 0.4λo thick (57.5˚).  The 

transmission coefficients are nearly 1 for low angles and zero for large incident angles and the 

cross-polarized coefficients are all approximately zero. 
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Figure 2-59:  Two-layer co-polarized reflection coefficients for wave incident from the 

isotropic medium (region 0) with biaxial substrate height of 0.02λo 

 

When substrate is very thick (1.2λo) the vertically polarized reflection coefficient 

(Rvv) is still always less than the horizontally polarized coefficient (Rhh) and the cross-polarized 

coefficients are still nearly zero.  Interestingly with this thick layer, we see what looks like two 

Brewster angles.  One is at approximately the same angle observed at other thicknesses (57.5˚), 

but there is another Brewster angle at 37.5˚.  This behavior is primarily due to the thickness of 

the layer as it may be observed when a thick middle layer is isotropic. 
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Figure 2-60:  Two-layer co-polarized reflection coefficients for wave incident from the 

isotropic medium (region 0) with biaxial substrate height of 1.2λo 

 

For completeness, we also want to consider the effect of varying the height of the 

biaxial layer when the medium is rotated.  The results are shown in Figure 2-61.  For all three 

heights, the cross-polarized reflection and transmission coefficients are significantly larger than 

in the unrotated case.  As the height increases, these cross-polarized coefficients increase and 

may be greater than the co-polarized terms when the height is 1.2λo.  Not only do the cross-pol 

terms increase, but the minimum reflection coefficient for the vertically polarized wave is not 

zero.  Finally, we observe that when the height of the anisotropic layer is 1.2λo, both the 

horizontally and vertically polarized waves experience a type of Brewster angle effect.  
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Figure 2-61:  Two-layer co-polarized reflection coefficients for wave incident from the 

isotropic medium (region 0) with rotated biaxial substrates of varying heights 
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3 EIGENVECTOR DYADIC GREEN’S FUNCTION 

In this work, we will be using the eigenvector dyadic Green’s function (E-DGF) to 

compute the electric fields generated by a current in the presence of a biaxially anisotropic 

medium.  Pettis used the transition matrix dyadic Green’s function (T-DGF).  There are benefits 

to using each and we have chosen the E-DGF for two reasons.  First, the E-DGF is more general 

than the T-DGF.  Once formulated, the source can be located anywhere within the specified 

region whereas the T-DGF requires that the source be placed on a boundary surface.  This is a 

powerful property of the E-DGF.  For example, the E-DGF can handle a z-directed source that 

extends through the entire region which allows us to model a coaxial probe feed.  The T-DGF 

would not be able to handle this source as the current is (1) not tangential to the boundary and (2) 

exists within the layer, not solely on the surface.  Further, the E-DGF applies to the solution of a 

stripline problem since the source may be embedded in the substrate.  If using the T-DGF, one 

would have to re-formulate a stripline problem with another layer.  The second reason for using 

the E-DGF formulation (as discussed in the next section) is that it is rooted in the fundamental 

physical properties of the problem.  It is based on half-space or two-layer reflection coefficients 

and the electric field vectors (eigenvectors) of the media.  Understanding the E-DGF provides 

greater insight into the physical behavior of the waves generated in and around the biaxial 

medium.   

3.1 Formulation of Dyadic Green’s Functions 

In this work, we propose to use the eigenvector dyadic Green’s function (E-DGF) to 

compute electric field quantities.  Lee and Kong [33] derived the unbounded eigenvector dyadic 

Green’s function (E-DGF) for uniaxial media.  Based on this work, Mudaliar and Lee [34] 
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formulated of the E-DGF for unbounded and two-layer biaxial geometries.  In this work, we use 

the two-layer Green’s function from [34] and have adopted the layer conventions from the 

Mudaliar and Lee paper:  region 0 is the isotropic medium above the biaxial layer, region 1 is the 

biaxial medium, and region 2 is another isotropic region below the biaxial layer.  This two-layer 

geometry is shown in Figure 3-1.   
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Figure 3-1:  Two layer geometry used in Green’s function formulation 

 

Given this geometry, the E-DGF equations for a source in region 0 are [34] 
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(3.1.3) 

Equations (3.1.1) through (3.1.3) depend on the propagation vectors (discussed in 

Section 2.1.1), the two layer reflection and transmission coefficients (Rij, Xij, Aij, and Bij), and the 

electric field unit vectors (discussed in Section 2.1.2).   The two layer coefficients come from 

equations (2.2.73) through (2.2.76).  For example, the matrix multiplier in equation (2.2.73) 

gives us Rij.  Similarly, the A matrix comes from equation (2.2.74); the B matrix from (2.2.75) 

and the X matrix from (2.2.76).  Note that   












 yxdkdkkd 
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3.2 Symmetrical Property of Dyadic Green’s Function 

When solving new electromagnetic problems using dyadic Green’s function (DGF) 

techniques, we often do not have the appropriate Green’s functions at our disposal.  This is true 

in our case as only three of the nine possible E-DGFs have been solved.  We know the E-DGF to 

compute the field in region 1 given a source in region 0.  However, to study antenna problems of 

interest, we would like to know the field in region 0 given a source in region 1.  Fortunately, we 

can utilize the symmetric property of the DGF to transform a known Green’s function into the 

Green’s function needed to solve the problem.  First, we will derive the symmetric property of 

the DGF.  We will then use this property to derive the Green’s function needed.   

C. T. Tai [37] derived symmetrical property of dyadic Green’s Function (DGF) for 

free space problems, half-space problems and bounded half-space problems including conductor 

backed dielectric applications.  He did not consider the general 2-layer problem or anisotropic 
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materials (all materials were assumed isotropic).  J. K. Lee [38] considered this case and derived 

the symmetrical property of the DGF for the 2-layer problem with an anisotropic medium in the 

middle layer, which we rederive here.  First, we define the inhomogeneous wave equations for 

DGFs given a source in each region.  Next, we apply electromagnetic boundary conditions at 

each interface then generate suitable integrals via application of the dyadic-dyadic Green’s 

theorem of the second kind.  Finally, the resulting integrals are simplified using distribution 

theory and appropriate vector identities in order to derive the desired symmetry relation for the 

dyadic Green’s function.   

First, we define inhomogeneous wave equations for the Green’s functions for a 

source in region 0 as 
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(3.2.1) 

where the first numerical superscript on the DGF denotes the field region and the second 

numerical superscript is the source region. Similarly, the inhomogeneous wave equations for 

Green’s functions with source in region 1 are given by  
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(3.2.2) 
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Next, we define electromagnetic boundary conditions in terms of the dyadic Green’s functions.  

We will apply the boundary conditions at z = 0 which relates the tangential field components to a 

source in region 0 by 

     
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(3.2.3) 

If the source is in region 1 the boundary conditions can be written as 
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(3.2.4) 

Next, we want to relate the Green’s functions for a source in region 0 to the Green’s 

functions for a source in region 1.  We will do that via the application of the vector Green’s 

theorem.  To generate integrals via application of the vector Green’s theorem we need to define a 

set of vector functions in each region.  We define the vectors as 

  
   brrGQ
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(3.2.5) 
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(3.2.6) 

  
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(3.2.7) 

where a  and b are arbitrary point source vectors, in region 0 and 1 respectively, post-

multiplying the dyadic Green’s functions.  Vectors iP  and iQ  are the resulting vectors in each 
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region from this post multiplication.   We now apply the vector Green’s theorem to each set of 

two functions resulting in  

    2,1,0       isdQPPQdvPQQP
S

iiii

V

iiii

 
(3.2.8) 

The volume refers to the region in which the field exists (denoted by subscript i) and the closed 

surface is the surface bounding that volume.  We apply the integral to all three sets of vector 

relationships.  We then simplify the integrals using common vector identities and the boundary 

conditions defined in (3.2.3) and (3.2.4) to show 
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  
(3.2.9) 

This relationship in (3.2.9) must hold for any arbitrary vectors a and b .  If this 

condition holds, then 
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(3.2.10) 

Equation (3.2.10) is the symmetrical property of the dyadic Green’s function for 2-layer 

anisotropic geometry.  If all media are non-magnetic then 

      TrrGrrG 01

0,1

10

1,0 ,, 
 

(3.2.11) 

In this derivation, the most critical assumption is that the anisotropic medium is 

reciprocal.  Consider some general bianisotropic medium whose fields are related by 

EHB

HED









 

(3.2.12) 

Kong [2] defines the medium as reciprocal if 
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T
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T













 

(3.2.13) 

We considered an electrically anisotropic medium (condition 1).  In general, for the symmetric 

property of the DGF to hold, the medium should be reciprocal.  Uniaxial and biaxial media are 

reciprocal, so we can use this property for our purposes.  However, gyrotropic media are not 

reciprocal so an alternate form of the symmetrical property would need to be derived.  We are 

not handling gyrotropic media here, so this alternate form is not needed.   

3.2.1 Application of Symmetrical Property of DGF  

We are interested in computing the electric fields in region 0 given a source in region 

1.  In (3.1.2), we have the eigenvector dyadic Green’s function for the field in region 1 given a 

source in region 0.  We can apply the symmetrical property of the DGF from equation (3.2.10) to 

obtain the required Green’s function. 

We begin by taking the DGF in equation (3.1.2) and placing the unprimed (field) 

position vector ( r ) in region 1 and the primed (source) position vector ( r  ) in region 0.  This 

manipulation results in 
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(3.2.14) 

where   












 yxdkdkkd 
2 .  Now, we must take the transpose of (3.2.14) 
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(3.2.15) 

From equation (3.2.10), we know that this gives us the eigenvector dyadic Green’s function for 

the field in region 0 given a source in region 1.  Using our primed and unprimed notation for 

source and field regions, respectively, equation (3.2.15) can be written as 
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(3.2.16) 

This form is mathematically correct; however, it is not physically meaningful.  The 

source in region 1 would generate an upward propagating field in region 0, but in this form we 

have a downward propagating wave in that isotropic region.  To write (3.2.16) in a more 

physically meaningful form we make the change of variables 

    kddkdkdkdkkd
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yxyx
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
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(3.2.17) 

In his thesis Pettis [1, Appendix M] derived relationships for the electric field vectors and the 

propagation vectors under the same change of variables.  The electric field vectors in region 0 

are given by 

   
   

yxyx

yxyx

kkvkkv

kkhkkh

,ˆ,ˆ

,ˆ,ˆ

00

00









 
(3.2.18) 

Under the same change of variables, the electric field vectors in region 1 are given by 
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(3.2.19) 

Finally, the propagation vectors can simply be rewritten 
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(3.2.20) 

where the superscript j indicates whether the a- or b-wave is propagating in region 1.   The 

relationships shown in equation (3.2.20) were confirmed numerically for several biaxial tensors 

under multiple rotations.  Making all of the substitutions related to the kx and ky change of 

variables into equation (3.2.16) results in 
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(3.2.21) 

If we rearrange the terms  
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(3.2.22) 

The equation is nearly consistent with the physics of a source in region 1.  The only additional 

manipulation involves simplifying the coefficients A and B and making the notation consistent 

with conventions previously used.  We define a set of primed coefficients (as did Pettis [1]) as 
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(3.2.23) 

These new coefficients are then substituted into the Green’s function in equation (3.2.22).  The 

result is a Green’s function for computing electric fields in the isotropic region 0 when a source 

is in region 1 in a physically meaningful form; this form is given by 
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(3.2.24) 

The symmetrical property of the DGF is a powerful tool in obtaining unknown Green’s functions 

from known Green’s functions.  In this section, we use the property to derive the E-DGF for the 

fields in region 0 given a source in region 1.  The property could also be used to obtain the 

Green’s function for the field above a source when only the Green’s function for fields below the 
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source is known.   This property is a valuable tool in solving new, complex electromagnetic 

problems and will be used later in this work to compute fields generated by a probe-fed 

microstrip patch antenna. 
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4 PRINTED RECTANGULAR MICROSTRIP ANTENNAS 

A significant contribution of this work is the study of rectangular microstrip antennas 

printed on arbitrarily oriented biaxial substrates as shown in Figure 4-1.  The rectangular patch 

antenna has some width (W) in the y-dimension and some length (L) in the x-dimension and is 

infinitely thin (in the z-direction although depicted with some thickness for illustrative purposes 

only).  Before treating this general case, we address the dipole problem in which the width of the 

antenna is much smaller than the length.  Note that we continue with our notation in which the 

biaxial substrate is region 1 and the isotropic region above the antenna is region 0.  The 

conductor ground for the substrate is region 2 and considered a perfect conductor for this 

problem.  Further note that we are considering non-magnetic materials all with permeability μo. 

PEC

W

h

x

z

y

00 ,

01 ,

W

L

Microstrip Patch

z=0

z=-h

 

Figure 4-1:  Rectangular microstrip antenna diagram 

 

We begin by discussing solution techniques and our choice of the Method of 

Moments (MoM).  We then derive a reaction equation for a general probe-fed rectangular 

microstrip antenna.  We use this reaction equation to solve two microstrip antenna problems:  the 

delta-gap fed dipole antenna and the coaxial probe fed rectangular patch antenna. 
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4.1 Solution Techniques 

4.1.1 Method of Moments  

4.1.1.1 Variational Methods 

Many physical phenomena are governed by differential equations.  In general, the 

solution to this class of problem requires integrating the differential equation.  However, when 

this integration becomes very complicated, we can employ variational methods to find a function 

that will give us the minimum of a related integral [40].  Variational methods are common to 

both the method of moments and the finite element method used to solve electromagnetic 

problems [40].  Therefore, a study of variational methods is important in this research to ensure 

that an appropriate method is chosen for the solution of the microstrip patch problem. 

The set of problems solved using variational methods are deterministic, meaning that 

for a given known source, there is one unique solution [41].  The deterministic equation we wish 

to solve is a simple inhomogeneous operator equation that can be written as 

  gfL   (4.1.1) 

where L is a linear operator, f is some unknown function and g is a known source function [41].  

The goal is to find f.  For some physical problems f can be found directly.  However, for many 

electromagnetic problems, we cannot find f analytically so we need a computational method to 

find an approximation of f.  To use a variational method we must define the inner product.  The 

definition used by Sadiku [40] is given by 




 dabba *,

 
(4.1.2) 
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which satisfies the conditions set out by Harrington [41].   

The function f is approximated with basis functions such that the approximation ( f
~

) 

is given by 





N

n

nnuaf
1

~

 
(4.1.3) 

where each un is a known basis function and each an is an unknown constant.  The objective of 

the variational method then is to solve for the unknown coefficients when sufficient N is used to 

approximate the original function.  If the solution method is appropriate for the problem, the 

error between the approximate solution and the actual solution will decrease as N increases to 

some limit.   

The method of moments is based on an indirect variational method or weighted 

residual method.  This residual represents the difference between the exact solution (the 

excitation g) and the operator L acting upon the approximate solution.  The residual is given by 

    gfLffLR 
~~

 (4.1.4) 

Note that while we do not know the exact solution f, we can still know the error because we 

know the excitation.  In the weighted residual method a weighting function is chosen to 

minimize the residual.   

0, Rwm  
(4.1.5) 
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Substituting the expression for R from equation (4.1.4) and performing some manipulations, we 

have 
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(4.1.6) 

Then, by applying equation (4.1.3) we obtain 
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(4.1.7) 

In equation (4.1.6), we forced the residual to zero thus minimizing the error. Thus, the final 

representation of equation (4.1.7) is what we will use in our method of moments formulation.  

This is the same equation presented by Harrington [41].  We will use this method to solve N 

simultaneous equations for the N unknown coefficients an.  This set of equations is written in 

matrix form (by Harrington [41]) as 

    mnmn Gal *

 (4.1.8) 
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(4.1.9) 

If the matrix [lmn] is nonsingular, its inverse exists and the unknown coefficients an are given by 
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(4.1.10) 

The matrix equation in (4.1.10) is the fundamental equation solved by the method of moments 

To implement this method the weighting functions mw  must be properly chosen.  

There are predefined methods for choosing the weighting function when using the weighted 

residual method.  The first is collocation, also known as point-matching [40].  In this method, the 

weighting functions are Dirac delta functions.  Computationally, this is the simplest weighted 

residual method because the inner product of the weighting function with the residual is equal to 

the residual evaluated at the center of the Dirac delta function.  However, the validity of 

collocation depends on the choice of the collocation points [40].  While original MoM codes 

applied this method successfully, it can be difficult to know where the appropriate points are a 

priori.  Therefore, collocation will not be used.   

The next type is the subdomain method where subdomain basis functions are chosen 

as weighting functions.  Commonly used functions include piecewise uniform (pulse), piecewise 

linear (triangular) and piecewise sinusoidal [40].  In general, these subdomain basis functions 

may be chosen independently of the expansion basis function un.  A special case of the 

subdomain method is Galerkin’s method.  In Galerkin’s method the weighting functions are 

chosen to be the same as the expansion functions.  The advantage of this method is that you only 

have to choose one basis function as long as that basis function spans both the domain and range 

of the operator L [40].  We will be using Galerkin’s method for the solution of the rectangular 

microstrip patch.   
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4.1.1.2 Basis Functions 

As discussed in the previous section, the choice of basis function with which to 

expand the current is critical in the accuracy of Galerkin’s method.  Specifically, the choice of 

basis function directly affects the stability, efficiency and convergence of a moment method 

solution [22].  Basis functions come in two varieties: entire domain basis functions and 

subdomain basis functions.  A single entire domain basis function is defined over a large section 

of the structure, and a set of these functions forms an efficient basis.  However, they cannot 

approximate arbitrary current distributions and are only useful for unloaded patches [22].  

Subdomain basis functions require more basis functions to cover the entire patch, making them 

less efficient.  They are, however, capable of modeling any arbitrary current distribution and any 

arbitrary patch shape.  Subdomain basis functions are used in this analysis to maintain maximum 

generality of the basis function given the complexity of the medium. 

The most common subdomain basis functions are: pulse basis functions, piecewise 

sinusoidal basis functions and rooftop (triangular) basis functions.  In much of his work, Pozar 

uses piecewise sinusoidal basis functions.  However, we will use piecewise constant “pulse” and 

“rooftop” basis functions.  This choice provides a more general solution as orientation is not 

assumed and is consistent with the formulation Pettis [1] used in his work. 

In this chapter, we will derive the general reaction equations for a rectangular 

microstrip antenna with currents flowing in two dimensions.  The general two-dimensional 

current formulation requires x-directed and y-directed currents.  Each of these currents will have 

a component that varies in x and a component that varies in y.  Therefore, we have four 
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expansion functions to define.  We can write these four expansion functions as the single 

expression: 

          
n
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m

x

m

xm yJxJbyyJxJaxrJ ˆˆ

 
(4.1.11) 

 

4.2 Reaction Formulation 

4.2.1 Reaction Equation Derivation 

The printed microstrip antenna problem is described by the reaction equation.  

Fundamentally, we are trying to compute the currents induced on a conductor given some source 

current.  The currents generate electric fields in the surrounding region.  The reaction equation is 

based on satisfying the boundary conditions for these fields along the conducting antenna.  On a 

conductor, the total tangential electric field is zero, therefore,   

0tantan  ic EE
 (4.2.1) 

The electric field due to the impressed (or source) current ( iJ ) is iE  (impressed) and the electric 

field due to the induced conduction current (
cJ ) is

cE .  In this problem the conduction current is 

unknown so we approximate it using known expansion currents.  We then apply the weighting 

functions and take the inner product as shown in (4.1.5).  In this section, we will derive a general 

reaction equation for a rectangular microstrip antenna printed on an arbitrarily oriented biaxial 

substrate.  We start by rewriting (4.2.1) as 

tantan ic EE 
 (4.2.2) 
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and expand this simple equation to formulate the reaction equation.  We know that the dyadic 

Green’s function can be used to calculate the electric field generated by an electric current [2] 

using 

    vdrJrrGiE
V

 


,

 
(4.2.3) 

Where G is the dyadic Green’s function and J is the current source.  Applying (4.2.3) to both 

sides of (4.2.2), we obtain 
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(4.2.4) 

The volume integral is taken over the source region, in this case the region over which the 

currents exist.  In the general case of (4.2.4) the current could be a volume current, however, in 

the case of the microstrip antenna the conduction current is a surface current density.  Therefore, 

we change this volume current density to a surface current density that exists over the entire 

surface of the antenna.  We keep the impressed current as a volume current density.   

         

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(4.2.5) 

In equation (4.2.5) we are using  0,0G on the conduction side of the equation and 

 1,0G  on the source side.  As was shown in Chapter 3, if a current is placed at the boundary, in 

region 0 (at z = 0
+
),  0,0G and  0,1G  produce the same tangential electric fields along the 

boundary.  We choose  0,0G  to calculate the electric field in region 0 so that when we apply the 

weighting function (which must be in the same region as the conduction current), it is in the 

same region as the field. 
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The fields on either side of the reaction equation (4.2.2) should be in the same region 

so we need to compute the electric field in region 0 on the source side as well.   1,0G  is used 

since we assume the source is in region 1 as would be consistent with a coaxial probe.  This E-

DGF was derived using the symmetrical property of the dyadic Green’s function in Chapter 3. 

Equation (4.2.5) expresses the boundary condition governing the tangential electric 

fields along the antenna.  Now, we wish to apply the method described in Section 4.1.1.  The 

Method of Moments requires that we compute the inner product of a weighting function with 

both sides of the governing equation (as shown in equation (4.1.7)).  To do this we pre-multiply 

the fields by a testing, or weighting, function and integrate over that function.  The testing 

function will be a current function equivalent to the expansion functions.  We call this current the 

test current
tJ .  The test current integration must be applied over both sides of equation (4.2.5) 

which, in general, results in 

    
V

itc

V

t ErJdvErJdv tantan

 
(4.2.6) 

Equation (4.2.6) is a general form for any test current.  We already know our induced 

(conduction) current will be a surface current distribution.  Therefore, the expansion functions 

and testing functions will also be surface currents.  Applying this integral dimension reduction 

and the field expression to (4.2.6) results in  

             
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(4.2.7) 

In the following sections, we will expand the terms of (4.2.7) further, concentrating on one side 

of the equation at a time.  We begin by defining the current functions we will use. 
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4.2.1.1 Currents 

The expansion function in any variational method should approximate the unknown 

induced current.  One must use some knowledge about how the surface current should behave to 

choose an appropriate expansion function.  The expansion function should model this known 

behavior (for example, the current goes to zero at the end of a dipole antenna).  When using 

Galerkin’s method, the testing function is the same as the expansion function.  Therefore, in this 

problem, we define three currents, the impressed (or source) current
iJ , the induced conduction 

current
cJ , and the test current

tJ .  The basis functions used to expand the conduction current and 

the test current are the same by Galerkin’s method, however they will be evaluated at different 

locations so are treated separately.   

4.2.1.1.1 Expansion and Weighting Functions 

As previously stated, the choice of basis functions is important.  We are choosing the 

same basis functions used by Pettis [1] in his analysis.  For the basis function that describes the x 

variation in the x-directed current we will use overlapping triangular subdomain basis functions 

as defined by [1]: 

 

    

    





















elsewhere  ;    0

  ; 
1

  ; 
1

axxxxax
a

xxaxaxx
a

xJ ccc

ccc

x

 

(4.2.8) 

where NLa / , L is the length of the antenna and N is the number of subsections in the x-

dimension.  We will use the same function to describe the y variation in the y-directed current.  
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where MWb / , W is the width of the antenna and M is the number of subsections in the y-

dimension.  Next, we define the y variation in the x-directed current.  We will use the simple 

square pulse function given by 
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(4.2.10) 

Similarly, the x variation in the y-directed current is a square pulse defined by: 
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(4.2.11) 

The centers of each basis function are xc and yc respectively.   

We note that the width of each triangular basis function is two segments (where a 

segment is either a or b wide for the x-directed and y-directed function, respectively).  Therefore, 

the total number of triangular basis functions is one less than the number of divisions (i.e. N-1 or 

M-1 for the x-directed and y-directed function, respectively).  The rectangular pulse basis 

functions, however, are only one segment wide (a or b), so the number of basis functions is equal 

to the number of divisions (N or M).  The basis surface functions must cover the entire 

conducting patch.   
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In the formulation of the reaction equation, we will need the Fourier transform of the 

current distribution to evaluate the electric field integral.  The x-oriented dipole antenna will 

consider only x-directed currents.  The spectral domain functions were derived and the x-directed 

currents for the x-oriented dipole are given by: 
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(4.2.12) 

In the patch antenna problem, we consider both x and y directed currents resulting in four basis 

functions.  The spectral domain basis functions for the patch antenna are given by 
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We can write the combined spectral domain current density as 
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(4.2.15) 

This expression will be used in the reaction formulation.  Note that as we develop the reaction 

equation, we will be integrating with respect to kx and ky, so these current functions are for all 

values of kx and ky in a plane wave expansion. 
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4.2.1.1.2 Probe Model 

Application of Galerkin’s method also assumes we know the excitation described by 

the function g.  Many options are available for exciting the microstrip patch antenna.  In his 

previous work, Pozar [25] discussed the feeding of the microstrip patch noting “the most difficult 

aspect of the patch radiator problem is the modeling of the feed.  For one thing many different 

types of feeds are possible.”  Among the feed types are: probes, coplanar microstrip feeds, 

proximity coupling to the microstrip patch by a line underneath the patch and aperture coupling 

[22].  While not always the most practical in actual antennas, probe feeds are most often used in 

full-wave modeling as they are computationally the simplest to model.   

The probe is based on a coaxial line feed.  In practice, the center conductor is fed 

through the substrate and attached to the patch antenna at some point exciting the antenna to 

radiate.  The outer conductor is then attached to the ground plane below.  In the literature, probe 

feeds are treated in two ways; the idealized model and the rigorous model.  The idealized model 

is used extensively by Pozar [19, 25 and 26] notably in his analysis of radiation from a microstrip 

patch on a uniaxial substrate.   

However, this idealized model ignores the probe self-impedance and the rapidly 

varying patch current in the vicinity of the feed.  To account for this, Pozar adds a term for the 

probe self-inductance to the computed input impedance of the patch.  This self-inductance term 

is based on the inductance of a short-circuited transmission line [43].  For a more accurate 

answer, Pozar also modifies his excitation by a term to account for the edge effects of the 

microstrip line as derived by Carver and Mink [16].  This still does not account for current 

variation on the patch in the vicinity of the probe.  To accurately account for the effect of the 
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probe, the probe inside the substrate must be modeled [39].  In a rigorous model of the probe 

feed, the probe is treated as a wire with finite diameter, rather than a filament.  The interaction of 

the probe with the patch at the feed point is then modeled in detail.   

In this work, we will model the probe-feed excitation of the patch antenna with the 

idealized probe feed model.  The entire length of the probe will be modeled through the biaxial 

substrate; however the real diameter of the coaxial line will be ignored, using the delta functions 

at the feed point as used by Pozar.  This model is sufficient to evaluate the resonant length, 

impedance bandwidth and far field patterns of the antenna.  Our analysis focuses on these key 

performance parameters so the idealized model is sufficient.  This model would not be sufficient, 

however to fully characterize the probe behavior, specifically the probe self impedance term.  A 

proper treatment of probe impedance calls for modeling fields within the substrate due to sources 

within the substrate.  That model is outside the scope of this work, but offers an area of future 

work. This model does take full advantage of the generality of the E-DFG.  Therefore impressed 

current source for the probe fed antennas modeled in this work is given by: 
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(4.2.16) 

where (xs, ys) is the point at which the probe is attached to the microstrip patch (the source point) 

and h is the height of the substrate.  Essentially, this is a rectangular pulse in the z-direction, 

centered at –h/2 with width h.  Again, we will need the Fourier transform of this current function 

to evaluate the reaction equation.  The Fourier transform of this type of rectangular pulse is given 

by   
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4.2.1.2 Induced Field Integral 

The left hand side of the reaction equation (4.2.7) is an integral describing the 

interaction between the test current and the electric field due to the induced current.  We are 

interested in the general reaction formulation for a rectangular microstrip antenna, therefore, we 

will assume the test and induced currents have both x and y directed components.  We want to 

develop a more specific relationship than the one described by (4.2.7) so we need to expand that 

expression and simplify wherever possible.   

We begin expanding (4.2.7) by substituting the expression for  0,0G  as presented in 

equation (3.1.1) and repeated here for convenience 
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(3.1.1) 

If we substitute this expression into the left hand side of equation (4.2.7), we obtain 
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(4.2.18) 

We can expand the exponents to factor out common terms.  The propagation vectors are given by 
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(4.2.19) 

Our reaction equation is based on the tangential electric field boundary condition along the 

conducting antenna.  The induced conduction current is located at the boundary between region 0 

and region 1 as shown in Figure 4-1.  This interface is at z  equal to zero so we can substitute 

zero for z  into the expression for r  .  By expanding the r   exponents and making the 

zsubstitution, we obtain  
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(4.2.20) 

We can move the surface integral inside the spectral integral.  The terms that do not depend on 

any primed position variables stay outside of the surface integral, while the exponent with 

primed x and y must stay inside the surface integral along with the induced current term.   
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(4.2.21) 

We recognize the surface integral over the primed region as the Fourier transform of the 

conduction current.  Therefore, we replace the surface integral with  yxc kkJ ,
~

, the Fourier 

transform of the conduction current  yxJc
,  (note, the bar indicates that the current is a vector 

and the tilde indicates the Fourier transform). 
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(4.2.22) 

The exponents of equation (4.2.22) can be expanded as shown previously.  We can simplify the 

exponentials again because the fields we are interested in are again along the boundary making 

the z-component of the field-vector r  zero (z=0).  Equation (4.2.22) simplifies to  
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(4.2.23) 

The surface integral in equation (4.2.23) is the complex conjugate of the Fourier transform of the 

test current.   
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(4.2.24) 

We can now substitute the expression for the spectral domain test currents and 

expansion currents from equation (4.1.11) to obtain 
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(4.2.25) 

We can first evaluate the dot products of the Green’s function dyad with the current distributions.  

We can then write the two integrals in (4.2.25) as four integrals by separating the x and y 

components of the expansion currents.  Finally, we can pull out the unknown constants an and 

bm.  We are left with the four integrals (we are calling Z) 
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(4.2.26) 

where 

xh0  is the x-component of the upward (+) and downward (–) propagating, horizontally 

polarized wave, 


yh0  is the y-component, 

xv0  is the x-component of the upward (+) and 
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downward (–) propagating, vertically polarized wave, and 

yv0  is the y-component.  The 

subscripts represent the location of the basis functions along the antenna and are given by 
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(4.2.27) 

Finally, we write the left hand side of the reaction equation in the following matrix form 
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(4.2.28) 

where the Z matrix is filled in by the appropriate Z integral and the vector of unknown 

coefficients will be solved in our method of moments routine. 

4.2.1.3 Excitation Integral 

The right hand side of the reaction equation (4.2.7) is an integral describing the 

interaction between the test current (weighting function) and the electric field due to the 

impressed (source) current.  We must use the same test current that we did for the induced field 

integral.  We will be using both a delta gap and probe source to evaluate the rectangular 

microstrip antennas.  The gap source is a simple, well known source function commonly used in 

dipole antenna problems.  The details will not be presented here but can be found in Pettis’ 
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dissertation [1, Chapter7].  Therefore, we will derive the excitation integral using the probe 

source.  We will follow the same fundamental steps as described in Section 4.2.1.2 to get the 

right hand side of equation (4.2.7) in a form similar to (4.2.26).   

We begin expanding the right hand side of equation (4.2.7) by substituting the 

expression for the Green’s function into the integral.  This Green’s function was derived in 

Chapter 3 using the symmetrical property of the dyadic Green’s function.  We repeat the 

equation here for convenience. 
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(3.2.16) 

Note this is not the final form derived in Chapter 3, it is still mathematically correct.  If we 

substitute this expression into the left had side of equation (4.2.7), we obtain 
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(4.2.29) 

We can expand the exponents to factor out common terms.  The propagation vectors are given by 

equations (2.1.1) through (2.1.4).  Our reaction equation is based on the tangential electric field 

boundary condition along the conducting antenna.  The antenna is located at the boundary 

between region 0 and region 1 as shown in Figure 4-1.  The source is a coaxial probe with 

volume current distribution described by equation (4.2.16).  First, we manipulate the source 
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terms (associated with the primed position vector).  If we factor out the common exponential 

terms we obtain  
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(4.2.30) 

The primed terms are grouped together.  The unprimed (field point) terms are not dependent on 

the primed terms.  While the primed terms do depend on the values of kx and ky, we can change 

the order of integration.  We move the volume integral over V   inside the spectral integral 

resulting in  
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(4.2.31) 

Unlike the induced field integral, the source here has a z variation.  Previously, the field was 

evaluated only at the patch surface (z=0) so the kz terms fell out after the substitution.  We must 

keep the kz terms and, in the biaxial medium, kz is polarization dependent.  While this does 

complicate the integration, each term has the same form so we can consider one and apply the 

result to all.  The downward propagating a-wave term in (4.2.31) is given by 

   rJeeaAhvd i

ykxki

V

zik

ha
yx

ad
z 







 ˆˆ 0
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The field polarization 

0ĥ  does not depend on source position, so it acts as a constant in this 

integral.  The term haA  enforces that the boundary conditions are satisfied between regions 0 and 

1, so this term is a constant with respect to r  as well.  The remaining terms in (4.2.32) represent 

the complex conjugate of the Fourier transform of the impressed current.  The downward 

propagating a-wave term reduces to 
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(4.2.33) 

where 

za  is the z-component of the downward propagating a-wave and the Fourier transform of 

the impressed (excitation) current is given in (4.2.17).  Each term in (4.2.31) can be decomposed 

in a similar manner resulting in  
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(4.2.34) 

Now we manipulate the field terms (unprimed components).  First, we expand the exponents 

then simplify the z-component because the fields we are interested in are along the z = 0 

boundary; the z-component of the field-vector r  zero.  To further simplify equation (4.2.34), we 

can move the surface integral inside the spectral integral because:  

1.  The volume integral becomes a surface integral with respect to x and y because the test 

current is a surface current density in the x-y plane 
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2.  With the exception of the exponential term, the integrand of the spectral integral does 

not depend on x or y.   

When we make these simplifications, we obtain 
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(4.2.35) 

The surface integral in equation (4.2.35) is the Fourier transform of the test current, thus   
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(4.2.36) 

We can now substitute the expression for the spectral domain test currents from equation (4.2.15) 

into our field integral as we did for the induced field integral.  We call the vector comprised of 

each test current term V.  Each component of V is computed using the integral above and is 

defined by   
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(4.2.37) 

where  1 NMN  and termsR1  represents the region 1 terms within the square brackets in 

equation (4.2.36).  Combining equations (4.2.28) and (4.2.37), the entire reaction equation can 

now be written in the matrix form 
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where the Z matrix is filled in by the appropriate Z integral and the vector of unknown 

coefficients will be solved in our method of moments routine.   

4.2.2 Numerical Integration 

The induced field integral and the excitation integral are both solved numerically 

using trapezoidal integration.  The step size was determined in a 2 step process.  We begin with 

the minimum sampling rates in kx and ky as derived by Pettis [1, Chapter 7].  These sampling 

rates are given by 








 




1
10min N

N

L
f kx
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(4.2.40) 

We then refine these sampling rates by observing convergence of the integral.  We choose the 

minimum frequency (or maximum step size) for which the integration has converged.  We also 

need to choose the limits of the doubly infinite integral.  To do this, we observe the integrands 

and choose limits in kx and ky for which the integrand has converged to zero.  Figure 4-2 shows 

an example integrand.  We choose for this case to limit ky at 150ko and kx at 500ko.  
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  (a)                                                                                                         (b) 

Figure 4-2:  Patch antenna integrand example (a) vs. ky, (b) vs. kx 

Singularities are important to consider in the numerical integration.  If they are not 

handled properly, the integration will not converge.  Integrals such as these can have pole 

singularities and branch point singularities.  A pole singularity exists within the integrand when 

the direction of propagation is parallel to one of the optic axes.  In this case, the denominator of 

the electric field vectors in the biaxial medium becomes zero.  However, we know that if the 

direction of propagation is parallel to one of the optic axes, the wave will behave as if it were in 

an isotropic medium with vertical and horizontal polarization. This special case can be handled 

analytically by making the field vectors consistent with vertical and horizontal polarization when 
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the pole singularity is reached. Branch point singularities, however, do not pose an issue with the 

form of the Green’s function we are using. We are using the layered Green’s function.  In 

bounded regions the integrand of the Green’s function be single valued [44]. This would not be 

true for a single layered problem or unbounded problems, but it does hold for the layered case we 

are considering.     

4.3 Microstrip Dipole Antennas 

We begin our study of microstrip antennas with the analysis of microstrip dipole 

antennas.  We will treat the dipole fed by a delta gap source.  The delta gap source is an adequate 

theoretical model and in fact Pettis used this source in his dipole analysis [1].  For a real dipole 

antenna, usually microstrip feed lines lead to the “arms” of the dipole.  The arms are equivalent 

to the strip we are modeling.  The feed lines mimic the voltage gap source.  This model is the 

most widely used for excitation for dipole antennas. 

4.3.1 Dipole with Delta Gap Source 

The series voltage gap generator is one of a few sources whose excitation fields are 

known directly [22].  This known electric field is given in [1] as 
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(4.3.1) 

where the location of the feed point is (xs, ys) and u(y) is the Heaviside step function defined as 

unity for y ≥ 0 and zero for y < 0.  Given this well known electric field, we can construct the V-

vector for a delta gap.  We have a value of 1 at the point of the source and zero elsewhere.  We 

are placing the source at xs=0, so our V-vector looks like 
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(4.3.2) 

We will use the vector in (4.3.2) for the right hand side excitation vector in our reaction 

formulation of the gap-fed dipole. 

4.3.1.1 Modified Reaction Equation 

The microstrip dipole has a length (L) in the x-direction and a width (W) in the y-

direction with W << λ.  The dipole will have only x-directed currents.  Therefore, of the four Z 

integrals defined by equation (4.2.26), only the first one will be used.  Further, we need only the 

x-directed basis functions as defined in section 4.1.1.2.  This simplifies the Z-matrix from 

equation (4.2.28).  For convenience, we repeat this reduced form of equation (4.2.26) here 
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(4.2.26) 

This reduces the size of the Z-matrix to one forth the size of the generic matrix.   We can rewrite 

our governing matrix equation as 
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(4.3.3) 

The method of moments solution to the matrix equation in (4.3.3) will give us the coefficients for 

the induced current basis functions.   
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In the method of moments solution for the dipole problem, we used the Green’s 

function for the field in region 0 given a source in region 0.  This means that the source and field 

points are essentially on the same plane (z and z´ both equal zero).  In general, the field is not 

well defined at the source point and a singularity may be observed when computing fields at this 

point.  Therefore, when formulating the Green’s function, this point is often avoided. 

When using the method of moments, we are, in general, interested in field and source 

points in the same plane.  When using Galerkin’s method, we choose the expansion functions 

and weighting functions to be in the same region.  In the reaction integral, we compute the 

reaction of the field with the weighting function at the location of the weighting function.  

Therefore, the field and source points will be in the same location at least with respect to z. 

If we choose the Green’s function for the field in region 1 with the source in region 0 

(G
10

), the field and source points may both be located at z = 0, but the physics of the Green’s 

function formulation essentially means that the field point in region 1 is at z = 0
–
 while the source 

point is at zʹ = 0
+
.  When using G

00
 this is not true.  For the gap fed dipole on a biaxially 

anisotropic substrate, we compute the currents using the method of moments with G
10

 and G
00

 

respectively to show that in this numerical solution, G
00

 may be used.  Our results showed that 

the two Green’s functions agreed with each other and with published results, indicating that in 

this numerical solution, the restriction on z ≠ zʹ is unnecessary.  

4.3.1.2 Analysis 

While computing the current coefficients from (4.3.3) is the most computationally 

complex portion of the antenna analysis, it tells us little about how the antenna performs.  
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Common metrics for antenna performance are input impedance, resonant length, impedance 

bandwidth and directivity.  In our analysis of the gap-fed microstrip dipoles, we will compute the 

current distribution on the dipole, the input impedance, resonant length, directivity and directive 

gain.  Impedance bandwidth is treated in detail for the patch antenna.  We compare our results to 

those presented in published works including Pettis [1, Chapter 7], and then observe antenna 

behavior as we change the permittivity tensor and rotation angles.   

4.3.1.2.1 Current Distributions 

The first parameter we analyze is the current distribution along the dipole.  We use 

the current coefficients computed using the moment method.  The current distribution is the sum 

of the current expansion functions each multiplied by the appropriate coefficient.  As the number 

of expansion functions increases, the approximation to the actual current distribution should 

improve.  We are primarily interested in how the current distribution converges as number of 

expansion functions increases.  We consider the case of an unrotated biaxial substrate shown in 

Figure 4-3.  This case was run with 6, 12, 18 and 24 basis functions.  The conduction currents for 

all three cases are plotted.  Note that the currents are very close for both 6 and 12 basis functions 

and change even less as the number of basis functions increase.  Therefore¸ we use 12 basis 

functions for the remaining dipoles.  Also note that for the unrotated case, the current peaks at 

the center (as expected with the delta gap source) and that the current is symmetric about the 

source (x = 0).  As a final note, Pettis [1] also concluded that 12 basis functions were sufficient 

for modeling the biaxial dipole using a different biaxial substrate. 
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Figure 4-3:  Current distribution for half wave gap-fed dipole: N = 6, 12, 18 and 24 

expansion functions with biaxial permittivity (εx, εy, εz) = (2, 5, 8) and no rotation 

 

4.3.1.2.2 Input Impedance 

Input impedance is itself an important performance metric in evaluating any antenna.  

However, a more important metric may be the resonant length.  We can use input impedance to 

determine resonant length as the resonant length of an antenna is the length for which it has zero 

reactance (imaginary impedance).  We will compute input impedance for all of the dipoles we 

consider.  Further, we will determine the resonant length of several dipoles and compare our 

results to those computed by Pettis [1].  We note that Pettis used the transition matrix dyadic 

Green’s function while we use the eigenvector dyadic Green’s function 

The input impedance of a network can be calculated using [1] 

*

inin

s
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P
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(4.3.4) 
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where Ps is the input power and Iin is the total input current.  Harrington [41] defines the complex 

input power delivered to an antenna as 
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S

sss sdJEP *

 
(4.3.5) 

where 
sE  is the tangential electric field produced by the induced (conduction) current (

sJ ).   As 

shown in equation (4.2.2), the tangential electric field induced on the antenna is equal to the 

negative of the tangential impressed electric field.  This is due to the boundary condition along 

the perfectly conducting antenna.  Making this substitution into (4.3.5) results in 
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(4.3.6) 

We can write the induced conduction current as the sum of the basis functions multiplied by the 

coefficient we computed by the method of moments.  In the introduction to this section, we 

discussed the electric field produced by the voltage gap source.  Substituting the expression for 

induced current and the impressed electric field (given in equation (4.3.1)) into the power 

equation results in  
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(4.3.7) 

When we integrate with respect to x , only the basis function containing xs is non-zero.  We have 

selected xs to be the center of the dipole.  Therefore, the only x-varying basis functions remaining 

after integration occur when 2
Np  .  With this understanding, the result of integrating (4.3.7) is 
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(4.3.8) 

Because we are using the triangular basis function,  sx xJ  is unity.  With this final substitution 

we obtain 
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(4.3.9) 

for the total power delivered by the source.   

Input impedance also depends on total current.  The total current, Iin, is given by the 

integral of the surface current at x = xs [1] or   
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Substituting the results in equations (4.3.9) and (4.3.10) into equation (4.3.4) results in 
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(4.3.11) 

For the dipole problem where M=1, the input impedance reduces to  

2

1
1,

Na
Z Min 

 

(4.3.12) 
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To verify our results, we first consider a gap-fed dipole printed on an isotropic 

substrate.  James and Hall [45, p.290] plots the input reactance and resistance versus antenna 

length for a center fed strip dipole printed on a substrate with relative permittivity 2.45 and 

height 0.2λ0.  The results in James and Hall show antennas of varying widths and we have 

chosen to recreate the case with a width of 0.001λ0.  Our results are shown in Figure 4-4.   

 

Figure 4-4:  Input impedance for gap-fed dipole with width of 0.001λ0 printed on  an 

isotropic substrate with εr = 2.45, height = 0.2λ0 

Our results for the isotropic comparison very closely match the published results with a resonant 

length between 0.6λo and 0.7λo, and peak input reactance close to 500Ω.  Our peak resistance is 

slightly lower than the published result which looks to be just over 1000Ω whereas ours is just 

under 1000Ω, but the overall agreement is very good given differences in computational 

accuracies.   

Proving that the moment method routine is arriving at the correct input impedance for 

the isotropic substrate, we want to compute the input impedance of the dipole when the substrate 
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is biaxial.  We can then use this information to determine resonant length dipoles by finding the 

length where the reactance goes to zero.  The computed input impedance for an unrotated and a 

rotated example are shown in Figure 4-5 and Figure 4-6. 

 

Figure 4-5:  Input impedance for gap-fed dipole printed on a biaxial substrate with 

permittivity (εx, εy, εz) = (2, 5, 8) and no rotation and height 0.2λo 
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Figure 4-6:  Input impedance for gap-fed dipole printed on a biaxial substrate with 

permittivity (εx, εy, εz) = (2, 5, 8) rotated by ψ1 = 30˚ ψ2 = 75˚ and height 0.2λo 

From the plots of input impedance, we can find the resonant length of the dipole.  The 

antenna is resonant when the reactance is zero.  We observe in Figure 4-5 and Figure 4-6 that the 

reactance goes to zero twice.  For comparison purposes, we are choosing the length where the 

reactance is zero and the resistance is a maximum.  The resulting resonant lengths for unrotated 

and rotated, strongly and weakly biaxial substrates are shown in Table 4-1.  The results show that 

in both cases rotating the medium results in a longer resonant antenna.   

Table 4-1:  Resonant Lengths for Microstrip Dipoles Printed on Biaxial Substrates 

(W=0.001λo) 

Permittivity (εx, εy, εz) Rotation (ψ1, ψ2) Height Resonant Length 

(2, 5, 8) 0˚, 0˚ 0.2λo 0.4736 λo 

(2, 5, 8) 30˚, 75˚ 0.2λo 0.4878 λo 

PTFE (2.45, 2.89, 2.95) 0˚, 0˚ 0.2λo 0.5637 λo 
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PTFE (2.45, 2.89, 2.95) 30˚, 75˚ 0.2λo 0.6035 λo 

4.3.1.2.3 Radiation Behavior 

The radiation behavior of the dipole antenna can be understood by analyzing the 

directive gain.  In this section we analyze the directive gain for dipoles printed on biaxial 

substrates with two different permittivity tensors and two different rotations.   

Before we can compute the radiation parameters of interest, we must formulate the 

radiated field.  In our reaction formulation, we place the expansion current in the isotropic region 

(region 0).  To compute the electric field in region 0 generated by this source, we need the dyadic 

Green’s function for a field in region 0 given the source in region 0.  This Green’s function was 

given in Chapter 3 and is repeated here for convenience 
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(3.1.1) 

The Green’s function in equation 3.1.1 can be used to compute the field below the source point.  

However, for the far field, we are interested in the field above the field point.  We can use the 

symmetrical property of the DGF to change the Green’s function we have into the Green’s 

function we need.  Using this property we obtained 
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 (4.3.13) 

for the field in region 0 at points above a source in region 0.  Note that in the derivation of 

(4.3.13), the order of the subscripts on the reflection coefficients is reversed.  Now, by applying 

the property shown in equation (4.2.3), the electric field is given by 
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(4.3.14) 

We expand the source vector exponentials resulting in 
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 (4.3.15) 

We note that the source current is located at the boundary between region 0 and region 1 making 

z’ zero.  After this substitution, the source terms only contain x and y components, the same 

components of the surface integral.  We can move the surface integral inside the spectral 

integral.  The result of these manipulations is 

 
 
 

     
 






































1

0000

0000

0

2

20

ˆ

ˆˆˆˆ

ˆˆˆˆ1

8
0

NM

m

m

x

m

xm

ykxki

S

vvhv

vhhhrki

z

o

yJxJaxesd

vRhRvv

vRhRhh
e

k
kdrE

yx






 

(4.3.16) 

Next, we change the order of the summation and integration of the source term.  The coefficient 

can be pulled out of the integral as it does not directly depend on position.  We see then that the 

integral is simply the Fourier transform of the x-directed basis functions.  The field can thus be 

expressed by 
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 (4.3.17) 

In the far field we assume rr   so the 
rki

e
0  terms will be rapidly varying such that 

integral contributions are zero on average.  This allows us to apply the method of stationary 

phase.  When the field is written in the form of (4.3.17) we can obtain the stationary phase 

approximation in two steps as derived by Pettis [1, Appendix L].  First, we extract the slowly 

varying terms from the integrand which yields 
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 (4.3.18) 

Then we replace the remaining integral over kx and ky with rik

z e
r

i
k 0

2
0


 .  This gives us the final 

radiated electric field  
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(4.3.19) 

When we consider far field radiation patterns we usually consider the θ and φ 

directed fields.  Furthermore, we want to evaluate ĥ , v̂ , and R at  coscos0kkx   and 

 sinsin0kk y   where θ and φ are the observation angles.  Therefore, we want to convert from 

Cartesian to spherical coordinates.  Pettis [1, Appendix Q] showed that  
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So, we can write 
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(4.3.21) 

The θ-directed field ( E ) and phi-directed field ( E ) can be expressed by  
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(4.3.23) 

which gives us the final electric field formulation 
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(4.3.24) 

First, we want to use these results to compute directive gain.  According to Balanis 

[46] directive gain is the ratio of radiation strength in a specific direction to the radiation strength 

of a reference antenna.  This ratio is given by [46] 
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where 
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Substituting (4.3.26) into (4.3.25) we obtain 

 
   













2

0 0

22

22

sin

4,

ddEE

EE
D

 

(4.3.27) 

for the directive gain of the antenna.  Directivity is the peak directive gain in the given direction.  

Directivity is computed using 
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(4.3.28) 

Katehi and Alexopoulos [47] considered the effect of substrate thickness for a printed 

dipole on an isotropic substrate with εr of 2.35.  They modeled resonant length half-wave wire 

dipoles with radius 10
-4

λo.  According to Stutzman and Thiele [23], a wire dipole of radius r can 

be approximated by a flat printed dipole of width 4r.  We will consider the same dipole lengths 

and substrate thicknesses but we will model the flat printed dipole with a width of 4x10
-4

λo.  

The first case is the thinnest substrate with thickness of 0.2λo.  Katehi and 

Alexopoulos give the exact length of this dipole as 0.369345λo.  Our result, shown in Figure 4-7, 

agrees with the published result in [47].   
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Figure 4-7:  Radiation pattern of half-wave dipole printed on isotropic substrate of height 

0.2λo (εr=2.35) 

 

Katehi and Alexopoulos were interested in the effect of substrate thickness (or height) 

on the antenna behavior.  Specifically, they analyzed the lobing effect of increasing substrate 

thickness.  When the substrate is increased to 0.975λo, Katehi and Alexopoulos show two lobes 

in the radiation pattern.  We also show two lobes (Figure 4-8) for this substrate thickness.  In this 

case, the actual length is not specified in paper.  Using the published figure of resonant length 

versus substrate height, we modeled the dipole with length 0.38λo.  Clearly, this is not as precise 

a value as what was published for the previous case, but it is a good enough approximation to 

recreate the radiation patterns published by Katehi and Alexopoulos, as shown in Figure 4-8.  

Finally the substrate thickness is increased to 1.05λo resulting in three lobes in the radiation 

pattern.  The simulated dipole had a length of 0.375λo and again the input reactance is on the 
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order of 10
-10

.  Our result shows three lobes (Figure 4-9) and again agrees with the published 

result. 

 

Figure 4-8:  Radiation pattern of half-wave dipole printed on isotropic substrate of height 

0.975λo (εr=2.35) 
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Figure 4-9:  Radiation pattern of half-wave dipole printed on isotropic substrate of height 

1.05λo (εr = 2.35) 

 

We also present the published results in Figure 4-10 for comparison.  The substrate 

heights are 0.2λo, 0.975 λo and 1.05 λo for plots (b), (c) and (d), respectively.  

 

Figure 4-10:  Patterns for dipole printed on isotropic substrates of varying heights – from 

[47]  P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and 

permittivity on printed circuit dipole properties”, IEEE Trans. Ant. Prop. vol. 31, no. 1, pp. 

34-39, January 1983. 

 

This analysis verifies our code against dipoles printed on isotropic substrates.  We 

will now focus on dipoles printed on biaxial substrates.  First, we again verify our code against 

existing results.  In his dissertation, Pettis [1] studied gap-fed microstrip dipoles printed on a 

biaxial substrate.  He presented directive gain patterns for dipoles printed on an unrotated biaxial 

substrate with permittivity tensor (εx, εy, εz) = (5, 3, 4).  Pettis presented patterns for resonant 
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length dipoles on substrates of three thicknesses.  We repeated his analysis and found that our 

results agree.  Our directive gain patterns are shown in Figure 4-11. 
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Figure 4-11:  Directive gain for gap-fed dipole with biaxial permittivity (εx, εy, εz) = (5, 3, 4) 

as height is varied  

 

The biaxial substrate considered by Pettis is somewhat weakly biaxial.  We consider a 

strongly biaxial medium with permittivity tensor (εx, εy, εz) = (2, 5, 8) and the very weakly 

biaxial PTFE cloth.  In Figure 4-12 we present the directivity patterns for resonant dipoles 

printed on both unrotated and rotated strongly biaxial substrates (thickness 0.20λo) and Figure 

4-13 we present the same results using PTFE cloth.  We note that upon rotation, the directive 

gain of the antenna on the strongly biaxial substrate becomes considerabley wider.  However, on 

the weakly biaxial substrate, the difference is negligible.  We observed a similar behavior with 

PTFE when studying the resonant length.  We can then conclude that the orientation of the 

biaxial medium is increasingly important as the strength of the biaxial anistropy increases.   



151 

151 

 

 

Figure 4-12:  Directive gain for resonant half wavelength gap-fed dipole printed on a 

biaxial substrate with permittivity (εx, εy, εz) = (2, 5, 8)  

 

Figure 4-13:  Directive gain for resonant half wavelength gap-fed dipole printed on PTFE 

cloth 
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4.4 Rectangular Microstrip Patch Antenna 

We now focus on the more general rectangular microstrip patch antenna fed by a 

coaxial probe.  A diagram of the geometry is shown in Figure 4-14.  In the case of the patch, the 

width (W) can be much larger than that of the dipole.  This additional size makes the problem 

more complex.  We will consider currents directed in both x and y.  Therefore, we will need the 

entire matrix described by equation (4.2.38).  The complexity of the solution will increase as 

there will be four complex integrals to solve instead of one.  Additionally, the patch antenna will 

be fed by a coaxial probe as described in Section 4.2.1.1.2.  The probe feed is a more complex 

excitation than the delta gap source.  Modeling the probe feed requires a different Green’s 

function and normal field components in additions to the tangential components.   

PEC
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z

y
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L

Microstrip Patch

z=0
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feed point
probe

 

Figure 4-14:  Rectangular Microstrip Patch Antenna Geometry 

The analysis of the microstrip patch antenna focuses primarily on the effects of 

varying patch parameters on the input impedance and resonant length of the patch.  We also 

consider the radiation behavior of the patch antenna, as we did for the dipole.  A majority of 

references surveyed analyzed patch antennas with a 1.5 width-to-length ratio so we also consider 

patches with these dimensions.  Two approaches to resonance analysis were represented in the 
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literature.  In the first, a given physical patch dimension is set and the frequency is varied until 

the resonant frequency can be determined.  In the second, the width-to-length ratio is fixed and 

the electrical length of the antenna is varied to determine the resonant length.  The later approach 

was used in the input impedance analysis of the dipole antenna in the previous section and will 

be used again for the patch antenna analysis.  This provides a general design solution that could 

be applied to any frequency of operation. 

4.4.1 Reaction Equation 

The microstrip patch antenna currents are computed using the method of moments.  

The governing reaction equation was derived in Section 4.2.1.  To compute the patch antenna 

currents, we use all four integrals in the Z-matrix as described by equation (4.2.26) and the V-

vector is computed using the integral described by equation (4.2.36).  The resulting currents are 

used in our analysis of the patch antenna. 

4.4.2 Basis Function Convergence 

Determining the proper number of basis functions required to accurately model the 

rectangular patch antenna is necessary to know that we are arriving at accurate solutions.  The 

number of basis functions is deemed sufficient if there is convergence in the solution.  In the 

dipole section, we showed that the current coefficients converged as we increased the number of 

basis functions.  Current coefficient convergence is more difficult to show in the patch antenna 

case as the currents are two dimensional.  A more straight forward metric to monitor is the input 

resistance.  As will be derived in this section, the input impedance uses the current coefficients 
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and the voltage vector elements.  It then follows that if the impedance is converging, these 

elements will be converging as well.   

We primarily consider a rotated ((Ψ1, Ψ2) = (30˚, 75˚)) biaxial medium of length 

.175λo, width W=1.5L, and height 0.02λo.  In this case the width is larger than the length and we 

have the most general type of a permittivity tensor (full matrix due to the rotation).  We 

investigate this antenna in rigorous detail to understand the basis function convergence.  First, we 

observe the effect of increasing the number of basis function on the current coefficients when 

M=1 as shown in Figure 4-15.  We observe that the current is converging as N increases to 18 

basis functions (N=18), but with 20 basis functions, the solution becomes unstable.  A triangular 

current basis function gives rise to a step discontinuity in the charge (charge being the derivative 

of current).  As the basis functions become very small, this charge discontinuity becomes a larger 

portion of the basis function, making the solution unstable.  We do not want our solution to be 

dominated by this discontinuity, so ideally we want to back off of N=18 and use N=12.  Also 

note that, in this instance, the probe is positioned at x = 0.25λo.  The real part of the current 

coefficients, in Figure 4-15(a), shows a discontinuity at 0.25λo.  This is to account for the 

continuity of current from the probe.  We do not see this discontinuity in the imaginary part of 

the current because we assumed the current on the probe was real (1A).     



155 

155 

 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Real current coefficients along Length (x)

x position

re
al

(


c
)

 

 

N=8

N=10

N=12

N=14

N=16

N=18

N=20

N=22

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Imaginary current coefficients along Length (x)

x position

im
ag

(


c
)

 

 

N=8

N=10

N=12

N=14

N=16

N=18

N=20

N=22

    
 (a)                                                                                                               (b) 

Figure 4-15:  Current coefficients along the length of a rectangular microstrip antenna 

(W/L=1.5) on rotated biaxial substrate (a) real, (b) imaginary 

Next, we modeled the input impedace versus electrical length for N=10, 12 and 14.  

The results are shown in Figure 4-16.  Note, we normalized the x-axis to a length of 0.1733λo to 

demonstrate the relative electrical lengths (frequency shifts).  The figure shows that the 

resonance is shifting slightly as the number of basis fucntions change.  However, this change is 

less than 0.5%.  Also, we see that the peak impedance values also change only slightly (by less 

than 5Ω).  We conclude then that with 12 basis functions the solution is adequately converged 

(which is the same thing concluded for the dipole). 
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Figure 4-16:  Input impedance behavior for M=1 and N is increased from 10 to 14 

 

Up to this point our analysis has concentrated on the number of basis functions along 

the length (in the x-direction).  We also need to know how many basis functions are necessary 

along the width.  Figure 4-17 shows the input impedance behavior as M (the number of basis 

functions along the width) is increased.  Here we see that for M= 1, 3 and 4 there is even less 

variation than there was when we changed N from 10 to 14.  This implies that there is little 

variation in the current along the width.  This most likely is due to the fact that the probe is 

centered along the width and the dominant cavity mode excited has uniform H-field in the y-

direction.  The result is a nearly uniform current distribution along the width of the antenna.  

Future work, as will be discussed in Chapter 5, could investigate further the modal behavior of 

resonant structures in biaxial media.   



157 

157 

 

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
0

10

20

30

40

50

60

70

80

90

Im
p
e
d
a
n
c
e
 (


)

Normalized Electrical Length (L/(.1733*
o
))

Input Impedance for patch on Rotated Biaxial Substrate (W=1.5*L)

 

 

M=1

M=3

M=4

 

Figure 4-17:  Input impedance behavior for N=12 and M is increased from 1 to 4 

 

We performed the same analysis with a patch on an isotropic substrate (the same 

antenna in reference [48]), and an unrotated biaxial substrate with a narrow patch antenna.  

These analyses reached the same conclusion; very little change in input impedance was observed 

as M increased and N=12 was sufficiently converged.  Therefore, for our purposes, we conclude 

that 12 basis functions along the length of the antenna and 1 basis function along the width will 

be adequate for modeling the input impedance behavior of a patch antenna.  As previously 

discussed, the x-directed currents will have a triangular variation in the x-direction and a uniform 

(rectangular pulse) variation in the y-direction.  Note that the uniform y-dependence is required.  

This is not the same as saying there is no y-dependence.  If there were no y-dependence, we 

would not be bounding the antenna in the y-direction.  The single uniform pulse is necessary to 

define the width of the antenna.  
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We also analyze the radiation patterns of the patch antennas.  We want to be sure that 

the patterns are converging as we increase the number of basis functions as well.  Figure 4-18(a) 

shows that as the number of basis functions in y (M) increases from 1 to 4, the principal 

polarized radiation pattern does not change.  This would be expected if the dominant current is 

along the x-dimension as was concluded in our investigation of the input impedance 

convergence.  Figure 4-18(b) shows the cross-polarized radiation field.  We observe that the 

magnitude is small and peak magnitude varies little as M increases.  However, there is a change 

in the shape of the cross-pol pattern when increasing M from 1 to 2; the shape remains the same 

as M is increased beyond two.  Therefore, when computing currents for radiation analysis we 

will use N=12 and M=2.   

 
(a)                                                                                                            (b) 

Figure 4-18:  Radiation patterns for N=12 and M is increased from 1 to 4 (a) principal 

polarization (b) cross polarization 

4.4.3 Performance Analysis 

The analysis of the rectangular microstrip patch antenna primarily focuses on input 

impedance and resonant length.  We also analyze the radiation behavior considering both the 

principal polarized fields and the cross-polarized fields.  Cases of varying substrate thicknesses 
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(heights), patch widths and substrate permittivities are computed and discussed to better 

understand the behavior of antennas printed on biaxially anisotropic substrates. 

4.4.3.1 Input Impedance, Resonant Length and Impedance Bandwidth 

The focus of the patch antenna analysis is input impedance, resonant length and 

impedance bandwidth.  All of these parameters will be computed from the input impedance of 

the antenna.  The delta gap source model we applied to the dipole antenna is not applicable to the 

patch antenna.  Therefore, we must derive a new expression, beginning again from [1] 
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II
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(4.4.1) 

where Ps is the input power and Iin is still the total input current and, again, the complex input 

power delivered to the antenna is given by [41] 
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(4.4.2) 

tan,iE  is the impressed tangential electric field along the conductor (antenna) due to the vertical 

probe current (impressed current) while *

cJ  is the complex conjugate of the induced conduction 

current along the antenna.  The impressed tangential field is not known, as it was for the gap 

feed.  As discussed in Section 4.2.1.3, this field can be computed using the DGF presented in 

(2.2.16).  The electric field is computed using 
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Note that the primed (source) terms are grouped together.  The unprimed (field) terms are not 

dependent on the primed terms.  While the primed terms do depend on the values of kx and ky, we 

can change the order of integration.  We move the volume integral over V   inside the spectral 

integral resulting in  
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(4.4.4)

 
The volume integral is the same integral we manipulated in the excitation integral of the reaction 

equation.  In Section 4.2.1.3 the volume integral reduced to the complex conjugate of the Fourier 

transform of the impressed current for the spectral expansion of each biaxial wave.  Following 

the same steps as outlined in Section 4.2.1.3 we can rewrite equation (4.4.4) in the form 
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(4.4.5) 

Now we substitute the expression in equation (4.4.5) into the power equation (4.4.2) which 

yields 
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(4.4.6) 

The induced conduction current is known after the method of moments solution is complete.  

This current is given by 
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(4.4.7) 

Since we are using Galerkin’s method the expansion and test functions have the same form.  The 

expansion functions in (4.4.7) are given by m

xJ  and 
n

yJ  and so the induced conduction current is 

the same as the test current multiplied by the current coefficients computed by the method of 

moments.  If we let the terms inside the square brackets associated with region 1 in the integral 

equal termsR1 , substitute (4.4.7) into (4.4.6) and let z´=0 (along the antenna), we obtain 
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(4.4.8) 

where 

xh0  is the x-component of the downward propagating, horizontally polarized wave, 


yh0  is 

the y-component, 

xv0  is the x-component of the downward propagating, vertically polarized 

wave, and 


yv0  is the y-component.  The current coefficients are constants that do not depend on 

any of the integration parameters.  Removing these coefficients from the integral and integrating 

over x´ and y´ yields 
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The resulting integral is exactly the integral we computed for the V-vector in the method of 

moments solution (see equation (4.2.37)).  The power then can be written as the sum of the 

product of each term in the current coefficient vector and voltage vector (or dot product) 

 
n

nnm

m

ms VbVaP **

   
(4.4.10) 

The current on the probe is assumed to be 1 A, therefore the input impedance of a probe-fed 

microstrip patch antenna is given by 
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(4.4.11) 

This is the same equation presented by Pozar in [19] and will be used in our input impedance 

analysis. 

4.4.3.1.1 Isotropic and Uniaxial Substrates 

 

The first antennas modeled are reference antennas used to verify our results against 

published results.  We have chosen two reference patch antennas, one on an isotropic substrate 

and one on a uniaxial substrate.  The chosen isotropic reference is a rectangular microstrip patch 

antenna by W. F. Richards [48].  In his section on microstrip antennas, Richards uses the 

reference antenna to demonstrate an empirical method of determining the probe self recactance.  
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We use this method in our analysis to help determine resonant length.  The probe reactance can 

be approximated using a simple equation presented by Pozar [19] for isotropic substrates.  

However, this expression is not applicable in complex media.  In fact, in Pozar’s paper on 

microstrip antennas printed on uniaxial substrates, he ignores probe reactance when computing 

input impedance.  As discussed previously, our idealized model does not lend itself to analyzing 

the probe self impedance term in detail. 

The isotropic reference used is a rectangular patch with length of 7.62 cm and width 

of 11.43 cm.  The substrate has permittivity of 2.62εo and height of 0.16 cm.  The frequency is 

varied in the 1200 MHz region.  Our results are shown in Figure 4-19(a).  Observe the sharp drop 

in the imaginary part of the input impedance around 1205 MHz.  While this is a resonant type of 

behavior, the reactance does not actually pass through zero.  According to Richards [48], this 

offset is due to the probe self impedance (which is ignored in Figure 4-19(a)) and the probe 

reactance can be determined by finding the center of this drop off.  After subtracting the probe 

reactance from the computed input reactance, the input impedance plot changes to a more 

recognizable resonant behavior (as shown in Figure 4-19(b)). 
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Figure 4-19:  Input impedance for isotropic microstrip antenna (a) prior to probe 

reactance compensation, (b) with probe reactance compensation 

 

We do note a few deviations in our result from Richard’s published result [48].  First, 

the resonant frequency here is approximately 1205MHz whereas in the published result it is 

1225MHz.  This is a 25MHz or 2% difference.  This may be attributed to several sources.  First, 

the medium permittivity is not explicitly described as lossless and there is no loss tangent 

attributed to it.  We assumed it to be lossless, but there may have been a loss that could account 

for some deviation.  Also, an altogether different model was used, which could account for some 

additional deviations.  Finally, in all of the patch modeling, our substrates are very weakly 

isotropic.  While this is likely to be a smaller contribution, all together these sources could 

account for the 2% difference.  The other deviation is in the approximated probe reactance.  The 

reference shows a probe reactance of approximately 7.5Ω while we arrive at 22.5Ω.  However, 

the reference does not describe the model used for the probe.  If their probe diameter is larger 
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(less inductance) than our idealized model, this would account for the difference in probe 

reactance.       

We also consider the patch antenna printed on a uniaxial substrate as investigated by 

Pozar [26].  The material of interest is “Epsilam-10”, which is known to be a negative uniaxial 

material with (εx, εy, εz) = (13, 13, 10.2).  Pozar considered three media, all with εz of 10.2.  He 

considered a positive uniaxial medium with εx of 6, an isotropic medium with ε of 10.2 and the 

negative uniaxial Epsilam-10.  He plots the resonant length of all three versus substrate height.  

We consider a subset of his analysis.  We compute the resonant length for three heights of 

Epsilam-10, then compare the other two media at a height of 0.02λo.  We have chosen these 

points to show that our code provides similar resonant length results and the same trends 

demonstrated by Pozar. 

 

Figure 4-20:  Input impedance for microstrip patch antenna with width of 0.23λo printed 

on uniaxial substrate with height of 0.02λo.  (a) positive uniaxial: (εx, εy, εz) = (6, 6, 10.2), (b) 

negative uniaxial: (εx, εy, εz) = (13, 13, 10.2) 

Figure 4-20 shows the input impedance for the two uniaxial substrates at height 

0.02λo.  Note that the scales for impedance for the two cases are different.  Also note that the 
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“probe reactance” approximation proposed by Richards [48] has been used here; a reactance 

term has been subtracted out of the computed reactance at the resonant point.  Figure 4-21 shows 

the summary of the 5 patch antennas considered.  We observe the same trend as demonstrated by 

Pozar.  As height increases, resonant length decreases.  We also see that as εx decreases, resonant 

length increases.  The isotropic medium resonant length is closer to the resonant length of 

Epsilam-10 than to the uniaxial medium with εx of 6.  These are the same behaviors published in 

Pozar’s paper [26] and the lengths themselves appear to match as closely as can be discerned 

from the figure provided.  However, a more important note of comparison is with measured 

results.   Pozar published a chart with measured results from an antenna printed on Epsilam-10 

(substrate height of 0.02λo) and used this measured result to verify his computation.  The 

measured resonant length is .1423λo and Pozar’s computed resonant length is .1431λo.  Our 

computed resonant length is .1429λo which compares very well with Pozar’s computed result and 

is actually slightly closer to the measured result than Pozar’s.   
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Figure 4-21:  Resonant length of probe fed patch antennas on uniaxial (one isotropic) 

substrates of varying heights 
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This verifies our results against simulated and measured data.  It also confirms that 

Richards’ method for subtracting out a probe reactance, or “residual reactance”, term at 

resonance is an adequate method for determining resonant length.  In effect, Richards’ method is 

defining resonant length as the point of peak resistance and a discontinuity in reactance then 

forcing the input reactance to zero at that point.  We have chosen to ignore probe impedance (as 

Pozar did as well) with the idealized probe model.  Therefore, we will not verify whether or not 

this term is equal to the probe reactance.  We continue to use this method in our analyses as it 

proved useful in the uniaxial case, but we call this term residual reactance so as not to confuse it 

with the probe reactance that may be computed with a rigorous probe model. 

4.4.3.1.2 Biaxial Substrates 

The isotropic and uniaxial results verified our methodology for modeling a microstrip 

patch antenna.  This method is used to model patch antennas printed on biaxial substrates.  The 

substrates considered have biaxial permittivities of (εx, εy, εz) = (2, 5, 8) and are either unrotated 

or rotated by ψ1 = 30˚ and ψ2 = 75˚.  The substrate height varies for different cases.  For most 

cases, the typical width-to-length ratio of 1.5 was used.  We also consider two special cases of 

the square antenna where the width is equal to the length and a narrow patch antenna where the 

width-to-length ratio is 0.55.  This width is larger than a dipole, but still smaller than the length.   

We are primarily interested in the resonant length and impedance bandwidth of the 

antennas.  We have already defined resonant length.  The impedance bandwidth is determined 

from the return loss.  Return loss is computed from the voltage reflection coefficient [49] given 

by 
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(4.4.12) 

where Γ is the reflection coefficient, Zin is the input impedance and Z0 is the characteristic 

impedance (we are using 50Ω, a common standard).  Then the return loss (RL) in dB is 

computed using 

 10log20RL
 

(4.4.13) 

For each antenna we first determined the resonant length with the probe at some arbitrary 

location.  Next, the antenna length was fixed at resonance and the probe was moved until we 

located the point where the input resistance was approximately 50Ω.  We then ran these 

parameters across electrical lengths.  We determined the 10dB impedance bandwidth of the 

antenna from the -10dB points on the return loss figure.  Figure 4-22 through Figure 4-25 are 

representative of the input impedance and return loss results obtained for the antennas modeled.  

In these representative cases the thickness of all four substrates is 0.02λo and the width-to-length 

ratio is 1.5.  A total of 16 cases have been considered.  Table 4-2 summarizes the behaviors of all 

of the antennas modeled.  Note that we have included the residual reactance term (Xres) as 

previously discussed. 
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   (a)                                                                                                                (b) 

Figure 4-22:  Input impedance (a) and return loss (b) of rectangular patch printed on 

unrotated biaxial substrate (2, 5, 8) of height 0.02λo  
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 (a)                                                                                                              (b) 

Figure 4-23:  Input impedance (a) and return loss (b) of rectangular patch printed on 

rotated (ψ1 = 30˚ ψ2 = 75˚) biaxial substrate of height 0.02λo  
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(a)                                                                                                             (b) 

Figure 4-24:  Input impedance (a) and return loss (b) of rectangular patch printed on 

PTFE cloth of height 0.02λo  

 

0.146 0.148 0.15 0.152 0.154 0.156 0.158 0.16 0.162
-30

-20

-10

0

10

20

30

40

50

Input Impedance for Microstrop Patch on Isotropic Substrate: 
epsilon = 8, (x

probe
, y

probe
) = (.178*L,0) h=0.02

o
, W=1.5*L

Im
p
e
d
a
n
c
e
 (


)

Electrical Length (L/
o
)

 

 

real

imag

 
0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Return Loss vs. Electrical Length Normalized to Resonant Length RL=0.1539*lambda
o

Normalized Electrical Length

R
L
 (

d
B

)

 
 (a)                                                                                                              (b) 

Figure 4-25:  Input impedance (a) and return loss (b) of rectangular patch printed on 

isotropic substrate (εr = 8) of height 0.02λo  

 

Table 4-2:  Half-Wave Resonant Lengths of Rectangular Microstrip Patch Antennas 

Case 

Permittivity   

(εx, εy, εz) 

Rotation  

(Ψ1, Ψ2) W/L height/λo 

xs/L         

probe 

pos. 

Xres  

(Ω) 

Res. 

Length 

(L/λo) 

 

BW 

(%) 

1  (2, 5 ,8) (0˚, 0˚) 1.5 0.02 0.394 80 0.169 1.06 

2 (2, 5 ,8) (0˚, 0˚) 1.5 0.01 0.405 35 0.175 0.65 

3 (2, 5 ,8) (0˚, 0˚) 1.5 0.03 0.392 70 0.168 1.75 
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4 (2, 5 ,8) (0˚, 0˚) 1.5 0.10 0.430 17 0.142 7.20 

5 (2, 5 ,8) (0˚, 0˚) 1 0.02 0.390 184 0.174 0.80 

6 (2, 5 ,8) (0˚, 0˚) 0.55 0.02 0.126 285 0.182 0.55 

7 (2, 5 ,8) (30˚, 75˚) 1.5 0.02 0.040 160 0.173 1.16 

8 (2, 5 ,8) (30˚, 75˚) 1.5 0.10 0.407 18 0.142 9.70 

9 (8, 5 ,2) (0˚, 0˚) 1.5 0.02 0.359 20 0.217 0.50 

10 

(2.45, 2.89, 2.95) 

[PTFE] (0˚, 0˚) 1.5 0.02 0.404 50 0.274 2.17 

11 

(2.45, 2.89, 2.95) 

[PTFE] (30˚, 75˚) 1.5 0.02 0.402  58 0.274 2.19 

12 8 [isotropic] - 1.5 0.02 0.178 107 0.154 0.87 

13 8 [isotropic] - 1.5 0.01 0.283 235 0.172 0.58 

14 8 [isotropic] - 1.5 0.03 0.244 64 0.156 1.70 

15 2 [isotropic] - 1.5 0.02 0.412 30 0.330 2.70 

16 5 [isotropic] - 1.5 0.02 0.350 86 0.208 1.65 

 

The first parameter we investigated was the height of the substrate.  We modeled 

patch antennas on unrotated biaxial substrates with heights 0.01λo, 0.02λo, 0.03λo, and 0.10λo 

(Cases 1 through 4).  First, we observe that increasing the thickness of the substrate decreases the 

resonant length and increases the bandwidth.  The same is true when the medium is rotated 

(Cases 7 and 8); the thinner substrate (Case 7) has a longer resonant length and narrower 

bandwidth.  This resonant length behavior as a function of substrate thickness is the same 

behavior shown for the uniaxial substrate (in Figure 4-21).   

The next investigation was on the effect of the width on the resonant length.  We 

varied the width of the antenna printed on the unrotated biaxial substrate with a fixed height of 

0.02λo (Case 1, Case 5 and Case 6).  As width increases from 0.55L to 1.5L, the resonant length 

decreased.  If we consider the case of the dipole antenna as a special case of the rectangular 

patch, this trend is further verified as the resonant length of the very thin dipole is considerably 

greater than the patch.   
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The third parameter investigated is rotation.  When the strongly biaxial medium is 

rotated, the resonant length changed very little but the bandwidth increased by 2% (see Cases 1 

and 7).  This behavior is not observed when the medium is PTFE (Teflon cloth), which is weakly 

biaxial (Cases 10 and 11).  This behavior upon rotation raises the question of what controls the 

resonant length of the antenna on a biaxial substrate.     

Several additional antennas were investigated in an attempt to correlate the resonant 

behaviors of patches with biaxial substrates to those with isotropic substrates and answer the 

question of what is controlling the resonant length.  First, we ran isotropic antennas with 

permittivities equal to the individual permittivities in the unrotated biaxial tensor.  Observe for 

Cases 12, 15 and 16 in Table 4-2 that the resonant length of the patch on the unrotated biaxial 

substrate has a resonant length between the resonant lengths of the isotropic antennas with εr of 5 

and 8, but is closer to εr of 8 (Case 12).  We might have expected to observe a resonant length 

similar to an isotropic antenna with permittivity close to the average of the biaxial values, but 

this is not the case.   

The question is then “is the resonant length governed by the largest value in the 

tensor, the z-directed permittivity or some combination?”  To answer this question, we changed 

the biaxial medium from “positive” biaxial (increasing permittivity from εx to εz) to “negative” 

biaxial such that the maximum permittivity is εx and the minimum is εz as in Case 9 shown in 

Table 4-2.  If the resonant length is governed by the z-directed permittivity we expect the 

resonant length of this antenna to be closest to the resonant length of the antenna printed on the 

isotropic medium with εr=2.  The resonant length of this antenna is greater than the case where 

the permittivities are in the opposite order, it is closer to the εr=5 case. While this change did 



173 

173 

 

increase the resonant length significantly, it is not clear that the z-directed permittivity is 

dominating the resonant length.  It does however show that if you are looking for a shorter 

resonance, the z-component should be larger than the x-component.   

4.4.3.2 Radiation Behavior 

The radiation behavior of the patch antennas is also of interest.  We compute the far 

fields the same way we did in Section 4.3.1.2.3, using the method of stationary phase.  However, 

for the patch antenna we are interested in both the principal polarization pattern and the cross 

polarization pattern.  There are several definitions of cross polarization.  In his paper, Ludwig 

[50] proposes three definitions of reference (or primary) polarization and cross polarization: 

1.  “In a rectangular coordinate system, one unit vector is taken as the direction of the 

reference polarization, and another as the direction of cross polarization” 

2.  “In a spherical coordinate system the same thing is done using the unit vectors tangent 

to a spherical surface” 

3.  “Reference and cross polarization are defined to be what one measures when antenna 

patterns are taken in the usual manner” 

Definitions one and two are antenna-centric while definition three is receiver-centric.  

For example, the rectangular unit vector in definition one is taken such that a transmitting 

antenna is at the center of and x-y-z coordinate system.  In the third definition, the coordinate 

system is centered at some receiving antenna position.  Schuman [51] provides a straightforward 

way of computing the principal and cross polarization by defining the polarization vectors as 

      aap rr
ˆsinˆcosˆ

00 
 (4.4.14) 

      aac rr
ˆcosˆsinˆ

00 
 (4.4.15) 
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where 0  is angle for the dominant electric current, chosen to align with the antenna orientation 

and r  is the angle to the far field point (or the receiver).  If the far-field electric field is given by   

 EaEaE ˆˆ 
 

(4.4.16) 

then the principal and cross polarization electric fields are given by  

      EEpEE rrp 00 sincosˆ 
 

(4.4.17) 

      EEcEE rrc 00 cossinˆ 
 

(4.4.18) 

respectively.  This is a general formulation for principal and cross polarized fields of a reference 

antenna.  In our analysis, we assume 0  and r  are equal.  For this case the principal-pol reduces 

to E  and the cross-pol reduces to E . The principal and cross polarization fields are normalized 

by reference field as was done for the total directive gain shown in equation (4.3.25).  For all 

cases, we modeled the resonant length, 50Ω antennas from Table 4-2.    

  The first set of radiation patterns are for the patches printed on unrotated biaxial 

substrates with permittivity (εx, εy, εz) = (2, 5, 8).  The antenna width-to-length ratio is fixed at 

1.5 and the height (thickness) is varied with respect to wavelength.  Figure 4-26(a) shows the 

resulting principal polarization field and Figure 4-26(b) shows the cross polarized field.  We note 

that when the substrate is very thin (0.01λ0), the cross-pol field is very small (approximately –35 

dBi).  When the substrate is thicker, the cross-pol is larger.  For all three heights, the principal 

polarization pattern is essentially unchanged. 
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(a)                                                                                                                    (b) 

Figure 4-26:  Radiation patterns, unrotated biaxial substrate with permittivity (εx, εy, εz) = 

(2, 5, 8) and varied height (a) principal polarization, (b) cross polarization 

 

The patterns generated by the patch on the biaxial substrate can best be understood 

within the context of similar antennas on isotropic substrates.  Patterns generated by patches 

printed on isotropic substrates with εr = 8 and the same heights are shown in Figure 4-27 (a) and 

(b).  First, we observe that the principal polarization field (a) is again unchanged by changing the 

height.  We also note that these fields are approximately equal to the principal-pol fields 

generated by the biaxial patch.  The cross-polarized fields (b) however are different.  For a height 

of 0.02λo the cross-polarized field when the substrate is biaxial is approximately 7 dB smaller 

than when the substrate is isotropic.  When the height is increased to 0.03λo, the cross-pol is 

again larger than it was when the substrate is biaxial, but the difference is smaller (2 dB). Again, 

we observe that when the height is 0.01λo the cross-pol is very small and approximately the same 

as in the biaxial case.  We can say then, the cross polarized field of the patch on the biaxial 

substrate is less than the cross polarized field of the patch on the isotropic substrate with relative 

permittivity of 8.  Another point of comparison is isotropic substrates of varying relative 
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permittivities (Figure 4-28 (a) and (b)).  Close inspection of the cross-polarized fields show that 

when the isotropic relative permittivity is 5, the cross-pol field most closely matches the patch on 

the biaxial substrate.  This indicates that, with respect to the cross-polarized far field, the biaxial 

patch is acting most like it is an isotropic substrate of permittivity 5.  This indicates some 

interesting complex behavior of the patch printed on the biaxial medium.  We noted previously 

that the input impedance behavior more closely resembled the isotropic medium with 

permittivity 8.  Here we observe the radiated fields more closely resemble the isotropic medium 

with permittivity 5. 

 
       (a)                                                                                                                (b) 

Figure 4-27:  Radiation patterns, substrate with isotropic permittivity εr = 8 and varied 

height (a) principal polarization, (b) cross polarization 
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       (a)                                                                                                                (b) 

Figure 4-28:  Radiation patterns, substrate thickness 0.02λo varied isotropic permittivity (a) 

principal polarization, (b) cross polarization 

 

The orientation of the biaxial substrate is also of interest.  In Figure 4-29 the principal 

(a) and cross (b) polarization patterns are plotted for the rotated and unrotated biaxial substrate 

with permittivity (εx, εy, εz) = (2, 5, 8) and height 0.02λo.  The cross-pol behavior of the antenna 

on the rotated case is significantly different than any of the other patterns.  There are two wide 

lobes off boresight and nulls in the patterns at approximately ±10˚.  There may be some 

applications in which suppressing the cross polarized field at some angle is important.  The 

orientation of a biaxial substrate could be modified to achieve this.  
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(a)                                                                                                                  (b) 

Figure 4-29:  Radiation patterns, biaxial substrate with permittivity (εx, εy, εz) = (2, 5, 8) 

and two rotations (a) principal polarization, (b) cross polarization 

 

Again when the medium is PTFE cloth, a weakly biaxial medium, we observe a change in the 

shape of the cross polarized field as shown in Figure 4-30(b).  The figure shows a small dip or 

null in the cross-pol pattern at boresight and two wide lobes.  Also of interest is that the overall 

cross-pol pattern is much larger when the medium is rotated.  In our previous analyses, rotation 

of PTFE resulted in little change in antenna performance, however, here we observe that the 

cross-pol pattern is sensitive to medium rotation even when it is weakly biaxial. 
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(a)                                                                                                                (b) 

Figure 4-30:  Radiation patterns, biaxial PTFE cloth substrate with two rotations (a) 

principal polarization, (b) cross polarization 

 

We conclude our analysis of microstrip patch antennas printed on biaxially 

anisotropic substrates.  We have observed that the behavior of these antennas is quite complex.  

They cannot be simply predicted based on the individual permittivities that make up the substrate 

tensor.   Conclusions drawn from this work and future extensions of this work are discussed in 

Chapter 5.  
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5 CONCLUSIONS AND FUTURE WORK 

This research had two primary objectives.  The first was to provide a better 

understanding of the behavior of electromagnetic waves at interfaces with biaxially anisotropic 

materials.  The second was to understand the behavior of microstrip antennas printed on biaxially 

anisotropic substrates.  The first objective provided the framework for all subsequent analyses.  

In this chapter we summarize the primary contributions of this research and provide suggestions 

for future research in this area. 

In Chapter 2, we studied the reflection and transmission behaviors of electromagnetic 

waves at isotropic-biaxial interfaces.  We considered half-space cases with waves impinging 

from either medium type and consider the two-layer case.  We showed that if a wave is incident 

from an isotropic region to a biaxial region, the wave which is more strongly reflected can 

change.  At small angles of incidence the vertically polarized wave may be more strongly 

reflected; as the angle of incidence increases, the horizontally polarized wave may be more 

strongly reflected.  Although the vertically polarized wave may be more strongly reflected at 

small angles of incidence, it can still experience the Brewster angle effect and reach an angle of 

total transmission.  This is completely different from anything observed at an isotropic-isotropic 

boundary.  At these boundaries the horizontally polarized wave is always more strongly reflected 

than the vertically polarized wave.  We also showed that when there are two layers (a biaxially 

anisotropic layer bounded by two isotropic layers), the vertically polarized wave can experience 

total transmission at more than one angle of incidence.  This multiple Brewster angle effect was 

observed primarily due to the layer thickness. 
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In Chapter 3 we introduced the eigenvector dyadic Green’s function (E-DGF).   We 

also applied the symmetric property of the dyadic Green’s function (DGF) to obtain the Green’s 

function for the electric field in region 0 generated by a source in region 1.  We also discussed 

the benefits of using this Green’s function.  This work was the first to use this Green’s function 

to model microstrip antennas.  Pettis [1] used the same Green’s function to model Hertzian 

dipoles, but this work takes the E-DGF a step further in using it in a method of moments 

solution.   

In Chapter 4 we presented our results for microstrip antennas printed on biaxially 

anisotropic substrates.   First, we modeled gap-fed dipole antennas.  We showed that our results 

agreed with many published results including Pettis’s [1] results for the same type of dipoles.  

Pettis used a transition matrix dyadic Green’s function to model his dipole.  The agreement 

shown between the two is verification of the two methods.  We also showed that rotating the 

medium with respect to the reference coordinate system had little effect on the medium with 

weak anisotropy (PTFE cloth) but did have a significant effect on the medium with strong 

anisotropy.     

 The largest contribution of this work is the study of the patch antenna on biaxially 

anisotropic substrates.  This antenna had never been modeled before.  First, we showed that 

increasing the number of basis functions along the width of the antenna had little effect on input 

impedance and radiation performance.  This is revealing of the fundamental behavior of the 

medium as will be discussed later.  Next, we analyzed the input impedance behaviors as medium 

properties changed.  The results revealed that the resonant dimensions of a patch printed on a 

biaxial substrate are smaller than when the substrate is isotropic with the average permittivity of 
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the three biaxial values.  Similar to antennas printed on isotropic and uniaxial substrates, when 

the height of a biaxial substrate increases, the resonant length decreases and the impedance 

bandwidth increases.   Changing the orientation of the substrates with respect to the principal 

axes also changes the resonant length and bandwidth; for the cases we investigated, the rotation 

decreased the resonant length and increased the bandwidth.  These behaviors could be very 

valuable when designing individual microstrip antennas or even microstrip arrays. 

Antenna modeling also requires analysis of radiation patterns.  In Chapter 4, the 

principal and cross polarization patterns of the resonant patch antennas were analyzed.  The 

principal polarization pattern changed little for all of the cases we considered.  This is likely due 

to the fact that the currents along a half-wave resonant structure generally have the same 

behavior.  The cross polarization patterns, however, did vary considerably.  The orientation of 

the biaxial medium had a major impact on the shape of the cross-polarization patterns and the 

thickness of the substrate had a major impact on the magnitude.  The patterns also revealed that 

the cross-pol pattern of the antennas with a biaxial substrate did behave similarly to those of an 

antenna on an isotropic substrate whose permittivity is the average of the biaxial permittivities.  

The patch antenna analyses suggest that the biaxial substrate acts like a high permittivity 

substrate in some ways and a lower permittivity substrate in others.  This feature could offer 

benefits to antenna designers.  In the future, substrates could be engineered so that patch 

antennas would have specific cross-pol properties.   

Future work could further solidify the potential benefits of biaxially anisotropic 

material.  As discussed the resonant length of the patch antenna imitates that of an isotropic 

material with the largest value in the biaxial permittivity tensor.  This is valuable in that it 
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translates into a smaller resonant structure.  One drawback to using isotropic materials with large 

permittivities is that, in an array, mutual coupling increases with permittivity.  An extension of 

this work would be to consider two antenna systems (first two dipoles; then two patches) on 

biaxial substrates and analyze the mutual coupling between them.  The two antenna analysis 

could then be extended to arrays of antennas printed on biaxially anisotropic substrates.  The 

hope would be that biaxial media would suppress surface modes and other phenomena that limit 

the scan range of microstrip phased array antennas. 

Another application of biaxial materials with respect to microstrip antennas is using 

them as a superstrate.  The E-DGF could be modified to include a fourth layer.  The third layer 

could then be an isotropic substrate and the fourth layer ground.  With this structure, an antenna 

element could then be placed between an isotropic substrate and biaxial superstrate.  There could 

be some beam shaping properties of a biaxial superstrate that would be advantageous in antenna 

design.  

Another area of future work would be the rigorous modeling of the coaxial probe.  

This would require modeling the currents and the fields inside the biaxial medium.  It could also 

include modeling the fields at the probe-antenna junction.  This may require new basis functions 

that provide for better modeling of the discontinuity of current at the feed point.  All of this 

modeling effort would provide information about the probe self impedance, which was ignored 

in our study of the patch antenna.   

In our analysis of basis function convergence to model a patch antenna, we concluded 

that one basis function along the width was sufficient to compute input impedance of the patch 

antenna.  This suggests that the mode set up in the cavity is somewhat uniform along the width.  
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This behavior warrants further investigation.  To determine how the modes are set up, one would 

set up a cavity using equivalent currents on the boundaries and the equivalence principle used to 

determine the fields within the cavity.  This procedure could be extended to a moment methods 

solution for a microstrip antenna printed on a finite biaxial substrate.  This work would be an 

excellent area for future research.  

This dissertation has extended research in the area of biaxially anisotropic materials.  

As metamaterials become increasingly popular, materials we can only imagine today may be 

available in the near future.  When these materials mature, material properties will be one 

additional parameter in the antenna designer’s arsenal.  Understanding how to model these types 

of materials and being able to predict their behavior will be increasingly important.   

We have used a new, versatile Green’s function to develop electric field formulation 

and model microstrip antennas with the method of moments.  Research such as this provides the 

groundwork for this new and exciting area of antenna design.  This powerful algorithm provides 

the framework for future research in the area of biaxially anisotropic materials and their use in 

antenna applications.   
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