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Abstract

Data fusion technologies are widely applied to support a real-time
decision making in complicated and dynamically changing environ-
ments. Due to the complexity in the problem domain, artificial in-
telligent algorithms, such as Bayesian inference and particle swarm
optimization, are employed to make the decision support system
more adaptive and cognitive. This dissertation proposes a new
data fusion model with an intelligent mechanism adding decision
feedback to the system in real-time, and implements this intelligent
data fusion model in two real-world applications.

The first application is designing a new sensor management sys-
tem for a real-world and highly dynamic air traffic control problem.
The main objective of sensor management is to schedule discrete-
time, two-way communications between sensors and transponder-
equipped aircraft over a given coverage area. Decisions regarding
allocation of sensor resources are made to improve the efficiency
of sensors and communications, simultaneously. For the proposed
design, its loop nature takes account the effect of the current sen-
sor model into the next scheduling interval, which makes the sen-
sor management system able to respond to the dynamically chang-
ing environment in real-time. Moreover, the system design uses a
Bayesian network as the mission manager to come up with operat-
ing requirements for each region every scheduling interval, so that
the system efficiently balances the allocation of sensor resources
according to different region priorities. As one of this disserta-
tion’s contribution in the area of Bayesian inferencing, the resulting
Bayesian mission manager is shown to demonstrate significant per-
formance improvements in resource usage for prioritized regions
such as a runway in the air traffic control application for airport sur-
faces. This research work was supported by Sensis Corporation,
conducted in a collaborative fashion (1).

Due to wind’s importance as a renewable energy resource, the sec-
ond application is designing an intelligent data-driven approach to
monitor the wind turbine performance in real-time by fusing multiple



types of maintenance tests, and detect the turbine failures by track-
ing the turbine maintenance statistics. The current focus has been
on building wind farms without much effort towards the optimization
of wind farm management. Also, under performing or faulty tur-
bines cause huge losses in revenue as the existing wind farms age.
Automated monitoring for maintenance and optimizing of wind farm
operations will be a key element in the transition of wind power from
an alternative energy form to a primary form. Early detection and
prediction of catastrophic failures helps prevent major maintenance
costs from occurring as well. I develop multiple tests on several
important turbine performance variables, such as generated power,
rotor speed, pitch angle, and wind speed difference. Wind speed
differences are particularly effective in the detection of anemome-
ter failures, which is a very common maintenance issue that greatly
impacts power production yet can produce misleading symptoms.
To improve the detection accuracy of this wind speed difference
test, I discuss a new method to determine the decision boundary
between the normal and abnormal states using a particle swarm
optimization (PSO) algorithm. All the test results are fused to reach
a final conclusion, which describes the turbine working status at the
current time. Then, Bayesian inference is applied to identify poten-
tial failures with a percentage certainty by monitoring the abnormal
status changes. This approach is adaptable to each turbine auto-
matically, and is advantageous in its data-driven nature to monitor a
large wind farm. This approach’s results have verified the effective-
ness of detecting turbine failures early, especially for anemometer
failures. This research work was collaborated with AWS Truepower,
Inc. (2).
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1

Introduction

1.1 Data Fusion for Decision Support

Data fusion technologies are widely applied to support real-time decision mak-

ing in complex, dynamic environments, ranging from vehicular traffic control,

target classification and tracking to machine condition monitoring and weather

forecasting. The main role of such a decision support system is to aid the

operators to achieve the appropriate situation awareness state for their tacti-

cal decision-making activities, and to support execution of the resulting actions

(4). The information provided by the decision support system has an associ-

ated level of confidence or uncertainty, through the application of automated

algorithms and processes (5). For instance, in a multi-sensor environment,

the decision support system analyzes the sensor measurements using expert

knowledge to make decisions on target identities, situation assessment, and

threat assessment ensuring that the system is operating within defined bound-

ary conditions. These decisions regarding the system conditions are seldom

based on a single measurement. More often, decisions are made on the anal-

ysis of multiple data sources either from similar types of sensors or from a

completely separate and different ones.

As with such complex multi-sensor systems, the communal information

needs to be structured and organized in order to be effective. The data fu-

sion process combines data from multiple sensor sources, and gathers that

1



1. INTRODUCTION

information in order to achieve inferences, which are more efficient and poten-
tially more accurate than if they were achieved by means of a single source.
Various classes of algorithms have been developed to implement data fusion in
the multi-sensor systems. The mature techniques include Bayesian inference,
fuzzy logic, swarm intelligence, pattern recognition using signal processing al-
gorithms and multi-sensor multi-target tracking.

In addition, several types of data fusion models exist for combining sensor
data to support making decisions. Data fusion has its roots in the defence
research community of the early 1980’s. As a result the first data fusion mod-
els were either adapted from existing military process models or designed re-
taining a distinctly military flavor. More recently the use of data fusion has
broadened to include industrial, medical and commercial applications, so that
models have acknowledged this migration by reducing the military terminol-
ogy. In the 1980’s, the JDL model and Boyd control loop were first used for
modeling the military command process, but have since been widely used for
data fusion systems. The 1990’s saw the introduction of the Waterfall model,
the Dasarathy model, and the Omnibus model, etc (6). A common theme of
these models is the prescription of multiple levels of processing within the data
fusion process itself. However, the models are differentiated by the amount
of processing applied to the sensor data before transmission to the fusion pro-
cess, resolution of the data that is combined, and the location of the data fusion
process (7). The fusion model selected to combine sensor data depends on
the particular application.

With the increasing use of data fusion technologies for industrial and com-
mercial problems, the data fusion model is required to be capable of optimally
responding to the dynamically changing system. In this dissertation, I propose
a new data fusion model which satisfies this requirement with an intelligent
mechanism returning the feedback to the system in real-time. This model is
extended from the Omnibus model (8), which is shown in Figure 1.1. The new
model overcomes some of the main limitations of this previous model while
capitalizing on its advantages. Figure 1.2 presents the layout of my data fusion
model, the Intelligent data fusion model. Compared to Figure 1.1, instead of
only processing the context of system to make decisions, a threat assessment

2



1.1 Data Fusion for Decision Support

is added into the new model to come up with a set of possible operation as soft
decisions based on the current situation, and also to analyze the advantages
and disadvantages of taking one course of action over another. This extra pro-
cess task makes the decision support system more adaptive and reliable by
producing many different possible answers rather than only one.

Figure 1.1: The Omnibus data fusion model. This is a unified data fusion pro-
cess model, which consists of four main process tasks: Observe, Orientate, De-
cide, and Act.

The Intelligent data fusion model consists of four main modules, same as
the Omnibus model. These modules are used to address the process tasks in
data fusion and its functional objectives, which are observe, orientate, decide
and act. The intelligent model also explicitly closes the loop by taking account
of the effect of decisions in the real world. This cyclic nature of my model
facilitates not only the clarification of task-level measures of performance but
system-level measures of effectiveness.

1. Observe: The raw sensor data is recorded and pre-processed at this
stage to describe the phenomenon being measured. Firstly, the data is
processed to attain a common spatial and time frame. It is called the data

3



1. INTRODUCTION

Figure 1.2: The Intelligent data fusion model, extended from the Omnibus
model by adding a threat assessment.

alignment. Then, the data is analyzed as association performed among

data units of the same variable and between data units of different vari-

ables, based on the degree of proximity among variables. For example,

when continuously monitoring wind turbine performance to detect fail-

ures at an early stage, both the measurements of generated power and

pitch angle are highly correlated to the wind speed, but uncorrelated to

each other. So, two individual tests of power and pitch angle are de-

signed against wind speed, and executed separately to describe the tur-

bine current working condition from two different perspectives. This data

pre-processing also includes object refinement. The object refinement is

concerned with the identification and estimation of continuous (e.g. lo-

cation and velocity of aircraft) or discrete (e.g. behavior or attributes of

turbine performance) states of objects.

2. Orientate: At this stage, features are extracted by functions of the raw

or pre-processed measurement data. These functions are application-

4



1.1 Data Fusion for Decision Support

specific feature extractors. This feature extraction process is applied to
generate a minimum set of features that contain the maximum informa-
tion relevant to the problem. Then, the features are fed into pattern pro-
cessing, or pattern classification, which is a mapping from the extracted
features to the defined pattern classes in this problem domain. The class
labels represent meaningful and distinct categorization of the problem.
For example, to describe one interesting turbine working condition at cur-
rent time, multiple performance tests are designed on generated power,
rotor speed, pitch angle of this turbine, and also on the wind speed dif-
ference from its neighboring turbine. Each test result is one feature of
current turbine status. All the test results are fused to reach a final
working-condition pattern of this turbine, which may be complete shut-
down, under-performing, abnormally frequent default, as well as normal
working.

3. Decide: The current situation is assessed to obtain a decisional level
of inferences based on a statistical model, such as a Bayesian network.
This process is called threat assessment. Its output is a set of action
estimates with probabilities associated with them. The decision-making
component delineates this set of possible courses of action and the effect
they would have in the current situation, and then choose the action as a
hard decision which optimizes the system performance. For example, a
wind turbine diagnostic unit can automatically monitor the turbine working
status and identify the potential failures with a percentage certainty based
on any abnormal changes in the turbine performance.

4. Act: The action is undertaken to continuously update the system with
feedback information arriving from the decision-making component. The
feedback is an element of resource management and used to close the
loop by reallocating resources (e.g. sensors, communications and pro-
cessing) in order to support the objectives of the mission. For example,
once predict when and what types of failures are going to happen to a
turbine, the wind farm operators can fix the failures at an earlier stage to
avoid major breakdowns. With the recommended maintenance actions,

5



1. INTRODUCTION

the system controller can come up with an optimal maintenance schedule

to minimize the repair costs.

Table 1.1: Characteristics of data fusion levels

Characteristics Signal Level Feature Level Decision Level
Representation Level Low Medium High

of Information
Type of Sensory Multi-dimensional Features Logic decision

Information signal extracted from features
from signal

Model of Sensory Random variables Non-invariant Decision with
Information with noise form of degree of

features uncertainty

As shown in Figure 1.2, there are three representation levels of information:

raw data or signal, feature and decision. Table 1.1 illustrates a comparison of

the different fusion levels classified by the representation of information. The

Intelligent data fusion model comprises a process flow chart from the signal

level to the decision level, and certain fusion algorithms can be applied among

different levels. Usually, the fusion process is described based on the input

and output information types, such as the fusion modes of data in - feature out,

and feature in - decision out mentioned above.

This dissertation proposes the system-based implementation of the Intelli-

gent data fusion model to support decision-making in two real-world problems:

one is the sensor network management for air traffic control; the other is wind

turbine failure detection and maintenance. Due to the dynamically changing

environment and the complexity of system in both problem domains, artificial

intelligence algorithms, such as Bayesian inference and particle swarm opti-

mization, are employed to make the data fusion system more adaptive and

cognitive to solve problems quickly and in real-time.

6



1.2 Research Objective

1.2 Research Objective

Many real-world problem domains have dynamically changing environments.
For example, in the air traffic control system, the aircraft movement is affected
by the unconstant strength of airflow; and the varied weather condition is al-
ways an important influence to the energy production of a wind farm (9). More-
over, with the growing complexity of problem domain, it requires a decision
support system capable of dealing with the rapidly increasing amount of multi-
ple data sources. Therefore, the main objective of this dissertation is to design
an automatic adaptive decision support system, and implement it in solving
real-world problems that normally would require human intelligence.

The form of decision support system which is generally used in industry is
the rule-based system, also known as the expert system. It uses human expert
knowledge to make decisions. Expert knowledge is often represented in the
form of rules or as data stored in the computer (10). However, the rule-based
expert system exhibits human-level performance in some very narrow area,
which is incapable of learning or expanding its expertise as the external envi-
ronments changing. Also, it has to be supported and maintained by technical
people.

To overcome these limitations, the Intelligent data fusion model for decision
support I propose in this dissertation has the following properties,

• This data fusion model has a loop structure that returns the feedback of
decisions into the next time interval, so that it can respond to the dynami-
cally changing environment in real time, and execute the actions meeting
the system requirements with respect to the current circumstance.

• This model uses an artificial intelligent mechanism, which makes the de-
cision support system more cognitive and reliable (11). The cognitive
aspects of decision support systems focus on modeling the feedback-
loop process of human decision making by which a preferred option or a
course of actions is chosen from among a set of alternatives based on
certain criteria. For instance, I apply Bayesian network for threat assess-
ment in the system, in that it can create a set of possible operations based

7



1. INTRODUCTION

on current situation, and present confidence or uncertainty of taking one
course of action over another. I also apply particle swarm optimization al-
gorithm to make decisions more objectively and optimally. This algorithm
has simple computations, so that it can converge to an optimal solution
very quickly.

• This model is a data-driven approach, which makes the decision support
system more automatic and adaptive. It only needs the expert knowledge
in the system design phase, but requires no human in the loop execution.
The intelligent mechanism learns from the system behavior, and auto-
matically adapts the system parameters to the new changes. In addition,
due to its data-driven nature, this model is easily transferable from one
problem domain to another.

1.3 Research Contribution: System-based Design
and Implementation of Decision Support Sys-
tem

The design and implementation of an automatic adaptive decision support sys-
tem form the main thrust of this dissertation. The system parameters are op-
timized and controlled in real time to improve the system performance, by in-
tegrating the technologies of data fusion, signal processing and intelligent al-
gorithms. This methodology has been applied into two real-world problems:
the sensor network management for air traffic control, and the failure detection
and maintenance for wind turbines.

1.3.1 Sensor Network Management for Air Traffic Control

The objective of sensor network management is to determine sensor modes,
sensor search patterns and many other network parameters to increase their
collective effectiveness. Typically, sensors are used to observe phenomena in
a region of interest. The sensor settings and network settings are managed in

8



1.3 Research Contribution: System-based Design and Implementation of
Decision Support System

real time to improve the system performance (12). A few examples of the set-
tings of the sensor network that can be controlled include the detection thresh-
old, waveform parameters in active sensors such as pulse repetition interval,
communication sequences, sensor schedules and other network parameters.

Data fusion has been an active area of research for sensor network man-
agement, which strives to increase the quality of information gathered, and
decrease the amount of data transferred (13). The primary hurdle in apply-
ing fusion technology to wireless sensor networks is designing an efficient,
real-time, and low power system capable of transferring all critical information
content to the optimal processing and system output location. Algorithms ca-
pable of reducing the message size without destroying information are critical
to this area of sensor management.

In addition, the data fusion model of communication and signal processing
is constructed to link the system performance to the sensor control settings.
The model is the key to successfully achieving optimum performance. In order
to select the appropriate settings, the sensor or network manager must be able
to accurately predict the impact that new operating parameters have on the
global performance. The manager model includes estimates of a dynamically
varying environmental state, i.e. the observable events (scenarios) and the
sensor current performance. These estimates are incorporated into the model,
making the model more probabilistic than deterministic.

As more sensors and data become networked together, the management
problem is getting more complicated by the number of sensors, spectrum re-
source allocation, sensor placement, calibration, and fusion processing, etc.
To provide an automatic control of a group of sensors, the efficient intelligent
algorithms are needed in the sensor network management system (14). These
algorithms make management meet the real-time requirements adapted by the
dynamically changing missions and situations. The ability of self-organization
and optimization enables networks to be employed in a wide variety of appli-
cations. For example, if one considers global performance as the numerical
measure of the system efficacy, a robust multi-objective optimization algorithm
can be designed to efficiently manage the sensor measurement process, com-
munications and fusion process. So, several artificial intelligent algorithms are

9
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employed with data fusion model to solve the real-world problems quickly and
dynamically.

Figure 1.3: Sensor network management system framework for air traffic
control problem.

Figure 1.3 presents the sensor network management framework for air traf-
fic control problem in this dissertation. The sensors and network are controlled
by the sensor manager (15). Chapter 4 describes in detail the proposed sen-
sor management system dealing with the efficient resource allocation to meet
mission objectives of air traffic control. The sensors process information mes-
sages and send them to the central processing center, which fuses the obser-
vations to assess the current situation, including the aircraft profiles, such as
its position and velocity, and the sensor capabilities. The threat assessment
is achieved at the mission manager with the information fed by the processing
center. The mission manager, for example designed as a Bayesian network,
determines the situation specific parameters, goals, objective functions and re-
quirements for the network as time progresses. These network requirements
are sent to the sensor manager to determine the sensor and network settings.
Eventually, the sensor manager, for example applying the particle swarm op-
timization algorithm, decides the controls and sensor settings to configure the
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network, such as a sensor schedule.
In the air traffic control application, a sensor schedule is constructed every

time interval by integrating a Bayesian network with a particle swarm optimizer,
which simultaneously meets the measurement accuracy and update rate, while
minimizing the transmissions from the sensor. The Bayesian network, as a
mission manager, automatically determines the management requirements for
individual aircraft by monitoring the dynamically changing situations. This com-
ponent maintains the best overall performance possible from the entire system.
The particle swarm optimizer is used to form, test and search potential sensor
schedules for an optimal solution that maximizes the weighted performance es-
timates, in which the weights are selected as the management requirements
sent by the Bayesian network.

1.3.2 Cognitive Monitoring and Maintenance for Wind Tur-
bines

Wind energy is expected to play an increasingly important role in the future
national energy scene. With the development of the wind turbine installed ca-
pacity and increasing of the single unit capacity, the safety and reliability of
wind turbines have become more significant (16). However, without an effec-
tive monitoring system, under-performing or faulty turbines will cause a huge
loss in revenue (17, 18). Early detection of such failures help prevent these
undesired working conditions, and allow the operators to develop maintenance
plans with prioritized tasks (19). If failures are detected at an early stage,
the consequent damage is minimized or mitigated, and also repairs are bet-
ter scheduled. This leads to shorter down-times and lesser revenue losses.
Therefore, diagnosis and prognosis of potential faults are crucial to maintain
and improve the efficiency of the wind energy generation system.

Currently, condition monitoring technologies are used for wind turbine main-
tenance and repair, but their monitoring is based on vibration, noise and acous-
tic emission signals sensed from turbines. To avoid the lack of monitoring
information, extra diagnostic systems have to be installed in each single tur-
bine. The cost of extra systems is a problem. Also, it is difficult to transmit a
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large amount of data between the wind turbine and the central control room.
Moreover, there are other built-in diagnostic units developed for physical model
based faults such as bearing faults (20), and there are some effective features
to diagnose specific faults, such as wavelet transformation for spectrum de-
composition in mass unbalance fault diagnosis (21), but other minor also detri-
mental faults, such as anemometer and wind vane faults, are not fully studied
yet (3, 22).

This dissertation proposes an intelligent data-driven approach to monitor
the wind turbine performance at real-time by fusing multiple test results, and
detect the turbine abnormalities by tracking the turbine status variations. The
description of this approach is fully expanded in Chapter 5. This approach ap-
plies data fusion technologies for reducing the influence of uncertainties asso-
ciated with the measurement process. The data-driven and adaptable nature
of this approach also makes it capable of monitoring a large wind farm.

Figure 1.4: Wind turbine monitoring and maintenance system framework.

The turbine performance data are collected by the SCADA (Supervisory
Control And Data Acquisition) system. It is very straightforward to analyze tur-
bine performance to detect its faults. As shown in Figure 1.4, I develop multiple
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performance tests on power generated, rotor speed, pitch angle of individual

turbine, and also on the wind speed difference between two neighboring tur-

bines. In each test, multiple states are defined as features to distinguish dif-

ferent performance patterns. Then, all the test results are fused to reach a

final conclusion, which describes the turbine working status at current time,

including complete shutting down, under-performing, abnormally frequent de-

fault, as well as working properly. Fusing multiple tests is more effective than

any single test. For example, through extensive data mining of historical data

and verification from farm operators, some state combinations are discovered

to be strong indicators of failures, such as spindle failures, lighting strikes,

anemometer faults, etc, for fault detection. Next, a Bayesian network (BN)

is applied to automatically monitor the turbine working status and identify the

potential failures with a percentage certainty based on any abnormal changes

in the turbine performance. The main goal is to predict when and what types

of failures are going to happen, so that the farm operators can fix the fail-

ures at an earlier stage to avoid major breakdowns. Hence, BN recommends

the maintenance actions to the system controller to come up with the optimal

maintenance schedule, which minimizes the repair costs by using the particle

swarm optimization (PSO) algorithm.

1.4 Dissertation Outline

This dissertation is organized as follows:

Chapter 1 has given an introduction to the theory of decision support sys-

tem using data fusion technologies. This chapter proposes a new data fusion

model with intelligent mechanism, which is capable of optimally responding to

the dynamically changing environment. The design and implementation of this

methodology is the main thrust of this dissertation. In this chapter, I briefly

present the applications of the decision support system into two real-world

problems: the sensor network management for air traffic control, and the fail-

ure detection and maintenance for wind turbines.
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Chapter 2 describes the Bayesian network algorithm, which is an artificial
intelligence approach applied in the proposed data fusion model. Currently,
Bayesian network (BN) becomes a extremely popular probabilistic graphic model
for encoding and reasoning uncertain knowledge. This chapter includes the
mathematic theory of the presentation, inference and parameter learning of
Bayesian networks.

Chapter 3 presents a detailed description of the particle swarm optimiza-
tion (PSO) algorithm for continuous search space. PSO has been applied
successfully to solve various real-world optimization problems in engineering,
especially the NP-hard problems. This chapter also includes a presentation of
the numerous key features in PSO.

Chapter 4 proposes a new sensor management system for a complicated
and highly dynamic air traffic control problem. This chapter focuses on demon-
strating that the system performance with the Bayesian mission manager has
a significant improvement for the highest priority region, such as the airstrip
area. This research work was supported by Sensis Corporation, conducted in
a collaborative fashion (1).

Chapter 5 proposes an intelligent data-driven approach to monitor the wind
turbine performance in real-time by fusing multiple test results, and to detect
the turbine failures by tracking the turbine status variations. The test results
have verified the effectiveness of detecting turbine failures at an early stage,
especially for anemometer failures. This research work was collaborated with
AWS Truepower, Inc. (2).

Chapter 6 provides a conclusion of this dissertation and recommendations
for future work.
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Bayesian Networks

Bayesian networks (BNs), also known as belief networks, belong to the fam-

ily of probabilistic graphical models. These graphical structures are used to

represent knowledge about an uncertain domain. In particular, each node in

the graph represents a random variable, while the edge between the nodes

represent conditional dependencies among the corresponding random vari-

ables. These conditional dependencies in the graph are often estimated by

using known statistical and computational methods. Hence, graphical models

provide a principled approach to dealing with uncertainty through the use of

probability theory, and an effective approach to coping with complexity through

the use of graph theory.

BNs are known as a directed acyclic graph (DAG) that has become a pow-

erful tool in statistics, machine learning, and artificial intelligence communi-

ties. BNs are both mathematically rigorous and intuitively understandable (23).

They enable an effective representation and computation of the joint probabil-

ity distribution (JPD) over a set of random variables. BNs became extremely

popular models for encoding and reasoning uncertain knowledge in the last

decade. They have been used for applications in various areas, such as text

mining, natural language processing, speech recognition, signal processing,

bio-informatics, error-control codes, medical diagnosis, weather forecasting,

and cellular networks. I introduce the BNs algorithm in this chapter, and then

I adapt it as the mission manager in the sensor management system for air
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traffic control problem in Section 4.2, and also for identifying potential turbine
failures with probability at an early stage in Section 5.7.

2.1 Representation

The Bayesian network has a directed acyclic graph (DAG) structure providing
causal information. The structure of a DAG is defined by two sets: the set of
nodes and the set of directed edges. The nodes represent random variables
in the domain, and are drawn as circles labeled by the variable names. The
edges represent direct dependence or causal relation among the variables and
are drawn by arrows between nodes (24). In particular, an edge from node Xi

to node Xj represents a statistical dependence between the corresponding
variables. Thus, the arrow indicates that a value taken by variable Xj depends
on the value taken by variable Xi, or roughly speaking that variable Xi influ-
ences Xj. Node Xi is then referred to as a parent of Xj, and, similarly, Xj is
referred to as the child of Xi, as shown in Figure 2.1. Note that although the ar-
rows represent direct causal connection between the variables, the reasoning
process can operate on BNs by propagating information in any direction.

Figure 2.1: Two-node Bayesian network demonstrating the causal relationship
between two random variables. The causal relation is represented by a conditional
probability.

In addition to the DAG structure, which is often considered as the qualitative
part of the model, it is necessary to specify the quantitative parameters of the
model. The parameters are described as the conditional probability distribution
(CPD) at each node depends only on its parents. For example, the CPD for
Xj, given its parent Xi in Figure 2.1, is denoted as P (Xj|Xi). The CPD cap-
tures the conditional probability of the random variable, given its parents in the
graph. For discrete random variables, this conditional probability is often rep-
resented by a table, listing the local probability that a child node takes on each
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of the feasible values (called states of the variable), given each combination of
values of its parents. The joint distribution of a collection of variables can be
determined uniquely by these local conditional probability tables (CPTs).

Figure 2.2 shows one example of a Bayesian network. Each node in the
graph corresponds to a discrete random variable in the domain. An edge de-
scribes a causal relation between two variables, such as W → Y in which W

is the parent and Y is the child. In addition to the graph, each node has a con-
ditional probability table (CPT) specifying the probability of each state of the
node given each possible combination of parent’s states. The root node con-
tains no parent, then the table contains marginal probabilities. For example,
the root node W has two states, w1 and w2. The CPT of its child Y contains
four conditional probabilities, P (y1|w1), P (y2|w1), P (y1|w2) and P (y2|w2).

Figure 2.2: Bayesian network example Its DAG has five discrete random vari-
ables, W,X, Y, V, Z. In addition to DAG, it contains CPTs for each node.

The goal of graphical models is to efficiently represent a joint distribution P

17



2. BAYESIAN NETWORKS

over a set of random variables X1, X2, ..., Xn. Based on the chain rule (23),

P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi|X1, X2, Xi−1). (2.1)

Even in the simplest case where these variables are binary-valued, a joint
distribution requires the specification of 2n numbers - the probabilities of the 2n

different assignments of values x1, x2, ..., xn. For example, the joint probability
of variables in Figure 2.2 is shown as following,

P (W,X, Y, V, Z) = P (W )P (X|W )P (Y |W,X)P (V |W,X, Y )P (Z|W,X, Y, V ).

(2.2)

However, BNs can simplify Equation (2.1) by reducing the number of the
model parameters, based on the independence properties exploited by BN
structure. These independence properties are called the local Markov assump-
tions (23): Given a BN structure over random variables X1, X2, ..., Xn, for each
variable Xi, it has that

(Xi|NonDescendantsXi
|ΠXi

), (2.3)

where NonDescendantsXi
denotes the variables in the graph that are not de-

scendants of Xi, and ΠXi
denotes the parent set of Xi. In other words, the

local Markov assumptions state that each node Xi is independent of its non-
descendants, and only dependent on its parents. The joint probability P can
be factorized according to BN structure. Equation (2.4) shows that P is ex-
pressed as a product of set of CPTs associated with BN’s nodes. Each factor
represents a conditional probability of the variable only given its parents in the
network.

P (Xi, X2, ..., Xn) =
n∏
i=1

P (Xi|ΠXi
). (2.4)

If Xi has no parents, its local probability distribution is said to be uncon-
ditional, otherwise it is conditional. If the variable represented by a node is
observed, then the node is said to be an evidence node, otherwise the node is
said to be hidden or latent.
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2.2 Inference

Bayesian networks are used to reduce, sometimes significantly, the number

of parameters that are required to characterize the JPD of the variables. This

reduction provides an efficient way to compute the posterior probabilities given

the evidence. For example, according to the BN structure in Figure 2.2, the

variable X is not a descendant of variable Y , and Y only has one parent W ,

so that based on the local Markov assumptions, P (Y |W,X) = P (Y |W ). Then,

the Equaiton (2.2) can be simplified as,

P (W,X, Y, V, Z) = P (W )P (X)P (Y |W )P (V |Y )P (Z|X, Y ). (2.5)

2.2 Inference

Given a BN that specified the JPD in a factored form, one can evaluate all

possible inference queries by summing out over irrelevant variables (25). Two

types of inference support are often considered: predict support for node Xi,

based on its observed parent nodes (also called top-down reasoning); and

diagnostic support for node Xi, based on its observed children nodes (also

called bottom-up reasoning).

In general, the full summation over discrete variables is called exact infer-

ence, and know to be an NP-hard problem which is exponential in the number

of nodes. Some efficient algorithms exist to solve the exact inference problem

in restricted classes of networks. The inference method used in this disserta-

tion is variable elimination, which is summing out the irrelevant variables over

the joint probability distribution.

Given the example in Figure 2.2, one might consider the diagnostic support

for the belief on variable Y , given the observation of its child Z. Such a support

is to infer causes from observed effects, which is formulated as follows:

P (Y |Z) =
P (Y, Z)

P (Z)
=

∑
W,X,V P (W,X, Y, V, Z)∑
W,X,Y,V P (W,X, Y, V, Z)

, (2.6)
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where

P (Y, Z) =
∑
V

[P (V |Y )
∑
X

[P (Z|X, Y )P (X)
∑
W

P (Y |W )P (W )]], (2.7)

and

P (Z) =
∑
Y

[
∑
V

[P (V |Y )
∑
X

[P (Z|X, Y )P (X)
∑
W

P (Y |W )P (W )]]]. (2.8)

2.3 Learning

Due to the good performance on probability inference, Bayesian networks are

popular within the community of artificial intelligence. However, in many prac-

tical problems, the Bayesian network is unknown and one needs to learn it

from the data. To describe a Bayesian network, two parts are needed to be

specified: its graph topology (network structure) and the parameters of CPT

for each node (26). This problem is known as the BN learning problem: Given

training data and prior information, such as expert knowledge, estimate the

graph topology and the parameters of the CPT in the BN.

Learning the BN structure is much harder than learning BN parameters. In

this dissertation, all the Bayesian networks, applied for real-world problems,

have a known structure, which is designed based on the expert knowledge

and evidence data. However, another obstacle arises in situations of partial

observability when nodes are hidden or when data is missing. Therefore, two

BN learning cases are considered here, to which different learning methods

are proposed, as seen in Table 2.1.

Table 2.1: Two cases of BN learning problems with known structure

Case BN Structure Observability Learning Method
1 Known Full Maximum Likelihood Estimation
2 Known Partial Expectation Maximization
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2.3.1 Learning with Known Structure and Full Observation

The goal of learning in this case is to find the values of the parameters of

each CPT that maximize the likelihood of the training dataset. The dataset

containsm cases that are often assumed to be independent. Given the training

dataset D = {d1, ...,dm}, where dl = (xl1, ..., xln)T , and the parameter set Θ =

(θ1, ..., θn), where θi is the vector of parameters for the conditional probability

table of variable Xi, and n is the total number of variables in BN, the log-

likelihood of the training dataset is a sum of terms, one for each node:

logL(Θ|D) =
∑
m

(
∑
n

(logP (xli)|pii, θi)). (2.9)

The log-likelihood scoring function decomposes according to the graph struc-

ture; hence, one can maximize the contribution to the log-likelihood of each

node independently (27).

Usually, maximizing the likelihood of training dataset amounts to counting

frequencies of each event happening. For example, consider estimating the

CPT for the node Y of the network shown in Figure 2.2. Given the training

dataset, one can count the number of times Y takes value y1 when its parentW

is equal to w1, denoted by N(Y = y1,W = w1). Similar, N(Y = y1,W = w2)

represents the number of times Y takes value y1 when W is equal to w2.

Then, with these two counts, one can find the maximum likelihood estimate of

one condition probability value of the node Y as following,

P (Y = y1|W = w1) =
N(Y = y1,W = w1)

N(Y = y1,W = w1) +N(Y = y1,W = w2)
. (2.10)

2.3.2 Learning with Known Structure and Partial Observa-
tion

In the second case with known structure and partial observation, one can use

the expectation maximization (EM) algorithm to find a locally optimal maximum-

likelihood estimate of the parameters (23).
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Given a Bayesian network consisting of a set X of observed data, a set of
unobserved hidden data Z, and a vector of unknown parameters θ, along with
a likelihood function

L(θ; X,Z) = P (X,Z|θ), (2.11)

EM is an iterative method which alternates between performing an expectation
(E) step, which calculates the expected value of the log-likelihood function with
respect to the conditional distribution of Z given X under the current estimates
of the parameters θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ; X,Z)], (2.12)

and maximization (M) step, which computes parameters maximizing the ex-
pected log-likelihood found on the E step:

θ(t+1) = argmaxθQ(θ|θ(t)). (2.13)

These parameter estimates are then used to determine the conditional distri-
bution of the hidden variables in the next E step. This iterative procedure is
guaranteed to converge to a local maximum of the likelihood surface.

For example, to learn the conditional probability P (Y = y1|W = w1) with
missing data, I replace the observed counts of the events in Equation (2.10)
with the number of times that each event is expected to happen.

P (Y = y1|W = w1) =
E[N(Y = y1,W = w1)]

E[N(Y = y1,W = w1)] + E[N(Y = y1,W = w2)]
,

(2.14)
where E[N(x)] is the expected number of times event x occurs in the whole
training dataset, given the current estimates of the parameters. These ex-
pected counts can be computed as following,

E[N(x)] =
m∑
k=1

I(x|D(k)), (2.15)

where I(x|D(k)) is an indicator function, which is 1 if event x occurs in kth

training case, and 0 otherwise.
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2.4 Features of Bayesian Networks

2.4.1 Representation of Uncertainties

It is very common that the real-world data contains uncertainties. Bayesian
network, as a probabilistic graphical model, can manage and process the data
with probabilities. This statistical model has the advantage at expressing the
relative certainty of many different possible answers rather than only one. So,
Bayesian network can produce more reliable results when it is utilized as a
component of a large system. For example, Bayesian network is used to per-
form statistical inference with random patterns of missing data.

2.4.2 Model of Dependence

When combining evidence from multiple sources, Bayesian network can prop-
erly model the correlation and statistical dependence between variables in the
problem domain. For example, if two similar sensors are applied to machine
failure detection, their outputs are highly correlated, so that the same evidence
will be counted twice with simple mathematic methods. In practice, this results
in a phenomenon known as over-confidence. One of the sensor outputs is
almost redundant, and including it in the process might actually decrease the
accuracy of detection. This effect has been observed in many real-world prob-
lem fields, where evidence has to be combined, such as medical diagnosis.
Bayesian network is one powerful tool for avoiding the over-confidence effect
by model the variables with conditional dependence.

23



2. BAYESIAN NETWORKS

24



3

Particle Swarm Optimization for
Continuous Variables

3.1 Optimization Problems

Optimization is the process of finding the optimum value of a given objective
function on a particular domain, possibly with a number of additional con-
straints (28). An optimum can be either a maximum or a minimum depending
on the problem formulation; maximization of an objective function f is equiva-
lent to minimization of the opposite of the function −f .

Mathematically, a minimization task is generally defined as:

Given f : Rn → R Find x∗ ∈ Rn such that f(x∗) 6 f(x),∀x ∈ Rn

Similarly, a maximization task is defined as:

Given f : Rn → R Find x∗ ∈ Rn such that f(x∗) > f(x),∀x ∈ Rn

The domain Rn is referred to the search space. Each element of Rn is
called a candidate solution in the search space, and x∗ represents the optimal
solution. The value n denotes the number of dimensions in the search space.
The objective function f maps the search space to a one-dimensional fitness
space, providing a single fitness value for each candidate solution. The final
goal of an optimization task is to find the parameters in the search space that
maximize or minimize the fitness function.
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In this dissertation, the domain of optimization problem is continuous, and
the objective function often has at least a first order derivative, which means
the gradient vector

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 , (3.1)

is assumed to exist. There are many popular approaches to solve optimization
problems, such as gradient descent based methods and linear programming.
However, these approaches have their own limits. For example, to use gradi-
ent descent, the objective function should be differentiable; linear programming
only deals with optimization problems with a linear objective function, which is
subject to linear constraints. This chapter introduces particle swarm optimiza-
tion algorithm, belonging to evolutionary algorithms, which overcomes those
limitation. Particle swarm optimization algorithm cannot guarantee finding the
global optima (29). However, inverse problems (the problems that convert ob-
served measurements into information/model about a physical object or sys-
tem) are very often ill-posed for standard optimization methods, and this is
where particle swarm optimization is useful (30).

3.2 Algorithm Description

Inspired by the fact that simple behaviors of individuals lead to much compli-
cated societal phenomenon, Kennedy and Eberhart first proposed the parti-
cle swarm optimization (PSO) algorithm in 1995 (31). Particles in PSO are
randomly deployed to effectively explore the solution space, while the fitness
function (the notation of “fitness” function is by convention, more accurately, it
should be called an objective function without the implication that the higher
the value, the more “fit”) guides the particles to exploit the promising regions
with randomness. PSO has been applied successfully to solve various real-
world optimization problems in engineering, especially the NP-hard problems,
when other optimization algorithms do not work. I introduce the generic PSO
algorithm for continuous variables in this chapter, and then I adapt it for the
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wind speed difference test in Section 5.4, and determining the fusion rules of
turbine daily working status in Section 5.6.

Without losing generalizability, assume that the optimization is a minimiza-
tion problem (negating a maximization yields minimization), and the function
f(x) of multivariate x is to be optimized,

x = argminf(x). (3.2)

Then the particle in PSO is x, and the function value f(x) is the fitness of
the solution x. Suppose that the search space is composed of D dimen-
sions, and there are N particles in the swarm with the fitness of each parti-
cle as Fitnessi (i ∈ [1, N ]). For the ith particle, there are its current position
xi = {xi1, xi2, · · · , xiD}, its previous best position pi = {pi1, pi2, · · · , piD}, and
its velocity ui = {ui1, ui2, · · · , uiD}.

The particle’s movement is affected by its inertia, its cognitive awareness
(pbest, the best location that the particle has been before) and social influence
(gbest, the best location within the population during the iterations). The algo-
rithm of PSO is as follows:

1. Initialize a population of N particles with random positions and velocities.
Each particle is a solution, xi, i ∈ [1, N ]. Fitnessi, pbesti, and gbest, are all
initialized to be infinity.

2. Until some termination criteria are satisfied, such as

• the iteration index t reaches the maximum iterations tmax;

• there is a sufficiently good fitness. For a minimization problem,
gbest 6 ε, where ε is a small value.

Repeat the following:

(a) Evaluate Fitnessi = f(xi).

(b) Compare the particle’s fitness with pbesti,t−1
. If the current value is

smaller, copy it to pbesti,t , and set pi equal to the current position xi).
Then, update pbesti,t for each particle, as cognitive awareness.
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Algorithm 1 Particle Swarm Optimization
Require: :
Initialize a population of N particles with random positions and velocities.
Each particle is a solution, Xi, i ∈ [1, N ].
Initialize the fitness of all particles to infinity.
for t = 1 to the number of generations do

for i = 1 to the population size do
for d = 1 to the problem dimensionality do
Update V elocity :
V t+1
id = ω × V t

id + Ψ1 × (pid −Xid) + Ψ2 × (pgd −Xid)
where Pi is the best position visited so far by Xi,
and Pg is the best position visited so far by any particle;

Update Position :
X t+1
id = X t

id + V t+1
id

end for
Compute the fitness of X t+1

i .
if Fitness(X t+1

i ) < Fitness(Pi) then
Pi = X t+1

i

end if
if Fitness(X t+1

i ) < Fitness(Pg) then
Pg = X t+1

i

end if
end for
Terminate if Pg meets problem requirements.

end for
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(c) Update gbestt for the population, as social influence.

(d) Move the particles by

xi,t+1 = xi,t + ui,t+1, (3.3)

where ui,t+1 is the influence defined by

ui,t+1 = ω · ui,t + c1 · r1 · (pbesti,t − xi,t) + c2 · r2 · (gbestt − xi,t), (3.4)

where ui,t is the velocity of the ith particle at time instance t, ui,t+1 is
the velocity of the next step, and ω is an inertial constant, less than
1, to retain the information of previous velocity. xi,t is the current
particle’s location that needs to be updated. c1 and c2 are constants
to weigh these influences. r1 and r2 are uniform random numbers to
randomize the influences.

(e) t = t+ 1.

The flowchart of PSO algorithm is shown in Figure 3.1.

3.3 Features of Particle Swarm Optimization

The following features of PSO have given it increasing popularity in the field
of optimization since it was created in 1995. PSO has been wildly applied in
the areas of system design, multi-objective optimization, classification, pattern
recognition, scheduling, and decision making.

3.3.1 Simplicity

The particle swarm optimization algorithm uses simple computations to travel
through the search space. The algorithm structure just requires 5 simple steps
for each iteration:

1. Initialize each particle;
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Figure 3.1: The flowchart of particle swarm optimization (PSO).

2. Update particle’s velocity;

3. Update particle’s position;

4. Evaluate particle’s fitness;

5. Update pbest and gbest.

Therefore, the particle swarm optimization algorithm can converge to an

optimal solution in a relatively short time. For example, comparisons between

PSO and the standard Genetic algorithms (another kind of optimization algo-

rithm) have been done analytically based on performance in (32). Compared

to Genetic algorithms, the PSO tends to converge more quickly to the optimal

solution.
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3.3.2 Adaptivity

The core of PSO algorithm lies in the velocity update function. The particles
travel in the continuous space by updating their velocity to obtain an equiva-
lent position. This velocity update function does not need to be changed for
implementation of different problems. Hence, essentially the search procedure
of PSO algorithm does not change neither.

Moreover, the PSO algorithm also treats each dimension of the problem
independently, which enables this algorithm to search for a solution made up
with a combination of continuous variables. In Genetic algorithm, however, the
crossover operator violates this constraint and does not allow hybridization of
several individual dimensions.

3.3.3 Independence of Objective Function

The PSO algorithm separates the objective function as a black-box from the
particle population. It queries the objective function to estimate the perfor-
mance for each particle. This separation of the objective function enables the
particles to be used for a variety of problems without any additional changing
steps.
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4

Intelligent Sensor Network
Management for Air Traffic Control
System

With the advancements in sensor technology and sensor networking, deci-
sions regarding efficient allocation of sensor resources are quickly becoming
important. Sensor management is the automatic control of a group of sensors
including the data fusion processing in a sensor network to achieve a system
goal. Its objective is to improve the efficiency of the sensors and communica-
tions, simultaneously. Large, complex systems of sensors are emerging due to
new networking technology, but advances in sensor management are needed
to make the communication system viable.

This chapter proposes a new sensor management system for a complicated
and highly dynamic air traffic control (ATC) sensor network. This network is
responsible for collecting information from aircraft landing, from aircraft taking
off and taxiing to/from gates at the airport, or from aircraft moving above the
airport’s surrounding regions. Wireless communication is established between
sensors and aircraft. Then based on this information, the system comes up
with a sensor schedule for every certain period that simultaneously meets the
measurement accuracy and update rate, while minimizing the transmissions
from the sensors. This sensor management system cohesively integrates a
Bayesian Network (BN) with Particle Swarm Optimization (PSO).
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As a mission manager of the sensor management system for ATC applica-
tion, shown in Figure 1.3, BN maintains the best overall performance possible
from the entire sensor network system. The contribution of Bayesian mission
manager component is the main thrust of this chapter as the following aspects,

1. It automatically updates the sensors’ real-time operating requirements
based on monitoring system performance, dynamically changing envi-
ronment, and current sensor capabilities;

2. It predicts the impact of new operating requirements on global perfor-
mance, and sends them to the PSO to select the appropriate sensor
settings;

3. It balances the overall system performance by allocating more sensor
resources to the regions with higher priority.

These three aspects are demonstrated with the comparison of running the
whole sensor management system with and without Bayesian mission man-
ager. As a result, the system performance with the Bayesian mission manager
has a significant improvement for the highest priority region, such as the airstrip
area. This research work was supported by Sensis Corporation, conducted in
a collaborative fashion (1).

4.1 Air Traffic Control System

4.1.1 Problem Description

The main problem of air traffic control system is how to schedule discrete-
time, two-way communications between sensors and transponder-equipped
aircraft over a given coverage area (33), including both the airport and the
area surrounding it. The surveillance sensor network at airports can assist air
traffic controllers in guiding aircrafts as they approach and land. Since many
of the aircraft primarily carry people, the reliability and accuracy of the system
must be maintained at all times (34).
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To perform the communication, the system interfaces with aircraft transpon-
ders using sensors that are located within the coverage area. There are two
types of sensors: those that can both receive and transmit (RT) and those that
can receive only (RO). The power with which the RT sensors can interrogate is
variable, and can be used to control the area over which the RT transmits. Both
the RT and RO sensors have a fixed range over which they can receive a reply
reflected from the aircraft, with the probability of detecting the reply diminishing
with range. The location of an aircraft is determined through an interrogation
sequence of messages sent by the RT sensors. The RT sends an interrogation
message to the aircraft and can only transmit a certain amount of messages
per second. Then, a subset of sensors, usually including one RT and several
RO sensors, receives and interrogates the reflected messages to locate the
aircraft by using multi-lateration algorithms, as shown in Figure 4.1.

Figure 4.1: Demonstration of using integrated multi-lateration to estimate
aircraft position.

Within the coverage area, each aircraft must be interrogated with an over-
all probability of successful communication. A successful communication is
defined as three steps: the aircraft detecting an interrogation sent by an RT
sensor, replying to the interrogation, and the aircraft’s reply being detected by
a given number of sensors. An update period is defined as the rate of inter-
rogations, at the end of which the communication must be finished. To assure
this system’s quality, the coverage area is divided into smaller regions. Sensors
are located in this coverage area to detect the moving aircraft. Each subdivided
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region has its own communication requirements to be met for any aircraft in it.
The region requirements include meeting a detection probability within a cer-
tain update period. Aircrafts in a higher priority region have shorter update
periods, while those in a lower priority region have longer update periods. For
example, an important region, like the airport, might have an update rate of 1
per second with a required detection probability of 97%, while a lesser priority
region might have an update period of 4 seconds with a detection probability
of 90%.

Figure 4.2: An example scenario of sensors and regions placement, including
five subdivided regions and 40 sensors (1).

Figure 4.2 shows an example scenario of air traffic control problem. The
coverage area for this scenario consists of a 250-by-250 nmi (nautical mile)
square. This is also a 5× 105− by− 5× 105 m2 square (1 nmi = 1,852 meters),
which is the unit of Figure 4.2. There are 40 sensors placed throughout the
area, with 15 of them as RT sensors and the rest as RO sensors. Within the
coverage area, five subdivisions, from A to D and the remainder of the cover-
age area, represent different regions of interest. Each region has its own de-
fault required update period, detection probability and the number of receiving
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Table 4.1: Default requirements for each subdivided region in coverage area (1)

Region Required Required Minimum Number Aircraft
Update PD of Receiving Density
Period Sensors (No./nmi2)

A 1 second 0.97 4 0.20
(Airport)

B 1 second 0.95 4 0.10
C 2 seconds 0.92 3 0.08
D 2 seconds 0.90 3 0.15

Surround 4 seconds 0.80 1 0.05
Area

sensor for a successful communication, as shown in Table 4.1. The effective

transmit range of any RT sensor can be varied from 2.5 nmi out to 50 nmi, with

a step size of 2.5 nmi. Dependent on the distance from RT sensor to an air-

craft, the RT transmit power is adjustable to make an aircraft constantly receive

the messages with probability 97%, Ptgt = 0.97. The fixed range of a receiving

sensor is equal to 50 nmi, denoted by D = 50nmi. So, the probability of any

RT or RO sensor to receive a response from the aircraft is dependent on the

range to the aircraft, denoted by R. The receiving probability is given by the

following equation:

Prec =

{
1− (R

D
)2 for R ≤ D
0 for R > D

(4.1)

The probability of at least one successful communication in Q attempts is given

as:

PD = 1− (1− Ptgt − PNofM)Q, (4.2)

where N is the required number of sensors receiving the reply in the clear, and

M is the total number of sensors commanded to listen. So, the PNofM is the

probability of a least N of M sensors received the reply in the clear given the

sensor’s individual Prec.
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4.1.2 Research Objective

The research objective of this air traffic control problem is to develop an adap-
tive sensor management system that schedules communications with moving
aircraft. The sensor management system can deal with the efficient sensor
resource allocation by generating a sensor schedule to meet mission objec-
tives of the application (35, 36). The mission objective, in this case, is that the
generated schedule must minimize the total number of interrogations needed
to conserve power, while maintaining update interval constraints and detecting
aircraft with a detection probability as high as possible. The main contribution
of the proposed sensor management system is that it automatically updates
the system operation requirements in real-time based on monitoring its current
performance and dynamically changing environment. Figure 4.3 describes a
realistic scenario of the sensor management system for air traffic control.

Figure 4.3: The realistic scenario of sensor management system for air traf-
fic control application.

As mentioned in the previous section, the region requirements include meet-
ing a detection probability within a certain amount of time. Also, the trade-off of
this problem is minimizing the interrogation density but meeting the require-
ments for each region at the same time. Bayesian network, as a statistic
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graphic model, usually can find a balance between those two objectives by
making decisions of system adjustment. In my proposed sensor management
system, as shown in Figure 1.3, the Bayesian mission manager updates region
requirements in real-time after monitoring the current system performance.
Each requirement can be modified to be either more stringent or looser, if
the modification is beneficial for the efficiency of sensor resource allocation.
Although this is counter intuitive, the test results demonstrate that this can
improve coverage and efficiency. Some regions may have more stringent de-
tection requirements than others, due to a higher priority.

Eventually, a schedule is generated based on the period of the longest
update rate for any region. The schedule determines which sensor transmits
the message, as well as, determines when and which sensors will receive it,
and determines the transmit power needed for each interrogation in any region
at a given time. The scheduling interval is divided by the update rate, which is
the period of time between two interrogations. During each scheduling interval,
the sensor schedule controls the following settings:

• which RT sensors are interrogating;

• which RT or RO sensors are listening;

• the power of each interrogating RT sensor, which determines its effective
range;

• the time slot RT sensors are interrogating;

• the time slot each RO or RT sensors is listening.

As the number of available sensors and aircraft increase, the scheduling
problem grows exponentially, making exhaustive search techniques difficult
in the time allocated. Scheduling is an NP complete problem, which has no
known deterministic solution reducing the search to polynomial time. Thus,
the techniques of mission management for the sensor network must be sep-
arated from the multi-objective optimization for scheduling, to properly man-
age the solution. This design idea is specifically illustrated in Figure 1.3. The
Bayesian network can make the high level decisions regarding each region’s
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performance goals to support the mission management in real-time. These
adaptive decisions would include the required update rate and probability of
successful communication between aircraft and sensors for each region.

4.1.3 Sensor Management System Design

The sensor management system is scheduling discrete-time, two-way com-
munications between the aircraft and sensors in specified regions. Figure 4.4
shows the block diagram of the sensor management system for air traffic con-
trol application. This design has the following advantages,

1. The loop nature of this block diagram takes account of the effect of cur-
rent sensor model into next scheduling interval, which makes the sensor
management system be able to respond to the dynamically changing en-
vironment in real-time;

2. The mission manager uses a Bayesian network to come up with oper-
ating requirements for each region every scheduling interval, so that it
efficiently balances the allocation of sensor resources according to differ-
ent region priorities.

Figure 4.4: The block diagram of sensor management system for air traffic
control application.
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Real aircraft and sensor information could be used to test the system effec-
tiveness. However, it is unfeasible to get the real cases of sensors detecting
aircraft. Thus, we develop a simulation environment to build up an air traf-
fic control model. It has aircraft and sensor structures defined, including the
placement of sensors and regions, as well as the aircraft trajectories moving
above the regions, and going on the ground in space. The simulation environ-
ment is used to support testing of the sensor management system.

The sensor simulation dynamically varies the sensor states from fully func-
tional to completely nonfunctional. This is necessary to test adaptability of the
scheduling algorithms to variations in sensor status. At initialization, the sen-
sors are set as either RT or RO sensors. This information is stored in a sensor
status vector.

The aircraft simulation randomly initializes aircrafts in space and moves
them as a function of time. Each aircraft also has a state vector of its cur-
rent position and region. The mission manager determines the performance
requirements for each region as a function of the aircraft. The aircraft identify
the region it lies in, based on the summation of the angles resulting from the
lines drawn from the aircraft to the corners of the region. If these angles sum
to 360◦, the aircraft is in that region. This is a simple and computationally fast
way to determine the aircraft’s region.

The whole system data flow of sensor management system in the simula-
tion environment is shown in Figure 4.5.

First of all, the Simulation Sensor Communication Processor (SSCP) gets
the information of aircraft and sensor actions during the scenario. Aircraft’s
profiles contain all the aircraft locations in position, velocity, and acceleration
as functions of time. The sensor status uploads the sensor operation schedule
generated in the last update interval. The SSCP reacts to the ground truth and
sensor information that dynamically varies as the simulation runs. Once the
schedule is known for a given time period, the SSCP generates successful or
unsuccessful communication exchanges between the aircraft and sensor sets
given in the real-time schedule.

Then, the information of aircraft location measurements and sensor status
directly goes to the Performance Assessment Processor (PAP), which main-
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Figure 4.5: The data flow of sensor management system with simulation
environment of air traffic control.

tains statistics on successful communication attempts and update times. Faster
update times are needed when the aircraft is moving at high speeds through
a region. Also, a sharp maneuver will require higher probability of success-
ful communications since missed measurements may cause the controllers to
lose the aircraft. This processor calculates important statistic parameters from
system performance, including the mean and standard deviation of both air-
craft velocity and acceleration, and the maximum difference in aircraft density
within a region. All these parameters impact the system operating require-
ments which are distinct among regions. PAP uploads them to the mission
manager to obtain the update time and probability of successful communica-
tion requirements for each region.

As a mission manager, the Bayesian inference assists in making the de-
cisions of choosing the priorities to meet required performance parameters
using both expert knowledge and evidence data collected from simulation. It
analyzes aircraft performance assessments and sensor status, and then deter-
mines the operating requirements for various regions during the next schedul-
ing interval. These requirements are used by the PSO to select the optimum
sensor operating parameters, which best achieve the specified performance
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for each region.

In this ATC application, as mentioned above, the PSO receives its require-
ments from the Bayesian mission manager. Its fitness function is designed to
penalize the following: high interrogation density, interrogations close in time
and space, transmitters used repeatedly, aircraft missed and interrogates less
than required probability of detection (Pd). Moreover, the solution, as a sensor
schedule, consists of sensor sets assigned to each aircraft target and a time
when the communication between the sensors and aircraft must occur.

Once the schedule is generated, the sensor model is updated including
the probability of success in communicating position between the sensors and
aircraft for the next schedule.

4.2 Bayesian Mission Manager

4.2.1 Network Structure Design

For this sensor management system, the Bayesian mission manager assists
in updating the mission requirements in real-time by using both expert knowl-
edge and evidence data collected from simulations. This Bayesian network
receives performance data characterizing current aircraft motion and sensor
status. Then, it converts these to performance parameter priorities for various
regions (37). These priorities are sent to the PSO to find the sensor schedule
that can best handle the current scenario conditions, requirements, and sensor
suite status.

Initially, the Bayesian network is organized based on expert knowledge.
The graphical model is illustrated in Figure 4.6. Its DAG is a tree of depth
three, with some additional edges between some of the nodes. The meanings
of the nodes are in Table 4.2.

When building this probabilistic model, the components of interest are iden-
tified as the operating parameter requirements for the system. In this case,
they are aircraft detection probability requirements and update time require-
ments for each subdivided region, which are represented by two root nodes
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Figure 4.6: Bayesian network structure for decision making in sensor net-
work management system.

Pd and Ut, respectively, in the Bayesian network. The root node Pd corre-
sponds to a discrete variable that has 10 states, ranging from 0.91 to 1.00 for
region A,B,C,D, and another 10 states from 0.80 to 0.90 for the surround-
ing region, while the root node Ut corresponds to a discrete variable having
3 states which are updating sensor schedule in 1 second, 2 seconds, and 4
seconds. These two root nodes are the final hypothesis that has to be evalu-
ated for each region, and they are determined by the sensor status and aircraft
profiles at the current time.

The two nodes at the second level of the tree represent independent as-
pects of system current situation: the sensor status and aircraft profiles. The
sensor status determines the probability of missing communication, repre-
sented by the a discrete variable ζ, and the aircraft profiles determines the
risk rate of aircraft, represented by the a discrete variable η in the network.
It is expected that these two variables are largely uncorrelated, because they
use different types of system information. They also each correspond to clus-
ters of sensor-related variables and aircraft-related variables whose values are
correlated.

44



4.2 Bayesian Mission Manager

Table 4.2: Description of variables in the Bayesian network

Variable Description Unit
α down sensors %(No. of down sensors

Total No. of sensors
)

β sensor clumping No. of sensors/nmi2

γ mean aircraft velocity m/s
δ aircraft density No. of aircraft/nmi2

ε aircraft maneuver percentage %(based on aircraft
acceleration)

ζ missing communication probability %
η aircraft risk rate %

The sensor status includes the percentage of down or off-line sensors, rep-

resented by a discrete variable α, and sensor clumping, represented by a

discrete variable β. A higher percentage of off-line sensors causes a higher

probability of missing communications. Sensor clumping, or non-uniform dis-

tribution of sensor concentration, puts the aircraft at a risk of receiving no ob-

servation. Hence, as shown in Figure 4.6, the percentage of down sensors

and sensor clumping are parent nodes of missing communications.

Moreover, the operating requirements are also influenced by aircraft pro-

files, such as aircraft density, mean aircraft velocity, and percentage of aircraft

maneuvering. If aircraft density is too high in one region, extra interrogations

are scheduled to guarantee an accurate position estimate. Thus, an aircraft

may receive more communications as a result. On the other hand, extremely

low aircraft density may also cause more interrogates as a result of attempt-

ing to maintain detection on aircraft. According to the mean aircraft velocity,

the system will increase the number of interrogates for slow aircraft. The fast

aircraft also requires more interrogates to maintain location prediction accu-

racy. For example, faster update times are needed when aircrafts are moving

at high speeds through a region to maintain accuracy. Also, a sharp maneuver

will require higher probability of successful communications because missed

measurements may cause the system to lose the aircraft.
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4.2.2 Parameter Estimation with Partial Observation of Sys-
tem Performance

With the known structure of the Bayesian mission manager, I need to learn
its parameters from the evidence data before applying it for inference. The
evidence data is the system performance collected from training simulations
as a function of time, including the sensor status and aircraft profiles. The
Bayesian parameters are the conditional probability distributions associated
with each directed edge in the network structure. This parameter-estimation
procedure is executed off-line.

As mentioned in Section 4.1.1, the given coverage area is divided into 5
smaller regions, region A,B,C,D and the surrounding region. There are 40
sensors uniformly located in the whole area with 15 of them as RT and the rest
RO, and also 30 aircraft moving above this area. The simulation designed for
collecting evidence data is modeled over 1,000 seconds, and lets the system
run without the Bayesian mission manager.

The final decisions of Bayesian mission manager are the operating require-
ments for different regions. Each region has its own specific requirements,
including the probability of detection for aircraft belonging to this region and
the update time for sensors located in it. The probability of detection require-
ment Pd has 10 states ranging from 0.91 to 1.00 for region A,B,C,D, and
another 10 states from 0.80 to 0.90 for the surrounding region; and the up-
date time requirement Ut has 3 states which are updating sensor schedule in
1 second, 2 seconds and 4 seconds. Since each region has its own operating
requirements, the following procedure is repeated for every particular region.
Then, take region A as an example:

1. Given every possible state combination of Pd and Ut to all the aircraft that
belong to region A, calculate the aircraft positions based on interrogation
information and record the sensor status in region A at current time.

2. Assess the sensor-related variables and aircraft-related variables in the
Bayesian network using sensor status and aircraft position information:
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(a) Percentage of down sensors (α):

Percentage of down sensors =
No. of down sensors in region A

Total No. of sensors in region A
;

(4.3)

(b) Sensor clumping (β): The sensors are located uniformly in each

region, so that the sensor clumping is assumed to be a constant;

(c) Mean aircraft velocity (γ), the average velocity of all aircraft in region

A;

(d) Aircraft density (δ)

Aircraft density =
No. of aircraft in region A

Area of region A
; (4.4)

(e) Aircraft maneuver percentage (ε), measured as the percentage of

aircraft of which acceleration is beyond certain threshold.

3. The training dataset collected for region A are the partial observation of

aircraft profiles and sensor status, and also contains the true label of Pd

and Ut as the prior knowledge. So, expectation maximization (EM) al-

gorithm is applied to learn the conditional probability distribution for each

node in the Bayesian mission manager of region A. For example, the re-

sult parameter for the node ”missing communication” (ζ) is P (ζ|Pdi, Utj),
and the parameter for the node ”aircraft risk rate” (η) is P (η|Pdi, Utj),
where the subscripts represent the state numbers of variable Pd and Ut,

so that i = 1, 2, ..., 10 and j = 1, 2, 3.

4.2.3 Inference of Management Requirements in Real-time

Based on the evidence data collected from simulation, the directed edge of

Bayesian mission manager is quantified by the learned conditional probabil-

ity distribution to specify the strengths of the causal influence. According to

Equation (2.4), the joint probability of Bayesian mission manager is as follows:
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P (α, β, γ, δ, ε, ζ, η, Pd, Ut) =

P (Pd)P (Ut)P (ζ|Pd, Ut)P (η|Pd, Ut)P (α|ζ)P (β|ζ)P (γ|η)P (δ|η)P (ε|η).
(4.5)

The final decisions are the operating requirements, aircraft detection prob-
ability (Pd) and update rate (Ut), given current sensor status (ζ) and aircraft
performance (η), which are represented by P (Pd|ζ, η) and P (Ut|ζ, η). Then, to
obtain the final decisions, I apply Bayesian inference by summing out the joint
probability over irrelevant variables,

P (Pd|ζ, η) =
P (Pd, ζ, η)

P (ζ, η)
=

∑
α,β,γ,δ,ε,Ut P (α, β, γ, δ, ε, ζ, η, Pd, Ut)∑

α,β,γ,δ,ε,Pd,Ut P (α, β, γ, δ, ε, ζ, η, Pd, Ut)
, (4.6)

and

P (Ut|ζ, η) =
P (Ut, ζ, η)

P (ζ, η)
=

∑
α,β,γ,δ,ε,Pd P (α, β, γ, δ, ε, ζ, η, Pd, Ut)∑

α,β,γ,δ,ε,Pd,Ut P (α, β, γ, δ, ε, ζ, η, Pd, Ut)
. (4.7)

4.3 Simulated Experiments and Results

4.3.1 Scenario Description

In the testing scenario, same as the training simulation, there are 5 subdivided
regions in the given coverage area, region A,B,C,D and the surrounding re-
gion. The testing scenario is also modeled over a 1,000 second period. A
complete schedule is required to be generated every 4 seconds. There are 40
sensors uniformly located in the whole area with 15 of them as RT and the rest
as RO. The sensor positions remain close to a hexagonal arrangement, and
are assigned uniformly. Figure 4.7 shows the sensor placement. The sensors
are simulated to have a certain probability of failure, which affects the detection
performance.

There are 30 aircrafts moving around this area. The aircraft motion model
returns the aircrafts’ positions as a function of time. In this chapter, the aircraft
motion is simulated in the three-dimensional space. This is done by designing
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Figure 4.7: Sensor placement.

actual flight paths for each aircraft by choosing key positions, which are random
with respect to distance and phase from the center. Periodically, each aircraft
comes close to the center in region A. At this point, the aircraft descend closer
to the ground, as if landing, and ascend, as it takes off on the runway. Figure
4.8 shows a snapshot of the aircraft while in motion.

4.3.2 Simulation

Prior to running the Bayesian mission manager, the sensor status and aircraft
profiles are collected from the training simulation to initialize the Bayesian net-
work off-line, as described in Section 4.2.2. The main objective of the testing
simulation is to run the system with the Bayesian mission manager, so that the
mission manager automatically updates the operating requirements in real-
time for each region by monitoring the aircraft’s movements, current sensor
capabilities, and dynamically changing environment. The Bayesian mission
manager maintains the best overall performance possible for the entire sensor
network system.
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Figure 4.8: Snapshot of aircraft positions.

The probability of detection (Pd) requirement is divided into 10 states, rang-

ing from 0.91 to 1.00 for region A,B,C,D, and another 10 states from 0.80 to

0.90 for the surrounding region. The update time (Ut) requirement is one of

three states: updating sensor schedule every 1 second, 2 seconds, and 4 sec-

onds. The final decisions of Bayesian mission manager for each region are

selecting the Pd and Ut with maximum posterior probability given by the sen-

sor status and aircraft profiles at current time.

The prior probabilities are set uniformly for detection probability and update

time requirements: P (Pdi) = 1/10 and P (Utj) = 1/3, where i = 1, 2, ..., 10,

and j = 1, 2, 3. The states of both variables, missing communication (ζ) and

aircraft risk rate (η) are defined as 4 ranges from 0.0 to 1.0 with a step of 0.25.

They are conditionally independent to each other given Pd and Ut. In a given

region, with the learned Bayesian mission manager, the joint probabilities of

current performance are analyzed as follows:

P (ζk, ηl, Pdi, Utj) = P (ζk|Pdi, Utj)P (ηl|Pdi, Utj)P (Pdi)P (Utj), (4.8)
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where the subscript represents the state number of each variable happening at
that time, and the conditional probabilities of P (ζk|Pdi, Utj) and P (ηl|Pdi, Utj)
are the Bayesian parameters learned from training dataset. These joint prob-
abilities are then given as inputs to the Bayesian mission manager during the
testing simulation.

When simulating the whole system with Bayesian mission manager in real-
time, the state combination of missing communication percentage and aircraft
risk rate, (ζk, ηl) is chosen based on the system performance at current time.
Then, the interesting posterior conditional probabilities are evaluated as fol-
lows,

P (Pdi|ζk, ηl) =
P (Pdi, ζk, ηl)

P (ζk, ηl)
=

∑
Utj

P (ζk, ηl, Pdi, Utj)∑
Pdi,Utj

P (ζk, ηl, Pdi, Utj)
, (4.9)

and

P (Utj|ζk, ηl) =
P (Utj, ζk, ηl)

P (ζk, ηl)
=

∑
Pdi

P (ζk, ηl, Pdi, Utj)∑
Pdi,Utj

P (ζk, ηl, Pdi, Utj)
. (4.10)

At last, the values of Pd and Ut are returned to PSO, which correspond to
the states with maximum posterior conditional probability.

4.3.3 Results of Bayesian Mission Manager Performance

The overall system is run over a 1,000 second period with and without the
Bayesian mission manager, respectively. All aircraft belonging to one region
have their own operating requirements associated with this region. In the cir-
cumstance of without Bayesian mission manager, the requirements are set
as default values from Table 4.1 for each region, which are constant through
the whole testing period. Conversely, when the system is run with Bayesian
mission manager, the requirements are automatically updated by the mission
manager every scheduling interval.

As mentioned before, each region updates its own operating requirements
to obtain more successful communication exchanges between aircraft and sen-
sor sets in it. In other word, one successful communication happens only if the
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aircraft detecting the required amount of interrogation messages sent by sen-
sors, within a certain update period. Therefore, to evaluate the system perfor-
mance for each scheduling interval, I compute the probability of unsuccessful
communication for each region, which is the ratio of the number of aircraft that
have not met the requirements to the total aircraft number in this region.

Probability of unsuccessful communication

=
No. of Aircraft if Pd < Pdrequired
Total No. of Aircraft in Region

.
(4.11)

Figure 4.9: Probability of unsuccessful communication with and without
Bayesian mission manager over 1,000 seconds in region A.

The performance of Bayesian mission manager is evaluated by the prob-
ability of unsuccessful communication, which is expected to be as small as
possible. Figure 4.9 is the comparison between the probabilities of unsuc-
cessful communication with and without the Bayesian mission manager over
250 scheduling intervals for region A. In the upper plot, each blue point rep-
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resents a percentage value of unsuccessful communication in one schedul-
ing interval without the Bayesian mission manager. Similarly, the red points
in the lower plot represent percentage values of unsuccessful communica-
tion with the Bayesian mission manager. As shown in this figure, there are
more red points falling on the x-axis than the blue ones. This result means
that more scheduling intervals have completely successful communication with
the Bayesian mission manager than without it. Moreover, the probability of
unsuccessful communication without the Bayesian mission manager reaches
50% for several scheduling intervals, whereas, the highest probability with the
Bayesian mission manager is no greater than 25%.

Figure 4.10: Probability distribution of unsuccessful communication with
and without Bayesian mission manager over 1,000 seconds in region A.

Figure 4.10 is another way to illustrate the performance of Bayesian mission
manager. It shows the probability distribution of unsuccessful communication
with and without Bayesian mission manager in region A. In this figure, the red
bars are much higher than the blue ones when closing to value zero. It indi-
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cates that the probability of unsuccessful communication is equal to zero more

frequently with Bayesian mission manager than without it. In other words, the

Bayesian mission manager improves the system performance enormously by

increasing the percentage of completely successful communication in region

A from 24% to 49%. Moreover, the red bars disappear when probability of un-

successful communication is greater than 25%, which is consistent with Figure

4.9.

Table 4.3: Unsuccessful communication grouped by regions, cumulative over all
scheduling intervals

A B C D Surrounding
Without BN 0.0249 0.1077 0.0149 0.6892 0.1155

With BN 0.0064 0.0770 0.0109 0.7159 0.1459
Improvement 74.30% 28.51% 26.85% -3.87% -26.32%

Table 4.3 compares the probabilities of unsuccessful communication aver-

aged over all scheduling intervals in the two situations mentioned above. The

Bayesian mission manager gives better performance for regions with higher

priority, such as region A, B, and C. The percentage of unsuccessful communi-

cations in region A has decreased by 74.30% in the best situation. This better

performance is due to the fact that aircrafts are landing or taking off in region

A, which in turn causes a higher aircraft density and maneuver concentra-

tion. The higher aircraft density and sharper maneuvers trigger the Bayesian

mission manager to assign more interrogations reducing the risk of no obser-

vations. Region D experiences a degradation in performance due to the poor

placement of sensors and relatively lower aircraft density. In the surrounding

region, the region is too large causing averaging of the statistics over many

aircrafts causing the mission manager to make bad decisions. In a word, the

Bayesian mission manager is more effective for the crucial regions, such as

region A, B, and C in this case.
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4.4 Conclusion

In most models and systems of sensor management designed for air traffic
control, a common critical problem is to achieve simultaneously computing ef-
ficiency and communication efficiency between sensors and aircraft. In the
complex environment where message exchange among sensors and aircraft
is intensive, to decide the best action of sensors for new arriving message from
aircraft during on-line control is a difficult task.

In practice, most sensor management units are modeled as a rule-based
expert system, in which decisions are made by inferring answers from domain-
specific principles. For example, in Table 4.1, the default requirements are
obtained by interviewing domain experts, such as airport controller and sensor
scheduler, and/or learning from experience. The rule-based sensor manage-
ment system collects interviews and observations into a knowledge base, and
uses an inference engine to set the operating requirements that are appropri-
ate for certain situation (38, 39). The knowledge base is usually formalized as
a set of if-then rules, such as:
• If region = A, then required detection probability = 0.97.
• If update rate = 1 second, then minimum number of receiving sensors = 4.

The conventional rule-based sensor management system has ability to pre-
serve human experience, and is easy to be developed. However, the air traffic
control problem continuously exhibits different levels of uncertainties, such as
air turbulence, sensor noise, and the change of the flight mode. Therefore,
the rule-based expert system can hardly balance the allocation of sensor re-
sources and on-going changing operating requirements due to region priorities.

The new sensor management system, in this chapter, uses Bayesian net-
work as a mission manager to automatically update the sensors’ real-time op-
erating requirements based on monitoring system performance, dynamically
changing environment, and current sensor capabilities. Hence, it efficiently
balances the overall system performance by allocating more sensor resources
to the regions with higher priority.

Another advantage of this new system is that its loop nature of system
design returns the feedback of current sensor settings into next scheduling in-
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terval, which makes it be able to respond to the dynamically changing environ-
ment in real-time. By contrast, to achieve a respond to dynamic environment
with the rule-based sensor management system, decisions for every specific
situation have to be contained in its rule base. The rule-based system undoubt-
edly increases the search difficulties and reduces the computing efficiency.

These advantages are demonstrated with the comparison of running the
whole sensor management system with and without the Bayesian mission
manager. In fact, the experiments without Bayesian mission manager are the
rule-based expert system with a knowledge base shown in 4.1. As a result,
the system performance with the Bayesian mission manager has a significant
improvement for the highest priority region, such as the airstrip area.
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5

Intelligent Failure Detection for
Wind Turbines

Wind is an important renewable energy source. The energy and economic

return from building wind farms justify the expensive investments in doing so.

However, without an effective monitoring system, under-performing or faulty

turbines will cause a huge loss in revenue (17, 18). Therefore, to make wind

energy more competitive in the future, efforts are required to enhance the avail-

ability, reliability and lifetime of the wind turbines.

Early detection of such failures helps prevent these undesired working con-

ditions and allows the operators to develop maintenance plans with prioritized

tasks (19). If failures are detected at an early stage, the consequent damage

is minimized or mitigated, and also repairs are better scheduled. This leads

to shorter down-times and lesser revenue losses. Therefore, diagnosis and

prognosis of potential faults are crucial to maintain and improve the efficiency

of the wind energy generation system (17, 40).

This chapter proposes an intelligent data-driven approach to monitor the

turbine performance at real-time by fusing multiple test results and to detect

the turbine abnormalities by tracking the turbine status variations. Optimization

algorithms are applied to determine the fusion rules or the detection boundary

in particular tests, objectively and optimally. This procedure is adaptable to

each turbine using Supervisory Control And Data Acquisition (SCADA) system
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data, automatically. My approach is advantageous in its applicability and data-
driven nature, to monitor a large wind farm. Also, the test results have verified
the effectiveness of my approach. This research work was collaborated with
AWS Truepower, Inc. (2).

5.1 Wind Turbine Failure Diagnosis

5.1.1 Problem Description

A wind farm consists of multiple turbines, even hundreds, in some cases. The
coverage of a farm can be on a complicated landscape with major obstructions
due to local topographic features (41). This implies that each turbine may
have its own operational characteristics, which complicates the fault detection
(42). The turbine performance data is collected by the Supervisory Control
And Data Acquisition (SCADA) system. The data is collected at certain time
intervals using dozens of built-in sensors on the turbines that measure various
physical quantities.

Some failures, such as the bearing and gearbox failures (43), cause the tur-
bines to completely shut down, which is obviously detrimental to the turbine’s
performance, and they, therefore, have been studied thoroughly by many man-
ufactures. Their diagnostic units are built into the wind turbines. These failures
are called hard failures. For example, the data currently available from SCADA
includes not only turbine measurements, but also some flagging of events from
the existing built-in diagnostic units. Such flagging is designed for indicating
hard failures, but it is not comprehensive in detecting other faults, especially
the degradation of the faulty components. So, many soft failures, which de-
grade the turbine’s performance but do not necessarily stop the turbine from
running, are often overlooked, such as anemometer faults. This kind of soft
failure can also be very harmful to the long term efficiency of the turbines, in
the same way.

Among the soft failures, anemometer failure is hard to be detected but most
badly effect the turbine production. Anemometer measures the wind speed as
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detected by the turbine. The wind speed measurement is used for configura-
tions and control settings of the turbine and, hence, very important for online
monitoring of turbine performance (44). Firstly, a damaged or out of tolerance
anemometer will effect the estimated energy production of a site. The inability
to detect bad anemometers can dramatically effect estimated return on invest-
ment. For example, Figure 5.1 shows how a 2% error in an estimate of average
annual wind speed can result in a 6% difference in power production, which di-
rectly effects the return on investment.

Figure 5.1: Power production curve for a typical large wind turbine, showing
the effect of error in wind speed measurement on estimated power production (2).

Secondly, the wind speed measurement is an important control parameter
for real-time operation, which is highly correlated with rotor speed, pitch angle,
exported power, etc. Wind turbines have different operating modes that match
each possible wind speed. The turbine starts generating electricity when the
wind speed exceeds a lower-bound threshold, such as 5 m/s. Then the turbine
increases its rotation speed as it reaches its maximum power production at
a wind speed of approximately 15 − 18 m/s. If the wind speed exceeds an
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upper-bound threshold, such as 20 m/s, the wind turbine is stalled or braked to

prevent damage or an accident. So, a faulty anemometer reading can cause

severe damage because, if the turbine does not shut down at the right time, the

turbine may not keep up and over heat, or a blade may come loose. Further,

incorrect readings may also result in false alarms that the wind speed is higher

than it really is and may frequently brake causing unnecessary downtime.

5.1.2 Research Objective

Currently, condition monitoring (CM) techniques are used to detect some spe-

cific hard failures at an early stage with separate systems designed by different

manufacturers. These techniques, such as vibration, lubrication oil, acoustic

emission signals, and generator current analysis, require the development of a

variety of sensors and computationally intensive analysis techniques (45). De-

spite their applications in the wind industry, the condition monitoring systems

have not yet proven their effectiveness due to the peculiarities of each wind

turbine. For example, commercial condition monitoring systems mostly employ

vibration-based techniques, which are sophisticated, and the sensors and ca-

bling are costly. Lubrication oil analysis is becoming more popular for detecting

gearbox tooth and bearing wear, but it cannot detect any failures outside the

gearbox. Each manufacturer has basically chosen their own way of designing

a condition monitoring system (46); therefore, the present condition monitoring

techniques may not be suited to all wind turbine types and faults. Moreover,

developing reliable wind turbine condition monitoring techniques require com-

plex and lengthy collaboration between the farm operators and manufactures

in the field.

Hence, the main objective of this research is to design a data-driven ap-

proach by only analyzing the turbine performance data collected from existing

built-in sensors on each turbine, which makes this approach more adaptive

to each turbine automatically. This approach can recoup some of the losses

by catching not just hard failures but also soft failures early on, and then sup-

port maintenance plans to minimize the failures’ impact. If a fault could be
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detected at an early stage, the potential damage could be minimized or mit-
igated through early repair avoiding drastic breakdown of the wind turbine,
which leads to less downtime and more revenue; meanwhile, the maintenance
can be optimally scheduled with the regular maintenance trips to minimize the
repair costs (47).

5.1.3 Failure Detection System Design

This chapter proposes to use data-driven approaches to learn the normal and
abnormal patterns from the available data, which helps both sensor valida-
tion and diagnostics in an integrated way. The abnormalities are detected by
tracking the turbine state variations (48). The data flow of the failure detection
system is illustrated as Figure 5.2, which has 4 steps as follows:

1. Pre-processing:

I develop multiple performance tests on several important turbine vari-
ables, such as power generated, rotor speed, pitch angle of individual
turbine, and also on the wind speed difference between two sibling tur-
bines that most likely see a similar wind speed, if they both work normally.
These variables are illustrated in Table 5.1.

Table 5.1: Wind Turbine Variables Used in Designing Multiple Performance Tests
(2)

Turbine Variable Unit Definition
Wind Speed (V w) m/s Average measurement seen

by the anemometer
Generated Power (P ) kw Average real power produced

Rotor Speed (V r) revolutions Average rotational speed
per min of the rotor

Pitch Angle (Dp) degrees Average pitch angle of the blades
Wind Speed m/s Absolute wind speed difference

Difference (wsd) between two sibling turbine
wsd = |wsA − wsB|
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2. Feature extraction:

In each test, multiple states are defined to distinguish different working
condition features, including complete shut-down, under-performing, ab-
normally frequent default, as well as, normal working. Through extensive
data mining of historical data and verification from farm operators, some
state combinations are discovered to be strong indicators of failures, such
as spindle failures, lighting strikes, anemometer faults, etc., for fault de-
tection.

3. Pattern recognition:

Then, all test results are fused to reach a final conclusion used as a
pattern, which describes the turbine working status at current time. It
is more effective than any single test. I apply the particle swarm opti-
mization (PSO) algorithm to recognize several patterns with fusion rules,
which are determined in the feature space objectively and optimally.

4. Failure prediction:

In this step, a Bayesian network (BN) is applied to automatically monitor
the turbine working status and identify the potential failures with a per-
centage certainty based on any abnormal changes in the turbine perfor-
mance. The main objective is to predict when and what types of failures
are going to happen, so that the farm operators can fix the failures at an
earlier stage to avoid major breakdowns.

The design of this failure detection system has the following advantages,

• The state-of-the-art Supervisory Control And Data Acquisition (SCADA)
system in industry can only answer the question whether there are abnor-
mal working states, but my evaluation of multiple states in multiple turbine
performance tests is also promising for diagnostics and prognostics.

• These multiple tests are combined to reach a final conclusion, which is
more effective than any single test. From the fused test results, one can
gain a qualitative understanding of turbine performance status to detect

62



5.1 Wind Turbine Failure Diagnosis

Figure 5.2: Data flow of wind turbine failure detection system, consisting 4
steps: pre-processing, feature extraction, pattern recognition and failure predic-
tion.
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faults and can also provide explanations on what has happened for de-

tailed diagnostics.

• My approach is adaptable to each turbine automatically and is advanta-

geous in its applicability and data-driven nature to monitor a large wind

farm.

As described in Section 5.1.1, the wind turbine systems require a more re-

liable anemometer reading to ensure their efficiency. It is crucial to monitor

the anemometer status and detect its failure at an early stage. One solution

is to pair up all the turbines so that each turbine has a sibling. Two sibling tur-

bines would most likely measure a similar wind speed at the same time. If the

measured wind speed is drastically different, it could be due to anemometer

faults, turbine malfunctioning or wind blockage. In this chapter, I also propose

a new wind speed difference test as one of the multiple performance tests for

particularly detecting anemometer failures. This test uses wind speed differ-

ence between a turbine pair to detect faults and fuse the results from multiple

pairs to identify the turbine at fault relative to anemometer (49). To improve

the detection accuracy of this wind speed difference test, I also design a new

method to determine a circle-shaped decision boundary between the normal

and abnormal states in its feature space using PSO algorithm. The weeks

inside the circle are decided to be normal, when both turbines are function-

ing properly. The ones outside the circle are decided faulty or idle, where the

faulty state often indicates soft failures, like anemometer faults, and the idle

state often indicates hard failures that cause turbines to completely shut down.

Compared to differential evolution (DE) and evolution strategy (ES) algorithms,

PSO achieves better solution with lower fitness value in a shorter convergence

time.
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5.2 Multiple Turbine Tests on Critical Performance
Variables

It is straightforward to analyze turbine performance to detect its faults. I choose
three variables – power production, rotor rotating speed and blade pitch angle
– significant to adjudicate on whether the turbine working properly (50). First
of all, power production is one of the main yardstick to measure turbine perfor-
mance. Once there is a failure occurring in a turbine, the power it produces will
be effected badly. Second, the rotor component converts wind energy to low
speed rotational energy. The faster it rotates, the more energy the turbine pro-
duces. Moreover, the blade pitch gives the turbine blades the optimum angle
of attack. Allowing the angle of attack to be remotely adjusted gives greater
control, so that the turbine collects the maximum amount of wind energy for
the time of day and season. I measure these variables against wind speed,
since the turbine performance is also determined according to how fast the
wind blows.

5.2.1 Test 1: Generated Power vs. Wind Speed

The power curve, a plot of the generated power of the wind turbine averaged
over unit time interval against the wind speed, is a key test for turbine health,
since power production is the ultimate goal of the wind turbine.

The nominal power curve, provided by the manufacturers, is a discrete set
of power versus wind speed {(w1, p1), (w2, p2), . . . , (wm, pm)}. Yan (3) first fit the
nominal power curve using a Gaussian cumulative distribution function (CDF),
where the parameters of the Gaussian CDF are optimized by particle swarm
optimization (PSO) algorithm. A Gaussian CDF fitting function is defined by

P̂ (w|c, a, s,m) = −m+ s ·
∫ w

−∞

1√
2πa

e−
(x−c)2

2a2 dx, (5.1)

where w is the wind speed, P̂ is the estimated power at specific w. In the
Gaussian CDF fitting, c is its mean, a is the standard deviation, s is the scaling
factor, and m is an extra shift. The common digits of fitting parameters found
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by PSO are provided in Table 5.2. Then we construct the inverse function of
the Gaussian CDF, ŵ = f−1(P̂ ), to linearize the nominal power curve.

Table 5.2: Gaussian CDF Fitting Coefficients (3)

a c s m

Gaussian CDF 2.684 9.020 1.087 0.026

The multiple states relative to the linearized nominal power curve are listed
in Table 5.3. This linearization method simplifies the state definition because
the nominal power curve needs to be fitted only once; meanwhile, the states, in
the linearized domain, are defined by thresholds, rather than, the complicated
boundary curves in the power curve domain, where those boundary curves
require multiple fittings.

Figure 5.3: State diagram for power curve vs. wind speed.

The definition of the multiple states relative to the linearized power curve is
shown in Table 5.3. The colored sections in Figure 5.3 identify different regions
in the power curve that represent potential problems in the wind turbine, if the
measurements change between regions (51). For example, the power mea-
surements should reside in the yellow, blue, and pink regions. However, the
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Table 5.3: State Definition of Linearized Power Values (P̂ ) vs. Wind Speed (V w)

State Definition Working Condition
1 P̂ > 1.5 Under-performing with soft failures
2 0.5 < P̂ ≤ 1.5 Normal working
3 −0.5 < P̂ ≤ 0.5 Normal working
4 −1.5 < P̂ ≤ −0.5 Normal working
5 P̂ ≤ −1.5 Under-performing with soft failures
6 Horizontal power Shut down with hard failures
7 V w < 4andP̂ > 0 Shut down with soft failures
8 V w < 4andP̂ ≤ 0 Abnormal defaults

scattered red points in the upper left are typical of a faulty anemometer in the

turbine. So, if the measurements move to this upper left region, there is some

soft failures, which are insufficient to stop operations yet still cause power pro-

duction losses, such as faulty anemometer or gear box. Without timely main-

tenance, the turbine is continuously breaking, until it completely shuts down.

Some hard failures, like spindle failure and lightning strike, will also cause the

turbine to completely shut down. When it happens, the measurements move

to the red or black horizontal region.

5.2.2 Test 2: Rotor Speed vs. Wind Speed

The next variable analyzed is rotor speed as a function of measured wind

speed. The turbine generally operates at a constant rotor speed if there is

adequate wind. More power is produced as the wind force increases but the

rotor speed remains constant. The cycle for a productive wind turbine is to

begin with a rotor speed increasing linearly for wind speed between 0 m/s and

3 m/s, then reaches a speed of 20 cycles/s from 3 m/s to 6 m/s, and finally

stays at 20 cycles/s. Based on this working cycle of wind turbines, I classify 7

states of the rotor speed curve, as shown in Table 5.4. If the turbine is down

or off due to some hard failures, the rotor speed is 0 m/s for all wind speeds,

corresponding to the red horizontal region in Figure 5.4. Some of the mea-
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Figure 5.4: State diagram for rotor speed vs. wind speed.

surements in the black region are caused by various types of failures, such as

bad anemometer or rough blade.

5.2.3 Test 3: Pitch Angle vs. Wind Speed

The third test analyzes the pitch angle against the measured wind speed. Sim-

ilar to the previous test, pitch angle keeps around −20 degree when the tur-

bine is steadily working, as shown in the blue region in Figure 5.5. If the wind

speed is really high, the pitch turns away the coming wind direction to avoid the

damage. This condition is given in the upper right black region. Some of the

measurements are in the pink line corresponding to −50 degree pitch angle.

Since the pitch is set to −50 degree as preventative angle before the turbine is

going down, this state is used to do prognostics of the turbine faults. The state

two, the lower vertical green line, is a critical indicator of the lightning event

happening to the turbine.
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Table 5.4: State Definition of Rotor Speed (V r) vs. Wind Speed (V w)

State Definition Working Condition
1 V r < 0.5 (Horizontal state) Shut down with hard failures
2 V w < 0.5 (Vertical state) Anemometer failures
3 0.8 ≤ V w ≤ 6 and Ramping up/down

0.5 ≤ V r ≤ 3.5
4 3 ≤ V w ≤ 6 and Normal working

3.5 ≤ V r ≤ 19.5
5 V r > 19.5 Normal working in high wind speed
6 AbnormalV rwhenV w < 3 Under-performing, Low wind speed

but relatively high rotor speed
7 AbnormalV rwhenV w > 6 Under-performing, High wind speed

but relatively low rotor speed,

5.3 Anemometer Failure Detection by Wind Speed
Difference Test

An anemometer measures the wind speed as detected by the turbine. This

measurement is affected by several factors like elevation, turbulence at the tur-

bine, other topographical factors or simply noise. However, in a wind farm,

there are turbine groups that see similar wind flow, either due to their phys-

ical proximity, or their similar configuration in a cluster of turbines including

surrounding geography (52). These turbines are called sibling turbines. It is

fair to assume that if the sibling turbines all perform properly, then they should

measure similar wind speed. Based on this similarity, I begin to compare wind

measurements between turbine pairs. If they begin to differ, this is a good indi-

cation that one of the wind turbines requires maintenance. I collected a week’s

worth of data and model the wind speed difference using the Weibull distribu-

tion, as the Weibull distribution is very practical for reliability testing (53, 54).

The detector uses the estimated Weibull parameters to define the normal and

abnormal states of wind turbines. The abnormal wind speed difference pat-

terns are caused either by a faulty anemometer, directly, or by other faults,

indirectly. For instance, if a turbine is shut down due to major component fail-
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Figure 5.5: State diagram for pitch angle vs. wind speed.

ure, or if the turbine is under the influences of lightning, the anemometer of
that particular turbine will produce very small readings causing detectable dis-
crepancies in the wind speed measurements of the turbine pairs. Earlier in
this chapter, I have designed multiple tests on other sensor data to exclude
faults not caused by anemometers. Due to the high variation of wind speed,
a direct point-to-point comparison of wind speed differences easily triggers
false alarms. Therefore, a week’s worth of wind speed data is aggregated
to increase the robustness of the detection. This method is employed by C.
A. Cassity and D. Parker, who won the Prognostics and Health Management
(PHM) 2011 Data Competition (55).

5.3.1 Two-Dimensional Failure Detector

The wind speed measurement is used as an independent scale variable in my
modeling efforts. According to (44), wind speed is Weibull distributed. Going
forward, we assume that wind speeds at different wind turbines are uncorre-
lated Weibull random variables.

I choose a turbine, denoted as A, and its closest neighboring turbine, B, to
evaluate the difference in their wind speed measurements. These two turbines
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Table 5.5: State Definition of Pitch Angle (Dp) vs. Wind Speed (V w)

State Definition Working Condition
1 −110 < Dp < −108 Shut down with hard failures

(Horizontal state)
2 0.5 < V w < 0.7 Anemometer failures

(Vertical state)
3 Dp = −50 degree Default setup
4 3 ≤ V w ≤ 6 and Normal working or ramping up/down

−108 ≤ Dp ≤ −20
5 V w ≤ 12 and Dp > −20 Normal working
6 12 ≤ V w ≤ 22 and Switch pitch angle to avoid damage

−35 ≤ Dp ≤ −15 caused by high wind speed
7 AbnormalDpwhenV w < 3 Under-performing in low wind speed
8 AbnormalDpwhenV w > 6 Under-performing in high wind speed

are closest to each other, and there are no other turbines around them to
interfere with the air flow around them. They make a sibling turbine pair. We
divide the data set into individual weeks that contain n data points or less,
if data is missing. For each week, we calculate the absolute values of wind
speed difference between A and B as

wsd = |wsA − wsB|. (5.2)

where wsA and wsB are uncorrelated Weibull random variables.
Since wind speed as seen by the turbine follows a Weibull distribution, the

weekly data of wind speed difference wsd is also fitted into a two-parameter
Weibull distribution of

pdf(wsd;λ, k) =
k

λ
(
wsd

λ
)k−1e−(wsd/λ)

k

, (5.3)

where k and λ are the estimated shape parameter and scale parameter, re-
spectively.

Since both turbines ideally should see similar wind speeds, the Weibull
probability density distribution should match and hence produce little spread.
The less spread of the Weibull probability density distribution of wind speed
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difference, the better the anemometer functioning on the two turbines. Figure
5.6 (1), (2), and (3) demonstrate the normal, the faulty and the idle states of
weighted histograms of weekly wind speed difference, respectively, which are
most confidently Weibull distributed. I consider a Weibull distribution with one
pair of estimated shape and scale parameters as a single state for the wind
speed difference variable under analysis. It is obvious that there are significant
differences among the spread of the three distributions.

The normal state, such as in week 31 in Figure 5.6 (1), has a sharp distri-
bution. Its default condition is defined as

If ki > 0.8 and 0 < λi < 0.8, then pdf(wsdi; ki, λi) ∈ normal week,

where i is the week index. The wind speed difference in this week is all less
than 2 m/s, and the probability of zero wind speed difference is close to 1,
which means that the wind speed difference is consistently small. Moreover, it
has a better performance since we have a good estimate of the wind speed dif-
ference with a high probability. If we need to predict the wind speed difference
within 1 m/s, we know the difference will be 1 m/s with nearly 100% probability.
This implies that both turbines work similarly, and the probability that they both
work well is high.

The faulty state, such as in week 79 in Figure 5.6 (2), has a more spread
distribution between 0 m/s and 6 m/s with a larger scale parameter, and its
shape parameter is greater than 1. Its default condition is defined as

If ki > 1 and λi > 0.8, then pdf(wsdi; ki, λi) ∈ faulty week.

This distribution is indicative of a soft failure in one of the turbine anemome-
ters, mostly due to aging. The faulty turbine’s performance degrades gradually.
However, we cannot conclusively say, which turbine in fact has an anemometer
problem without a further wind speed difference test.

The idle distribution in Figure 5.6 (3), as an example of week 118, is flat-
tened out with a long tail. The probabilities for wind speed difference higher
than 2 m/s are significantly lower. This kind of Weibull distribution has a large
scale parameter and a shape parameter less than 1. Its default condition is
defined as
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5.3 Anemometer Failure Detection by Wind Speed Difference Test

(1) normal in week 31

(2) faulty in week 79

(3) idle in week 118

Figure 5.6: Examples of normal, faulty, and idle distributions of wind speed differ-
ence between turbine A and B.
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If 0 < ki < 1 and λi > 0.8, then pdf(wsdi; ki, λi) ∈ idle week.

An intuitive explanation of such a scenario is that one turbine completely shuts

down because of hard failures such as lightning or major component failure,

and its anemometer is also turned off to read near-zero wind speed. As a

result, the wind speed difference distribution is almost the same as the wind

speed distribution of the other normal turbine.

To sum up, the turbine working status is reflected by the estimated Weibull

distribution of the weekly wind speed difference data, represented by the scale

and shape parameters. Based on this phenomenon, we can detect turbine

failures by plotting the pairs of Weibull scale and shape parameters, used as

a single state of turbine working condition. And, the main goal is, in the 2-

dimensional plot of Weibull scale and shape parameters, to reveal the normal

and abnormal regions of turbine performance.

Figure 5.7: Estimated Weibull parameters of weekly wind speed difference
between turbine A and B.

74



5.3 Anemometer Failure Detection by Wind Speed Difference Test

I analyze the Weibull probability density function for the 130 weeks worth
of data. If the scale parameter λ is larger, the distribution is more spread out,
such as in week 79 and week 118. If λ is smaller, the distribution is more con-
centrated, such as in week 31. On the other hand, if the shape parameter k
is close to 1, the distribution is sharper giving small wind speed differences a
higher probability. Figure 5.7 shows the 2-dimensional plot of the estimated
Weibull scale and shape parameters of weekly wind speed difference between
the turbine A and B. The red spot is the cluster center of all parameters. A
circle with this center represents the normal functioning of the anemometers
on both the turbines. In fact, the circle acts as a detection threshold for faulty
and idle states. The weeks inside the circle pertain to a normal state, when
both turbines are functioning properly, and the ones outside the circle are func-
tioning less optimally in a faulty or idle state. Notice that week 79 and week 118

are both outside the circle. The two anomalous points in 2-dimensional space
are indicative of faulty functioning. However, with two distinct characteristics,
they represent different types of failures as discussed above.

In the 2-dimensional plot, the faulty state with the shape parameter k greater
than 1 and scale parameters λ greater than 1 on the top-right portion of the cir-
cle, which we can expect abnormal functioning of the anemometer. However,
the ones with the shape parameter k less than 1 on the bottom-right of the cir-
cle may or may not have a failure in the anemometer. For example, verified with
the corresponding flags of true events from SCADA data, the abnormal perfor-
mance in both week 68 and week 118 are due to lighting strikes. If considering
the points with both shape and scale parameters higher than 1, I get Weibull
distributions that spread over a wide range of wind speeds with a close resem-
blance to a uniform distribution (distribution which is more flat across the wind
speed differences). This is indicative of an abnormal functioning of anemome-
ter as well as poorly performing other parts of the turbine. In this approach, I
focus on the points above the value of 0.9 for both scale and shape parame-
ters. The weeks that fall in this category are weeks 86, 34, 41, 94, 28, and 79

from left to right in Figure 5.7. Through the verification from farm operators,
except that the weeks 34 and 41 are due to missing data, the bad performance
in all the other weeks are caused by the failures related to the anemometer.
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5.3.2 One-Dimensional Failure Detector

As a way to measure the integrated effects of the scale and shape parameters,
I design another test based on the area under the Weibull cumulative distribu-
tion function (CDF). The area definition is given later in Equation (5.5). The
Weibull CDF function is defined as

cdf(wsd;λ, k) = 1− e−(wsd/λ)k , (5.4)

where wsd is the Weibull random variable of wind speed difference. If both
turbines work well and similarly, the cumulative probability function rises to
value 1 fast. In such case, the two turbines rarely have different wind speeds.
Otherwise, if one turbine is faulty, then the wind speed difference is larger, and
the Weibull cumulative distribution approaches 1 slower, which corresponds to
a diagonal or nearly linear function. For instance, Figure 5.8 illustrates that the
Weibull cumulative distribution of wind speed difference in week 31 is steeper
than those in week 79 and week 118, and week 31 is a normal week when both
turbines work well.

As shown in Figure 5.8, when the Weibull cumulative distribution rises to 1
fast, the curve covers more area under it. So we consider the normalized total
area under the CDF curve (AUC) as an indicator of such a phenomenon,

AUC(wsd = wsdmax;λ, k) =

∫ wsdmax

0
cdf(w;λ, k)dw∫ wsdmax

0
1dw

, (5.5)

where the infimum of the area is

AUC(wsd = wsdmax;λ, k)→
∫ wsdmax

0
1dw∫ wsdmax

0
1dw

= 1, (5.6)

and in our application, we have wsdmax = 25 here. The bigger the AUC, the bet-
ter both turbines work. Figure 5.9 plots the AUC curves versus week numbers.
An area of

∫ 25

0
1 − e−(wsd/0.9)0.9dw = 0.96382, shown as the green straight line,

serves as a reference when the scale and shape parameters are both 0.9. The
line is used as the threshold to declare problematic weeks for assigning the
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Figure 5.8: Weibull cumulative distribution of wind speed difference between
A and B in week 31, 79, and 118.

weekly health flags later on. The one-dimensional failure detector obtains the

same detection results as the detector of two dimensions, which is declaring

weeks 86, 34, 41, 94, 28, and 79 to be abnormal weeks.

5.3.3 Relation between 2D and 1D Failure Detectors

In this chapter, the 2-dimensional method uses 1-dimensional method to help

training the decision boundary, so 2-dimensional method is enhanced by 1-

dimensional method. On the other hand, if only using 1-dimensional method,

we can’t tell the hard failures and soft failures apart. These two methods com-

plement each other, and we do not compare them.
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Figure 5.9: Normalized area under Weibull cumulative distribution of weekly
wind speed difference, AUC, between turbine A and B.

5.4 Particle Swarm Optimization Based Method for
Failure Detection Boundary Determination

The previous section sums up the turbine working status which is reflected by

the estimated Weibull distribution of the weekly wind speed difference data,

represented by the scale and shape parameters. Based on this phenomenon,

the main goal is to reveal the normal and abnormal regions of turbine perfor-

mance, in the 2-dimensional plot of Weibull scale and shape parameters (49).

In order to determine the decision boundary between the normal and ab-

normal states in the wind speed difference failure detector objectively and op-

timally, I propose to use the particle swarm optimization (PSO) algorithm to

learn from the historical data, in this section. This new method determines

a circle-shaped decision boundary between the normal and abnormal states.

The weeks inside the circle are decided to be normal, when both turbines are

functioning properly. The ones outside the circle are decided faulty or idle,

where the faulty state often indicates soft failures, and the idle state often indi-
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cates hard failures.

Model parameterization is critical for accurate diagnosis (56), and PSO is
an effective optimization algorithm to automate the parameter estimation. PSO
is inspired by social behaviors, where a population of particles search through
the solution space to find the global optimum of a fitness function defined for
each specific application. Each particle represents a complete solution and
moves in the search space using both cognitive awareness and social influ-
ence. The PSO algorithm has been widely applied in NP-hard optimization
problems.

The optimal decision boundary between normal and abnormal states is de-
signed as the boundary to minimize the errors due to missed detection and
false alarms on the training data. I also compare the PSO algorithm with dif-
ferential evolution (DE) and evolutionary strategy (ES) algorithms. It turns out
that the PSO algorithm achieves the lowest fitness value in a shorter converg-
ing time than the other two algorithms. The same decision rule is then tested
on an exclusive testing data set for the same turbine. I verify my test results
by the automatic failure flagging on the turbines and the monthly operational
reports from the wind farm operators.

5.4.1 Application of PSO to Determine the Decision Bound-
ary

A major problem in the wind speed difference test is to determine the deci-
sion boundary between the normal and abnormal states in the feature space
objectively and optimally. The feature space spanned by the shape and scale
parameters of the estimated Weibull distribution of the weekly wind speed dif-
ferences is illustrated in Figure 5.10.

When soft failures such as the anemometer faults happen, the wind speed
difference is not drastic, but the difference is consistently there, and hence the
distribution is skewed towards the bigger wind speed difference. In this case,
both the shape parameter and the scale parameter are large numbers, pointing
to the upper right region.
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When hard failures such as major component failures happen, one turbine
completely shuts down, and its anemometer reads zero wind speed, causing
maximum wind speed difference between a turbine pair. The distribution is
thus nearly flattened out with a very heavy tail, represented by a bigger scale
parameter but small shape parameter, namely, the lower right region.

Based on the above analysis, we note that the features of the normal weeks
are clustered together, yet the features of the abnormal weeks can spread
around anywhere outside of that cluster. I propose a heuristic that the features
of the normal weeks are clustered in a circular region, which is the least infor-
mative shape, shown as Figure 5.7 in the previous section. But, the location
and size of such a circle in the feature space is turbine specific. In order to de-
termine the origin and the radius of the circle, I utilize PSO algorithm to learn
from historical data. Then I use this decision rule to test on future data.

The particle in our application is defined as

{Pi : xi, yi, ri}, (5.7)

where the particle index is i going from 1 to N , the origin of its circle is (xi, yi),
and the radius of its circle is ri.

Each SCADA data record is associated with a manual or automatic label
indicating the event happening at that time, which is used to label whether the
turbine works normally at that instance. If the labels associated with faults ac-
count for more than 20% percentage of the weekly data, this week is regarded
as a problematic week, and hence a health flag of −1 is applied to this week.
Otherwise, this week is assigned with a health flag of 1. An exception is as-
signed a health flag of 0, if there is too much missing data and the data is not
sufficient, which does not effect the optimization procedure.

However, the SCADA flagging is not completely dependable, especially on
the degradation of the faulty components. This is also why we need to design
better diagnostics and prognostics algorithms. Another factor to label whether
the week is healthy or problematic is the area value under the Weibull CDF
curve of the wind speed difference in that week, as defined in Equation (5.5).
A health flag of −1 overrides a flag of 1, if the area value is less than 0.96382.
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Note that labeling is based on both the reported events and AUC, where
AUC serves as a data-based evaluation to enhance the reliability of event flag-
ging for labeling, which is for training purpose. In testing, we often do not have
enough resources to label, and then testing is based on classification.

After the health flag of each week is assigned, any decision boundary may
incur two types of errors. One error is miss detection, defined as the number
of weeks with a health flag of −1 but located inside the circle as being normal,

(Emiss detection)i = I(weekj is normal (inside circle), when health flagj = −1),

(5.8)
where j is the set of week indices in the training set. I(·) is a counting function,
with value 1 when the argument is true, or else 0. The other error is false alarm,
defined as the number of weeks classified as abnormal outside the circle but
with a health flag of 1,

(Efalse alarm)i = I(weekj is abnormal (outside circle), when health flagj = 1).

(5.9)
The fitness function is the summation of the above two errors associated with
each particle,

Fitnessi = f(Pi) = (Emiss detection)i + (Efalse alarm)i. (5.10)

The optimal solution minimizes the fitness function.

5.4.2 Experiments and Results

There are 130 weeks’ worth of data, and I split them into training and testing
sets. The training set includes the first 70 weeks, and each week is labeled with
1, −1, or 0, indicating whether that week is healthy, problematic, or missing-too-
much-data. In Figure 5.10, the green points represent healthy weeks and the
red ones problematic weeks. If one green point is outside the candidate deci-
sion boundary, it causes false alarm error; however, if one red point is inside
the boundary, it causes a miss detection error. I use 200 particles and let them
search in 100 iterations. Note that the number of particles could be reduced
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to maintain a similar performance, and my analysis indicates that more parti-
cles do not necessary improve performance, and hence I use 200 particles. I
have tried different numbers of iterations. PSO often converges in less than 50
iterations, and I choose 100 iterations to allow some tolerance.
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Figure 5.10: 2D plot of weekly estimated Weibull parameters of wind speed
difference between turbine A and B. Apply the first 70 weeks as training data.
Learn the optimal decision boundary of normal and abnormal states by PSO.

In each iteration, the fitness of each particle is evaluated by Equation (5.10).
The best solution seen by each particle is used to update pbesti, and the best
solution seen by the whole population is used to update gbest. Through itera-
tions, all particles move toward optimal locations, driven by their own cognitive
awareness and social influence.

Figure 5.10 shows the 2-dimensional plot of Weibull scale and shape pa-
rameters of wind speed difference between turbine A and B. Each point rep-
resent one week. I use the first 70 weeks as training data, and then apply PSO
to determine the optimal decision boundary with the lowest error amount. In
Figure 5.10, the red circle represents the optimal decision boundary obtained
by PSO algorithm from the training data. This circle separates the normal and
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abnormal regions of the wind speed difference test incurring minimum errors.
In this feature space, the weeks associated with soft failures are located to
the upper right of the circle, and the weeks associated with hard failures are
located to the lower right of the circle.

Figure 5.11: Comparison of fitness transition among PSO, DE and CMA-ES.

I compare PSO algorithm with the other two optimization algorithms, Differ-
ential Evolution (DE) (57) and Evolution Strategy (ES) (58). Differential Evolu-
tion algorithm is an optimization method in evolutionary algorithms (EAs), ca-
pable of handling non-differentiable, nonlinear and multi-model objective prob-
lems. The crucial idea behind DE is a scheme for generating new candidate so-
lutions by combining existing ones according to its formulae of vector crossover
and mutation. Then, DE adds the weighted difference between two solution
vectors to a third one, which makes the scheme completely self-organizing. In
each iteration, DE updates the solution which has the best fitness value on the
optimization problem. On the other hand, Evolution Strategy (ES) algorithm
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is a stochastic, derivative-free numerical optimization method for nonlinear or
non-convex problems. In ES algorithm, new candidate solutions are sampled
according to a multivariate normal distribution. The pair-wise dependencies
between the variables in this distribution are described by a covariance matrix,
which is updated by the covariance matrix adaptation (CMA) method. So, this
algorithm is also called CMA-ES.

Figure 5.11 compares the progression of gbest versus iterations among three
mentioned algorithms. As shown in Figure 5.11, the PSO algorithm achieves
the lowest fitness value in a shorter converging time than both DE and CMA-ES
(59). The fitness value by PSO converges below 10 around the 5th iteration,
but the other two algorithms only converge to 14. Table 5.6 shows that both
DE and CMA-ES need more CPU time to hit the lowest fitness value than PSO
does.

Table 5.6: Compare PSO with DE and CMA-ES on CPU Time of Iteration and
Convergence

PSO DE CMA-ES
CPU time per iteration 0.134s 0.151s 1.42s

No. of iterations to converge 5 10 40
CPU time per convergence 0.67s 1.51s 56.80s

After the location and size of the decision boundary circle are determined
for each turbine, I use this decision rule to test future data for the same turbine.
I use the data from week 71 to week 130 in testing. In Figure 5.12, the red
circle is the optimal decision boundary learned from the first 70 weeks. All the
weeks outside this circle are classified as abnormal weeks. Except for week
118, which falls into the idle state due to the lighting strike, all the other abnor-
mal weeks are caused by the fact that the anemometer is degraded as time
goes on. According to the monthly report, the anemometer barely functions
since week 79 until it is replaced in week 95, same as Figure 5.12 showing.
So, the test results are consistent to the monthly report. With the red deci-
sion boundary learned from the earlier data, and even through there are false
alarms, miss detections are avoided.
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Figure 5.12: 2D plot of weekly estimated Weibull parameters with optimal
decision boundary. Apply the week 71 to week 130 as testing data. The average
system performance gets worse due to the aging anemometer.
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To demonstrate the system degradation due to anemometer aging, we ap-

ply the same decision boundary procedure on the testing data from week 71

to week 130 to obtain the yellow circle. This procedure on the latter data is not

used to train or test the system but only to show the average system perfor-

mance. The center of later data set is shifted to the right, indicating that the

anemometer shifts towards worse performance.

5.5 Failure Detection by Fusing Information from
Multiple Neighboring Turbines

Once a failure is detected using the previous methods, it cannot be conclusively

said which of the two turbines have an abnormal condition. To further enhance

the performance of my detector, I evaluate the wind speed differences with

respect to multiple turbines for the turbine under test. I consider the turbine A

and evaluate its wind speed difference with respect to B, C, D, E, F , G, andH.

Order these turbines numerically with a notation of i. For instance, turbine B is

the 1st turbine in comparison, and turbine C is the 2nd turbine in comparison,

etc., until turbine H is the 7th turbine in comparison. In my example, I compare

the wind speed of turbine A with seven other turbines. In practice, one can

use more or less turbines for comparison. For i goes from 1 to 7, the ith wind

speed difference is given by

wsdi = |wsA − wsi|. (5.11)

Similar to my analysis in pervious sections I estimate the probability den-

sity function and the cumulative density function for each of the wind speed

difference. Further I will attempt to fuse these multiple sources of information

to determine whether turbine A has an abnormal condition or not. If turbine A

functions abnormally, then it is highly likely that some or all of the wind speed

difference CDFs are in bad states. On the other hand, if turbine A functions

properly, then it is unlikely that all of the CDF tests would be bad.
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Due to the differences in the physical distances, wakes, or potential faults,

the wind speed difference between multiple turbine pairs would differ. The

CDF plots of the weekly wind speed difference is averaged over the full data

duration, and these average CDF plots between turbine A and multiple turbines

are shown in Figure 5.13 to show the variation. Note that the best in this

average is turbine B. The bigger the area under the CDF plot, the smaller the

difference between the wind speed measured on the turbine pair, and hence

the more important this turbine is in comparison for telling when turbine A may

function abnormally. Based on this idea, the areas under the average CDF

curve are used as the weights for later fusion.

wi =

∫ ∞
0

CDF (wsdi)dwsdi, (5.12)

where wsdi is defined in Equation (5.11).

For each turbine pair, the areas under the empirical weekly CDF curve are

first evaluated. In the jth week, the ith turbine assumes an area under the

CDF curve as below,

Ai,j =

∫ ∞
0

CDF (wsdi,j)dwsdi,j, (5.13)

where wsdi,j is the wind speed difference between the turbine A and the ith

turbine in the jth week. Then the maximum area within all these weeks is used

to normalize the weekly area, so that the normalized area is in the range of 0

to 1,

ai,j =
Ai,j

maxj{Ai,j}
, (5.14)

where maxj{Ai,j} takes the maximum value over week number j.

Finally the multiple turbine tests are fused as below,

FAj =
m∑
i=1

wiai,j, (5.15)

where m is the number of turbines in comparison. In my example, m = 7. FAj
is the weekly fused result, as shown in Figure 5.14. In Figure 5.14, the test

87



5. INTELLIGENT FAILURE DETECTION FOR WIND TURBINES

Figure 5.13: Variation in Weibull cumulative density of weekly wind speed
difference between turbine A and multiple turbines.
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result between the single turbine pair, in red line with circle markers, is taken

from Figure 5.9, which is compared with the fused result, in blue line with star

markers, between the multiple turbine pairs.

From Figure 5.14, we can see that the single turbine pair test indicates that

week 79 may have a problem. With the multiple turbine pairs test, this week is

excluded. This result indicates that the low value in the single turbine pair test

in week 79 is due to turbine B, instead of turbine A. With a single turbine pair

test, we cannot conclusively say which turbine causes the problem. However,

with the multiple turbine pairs test, we can determine which turbine is faulty in

that week.

Figure 5.14: Comparison of area under CDF between single turbine pair and
multiple turbine pairs.
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5.6 Pattern Recognition by Fusing Multiple Test
Results with PSO

After extracting turbine working features from the multiple designed perfor-
mance tests, the next step is to recognize different patterns of turbine working
status at current time by fusing all the test results.

5.6.1 Turbine Working Status Analysis and Classification

I take the data for each day as a unit to detect on which days the turbine be-
haves abnormally. Assuming that there are n observations per day, I run the
multiple tests, designed for describing turbine performance, on each observa-
tion point. In each test, multiple states are defined to extract different working
condition features, such as complete shut-downs, under-performing states, ab-
normally frequent default states, as well as, normal working states.

Figure 5.15: Turbine working status analysis procedure.

Through extensive data mining of historical data and verification from farm
operators, every state combination corresponds to one type of turbine working
status. Some state combinations are also discovered to be strong indicators
of turbine abnormalities. Figure 5.15 demonstrates the procedure of testing
turbine performance at the kth time point. Functions F1, F2, F3 are defined for
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the power curve test, the rotor speed test, and the pitch angle test, respectively.
Each test can represent one feature of turbine working status at the kth time
point. So, more tests extended, more specifically the turbine performance can
be described. At the kth time point, the corresponding state combination is
8, 1, 2, in which the three numbers orderly represent the result states of the
power curve test, the rotor speed test, and the pitch angle test. The result of
the rotor speed test belongs to the horizontal state 1, which means that the
rotor speed is relatively low while the wind speed is quite high; meanwhile,
the power produced is negative at this time point, which is assigned as the
abnormal working state 8. These two features indicate that this turbine is barely
rotating due to failures. Moreover, the pitch angle also stays in the vertical
state 2. This is because the turbine makes its blades get the least wind area
to avoid a destructive break. All of the multiple tests tell that the turbine is in
an abnormal working status due to a bad windy weather. The detection results
have been verified as a lighting strike to this turbine.

Based on the knowledge from both wind energy experts and observation
data, we classify the turbine working status into 5 different categories:

1. Normal Operation

2. Ramping Up/Down

3. Degradation

4. Safe Shutdown

5. Abnormal Shutdown

Category 2 is defined as the working status when the turbine is ramping up
or down caused by its normal reaction to wind speed varying, different con-
trol settings, etc. Category 3 describes the situation that even the turbine still
keeps running but its performance has already been degrading. It is a warning
sign to the later complete shut-down. The safe shutdown is due to some al-
lowable reasons, such as annual maintenance; on the contrary, the abnormal
shutdown happens unexpectedly because of several harmful faults, such as
spindle failure. Each state combination that has ever occurred to turbines is
assigned to its relative working status category, as shown in Table 5.7.
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Table 5.7: Turbine Working Status Category Assignment

Category Relative State Combinations
1. Normal Operation 254, 255, 256, 354, 355, 356, 444, 455, 456, 556
2. Ramping Up/Down 813, 833
3. Degradation 378, 558, 578, 754, 755, 834, 837, 854, 855
4. Safe Shutdown 811, 812, 818, 911
5. Abnormal Shutdown 611, 633, 644, 618, 671

5.6.2 Applying PSO to Determine the Fusion Rules of Tur-
bine Daily Working Status

I divide the whole data set into daily data for the interesting turbine, with n ob-

servations per day. As mentioned above, fault detection through data fusion is

more robust than using individual tests. So, after running multiple tests as time

goes by, each observation point is assigned one particular state combination.

To monitor the turbine performance in daily base and understand turbine daily

working status better, the main problem is to fuse the n − point state combi-

nations into one category for each day, which requires the construction of a

weight matrix as the fusion rules. I utilize PSO to determine the weight matrix

learning from historical working days objectively and optimally. Then I use the

fusion rules to test future data.

Based on the previous analysis, the particle in this application is defined as

a weight matrix,

Particlel =


w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

w31 w32 w33 w34 w35

w41 w42 w43 w44 w45

w51 w52 w53 w54 w55


l

, (5.16)

where the particle index is l going from 1 to L which is the total number of

particles, and the weight wij means how determinant it is to daily category i

when there are state combinations belonging to category j happened. Usually,

the weights in the diagonal line are much higher than the others on the same
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row, since they are in a dominant role for defining the significance of the row-
corresponding category.

The total daily percentage Pi of category i is defined in Equation (5.17),

Pi =
5∑
j=1

(wij ×
K∑
k=1

pjk), , (5.17)

where pjk is the percentage of kth state combination which is classified into
category j. Then set the category with the maximum percentage to the working
status for this day by following Equation (5.18),

category ≡ argmax(Pi).. (5.18)

After the working status category of each day is assigned, any weight matrix
may incur inconsistency with identified daily category in the training set. The
fitness function is the total amount of these un-matching days,

Fitnessl =
∑
n

I(categoryn 6= truecategoryn), (5.19)

where, for each particle solution, n is the set of day indices in the training set,
I is a counting function, with value 1 when the argument is true, or else 0. The
optimal solution minimizes the fitness function.

After fusing the daily state combinations, with the learned weight matrix,
each day will have one category to describe its turbine working status. My
approach gains a qualitative understanding of turbine performance status to
detect faults, and it also provides explanations on what has happened for de-
tailed diagnostics and prognostics.

5.7 Data-Driven Bayesian Inference for Turbine Fail-
ure Prediction

The main purpose of applying Bayesian inference is to identify and predict any
particular failure with statistical certainty by online monitoring turbine perfor-
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mance. I assume that the faulty turbine follows specific degradation patterns
due to differential failure before and after it happens. Based on turbine degra-
dation, the Bayesian network is able to tell the wind farm operators what type of
failures is happening to this turbine, and tell the time when it is probably going
to shut down. Then, after receiving these maintenance requirements sent by
BN, PSO can establish a schedule with priorities on each maintenance task.

Figure 5.16: Bayesian inference of turbine status variation between two ad-
jacent days.

For the purpose of prognostics, I model the degradation pattern by ana-
lyzing the working status among 25 days backwards from the day when the
interesting event starts. The network is given as a fully connected structure, in
which each level of variables represents the all working status ever occurred on
this day, and each variable is binary, with value 1 when this working status hap-
pens; otherwise, it is 0. The problem focuses on learning the joint probability
distribution of each two status between two adjacent days.

Let θijk to denote p(xi = j|Πi = k), where xi is one of the 5 working status
categories in day N . If j is 1, this status appears, or else does not. And, k
is a combination of the working status happened in the next day N + 1. The
parameter vector Θ is estimated from a collection D of independent data cases
D1, D2, ..., Dm when the interesting event arises. The joint probability table is
shown as

Θ = [pij(xi = 1, yj = 1)], (5.20)

where i, j ∈ 1, 2, 3, 4, 5. In this joint probability table, the row and column repre-
sent the category indices of turbine working status in the current day N and its
next day N + 1, respectively. The value of pij is the joint probability that both
status xi in day N and yj in day N + 1 happen. If pij is equal to 0, there is no
link between the nodes xi and yj.
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Considering spindle failure as an example, Figure 5.17 shows the joint prob-
ability transition of turbine working status among a total of 25 analysis days
before it happens. The red points are joint probability samples of variable
(1, 1), meaning that the turbine keeps working properly in two adjacent days;
whereas, the samples of variable (5, 5), represented by the green points, in-
dicate that the turbine is shutting down completely in two adjacent days. As
shown in this figure, the abnormal shut-down is gradually increasing, since 20

days before the spindle failure happens. Meanwhile, the turbine barely op-
erates normally during the same time, especially around 10 days before this
failure is verified. In other words, the good performance is decreasing and
bad performance is increasing since 20 days before the spindle failure really
happens.

Figure 5.17: Joint probability transition of turbine working status among 25
days before spindle failure happens.

To sum up, the Bayesian network automatically monitors turbine perfor-
mance and predicts any particular failure. As a result, failures can be detected
at an early stage, so that the potential damage could be minimized or mitigated
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through early repairs, avoiding drastic breakdowns of the wind turbine. Also,
maintenance can be optimally scheduled, which leads to less downtimes and
more revenue.

5.8 Conclusion

Wind energy is expected to play an increasingly important role in the future na-
tional energy scene. Wind turbines are used to tap the potential of wind energy,
which is available in millions of MW. Reliability of wind turbines is critical to ex-
tract this maximum amount of energy from the wind. This chapter proposes a
data-driven methodology developed to monitor the global performance of wind
turbine as well as for an early fault detection to keep away the wind turbines
from catastrophic conditions due to sudden breakdowns.

Currently, one means of enhancing reliability and robustness of wind tur-
bine is to implement efficient, adaptable and responsive systems of condition
monitoring. Autonomous online condition monitoring systems (CMSs) with
integrated fault detection algorithms allow early warnings of mechanical and
electrical defects to prevent major component failures. It can reduce costs by
enabling necessary repair actions to be planned in time. Most methodologies
of CMSs being used today are separately designed for each particular com-
ponent or subsystem (60). For example, vibration analysis and acoustic mon-
itoring are often applied for rotating equipments, such as bearing systems of
wind turbine, while thermography technology and electrical effects are applied
for monitoring electronic components (61).

For wind turbines, however, the system to be monitored is complex with
high number of subsystems, and the margins for investments are small. The
implementation of CMS techniques on subsystem level normally requires the
initial cost of installation and adaptation to existing system. Also, the local
monitoring is often focused on a very limited number of aspects, but, when
to define relationships among subsystems, the whole system becomes more
complicated. Hence, with relatively low costs, the global performance monitor-
ing of wind turbine can be added, which makes early fault detection based on
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trend analysis possible.
In this chapter, the trending of wind turbine main parameters, such as the

relationship of power, wind velocity, rotor speed and pitch angle, are analyzed,
which gives global insight in the operation in the turbine. By application of
more advanced methods of signal analysis and artificial intelligence, significant
changes in turbine behavior are detected at an early stage. For example, in
case of large deviations on trends of representative signals or combination of
signals, an alarm is generated. This approach is cost effective as no additional
investment is required, but can accomplish the task of monitoring the turbine
as a whole.

To establish a condition-based maintenance and repair, there is a need to
develop an efficient fault detection algorithm. Many faults can be detected
while the defective component is still operational. Numbers of techniques are
available for identification of faults, which are distinguished between model-
based algorithms and data-driven algorithms. The model-based algorithms
encode human knowledge via a hand-coded representation of the system, in-
cluding rule-based expert systems and finite-state machines. These hand-
coded model uses qualitative, rather than numerical, variables to describe the
physics of wind turbine. To detect specific failure, this chapter proposes an in-
telligent data-driven classification approach to automatically distinguish turbine
behavior between normal operation and faulty condition. The test results have
verified the effectiveness of detecting turbine failures at an early stage, espe-
cially for anemometer failure. I also suggest the use of a Bayesian network for
estimating the turbine degradation pattern due to different failures.
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6

Conclusion and Future Work

6.1 Conclusion

Data fusion technologies have been used across a wide range of applications,
to support a real-time decision making in complex, dynamically changing en-
vironments. In this dissertation, I develop an intelligent data fusion model for
decision support systems applied to real-world problems. It makes the decision
support system adaptable, and can be applied in various problem structure and
problem types.

To sum up the advantages of this proposed data fusion model, I list its three
attracting features as follows:

• This data fusion model has a loop structure that returns the feedback
of decisions into the next time interval, so that it can respond to the dy-
namically changing environment at the real-time, and execute the ac-
tions meeting the system requirements with respect to the current cir-
cumstance.

• This model uses an artificial intelligent mechanism, which makes the de-
cision support system more cognitive and reliable. For instance, I apply
Bayesian network (BN) for threat assessment in the system, in that it can
come up with a set of possible operation based on current situation, and
present confidence or uncertainty of taking one course of action over an-
other. I also apply particle swarm optimization (PSO) algorithm to make
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decision more objectively and optimally. This algorithm has simple com-
putations, so that it can converge to an optimal solution very quickly.

• This model is a data-driven approach, which makes the decision support
system more automatic and adaptive. It only needs the expert knowledge
in the system design phase, but requires no human in the loop execution.
The intelligent mechanism learns from the system behavior, and auto-
matically adapts the system parameters to the new changes. In addition,
due to its data-driven nature, this model is easily transferable from one
problem domain to another.

To demonstrate its advantages, I implement the intelligent data fusion model
into two real-world problems: one is the sensor network management for air
traffic control; the other is the failure detection and maintenance for wind tur-
bines.

1. Sensor network management for air traffic control:

The research objective of air traffic control problems is to develop a sen-
sor manager that can allocate sensor resources efficiently. The main
contribution of the proposed sensor management system is that it auto-
matically updates the system operating requirements in real-time based
on monitoring its current performance and dynamically changing environ-
ment. As a mission manager in the system, BN maintains the possibly
best overall performance by allocating more sensor resources to the re-
gions with higher priority.

2. Failure detection and maintenance for wind turbines:

To detect turbine failures at an early stage, this dissertation proposes
an intelligent data-driven approach to monitor the turbine global perfor-
mance at real-time by fusing multiple test results, and identify the tur-
bine abnormalities by tracking the turbine status variations in real time.
This approach is adaptable to each turbine automatically, and is advan-
tageous in its applicability and data-driven nature to monitor a large wind
farm. The test results have verified the effectiveness of detecting turbine
failures before they really happen, especially for anemometer failures.
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6.2 Future Work

Despite its wide usage in the real-world applications, the data fusion model

presents formidable challenges to those interested in the implementation of

system design and algorithms through theoretical analysis. So, to date a fully

comprehensive and adaptable model of decision support system is still not

available. We would like to explore both theoretical and practical sides of the

data fusion model and gain more insight on it. The research on data fusion

model and its application in the following directions are going to be useful:

6.2.1 Applying Hybrid Methods of Other Artificial Intelligent
Algorithms

One important area of active research is applying hybrid methods of compu-

tational intelligence techniques to solve a single problem. This is often used

to solve complex real-world problems where one technique is typically used to

fix the weaknesses of the other. In this proposed decision support system, I

particularly combine BN for uncertainty assessment and PSO for optimization.

However, for different types of problems, it might be more effective to apply the

hybrid methods of other artificial intelligent algorithms.

For example, another popular paradigm of swarm intelligence is called ant

colony optimization (ACO). The algorithm is inspired by the stigmergistic com-

munication system employed by ants to evaluate alternative choices and take

decisions in dynamic optimization problems. Moreover, one of the most popu-

lar machine learning approaches to wind energy prognostics is to use neural

networks to model the system (62). Neural networks are a type of model that

establishes a set of interconnected functional relationships between input stim-

uli and desired output where the parameters of the functional relationship need

to be adjusted for optimal performance.
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6.2.2 Applying Could Computing to Make System More Scal-
able

Decision support with data fusion technology, even with sparse data, is com-
putationally intensive. In the most of real-world problems, data is usually very
noisy, also has few training examples.

To mitigate the problems of sparse and noisy data, our strategy will be to
generate multiple data fusion models which express as many distinct, use-
ful explanations of the data as possible. This will involve factoring the data
fusion technology to simultaneously investigate multiple strategies using dif-
ferent model accuracy metrics, model complexity metrics and factoring of the
training data. This will be computationally expensive and can only be achieved
by distributing the computation process on a massive compute resource like
the cloud.

Cloud computing has emerged as a new paradigm for commercial, scien-
tific, and engineering computation. A cloud allows an organization to own or
rent efficient, pooled computer system instead of acquiring multiple isolated
large computer systems each commissioned and assigned to particular inter-
nal projects. It is rapidly becoming well understood how to get the most out
of the cloud as an application technology platform for developing complex web
services or database servers. This is because the cloud and internet have
grown together. However, when one considers cloud-based Artificial Intelli-
gence, how to transition to the cloud is not entirely clear. This is because a
lot of the technology supporting cloud application development is still itself be-
ing developed. Hence, there is a vast potential for the future development of
deploying and updating cloud-based AI algorithms into real-world applications.

102



Bibliography

[1] “Automatic sensor scheduling,” in Project Contract of Syracuse University

with Sensis Corporation, from July, 2007 to July, 2008. i, xi, 14, 34, 36, 37

[2] “Wind turbine intelligent diagnostics and prognostics,” in Project Contract

of Syracuse University with AWS Truewind, LLC, from May, 2008 to Jan,

2010. ii, xi, 14, 58, 59, 61

[3] Y. Yan, L. A. Osadciw, G. Benson, and E. White, “Inverse data transforma-

tion for change detection in wind turbine diagnostics,” in Proceedings of

22nd IEEE Canadian Conference on Electrical and Computer Engineer-

ing, (Delta St. Johns, Newfoundland and Labrador, Canada), May 2009.

xi, 12, 65, 66

[4] S. Paradis, R. Breton, and J. Roy, “Data fusion in support of dynamic

human decision making,” in Proc. IEEE Int’l. Conf. on Information Fusion,

1999. 1

[5] A. M. Bisantz, R. Finger, Y. Seong, and J. Llinas, “Human performance

and data fusion based decision aids,” in Proc. IEEE Int’l. Conf. on Infor-

mation Fusion, vol. II, 1999. 1

[6] J. Esteban, A. Starr, R. Willetts, P. Hannah, and P. Bryanston-Cross, “A re-

view of data fusion models and architectures: towards engineering guide-

lines,” in Journal of Neural Computing and Applications, vol. 14, Decem-

ber 2005. 2

103



BIBLIOGRAPHY

[7] L. A. Klein, Sensor and data fusion: a tool for information assessment and
decision making. SPIE-The International Society for Optical Engineering,
2004. 2

[8] M. Bedworth and J. O’Brien, “The omnibus model: A new model of data
fusion,” in Aerospace and Electronic Systems Magazine, vol. 15, pp. 30–
36, 2000. 2

[9] M. Ticha and T. Ranchin, “A case based reasoning data fusion scheme:
application to offshore wind energy resource mapping,” in Proceedings of
9th International Conference on Information Fusion, July 2006. 7

[10] A. A. Oklahoma and A. Abraham, “Rule-based expert systems,” in Hand-
book for Measurement Systems Design, pp. 909–919, 2005. 7

[11] R. Krzysztofowicz, “Decision criteria, data fusion, and prediction calibra-
tion: a bayesian approach,” IEEE Transactions on Hydrological Sciences,
vol. 55, March 2010. 7

[12] L. A. Osadciw, “Emerging sensor networks can make sense for your busi-
ness,” in Technical Report 2003, (Syracuse, NY), 2003. 9

[13] G. A. McIntyre, “A comprehensive approach to sensor management and
scheduling,” in Doctoral Dissertation, (George Mason University, Fairfax,
VA), 1998. 9

[14] L. Osadciw and K. Veeramachaneni, “A controllable sensor management
algorithm capable of learning,” in Proceedings of SPIE Homeland and
Defense Symposium, April, 2005. 9

[15] L. Rothman and S. Bieri, “Evaluation of sensor management systems,” in
Proceedings of National Aerospace and Electronics Conference, vol. 4,
pp. 1747–1752, 1998. 10

[16] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Hand-
book. Wiley, 2001. 11

104



BIBLIOGRAPHY

[17] Z. Chen and F. Blaabjerg, “Wind energythe worlds fastest growing energy
source,” IEEE Transiations of Power Electron Soc Newslett, vol. 18, no. 3,
2006. 11, 57

[18] S. M. Kay, “Fundamentals of statistical signal processing: Detection the-
ory,” vol. II, 1998. 11, 57

[19] X. Wei and M. Verhaegen, “Fault detection of large scale wind turbine
systems,” in IEEE Proc. of 16th Mediterranean Conference on Control and
Automation, (Ajaccio, France), pp. 1675–1680, June 25-27, 2008. 11, 57

[20] A. Stefani, A. Bellini, and F. Filippetti, “Diagnosis of induction machines’
rotor faults in time-varying conditions,” Industrial Electronics, IEEE Trans-
actions on, vol. 56, pp. 4548 –4556, nov. 2009. 12

[21] W. Yang, P. Tavner, C. Crabtree, and M. Wilkinson, “Cost-effective con-
dition monitoring for wind turbines,” Industrial Electronics, IEEE Transac-
tions on, vol. 57, pp. 263 –271, jan. 2010. 12

[22] B. Lu, Y. Li, X. Wu, and Z. Yang, “A review of recent advances in wind
turbine condition monitoring and fault diagnosis,” pp. 1 –7, jun. 2009. 12

[23] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, July 31, 2009. 15, 18, 21

[24] D. Heckerman, “A tutorial on learning with bayesian networks,” in Mi-
crosoft Research Technical Report, March 1995. 16

[25] I. Ben-Gal, “Bayesian networks,” in Encyclopedia of Statistics in Quality
and Reliability, Wiley, 2007. 19

[26] R. E. Neapolitan, Learning Bayesian networks. Pearson Prentice Hall,
2004. 20

[27] B. Das, “Representing uncertainties using bayesian networks,” in Scien-
tific and Technical Report, December 1999. 21

105



BIBLIOGRAPHY

[28] E.Polak, Optimization: algorithms and consistent approximations. New
York: Springer, 1997. 25

[29] A. E. R. Brits and F. V. den Bergh, “Locating multiple optima using particle
swarm optimization,” vol. 189, pp. 1859–1883, 2007. 26

[30] J. P. S. Kiranyaz and M. Gabbouj, “Multi-dimensional particle swarm opti-
mization for dynamic environments,” in Proceedings of 12th International
Conference on Innovations in Information Technology, pp. 34–38, Dec.
2008. 26

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int’l. Conf. on Neural Networks (Perth, Australia), vol. IV, (IEEE Service
Center, Piscataway, NJ), pp. 1942–1948, 1995. 26

[32] J. D. Papastavrou, Decentralized Decision Making in a Hypothesis Testing
Environment. The MIT Press, 1990. 30

[33] R. V. Denton, E. I. Alcaraz, J. Linas, and K. J. Hintz, “Towards modern
sensor management systems,” in Science of Command and Control, Part
III: Coping with Change, pp. 118–134, AFCEA International Press, Fair-
fax, 1994. 34

[34] L. Osadciw, X. Ye, and G. Kamath, “Smart sheduler for air traffic control
application,” in Techniqual report for Sensis Corporation, September. 34

[35] T. Jun and S. Gan-lin, “Multi-sensor management: Optimal allocation of
tracking resources,” in Proceedings of Electric Information and Control
Engineering (ICEICE), pp. 532–535, April. 38

[36] T. Brhard and E. Duflos, “Optimal policies search for sensor management,”
in Proceedings of IEEE Fusion Conference, 2008. 38

[37] X. Ye, G. Kamath, and L. Osadciw, “Using bayesian inference for sensor
management of air traffic control system,” in IEEE Symposium on Multi-
criteria Decision Making, (Nashville, TN), March. 43

106



BIBLIOGRAPHY

[38] J. P. Wangermann and R. F. Stengel, “Principled negotiation between in-
telligent agents: A model for air traffic management,” vol. 12, pp. 177 –
187, 1998. 55

[39] D. P. A. Li Weigang, Marcos V. P. Dib and A. Crespo, “Intelligent computing
methods in air traffic flow management,” vol. 18, pp. 781 – 793, 2010. 55

[40] J. Ribrant and L. M. Bertling, “Survey of failures in wind power systems
with focus on swedish wind power plants during 1997 ndash;2005,” En-
ergy Conversion, IEEE Transactions on, vol. 22, pp. 167 –173, mar. 2007.
57

[41] A. Tindal, C. Johnson, M. LeBlanc, K. Harman, E. Rareshide, and
A. Graves, “Site-specific adjustments to wind turbine power curves,” in
AWEA WINDPOWER Conference, (Houston, TX, USA), 2008. 58

[42] J. Ribrant, Reliability performance and maintenance - a survey of failures
in wind power systems. PhD thesis, XR-EE-EEK, 09 2006. 58

[43] D. Robb, “Gearbox design for wind turbines improving but still face chal-
lenges,” Windstat Newsletter, vol. 18, no. 3, 20045. 58

[44] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Hand-
book. Wiley, 2001. 59, 70

[45] W. Lu and F. Chu, “Condition monitoring and fault diagnostics of wind
turbines,” in Proceedings of IEEE Prognostics and System Health Man-
agement Conference year=2010,. 60

[46] W. Yang, P. J. Tavner, C. J. Crabtree, and M. Wilkinson, “Cost-effective
condition monitoring for wind turbines,” vol. 57, pp. 263 –271, Jan 2010.
60

[47] Z. Chen, X. Lian, H. Yu, and Z. Bao, “Algorithm of data mining and its
application in fault diagnosis for wind turbine,” vol. 2, pp. 240 –243, nov.
2009. 61

107



BIBLIOGRAPHY

[48] A. Zaher and S. McArthur, “A multi-agent fault detection system for wind
turbine defect recognition and diagnosis,” pp. 22 –27, jul. 2007. 61

[49] X. Ye, K. Veeramachaneni, Y. Yan, and L. A. Osadciw, “Unsupervised
learning and fusion for failure detection in wind turbines,” in Proceed-
ings of 12th International Conference on Information Fusion, (Seat-
tle,Washington, USA), July 2009. 64, 78

[50] X. Ye, W. Gao, Y. Yan, and L. A. Osadciw, “Multiple tests for wind turbine
fault detection and score fusion using two-level multidimensional scaling
(mds),” in Proceedings of SPIE symposium on Defense, Security, and
Sensing, (Orlando, FL, USA), April 2010. 65

[51] L. A. Osadciw, Y. Yan, X. Ye, G. Benson, and E. White, “Wind turbine
diagnostics based on power curve using particle swarm optimization,” in
book Wind Power Systems: Applications of Computational Intelligence,
Springer, 2010. 66

[52] Y. Yan, G. Kamath, L. A. Osadciw, G. Benson, P. Legac, P. Johnson, and
E. White, “Fusion for modeling wake effects on wind turbines,” in Pro-
ceedings of 12th International Conference on Information Fusion, (Seat-
tle,Washington, USA), July 2009. 69

[53] K. Hisada and F. Arizino, “Reliability tests for weibull distribution with vary-
ing shape-parameter, based on complete data,” Reliability, IEEE Transac-
tions on, vol. 51, pp. 331 – 336, sep. 2002. 69

[54] T.-H. Yeh and L. Wang, “A study on generator capacity for wind turbines
under various tower heights and rated wind speeds using weibull distri-
bution,” Energy Conversion, IEEE Transactions on, vol. 23, pp. 592 –602,
jun. 2008. 69

[55] C. A. Joshua Cassity and D. Parker, “Applying weibull distribution and dis-
criminant function techniques to predict damaged cup anemometers in the
2011 phm competition,” in Proceedings of 2011 Prognostics and Health
Management, (Montreal, Quebec, Canada), September 25-29 2011. 70

108



BIBLIOGRAPHY

[56] O. Bennouna, N. Heraud, H. Chafouk, and G. Notton, “Influence of model
parameters on the diagnosis of the wind turbine generator,” pp. 1 –5, jul.
2009. 79

[57] F. Gao and H. Tong, “Differential evolution: An efficient method in optimal
pid tuning and on–line tuning,” in Proceedings of the First International
Conference on Complex Systems and Applications, (Wuxi, China), 2006.
83

[58] N. Hansen, “The cma evolution strategy: A tutorial,” tech. rep., March 7,
2010. 83

[59] X. Ye, Y. Yan, and L. A. Osadciw, “Learning decision rules by particle
swarm optimization (pso) for wind turbine fault diagnosis,” in Proceedings
of Prognostics and Health Management, (Portland, OR, USA), October
10-15 2010. 84

[60] Y. M. C. S. H. A. C. K. S. Z. Hameed, Y. S. Hong, “Condition monitoring
and fault detection of wind turbines and related algorithms: A review,”
vol. 13, pp. 1 – 39, 2009. 96

[61] X. W. Bin Lu, Yaoyu Li and Z. Yang, “A review of recent advances in wind
turbines condition monitoring and fault diagnosis,” in Proceedings of 2009
Power Electronics and Machines in Wind Application, Juner 24-26 2009.
96

[62] M. Schwabacher and K. Goebel, “A survey of artificial intelligence for
prognostics,” (Arlington VA), 2007. 101

109



BIBLIOGRAPHY

VITA

NAME OF AUTHOR: Xiang Ye

MAJOR: Electrical and Computer Engineering

EDUCATION:

Ph.D. in Electrical and June 2012 Syracuse University
Computer Engineering Syracuse, NY
M.S. in Electrical Aug. 2009 Syracuse University
Engineering Syracuse, NY
M.S. in Engineering July 2006 Pittsburg State University
Management Pittsburg, KS
B.S. in Electrical June 2005 Wuhan University of
Engineering Technology, China

PUBLICATIONS:

1. Daniel Nikovski, Alan Esenther, Xiang Ye, ”Bayesian networks for Matcher
Composition in Automatic Schema Matching”, 28th IEEE International
Conference on Data Engineering, Washington, DC, USA, April 1-5, 2012.

2. Xiang Ye, Yanjun Yan, Lisa Ann Osadciw, ”Learning Decision Rules by
Particle Swarm Optimization (PSO) for Wind Turbine Fault Diagnosis,”
in Proceeding of Prognostics and Health Management, Portland, OR,
October 10-15, 2010.

3. Lisa Ann Osadciw, Yanjun Yan, Xiang Ye, Glen Benson and Eric White,
”Wind Turbine Diagnostics based on Power Curve Using Particle Swarm
Optimization,” accepted book chapter in Wind Power Systems: Applica-
tions of Computational Intelligence, Springer, 2010.

4. Xiang Ye, Weihua Gao, Yanjun Yan and Lisa A. Osadciw, ”Multiple Tests
for Wind Turbine Fault Detection and Score Fusion Using Two-level Mul-
tidimensional Scaling (MDS),” in Proceeding of SPIE symposium on De-
fense, Security, and Sensing, Orlando, FL, April 2010.

110



BIBLIOGRAPHY

5. Xiang Ye, Kalyan Veeramachaneni, Yanjun Yan, and Lisa A. Osadciw,
”Unsupervised Learning and Fusion for Failure Detection in Wind Tur-
bines,” in Proceedings of 12th International Conference on Information
Fusion, Seattle, Washington, USA, July 6-9, 2009.

6. Xiang Ye, Ganapathi Kamath and Lisa Osadciw, ”Using Bayesian Infer-
ence for Sensor Management of Air Traffic Control System”, IEEE Sym-
posium on Multicriteria Decision Making, Nashville, TN, March 30 - April
2, 2009.

7. Ganapathi Kamath, Xiang Ye and Lisa A. Osadciw, ”Using Swarm Intel-
ligence and Bayesian Inference for Aircraft Interrogation”, in Proceeding
of Wireless Communication and Networks Conference 2008, Las Vegas,
NV, April 2008.

8. Rajani Muraleedharan, Xiang Ye and Lisa A. Osadciw, ”Prediction of
Sybil Attack on WSN Using Bayesian Networks and Swarm Intelligence”,
in Proceeding of Wireless Sensing and Processing 2008, Orlando, FL,
March 2008.

111


	Intelligent Data Fusion for Applied Decision Support
	Recommended Citation

	List of Figures
	List of Tables
	1 Introduction
	1.1 Data Fusion for Decision Support
	1.2 Research Objective
	1.3 Research Contribution: System-based Design and Implementation of Decision Support System
	1.3.1 Sensor Network Management for Air Traffic Control
	1.3.2 Cognitive Monitoring and Maintenance for Wind Turbines

	1.4 Dissertation Outline

	2 Bayesian Networks
	2.1 Representation
	2.2 Inference
	2.3 Learning
	2.3.1 Learning with Known Structure and Full Observation
	2.3.2 Learning with Known Structure and Partial Observation

	2.4 Features of Bayesian Networks
	2.4.1 Representation of Uncertainties
	2.4.2 Model of Dependence


	3 Particle Swarm Optimization for Continuous Variables
	3.1 Optimization Problems
	3.2 Algorithm Description
	3.3 Features of Particle Swarm Optimization
	3.3.1 Simplicity
	3.3.2 Adaptivity
	3.3.3 Independence of Objective Function


	4 Intelligent Sensor Network Management for Air Traffic Control System
	4.1 Air Traffic Control System
	4.1.1 Problem Description
	4.1.2 Research Objective
	4.1.3 Sensor Management System Design

	4.2 Bayesian Mission Manager
	4.2.1 Network Structure Design
	4.2.2 Parameter Estimation with Partial Observation of System Performance
	4.2.3 Inference of Management Requirements in Real-time

	4.3 Simulated Experiments and Results
	4.3.1 Scenario Description
	4.3.2 Simulation
	4.3.3 Results of Bayesian Mission Manager Performance

	4.4 Conclusion

	5 Intelligent Failure Detection for Wind Turbines
	5.1 Wind Turbine Failure Diagnosis
	5.1.1 Problem Description
	5.1.2 Research Objective
	5.1.3 Failure Detection System Design

	5.2 Multiple Turbine Tests on Critical Performance Variables
	5.2.1 Test 1: Generated Power vs. Wind Speed
	5.2.2 Test 2: Rotor Speed vs. Wind Speed
	5.2.3 Test 3: Pitch Angle vs. Wind Speed

	5.3 Anemometer Failure Detection by Wind Speed Difference Test
	5.3.1 Two-Dimensional Failure Detector
	5.3.2 One-Dimensional Failure Detector
	5.3.3 Relation between 2D and 1D Failure Detectors

	5.4 Particle Swarm Optimization Based Method for Failure Detection Boundary Determination
	5.4.1 Application of PSO to Determine the Decision Boundary
	5.4.2 Experiments and Results

	5.5 Failure Detection by Fusing Information from Multiple Neighboring Turbines
	5.6 Pattern Recognition by Fusing Multiple Test Results with PSO
	5.6.1 Turbine Working Status Analysis and Classification
	5.6.2 Applying PSO to Determine the Fusion Rules of Turbine Daily Working Status

	5.7 Data-Driven Bayesian Inference for Turbine Failure Prediction
	5.8 Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Applying Hybrid Methods of Other Artificial Intelligent Algorithms
	6.2.2 Applying Could Computing to Make System More Scalable


	Bibliography

