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ABSTRACT 

 

 A chiral body of revolution (BOR) which is partially covered by a thin conducting shield is 

analyzed using the method of moments (MOM). The axisymmetric system is excited by a plane 

wave. The total internal fields and the far scattered fields are computed. The problem is solved 

using the surface equivalence principle. The scattered fields outside the structure are assumed to be 

produced by an equivalent magnetic surface current that exists on the unshielded part of the BOR 

surface and an external equivalent electric surface current that exists over all of the BOR surface S . 

These two currents are assumed to radiate in the unbounded external medium. Similarly, the total 

internal fields are assumed to be produced by the negative of the above magnetic current and an 

internal equivalent electric surface current that exists over all of the BOR surface, but is the 

negative of an independent unknown only on the shielded part of S . These two currents radiate in 

the unbounded internal medium.  Enforcing continuity of the tangential components of total electric 

field (E) and total magnetic field (H) on S gives a two  coupled integral equations for the two 

unknown surface currents. The two unknown surface currents are the external equivalent electric 

surface current and the union of magnetic current ( M ) on the unshielded part of S and the negative 

of the internal equivalent electric surface current on the shielded part of S .  The method of 

moments as applied to bodies of revolution is used to solve these integral equations numerically. 

Piecewise linear variation of the currents is assumed along the generating curve of the BOR. The 

variation of the currents along the circumferential direction is represented by Fourier series. An 

approximate Galerkin’s method is used for testing.  Conical and spherical BORs are studied.  

Computed results for the partially shielded spherical chiral body are in excellent agreement with 

other data. 

Theoretical framework developed in chapters two through six factually validated the 

underlying firm foundation of mathematical physics and sound computational electromagnetic 

methods of our theory by producing correct scattered fields and radar cross sections of  the chiral 

and perfectly conducting sphere, chiral and perfectly conducting cylinder, chiral and perfectly 

conducting cone.  Chapter seven demonstrates the soundness of the theoretical foundation of this 

thesis by producing computed results and graphs of not only the case of a perfectly conducting 

sphere, cylinder and cone but those of the chiral sphere, chiral cylinder, and chiral cone and those of 

the chiral sphere, chiral cylinder and chiral cone partially covered by rotationally symmetric 

perfectly conducting surface.  The computed results and graphs obtained in chapter seven by the 

application of our theoretical framework were almost one hundred percent accurate with respect to 

the conformability of our graph mappings, form of our graphs and accuracy of our graph readings 

with respect to analytically calculated results and graphs. Our computed results and graphs with 

respect to the computed results and graphs of early research works that used numerical approach 

distinctly different than ours were in good agreement.      
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Chapter 1 

1- Introduction 

Figure 1.1 shows the problem considered in this work. It shows a chiral body of revolution (BOR) 

that is partially covered by  perfectly conducting axisymmetric surfaces. The chiral body is 

characterized by  2 2 2, ,   , where  
2  is the chirality of the material.  The partially shielded body 

is surrounded by a regular dielectric medium with parameters  1 1,  .  It is excited by an incident 

plane wave  ,inc inc
E H .  This field penetrates into the chiral body through the apertures on its 

surface and produces the total field (E2,H2) at points inside the BOR.  The incident field is also  

 

Figure 1.1  A chiral body of revolution (BOR) with two apertures 
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scattered by the system producing the total field (E1 , H1 ) at points external to the body.  We are 

interested in finding the field  (E2,H2) at an arbitrary point inside the BOR and the far field scattered 

by the structure. The problem of electromagnetic penetration into an empty body of revolution that 

is partially covered by perfectly conducting surface with one aperture in it  is analyzed in [1], [2]. 

The problem of electromagnetic transmission through an arbitrary aperture in an arbitrary 3-D 

conducting surface enclosing chiral material is analyzed in [3]. The electromagnetic analysis of 

general bodies of revolution is given in [4]. The work presented in this dissertation is an 

extension/combination of the work  in [1] [3]. 

In Fig. 1.1, Sa denotes the unshielded part of the surface of the chiral BOR, and Sc denotes 

the surface of the conducting shield. The union of these two surfaces is denoted by S.  The surface 

equivalence principle is used to separate the problem of Fig1.1 into two simpler parts, namely, the 

region external to surface S, and the region internal to S. The scattered field in the external problem 

is produced by equivalent magnetic surface current M  and  equivalent electric surface current 
eJ  

radiating in the unbounded external medium. The current M  exists on only Sa and the current eJ  

exists on the whole surface S. The total field in the chiral medium is produced by an equivalent 

magnetic surface current – M , and an equivalent electric surface current iJ  radiating in the 

unbounded chiral medium.  iJ  exists on the whole surface S. There are two unknowns: eJ  on S

and the union of M  on aS  and  iJ  on cS .  On aS , iJ  is known to be equal to eJ .  Enforcing 

continuity of the tangential parts of total E and H  across S gives two coupled vector integral 

equations for the two unknown surface currents. The method of moments as applied to bodies of 

revolution is used to solve the integral equations numerically. Piecewise linear variations of the 

currents are assumed  along the generating curve of the BOR.  The variations of the currents along 

the circumferential direction are represented by Fourier series.  Galerkin’s method is used for 

testing.  The linear variations of the currents along the generating curve are approximated by Dirac 

delta functions with special treatment of the "self terms". Numerical results for conical and 

spherical chiral BORs partially shielded by thin perfect conductors are computed.  Results for the  

sphere shown in Figure 1.2, are in agreement with those computed using other methods. 
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Figure  1.2  A plane wave incident on a sphere with    30 (degrees) aperture. 

1.1 Body of revolution (BOR) 

A surface of revolution is formed when a curve is rotated about a line .  Such a surface is the lateral 

boundary of a solid of revolution.  At least two chapters are devoted in  advanced calculus books    

[5] to calculation of surfaces and solids of revolution by using integration methods.  Figure 1.1.1, 

shown below, represent typical bodies of revolution. 

   

 

 

Figure 1.1.1  Typical bodies of revolution 

 

Almost a BOR 
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1.2 Complicated shaped bodies of revolution 

Unfortunately, bodies of revolution encountered in the real world are complicated shaped.  

Analytical solution methods in scattering problems are possible only for regularly shaped bodies of 

revolution necessitating approximate numerical approaches in cases of complicated shaped bodies 

of revolution. This thesis pertains to scattering by complicated shaped bodies of revolution. 

Therefore, integral equations encountered in this research will not lead to elegant analytical 

solutions. Inherent challenges involving sophisticated computational solutions of  great varieties 

and magnitudes in this research work are tackled by resorting to a numerical technique commonly 

referred to as the Method of Moments (MoM).  

     Theoretical framework is developed in Chapters 26  that provides conceptual foundation from 

formulation of integral equations for a metallic perfectly conducting arbitrararily shaped apertured 

surface of revolution enclosing chiral material to MoM and from MoM to the intricacies of 

mathematics required to meet the very elaborate  and rigorous  research goal of this thesis.  In order 

to deal with enormous sizes of matrices ( matrices of size 6000   6000  and inversions of the same 

size of matrices were required to produce some graphs of Chapter 7) and vectors met in this 

research work for obtaining solutions and graphic mappings,  we needed to resort to  programming 

in Matlab script.      

    The mathematical edifice built in Chapters 26 is multi-faceted and versatile enough to analyze 

scattering and radiation by perfectly conducting metallic as well as unshielded dielectric  bodies of 

revolution ( BOR's) of complicated shapes. 

      In  Chapter 7, we further this research activity by proving that the theoretical framework 

developed in Chapters 2 6 is equally applicable to regularly shaped bodies of revolution. We will 

compare, in the format of graphs, the results of regularly shaped bodies of revolution based on our 

theoretical formulations to those graphs that are produced analytically by earlier researchers. In 

cases where integral and other equations pertaining to scattering problems cannot be solved by 

analytical methods, we will compare our results with those of earlier researches carried out by 

application of  theoretical and numerical  approaches different from ours. 

1.3  Motivation Obtained From Previous Research Work 

Penetration of electromagnetic waves through apertures has been studied extensively. Two-

dimensional apertures in thin infinite planes are studied in [6], [7].  Apertures in arbitrarily shaped 

three dimensional surfaces are studied in [3], [8].  In [3] the internal medium considered was chiral 

and in [8] both internal and external media were regular dielectrics. Memory and CPU time are the 

main limitation of analyzing arbitrarily shaped 3-D structures using MOM. However, larger bodies 

of revolution can be analyzed by the method of moments. Apertures in bodies of revolution were 

studied first in [1] [2], where both the internal and external media were the same regular dielectric. 

In this work, we extend/combine the works in [1]  [3] by considering apertures in partially shielded 
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chiral bodies of revolution where the external region is a regular dielectric. This way, we are able to 

study the effect of chirality on the penetration of electromagnetic waves through apertures on the 

surface of partially shielded chiral bodies of revolution. Restricting ourselves to bodies of 

revolution allows us to study larger structures given memory and CPU time restrictions.   

  The problem of electromagnetic transmission through an aperture in a conducting plane 

[9], is treated by obtaining an operator equation for the equivalent magnetic current, and then 

reducing it to a matrix equation via the method of moments (MoM).  Integral formulations for the 

matrix elements are given for apertures of arbitrary shape.  The problem of electromagnetic 

scattering from a homogeneous material body of Revolution [10] is formulated in terms of 

equivalent electric and magnetic currents over the surface which defines the body.  Application of 

the boundary conditions leads to four simultaneous surface integral  equations to be satisfied by the 

two unknown equivalent currents, electric and magnetic.  The set of four equations is reduced to a 

coupled pair of two equations. The latter two equations were solved via  the method of moments 

MoM. The research problem dealt with in  [11] relates to a rotationally symmetric aperture on a  

perfectly conducting BOR surface containing in the interior as well as the exterior the same 

homogeneous dielectric.  In [11], the aperture is closed with a perfect conductor, the electric current 

that flows on the closed aperture is found to be J , and the effect of the aperture is obtained by 

subjecting the perfectly conducting BOR to the additional incident electric field which exists only 

on the closed aperture and causes J  to flow on the closed aperture.  This method produces good 

results for small apertures. The research work in [12], deals  electromagnetic scattering by a three 

dimensional homogeneous chiral body. The research work carried out in [13], deals specifically 

with scattering by a chiral body of revolution.  

  The problem of scattering of a plane electromagnetic wave from an arbitrarily shaped 

metallic BOR is solved by an integral equation method which is, in principle, an exact method [14]. 

In [14], the incident plane electromagnetic wave is expanded in a set of orthogonal modes TE and 

TM to the axis of the BOR.  Each of these incident modes will induce a current distribution on the 

surface of the body.  Due to the mode orthogonality, the total induced current distribution is 

represented by the sum of the of the induced mode current distributions.  Each mode current 

distribution satisfies two coupled integral equations.  These integral equations are reduced to a set 

of linear  complex equations which can be solved by a digital computer.  A boundary integral 

equation is used in [15], for dielectric objects partially coated with a perfectly conductive layer.  

CAD-generated geometries are accepted in the numerical approach of [15].  The study of scattering 

of electromagnetic waves by arbitrarily shaped dielectric bodies in [16] uses equivalence principle 

and spherical vector harmonics in a Green's dyadic based numerical approach. However, this study 

is limited to the case of arbitrary shaped dielectric bodies only.  Study of simple and efficient 

numerical methods for problems of electromagnetic radiation and scattering in [17], is done for 

bodies of complex geometries such as bent strips of infinite extent and  a bent rectangular plate as 

well as a conducting body of revolution (BOR) and a dielectric BOR.  This study in [17] is 

significant; however, it eludes the case of a perfectly conducting BOR surface with apertures 

enclosing chiral  or dielectric material.   

  Diffraction of an electromagnetic plane wave by a rectangular plate and a rectangular hole 

in the conducting plate [18] is rigorously tackled using the method of the Kobayashi potential (KP 
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method). The KP method resembles the MoM in its spectrum domain, but the formulation is 

different.  The MoM is based on an integral equation whereas the KP starts from dual integral 

equations derived from the potential integrals and boundary conditions on the plane where a plate or 

hole is located.  The dual integral equations are solved by applying the properties of the Weber-

Schafheitlin's integrals and the solution is obtained in the form of a matrix equation. This approach 

computes far diffracted field patterns and the current densities induced on the plate.  Aside from its 

rigorous theoretical formulations,  this research work,  although mentally stimulating has no bearing 

on MoM.  In [19], the scattering of a plane electromagnetic wave by a perfectly conducting disk or 

a circular hole in a perfectly conducting plane is formulated in a form of the dual integral equations.  

The unknowns in [19] are the induced surface current (or magnetic field) on the disk and the 

tangential components of the electric field in the hole.  The solution for the surface current on the 

disk is expanded in terms of a set of functions which satisfy Maxwell's equations for the magnetic 

field on the disk and the required edge condition.  The authors of [19] used the method of the 

Kobayashi potential and the vector Hankel transform thereby reducing the problem to the matrix 

equations for the expansion coefficients. The matrix elements  are given in terms of the infinite 

integrals with a single variable and these are transformed into infinite series that are convenient for 

numerical computation.  In [19], numerical results are obtained for far field patterns, current 

densities induced on the disk, transmission coefficients through the circular aperture, and the radar 

cross section.  Aside from the current densities induced on the perfectly conducting disk and the 

radar cross section, the research in [19] is not relevant to the work in the present dissertation.   

  A nonmodal formulation for electromagnetic transmission through a slot of arbitrary cross 

section cut in a thick conducting screen filled with homogeneous material separating the single  

thick conducting screen into two [20] uses the equivalence principle to break the original problem 

into three equivalent parts where postulated equivalent sources radiate into unbounded 

homogeneous media.  The equivalent electric and magnetic currents, in [20],  are chosen to ensure 

continuity of the tangential components of the electric and magnetic fields at each aperture.  An 

integral equation is written for each of the three regions, the slot region and the two half space 

regions, one on each side of the thick screen with the equivalent currents as unknowns.  The 

resulting set of coupled integral equations is solved by the method of moments. The primary 

quantities computed in [20] are the equivalent electric and magnetic currents on each aperture and 

the electric current on the remaining portions of the slot cross section.  The two-dimensional nature 

of the problem enabled the authors of [20] to treat the TE (magnetic field parallel to z-axis) and the 

TM (electric field parallel to z) polarizations separately. The valuable research work in [20] proved 

extremely conducive to understanding varied applications of the equivalence principle. In  [21], a 

hybrid numerical technique is used for a characterization of the scattering and transmission 

properties of a three-dimensional slot in a thick conducting plane. In [22] there are four different 

surface integral equation formulations for the problem of electromagnetic coupling through an 

aperture between a cavity and an external region.   

  Text books [23] [24], authored by Prof. Harrington of Syracuse University, are 

considered authoritative and are used and are referenced all over the world. Text book [23] 

introduces the equivalence principle and [24] introduces field computation by the method of 

moments (MoM).   Graduate level text book [25] on electromagnetic wave theory deals with many 

electromagnetic theorems and principles including the equivalence principle.   
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  In [26], there is a method  applicable to arbitrarily shaped apertures (in particular those not 

azimuthally symmetric in bodies of revolution)  employing the technique of the method of 

moments. The authors of [26] use an equivalence theorem by which the field inside the BOR is due 

to the excitation on the closed aperture that causes J  to flow on the closed aperture where J is the 

electric current induced on the closed aperture by the incident field.  The method in [26] gives good 

results for small apertures.  This method is not used in the present thesis because the formulation 

therein was not intended to give good results for small apertures.  The problem of the scattering of 

an electromagnetic plane wave with arbitrary polarization and angle of incidence from a perfectly 

conducting spherical shell with a circular aperture [27] is solved with a generalized dual series 

approach.  This canonical problem encompasses coupling to an open spherical cavity and scattering 

from a spherical reflector.  In contrast to the closed sphere problem, the electromagnetic boundary 

conditions couple the TE and TM  modes.  A pseudodecoupling of the resultant dual series 

equations system into dual series problems for the TE and TM modal  coefficients is accomplished 

by introducing terms that are proportional to the associated Legendre functions.   

  A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or 

chiral sphere [28], obtains scattering from a chiral, dielectric, or a perfectly conducting sphere using 

a friendly graphical user interface (GUI).  This GUI using matlab script enables the user to enter the 

scattering parameters and to observe the results, and to save the data and displayed figures.   

  Electromagnetic field penetration into a spherical cavity [29] uses a different numerical 

approach.   In this approach, the authors solve the problem of scattering from a spherical shell with 

a circular aperture symmetrically illuminated by a plane electromagnetic wave by expanding the 

fields inside and outside the cavity in terms of spherical vector wave functions and finding the 

modal coefficients by application of the least squares method to the boundary conditions.  From 

result obtained in [29]  in the form of amplitude curves of the interior and aperture fields as 

functions of position for a variety of cavity and aperture sizes, it appears that  the field variations are 

primarily determined by the cavity size and that the aperture size serves only to scale them.   

  A hybrid FEBI method for electromagnetic scattering  from dielectric bodies partially 

covered by conductors [30] uses a hybrid technique that combines the finite element  (FEM) and 

boundary integral (BI) methods to analyze electromagnetic scattering problems from structures 

consisting of an inhomogeneous dielectric body attached to perfectly conducting bodies.  The 

hybrid approach takes advantage of the strengths of each numerical technique in order to solve 

problems that neither technique could model efficiently.  A new variational direct boundary integral 

equation approach is presented in [31] for solving the scattering and transmission problem for 

dielectric objects partially coated with a perfect electric conducting (PEC) layer.  The main idea is 

to use the electromagnetic Caleron  projector along with transmission conditions  for the 

electromagnetic fields.  This leads to a symmetric variational formulation which lends itself to 

Galerkin discretization by means of divergence-conforming discrete surface currents.   

  Closed form modal Green's functions for accelerated computation of bodies of revolution 

[32] uses MoM and Modal Green's function (MGF).   The MGF is defined as the radiation field of a 

circular loop antenna  with sinusoidal current distribution. The authors of [32]  proposed closed 

form expressions for near-axis far-distance modal Green's  functions in order to accelerate the 
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computation of BOR problems.  They also presented a criterion based on rigorous error analysis to 

guarantee MGF's range of applications.  Radiation and scattering problems using the MGF approach 

were solved in this research. Electromagnetic penetration through apertures in conducting surfaces 

[33] provides a tutorial review of aperture theory in its present state of maturity with emphasis upon 

those facets of the theory which lead to better understanding of EMP penetration.  The authors of 

[33] discuss the boundary value problem involving an aperture-perforated, planar screen separating 

two homogeneous half spaces having the same electromagnetic properties, and formulate 

preliminary integro-differential equations for this problem.  They generalize these preliminary 

concepts  and derive equations for the problem of diffraction by a closed conducting surface in 

which an aperture has been cut.   

  Radiation and scattering from bi-Isotropic bodies of revolution [34]  discusses use of bi-

isotropic (BI) media in the fields of millimeter wave and microwave.  The BI media is characterized 

by a bi-isotropic constitutive relation, which complicates the solution of the electromagnetic 

scattering and radiation problems associated with bi-isotropic medium.  The authors of [34] develop 

a general solution based on surface integral equation (SIE) to analyze the scattering and radiation of 

arbitrarily shaped BI bodies, which takes both chiral and Tellegen parameters in consideration.  

They design a dedicated solution for bi-isotropic BOR  (BI-BOR).  Calculation of the absorption 

cross section of a partially shielded dielectric sphere [35] solves the problem of a plane 

electromagnetic wave diffracted from a dielectric sphere partially covered by a thin perfectly 

conducting spherical surface. 

  In  [36] an improved solution of the E-field integro-differential equation is intended  for 

electromagnetic scattering from a perfectly conducting body of revolution.  This solution eliminates 

an instability of previous solutions which manifested itself by an oscillation of the azimuthal current 

about its mean value.  The authors of [36] present examples of  the computed electric current on 

several bodies of revolution for which many past solutions exhibited an oscillatory instability.  In 

[37] a new method is proposed for the computation of the radar cross section and other associated 

field quantities arising when a smooth, perfectly conducting obstacle is illuminated by an incident 

electromagnetic wave.  The scattered wave is first represented by a distribution of electric dipoles 

over the surface in question, with the response from any dipole proportional to the induced surface 

current density at that point.  The surface current is then determined by the "boundary condition" 

that the scattered wave, through interference, precisely cancels the incident wave on the surface of 

the largest sphere inscribed in the obstacle.  One obtains in this manner a pair of coupled matrix 

equations for the surface current.  Green's identity permits decoupling of the equations, reducing the 

problem to roughly the equivalent of two independent scalar problems.  The authors specialized the 

equations to axially symmetric obstacles and then solved the equations numerically.    

  H-Field, E-Field, and Combined  Field solutions for bodies of revolution [38]  derives  

formulas for the computation of the electric surface current and far scattered field of a perfectly 

conducting body of revolution for  arbitrary plane wave excitation.  Computations in [38] showed 

that both the H-field solution and the E-field solution deteriorate near internal resonances of the 

conducting surface, but that the combined field solution does not.  The field solutions in [38] are 

obtained by applying the method of moments (MoM) to the H-field integral equation, the E-field 

integral equation, and the combined field integral equation for a perfectly conducting body of 
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revolution.  An integral equation method is presented in  [39] for the solution of the field scattered 

by a set of cylinders with arbitrary cross-sectional shape and arbitrarily varying anisotropic surface 

impedance.  The integral equations are given for an arbitrary source with arbitrary harmonic 

variation along the cylinder axis.  The scattering problem can be solved for arbitrary three-

dimensional sources by expansion of the sources in a Fourier integral over the axial propagation 

constant.  The author developed a computer program and used it for solving a great variety of 

scattering, antenna, and propagation problems. In [40] there is a survey of recently developed 

techniques for solving the rigorous equations that arise in scattering problems.  These methods 

generate a system of linear equations for the unknown current density by enforcing the boundary 

conditions at discrete points in the scattering body or on its surface.  This approach shows promise 

of leading to a systematic solution for a dielectric or conducting body of arbitrary size and shape.  

The authors of [40] discuss relative merits of the linear-equation solution and the variational 

solutions and numerical results, obtained by these two methods, for straight wires of finite length.    

  Two-dimensional electromagnetic scattering by a dielectric cylinder partially covered by 

zero-thickness perfect conductors is treated in [41]. The impressed field is either  transverse 

magnetic (TM) or transverse electric (TE) to the cylinder axis.  The problem is formulated in terms 

of two coupled boundary integral equations in each case. For the TM case the unknowns are 

equivalent electric currents, and for the TE case they are equivalent magnetic currents.  In [41] the 

integral equations are solved by the method of moments (MoM) with pulse functions for expansion 

and point matching for testing.  In [41], numerical solutions are obtained for a thin rectangular 

dielectric cylinder partially covered by perfectly conducting plates, where the impressed fields is 

either a TM or a TE plane wave.  In [42], scattering from wires and open circular cylinders of finite 

length is obtained using entire domain Galerkin expansions.  The case of a straight wire, viewed as 

a thin cylinder, is examined in this context.  The salient features of this study are  a) use of the 

electric field integral equation (EFIE) as a starting point, b) solution of this equation by Galerkin 

method, and c) representation of the axial variation of the current on the scatterer by an entire 

domain (Fourier series) expansion.  Edge modes are considered in the expansion set and their effect 

is examined.  The open cylinder backscatter cross section is computed as a function of aspect angle 

for various radii and lengths and is compared with measured data.   

  In [43], there is a formulation based on the physical theory of diffraction (PTD) for 

electromagnetic scattering from finite conical surfaces with circular and elliptic cross sections.  The 

base-rim discontinuity is represented by equivalent currents, including second order terms extended 

for elliptic boundaries.  Tip-rim interactions are examined as a function of the tip-rim distance, cone 

angle, and illumination angle for circular cones; and their implications for elliptic cones are noted.  

The diffraction contribution from tip-rim interactions is shown to be dependent on the cone angle 

and the illumination angle but to be relatively insensitive to the tip-rim distance.  The formulation in 

[43] was applied to cones with varying ellipticity for axial and oblique illumination. Correlation is 

made with published results for circular cones and with experimental data for an elliptic cone.  In 

[44], the behavior of an electromagnetic field in the neighborhood of the common edge of angular 

dielectric or conducting regions is determined from the condition that the energy density must be 

integrable over any finite domain (the so-called edge condition).  Two cases are treated in detail. 1) 

A region consisting of  a conducting wedge and two different dielectric wedges with a common 

edge.  2) A region consisting of two different dielectric wedges with a common edge.  It is also 
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shown that near such edges, electrostatic and magnetostatic fields will  exhibit the same behavior as 

the electromagnetic field.   

  Books covering  important topics in electromagnetic fields and waves [45]  [49] were used 

to understand the subject, concepts, and terminologies used in this thesis.       

  In [50], an axisymmetric chiral radome is analyzed via the method of moments (MoM).  

The chiral body is illuminated by a plane wave and the surface equivalence principle is used to 

replace the body by equivalent electric and magnetic surface currents.  The scattered field outside 

and the total internal field are produced by these currents.  By using the boundary conditions on the 

surfaces of the bodies, eight simultaneous surface integral equations are obtained for four  unknown 

equivalent surface currents.  By taking linear combinations, the eight integral equations are reduced 

to four integral equations. A matlab computer program is developed for an axisymmetric chiral 

radome and examples of numerical calculations are given for a chiral spherical radome and chiral 

Von Karman radome.  Numerical results of the chiral spherical radome are in excellent agreement 

with the exact ones obtained by the eigenfunction solution.  In [51],  a method of moments (MoM) 

solution is presented for electromagnetic scattering by a three-dimensional (3-D) inhomogeneous 

chiral scatterer illuminated by an arbitrary incident field.  The volume equivalence principle was 

used to obtain coupled  integral equations for equivalent volume currents.  These integral equations 

were then solved numerically using MoM.  The volume of the scatterer was modeled by tetrahedral 

cells, and face-based expansion functions were used to approximate the equivalent currents.  

Computed results are in very good agreement with exact data or other published data.  In [52],  the 

electric field integral equation (EFIE) with the method of moment (MoM) is used to develop a 

simple and efficient numerical procedure for treating problems of scattering by arbitrarily shaped 

objects.  For numerical purposes, the objects are modeled using planar triangular surface patches.  

Because the EFIE formulation is used, the procedure is applicable to both open and closed surfaces.  

Crucial to the numerical formulation is the development of a set of special subdomain type basis 

functions which are defined on pairs of adjacent triangular patches and yield a current 

representation free of line or point charges at sub-domain boundaries.  The method is applied to the 

scattering problems of a plane wave illuminated flat square plate, bent square plate, circular disk, 

and sphere .  Excellent correspondence between the surface current computed  via the  method [52] 

and that obtained via earlier approaches or exact formulations is demonstrated in each case.      

       Going through the cited research works and scores of other research works  not enumerated 

above, led to acquiring a body of knowledge, acquiring  inspiration, and acquiring motivation to 

build a theoretical framework that does not omit any feature and facet of scattering from a BOR of 

complex geometry.  The theoretical foundation developed in Chapters 26  is multi-faceted in that 

it can be adapted to;  (a) the case of a  perfectly conducting  BOR surface, (b)  the case of a chiral 

BOR, (c)  the case of a dielectric BOR, (d)  the case of a perfectly conducting BOR surface with 

aperture that encloses dielectric material, (e)  the case of a perfectly conducting BOR surface with 

apertures that encloses chiral material,  and  (f) the case of, not just one, but as many apertures as 

desired in the structure.   

  This research work is important because of its significance for numerous applications in 

radar techniques and for tracking and discriminating between space vehicles and objects.  The scope 
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of the applicability of this research work  is important in radar.  For example, the transmitting 

antenna radiates the incident field, which closely approximates a plane wave at the target (BOR), 

which could very well be a rocket in flight.  The current induced on the target (rocket) by the 

incident wave produces the scattered wave, which is approximately a plane wave at the receiving 

antenna. The  received  signal is processed to obtain information about the rocket including its  

shape and its orientation in space as well as its radar cross section.   

 

 

1.4  Organization of  the Dissertation 

In Chapter 2,  equivalent  electric and magnetic currents on the  surface of the chiral body of 

revolution (BOR) are used to obtain external and internal equivalences.  In the external equivalence, 

the field outside the BOR is the field in the original problem and the field inside the BOR is the null 

field.  In the internal equivalence,  the field inside the BOR is the field in the original problem and 

the field outside the BOR is the null field.  Realizing these null fields, two vector integral equations 

are obtained for the equivalent electric and magnetic currents. The equivalent currents are 

represented by two unknown vector functions over the entire surface of the BOR.  The  first 

unknown vector function is the unknown electric current eJ  of the external equivalence.  The 

second unknown vector function is the union of M  over the part of the surface of the BOR not 

covered by the conductors and iJ  covered by the conductors.  Here, M  is the unknown equivalent 

magnetic current of the external equivalence on the part of the surface of the BOR not covered by 

conductors and iJ  is such that iJ  is the unknown equivalent electric current of the internal 

equivalence on the part of the surface of the BOR  covered by conductors.  The unknown equivalent 

magnetic current of the internal equivalence is M .  Unknown equivalent magnetic current is not 

needed on the part of the surface of the BOR  covered by conductors because the equivalent 

magnetic current of both external and internal equivalences is zero there.  Unknown equivalent 

electric current of the internal equivalence is not needed on the part of the surface of the BOR not 

covered by conductors because this equivalent electric current is equal to eJ   there. 

  In Chapter 2,  applications of the method of moments (MoM)  using expansion and testing 

functions on the surface of the BOR gives the moment matrix equation in which a square matrix 

called the moment matrix  post-multiplied by a column matrix of the unknowns is equal to an 

excitation column matrix.  Because an jne   dependent source current on the surface of the BOR  

that is symmetric about the z-axis produces only an jne   dependent field, the originally encountered 

large moment matrix equation decomposes into smaller moment matrix equations,  one for each 

value of n for which jne   dependent equivalent currents are significant.  Because each tangential 

vector on the surface of the BOR  has two orthogonal components, each moment matrix that comes 

from the two vector integral equations is a four by four array of submatrices.  The first expressions 

for the moment matrix elements in Chapter 2  contain integrals over the testing functions of the 
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fields of the expansion functions for the equivalent electric and magnetic currents.  These electric 

and magnetic current expansion functions radiate both in all space filled with the homogeneous 

achiral medium outside the BOR in the original problem and in all space filled with the 

homogeneous chiral medium inside the BOR in the original problem.  In Chapter 2, the elements of 

the excitation column matrix for a particular value of n are expressed in terms of integrals over 

testing functions of  the field of an incident plane wave.  Because the surface of the BOR is 

symmetric about the z-axis, only plane waves that propagate in the xz-plane need to be considered.  

Solving for the column matrix of unknowns in the moment matrix for a particular value of  n 

amounts to solving for the jne   dependent equivalent electric and magnetic currents.  Before the 

moment matrix equation for a particular value n can be solved for the column matrix of unknowns, 

the elements of the moment matrix and the elements of the excitation column matrix have to be 

evaluated. 

  In Chapter 2, the fields in the previously-mentioned expressions for the moment matrix are 

dealt with as follows. The field of each equivalent  current  expansion function radiating in all space 

filled with the chiral medium is decomposed into the sum of a right-handed field and a left-handed 

field.  The right-handed field is produced by the right-handed source radiating in a hypothetical 

achiral medium called the right-handed medium and the left-handed field is produced by the left-

handed source radiating in a hypothetical achiral medium called the left-handed medium.  The right-

handed sources are expressed in terms of the equivalent electric and magnetic currents.  The left-

handed sources are also expressed in terms of the equivalent electric and magnetic currents.  The 

four needed field operators which are electric field of electric current, magnetic field of electric 

current, electric field of magnetic current, and magnetic field of magnetic current are reduced to two 

needed field operators by expressing electric field of magnetic current in terms of magnetic field of 

electric current and by expressing magnetic field of magnetic current in terms of electric field of 

electric current.  Such a treatment of the fields allows the moment matrix elements to be expressed 

as (2.47) (2.50) in which the 'Z s  and 'Y s  on the right-hand side are given by (2.51) (2.53).  

These 'Z s  and 'Y s  are proportional to the integrals over the testing functions of the fields of the 

expansion functions for the equivalent currents radiating in all space filled with the achiral medium 

outside the BOR in the original problem, in all space filled with the right-handed medium,  and in 

all space filled with the left-handed medium. 

  In Chapter 3, formulas that can be used to compute  the 'Z s  and 'Y s  of (2.51) (2.53) are 

obtained.  The moment matrix elements can be computed by substituting computed values of 'Z s  

and 'Y s  into expressions  (2.47) (2.50)  for the moment matrix  elements.  Formulas that can be 

used to compute  the 'Z s  of (2.51)  are obtained by first using the mixed potential formulation  to 

expand the fields in (2.51).  In this formulation, the electric fields of electric current sources are 

expressed  in terms of magnetic vector potentials and electric scalar potentials.  Next, a vector 

identity and the surface divergence theorem are used to trade the gradient operation on the  electric 

scalar potential for the surface divergence operation on the testing function.  The magnetic fields  in 

(2.52) and (2.53) are proportional to the curls of the magnetic vector potentials.  Each magnetic 

vector potential is proportional to an integral.  The curl of the integral is replaced by the integral of 

the curl of the integrand and the limit is taken as the field point approaches the source surface 

(surface on which the electric current source of the magnetic vector potential resides) from the 

appropriate side of the source surface.  Finally, the piecewise linear approximation of the generating 
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curve is introduced and each expansion and testing function is approximated by four Dirac delta 

functions.  Except for the "self-term" where the delta function of a testing function coincides with 

the delta function of an expansion function, the four delta function approximations make the 

integrals tractable.  The equivalent radius [53] is used for the self term. 

  In Chapter 4, the expressions for the elements of the excitation column matrix that were 

obtained in Chapter 2 are made amenable to computation by treating the electric and magnetic fields 

of the incident electromagnetic field.  The incident electromagnetic field is the field that its 

impressed sources would produce if they radiated in all space filled with the homogeneous medium 

outside the BOR  in the original problem.  Two kinds of incident waves are considered: one whose 

electric field is in the  -direction and one whose electric field is in the  -direction.  The incident 

field whose electric field is   - polarized is called the  - polarized incident field and the incident 

field whose electric vector is  - polarized is called the  - polarized incident field.  The integrals 

with respect to   in the expressions for the elements of the excitation column matrix for the  -

polarized incident field are expressed in terms of integral representations of the cylindrical Bessel 

functions 1nJ  , nJ , 1nJ  .  Because the electric field of the  - polarized incident field is proportional 

to the magnetic field of the  - polarized incident field and because the magnetic field of the  -

polarized incident field is proportional to the electric field of the  - polarized incident field, each 

element of the excitation column matrix for the  - polarized incident field is proportional to one of 

the elements of the excitation column matrix for the  - polarized  incident field.  The remaining 

integrals , those with respect to t , are done by approximating the t -dependence of each testing 

function by four Dirac delta functions. 

  In Chapter 5, the scattered electric field far from the scatterer is expressed as a summation 

with respect to n  where the term characterized by n  in the summation is the matrix product of a 

measurement row matrix and a column matrix T  multiplied by recjn
e

 , where, from reciprocity, each 

element of the measurement row matrix is either an element of or the negative of an element of the 

excitation column matrix with the angle   of the direction from which the incident field comes 

replaced by the angle   of the radius vector from the origin in the vicinity of the scatterer to the 

location where the scattered field is observed.   Also each element of T  is a coefficient of an 

expansion function in the solution for the equivalent currents that radiate the scattered field.  In 

Chapter 5, the definition of the bistatic radar cross section per square wavelength in the exterior 

medium (the exterior medium is the medium outside the BOR in the original problem) is used to 

express the bistatic radar cross section as a normalized square of the magnitude of the scattered 

electric field. 

  In Chapter 6, expressions are obtained for the six field components , , , , ,x y z x yE E E H H  and 

zH  inside the BOR.  The field inside the BOR is the field of the equivalent electric and magnetic 

currents of the internal equivalence radiating in all space filled with the homogeneous chiral 

medium inside the BOR in the original problem.  The field of each equivalent current is expressed 

as the sum of the right-handed field and the left-handed field.  The right-handed field is radiated by 

the right-handed sources in the right-handed achiral medium and the left-handed field is radiated by 

the left-handed sources in the left-handed achiral medium.  The right-handed sources are expressed 
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in terms of the equivalent electric and magnetic currents.  The left-handed sources are also 

expressed in terms of the equivalent electric and magnetic currents.  Because the electric field of a 

magnetic current is proportional to the magnetic field of an electric current and because the 

magnetic field of a magnetic current is proportional to the electric field of an electrical current, all 

fields can be expressed in terms of 'Z s  and 'Y s  where each Z  is the electric field of an electric 

current and each Y is the magnetic field of an electric current.  Each Z  is expressed in terms of a 

magnetic vector potential and an electric scalar potential.  Each Y is proportional to the curl of a 

magnetic vector potential.  The magnetic vector potential is proportional to an integral.  The curl of 

the integral is replaced by the integral of the curl of the integrand.  Numerical integrations over the 

source coordinate   are done first.  Integrations over the source coordinate t  are done by 

approximating the t  dependence of each expansion function by four Dirac delta functions.  

Expressions for the  -,  -,  and z - components of the fields are obtained and then the expressions 

for the  - and  -components of the fields are used to obtain expressions for the x - and  y - 

components of the fields.   For field evaluation on the z -axis, the distance between source and field 

points does not depend on   so that the integrands of the integrals with respect to  are 

trigonometric functions that can be integrated analytically instead of numerically, thereby saving 

computer time.  

  The mathematical edifice built in Chapters 26 is multi-faceted and versatile enough to 

analyze scattering and radiation by  perfectly conducting metallic as well as unshielded dielectric  

bodies of revolution of complicated shapes.  Chapter 7, furthers this research activity by proving 

that the theoretical formulations developed in Chapters 26 are equally applicable to cases of 

regular-shaped bodies of revolution.  Comparison, of the graphs of results for regular-shaped bodies 

of revolution based on our theoretical formulations with those graphs that were produced 

analytically by earlier researchers showed almost one hundred percent conformability of graph 

mappings, form and accuracy of graph readings with our graphs.  In cases where integral and other 

equations pertaining to scattering problems could not be solved by analytical methods we compared 

our results with those earlier researches carried out by application of theoretical and numerical 

approaches different than ours. Chapter 8 presents the conclusion reached based on the systematic 

theoretical structure presented in Chapters 2 6 which led to the numerical results and graphs, 

presented in Chapter 7, that conformed to an agreeable extent with the results and graphs obtained 

by early researchers using distinctly different numerical approaches than ours.  

    There are five appendices. Appendix A gives clear, uncluttered presentation of the 

Equivalence Principle, Appendix B presents analysis of the MoM technique, Appendix C presents 

comprehensive exploration of electric and magnetic field equations  and field sources in chiral 

media, Appendix D explains formulations not fully explained in Chapters 2 3  and Appendix E 

elucidates derivations of important equations of Chapter  2.   

  

 

 



Chapter 2

Integral Equations and the Moment Matrix
Equation

2.1 Introduction

In Chapter 2, the fields inside and outside the body of revolution are simulated by using
unknown equivalent electric and magnetic currents. Integral equations for these equivalent
currents are derived. Expansion and testing functions are used in the method of moments
to discretize these integral equations. The discretization yields the moment matrix equation
where a square matrix called the moment matrix multiplied by a column matrix of unknown
elements is equal to a column matrix of known elements called the excitation column matrix.
If the elements of the moment matrix and the elements of the excitation column matrix can
be computed, then the moment matrix equation can be solved to obtain an approximate
numerical solution for the equivalent currents. In Chapter 2, the elements of the excitation
column matrix are given by (2.28) and (2.29) which contain the incident electromagnetic
field, and the elements of the moment matrix are given by (2.47)–(2.50) whose right-hand
sides contain Z’s and Y ’s. Computation of the Z’s and Y ’s is described in Chapter 3.
Computation of the elements of the excitation column matrix for plane wave excitation is
described in Chapter 4.

2.2 Integral Equations

Let Sc be the part of the surface of the chiral body (scatterer) covered by rotational symmetric
perfect conductors, let Sa be the part of the surface of the scatterer not covered by the
rotationally symmetric conductors, and let S be the entire surface of the scatterer as shown
in Fig. 2.1. Here, the subscript c stands for conductor, and, because Sa is an aperture or
apertures, the subscript “a” stands for aperture.

The electromagnetic field outside the scatterer is simulated as the electromagnetic field
produced by the combination of the impressed source of the plane wave, the electric current
Je on S and the magnetic current M on Sa, both radiating in all space filled with the
homogeneous achiral medium that is outside the scatterer in the original problem. This
simulation, where e in Je stands for external, is called the external equivalence (see Fig. 2.2).

The electromagnetic field inside the scatterer is simulated as the electromagnetic field
produced by the combination of the electric current −Ji on Sc, the electric current −Je on
Sa, and the magnetic current−M on Sa, all radiating in all space filled with the homogeneous
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chiral medium that is inside the scatterer in the original problem. This simulation, where i
in −Ji stands for internal, is called the internal equivalence (see Fig. Fig. 2.3).

The boundary conditions are that the part of the electric field that is tangent to Sa is
continuous across Sa, that the part of the electric field that is tangent to Sc is zero on both
sides of Sc (the side facing outside the scatterer and the side facing inside the scatterer),
and that the part of the magnetic field that is tangent to Sa is continuous across Sa. Hence,
there are two boundary conditions everywhere on S.

Let “just outside S” refer to the side of S facing outside the scatterer and let “just inside
S” refer to the side of S facing inside the scatterer. If Je, Ji, and M can be determined
such that the tangential electric and magnetic fields of the external equivalence are zero just
inside S and the tangential electric and magnetic fields of the internal equivalence are zero
just outside S, then all boundary conditions on S in the original problem will be satisfied.
The tangential electric field will be continuous across Sa because the magnetic current on
Sa in the internal equivalence is the negative of the magnetic current on Sa in the external
equivalence. The tangential electric field will be zero on both sides of Sc because there
is no magnetic current on Sc in both external and internal equivalences. The tangential
magnetic field will be continuous across Sa because the electric current on Sa in the internal
equivalence is the negative of the electric current on Sa in the external equivalence.

The requirement that the tangential electric field of the external equivalence be zero just
inside S is expressed as

− 1

ηe

[Ee(Je,M)]S− =
1

ηe

[
Einc

]
S

(2.1)

where ηe =
√

µe/εe is the intrinsic impedance of the homogeneous achiral medium outside
the scatterer in the original problem. Also, Ee(Je,M) is the electric field of the combination
of Je and M, both radiating in all space filled with the homogeneous achiral medium that
is outside the scatterer in the original problem. The e in Ee indicates radiation in all
space filled with the external medium of the original problem. The first argument of Ee

is an electric current and the second argument of Ee is a magnetic current. In (2.1), S−

indicates the tangential part of the enclosed field on the side of S facing inside the scatterer.
Moreover, Einc is the incident electric field. The incident electric field is the electric field that
would exist if the scatterer was removed and if the resulting empty space was filled with the
homogeneous achiral medium outside the scatterer in the original problem. The subscript S
indicates the tangential part of the enclosed field on S. There is no need to specify the side
of S where Einc is evaluated because Einc is continuous across S.

The requirement that the tangential magnetic field of the external equivalence be zero
just inside S is expressed as

−[He(Je,M)]S− = [Hinc]S (2.2)
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where He(Je,M) is the magnetic field of the combination of Je and M, both radiating in all
space filled with the homogeneous achiral medium that is outside the scatterer in the original
problem. The e in He indicates radiation in all space filled with the external medium of the
original problem. The first argument of He is an electric current and the second argument
of He is a magnetic current. As in (2.1), S− indicates the tangential part of the enclosed
field on the side of S facing inside the scatterer. Moreover, Hinc is the incident magnetic
field. The incident magnetic field is the magnetic field that would exist if the scatterer was
removed and if the resulting empty space was filled with the homogeneous achiral medium
outside the scatterer in the original problem. The subscript S indicates the tangential part
of the enclosed field on S. There is no need to specify the side of S where Hinc is evaluated
because Hinc is continuous across S.

The requirement that the tangential electric field of the internal equivalence be zero just
outside S is expressed as

− 1

ηe
[Ei(Jie,M)]S+ = 0 (2.3)

where Ei(Jie,M) is the electric field of the combination of Jie and M, both radiating in all
space filled with the homogeneous chiral medium that is inside the scatterer in the original
problem. Here, Jie is the combination of Ji on Sc and Je on Sa. In (2.3), the i in Ei

indicates radiation in all space filled with the internal medium of the original problem. The
first argument of Ei is an electric current and the second argument of Ei is a magnetic
current. In (2.3), S+ indicates the tangential part of the enclosed field on the side of S
facing outside the scatterer. Although the sources on S in the internal equivalence are −Jie

and −M, it was possible to employ Jie and M in (2.3) because (2.3) is equivalent to itself
with Jie and M replaced by −Jie and −M, respectively.

The requirement that the tangential magnetic field of the internal equivalence be zero
just outside S is expressed as

−[Hi(Jie,M)]S+ = 0 (2.4)

where Hi(Jie,M) is the magnetic field of the combination of Jie and M, both radiating in all
space filled with the homogeneous chiral medium that is inside the scatterer in the original
problem. The i in Hi indicates radiation in all space filled with the internal medium of the
original problem. The first argument of Hi is an electric current and the second argument
of Hi is a magnetic current. The subscript S+ indicates the tangential part of the enclosed
field on the side of S facing outside the scatterer. Although the sources on S in the internal
equivalence are −Jie and −M, it was possible to employ Jie and M in (2.4) because (2.4) is
equivalent to itself with Jie and M replaced by −Jie and −M, respectively.
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The product of an arbitrary constant α with (2.3) is added to (2.1) to obtain

− 1

ηe
([Ee(Je,M)]S− + α [Ei(Jie,M)]S+) =

1

ηe

[
Einc

]
S

(2.5)

and the product of an arbitrary constant β with (2.4) is added to (2.2) to obtain

− ([He(Je,M)]S− + β[Hi(Jie,M)]S+) = [Hinc]S (2.6)

where, in Chapter 3, the E’s and the H’s will be expressed in terms of integrals over their
arguments. Equations (2.5) and (2.6) are the integral equations that will be solved by the
method of moments. If αβ∗ is real and positive where ∗ denotes the complex conjugate, then
it can be shown that (2.5) and (2.6) imply (2.1)–(2.4) [10, Section 2]. Equations (2.5) and
(2.6) are two vector equations on S. The unknowns in (2.5) and (2.6) are Je on S and the
composite unknown consisting of Ji on Sc and M on Sa. Hence, the unknowns in the two
vector equations (2.5) and (2.6) on S are two vector unknowns on S. Therefore, it should
be possible to solve (2.5) and (2.6) by the method of moments.

2.3 Expansion of the electric and magnetic currents

The electric and magnetic currents in (2.5) and (2.6) are expanded as

Je =

N∑

n=−N

Nt∑

j=1

(
I t
njJ

t
nj + Iφ

njJ
φ
nj

)
(2.7)

Jie =
N∑

n=−N

Nt∑

j=1

( (
L′

jV
t
nj + LjI

t
nj

)
Jt

nj +
(
L′

jV
φ

nj + LjI
φ
nj

)
Jφ

nj) (2.8)

M = ηe

N∑

n=−N

Nt∑

j=1

Lj

(
V t

njJ
t
nj + V φ

njJ
φ
nj

)
(2.9)

where I t
nj, Iφ

nj , V t
nj and V φ

nj are complex constants to be determined and Jt
nj and Jφ

nj are
expansion functions given by

Jt
nj = t̂

Tj(t)

ρ
ejnφ (2.10)

Jφ
nj = φ̂

Tj(t)

ρ
ejnφ (2.11)

21



where t is the arc length along the generating curve C of the body of revolution (BOR),
ρ = ρ(t) is the distance from the z-axis of the BOR, φ is the angle measured from the
positive x-axis toward the y-axis in the xy-plane, and Tj(t) is the triangular function defined
by

Tj(t) =





t− t2j−1

dj
, t2j−1 ≤ t < t2j+1

t2j+3 − t

dj+1
, t2j+1 ≤ t < t2j+3

0, elsewhere

(2.12)

where

dj = ∆2j−1 + ∆2j (2.13)

∆j = tj+1 − tj. (2.14)

In (2.10) and (2.11), t̂ and φ̂ are the unit vectors in the t- and φ-directions, respectively.
The t-direction is such that

φ̂ × t̂ = n̂ (2.15)

where n̂ is the unit vector that is perpendicular to S and point outwards from chiral BOR.
The generating curve C consists of the straight line segment from t = t1 to t = t2, that

from t2 to t3, . . ., that from t2Nt+2 to t2Nt+3 where, as in (2.7), Nt is the number of triangles
on C. A generating curve for Nt = 3 is shown in Fig. 2.4. In (2.8) and (2.9),

Lj =

{
1, Tj(t) is in an aperture
0, Tj(t) is on a conductor

(2.16)

L′
j =

{
1, Tj(t) is on a conductor
0, Tj(t) is in an aperture.

(2.17)

The combination of the triangular functions in the apertures and the triangular functions
on the conductors has to cover C exactly. Actually, the terms in (2.8) and (2.9) are more
easily controlled by a single logical variable rather that the two numerical variables Lj and
L′

j. In (2.8), Jie on Sc consists of the terms multiplied by L′
j and Jie on Sa consists of the

terms multiplied by Lj. The j in jnφ in (2.10) and (2.11) is
√
−1, not to be confused with

the other j in (2.10) and (2.11).
Each triangular function on C has to be identified as either a triangular function in

the apertures or a triangular function on the conductors. Because the combination of the
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triangular functions in the apertures and the triangular functions on the conductors has
to cover C exactly, the last triangular function on a conductor must overlap with the first
triangular function in the aperture at the end of the conductor. Unfortunately, identification
of the first triangular function in the aperture at the end of a conductor is not precise. This
triangular function could be chosen such that all of it is in the aperture or such that only
part of it is in the aperture. For example, if the aperture begins at t2j+1, then the first
triangular function in the aperture could, with reference to (2.12), be either Tj or Tj+1. If
the aperture begins at t2j, then the first triangular function in the aperture could be Tj−1, Tj,
or Tj+1. Because of this uncertainty, the number of triangles in the apertures is not known
exactly. This number can be made known exactly by deciding whether to put the beginning
of each aperture at an even or odd point and deciding whether to require the first and last
triangular functions in each aperture to be either entirely in the aperture or only partly in
the aperture.

Due to possible singular behavior of the fields at the edge of a conductor [44], equivalent
currents that are perpendicular to the edge could be proportional to

√
d near the edge and

equivalent currents that are parallel to the edge could be proportional to 1/
√

d near the
edge where d is the distance from the edge. The expansions (27)–(2.9) do not allow for such
behavior near the edge.

Substitution of (2.7)–(2.9) into (2.5) and (2.6) gives

N∑

n=−N

{ Nt∑

j=1

(
I t
nj

[
− 1

ηe
Ee(J

t
nj ,0)

]

S−
+ Iφ

nj

[
− 1

ηe
Ee(J

φ
nj,0)

]

S−

)

+
Nt∑

j=1

Lj

(
V t

nj

[
−Ee(0,Jt

nj)
]
S− + V φ

nj

[
−Ee(0,Jφ

nj)
]

S−

)

+
Nt∑

j=1

((
L′

jV
t
nj + LjI

t
nj

) [
− α

ηe
Ei(J

t
nj,0)

]

S+

+
(
L′

jV
φ

nj + LjI
φ
nj

)[
− α

ηe
Ei(J

φ
nj ,0)

]

S+

)

+

Nt∑

j=1

Lj

(
V t

nj

[
−αEi(0,Jt

nj)
]
S+ + V φ

nj

[
−αEi(0,Jφ

nj)
]

S+

)} =

[
1

ηe
Einc

]

S

(2.18)

N∑

n=−N

{ Nt∑

j=1

(
I t
nj

[
−He(J

t
nj,0)

]
S− + Iφ

nj

[
−He(J

φ
nj ,0)

]
S−

)

+
Nt∑

j=1

Lj

(
V t

nj

[
−ηeHe(0,Jt

nj)
]
S− + V φ

nj

[
−ηeHe(0,Jφ

nj)
]

S−

)
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+
Nt∑

j=1

((
L′

jV
t
nj + LjI

t
nj

) [
−βHi(J

t
nj,0)

]
S+ +

(
L′

jV
φ
nj + LjI

φ
nj

)[
−βHi(J

φ
nj ,0)

]
S+

)

+

Nt∑

j=1

Lj

(
V t

nj

[
−βηeHi(0,Jt

nj)
]
S+ + V φ

nj

[
−βηeHi(0,Jφ

nj)
]

S+

)} =
[
Hinc

]
S

. (2.19)

2.4 Testing functions

Testing functions Jt
−mi and Jφ

−mi are defined by

Jt
−mi = t̂

Ti(t)

ρ
e−jmφ (2.20)

Jφ
−mi = φ̂

Ti(t)

ρ
e−jmφ. (2.21)

The symmetric product of two vector functions f and g on S is < f ,g > given by

< f ,g >=

∫ ∫

S

f · g ds. (2.22)

First taking the symmetric product of Jt
−mi with (2.18), then taking the symmetric product

of Jφ
−mi with (2.18), next taking the symmetric product of Jt

−mi with (2.19), and finally

taking the symmetric product of Jφ
−mi with (2.19), one obtains four equations. In (2.18) and

(2.19), the term of
∑N

−N whose index is n has, as will be seen later, ejnφ dependence so that

only the term of
∑N

−N whose index is m will survive in the previously mentioned equations.
Replacing m by n in these equations, one obtains the matrix equation




Z tt
n Z tφ

n C tt
n C tφ

n

Zφt
n Zφφ

n Cφt
n Cφφ

n

Dtt
n Dtφ

n Y tt
n Y tφ

n

Dφt
n Dφφ

n Y φt
n Y φφ

n







I t
n

Iφ
n

V t
n

V φ
n


 =




~V t
n

~V φ
n

~I t
n

~Iφ
n


 (2.23)

where, for q = t or q = φ, Iq
n and V q

n are column matrices whose jth elements are Iq
nj and

V q
nj , respectively. The ijth elements of the members of the 4× 4 array in (2.23) are, for p = t

or p = φ and q = t or q = φ,

Zpq
nij =

∫ ∫

S

Jp
−ni ·

[
− 1

ηe
Ee(J

q
nj ,0)

]

S−
ds + Lj

∫ ∫

S

Jp
−ni ·

[
− α

ηe
Ei(J

q
nj ,0)

]

S+

ds (2.24)
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Cpq
nij = Lj

(∫ ∫

S

Jp
−ni ·

[
−Ee(0,Jq

nj)
]
S− ds +

∫ ∫

S

Jp
−ni ·

[
−αEi(0,Jq

nj)
]
S+ ds

)

+L′
j

∫ ∫

S

Jp
−ni ·

[
− α

ηe
Ei(J

q
nj,0)

]

S+

ds (2.25)

Dpq
nij =

∫ ∫

S

Jp
−ni ·

[
−He(J

q
nj ,0)

]
S− ds + Lj

∫ ∫

S

Jp
−ni ·

[
−βHi(J

q
nj ,0)

]
S+ ds (2.26)

Y pq
nij = Lj

(∫ ∫

S

Jp
−ni ·

[
−ηeHe(0,Jq

nj)
]
S− ds +

∫ ∫

S

Jp
−ni ·

[
−βηeHi(0,Jq

nj)
]
S+ ds

)

+L′
j

∫ ∫

S

Jp
−ni ·

[
−βHi(J

q
nj ,0)

]
S+ ds. (2.27)

For p = t or p = φ the ith elements of ~V p
n and ~Ip

n are, respectively, ~V p
ni and ~Ip

ni given by

~V p
ni =

∫ ∫

S

Jp
−ni ·

[
1

ηe
Einc

]

S

ds (2.28)

~Ip
ni =

∫ ∫

S

Jp
−ni ·

[
Hinc

]
S

ds. (2.29)

The electric and magnetic fields of the combination of an electric current J and a magnetic
current M in the chiral medium are respectively Ei(J,M) and Hi(J,M) given by [12, (11),
(12)]

Ei(J,M) = E+(J+,M+) + E−(J−,M−) (2.30)

Hi(J,M) = H+(J+,M+) + H−(J−,M−) (2.31)

where (E±(J±,M±),H±(J±,M±)) is the electromagnetic field of the combination of the elec-
tric current J± and the magnetic current M± in the hypothetical medium whose permittivity
and permeability are, respectively, ε± and µ± given by [12, (15), (16)]

ε± = εi(1 ± ξr) (2.32)

µ± = µi(1 ± ξr) (2.33)

where εi, µi, and ξr are, respectively, the permittivity, permeability, and relative chirality of
the chiral medium; ξr = ξ/

√
εiµi where ξ is the chirality of the chiral medium. The intrinsic

impedance of the hypothetical medium and the wavenumber in the hypothetical medium
are, respectively, η± and k± defined by

η± =

√
µ±

ε±
(2.34)

k± = ω
√

µ±ε± (2.35)
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where ω is the angular frequency. In (2.30) and (2.31) [12, (17), (18)],

J± =
1

2

(
J ∓ j

ηi
M

)
(2.36)

M± =
1

2
(M ± jηiJ) (2.37)

where ηi =
√

µi/εi is the intrinsic impedance of the chiral medium. It can be shown that

η± = ηi. (2.38)

Substituting (2.36) and (2.37) into (2.30) and (2.31), one obtains

Ei(J,M) =
1

2
E+(J − j

ηi

M,M + jηiJ) +
1

2
E−(J +

j

ηi

M,M − jηiJ) (2.39)

Hi(J,M) =
1

2
H+(J − j

ηi
M,M + jηiJ) +

1

2
H−(J +

j

ηi
M,M − jηiJ). (2.40)

Substitution of (2.39) and (2.40) into (2.24)–(2.27) gives

Zpq
nij =

∫ ∫

S

Jp
−ni ·

[
− 1

ηe
Ee(J

q
nj ,0)

]

S−
ds

+Lj

∫ ∫

S

Jp
−ni ·

[
− α

2ηe
E+(Jq

nj, jηiJ
q
nj) −

α

2ηe
E−(Jq

nj,−jηiJ
q
nj)

]

S+

ds (2.41)

Cpq
nij = Lj(

∫ ∫

S

Jp
−ni ·

[
−Ee(0,Jq

nj)
]
S− ds

+

∫ ∫

S

Jp
−ni ·

[
−α

2
E+(− j

ηi
Jq

nj ,J
q
nj) −

α

2
E−(

j

ηi
Jq

nj ,J
q
nj)

]

S+

ds)

+L′
j

∫ ∫

S

Jp
−ni ·

[
− α

2ηe
E+(Jq

nj, jηiJ
q
nj) −

α

2ηe
E−(Jq

nj,−jηiJ
q
nj)

]

S+

ds (2.42)

Dpq
nij =

∫ ∫

S

Jp
−ni ·

[
−He(J

q
nj ,0)

]
S− ds

+Lj

∫ ∫

S

Jp
−ni ·

[
−β

2
H+(Jq

nj , jηiJ
q
nj) −

β

2
H−(Jq

nj,−jηiJ
q
nj)

]

S+

ds (2.43)

Y pq
nij = Lj(

∫ ∫

S

Jp
−ni ·

[
−ηeHe(0,Jq

nj)
]
S− ds

+

∫ ∫

S

Jp
−ni ·

[
−βηe

2
H+(− j

ηi
Jq

nj,J
q
nj) −

βηe

2
H−(

j

ηi
Jq

nj ,J
q
nj)

]

S+

ds)

+L′
j

∫ ∫

S

Jp
−ni ·

[
−β

2
H+(Jq

nj , jηiJ
q
nj) −

β

2
H−(Jq

nj,−jηiJ
q
nj)

]

S+

ds. (2.44)
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The electromagnetic field (E,H) in any homogeneous medium satisfies [34, (1)]

E(0,J) = −H(J,0) (2.45)

H(0,J) =
1

η2
E(J,0) (2.46)

where η is the intrinsic impedance in the homogeneous medium in question. Using (2.45)
and (2.46) to reduce all nonzero magnetic current arguments to zeros in (2.41)–(2.44), next
using (2.38), and then suppressing all the zero magnetic current arguments in the resulting
equations, one obtains

Zpq
nij = 1

2
{2Zpq

nije + Lj

(
αηrZ

pq
nij+ − jαηrY

pq+
nij+ + αηrZ

pq
nij− + jαηrY

pq+
nij−

)} (2.47)

Cpq
nij = 1

2
{Lj

(
−2Y pq−

nije − jαZpq
nij+ − αY pq+

nij+ + jαZpq
nij− − αY pq+

nij−
)

+L′
j

(
αηrZ

pq
nij+ − jαηrY

pq+
nij+ + αηrZ

pq
nij− + jαηrY

pq+
nij−

)} (2.48)

Dpq
nij = 1

2
{2Y pq−

nije + Lj

(
βY pq+

nij+ + jβZpq
nij+ + βY pq+

nij− − jβZpq
nij−

)} (2.49)

Y pq
nij = 1

2
{Lj

(
2Zpq

nije −
jβ

ηr
Y pq+

nij+ +
β

ηr
Zpq

nij+ +
jβ

ηr
Y pq+

nij− +
β

ηr
Zpq

nij−

)

+L′
j

(
βY pq+

nij+ + jβZpq
nij+ + βY pq+

nij− − jβZpq
nij−
)} (2.50)

where ηr = ηi/ηe is the relative intrinsic impedance of the chiral medium and

Zpq
nij(e,+,−) = − 1

η(e,+,−)

∫ ∫

S

Jp
−ni · E(e,+,−)(J

q
nj) ds (2.51)

Y pq−
nije = −

∫ ∫

S

Jp
−ni · H−

e (Jq
nj) ds (2.52)

Y pq+
nij± = −

∫ ∫

S

Jp
−ni · H+

±(Jq
nj) ds (2.53)

where η± is given by (4.38). Because Jp
−ni is on S, each field in (2.51)–(2.53) is automatically

evaluated on S. The electric field E(e,+,−) in (2.51) is continuous across S. However, the
magnetic field H(e,+,−) is not continuous across S. In (2.52), H−

e is He evaluated on the side
of S facing inside the scatterer. In (2.53), H+

± is H± evaluated on the side of S facing outside
the scatterer.

Equations (2.47)-(2.50) are recast as

Zpq
nij = Zpq

nije + LjαηrZ
pq
ny (2.54)

Cpq
nij = Lj(−Y pq−

nije − αY pq
nz ) + L′

jαηrZ
pq
ny (2.55)
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Dpq
nij = Y pq−

nije + LjβY pq
nz (2.56)

Y pq
nij = Lj(Z

pq
nije +

β

ηr
Zpq

ny) + L′
jβY pq

nz (2.57)

where

Zpq
ny = 0.5

{
Zpq

nij+ + Zpq
nij− − j

(
Y pq+

nij+ − Y pq+
nij−

)}
(2.58)

Y pq
nz = 0.5

{
Y pq+

nij+ + Y pq+
nij− + j

(
Zpq

nij+ − Zpq
nij−

)}
. (2.59)

Replacing n by −n in(2.54)–(2.59) and taking advantage of the even or odd property with
respect to n of each quantity on the right-hand side, one obtains

Zpq
−nij = Zpq

−nije + LjαηrZ
pq
−ny (2.60)

Cpq
−nij = Lj(−Y pq−

−nije − αY pq
−nz) + L′

jαηrZ
pq
−ny (2.61)

Dpq
−nij = Y pq−

−nije + LjβY pq
−nz (2.62)

Y pq
−nij = Lj(Z

pq
−nije +

β

ηr

Zpq
−ny) + L′

jβY pq
−nz (2.63)

where, for pq = tt or pq = φφ,

Zpq
−nije = Zpq

nije (2.64)

Y pq−
−nije = −Y pq−

nije (2.65)

Zpq
−ny = 0.5

{
Zpq

nij+ + Zpq
nij− + j

(
Y pq+

nij+ − Y pq+
nij−

)}
(2.66)

Y pq
−nz = −0.5

{
Y pq+

nij+ + Y pq+
nij− − j

(
Zpq

nij+ − Zpq
nij−

)}
(2.67)

and, for pq = tφ or pq = φt,

Zpq
−nije = −Zpq

nije (2.68)

Y pq−
−nije = Y pq−

nije (2.69)

Zpq
−ny = −0.5

{
Zpq

nij+ + Zpq
nij− + j

(
Y pq+

nij+ − Y pq+
nij−

)}
(2.70)

Y pq
−nz = 0.5

{
Y pq+

nij+ + Y pq+
nij− − j

(
Zpq

nij+ − Zpq
nij−

)}
. (2.71)
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Chapter 3

The Elements of the Moment Matrix

3.1 Introduction

In Chapter 2, the elements of the moment matrix are given by (2.47)–(2.50) whose right-
hand sides contain Z’s and Y ’s. In Chapter 3, the Z’s and Y ’s are given by (3.74)–(3.81)
and (3.109)–(3.112). These Z’s and Y ’s can be substituted into (2.47)–(2.50) to obtain
expressions that can be used to compute the elements of the moment matrix.

3.2 Analytical Treatment of Expressions (2.51)–(2.53)

for the Z’s and Y ’s

The moment matrix is the square matrix in (2.23). Its elements are given by (2.47)–(2.50)
where Zpq

nij(e,+,−), Y pq−
nije , and Y pq+

nij± are given by (2.51)–(2.53) where [4, (2)]

− 1

η(e,+,−)

E(e,+,−)(J
q
nj) =

1

η(e,+,−)

(
jωA(e,+,−)(r) + ∇V(e,+,−)(r)

)
(3.1)

−H−
e (Jq

nj) = − 1

µe
∇− × Ae(r) (3.2)

−H+
±(Jq

nj) = − 1

µ±
∇+ × A±(r) (3.3)

where

A(e,+,−)(r) =
µ(e,+,−)

4π

∫ ∫

S

Jq
nj(r

′)G(e,+,−)(R) ds′ (3.4)

V(e,+,−)(r) =
j

4πωε(e,+,−)

∫ ∫

S

(
∇′

s · J
q
nj(r

′)
)
G(e,+,−)(R) ds′ (3.5)

G(e,+,−)(R) =
e−jk(e,+,−)R

R
(3.6)

R = |r − r′| (3.7)

where k(e,+,−) is the wavenumber in the external medium, the “+” hypothetical medium, or
the “−” hypothetical medium. In (3.2), the “−” in ∇− indicates evaluation on the side of
S facing inside the scatterer. In (3.3), the “+” in ∇+ indicates evaluation on the side of S
facing outside the scatterer.
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Substitution (3.1) into (2.51) gives

Zpq
nij(e,+,−) =

1

η(e,+,−)

∫ ∫

S

Jp
−ni(r) ·

(
jωA(e,+,−)(r) + ∇V(e,+,−)(r)

)
ds. (3.8)

In view of the vector identity

∇s ·
(
Jp
−niV(e,+,−)

)
=
(
∇s · Jp

−ni

)
V(e,+,−) + Jp

−ni · ∇V(e,+,−) (3.9)

and the surface divergence theorem, (3.8) becomes

Zpq
nij(e,+,−) =

jω

η(e,+,−)

∫ ∫

S

Jp
−ni(r) · A(e,+,−)(r) ds − 1

η(e,+,−)

∫ ∫

S

(
∇s · Jp

−ni(r)
)
V(e,+,−)(r) ds.

(3.10)

Substituting (3.4) and (3.5) into (3.10), one obtains

Zpq
nij(e,+,−) =

jk(e,+,−)

4π

∫ ∫

S

ds

∫ ∫

S

ds′
(
Jp
−ni(r) · J

q
nj(r

′)
)
G(e,+,−)(R)

− j

4πk(e,+,−)

∫ ∫

S

ds

∫ ∫

S

ds′
(
∇s · Jp

−ni(r)
) (

∇′
s · J

q
nj(r

′)
)
G(e,+,−)(R). (3.11)

Substitution of the “e” part of (3.4) into (3.2) gives

−H−
e (Jq

nj) = − 1

4π
∇− ×

∫ ∫

S

Jq
nj(r

′)Ge(R) ds′. (3.12)

Taking the curl of the integrand instead of the integral in (3.12) and then taking the limit
as r approaches S from inside the scatterer, one obtains [54, Section 3.1.1]

−H−
e (Jq

nj) = − 1

4π

∫ ∫

S

Jq
nj(r

′) ×∇′Ge(R) ds′ +
1

2
Jq

nj(r) × n̂. (3.13)

Substitution of the “±” part of (3.4) into (3.3) gives

−H+
±(Jq

nj) = − 1

4π
∇+ ×

∫ ∫

S

Jq
nj(r

′)G±(R) ds′. (3.14)

Taking the curl of the integrand instead of the integral in (3.14) and then taking the limit
as r approaches S from outside the scatterer, one obtains [54, Section 3.1.1]

−H+
±(Jq

nj) = − 1

4π

∫ ∫

S

Jq
nj(r

′) ×∇′G±(R) ds′ − 1

2
Jq

nj(r) × n̂. (3.15)
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In the integrands in (3.13) and (3.15), r is exactly on S and the principal values of the
integrals are taken if necessary to obtain convergence of the integrals. Because R is given
by (3.7),

∇′G(e,+,−)(R) = G′
(e,+,−)(R)(r − r′) (3.16)

where

G′
(e,+,−)(R) =

1 + jk(e,+,−)R

R3
e−jk(e,+,1)R. (3.17)

Substitution of the “e” part of (3.16) into (3.13) gives

−H−
e (Jq

nj) = − 1

4π

∫ ∫

S

(Jq
nj(r

′) × (r − r′))G′
e(R) ds′ +

1

2
Jq

nj(r) × n̂. (3.18)

Substitution of the “±” part of (3.16) into (3.15) gives

−H+
±(Jq

nj) = − 1

4π

∫ ∫

S

(Jq
nj(r

′) × (r − r′))G′
±(R) ds′ − 1

2
Jq

nj(r) × n̂. (3.19)

Substituting (3.18) into (3.52), one obtains

Y pq−
nije = − 1

4π

∫ ∫

S

ds

∫ ∫

S

ds′ Jp
−ni(r) ·

(
Jq

nj(r
′) × (r − r′)

)
G′

e(R)

+
1

2

∫ ∫

S

Jp
−ni(r) ·

(
Jq

nj(r) × n̂
)

ds. (3.20)

Substituting (3.19) into (3.53), one obtains

Y pq+
nij± = − 1

4π

∫ ∫

S

ds

∫ ∫

S

ds′ Jp
−ni(r) ·

(
Jq

nj(r
′) × (r − r′)

)
G′

±(R)

−1

2

∫ ∫

S

Jp
−ni(r) ·

(
Jq

nj(r) × n̂
)

ds. (3.21)

The t and φ dependences of Jp
−ni(r) and the t′ and φ′ dependences of Jq

nj(r
′) are needed in

expression (3.11) for Zpq
nij(e,+,−). Replacing (t, φ) by (t′, φ′) in (2.10) and (2.11) and replacing

m by n in (2.20) and (2.21), one obtains

Jt
nj(r

′) = t̂′
Tj(t

′)

ρ′ ejnφ′
(3.22)
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Jφ
nj(r

′) = φ̂
′Tj(t

′)

ρ′ ejnφ′
(3.23)

Jt
−ni(r) = t̂

Ti(t)

ρ
e−jnφ (3.24)

Jφ
−ni(r) = φ̂

Ti(t)

ρ
e−jnφ (3.25)

where t̂′, φ̂
′
, and ρ′ are, respectively, t̂, φ̂, and ρ at t = t′. The surface divergence of a vector

function t̂ft(t, φ) + φ̂fφ(t, φ) is ∇s ·
(
t̂ft(t, φ) + φ̂fφ(t, φ)

)
given by

∇s ·
(
t̂ft(t, φ) + φ̂fφ(t, φ)

)
=

1

ρ

∂

∂t
(ρft(t, φ)) +

1

ρ

∂

∂φ
fφ(t, φ) (3.26)

so that the the surface divergences of (3.22)–(3.25) are

∇′
s · Jt

nj(r
′) =

1

ρ′

(
d

dt′
Tj(t

′)

)
ejnφ′

(3.27)

∇′
s · J

φ
nj(r

′) =
jn

ρ′ 2Tj(t
′)ejnφ′

(3.28)

∇s · Jt
−ni(r) =

1

ρ

(
d

dt
Ti(t)

)
e−jnφ (3.29)

∇s · Jφ
−ni(r) =

−jn

ρ2
Ti(t)e

−jnφ. (3.30)

Taking the derivative with respect to t of (2.12) and then replacing t by t′ in the resulting
equation, one obtains

d

dt′
Tj(t

′) =
Pj(t

′)

dj

− Pj+1(t
′)

dj+1

(3.31)

where Pj(t) is the pulse function defined by

Pj(t) =

{
1, t2j−1 ≤ t < t2j+1

0, elsewhere.
(3.32)

Equation (3.31) with j replaced by i and t′ replaced by t is

d

dt
Ti(t) =

Pi(t)

di
− Pi+1(t)

di+1
. (3.33)
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Substitution of (3.31) into (3.27) and substitution of (3.33) into (3.29) give

∇′
s · Jt

nj(r
′) =

1

ρ′

(
Pj(t

′)

dj

− Pj+1(t
′)

dj+1

)
ejnφ′

(3.34)

∇s · Jt
−ni(r) =

1

ρ

(
Pi(t)

di

− Pi+1(t)

di+1

)
e−jnφ. (3.35)

In view of (3.22)–(3.25), the dot products t̂ · t̂′, t̂ · φ̂
′
, φ̂ · t̂′, and φ̂ · φ̂

′
are needed to

evaluate Jp
−ni(r) · J

q
nj(r

′) in (3.11). These dot products are given by

t̂ · t̂′ = sin v sin v′ cos(φ′ − φ) + cos v cos v′ (3.36)

t̂ · φ̂′ = − sin v sin(φ′ − φ) (3.37)

φ̂ · t̂′ = sin v′ sin(φ′ − φ) (3.38)

φ̂ · φ̂
′
= cos(φ′ − φ) (3.39)

where v is the angle between t̂ and the z-axis and v′ is the angle between t̂′ and the z-axis; v
is positive if ρ increases with t and v′ is positive if ρ′ increases with t′. Replacing ds by dt ρ dφ
and ds′ by dt′ ρ′ dφ′ in (3.11), letting p be either t or φ and q be either t or φ in (3.11), and
then substituting (3.22)–(3.25), (3.28), (3.30), (3.34), and (3.35) into the resulting equations,
one obtains, upon use of (3.36)–(3.39),

Z tt
nij(e,+,−) =

jk(e,+,−)

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R)(sin v sin v′ cos(φ′ − φ) + cos v cos v′)ejn(φ′−φ)

− j

4πk(e,+,−)

∫
dt

(
Pi(t)

di
− Pi+1(t)

di+1

)∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R)ejn(φ′−φ) (3.40)

Z tφ
nij(e,+,−) = −

jk(e,+,−)

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R) sin v sin(φ′ − φ)ejn(φ′−φ)

+
n

4πk(e,+,−)

∫
dt

(
Pi(t)

di
− Pi+1(t)

di+1

)∫
dt′

Tj(t
′)

ρ′

∫ 2π

0

dφ

∫ 2π

0

dφ′ G(e,+,−)(R)ejn(φ′−φ) (3.41)

34



Zφt
nij(e,+,−) =

jk(e,+,−)

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R) sin v′ sin(φ′ − φ)ejn(φ′−φ)

− n

4πk(e,+,−)

∫
dt

Ti(t)

ρ

∫
dt′
(

Pj(t
′)

dj

− Pj+1(t
′)

dj+1

)∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R)ejn(φ′−φ) (3.42)

Zφφ
nij(e,+,−) =

jk(e,+,−)

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ G(e,+,−)(R) cos(φ′ − φ)ejn(φ′−φ)

− jn2

4πk(e,+,−)

∫
dt

Ti(t)

ρ

∫
dt′

Tj(t
′)

ρ′

∫ 2π

0

dφ

∫ 2π

0

dφ′ G(e,+,−)(R)ejn(φ′−φ). (3.43)

In view of (3.22)–(3.25), the scalar triple products t̂ · (t̂′ × (r − r′)), t̂ · (φ̂
′
× (r − r′)),

φ̂ · (t̂′ × (r − r′)), and φ̂ · (φ̂
′ × (r − r′)) are needed in expression (3.20) for Y pq−

nije . These
scalar triple products are given by

t̂ · (t̂′ × (r − r′)) = (ρ′ sin v cos v′ − ρ sin v′ cos v − (z′ − z) sin v sin v′) sin(φ′ − φ) (3.44)

t̂ · (φ̂
′
× (r − r′)) = ρ′ cos v + (−ρ cos v − (z′ − z) sin v) cos(φ′ − φ) (3.45)

φ̂ · (t̂′ × (r − r′)) = ρ cos v′ + (−ρ′ cos v′ + (z′ − z) sin v′) cos(φ′ − φ) (3.46)

φ̂ · (φ̂
′
× (r − r′)) = −(z′ − z) sin(φ′ − φ). (3.47)

Other scalar triple products needed in (3.20) are, using (3.15), evaluated as

t̂ · (t̂ × n̂) = 0 (3.48)

t̂ · (φ̂ × n̂) = −1 (3.49)

φ̂ · (t̂ × n̂) = 1 (3.50)

φ̂ · (φ̂ × n̂) = 0. (3.51)

Replacing ds by dt ρ dφ and ds′ by dt′ ρ′ dφ′ in (3.20), letting p be either t or φ and q be
either t or φ in (3.20), and then substituting (3.22)–(3.25) into the resulting equations, one
obtains, upon use of (3.44)–(3.51),

Y tt−
nije = − 1

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ
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·
∫ 2π

0

dφ′ (ρ′ sin v cos v′ − ρ sin v′ cos v − (z′ − z) sin v sin v′) sin(φ′ − φ)G′
e(R)ejn(φ′−φ) (3.52)

Y tφ−
nije = − 1

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ {ρ′ cos v + (−ρ cos v − (z′ − z) sin v) cos(φ′ − φ)}G′
e(R)ejn(φ′−φ)

−1

2

∫
dt

Ti(t)Tj(t)

ρ

∫ 2π

0

dφ (3.53)

Y φt−
nije = − 1

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ {ρ cos v′ + (−ρ′ cos v′ + (z′ − z) sin v′) cos(φ′ − φ)}G′
e(R)ejn(φ′−φ)

+
1

2

∫
dt

Ti(t)Tj(t)

ρ

∫ 2π

0

dφ (3.54)

Y φφ−
nije =

1

4π

∫
dt Ti(t)

∫
dt′ Tj(t

′)

∫ 2π

0

dφ

·
∫ 2π

0

dφ′ (z′ − z) sin(φ′ − φ)G′
e(R)ejn(φ′−φ). (3.55)

Because Y pq+
nij± of (3.21) is similar to Y pq−

nije of (3.20), Y tt+
nij±, Y tφ+

nij±, Y φt+
nij±, and Y φφ+

nij± , are given
by expressions similar to the right-hand sides of (3.52)–(3.55).

With the help of the cosine law and the trigonometric identity [55, Formulas 410.01 and
404.12]

cos φ = 1 − 2 sin2 φ

2
, (3.56)

expression (3.7) for R expands to

R =

√
(ρ − ρ′)2 + (z − z′)2 + 4ρρ′ sin2 φ′ − φ

2
. (3.57)

Because each integrand of each integral with respect to φ′ in (3.40)–(3.43) and (3.52)–(3.55)
is a periodic function of φ′ with the period 2π, φ′ can be replaced by φ′+φ in each integrand
without changing the value of the integral. The replacement of φ′ by φ′ + φ eliminates the
φ-dependence of each integrand so that each integration with respect to φ can be replaced by
the factor 2π. Integrating from −π to π with respect to φ′ instead of from 0 to 2π, replacing

36



ejnφ′
by cos(nφ′) + j sin(nφ′), and then exploiting the evenness of cos(nφ′) about φ′ = 0 and

the oddness of sin(nφ′) about φ′ = 0, one reduces (3.40)–(3.43) and (3.52)–(3.55) to

Z tt
nij(e,+,−) = jk(e,+,−)

∫
dt Ti(t)

∫
dt′ Tj(t

′)
(
G2(e,+,−) sin v sin v′ + G1(e,+,−) cos v cos v′)

− j

k(e,+,−)

∫
dt

(
Pi(t)

di
− Pi+1(t)

di+1

)∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)
G1(e,+,−) (3.58)

Z tφ
nij(e,+,−) = k(e,+,−)

∫
dt Ti(t)

∫
dt′ Tj(t

′)G3(e,+,−) sin v

+
n

k(e,+,−)

∫
dt

(
Pi(t)

di
− Pi+1(t)

di+1

)∫
dt′

Tj(t
′)

ρ′ G1(e,+,−) (3.59)

Zφt
nij(e,+,−) = −k(e,+,−)

∫
dt Ti(t)

∫
dt′ Tj(t

′)G3(e,+,−) sin v′

− n

k(e,+,−)

∫
dt

Ti(t)

ρ

∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)
G1(e,+,−) (3.60)

Zφφ
nij(e,+,−) = jk(e,+,−)

∫
dt Ti(t)

∫
dt′ Tj(t

′)G2(e,+,−)

− jn2

k(e,+,−)

∫
dt

Ti(t)

ρ

∫
dt′

Tj(t
′)

ρ′ G1(e,+,−) (3.61)

Y tt−
nije = −j

∫
dt Ti(t)

∫
dt′ Tj(t

′)(ρ′sin v cos v′ − ρ sin v′ cos v − (z′ − z) sin v sin v′)G′
3e(3.62)

Y tφ−
nije = −

∫
dt Ti(t)

∫
dt′ Tj(t

′) {((ρ′ − ρ) cos v − (z′ − z) sin v)G′
2e + G′

1eρ
′ cos v}

−π

∫
Ti(t)Tj(t)

ρ
dt (3.63)

Y φt−
nije = −

∫
dt Ti(t)

∫
dt′ Tj(t

′) {((ρ − ρ′) cos v′ + (z′ − z) sin v′)G′
2e + G′

1eρ cos v′}

+π

∫
Ti(t)Tj(t)

ρ
dt (3.64)

Y φφ−
nije = j

∫
dt Ti(t)

∫
dt′ Tj(t

′)(z′ − z)G′
3e (3.65)

where

G1(e,+,−) =

∫ π

0

G(e,+,−)(R̆) cos(nφ′) dφ′ (3.66)
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G2(e,+,−) =

∫ π

0

G(e,+,−)(R̆) cos φ′ cos(nφ′) dφ′ (3.67)

G3(e,+,−) =

∫ π

0

G(e,+,−)(R̆) sin φ′ sin(nφ′) dφ′ (3.68)

G′
1(e,+,−) = 2

∫ π

0

G′
(e,+,−)(R̆) sin2(

φ′

2
) cos(nφ′) dφ′ (3.69)

G′
2(e,+,−) =

∫ π

0

G′
(e,+,−)(R̆) cos φ′ cos(nφ′) dφ′ (3.70)

G′
3(e,+,−) =

∫ π

0

G′
(e,+,−)(R̆) sin φ′ sin(nφ′) dφ′. (3.71)

where

R̆ =

√
(ρ − ρ′)2 + (z − z′)2 + 4ρρ′ sin2 φ′

2
. (3.72)

The quantities G′
1±, G′

2±, and G′
3± will be needed later. In obtaining (3.63), the trigonometric

identity (3.56) was used to replace ρ′ cos v in (3.53) by ρ′ cos v (cos(φ′ − φ) + 2 sin2 φ′−φ
2

).

Similarly, ρ cos v′ in (3.54) was replaced by ρ cos v′ (cos(φ′ − φ) + 2 sin2 φ′−φ
2

) in order to
obtain (3.64). It is apparent that, as foreseen in the sentence before that which contains
(2.23), the fields of ejnφ dependent electric and magnetic current expansion functions have
ejnφ dependence.

3.3 The Z’s and Y ’s Expressed as Summations

Points

t = t̄p =
1

2
(tp + tp+1) , p = 1, 2, . . . , 2Nt + 2 (3.73)

are defined on the generating curve of the BOR. The integrals with respect to t and t′ in
(3.58)–(3.65) are approximated by sampling at these points. Thus, (3.58)–(3.65) become

Z tt
nij(e,+,−) = jk(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′(G
pq
2(e,+,−) sin vp sin vq + Gpq

1(e,+,−) cos vp cos vq)

− j

k(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

T ′
p′T

′
q′G

pq
1(e,+,−) (3.74)
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Z tφ
nij(e,+,−) = k(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′G
pq
3(e,+,−) sin vp

+
n

ke,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

T ′
p′T

′φ
q′ Gpq

1(e,+,−) (3.75)

Zφt
nij(e,+,−) = −k(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′G
pq
3(e,+,−) sin vq

− n

k(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

T ′φ
p′ T ′

q′G
pq
1(e,+,−) (3.76)

Zφφ
nij(e,+,−) = jk(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′G
pq
2(e,+,−)

− jn2

k(e,+,−)

2i+2∑

p=2i−1

2j+2∑

q=2j−1

T ′φ
p′ T ′φ

q′ Gpq
1(e,+,−) (3.77)

Y tt−
nije = −j

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′(ρ̄q sin vp cos vq − ρ̄p sin vq cos vp

−(z̄q − z̄p) sin vp sin vq)G
′pq
3e (3.78)

Y tφ−
nije = −

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′
{
((ρ̄q − ρ̄p) cos vp − (z̄q − z̄p) sin vp)G

′pq
2e + G′pq

1e ρ̄q cos vp

}
− Yij

(3.79)

Y φt−
nije = −

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′
{
((ρ̄p − ρ̄q) cos vq + (z̄q − z̄p) sin vq)G

′pq
2e + G′pq

1e ρ̄p cos vq

}
+ Yij

(3.80)

Y φφ−
nije = j

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′(z̄q − z̄p)G
′pq
3e (3.81)

where

Yij = π

(
δi−1,j

2i∑

p=2i−1

Tp+2i−4Tp+2i−2

ρ̄p∆p
+ δij

2i+2∑

p=2i−1

T 2
p+2i−2

ρ̄p∆p
+ δi+1,j

2i+2∑

p=2i+1

Tp+2iTp+2i−2

ρ̄p∆p

)
,(3.82)
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δij is the Kronecker delta function given by

δij =

{
1, i = j
0, i =/ j,

(3.83)

and

p′ = p + 2(i − 1) (3.84)

q′ = q + 2(j − 1) (3.85)

T4i−3 =
∆2

2i−1

2di
(3.86)

T4i−2 =
(∆2i−1 + 1

2
∆2i)∆2i

di
(3.87)

T4i−1 =
(∆2i+2 + 1

2
∆2i+1)∆2i+1

di+1
(3.88)

T4i =
∆2

2i+2

2di+1
(3.89)

T ′
4i−3 =

∆2i−1

di
(3.90)

T ′
4i−2 =

∆2i

di
(3.91)

T ′
4i−1 = −∆2i+1

di+1
(3.92)

T ′
4i = −∆2i+2

di+1
(3.93)

T ′φ
4i−3 =

T4i−3

ρ̄2i−1
(3.94)

T ′φ
4i−2 =

T4i−2

ρ̄2i
(3.95)

T ′φ
4i−1 =

T4i−1

ρ̄2i+1
(3.96)

T ′φ
4i =

T4i

ρ̄2i+2
(3.97)

ρ̄p = ρ(t̄p) (3.98)

z̄p = z(t̄p) (3.99)

vp = v(t), tp ≤ t < tp+1 (3.100)
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Gpq
1(e,+,−) =

∫ π

0

G(e,+,−)(R
pq) cos(nφ′) dφ′ (3.101)

Gpq
2(e,+,−) =

∫ π

0

G(e,+,−)(R
pq) cos φ′ cos(nφ′) dφ′ (3.102)

Gpq
3(e,+,−) =

∫ π

0

G(e,+,−)(R
pq) sinφ′ sin(nφ′) dφ′ (3.103)

G′pq
1(e,+,−) = 2

∫ π

0

G′
(e,+,−)(R

pq) sin2(
φ′

2
) cos(nφ′) dφ′ (3.104)

G′pq
2(e,+,−) =

∫ π

0

G′
(e,+,−)(R

pq) cos φ′ cos(nφ′) dφ′ (3.105)

G′pq
3(e,+,−) =

∫ π

0

G′
(e,+,−)(R

pq) sinφ′ sin(nφ′) dφ′ (3.106)

Rpq =

√
(ρ̄p − ρ̄q)2 + (z̄p − z̄q)2 + 4ρ̄pρ̄q sin2 φ′

2
. (3.107)

If p = q, none of the integrals in (3.101)–(3.107) except that in (3.103) converge. Convergence
is obtained for p = q by replacing Rpp by the equivalent radius Rpp

e given by [53]

Rpp
e =

√(
∆p

4

)2

+ 4ρ̄ 2
p sin2 φ

2
. (3.108)

The quantities G′pq
1±, G′pq

2±, and G′pq
3± defined by (3.104)–(3.106) are needed to evaluate Y pq+

nij±
of (3.21). Because Y pq+

nij± of (3.21) is equal to the right-hand side of (3.20) with e replaced by

± and 1
2

replaced by −1
2
, Y tt+

nij±, Y tφ+
nij±, Y φt+

nij±, and Y φφ+
nij± , are given by the right-hand sides of

(3.78)–(3.81) with e replaced by ± and with the opposite sign of what came from the term
containing the factor 1

2
in (3.20):

Y tt+
nij± = −j

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′(ρ̄q sin vp cos vq − ρ̄p sin vq cos vp

−(z̄q − z̄p) sin vp sin vq)G
′pq
3± (3.109)

Y tφ+
nij± = −

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′
{
((ρ̄q − ρ̄p) cos vp − (z̄q − z̄p) sin vp)G

′pq
2± + G′pq

1±ρ̄q cos vp

}
+ Yij

(3.110)

Y φt+
nij± = −

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′
{
((ρ̄p − ρ̄q) cos vq + (z̄q − z̄p) sin vq)G

′pq
2± + G′pq

1±ρ̄p cos vq

}
− Yij

(3.111)

41



Y φφ+
nij± = j

2i+2∑

p=2i−1

2j+2∑

q=2j−1

Tp′Tq′(z̄q − z̄p)G
′pq
3±. (3.112)

3.4 Properties of the Z’s and Y ’s of (3.74)–(3.81) and

(3.109)–(3.112)

Because G(e,+,−)(R
pq) and G′

(e,+,−)(R
pq) do not depend on n, it is evident from (3.101)–(3.106)

that Gpq
1(e,+,−), Gpq

2(e,+,−), G′pq
1(e,+,−), and G′pq

2(e,+,−) are even functions of n and that Gpq
3(e,+,−), and

G′pq
3(e,+,−) are odd functions of n. Therefore, inspection of (3.74)–(3.82) and (3.109)–(3.112)

reveals that Z tt
nij(e,+,−), Zφφ

nij(e,+,−), Y tφ−
nije , Y tφ+

nij±, Y φt−
nije , and Y φt+

nij± are even functions of n and

that Z tφ
nij(e,+,−), Zφt

nij(e,+,−), Y tt−
nije, Y tt+

nij±, Y φφ−
nije , and Y φφ+

nij± are odd functions of n.

Equations (3.74)–(3.81) with i and j interchanged are

Z tt
nji(e,+,−) = jk(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′(G
pq
2(e,+,−) sin vp sin vq + Gpq

1(e,+,−) cos vp cos vq)

− j

k(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

T ′
p′T

′
q′G

pq
1(e,+,−) (3.113)

Z tφ
nji(e,+,−) = k(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′G
pq
3(e,+,−) sin vp

+
n

ke,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

T ′
p′T

′φ
q′ Gpq

1(e,+,−) (3.114)

Zφt
nji(e,+,−) = −k(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′G
pq
3(e,+,−) sin vq

− n

k(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

T ′φ
p′ T ′

q′G
pq
1(e,+,−) (3.115)

Zφφ
nji(e,+,−) = jk(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′G
pq
2(e,+,−)

− jn2

k(e,+,−)

2j+2∑

p=2j−1

2i+2∑

q=2i−1

T ′φ
p′ T ′φ

q′ Gpq
1(e,+,−) (3.116)
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Y tt−
njie = −j

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′(ρ̄q sin vp cos vq − ρ̄p sin vq cos vp

−(z̄q − z̄p) sin vp sin vq)G
′pq
3e (3.117)

Y tφ−
njie = −

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′
{
((ρ̄q − ρ̄p) cos vp − (z̄q − z̄p) sin vp)G

′pq
2e + G′pq

1e ρ̄q cos vp

}
− Yji

(3.118)

Y φt−
njie = −

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′
{
((ρ̄p − ρ̄q) cos vq + (z̄q − z̄p) sin vq)G

′pq
2e + G′pq

1e ρ̄p cos vq

}
+ Yji

(3.119)

Y φφ−
njie = j

2j+2∑

p=2j−1

2i+2∑

q=2i−1

Tp′Tq′(z̄q − z̄p)G
′pq
3e (3.120)

where p′ and q′ are given, not by (3.84) and (3.85), but by

p′ = p + 2(j − 1) (3.121)

q′ = q + 2(i − 1). (3.122)

In view of (3.101)–(3.107), (3.6), and (3.17), each Gpq in (3.113)–(3.120) is equal to itself with
p and q interchanged. Therefore, (3.113)–(3.120) with their dummy indices of summation p
and q interchanged (this interchange is accompanied by p′ of (3.121) → q + 2(j − 1) = q′ of
(3.85) and q′ of (3.122) → p + 2(i − 1) = p′ of (3.84)) are

Z tt
nji(e,+,−) = jk(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′(G
pq
2(e,+,−) sin vq sin vp + Gpq

1(e,+,−) cos vq cos vp)

− j

k(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

T ′
q′T

′
p′G

pq
1(e,+,−) (3.123)

Z tφ
nji(e,+,−) = k(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′G
pq
3(e,+,−) sin vq

+
n

ke,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

T ′
q′T

′φ
p′ Gpq

1(e,+,−) (3.124)

Zφt
nji(e,+,−) = −k(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′G
pq
3(e,+,−) sin vp
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− n

k(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

T ′φ
q′ T ′

p′G
pq
1(e,+,−) (3.125)

Zφφ
nji(e,+,−) = jk(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′G
pq
2(e,+,−)

− jn2

k(e,+,−)

2j+2∑

q=2j−1

2i+2∑

p=2i−1

T ′φ
q′ T ′φ

p′ Gpq
1(e,+,−) (3.126)

Y tt−
njie = −j

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′(ρ̄p sin vq cos vp − ρ̄q sin vp cos vq

−(z̄p − z̄q) sin vq sin vp)G
′pq
3e (3.127)

Y tφ−
njie = −

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′
{
((ρ̄p − ρ̄q) cos vq − (z̄p − z̄q) sin vq)G

′pq
2e + G′pq

1e ρ̄p cos vq

}
− Yji

(3.128)

Y φt−
njie = −

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′
{
((ρ̄q − ρ̄p) cos vp + (z̄p − z̄q) sin vp)G

′pq
2e + G′pq

1e ρ̄q cos vp

}
+ Yji

(3.129)

Y φφ−
njie = j

2j+2∑

q=2j−1

2i+2∑

p=2i−1

Tq′Tp′(z̄p − z̄q)G
′pq
3e (3.130)

where p′ and q′ are given by (3.84) and (3.85).
Comparison of (3.123) with (3.74), (3.124) with (3.76), (3.125) with (3.75), (3.126) with

(3.77), (3.127) with (3.78), (3.128) with (3.80), (3.129) with (3.79), and (3.130) with (3.81)
reveal that

Z tt
nji(e,+,−) = Z tt

nij(e,+,−) (3.131)

Z tφ
nji(e,+,−) = −Zφt

nij(e,+,−) (3.132)

Zφt
nji(e,+,−) = −Z tφ

nij(e,+,−) (3.133)

Zφφ
nji(e,+,−) = Zφφ

nij(e,+,−) (3.134)

Y tt−
njie = −Y tt−

nije (3.135)

Y tφ−
njie + Yji = Y φt−

nije − Yij (3.136)

Y φt−
njie − Yji = Y tφ−

nije + Yij (3.137)

Y φφ−
njie = −Y φφ−

nije . (3.138)
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Equation (3.82) with i and j interchanged is

Yji = π

(
δj−1,i

2j∑

p=2j−1

Tp+2j−4Tp+2j−2

ρ̄p∆p
+ δji

2j+2∑

p=2j−1

T 2
p+2j−2

ρ̄p∆p
+ δj+1,i

2j+2∑

p=2j+1

Tp+2jTp+2j−2

ρ̄p∆p

)
. (3.139)

Because δj−1,i is not zero only when j = i + 1, j can be set equal to i + 1 in the first
summation in (3.139). Because δji is not zero only when j = i, j can be set equal to i in the
second summation in (3.139). Because δj+1,i is not zero only when j = i − 1, j can be set
equal to i− 1 in the third summation in (3.139). Setting j = i + 1 in the first summation in
(3.139), setting j = i in the second summation in (3.139), and setting j = i− 1 in the third
summation in (3.139), one obtains

Yji = π

(
δj−1,i

2i+2∑

p=2i+1

Tp+2i−2Tp+2i

ρ̄p∆p
+ δji

2i+2∑

p=2i−1

T 2
p+2i−2

ρ̄p∆p
+ δj+1,i

2i∑

p=2i−1

Tp+2i−2Tp+2i−4

ρ̄p∆p

)
. (3.140)

Since δij is given by (3.83), it is evident that the right-hand side of (3.140) is equal to the
right-hand side of (3.82) so that

Yji = Yij. (3.141)

Substitution of (3.141) into (3.136) and (3.137) gives

Y tφ−
njie =

(
Y φt−

nije − Yij

)
− Yij (3.142)

Y φt−
njie =

(
Y tφ−

nije + Yij

)
+ Yij. (3.143)

The quantity in the parentheses in (3.142) is the negative of the double summation in (3.80)
and the quantity in the parentheses in (3.143) is the negative of the double summation in
(3.79).

Because (3.109)–(3.112) are similar to (3.78)–(3.81), Y tt+
nji±, Y tφ+

nji±, Y φt+
nji±, and Y φφ+

nji± are
given by expressions similar to the right-hand sides of (3.135), (3.142), (3.143), and (3.138),
respectively.

Y tt+
nji± = −Y tt+

nij± (3.144)

Y tφ+
nji± =

(
Y φt+

nij± + Yij

)
+ Yij (3.145)

Y φt+
nji± =

(
Y tφ+

nij± − Yij

)
− Yij (3.146)

Y φφ+
nji± = −Y φφ+

nij± . (3.147)
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Chapter 4

Plane Wave Excitation

4.1 Introduction

In Chapter 2, the elements of ~V p
ni and ~Ip

ni of the excitation vector for plane wave excitation
are given by (2.28) and (2.29) where p = t for the t-directed testing function and p = φ

for the φ-directed testing function. In Chapter 4, ~V p
ni and ~Ip

ni are specialized to ~V pq
ni and

~Ipq
ni where q = θ for the incident electromagnetic field whose electric field is θ-polarized and

q = φ for the incident electromagnetic field whose electric field is φ-polarized. In Chapter 4,
expressions amenable to computation are given for ~V pq

ni and ~Ipq
ni .

4.2 ~V pq
ni and ~Ipq

ni expressed as integrals

Two incident plane waves whose propagation vectors are in the xz-plane are considered. The
electromagnetic fields of these plane waves are (Eθ,Hθ) and (Eφ,Hφ) where

Eθ = θ̂
inc

keηee
−jkinc·r (4.1)

Hθ = −ŷkee
−jkinc·r (4.2)

Eφ = ŷkeηee
−jkinc·r (4.3)

Hφ = θ̂
inc

kee
−jkinc·r (4.4)

where

kinc = −ke(x̂ sin θinc + ẑ cos θinc) (4.5)

θ̂
inc

= x̂ cos θinc − ẑ sin θinc (4.6)

r = x̂ρ cos φ + ŷρ sin φ + ẑz (4.7)

where x̂, ŷ, and ẑ are the unit vectors in the x-, y-, and z-directions, respectively. The
electric field of (Eθ,Hθ) is θ-polarized and the electric field of (Eφ,Hφ) is φ-polarized. The
dot product of (4.5) and (4.7) is

kinc · r = −ke(ρ sin θinc cos φ + z cos θinc). (4.8)

46



Substitution of (4.6) and (4.8) into (4.1)–(4.4) gives

Eθ = (x̂ cos θinc − ẑ sin θinc)keηee
jke(ρ sin θinc cosφ+z cos θinc) (4.9)

Hθ = −ŷkee
jke(ρ sin θinc cosφ+z cos θinc) (4.10)

Eφ = ŷkeηee
jke(ρ sin θinc cosφ+z cos θinc) (4.11)

Hφ = (x̂ cos θinc − ẑ sin θinc)kee
jke(ρ sin θinc cos φ+z cos θinc). (4.12)

The column matrix elements ~V t
ni,

~V φ
ni,

~I t
ni, and ~Iφ

ni, due to the incident electromagnetic
field (Einc,Hinc) are given by

~V t
ni = < Jt

−ni,
1

ηe

[
Einc

]
S

> (4.13)

~V φ
ni = < Jφ

−ni,
1

ηe

[
Einc

]
S

> (4.14)

~I t
ni = < Jt

−ni,
[
Hinc

]
S

> (4.15)

~Iφ
ni = < Jφ

−ni,
[
Hinc

]
S

> (4.16)

where

Jt
−ni = t̂

Ti(t)

ρ
e−jnφ (4.17)

Jφ
−ni = φ̂

Ti(t)

ρ
e−jnφ (4.18)

and, given two vector functions f and g, < f ,g > is the symmetric product of f and g given
by

< f ,g >=

∫
dt ρ

∫ 2π

0

dφ (f · g) (4.19)

where the double integration is over the surface S of the body of revolution (BOR). In view
of (4.19), substitution of (4.17) into (4.13) and (6.15) and substitution of (4.18) into (4.14),
and (4.16) give

~V t
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ · 1

ηe

[
Einc

]
S

e−jnφ (4.20)

~V φ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ · 1

ηe

[
Einc

]
S
e−jnφ (4.21)
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~I t
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ ·
[
Hinc

]
S

e−jnφ (4.22)

~Iφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ ·
[
Hinc

]
S

e−jnφ. (4.23)

For the incident electromagnetic field (Eθ,Hθ), the column matrix elements ~V t
ni,

~V φ
ni,

~I t
ni,

and ~Iφ
ni, of (4.20)–(4.23) specialize to ~V tθ

ni ,
~V φθ

ni , ~I tθ
ni, and ~Iφθ

ni , respectively, given by

~V tθ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ · 1

ηe

[
Eθ

]
S

e−jnφ (4.24)

~V φθ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ · 1

ηe

[
Eθ

]
S
e−jnφ (4.25)

~I tθ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ ·
[
Hθ

]
S

e−jnφ (4.26)

~Iφθ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ ·
[
Hθ

]
S

e−jnφ. (4.27)

For the incident electromagnetic field (Eφ,Hφ), the column matrix elements ~V t
ni,

~V φ
ni,

~I t
ni,

and ~Iφ
ni of (4.20)–(4.23) specialize to ~V tφ

ni , ~V φφ
ni , ~I tφ

ni , and ~Iφφ
ni , respectively, given by

~V tφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ · 1

ηe

[
Eφ

]
S

e−jnφ (4.28)

~V φφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ · 1

ηe

[
Eφ

]
S

e−jnφ (4.29)

~I tφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ ·
[
Hφ

]
S
e−jnφ (4.30)

~Iφφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ ·
[
Hφ

]
S

e−jnφ. (4.31)

4.3 ~V tθ
ni

Substitution of (4.9) into (4.24) gives

~V tθ
ni = ke

∫
dt Ti(t)

∫ 2π

0

dφ t̂ · (x̂ cos θinc − ẑ sin θinc)ejke(ρ sin θinc cos φ+z cos θinc)e−jnφ. (4.32)
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Because the dot product with t̂ in (4.32) samples only a tangential component of the incident
electric field on S, the subscript S, which indicates evaluation of the tangential part of the
incident electric field on S, does not have to appear in (4.32). Use of

t̂ = x̂ sin v cosφ + ŷ sin v sinφ + ẑ cos v (4.33)

leads to

t̂ ·
(
x̂ cos θinc − ẑ sin θinc

)
= cos θinc sin v cosφ − sin θinc cos v. (4.34)

Substitution of (4.34) into (4.32) gives

~V tθ
ni = ke

∫
dt Ti(t)e

jkez cos θinc

∫ 2π

0

dφ
(
cos θinc sin v cos φ − sin θinc cos v

)
ej(keρ sin θinc cosφ−nφ).

(4.35)

Equation (4.35) is recast as

~V tθ
ni = ke

∫
Ti(t)e

jkez cos θinc{ cos θinc sin v

∫ 2π

0

cos φ ej(keρ sin θinc cosφ−nφ) dφ

− sin θinc cos v

∫ 2π

0

ej(keρ sin θinc cosφ−nφ) dφ} dt. (4.36)

In regard to (4.36), consider

∫ 2π

0

ej(keρ sin θinc cosφ−nφ) dφ = 2πjnJn(keρ sin θinc) (4.37)

where

Jn(x) =
j−n

2π

∫ 2π

0

ej(x cosφ−nφ) dφ. (4.38)

Later, it will be shown that Jn of (4.38) is the Bessel function of the first kind of order n. Use
of the complex exponential representation of the first cosφ in the first integral with respect
to φ in (4.36) gives

∫ 2π

0

cos φ ej(keρ sin θinc cos φ−nφ) dφ =
1

2

∫ 2π

0

ej(keρ sin θinc cosφ−(n+1)φ) dφ

+
1

2

∫ 2π

0

ej(keρ sin θinc cosφ−(n−1)φ) dφ. (4.39)
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Equation (4.39) is rewritten as

∫ 2π

0

cosφ ej(keρ sin θinc cosφ−nφ) dφ = πjn+1
(
Jn+1(keρ sin θinc) − Jn−1(keρ sin θinc)

)

(4.40)

where Jn is given by (4.38). Substitution of (4.37) and (4.40) into (4.36) produces

~V tθ
ni = jnπke

∫
Ti(t)e

jkez cos θinc{j cos θinc sin v
(
Jn+1(keρ sin θinc) − Jn−1(keρ sin θinc)

)

−2 sin θinc cos v Jn(keρ sin θinc)} dt. (4.41)

It will now be shown that Jn of (4.38) is the Bessel function of the first kind of order n.
Because the integrand in (4.38) is periodic with the period 2π, (4.38) can, upon replacement
of e−jnφ by cos(nφ) − j sin(nφ), be written as

Jn(x) =
j−n

2π

∫ π

−π

ejx cos φ(cos(nφ) − j sin(nφ)) dφ. (4.42)

Because the cosines are even functions of φ and because sin(nφ) is an odd function of φ,
(4.42) reduces to

Jn(x) =
j−n

π

∫ π

0

ejx cosφ cos(nφ) dφ. (4.43)

Now, Jn(x) of (4.43) is the Bessel function of the first kind of order n given by formula 9.1.21
in [56].

4.4 ~V φθ
ni

Substitution of (4.9) into (4.25) gives

~V φθ
ni = ke

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ ·
(
x̂ cos θinc − ẑ sin θinc

)
ejke(ρ sin θinc cosφ+z cos θinc)e−jnφ. (4.44)

Use of

φ̂ = −x̂ sinφ + ŷ cos φ (4.45)

leads to

φ̂ ·
(
x̂ cos θinc − ẑ sin θinc

)
= − cos θinc sinφ. (4.46)
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Substitution of (4.46) into (4.44) gives

~V φθ
ni = −ke

∫
dt Ti(t)e

jkez cos θinc

cos θinc

∫ 2π

0

dφ sinφ ej(keρ sin θinc cosφ−nφ). (4.47)

Use of the complex exponential representation of sinφ gives

∫ 2π

0

sin φ ej(keρ sin θinc cosφ−nφ) dφ =
j

2
(

∫ 2π

0

ej(keρ sin θinc cosφ−(n+1)φ) dφ

−
∫ 2π

0

ej(keρ sin θinc cosφ−(n−1)φ) dφ). (4.48)

Equation (4.48) is rewritten as

∫ 2π

0

sinφ ej(keρ sin θinc cosφ−nφ) dφ = −πjn
(
Jn+1(keρ sin θinc) + Jn−1(keρ sin θinc)

)
(4.49)

where Jn is given by (4.38). Substitution of (4.49) into (4.47) produces

~V φθ
ni = jnπke

∫
Ti(t)e

jkez cos θinc

cos θinc
(
Jn+1(keρ sin θinc) + Jn−1(keρ sin θinc)

)
dt. (4.50)

4.5 ~Itθ
ni

Substitution of (4.10) into (4.26) gives

~I tθ
ni = −ke

∫
dt Ti(t)

∫ 2π

0

dφ (t̂ · ŷ) ejke(ρ sin θinc cosφ +z cos θinc)e−jnφ. (4.51)

Use of (4.33) leads to

t̂ · ŷ = sin v sinφ. (4.52)

Substitution of (4.52) into (4.51) gives

~I tθ
ni = −ke

∫
dt Ti(t)e

jkez cos θinc

sin v

∫ 2π

0

dφ sinφ ej(keρ sin θinc cosφ−nφ). (4.53)

Substitution of (4.49) into (4.53) produces

~I tθ
ni = jnπke

∫
Ti(t) ejkez cos θinc

sin v
(
Jn+1(keρ sin θinc) + Jn−1(keρ sin θinc)

)
dt. (4.54)
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4.6 ~Iφθ
ni

Substitution of (4.10) into (4.27) gives

~Iφθ
ni = −ke

∫
dt Ti(t)

∫ 2π

0

dφ (φ̂ · ŷ) ejke(ρ sin θinc cosφ +z cos θinc)e−jnφ. (4.55)

The dot product of φ̂ of (4.45) with ŷ is

φ̂ · ŷ = cos φ. (4.56)

Substitution of (4.56) into (4.55) gives

~Iφθ
ni = −ke

∫
dt Ti(t)e

jkez cos θinc

∫ 2π

0

dφ cosφ ej(keρ sin θinc cosφ−nφ). (4.57)

Substitution of (4.40) into (4.57) produces

~Iφθ
ni = −jn+1πke

∫
Ti(t)e

jkez cos θinc (
Jn+1(keρ sin θinc) − Jn−1(keρ sin θinc)

)
dt. (4.58)

4.7 ~V tφ
ni ,

~V φφ
ni , ~Itφ

ni , and ~Iφφ
ni

In expressions (4.28)–(4.31) for (~V tφ
ni , ~V φφ

ni , ~I tφ
ni ,

~Iφφ
ni ), Eφ and Hφ are given by (4.11) and

(4.12), respectively. Comparison of (4.11) with (4.10) and comparison of (4.12) with (4.9)
reveal that

1

ηe
Eφ = −Hθ (4.59)

Hφ =
1

ηe
Eθ. (4.60)

Substituting (4.59) into (4.28) and (4.29) and substituting (4.60) into (4.30) and (4.31), one
obtains

~V tφ
ni = −

∫
dt Ti(t)

∫ 2π

0

dφ t̂ ·
[
Hθ

]
S

e−jnφ (4.61)

~V φφ
ni = −

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ ·
[
Hθ

]
S

e−jnφ (4.62)

~I tφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ t̂ · 1

ηe

[
Eθ

]
S

e−jnφ (4.63)

~Iφφ
ni =

∫
dt Ti(t)

∫ 2π

0

dφ φ̂ · 1

ηe

[
Eθ

]
S
e−jnφ. (4.64)
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Recognizing that the right-hand sides of (4.61) and (4.62) are the negatives of the right-hand
sides of (4.26) and (4.27), respectively, one obtains

~V tφ
ni = −~I tθ

ni (4.65)

~V φφ
ni = −~Iφθ

ni . (4.66)

Recognizing that the right-hand sides of (4.63) and (4.64) are identical to the right-hand
sides of (4.24) and (4.25), respectively, one obtains

~I tφ
ni = ~V tθ

ni (4.67)

~Iφφ
ni = ~V φθ

ni . (4.68)

4.8 Calculation of ~V tθ
ni ,

~V φθ
ni , ~Itθ

ni,
~Iφθ
ni ,

~V tφ
ni ,

~V φφ
ni , ~Itφ

ni , and ~Iφφ
ni

As given by (4.41) and (4.58), ~V tθ
ni and ~Iφθ

ni are even functions of n. As given by (4.50) and

(4.54), ~V φθ
ni and ~I tθ

ni are odd functions of n. Also, ~V tφ
ni , ~V φφ

ni , ~I tφ
ni , and ~Iφφ

ni are, by (4.65)–(4.68),

simply related to ~V tθ
ni ,

~V φθ
ni , ~I tθ

ni, and ~Iφθ
ni . Therefore, it is sufficient to calculate ~V tθ

ni ,
~V φθ

ni , ~I tθ
ni,

and ~Iφθ
ni for n ≥ 0.

The integrals with respect to t in (4.41), (4.50), (4.54), and (4.58) are evaluated by
sampling at {t̄ = t̄p, p = 2i − 1, 2i, 2i + 1, 2i + 2}. Thus, (4.41), (4.50), (4.54), and (4.58)
become

~V tθ
ni = jnπke

2i+2∑

p=2i−1

Tp+2i−2e
jkez̄p cos θinc{j cos θinc sin vp(Jn+1(keρ̄p sin θinc)

−Jn−1(keρ̄p sin θinc))− 2 sin θinc cos vp Jn(keρ̄p sin θinc)} (4.69)

~V φθ
ni = jnπke

2i+2∑

p=2i−1

Tp+2i−2e
jkez̄p cos θinc

cos θinc
(
Jn+1(keρ̄p sin θinc) + Jn−1(keρ̄p sin θinc)

)
(4.70)

~I tθ
ni = jnπke

2i+2∑

p=2i−1

Tp+2i−2e
jkez̄p cos θinc

sin vp

(
Jn+1(keρ̄p sin θinc) + Jn−1(keρ̄p sin θinc)

)
(4.71)

~Iφθ
ni = −jn+1πke

2i+2∑

p=2i−1

Tp+2i−2e
jkez̄p cos θinc (

Jn+1(keρ̄p sin θinc) − Jn−1(keρ̄p sin θinc)
)

(4.72)

where T4i−3, T4i−2, T4i−1, and T4i are given by (3.86)–(3.89). Also, ρ̄p, z̄p, and vp are,
respectively, ρ at t = t̄p, z at t = t̄p, and v for tp ≤ t < tp+1.
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From (4.69)–(4.72),

~V tθ
−ni = ~V tθ

ni (4.73)

~V φθ
−ni = −~V φθ

ni (4.74)

~I tθ
−ni = −~I tθ

ni (4.75)

~Iφθ
−ni = ~Iφθ

ni . (4.76)
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Chapter 5

Scattered Field Far from the Scatterer

5.1 Introduction

In Chapter 5, reciprocity is used to obtain an expression for the scattered electric field
Escat

pq far from the scatterer. Here, p = θ for reception of the θ-polarized scattered electric
field and p = φ for reception of the φ-polarized scattered electric field. Also, q = θ for
excitation by an incident electromagnetic field whose electric field is θ-polarized and q = φ
for excitation by an electromagnetic field whose electric field is φ-polarized. As given by
(5.56), the expression for Escat

pq contains elements of column vectors that are solutions of two
moment matrix equations and contains elements of excitation column vectors with the angle
θinc replaced by θscat. Here, θinc is the angle that the radius vector from the origin in the
vicinity of the scatterer to the distant source of the incident field makes with the z-axis, and
θscat is the angle that the radius vector from the origin to the location of the receiver makes
with the z-axis. Expressed in terms of Escat

pq and the q-component of the incident electric
field, the radar cross section σpq is given by (5.61).

5.2 Reciprocity

The scattered field far from the scatterer is obtained by using the reciprocity theorem [23,
Section 3-8]. The reciprocity theorem for the two sets of electric and magnetic current sources
(Ja,Ma) and (Jb,Mb) is

∫

Vb

(Ea · Jb − Ha ·Mb) dτ =

∫

Va

(Eb · Ja −Hb · Ma) dτ (5.1)

where (Ea,Ha) is the electromagnetic field of (Ja,Ma), (Eb,Hb) is the electromagnetic field
of (Jb,Mb), Va is the volume where (Ja,Ma) exists, Vb is the volume where (Jb,Mb) exists,
and dτ is the differential element of volume.

Let

(Ja,Ma) = (Je,M) (5.2)

(Jb,Mb) = (Ì ,0) (5.3)

where Je and M are the equivalent electric and magnetic currents that radiate the scattered
electromagnetic field (Escat,Hscat) and Ì is an electric current element located at the point
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where the scattered field is observed. Here, Ì is a finite vector that represents a very small
vector length ` of very large electric current I at the point where the scattered field is
observed. Substitution of (5.2) and (5.3) into (5.1) gives

Ì · E(Je,M) =

∫

S

(E(Ì ,0) · Je −H(Ì ,0) · M) ds (5.4)

where the first argument of an electric field E or a magnetic field H is its electric current
source and the second argument is its magnetic current source. In the transition from (5.1)
to (5.4), the volume integral on the left-hand side of (5.1) reduces to the left-hand side of
(5.4) where E(Je,M) is the scattered electric field Escat evaluated at the point where Ì is
located and the volume integral on the right-hand side of (5.1) becomes the surface integral
over the surface S where Je and M exist. The electric current element Ì has no radial
component and is located far from S so that its electric and magnetic fields on S are given
by

E(Ì ,0) = −jkeηe
e−jkerrec

4πrrec
Ì ejker·r̂rec (5.5)

H(Ì ,0) = − 1

ηe
r̂rec × E(Ì ,0) (5.6)

where r is the radius vector from the origin to the point where ds in (5.4) is located, rrec

is the distance from the origin in the vicinity of S to the location of Ì , and r̂rec is the unit
vector that points from the origin toward the location of Ì . Therefore, the radius vector
from the origin to the location of Ì is rrec given by

rrec = rrecr̂rec. (5.7)

Given that the location of Ì is where the scattered field is received, the superscript rec in
rrec, r̂rec and rrec stands for receiver. Substitution of (5.5) and (5.6) into (5.4) and subsequent
replacement of E(Je,M) by the scattered electric field Escat give

Ì · Escat = −jkeηee
−jkerrec

4πrrec
{∫

S

(Ì · Je) ejker·r̂rec

ds +

∫

S

(
(r̂rec × Ì ) · M

ηe

)
ejker·r̂rec

ds}.

(5.8)

5.3 The θ-Component of the Scattered Field

Let θ̂
rec

be θ̂ at rrec. Substitution of θ̂
rec

for Ì in (5.8) produces

Escat
θ = −jkeηee

−jkerrec

4πrrec
{∫

S

(
θ̂

rec
· Je

)
ejker·r̂rec

ds +

∫

S

(
φ̂

rec
· M

ηe

)
ejker·r̂rec

ds} (5.9)
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where

Escat
θ = θ̂

rec · Escat (5.10)

is the θ-component of the scattered field at rrec and

φ̂
rec

= r̂rec × θ̂
rec

(5.11)

is φ̂ at rrec. As given by (2.7) and (2.9), the method of moments solution for Je and M/ηe

is

Je =
N∑

n=−N

Nt∑

j=1

(
I tq
njJ

t
nj + Iφq

nj J
φ
nj

)
(5.12)

M

ηe
=

N∑

n=−N

Nt∑

j=1

Lj

(
V tq

nj J
t
nj + V φq

nj Jφ
nj

)
(5.13)

where the extra superscript q = θ for the θ-polarized incident electric field and q = φ for the
φ-polarized incident electric field. Also,

Lj =

{
1, Jt

nj and Jφ
nj are in an aperture

0, Jt
nj and Jφ

nj are on a conductor.
(5.14)

Substitution of (5.12) and (5.13) into (5.9) gives

Escat
θq = −jηee

−jkerrec

4πrrec

N∑

n=−N

Nt∑

j=1

{I tq
nj

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec ds

+Iφq
nj

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec ds + LjV

tq
nj

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec

ds

+LjV
φq
nj

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec ds}. (5.15)

The extra subscript q in Escat
θq indicates the polarization of the incident electric field. The

factor ke in the integrands in (5.15) will simplify relations between these integrals and the
plane wave excitation quantities (4.69)–(4.72).

5.4 Evaluation of the First Integral in (5.15)

The first integral in (5.15) is iterated as
∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt ρ

∫ 2π

0

dφ
(
Jt

nj · θ̂
rec

)
ejker·r̂rec

. (5.16)
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Substitution of

Jt
nj = t̂

Tj(t)

ρ
ejnφ (5.17)

into (5.16) gives

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)

∫ 2π

0

dφ
(
t̂ · θ̂rec

)
ejker·r̂rec

ejnφ. (5.18)

In (5.18),

θ̂
rec

= x̂ cos θrec cosφrec + ŷ cos θrec sin φrec − ẑ sin θrec. (5.19)

The dot product of (4.33) with (5.19) is

(
t̂ · θ̂

rec
)

= cos θrec sin v cos(φ − φrec) − sin θrec cos v. (5.20)

In (5.18),

r̂rec = x̂ sin θrec cos φrec + ŷ sin θrec sinφrec + ẑ cos θrec. (5.21)

The dot product of (4.7) with (5.21) is

r · r̂rec = ρ sin θrec cos(φ − φrec) + z cos θrec. (5.22)

Substitution of (5.20) and (5.22) into (5.18) gives

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)e

jkez cos θrec

∫ 2π

0

dφ

· (cos θrec sin v cos(φ− φrec) − sin θrec cos v) ej(keρ sin θrec cos(φ−φrec) +nφ). (5.23)

The integrand of the integral with respect to φ in (5.23) is a periodic function of φ with
the period 2π. Therefore, φ can be replaced by φ + φrec in the integrand without changing
the value of the integral. Replacing φ by φ + φrec in this integrand, one obtains

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec

ds = ejnφrec

ke

∫
dt Tj(t)e

jkez cos θrec

∫ 2π

0

dφ

·(cos θrec sin v cos φ − sin θrec cos v)ej(keρ sin θrec cosφ +nφ).
(5.24)
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Replacing i by j in (4.35) and replacing n by −n in (4.35), one obtains

~V tθ
−nj = ke

∫
dt Tj(t)e

jkez cos θinc

∫ 2π

0

dφ (cos θinc sin v cosφ − sin θinc cos v)ej(keρ sin θinc cosφ +nφ).

(5.25)

Note that what multiplies ejnφrec
on the right-hand side of (5.24) is the right-hand side of

(5.25) with θinc replaced by θrec. Therefore, what multiplies ejnφrec
on the right-hand side of

(5.24) is ~V tθ
−nj with θinc replaced by θrec. Furthermore, because it can be shown that ~V tθ

nj is
an even function of n, it follows that

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec

ds = ejnφrec
[
~V tθ

nj

]
θinc→θrec

(5.26)

where the notation θinc → θrec means that θinc is replaced by θrec.

5.5 Evaluation of the Second Integral in (5.15)

The second integral in (7.15) is iterated as

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt ρ

∫ 2π

0

dφ
(
Jφ

nj · θ̂
rec

)
ejker·r̂rec. (5.27)

Substitution of

Jφ
nj = φ̂

Tj(t)

ρ
ejnφ (5.28)

into (5.27) gives

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)

∫ 2π

0

dφ
(
φ̂ · θ̂

rec
)

ejker·r̂rec

ejnφ. (5.29)

The dot product of (4.45) with (5.19) is

φ̂ · θ̂rec
= − cos θrec sin(φ − φrec). (5.30)

Substitution of (5.22) and (5.30) into (5.29) gives

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec

ds = −ke

∫
dt Tj(t)e

jkez cos θrec

cos θrec

∫ 2π

0

dφ sin(φ − φrec)

·ej(keρ sin θrec cos(φ−φrec)+nφ). (5.31)
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The integrand of the integral with respect to φ in (5.31) is a periodic function of φ with
the period 2π. Therefore, φ can be replaced by φ + φrec in the integrand without changing
the value of the integral. Replacing φ by φ + φrec in this integrand, one obtains

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec

ds = −kee
jnφrec

∫
dt Tj(t)e

jkez cos θrec

cos θrec

·
∫ 2π

0

dφ sinφ ej(keρ sin θrec cosφ +nφ). (5.32)

Replacing i by j in (4.47) and replacing n by −n in (4.47), one obtains

~V φθ
−nj = −ke

∫
dt Tj(t)e

jkez cos θinc

cos θinc

∫ 2π

0

dφ sinφ ej(keρ sin θinc cosφ +nφ). (5.33)

Note that what multiplies ejnφrec
on the right-hand side of (5.32) is the right-hand side of

(5.33) with θinc replaced by θrec. Therefore, what multiplies ejnφrec
on the right-hand side of

(5.32) is ~V φθ
−nj with θinc replaced by θrec. Furthermore, because it can be shown that ~V φθ

nj is
an odd function of n, it follows that

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec ds = −ejnφrec

[
~V φθ

nj

]
θinc→θrec

(5.34)

where the notation θinc → θrec means that θinc is replaced by θrec.

5.6 Evaluation of the Third Integral in (5.15)

The third integral in (5.15) is iterated as

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt ρ

∫ 2π

0

dφ
(
Jt

nj · φ̂
rec

)
ejker·r̂rec. (5.35)

Substitution of (5.17) into (5.35) gives

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)

∫ 2π

0

dφ
(
t̂ · φ̂

rec
)

ejker·r̂rec

ejnφ. (5.36)

In (5.36),

φ̂
rec

= −x̂ sinφrec + ŷ cosφrec. (5.37)
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The dot product of (4.33) with (5.37) is

(t̂ · φ̂rec
) = sin v sin(φ − φrec). (5.38)

Substitution of (5.22) and (5.38) into (5.36) gives

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)e

jkez cos θrec

sin v

∫ 2π

0

dφ sin(φ − φrec)

·ej(keρ sin θrec cos(φ−φrec)+nφ). (5.39)

The integrand of the integral with respect to φ in (5.39) is a periodic function of φ with
the period 2π. Therefore, φ can be replaced by φ + φrec in the integrand without changing
the value of the integral. Replacing φ by φ + φrec in this integrand, one obtains

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec ds = ejnφrec

ke

∫
dt Tj(t)e

jkez cos θrec

sin v

·
∫ 2π

0

dφ sinφ ej(keρ sin θrec cosφ +nφ). (5.40)

Replacing i by j in (4.53), replacing n by −n in (4.53), and changing the signs of both sides
of (4.53), one obtains

−~I tθ
−nj = ke

∫
dt Tj(t)e

jkez cos θinc

sin v

∫ 2π

0

dφ sinφ ej(keρ sin θinc cos φ+nφ). (5.41)

Note that what multiplies ejnφrec
on the right-hand side of (5.40) is the right-hand side of

(5.41) with θinc replaced by θrec. Therefore, what multiplies ejnφrec
on the right-hand side of

(5.40) is −~I tθ
−nj with θinc replaced by θrec. Furthermore, because it can be shown that ~I tθ

nj is
an odd function of n, it follows that

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec ds = ejnφrec

[
~I tθ
nj

]
θinc→θrec

(5.42)

where the notation θinc → θrec means that θinc is replaced by θrec.

5.7 Evaluation of the Fourth Integral in (7.15)

The fourth integral in (5.15) is iterated as

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt ρ

∫ 2π

0

dφ
(
Jφ

nj · φ̂
rec

)
ejker·r̂rec

. (5.43)

61



Substitution of (5.28) into (5.43) gives

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)

∫ 2π

0

dφ
(
φ̂ · φ̂

rec
)

ejker·r̂rec

ejnφ. (5.44)

The dot product of (4.45) with (5.37) is

φ̂ · φ̂
rec

= cos(φ − φrec). (5.45)

Substitution of (5.22) and (5.45) into (5.44) gives

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec

ds = ke

∫
dt Tj(t)e

jkez cos θrec

∫ 2π

0

dφ cos(φ − φrec)

·ej(keρ sin θrec cos(φ−φrec)+nφ). (5.46)

The integrand of the integral with respect to φ in (5.46) is a periodic function of φ with
the period 2π. Therefore, φ can be replaced by φ + φrec in the integrand without changing
the value of the integral. Replacing φ by φ + φrec in this integrand, one obtains

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec

ds = ejnφrec

ke

∫
dt Tj(t)e

jkez cos θrec

·
∫ 2π

0

dφ cos φ ej(keρ sin θrec cosφ +nφ). (5.47)

Replacing i by j in (4.57), replacing n by −n in (4.57), and changing the signs of both sides
of (4.57), one obtains

−~Iφθ
−nj = ke

∫
dt Tj(t)e

jkez cos θinc

∫ 2π

0

dφ cos φ ej(keρ sin θinc cosφ +nφ). (5.48)

Note that what multiplies ejnφrec
on the right-hand side of (5.47) is the right-hand side of

(5.48) with θinc replaced by θrec. Therefore, what multiplies ejnφrec
on the right-hand side of

(5.47) is −~Iφθ
−nj with θinc replaced by θrec. Furthermore, because it can be shown that ~Iφθ

nj is
an even function of n, it follows that

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec ds = −ejnφrec

[
~Iφθ
nj

]
θinc→θrec

(5.49)

where the notation θinc → θrec means that θinc is replaced by θrec.
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5.8 The φ-Component of the Scattered Field

Recall that φ̂
rec

is φ̂ at rrec. Substitution of φ̂
rec

for Ì in (5.8) produces

Escat
φ = −jkeηee

−jkerrec

4πrrec
{∫

S

(
φ̂

rec
· Je

)
ejker·r̂rec

ds −
∫

S

(
θ̂

rec
· M

ηe

)
ejker·r̂rec

ds} (5.50)

where

Escat
φ = φ̂

rec
· Escat (5.51)

is the φ-component of the scattered field at rrec and

θ̂
rec

= −rrec × φ̂
rec

. (5.52)

Substitution of (5.12) and (5.13) into (5.50) gives

Escat
φq = −jηee

−jkerrec

4πrrec

N∑

n=−N

Nt∑

j=1

{I tq
nj

∫

S

ke

(
Jt

nj · φ̂
rec

)
ejker·r̂rec ds

+Iφq
nj

∫

S

ke

(
Jφ

nj · φ̂
rec

)
ejker·r̂rec ds − Lj(V tq

nj

∫

S

ke

(
Jt

nj · θ̂
rec

)
ejker·r̂rec ds

+V φq
nj

∫

S

ke

(
Jφ

nj · θ̂
rec

)
ejker·r̂rec ds)} (5.53)

where the extra subscript q in Escat
φq indicates the polarization of the incident electric field.

The first, second, third, and fourth integrals in (5.53) are given by (5.42), (5.49), (5.26),
and (5.34), respectively.

5.9 Use of the Four Integrals That Were Previously

Evaluated

Substitution of (5.26), (5.34), (5.42), and (5.49) into (5.15) produces

Escat
θq = −jηee

−jkerrec

4πrrec

N∑

n=−N

ejnφrec
Nt∑

j=1

{ [
~V tθ

nj

]
θinc→θrec

I tq
nj −

[
~V φθ

nj

]
θinc→θrec

Iφq
nj

+Lj(
[
~I tθ
nj

]
θinc→θrec

V tq
nj −

[
~Iφθ
nj

]
θinc→θrec

V φq
nj )}. (5.54)
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Substitution of (5.42), (5.49), (5.26), and (5.34) into (5.53) produces

Escat
φq = −jηee

−jkerrec

4πrrec

N∑

n=−N

ejnφrec
Nt∑

j=1

{ [
~I tθ
nj

]
θinc→θrec

I tq
nj −

[
~Iφθ
nj

]
θinc→θrec

Iφq
nj

−Lj(
[
~V tθ

nj

]
θinc→θrec

V tq
nj −

[
~V φθ

nj

]
θinc→θrec

V φq
nj )}. (5.55)

Equations (5.54) and (5.55) are written in matrix form as

Escat
pq = −jηee

−jkerrec

4πrrec

N∑

n=−N

(
R̃p

nT q
n

)
ejnφrec

, p, q = θ, φ (5.56)

where

R̃θ
n =

[
~̃V

tθ

n − ~̃V
φθ

n
~̃I

tθ

n −~̃I
φθ

n

]
θinc→θrec

(5.57)

R̃φ
n =

[
~̃I

tθ

n −~̃I
φθ

n − ~̃V
tθ

n
~̃V

φθ

n

]
θinc→θrec

(5.58)

T̃ q
n =

[
Ĩ tq
n Ĩφq

n Ṽ tq
n L Ṽ φq

n L
]
, q = θ, φ. (5.59)

where L is the diagonal matrix whose jth diagonal element is Lj given by (5.14). The tilde
on the right-hand sides of (5.57)–(5.59) indicates the transpose of a column matrix so that

~̃V
tθ

n , ~̃V
φθ

n , ~̃I
tθ

n , ~̃I
φθ

n , Ĩ tq
n , Ĩφq

n , Ṽ tq
n , and Ṽ φq

n are row matrices whose jth elements are ~V tθ
nj ,

~V φθ
nj ,

~I tθ
nj ,

~Iφθ
nj , I tq

nj, Iφq
nj , V tq

nj , and V φq
nj , respectively.

5.10 Scattering Cross Section

The scattering cross section σpq is the area by which the power per unit area of the incident
plane wave whose electric field is q-polarized must be multiplied to obtain, by isotropic
radiation, the power per unit area of the p-component Escat

pq of the scattered electric field
[24, p. 76]. Here, p is either θ or φ and q is either θ or φ. Because the isotropic radiator
of power P produces the power per unit area P/(4π (rrec)2) at the distance rrec where a
receiver is located, this isotropic radiator will produce the power per unit area |Escat

pq |2/ηe of
the p-component of the scattered electric field at the distance rrec if

P

4π (rrec)2 =
|Escat

pq |2

ηe

(5.60)
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where ηe is the intrinsic impedance of the medium. Using the definition of σpq to set P
equal to the product of σpq with the incident power per unit area |Eq|2/ηe of the q-polarized
incident electric field Eq, one obtains

σpq =
4π (rrec)

2 |Escat
pq |2

|Eq|2 . (5.61)

When the incident electric field is Eθ of (4.1) or Eφ of (4.3),

|Eq|2 = k2
eη

2
e , q = θ, φ. (5.62)

Substitution of (5.56) and (5.62) into (5.61) leads to

σpq =

∣∣∣∣∣
N∑

n=−N

(
R̃p

nT q
n

)
ejnφrec

∣∣∣∣∣

2

4πk2
e

. (5.63)

Let λe = 2π/ke be the wavelength. Dividing both sides of (5.63) by λ2
e , one obtains

σpq

λ2
e

=

∣∣∣∣∣
N∑

n=−N

(
R̃p

nT q
n

)
ejnφrec

∣∣∣∣∣

2

16π3
. (5.64)
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Chapter 6

The Electromagnetic Field Inside the Scatterer

6.1 Introduction

As stated in the third paragraph of Section 2.2, the electromagnetic field inside the scatterer
is simulated as the electromagnetic field produced by the combination of the electric current
−Ji on Sc, the electric current −Je on Sa, and the magnetic current −M on Sa, all radiating
in all space filled with the homogeneous medium that is inside the scatterer in the original
problem. The union of Ji on Sc and Je on Sa is called Jie. Here, Jie and M are given by
(2.8) and (2.9) where the V ’s and I’s are elements of column vectors that are solutions of
moment matrix

The general form of the method of moments solution for the electromagnetic field inside
the scatterer is obtained in Section 6.2. In Section 6.3, the electric and magnetic fields
inside the scatterer are expressed as (6.18) and (6.19) where, for q = t and z = φ, Zq

ny and
Yq

nz are given by (6.20) and (6.21) where Zq
nj± and Yq

nj± are given by (6.16) and (6.17) in
terms of the parts E± and H± of the wave decomposition in the chiral medium. In
Section 6.4, the cylindrical components of Zq

nj± and Yq
nj± are given by (6.151) and (6.152)

where Z̆q
nj± and Y̆q

nj± are given by (6.153) and (6.154) where the Z̆z
nj±’s and the Z̆z

nj±’s are
given by (6.116)–(6.127). In Section 6.5, the cylindrical components of Zq

nj± and Yq
nj± are

used to obtain first (6.161)–(6.166) for the cylindrical components of the electromagnetic
field inside the scatterer and next (6.188)–(6.193) for the rectangular components of the
electromagnetic field inside the scatterer. In Section 6.6 where the field point is assumed to
be on the z-axis inside the scatterer, the distance between source and field points does not
depend on φ′ so that integrals with respect to φ′ reduce to integrals of trigonometic
functions that are evaluated analytically to save computation time.

6.2 General Form of the Solution for the

Electromagnetic Field Inside the Scatterer

As given by (2.8), the method of moments solution for Jie is

−Jie = −
N∑

n=−N

Nt∑

j=1

(
(
L′

jV
t
nj + LjI

t
nj

)
Jt

nj +
(
L′

jV
φ
nj + LjI

φ
nj

)
Jφ

nj). (6.1)
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The method of moments solution for −M on Sa is −M where M is given by (2.9).

−M = −ηe

N∑

n=−N

Nt∑

j=1

Lj

(
V t

njJ
t
nj + V φ

njJ
φ
nj

)
. (6.2)

The electromagnetic field inside the scatterer is therefore (Ei,Hi) where

Ei = −
N∑

n=−N

Nt∑

j=1

{L′
j

(
V t

njEi(J
t
nj ,0) + Vφ

njEi(J
φ
nj ,0)

)

+Lj

(
I t
njEi(J

t
nj ,0) + Iφ

njEi(J
φ
nj,0)

)
+ Ljηe

(
V t

njEi(0,Jt
nj) + V φ

njEi(0,Jφ
nj)
)
} (6.3)

Hi = −
N∑

n=−N

Nt∑

j=1

{L′
j

(
V t

njHi(J
t
nj ,0) + Vφ

njHi(J
φ
nj ,0)

)

+Lj

(
I t
njHi(J

t
nj ,0) + Iφ

njHi(J
φ
nj,0)

)
+ Ljηe

(
V t

njHi(0,Jt
nj) + V φ

njHi(0,Jφ
nj)
)
}(6.4)

where the subscript i in Ei and Hi indicates radiation in all space filled with the medium
inside the scatterer in the original problem. The first argument of each of Ei and Hi is
treated as an electric current and the second argument is treated as a magnetic current.

6.3 Use of the Wavefield Decomposition in (6.3) and

(6.4)

Setting (J,M) = (Jq
nj ,0) in (2.39) and (2.40), one obtains

Ei(J
q
nj,0) =

1

2

(
E+(Jq

nj , jηiJ
q
nj) + E−(Jq

nj,−jηiJ
q
nj)
)

(6.5)

Hi(J
q
nj,0) =

1

2

(
H+(Jq

nj , jηiJ
q
nj) + H−(Jq

nj,−jηiJ
q
nj)
)
. (6.6)

Setting (J,M) = (0,Jq
nj) in (2.39) and (2.40), one obtains

Ei(0,Jq
nj) =

1

2

(
E+(− j

ηi

Jq
nj ,J

q
nj) + E−(

j

ηi

Jq
nj ,J

q
nj)

)
(6.7)

Hi(0,Jq
nj) =

1

2

(
H+(− j

ηi
Jq

nj ,J
q
nj) + H−(

j

ηi
Jq

nj ,J
q
nj)

)
. (6.8)
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Substituting into (6.3) and (6.4) the equations obtained by replacing q by either t or φ in
(6.5)–(6.8), one obtains

Ei = −1

2

N∑

n=−N

Nt∑

j=1

{L′
j(V t

nj(E+(Jt
nj ,0) + jηiE+(0,Jt

nj) + E−(Jt
nj ,0) − jηiE−(0,Jt

nj))

+V φ
nj(E+(Jφ

nj,0) + jηiE+(0,Jφ
nj) + E−(Jφ

nj,0) − jηiE−(0,Jφ
nj)))

+Lj(I t
nj(E+(Jt

nj ,0) + jηiE+(0,Jt
nj) + E−(Jt

nj,0) − jηiE−(0,Jt
nj))

+Iφ
nj(E+(Jφ

nj ,0) + jηiE+(0,Jφ
nj) + E−(Jφ

nj,0) − jηiE−(0,Jφ
nj)))

+Ljηe(V t
nj(−

j

ηi
E+(Jt

nj ,0) + E+(0,Jt
nj) +

j

ηi
E−(Jt

nj ,0) + E−(0,Jt
nj))

+V φ
nj( − j

ηi
E+(Jφ

nj,0) + E+(0,Jφ
nj) +

j

ηi
E−(Jφ

nj,0) + E−(0,Jφ
nj)))} (6.9)

Hi = −1

2

N∑

n=−N

Nt∑

j=1

{L′
j(V t

nj(H+(Jt
nj ,0) + jηiH+(0,Jt

nj) + H−(Jt
nj ,0) − jηiH−(0,Jt

nj))

+V φ
nj(H+(Jφ

nj,0) + jηiH+(0,Jφ
nj) + H−(Jφ

nj,0) − jηiH−(0,Jφ
nj)))

+Lj(I t
nj(H+(Jt

nj ,0) + jηiH+(0,Jt
nj) + H−(Jt

nj,0) − jηiH−(0,Jt
nj))

+Iφ
nj(H+(Jφ

nj ,0) + jηiH+(0,Jφ
nj) + H−(Jφ

nj,0) − jηiH−(0,Jφ
nj)))

+Ljηe(V t
nj(−

j

ηi
H+(Jt

nj ,0) + H+(0,Jt
nj) +

j

ηi
H−(Jt

nj ,0) + H−(0,Jt
nj))

+V φ
nj( − j

ηi
H+(Jφ

nj,0) + H+(0,Jφ
nj) +

j

ηi
H−(Jφ

nj,0) + H−(0,Jφ
nj)))}. (6.10)

Using (2.45) and (2.46) to reduce all nonzero magnetic current arguments to zeros in (6.9)
and (6.10), next using (2.38), and then suppressing all zero magnetic current arguments in
the resulting equations, one obtains

Ei = −1

2

N∑

n=−N

Nt∑

j=1

{L′
j(V t

nj

(
E+(Jt

nj) − jηiH+(Jt
nj) + E−(Jt

nj) + jηiH−(Jt
nj)
)

+V φ
nj(E+(Jφ

nj) − jηiH+(Jφ
nj) + E−(Jφ

nj) + jηiH−(Jφ
nj)))
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+Lj(I t
nj(E+(Jt

nj) − jηiH+(Jt
nj) + E−(Jt

nj) + jηiH−(Jt
nj))

+Iφ
nj(E+(Jφ

nj) − jηiH+(Jφ
nj) + E−(Jφ

nj) + jηiH−(Jφ
nj)))

+Lj(V t
nj(−

j

ηr
E+(Jt

nj) − ηeH+(Jt
nj) +

j

ηr
E−(Jt

nj) − ηeH−(Jt
nj))

+V φ
nj(−

j

ηr
E+(Jφ

nj) − ηeH+(Jφ
nj) +

j

ηr
E−(Jφ

nj) − ηeH−(Jφ
nj)))} (6.11)

Hi = −1

2

N∑

n=−N

Nt∑

j=1

{L′
j(V t

nj(H+(Jt
nj) +

j

ηi
E+(Jt

nj) + H−(Jt
nj) −

j

ηi
E−(Jt

nj))

+V φ
nj(H+(Jφ

nj) +
j

ηi
E+(Jφ

nj) + H−(Jφ
nj) −

j

ηi
E−(Jφ

nj)))

+Lj(I t
nj(H+(Jt

nj) +
j

ηi
E+(Jt

nj) + H−(Jt
nj) −

j

ηi
E−(Jt

nj))

+Iφ
nj(H+(Jφ

nj) +
j

ηi
E+(Jφ

nj) + H−(Jφ
nj) −

j

ηi
E−(Jφ

nj)))

+Lj(V t
nj(−

j

ηr
H+(Jt

nj) +
1

ηrηi
E+(Jt

nj) +
j

ηr
H−(Jt

nj) +
1

ηrηi
E−(Jt

nj))

+V φ
nj(−

j

ηr
H+(Jφ

nj) +
1

ηrηi
E+(Jφ

nj) +
j

ηr
H−(Jφ

nj) +
1

ηrηi
E−(Jφ

nj)))} (6.12)

where

ηr =
ηi

ηe
. (6.13)

Equations (6.11) and (6.12) are recast as

Ei =
1

2

N∑

n=−N

Nt∑

j=1

{L′
jηi(V t

nj(Z
t
nj+ − jYt

nj+ + Zt
nj− + jYt

nj−)

+V φ
nj(Z

φ
nj+ − jYφ

nj+ + Zφ
nj− + jYφ

nj−))
+Ljηi(I t

nj(Z
t
nj+ − jYt

nj+ + Zt
nj− + jYt

nj−) + Iφ
nj(Z

φ
nj+ − jYφ

nj+ + Zφ
nj− + jYφ

nj−))
−Ljηe(V t

nj(jZ
t
nj+ + Yt

nj+ − jZt
nj− + Yt

nj−) + V φ
nj (jZ

φ
nj+ + Yφ

nj+ − jZφ
nj− + Yφ

nj−))}
69



(6.14)

Hi =
1

2

N∑

n=−N

Nt∑

j=1

{L′
j(V t

nj (Y
t
nj+ + jZt

nj+ + Yt
nj− − jZt

nj−)

+V φ
nj(Y

φ
nj+ + jZφ

nj+ + Yφ
nj− − jZφ

nj−))
+Lj(I t

nj(Y
t
nj+ + jZt

nj+ + Yt
nj− − jZt

nj−) + Iφ
nj(Y

φ
nj+ + jZφ

nj+ + Yφ
nj− − jZφ

nj−))
+

Lj

ηr
(V t

nj(−jYt
nj+ + Zt

nj+ + jYt
nj− + Zt

nj−) + V φ
nj(−jYφ

nj+ + Zφ
nj+ + jYφ

nj− + Zφ
nj−))}

(6.15)

where

Zq
nj± = − 1

ηi
E±(Jq

nj), q = t, φ (6.16)

Yq
nj± = −H±(Jq

nj), q = t, φ. (6.17)

Equations (6.14) and (6.15) condense to

Ei =
N∑

n=−N

Nt∑

j=1

{L′
jηi(V

t
njZ

t
ny + V φ

njZ
φ
ny)

+Ljηi(I
t
njZ

t
ny + Iφ

njZ
φ
ny) − Ljηe(V

t
njY

t
nz + V φ

njY
φ
nz)} (6.18)

Hi =
N∑

n=−N

Nt∑

j=1

{L′
j(V

t
njY

t
nz + V φ

njY
φ
nz)

+Lj(I
t
njY

t
nz + Iφ

njY
φ
nz) +

Lj

ηr
(V t

njZ
t
ny + V φ

njZ
φ
ny)} (6.19)

where

Zq
ny = 0.5

{
Zq

nj+ + Zq
nj− − j(Yq

nj+ − Yq
nj−)

}
, q = t, φ (6.20)

Yq
nz = 0.5

{
Yq

nj+ + Yq
nj− + j(Zq

nj+ −Zq
nj−)

}
, q = t, φ. (6.21)

6.4 Evaluation of the Z’s and Y’s of (6.16) and (6.17)

Evaluation of Ei and Hi of (6.18) and (6.19) where Zq
ny and Yq

nz are given by (6.20) and
(6.21) requires evaluation of Zq

nj± and Yq
nj± of (6.16) and (6.17). With reference to (3.1),
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(3.3), and (3.4)–(3.7),

Zq
nj± =

1

ηi
(jωAq

±(r) + ∇V q
±(r)) (6.22)

Yq
nj± = − 1

µ±
∇× Aq

±(r) (6.23)

where

Aq
±(r) =

µ±

4π

∫ ∫

S

Jq
nj(r

′)G±(R) ds′ (6.24)

V q
±(r) =

j

4πωε±

∫ ∫

S

(
∇′

s · J
q
nj(r

′)G±(R) ds′ (6.25)

G±(R) =
e−jk±R

R
(6.26)

R = |r − r′|. (6.27)

In (6.22)–(6.25), q = t or q = φ.
Substitution of (6.24) and (6.25) into (6.22) and subsequent replacement of (ωµ±, ωε±)

by (k±ηi,
k±)
ηi

) give

Zq
nj± =

jk±

4π

∫ ∫

S

Jq
nj(r

′)G±(R) ds′ +
j

4πk±
∇
∫ ∫

S

(
∇′

s · J
q
nj(r

′)
)
G±(R) ds′. (6.28)

Substitution of (6.24) into (6.23) gives

Yq
nj± = − 1

4π
∇×

∫ ∫

S

Jq
nj(r

′)G±(R) ds′. (6.29)

Taking the gradient of the integrand instead of the integral in (6.28) and taking the curl of
the integrand instead of the integral in (6.29), one obtains

Zq
nj± =

jk±

4π

∫ ∫

S

Jq
nj(r

′)G±(R) ds′ − j

4πk±

∫ ∫

S

(∇′
s · Jq(r′))G′

±(R)(r − r′) ds′ (6.30)

Yq
nj± = − 1

4π

∫ ∫

S

(
Jq

nj(r
′) × (r − r′)

)
G′

±(R) ds′ (6.31)

where, as in (3.17),

G′
±(R) =

1 + jk±R

R3
e−jk±R. (6.32)
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With reference to (3.22), (3.23), (3.34), and (3.28),

Jt
nj(r

′) = t̂′
Tj(t

′)

ρ′ ejnφ′
(6.33)

Jφ
nj(r

′) = φ̂
′Tj(t

′)

ρ′ ejnφ′
(6.34)

∇′
s · Jt

nj(r
′) =

1

ρ′

(
Pj(t

′)

dj
− Pj+1(t

′)

dj+1

)
ejnφ′

(6.35)

∇′
s · J

φ
nj(r

′) =
jn

ρ′ 2Tj(t
′)ejnφ′

. (6.36)

Substituting (6.33)–(6.36) into (6.30) and (6.31) and interating the integrals, one obtains

Zt
nj± =

jk±

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ t̂′G±(R)ejnφ′

− j

4πk±

∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)∫ 2π

0

dφ′ (r − r′)G′
±(R)ejnφ′

(6.37)

Zφ
nj± =

jk±

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ φ̂
′
G±(R)ejnφ′

+
n

4πk±

∫
dt′

Tj(t
′)

ρ′

∫ 2π

0

dφ′ (r − r′)G′
±(R)ejnφ′

(6.38)

Yt
nj± = − 1

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ (t̂′ × (r − r′)
)
G′

±(R)ejnφ′
(6.39)

Yφ
nj± = − 1

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ (φ̂
′
× (r − r′))G′

±(R)ejnφ′
. (6.40)

6.4.1 The Vectors on the Right-Hand Sides of (6.37)–(6.40)

The vectors on the right-hand sides of (6.37)–(6.40) are t̂′, φ̂
′
, r − r′, t̂′ × (r − r′), and

φ̂
′ × (r − r′).

The vectors t̂′ and φ̂
′
are expressed as

t̂′ = ρ̂(t̂′ · ρ̂) + φ̂(t̂
′ · φ̂) + ẑ(t̂

′ · ẑ). (6.41)

φ̂
′
= ρ̂(φ̂

′ · ρ̂) + φ̂(φ̂
′ · φ̂). (6.42)

Similar to (4.33) and (4.45),

t̂′ = x̂ sin v′ cos φ′ + ŷ sin v′ sin φ′ + ẑ cos v′. (6.43)

φ̂
′
= −x̂ sin φ′ + ŷ cosφ′. (6.44)
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Use of (6.43) and

ρ̂ = x̂ cos φ + ŷ sinφ (6.45)

gives

t̂′ · ρ̂ = sin v′ (cosφ′ cos φ + sin φ′ sin φ) (6.46)

which reduces to

t̂′ · ρ̂ = sin v′ cos(φ′ − φ). (6.47)

Use of (6.43) and (4.45) gives

t̂′ · φ̂ = sin v′(− cos φ′ sinφ + sinφ′ cos φ) (6.48)

which reduces to

t̂′ · φ̂ = sin v′ sin(φ′ − φ). (6.49)

From (6.43),

t̂′ · ẑ = cos v′. (6.50)

Use of (6.44) and (6.45) gives

φ̂
′ · ρ̂ = − sinφ′ cos φ + cosφ′ sinφ (6.51)

which reduces to

φ̂
′ · ρ̂ = − sin(φ′ − φ). (6.52)

Use of (6.44) and (4.45) leads to

φ̂
′
· φ̂ = cos(φ′ − φ). (6.53)

Substitution of (6.47), (6.49), and (6.50) into (6.41) gives

t̂′ = ρ̂ sin v′ cos(φ′ − φ) + φ̂ sin v′ sin(φ′ − φ) + ẑ cos v′. (6.54)
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Substitution of (6.52) and (6.53) into (6.42) gives

φ̂
′
= −ρ̂ sin(φ′ − φ) + φ̂ cos(φ′ − φ). (6.55)

The vector r − r′ is expressed as

r − r′ = ρ̂ρ + ẑz − ρ̂′ρ′ − ẑz′. (6.56)

In (6.56),

ρ̂′ = ρ̂(ρ̂′ · ρ̂) + φ̂(ρ̂′ · φ̂). (6.57)

Use of (6.45) and

ρ̂′ = x̂ cosφ′ + ŷ sin φ′ (6.58)

leads to

ρ̂′ · ρ̂ = cos(φ′ − φ). (6.59)

Use of (6.58) and (4.45) leads to

(ρ̂′ · φ̂) = sin(φ′ − φ). (6.60)

Substitution of (6.59) and (6.60) into (6.57) produces

ρ̂′ = ρ̂ cos(φ′ − φ) + φ̂ sin(φ′ − φ). (6.61)

Substituting (6.61) into (6.56), one obtains

r − r′ = ρ̂(ρ − ρ′ cos(φ′ − φ)) − φ̂ρ′ sin(φ′ − φ) + ẑ(z − z′). (6.62)

Use of (6.54) and (6.62) gives

t̂′ × (r − r′) = (ρ̂ sin v′ cos(φ′ − φ) + φ̂ sin v′ sin(φ′ − φ) + ẑ cos v′)
×(ρ̂(ρ − ρ′ cos(φ′ − φ))− φ̂ρ′ sin(φ′ − φ) + ẑ(z − z′)) (6.63)

which is evaluated as

t̂′ × (r − r′) = ρ̂( sin v′ sin(φ′ − φ) (z − z′) + cos v′ ρ′ sin(φ′ − φ))
+φ̂( cos v′ (ρ − ρ′ cos(φ′ − φ)) − sin v′ cos(φ′ − φ) (z − z′))

+ẑ(− sin v′ cos(φ′ − φ) ρ′ sin(φ′ − φ) − sin v′ sin(φ′ − φ) (ρ − ρ′ cos(φ′ − φ))) (6.64)
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which reduces to

t̂′ × (r − r′) = ρ̂(ρ′ cos v′ + (z − z′) sin v′) sin(φ′ − φ)

+φ̂(ρ cos v′ − (ρ′ cos v′ + (z − z′) sin v′) cos(φ′ − φ)) − ẑρ sin v′ sin(φ′ − φ). (6.65)

Use of (6.55) and (6.62) gives

φ̂
′ × (r − r′) = (− ρ̂ sin(φ′ − φ) + φ̂ cos(φ′ − φ))

×(ρ̂(ρ − ρ′ cos(φ′ − φ)) − φ̂ρ′ sin(φ′ − φ) + ẑ(z − z′)) (6.66)

which is evaluated as

φ̂
′
× (r − r′) = ρ̂ cos(φ′ − φ) (z − z′) + φ̂ sin(φ′ − φ) (z − z′)

+ẑ( sin(φ′ − φ) ρ′ sin(φ′ − φ) − cos(φ′ − φ) (ρ − ρ′ cos(φ′ − φ)) (6.67)

which reduces to

φ̂
′
× (r − r′) = ρ̂(z − z′) cos(φ′ − φ) + φ̂(z − z′) sin(φ′ − φ) + ẑ(ρ′ − ρ cos(φ′ − φ)). (6.68)

Replacement of φ by φ′ − φ in (3.56) leads to

1 = 2 sin2

(
φ′ − φ

2

)
+ cos(φ′ − φ). (6.69)

With ρ and z − z′ multiplied by the right-hand side of (6.69), (6.62) becomes

r− r′ = ρ̂

(
2ρ sin2

(
φ′ − φ

2

)
+ (ρ − ρ′) cos(φ′ − φ)

)
− φ̂ρ′ sin(φ′ − φ)

+ẑ(z − z′)

(
2 sin2

(
φ′ − φ

2

)
+ cos(φ′ − φ)

)
. (6.70)

With ρ cos v′ multiplied by the right-hand side of (6.69), (6.65) becomes

t̂′ × (r− r′) = ρ̂(ρ′ cos v′ + (z − z′) sin v′) sin(φ′ − φ)

+φ̂

(
2ρ cos v′ sin2

(
φ′ − φ)

2

)
+ ((ρ − ρ′) cos v′ − (z − z′) sin v′) cos(φ′ − φ)

)

−ẑρ sin v′ sin(φ′ − φ). (6.71)

With ρ′ multiplied by the the right-hand side of (6.69), (6.68) becomes

φ̂
′ × (r − r′) = ρ̂(z − z′) cos(φ′ − φ) + φ̂(z − z′) sin(φ′ − φ)

+ẑ

(
2ρ′ sin2

(
φ′ − φ)

2

)
− (ρ − ρ′) cos(φ′ − φ)

)
. (6.72)
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6.4.2 The ρ-, φ-, and z-Components of the Z’s and Y’s of

(6.37)–(6.40)

Substituting (6.54) and (6.70) into (6.37), (6.55) and (6.70) into (6.38), (6.71) into (6.39),
and (6.72) into (6.40), one obtains

Zt
nj± = ρ̂(Z t

nj±)ρ + φ̂(Z t
nj±)φ + ẑ(Z t

nj±)z (6.73)

Zφ
nj± = ρ̂(Zφ

nj±)ρ + φ̂(Zφ
nj±)φ + ẑ(Zφ

nj±)z (6.74)

Yt
nj± = ρ̂(Y t

nj±)ρ + φ̂(Y t
nj±)φ + ẑ(Y t

nj±)z (6.75)

Yφ
nj± = ρ̂(Y φ

nj±)ρ + φ̂(Y φ
nj±)φ + ẑ(Y φ

nj±)z (6.76)

where

(
Z t

nj±
)

ρ
=

jk±

4π

∫
dt′ Tj(t

′) sin v′
∫ 2π

0

dφ′ cos(φ′ − φ)G±(R)ejnφ′ − j

4πk±

∫
dt′

·
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)∫ 2π

0

dφ′
(

2ρ sin2

(
φ′ − φ

2

)
+ (ρ − ρ′) cos(φ′ − φ)

)
G′

±(R)ejnφ′
(6.77)

(
Z t

nj±
)

φ
=

jk±

4π

∫
dt′ Tj(t

′) sin v′
∫ 2π

0

dφ′ sin(φ′ − φ)G±(R)ejnφ′

+
j

4πk±

∫
dt′ ρ′

(
Pj(t

′)

dj
− Pj+1(t

′)

dj+1

)∫ 2π

0

dφ′ sin(φ′ − φ)G′
±(R)ejnφ′

(6.78)

(
Z t

nj±
)

z
=

jk±

4π

∫
dt′ Tj(t

′) cos v′
∫ 2π

0

dφ′ G±(R)ejnφ′

− j

4πk±

∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)
(z − z′)

∫ 2π

0

dφ′

·
(

2 sin2

(
φ′ − φ

2

)
+ cos(φ′ − φ)

)
G′

±(R)ejnφ′
(6.79)

(
Zφ

nj±

)
ρ

= −jk±

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ sin(φ′ − φ)G±(R)ejnφ′

+
n

4πk±

∫
dt′

Tj(t
′)

ρ′

∫ 2π

0

dφ′
(

2ρ sin2

(
φ′ − φ

2

)
+ (ρ − ρ′) cos(φ′ − φ)

)
G′

±ejnφ′
(6.80)

(
Zφ

nj±

)
φ

=
jk±

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ cos(φ′ − φ)G±(R)ejnφ′

− n

4πk±

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ sin(φ′ − φ)G′
±(R)ejnφ′

(6.81)
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(
Zφ

nj±

)
z

=
n

4πk±

∫
dt′

Tj(t
′)

ρ′ (z − z′)

∫ 2π

0

dφ′

·
(

2 sin2

(
φ′ − φ

2

)
+ cos(φ′ − φ)

)
G′

±(R)ejnφ′
(6.82)

(
Y t

nj±
)

ρ
= − 1

4π

∫
dt′ Tj(t

′) (ρ′ cos v′ + (z − z′) sin v′)

∫ 2π

0

dφ′ sin(φ′ − φ)G′
±(R)ejnφ′

(6.83)

(
Y t

nj±
)

φ
= − 1

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′(2ρ cos v′ sin2

(
φ′ − φ

2

)

+((ρ − ρ′) cos v′ − (z − z′) sin v′) cos(φ′ − φ))G′
±(R)ejnφ′

(6.84)

(
Y t

nj±
)

z
=

1

4π

∫
dt′ Tj(t

′)ρ sin v′
∫ 2π

0

dφ′ sin(φ′ − φ)G′
±(R)ejnφ′

(6.85)

(
Y φ

nj±

)
ρ

= − 1

4π

∫
dt′ Tj(t

′)(z − z′)

∫ 2π

0

dφ′ cos(φ′ − φ)G′
±(R)ejnφ′

(6.86)

(
Y φ

nj±

)
φ

= − 1

4π

∫
dt′ Tj(t

′)(z − z′)

∫ 2π

0

dφ′ sin(φ′ − φ)G′
±(R)ejnφ′

(6.87)

(
Y φ

nj±

)
z

= − 1

4π

∫
dt′ Tj(t

′)

∫ 2π

0

dφ′ (2ρ′ sin2

(
φ′ − φ

2

)

−(ρ − ρ′) cos(φ′ − φ))G′
±(R)ejnφ′

. (6.88)

The integrands of the integrals with respect to φ′ in (6.77)–(6.88) are periodic functions of
φ′ with the period 2π. Therefore, φ can be added to φ′ in each integrand without changing
the value of the integral. Doing this, integrating from −π to π instead of from 0 to 2π,
decomposing each integrand into an even function of φ′ and an odd function of φ′, and
then taking advantage of the even and odd properties of the resulting integrands to obtain
integrals from 0 to π instead of from −π to π, one obtains, for q = t or φ,

(
Zq

nj±
)

ρ
=
(
Z̆q

nj±

)
ρ

(
ejnφ

2π

)
(6.89)

(
Zq

nj±
)

φ
=
(
Z̆q

nj±

)
φ

(
ejnφ

2π

)
(6.90)

(
Zq

nj±
)
z

=
(
Z̆q

nj±

)
z

(
ejnφ

2π

)
(6.91)

(
Y q

nj±
)

ρ
=
(
Y̆ q

nj±

)
ρ

(
ejnφ

2π

)
(6.92)
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(
Y q

nj±
)

φ
=
(
Y̆ q

nj±

)
φ

(
ejnφ

2π

)
(6.93)

(
Y q

nj±
)

z
=
(
Y̆ q

nj±

)
z

(
ejnφ

2π

)
(6.94)

where

(
Z̆ t

nj±

)
ρ

= jk±

∫
dt′ Tj(t

′) sin v′ G2± − j

k±

∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)(
ρG′

1± + (ρ − ρ′)G′
2±
)

(6.95)
(
Z̆ t

nj±

)
φ

= −k±

∫
dt′ Tj(t

′) sin v′ G3± − 1

k±

∫
dt′ ρ′

(
Pj(t

′)

dj
− Pj+1(t

′)

dj+1

)
G′

3± (6.96)

(
Z̆ t

nj±

)
z

= jk±

∫
dt′ Tj(t

′) cos v′ G1± − j

k±

∫
dt′
(

Pj(t
′)

dj
− Pj+1(t

′)

dj+1

)
(z − z′)

(
G′

1± + G′
2±
)

(6.97)
(
Z̆φ

nj±

)
ρ

= k±

∫
dt′ Tj(t

′)G3± +
n

k±

∫
dt′

Tj(t
′)

ρ′

(
ρG′

1± + (ρ − ρ′)G′
2±
)

(6.98)

(
Z̆φ

nj±

)
φ

= jk±

∫
dt′ Tj(t

′)G2± − jn

k±

∫
dt′ Tj(t

′)G′
3± (6.99)

(
Z̆φ

nj±

)
z

=
n

k±

∫
dt′

Tj(t
′)

ρ′ (z − z′)(G′
1± + G′

2±) (6.100)

(
Y̆ t

nj±

)
ρ

= −j

∫
dt′ Tj(t

′) (ρ′ cos v′ + (z − z′) sin v′)G′
3± (6.101)

(
Y̆ t

nj±

)
φ

= −
∫

dt′ Tj(t
′)(ρ cos v′ G′

1± + ((ρ − ρ′) cos v′ − (z − z′) sin v′)G′
2±) (6.102)

(
Y̆ t

nj±

)
z

= j

∫
dt′ Tj(t

′)ρ sin v′ G′
3± (6.103)

(
Y̆ φ

nj±

)
ρ

= −
∫

dt′ Tj(t
′)(z − z′)G′

2± (6.104)

(
Y̆ φ

nj±

)
φ

= −j

∫
dt′ Tj(t

′)(z − z′)G′
3± (6.105)

(
Y̆ φ

nj±

)
z

= −
∫

dt′ Tj(t
′)(ρ′G′

1± − (ρ − ρ′)G′
2±) (6.106)

where, as in (3.66)–(3.71),

G1± =

∫ π

0

G±(R̆) cos(nφ′) dφ′ (6.107)
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G2± =

∫ π

0

G±(R̆) cos φ′ cos(nφ′) dφ′ (6.108)

G3± =

∫ π

0

G±(R̆) sin φ′ sin(nφ′) dφ′ (6.109)

G′
1± = 2

∫ π

0

G′
±(R̆) sin2

(
φ′

2

)
cos(nφ′) dφ′ (6.110)

G′
2± =

∫ π

0

G′
±(R̆) cos φ′ cos(nφ′) dφ′ (6.111)

G′
3± =

∫ π

0

G′
±(R̆) sin φ′ sin(nφ′) dφ′ (6.112)

where, similar to (3.6), similar to (3.17), and identical to (3.72),

G±(R̆) =
e−jk±R̆

R̆
(6.113)

G′
±(R̆) =

1 + jk±R̆

R̆3
e−jk±R̆ (6.114)

R̆ =

√
(ρ − ρ′)2 + (z − z′)2 + 4ρρ′ sin2

(
φ′

2

)
. (6.115)

The integrals with respect to t′ in (6.95)–(6.106) are approximated by sampling at the
points {t′ = t̄p, p = 1, 2, . . .} given by (3.73) where the domain of Tj(t

′) extends from t′ = t2j−1

to t′ = tj+2. Thus, (6.95)–(6.106) become

(
Z̆ t

nj±

)
ρ

= jk±

2j+2∑

q=2j−1

Tq′ sin vq Gq
2± − j

k±

2j+2∑

q=2j−1

T ′
q′

(
ρG′q

1± + (ρ − ρ̄q)G
′q
2±
)

(6.116)

(
Z̆ t

nj±

)
φ

= −k±

2j+2∑

q=2j−1

Tq′ sin vq Gq
3± − 1

k±

2j+2∑

q=2j−1

T ′
q′ ρ̄q G′q

3± (6.117)

(
Z̆ t

nj±

)
z

= jk±

2j+2∑

q=2j−1

Tq′ cos vq Gq
1± − j

k±

2j+2∑

q=2j−1

T ′
q′(z − z̄q)(G

′q
1± + G′q

2±) (6.118)

(
Z̆φ

nj±

)
ρ

= k±

2j+2∑

q=2j−1

Tq′G
q
3± +

n

k±

2j+2∑

q=2j−1

Tq′

ρ̄q

(
ρG′q

1± + (ρ − ρ̄q)G
′q
2±
)

(6.119)

(
Z̆φ

nj±

)
φ

= jk±

2j+2∑

q=2j−1

Tq′G
q
2± − jn

k±

2j+2∑

q=2j−1

Tq′G
′q
3± (6.120)
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(
Z̆φ

nj±

)
z

=
n

k±

2j+2∑

q=2j−1

Tq′

ρ̄q

(z − z̄q)(G
′q
1± + G′q

2±) (6.121)

(
Y̆ t

nj±

)
ρ

= −j

2j+2∑

q=2j−1

Tq′(ρ̄q cos vq + (z − z̄q) sin vq)G
′q
3± (6.122)

(
Y̆ t

nj±

)
φ

= −
2j+2∑

q=2j−1

Tq′
(
ρ cos vq G′q

1± + ((ρ − ρ̄q) cos vq − (z − z̄q) sin vq)G
′q
2±
)

(6.123)

(
Y̆ t

nj±

)
z

= j

2j+2∑

q=2j−1

Tq′ρ sin vq G′q
3± (6.124)

(
Y̆ φ

nj±

)
ρ

= −
2j+2∑

q=2j−1

Tq′(z − z̄q)G
′q
2± (6.125)

(
Y̆ φ

nj±

)
φ

= −j

2j+2∑

q=2j−1

Tq′(z − z̄q)G
′q
3± (6.126)

(
Y̆ φ

nj±

)
z

= −
2j+2∑

q=2j−1

Tq′
(
ρ̄qG

′q
1± − (ρ − ρ̄q)G

′q
2±
)

(6.127)

where, with reference to (3.85)–(3.93), (3.98)–(3.106), (3.6), (3.17), and (3.107),

q′ = q + 2(j − 1) (6.128)

T4j−3 =
∆2

2j−1

2dj
(6.129)

T4j−2 =
(∆2j−1 + 1

2
∆2j)∆2j

dj
(6.130)

T4j−1 =
(∆2j+2 + 1

2
∆2j+1)∆2j+1

dj+1
(6.131)

T4j =
∆2

2j+2

2dj+1
(6.132)

T ′
4j−3 =

∆2j−1

dj

(6.133)

T ′
4j−2 =

∆2j

dj
(6.134)
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T ′
4j−1 = −∆2j+1

dj+1
(6.135)

T ′
4j = −∆2j+2

dj+1

(6.136)

ρ̄q = ρ(t̄q) (6.137)

z̄q = z(t̄q) (6.138)

vq = v(t), tq ≤ t < tq+1 (6.139)

Gq
1± =

∫ π

0

G±(Rq) cos(nφ′) dφ′ (6.140)

Gq
2± =

∫ π

0

G±(Rq) cos φ′ cos(nφ′) dφ′ (6.141)

Gq
3± =

∫ π

0

G±(Rq) sin φ′ sin(nφ′) dφ′ (6.142)

G′q
1± = 2

∫ π

0

G′
±(Rq) sin2

(
φ′

2

)
cos(nφ′) dφ′ (6.143)

G′q
2± =

∫ π

0

G′
±(Rq) cos φ′ cos(nφ′) dφ′ (6.144)

G′q
3± =

∫ π

0

G′
±(Rq) sin φ′ sin(nφ′) dφ′ (6.145)

G±(Rq) =
e−jk±Rq

Rq
(6.146)

G′
±(Rq) =

1 + jk±Rq

(Rq)3
e−jk±Rq

(6.147)

Rq =

√
(ρ − ρ̄q)2 + (z − z̄q)2 + 4ρρ̄q sin2

(
φ′

2

)
. (6.148)

Equations (6.73)–(6.76) condense to

Zq
nj± = ρ̂

(
Zq

nj±
)

ρ
+ φ̂

(
Zq

nj±
)

φ
+ ẑ

(
Zq

nj±
)

z
(6.149)

Yq
nj± = ρ̂

(
Y q

nj±
)

ρ
+ φ̂

(
Y q

nj±
)

φ
+ ẑ

(
Y q

nj±
)

z
(6.150)

where q = t or q = φ. Substituting (6.89)–(6.91) into (6.149) and substituting (6.92)–(6.94)
into (6.150), the Z’s and Y’s of (6.16) and (6.17) are evaluated as

Zq
nj± = Z̆q

nj±

(
ejnφ

2π

)
(6.151)
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Yq
nj± = Y̆q

nj±

(
ejnφ

2π

)
. (6.152)

where

Z̆q
nj± = ρ̂

(
Z̆q

nj±

)
ρ
+ φ̂

(
Z̆q

nj±

)
φ

+ ẑ
(
Z̆q

nj±

)
z

(6.153)

Y̆q
nj± = ρ̂

(
Y̆ q

nj±

)
ρ
+ φ̂

(
Y̆ q

nj±

)
φ

+ ẑ
(
Y̆ q

nj±

)
z
. (6.154)

For q = t or q = φ, the Z̆’s and the Y̆ ’s on the right-hand sides of (6.153) and (6.154) are
given by (6.116)–(6.127). The q in (6.116)–(6.127) is different from the q in
(6.149)–(6.154). In (6.149)–(6.154), q is either t or φ but, in (6.116)–(6.127), q is a
summation index which is an integer.

6.5 The Cylindrical and Rectangular Components of

the Electromagnetic Field (Ei,Hi) Inside the

Scatterer

First, the cylindrical components of the inside electromagnetic field will be obtained and
then the rectangular components of the inside electromagnetic field will be obtained from
the cylindrical components of the inside electromagnetic field.

6.5.1 The Cylindrical Components of the Inside Electromagnetic

Field

Substituting (6.151) and (6.152) into (6.20) and (6.21), one obtains

Zq
ny = Z̆q

ny

(
ejnφ

4π

)
, q = t, φ (6.155)

Yq
nz = Y̆q

nz

(
ejnφ

4π

)
, q = t, φ (6.156)

where

Z̆q
ny = Z̆q

nj+ + Z̆q
nj− − j(Y̆q

nj+ − Y̆q
nj−), q = t, φ (6.157)

Y̆q
nz = Y̆q

nj+ + Y̆q
nj− + j(Z̆q

nj+ − Z̆q
nj−), q = t, φ (6.158)

Substitution of (6.155) and (6.156) into (6.18) and (6.19) produces

Ei =
1

4π

N∑

n=−N

ejnφ
Nt∑

j=1

{L′
jηi(V

t
njZ̆

t
ny + V φ

njZ̆
φ
ny)
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+Ljηi(I
t
njZ̆

t
ny + Iφ

njZ̆
φ
ny) − Ljηe(V

t
njY̆

t
nz + V φ

njY̆
φ
nz)} (6.159)

Hi =
1

4π

N∑

n=−N

ejnφ

Nt∑

j=1

{L′
j(V

t
njY̆

t
nz + V φ

njY̆
φ
nz)

+Lj(I
t
njY̆

t
nz + Iφ

njY̆
φ
nz) +

Lj

ηr
(V t

njZ̆
t
ny + V φ

njZ̆
φ
ny)} (6.160)

The ρ-, φ-, and z-components of (6.159) are Eiρ, Eiφ, and Eiz given by

Eiρ =
1

4π

N∑

n=−N

ejnφ

Nt∑

j=1

{L′
jηi

(
V t

nj

(
Z̆ t

ny

)
ρ
+ V φ

nj

(
Z̆φ

ny

)
ρ

)

+Ljηi

(
I t
nj

(
Z̆ t

ny

)
ρ
+ Iφ

nj

(
Z̆φ

ny

)
ρ

)
− Ljηe

(
V t

nj

(
Y̆ t

nz

)
ρ
+ V φ

nj

(
Y̆ φ

nz

)
ρ

)}. (6.161)

Eiφ =
1

4π

N∑

n=−N

ejnφ

Nt∑

j=1

{L′
jηi

(
V t

nj

(
Z̆ t

ny

)
φ

+ V φ
nj

(
Z̆φ

ny

)
φ

)

+Ljηi

(
I t
nj

(
Z̆ t

ny

)
φ

+ Iφ
nj

(
Z̆φ

ny

)
φ

)
− Ljηe

(
V t

nj

(
Y̆ t

nz

)
φ

+ V φ
nj

(
Y̆ φ

nz

)
φ

)}. (6.162)

Eiz =
1

4π

N∑

n=−N

ejnφ

Nt∑

j=1

{L′
jηi

(
V t

nj

(
Z̆ t

ny

)
z
+ V φ

nj

(
Z̆φ

ny

)
z

)

+Ljηi

(
I t
nj

(
Z̆ t

ny

)
z
+ Iφ

nj

(
Z̆φ

ny

)
z

)
− Ljηe

(
V t

nj

(
Y̆ t

nz

)
z
+ V φ

nj

(
Y̆ φ

nz

)
z

)}. (6.163)

The ρ-, φ-, and z-components of (6.160) are Hiρ, Hiφ, and Hiz given by

Hiρ =
1

4π

N∑

n=−N

ejnφ
Nt∑

j=1

{L′
j

(
V t

nj

(
Y̆ t

nz

)
ρ
+ V φ

nj

(
Y̆ φ

nz

)
ρ

)

+Lj

(
I t
nj

(
Y̆ t

nz

)
ρ
+ Iφ

nj

(
Y̆ φ

nz

)
ρ

)
+

Lj

ηr

(
V t

nj

(
Z̆ t

ny

)
ρ
+ V φ

nj

(
Z̆φ

ny

)
ρ

)}. (6.164)

Hiφ =
1

4π

N∑

n=−N

ejnφ
Nt∑

j=1

{L′
j

(
V t

nj

(
Y̆ t

nz

)
φ

+ V φ
nj

(
Y̆ φ

nz

)
φ

)

+Lj

(
I t
nj

(
Y̆ t

nz

)
φ

+ Iφ
nj

(
Y̆ φ

nz

)
φ

)
+

Lj

ηr

(
V t

nj

(
Z̆ t

ny

)
φ

+ V φ
nj

(
Z̆φ

ny

)
φ

)}. (6.165)

Hiz =
1

4π

N∑

n=−N

ejnφ
Nt∑

j=1

{L′
j

(
V t

nj

(
Y̆ t

nz

)
z
+ V φ

nj

(
Y̆ φ

nz

)
z

)
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+Lj

(
I t
nj

(
Y̆ t

nz

)
z
+ Iφ

nj

(
Y̆ φ

nz

)
z

)
+

Lj

ηr

(
V t

nj

(
Z̆ t

ny

)
z
+ V φ

nj

(
Z̆φ

ny

)
z

)}. (6.166)

The Z̆ny ’s and Y̆nz’s on the right-hand sides of (6.161)–(6.166) are obtained by taking
the ρ-, φ-, and z-components of each of (6.157) with q = t, (6.157) with q = φ, (6.158) with
q = t, and (6.158) with q = φ:

(
Z̆ t

ny

)
ρ

=
(
Z̆ t

nj+

)
ρ
+
(
Z̆ t

nj−

)
ρ
− j

((
Y̆ t

nj+

)
ρ
−
(
Y̆ t

nj−

)
ρ

)
(6.167)

(
Z̆ t

ny

)
φ

=
(
Z̆ t

nj+

)
φ

+
(
Z̆ t

nj−

)
φ
− j

((
Y̆ t

nj+

)
φ
−
(
Y̆ t

nj−

)
φ

)
(6.168)

(
Z̆ t

ny

)
z

=
(
Z̆ t

nj+

)
z
+
(
Z̆ t

nj−

)
z
− j

((
Y̆ t

nj+

)
z
−
(
Y̆ t

nj−

)
z

)
(6.169)

(
Z̆φ

ny

)
ρ

=
(
Z̆φ

nj+

)
ρ
+
(
Z̆φ

nj−

)
ρ
− j

((
Y̆ φ

nj+

)
ρ
−
(
Y̆ φ

nj−

)
ρ

)
(6.170)

(
Z̆φ

ny

)
φ

=
(
Z̆φ

nj+

)
φ

+
(
Z̆φ

nj−

)
φ
− j

((
Y̆ φ

nj+

)
φ
−
(
Y̆ φ

nj−

)
φ

)
(6.171)

(
Z̆φ

ny

)
z

=
(
Z̆φ

nj+

)
z
+
(
Z̆φ

nj−

)
z
− j

((
Y̆ φ

nj+

)
z
−
(
Y̆ φ

nj−

)
z

)
(6.172)

(
Y̆ t

nz

)
ρ

=
(
Y̆ t

nj+

)
ρ
+
(
Y̆ t

nj−

)
ρ
+ j

((
Z̆ t

nj+

)
ρ
−
(
Z̆ t

nj−

)
ρ

)
(6.173)

(
Y̆ t

nz

)
φ

=
(
Y̆ t

nj+

)
φ

+
(
Y̆ t

nj−

)
φ

+ j

((
Z̆ t

nj+

)
φ
−
(
Z̆ t

nj−

)
φ

)
(6.174)

(
Y̆ t

nz

)
z

=
(
Y̆ t

nj+

)
z
+
(
Y̆ t

nj−

)
z
+ j

((
Z̆ t

nj+

)
z
−
(
Z̆ t

nj−

)
z

)
(6.175)

(
Y̆ φ

nz

)
ρ

=
(
Y̆ φ

nj+

)
ρ
+
(
Y̆ φ

nj−

)
ρ
+ j

((
Z̆φ

nj+

)
ρ
−
(
Z̆φ

nj−

)
ρ

)
(6.176)

(
Y̆ φ

nz

)
φ

=
(
Y̆ φ

nj+

)
φ

+
(
Y̆ φ

nj−

)
φ

+ j

((
Z̆φ

nj+

)
φ
−
(
Z̆φ

nj−

)
φ

)
(6.177)

(
Y̆ φ

nz

)
z

=
(
Y̆ φ

nj+

)
z
+
(
Y̆ φ

nj−

)
z
+ j

((
Z̆φ

nj+

)
z
−
(
Z̆φ

nj−

)
z

)
. (6.178)

The cylindrical components (Eiρ, Eiφ, Eiz,Hiρ,Hiφ,Hiz) of the inside electromagnetic field

are obtained by first substituting (6.116)–(6.127) into (6.167)–(6.178). The resulting Z̆ny’s

and Y̆nz’s are then substituted into (6.161)–(6.166).
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6.5.2 The Rectangular Components of the Inside Electromagnetic

Field

The rectangular components of the inside electromagnetic field are Eix, Eiy, Eiz, Hix, Hiy,
and Hiz given by

Eix = x̂ ·
(
ρ̂Eiρ + φ̂Eiφ + ẑEiz

)
(6.179)

Eiy = ŷ ·
(
ρ̂Eiρ + φ̂Eiφ + ẑEiz

)
(6.180)

Eiz = ẑ ·
(
ρ̂Eiρ + φ̂Eiφ + ẑEiz

)
(6.181)

Hix = x̂ ·
(
ρ̂Hiρ + φ̂Hiφ + ẑHiz

)
(6.182)

Hiy = ŷ ·
(
ρ̂Hiρ + φ̂Hiφ + ẑHiz

)
(6.183)

Hiz = ẑ ·
(
ρ̂Hiρ + φ̂Hiφ + ẑHiz

)
(6.184)

where Eiρ, Eiφ, Eiz, Hiρ, Hiφ, and Hiz are the cylindrical components of the inside electro-
magnetic field. Using

(x̂· ρ̂, x̂·φ̂, x̂·ẑ) = (cos φ, − sinφ, 0) (6.185)

(ŷ·ρ̂, ŷ·φ̂, ŷ·ẑ) = (sinφ, cosφ, 0) (6.186)

(ẑ·ρ̂, ẑ·φ̂, ẑ·ẑ) = (0, 0, 1) (6.187)

in (6.179)–(6.183), one obtains

Eix = Eiρ cos φ − Eiφ sinφ (6.188)

Eiy = Eiρ sinφ + Eiφ cos φ (6.189)

Eiz = Eiz (6.190)

Hix = Hiρ cosφ − Hiφ sinφ (6.191)

Hiy = Hiρ sinφ + Hiφ cosφ (6.192)

Hiz = Hiz. (6.193)

Equation (6.190) verifies that Eiz serves as both a rectangular and a cylindrical coordinate
and (6.193) verifies that Hiz serves as both a rectangular and a cylindrical coordinate.
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6.6 The Special Case Where the Electromagnetic Field

Inside the Scatterer is Observed on the z-Axis

On the z-axis, the spatial position where the rectangular components of the inside electro-
magnetic field are evaluated does not depend on φ so that, if they vary continuously with
spatial position, the rectangular components (6.188)–(6.193) on the z-axis do not depend
on φ. On the z-axis, the value of φ on the right-hand sides of (6.188)–(6.193) is therefore
arbitrary. It is suggested that φ be set equal to zero for evaluations of the field components
(6.188)–(6.193) on the z-axis.

The Gq’s of (6.141)–(6.143) on the z-Axis and the G′q’s of (6.45)–(6.47) on the
z-Axis

On the z-axis, ρ = 0 so that Rq of (6.148) does not depend on φ′ and therefore neither
G±(Rq) of (6.146) nor G′

±(Rq) of (6.147) depend on φ′. As a result, (6.140)–(6.145) and
(6.148) become

Gq
1± = G±(Rq)

∫ π

0

cos(nφ′) dφ′ (6.194)

Gq
2± = G±(Rq)

∫ π

0

cos φ′ cos(nφ′) dφ′ (6.195)

Gq
3± = G±(Rq)

∫ π

0

sinφ′ sin(nφ′) dφ′ (6.196)

G′q
1± = 2G′

±(Rq)

∫ π

0

sin2(
φ′

2
) cos(nφ′) dφ′ (6.197)

G′q
2± = G′

±(Rq)

∫ π

0

cos φ′ cos(nφ′) dφ′ (6.198)

G′q
3± = G′

±(Rq)

∫ π

0

sinφ′ sin(nφ′) dφ′ (6.199)

Rq =
√

ρ̄2
q + (z − z̄q)2. (6.200)

The integrals in (6.194), (6.195), (6.197), and (6.198) are even functions of n and the integrals
in (6.196) and (6.199) are odd functions on n. Therefore, the values of the integrals in
(6.194)–(6.199) for negative integers n can easily be obtained from their values for positive
integers n. In the rest of Section 6.4.1, the integrals in (6.194)–(6.199) are evaluated for
nonnegative integers n.
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The integrals in (6.194) and (6.195) are evaluated as
∫ π

0

cos(nφ′) dφ′ =

{
π, n = 0
0, n = 1, 2, . . .

(6.201)

∫ π

0

cos φ′ cos(nφ′) dφ′ =

{
0, n = 0
π
2
, n = 1

(6.202)

∫ π

0

cos φ′ cos(nφ′) dφ′ =
1

2

∫ π

0

(cos((n + 1)φ′) + cos((n − 1)φ′) dφ′, n = 2, 3, . . . (6.203)

∫ π

0

cos φ′ cos(nφ′) dφ′ =
1

2

[
sin((n + 1)φ′)

n + 1
+

sin((n − 1)φ′)

n − 1

]π

0

= 0, n = 2, 3, . . . . (6.204)

Equations (6.202) and (6.204) combine to give

∫ π

0

cosφ′ cos(nφ′) dφ′ =
π

2





0, n = 0
1, n = 1
0, n = 2, 3, . . . .

(6.205)

The integral in (6.196) is evaluated as
∫ π

0

sinφ′ sin(nφ′) dφ′ =
π

2

{
0, n = 0

1, n = 1.
(6.206)

∫ π

0

sinφ′ sin(nφ′) dφ′ =
1

2

∫ π

0

(cos((n − 1)φ′) − cos((n + 1)φ′) dφ′, n = 2, 3, . . . (6.207)

∫ π

0

sinφ′ sin(nφ′) dφ′ =
1

2

[
sin((n − 1)φ′)

n − 1
− sin((n + 1)φ′)

n + 1

]π

0

= 0, n = 2, 3, . . . . (6.208)

Equations (6.206) and (6.208) combine to give

∫ π

0

sinφ′ sin(nφ′) dφ′ =
π

2





0, n = 0
1, n = 1
0, n = 2, 3, . . . .

(6.209)

For the integral in (6.197), use of (3.56) gives
∫ π

0

sin2

(
φ′

2

)
cos(nφ′) dφ′ =

1

2

∫ π

0

(1 − cosφ′) cos(nφ′) dφ′. (6.210)

Using (6.201) and (6.205) to evaluate the integral on the right-hand side of (6.210), one
obtains

∫ π

0

sin2

(
φ′

2

)
cos(nφ′) dφ′ =

π

4





2, n = 0
−1, n = 1
0, n = 2, 3, . . . .

(6.211)
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Substituting (6.201) into (6.194), (6.205) into (6.195), (6.209) into (6.196), (6.211) into
(6.197), (6.205) into (6.198), and (6.209) into (6.199), one obtains

Gq
1± = πG±(Rq)

{
1, n = 0
0, n = 1, 2, . . .

(6.212)

Gq
2± =

πG±(Rq)

2





0, n = 0
1, n = 1
0, n = 2, 3, . . .

(6.213)

Gq
3± =

πG±(Rq)

2





0, n = 0
1, n = 1
0, n = 2, 3, . . .

(6.214)

G′q
1± =

πG′
±(Rq)

2





2, n = 0
−1, n = 1
0, n = 2, 3, . . .

(6.215)

G′q
2± =

πG′
±(Rq)

2





0, n = 0
1, n = 1
0, n = 2, 3, . . .

(6.216)

G′q
3± =

πG′
±(Rq)

2





0, n = 0
1, n = 1
0, n = 2, 3 . . .

(6.217)

where Rq is given by (6.200).

6.6.1 Properties of the Fourier Coefficients of the Cylindrical and

Rectangular Components of the Inside Electromagnetic Field

on the z-Axis

Equations (6.161)–(6.166) are rewitten as

Eiρ =
N∑

n=−N

Aρ
ne

jnφ (6.218)

Eiφ =

N∑

n=−N

Aφ
ne

jnφ (6.219)

Eiz =
N∑

n=−N

Az
ne

jnφ (6.220)
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Hiρ =
N∑

n=−N

Bρ
nejnφ (6.221)

Hiφ =
N∑

n=−N

Bφ
nejnφ (6.222)

Hiz =
N∑

n=−N

Bz
nejnφ (6.223)

where the A’s and B’s are the quantities that multiply ejnφ on the right-hand sides of (6.161)–
(6.166). Because, as stated at the beginning of Section 6.6, the rectangular components of
the inside electromagnetic field on the z-axis do not depend on φ, Eiz and Hiz do not depend
on φ so that (6.220) and (6.223) reduce to

Eiz = Az
0 (6.224)

Hiz = Bz
0. (6.225)

Upon replacement of cos φ and sinφ by their complex exponential representations, (6.188)
and (6.189) become

Eix =
1

2

(
(Eiρ + jEiφ)e

jφ + (Eiρ − jEiφ)e
−jφ
)

(6.226)

Eiy =
1

2

(
(Eiφ − jEiρ)E

jφ + (Eiφ + jEiρ)e
−jφ).

)
(6.227)

Substituting (6.218) and (6.219) into (6.226) and (6.227), one obtains

Eix =
1

2

(
N∑

n=−N

(Aρ
n + jAφ

n)e
j(n+1)φ +

N∑

n=−N

(Aρ
n − jAφ

n)e
j(n−1)φ

)
(6.228)

Eiy =
1

2

(
N∑

n=−N

(Aφ
n − jAρ

n)e
j(n+1)φ +

N∑

n=−N

(Aφ
n + jAρ

n)e
j(n−1)φ

)
. (6.229)

Equations (6.228) and (6.229) are recast as

Eix =
1

2
(

N+1∑

n=−N+1

(Aρ
n−1 + jAφ

n−1)e
jnφ +

N−1∑

n=−N−1

(Aρ
n+1 − jAφ

n+1)e
jnφ) (6.230)

Eiy =
1

2
(

N+1∑

n=−N+1

(Aφ
n−1 − jAρ

n−1)e
jnφ +

N−1∑

−N−1

(Aφ
n+1 + jAρ

n+1)e
jnφ) (6.231)
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which become

Eix =
1

2
((

N∑

n=−N

(Aρ
n−1 + jAφ

n−1 + Aρ
n+1 − jAφ

n+1)e
jnφ)− (Aρ

−N−1 + jAφ
−N−1)e

−jNφ

+(Aρ
N + jAφ

N)ej(N+1)φ + (Aρ
−N − jAφ

−N)e−j(N+1)φ − (Aρ
N+1 − jAφ

N+1)e
jNφ) (6.232)

Eiy =
1

2
((

N∑

n=−N

(Aφ
n−1 − jAρ

n−1 + Aφ
n+1 + jAρ

n+1)e
jnφ)− (Aφ

−N−1 − jAρ
−N−1)e

−jNφ

+(Aφ
N − jAρ

N)ej(N+1)φ + (Aφ
−N + jAρ

−N)e−j(N+1)φ − (Aφ
N+1 + jAρ

N+1)e
jNφ). (6.233)

If N is extremely large, the terms outside the summations from −N to N in (6.232) and
(6.233) can be neglected so that (6.232) and (6.233) reduce to

Eix =
1

2

N∑

n=−N

(Aρ
n−1 + jAφ

n−1 + Aρ
n+1 − jAφ

n+1)e
jnφ (6.234)

Eiy =
1

2

N∑

n=−N

(Aφ
n−1 − jAρ

n−1 + Aφ
n+1 + jAρ

n+1)e
jnφ. (6.235)

Two combinations of (6.234) and (6.235) are

Eix + jEiy =
N∑

n=−N

(Aρ
n−1 + jAφ

n−1)e
jnφ (6.236)

Eix − jEiy =
N∑

n=−N

(Aρ
n+1 − jAφ

n+1)e
jnφ. (6.237)

Because, as stated at the beginning of Section 6.4, the rectangular components of the inside
electromagnetic field on the z-axis do not depend on φ, the right-hand sides of (6.236) and
(6.237) do not depend on φ so that, because {ejnφ, n = −N,−N + 1, . . . , N} is a linearly
independent set of functions of φ,

Aρ
n−1 + jAφ

n−1 = 0 for all integer values of n except 0 (6.238)

Aρ
n+1 − jAφ

n+1 = 0 for all integer values of n except 0. (6.239)

Equations (6.238) and (6.239) are rewritten as

Aρ
n + jAφ

n = 0 for all integer values of n except − 1 (6.240)

Aρ
n − jAφ

n = 0 for all integer values of n except + 1. (6.241)
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For all integer values of n except ±1, (6.240) and (6.241) are

Aρ
n + jAφ

n = 0 for all integer values of n except ± 1. (6.242)

Aρ
n − jAφ

n = 0 for all integer values of n except ± 1. (6.243)

For n = +1, only (6.240) holds:

Aρ
1 + jAφ

1 = 0. (6.244)

For n = −1, only (6.241) holds:

Aρ
−1 − jAφ

−1 = 0. (6.245)

Adding (6.243) to (6.242) and subtracting (6.243) from (6.242), it is seen that

Aρ
n = Aφ

n = 0 for all integer values of n except ± 1. (6.246)

Equation (6.246) reduces (6.218) and (6.219) to

Eiρ = Aρ
1e

jφ + Aρ
−1e

−jφ (6.247)

Eiφ = Aφ
1e

jφ + Aφ
−1e

−jφ. (6.248)

where Aρ
1 and Aφ

1 are related by (6.244) and Aρ
−1 and Aφ

−1 are related by (6.245). According
to (6.224), Eiz does not depend on φ:

Eiz = Az
0. (6.249)

Similarly, it can be shown that (6.221) and (6.222) reduce to

Hiρ = Bρ
1e

jφ + Bρ
−1e

−jφ (6.250)

Hiφ = Bφ
1 ejφ + Bφ

−1e
−jφ (6.251)

where Bρ
1 and Bφ

1 are related by

Bρ
1 + jBφ

1 = 0 (6.252)

and Bρ
−1 and Bφ

−1 are related by

Bρ
−1 − jBφ

−1 = 0. (6.253)
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According to (6.225), Hiz does not depend on φ:

Hiz = Bz
0. (6.254)

Substitution of (6.212)–(6.217) into (6.116)–(6.127) gives
(
Z̆nj±

)
ρ
’s,
(
Z̆nj±

)
φ
’s,
(
Y̆nj±

)
ρ
’s,

and
(
Y̆nj±

)
φ
’s that are not zero only for n = ±− 1 and also gives

(
Z̆nj±

)
z
’s and

(
Y̆nj±

)
z
’s

that are not zero only for n = 0. As given by (6.161)–(6.166), where the Z̆ny’s and Y̆nz ’s are

given by (6.167)–(6.178) where the
(
Z̆nj±

)
ρ
’s,
(
Z̆nj±

)
φ
’s,
(
Z̆nj±

)
z
’s,
(
Y̆nj±

)
ρ
’s,
(
Y̆nj±

)
φ
’s,

and
(
Y̆nj±

)
z
’s are those described in the previous sentence, the cylindrical components

(Eiρ, Eiφ, Eiz,Hiρ,Hiφ,Hiz) of the inside electromagnetic field on the z-axis satisfy (6.244),
(6.245), (6.252) and (6.253). In numerical solutions, (6.244), (6.245), (6.252) and (6.253)
were satisfied within roundoff error.
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Chapter  7  

Computed Results 

7-1 Chiral Sphere 

      

  

Figure 7-1.1  A chiral sphere is illuminated by a plane electromagnetic wave  ,inc inc
E H

 

( Figure 7-1.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 

 

 

Z-axis ,inc inc 
 
 
E H  

 0,0,0  

Y 

    X 

Z 
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7-2.1 Computed Results 

In this section we will present and compare relevant characteristics of our results and graphs that are 

plotted in the following sections with the corresponding results and the graphs taken from 

Altunkilic [3].  We will also explain and clarify the results and the graphs wherever such elucidation 

is conducive in understanding the mapping of the graphs.  

  Figure 7-2.2.1 and the Figure 7-2.2.3 (taken from Altunkilic [3]) plot the   (co-polarized 

bistatic radar cross section). Graphs of these two figure show striking almost one hundred percent  

resemblance to each other.  Figure 7-2.2.2 and the Figure 7-2.2.4 (taken from Altunkilic [3]) plot 

the   (cross-polarized bistatic radar cross section). Graphs of these two figures bear almost one 

hundred percent  resemblance to each other.  Figures 7-2.2.57-2.2.6 are the graphs of the 

magnitudes of the  -component of the external  and the internal equivalent electric currents in the 

0   plane.  These two graphs of ours are compared with the graph of the Figure 7-2.2.7 (taken 

from Altunkilic [3])  that includes analytically computed exact graph representing magnitudes of the 

 -components of external and internal equivalent electric currents in the 0   plane.  Our two 

graphs show almost one hundred percent pictorial conformability of graph mappings as well as 

graph readings with respect to the exact graph (shown in red color ) of the graph of the Figure 7-

2.2.7.  Comparison of our graph of the Figure  7-2.2.8 with the graph of the Figure 7-2.2.9 (taken 

from Altunkilic [3]) that includes analytically computed exact graph representing magnitude of  -

component of the equivalent magnetic current in the 0   plane show almost one hundred percent 

conformability in every respect with the exact graph of the Figure 7-2.2.9.  Comparison of our 

graph of the Figure  7-2.2.10 with the graph of the Figure 7-2.2.11 (taken from Altunkilic [3]) that 

includes analytically computed exact graph representing magnitude of x-component of the field 

internal to chiral sphere along the z-axis show almost one hundred percent resemblance in every 

respect to the exact graph of the Figure 7-2.2.11. Comparison of our graph of the Figure  7-2.2.12 

with the graph of the Figure 7-2.2.13 (taken from Altunkilic [3]) that includes analytically 

computed exact graph representing magnitude of y-component of the field internal to chiral sphere 

along the z-axis show almost one hundred percent pictorial conformability in every respect to the 

exact graph of the Figure 7-2.2.13. 

 7-2.2  Characteristic Graphs of the Chiral Sphere. 

In most of the graphs we used the value of 1.5ka  . Therefore with 1m  , 

1.5 1.5 1.51.5 0.2387
2 2

ka a a meter
k


 

       , here a  is the radius of the sphere. 

We will compare our results, wherever possible, with those of  Altunkilic [3] and Denchai [57].  

  Figure 7-2.2.1 shows  (co-polarized bistatic radar cross section) and Figure 7-2.2.2 

shows
  (cross-polarized bistatic radar cross-section). Figure  7-2.2.3 and Figure 7-2.2.4  are 

inserts of  Figure 3.7  and Figure 3..8   taken from the research work of Altunkilic [3].  One can 
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notice almost one hundred percent conformity of the Altunkilic's two figures with the figures 

produced by our programs  ( i.e., Figure 7-2.2.1 and Figure 7-2.2.2). 

 

Figure 7-2.2.1    of the  chiral sphere.  The generating curve is approximated by 426 straight line 

segments.  

  

Figure 7-2.2.2    of the  chiral sphere. The generating curve is approximated by 426 straight line 

segments.  
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Figure  7-2.2.3   of the chiral sphere ( Insert taken from Altunkilic [3] ). 

                 

 

Figure 7-2.2.4    of the chiral sphere  ( Insert taken from Altunkilic [3] ). 
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      Figure 7-2.2.5  Magnitude of  - component of the external equivalent electric current in the    

0   plane. The generating curve is approximated by 426 straight line segments.   

                                         

   Figure 7-2.2.6  Magnitude of  - component of internal equivalent electric current in the 0   

plane. The generating curve is approximated by 426 straight line segments.   

 Graph of Figure 7-2.2.7  is an insert taken from Altunkilic [3] that plots  magnitude of  
component of external and internal currents in the 0   plane compared with the exact solution of 

a chiral sphere.  Comparison of  graph of Figure 7-2.2.7  with our graph of  Figure 7-2.2.5  and that 
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of   Figure 7-2.2.6  shows excellent pictorial conformability between these graphs, particularly, with 

the exact plot shown in red color  [57]  in Figure 7-2.2.7.  Altunkilic [3]  had to use a very small 

perfectly conducting 1 circular metallic patch at the north pole (top) of the chiral sphere in order 

to run his program in Matlab code and to obtain the  graph shown in blue color in the  Figure 7-

2.2.7.  Because of the placement of the perfectly conducting metallic patch at the north pole at 0  

external and internal equivalent currents show  high value at 0  in the  Altunkilic's graph 

(shown in the blue color).  Altunkilic [3] refers this structure as a perfectly conducing sphere 

with 179 aperture that exposes the chiral material. 

 

Figure 7-2.2.7 Magnitude of   component of external and internal equivalent electric currents in 

the 0   plane compared with the exact solution of a chiral sphere ( Insert taken from Altunkilic 

[3] ).   

              Figure 7-2.2.8, produced by our Matlab  program,  represents magnitude of  of the 

equivalent magnetic current in the 0   plane. Figure 7-2.2.9 is an insert of the graph of Figure 

3.13 taken from Altunkilic [3]. Figure 7-2.2.9 includes a red dotted line representing exact graph 

obtained by analytical solution by D. Warasawate [57].  Our graph of Figure 7-2.2.8, shows 

striking, almost one hundred percent, resemblance with the exact graph of D. Warasawate [57].  
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Figure  7-2.2.8  Magnitude of   -component of the equivalent magnetic current in the 0   plane. 

The generating curve is approximated by 426 straight line segments.   

 

Figure  7-2.2.9 Magnitude of    component of  equivalent magnetic current in 0   plane 

compared with exact solution of chiral sphere ( Insert taken from Altunkilic [3] ). 

Altunkilic [3]  had to use a very small perfectly conducting metallic patch at the north pole (top) 

of the chiral sphere in order to run his program in Matlab code and to obtain the  graph shown 

in blue color in the  Figure 7-2.2.9.  Because of the placement of the perfectly conducting 

metallic patch at the north pole at 0  , equivalent magnetic current plunges to zero value at  the 

north pole which is 0  in the  Altunkilic's graph (shown in the blue color).  
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 Figure 7-2.2.10  Magnitude of x-component of electric field internal to the Chiral sphere along    z-

axis. The generating curve is approximated by 426 straight line segments.  

 

Figure 7-2.2.11  Magnitude of x-component of electric field internal to chiral sphere along the z-

axis ( taken from Altunkilic [3] ). 

Figure 7-2.2.10  represents  magnitude of x-component of electric field internal to the chiral sphere 

along  z-axis.  Figure 7-2.2.11 ( taken from Altunkilic [3] ) plots magnitude of x-component of 

electric field internal to chiral sphere along the z-axis.  Figure 7-2.2.11 includes exact graph 

obtained by analytical  solution carried out by D. Worasawate [57].  Comparison of  our graph of 
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Figure 7-2.2.10  with the exact graph of the Figure 7-2.2.11  shows  excellent agreement between 

them. 

 

Figure 7-2.2.12 Magnitude of y-component of electric field internal to the Chiral sphere along z-

axis. The generating curve is approximated by 426 straight line segments.  

 

Figure 7-2.2.13  Magnitude of y-component of electric field internal to the chiral sphere along the z-

axis ( taken from Altunkilic [3] ). 

       Figure 7-2.2.13 is an insert taken from Altunkilic [3].  Figure 7-2.2.13 includes exact graph 

obtained by analytical  solution carried out by D. Worasawate [57].  Our graph of Figure 7-2.2.12 

shows  almost one hundred percent resemblance with the exact graph  [57] of Figure 7-2.2.13.   
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7-3  Conducting Sphere 

          A conducting spherical shell, shown in Figure 7-3.1, is illuminated by a plane 

electromagnetic wave from the bottom of the sphere.  

    

 

Figure 7-3.1  Perfectly conducting metallic spherical shell.  This shell is illuminated by a plane       

           electromagnetic wave. 

( Figure 7-3.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following section). 

Figure 7-3.1 shows perfectly conducting metallic spherical shell showing t directed or   

directed  (longitudinal)  curves at 010  intervals as well as   directed (latitudinal) curves . This 

metallic shell is illuminated by a plane electromagnetic wave  ,inc inc
E H from its bottom along the 

z-axis. 
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 
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7-3.1  Characteristic Graphs of the  Conducting Sphere 

Figure below shows magnitude of   component of physical electric current produced when a 

plane electromagnetic wave impinges on  the perfectly conducting sphere,  shown in Figure 7-3.1.  

    

Figure 7-3.2   Magnitude of   component of physical  electric current in the  0   plane.  The 

generating curve is approximated by 426 straight line segments.  

 

Figure 7-3.3 Magnitude of   component of physical electric current in the 0   plane compared 

with exact solution of conductor sphere ( Insert taken from Altunkilic [3] ). 
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We plotted a graph of the component   of physical current produced by the plane electromagnetic 

wave illuminating from the bottom of the perfectly conducting metallic spherical shell as shown in 

Figure 7-3.2.   Figure 7-3.3 is an insert of the graph of Figure 3.19 taken from Altunkilic [3]. This 

inserted graph includes exact  analytical graph, shown  in red color, of Dr. S. Rao .  Our graph of  

Figure 7-3.2 exhibits marked resemblance with the exact  graph of  Dr. S. Rao . The two graphs, 

shown above, originate around  2 along the y-axis and terminate at about 1.7 reading on the y-axis.  

Both of these graphs take a low ebb at about 1.4 reading on the y-axis corresponding to about 115 

degrees on the x-axis.  Aside from different scales of these two graphs, the readings of our graph 

conform almost one hundred percent with the readings of the graph of exact graph of   S. Rao. 

 Figure 7-3.4, shown below, plots  of the perfectly  conducting metallic spherical shell which is 

impinged upon by a plane electromagnetic wave at its bottom as shown in Figure 7-3.1. 

  

                Figure 7-3.4    of the Metallic sphere. The generating curve is approximated by 426 

straight line segments. 
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7-4  Spherical-Shaped Perfectly Conducting BOR Surface enclosing Chiral 

material with an Aperture of 30 degrees at its bottom. 

In this section, we will treat, in particular,  the case of a spherical-shaped chiral BOR contained in a 

perfectly conducting thin metallic spherical shell with a single aperture of 30  at its bottom that 

exposes the chiral material to the plane electromagnetic wave that illuminates the BOR  along z-axis 

from the bottom of the spherical shell, as shown in Figure 7-4.1.  The purpose of choosing a single 

apertured perfectly conducting thin metallic shell enclosing chiral material in it is to compare our 

results with early researchers, particularly with graphic results of Altunkilic [3].   

 

Figure 7-4.1  Plane wave incident from the bottom of a perfectly conducting thin metallic shell that 

encloses chiral material in it. 

( Figure 7-4.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 

Perfectly 

conducting 

surface.  
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7-4.1  Computed Results 

In this section we will present and compare relevant characteristics of our results and graphs that are 

plotted in the following section(s) with the corresponding results and the graphs taken from 

Altunkilic [3].  We will also explain and clarify the results and the graphs wherever such elucidation 

is conducive in understanding the mapping of the graphs.  

  Figure 7-4.2.2 and the Figure 7-4.2.3 (taken from Altunkilic [3]) plot the  -component of 

external equivalent electric current of varying chiralities in 0   plane.  These  two graphs show 

acceptable accuracy of graph readings on the conducting surface (almost 85% of the total sphere 

surface).  

Our graph of the Figure 7-4.2.2 shows extreme smoothness on the conducting surface compared to 

the graph of the Figure 7-4.2.3 (taken from Altunkilic [3]). In the aperture area  150 180 , our 

graph shows sharp up and down swings averaging to a graph reading of 1.  Transition from a 

conducting surface to an aperture exposing the chiral material is the cause of  this up and down 

sharp fluctuations. Mautz and Harrington [36] have published theories regarding an improved E-

Field Solution for a conducting body of revolution.  Our case consists of the E-Field as well as the 

H-Field solution of the problem giving rise to such sharp upward and downward swings in the 

aperture space (about 15% of the total surface of the sphere). However, these fluctuations in the 

aperture space give an unmistakable average graph reading.  In this case the average graph 

reading is 1.  The graph of the Figure 7-4.2.3 (taken from Altunkilic [3]) produces abrupt upward 

and downward zigzagging in direction along the course of the graph mapping not only on the 

conducting surface but in the aperture space as well. 

  Figure 7-4.2.4 and the Figure 7-4.2.5 (taken from Altunkilic [3]) plot the  -component of 

internal equivalent electric current of varying chiralities in 0   plane. These  two graphs show 

acceptable accuracy of graph readings on the conducting surface (almost 85% of the total sphere 

surface).  The remarks in italics in the above paragraph are applicable in regard to these two graphs. 

  Figure 7-4.2.6 and the Figure 7-4.2.7 (taken from Altunkilic [3]) plot the  -component of 

the physical electric current of varying chiralities in 0   plane. These  two graphs show 

acceptable accuracy of graph readings on the conducting surface (almost 85% of the total sphere 

surface). The remarks in italics in the above paragraph are applicable in regard to these two graphs 

on the conducting surface of the sphere. Both graphs, as expected, show zero values in the aperture 

space. 

  Figure 7-4.2.8 and the Figure 7-4.2.9 (taken from Altunkilic [3]) plot the  -component of 

equivalent magnetic current of varying chiralities in 0   plane. The remarks in bold italics above 

are applicable in regard to these two graphs on the aperture surface of the sphere. Both graphs, as 

expected, show zero values on the conducting surface. 
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  Figure 7-4.2.10 and the Figure 7-4.2.11 (taken from Altunkilic [3]) plot the  -component 

of external equivalent electric current of varying chiralities in 0   plane. The remarks in italics in 

the above paragraph are applicable in regard to these two graphs on the aperture surface of the 

sphere.  Our graph, as expected, shows zero values on the conducting surface whereas graph of the 

Figure 7-4.2.11 (taken from Altunkilic [3]) keeps close to zero values on the conducting surface.  

  Figure 7-4.2.12 and the Figure 7-4.2.13 (taken from Altunkilic [3]) plot the  -component 

of internal equivalent electric current of varying chiralities in 0   plane. The remarks in italics in 

the above paragraph are applicable in regard to these two graphs.     

  Figure 7-4.2.14 and the Figure 7-4.2.15 (taken from Altunkilic [3]) plot the  -component 

of the physical electric current of varying chiralities in 0   plane. The remarks in italics in the 

above paragraph are applicable in regard to these two graphs on the conducting surface of the 

sphere. Both graphs, as expected, show zero values in the aperture space. 

  Figure 7-4.2.16 and the Figure 7-4.2.17 (taken from Altunkilic [3]) plot the  -component 

of the equivalent magnetic current of varying chiralities in 0   plane. The remarks in italics in the 

above paragraph are applicable in regard to these two graphs on the aperture surface of the sphere. 

Both graphs, as expected, show zero values in the conducting surface. 
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Figure 7-4.2.1  Perfectly conducting metallic shell with an aperture of 30  at its bottom.   

In this section we will present and compare relevant characteristics of our results and graphs that are 

plotted in the following sections with the corresponding results and the graphs taken from 

Altunkilic [3].  We will also explain and clarify the results and the graphs wherever such elucidation 

is conducive in understanding the mapping of the graphs.  

  Equations developed in Chapters two through six are applied to obtain graphs of 

magnitudes of   component of external, internal and physical  surface electric currents  that are 

produced as a result of a plane electromagnetic wave impinging on the afore-mentioned spherical 

shell from its bottom.  These graphs are shown below in Figure 7-4.2.2, Figure  7-4.2.4, Figure 7-

4.2.6, and Figure 7-4.2.8.  Inserts of graphs taken from Altunkilic [3] in Figure 7-4.2.3, Figure 7-

4.2.5, Figure 7-4.2.7, and Figure 7-4.2.9 are placed below each of our four graphs for comparison 

purpose.  Pictorial graph mappings of Altunkilic's and our graphs show marked conformability. 

 

 

 ,inc inc
E H  

Y 

X 

Z 

(0 0 0) 

Aperture of 30  

Perfectly conducting 

metallic shell 
radius a 
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7-4.2  Chirality vs. Surface Currents 

Figure 7-4.2.2  plots   component of external electric current in 0  plane. 

 

Figure 7-4.2.2 Magnitude of   component of external equivalent electric current  in 0   plane 

(varying chiralities) . The  generating  curve is approximated by 426 straight line segments.   

 

Figure 7-4.2.3  Magnitude of   component of external equivalent electric current in the 0   

plane (varying chiralities) ( taken from Altunkilic [3] ). 
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Figure 7-4.2.4  plots   component of internal electric current in 0  plane.    

   

 Figure 7-4.2.4  Magnitude of    component of internal equivalent electric current in 0   plane 

(varying chiralities). The generating  curve is approximated by 426 straight line segments.   

 

Figure 7-4.2.5  Magnitude of   component of internal equivalent electric current in 0   plane 

(varying chiralities) ( Insert taken from Altunkilic [3] ). 

  Oour graph of the Figure 7-4.2.4 and Altunkilic's graph of the Figure 7-4.2.5  are obtained 

by using two distinctly different numerical approaches. Therefore variations in these two graphs  

cannot be evaluated and accuracy of the one  graph with respect to the other cannot  be established. 
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Figure 7-4.2.6  plots   component of  physical current in 0  plane. 

 

Figure 7-4.2.6   Magnitude of   component of physical electric current in the 0   plane (varying 

chiralities).  Physical current shows zero values in the aperture space  150 180 . The generating  

curve is approximated by 426 straight line segments.   

 

Figure 7-4.2.7   Magnitude of   component of physical  electric current in the 0  plane  

(varying chiralities) ( Insert taken from Altunkilic [3] ). 



 

112 

 

.Both graphs of the Figures 7-4.2.6 7-4.2.7 show zero values in the aperture space  150 180 .  

Our graph of the Figure 7-4.2.6 and Altunkilic's graph of the Figure 7-4.2.7 are obtained by using 

two distinctly different numerical approaches. Therefore variations in these two graphs cannot be 

evaluated and accuracy of the one graph with respect to the other cannot be established.  However, 

graph readings of these two graphs for 0.2r  and 0.4r   are about the same.  Graph mapping of 

our graph of the Figure 7-4.2.7 is smooth and free from zigzagging in up and down directions.   

Figure 7-4.2.8  plots   component of magnetic current in 0  plane. 

 

Figure 7-4.2.8 Magnitude of    component of equivalent magnetic current in the 0   plane 

(varying chiralities).  The generating curve is approximated by 426 straight line segments.   

Graph of the Figure 7-4.2.8 shows sharp up and down swings in the aperture space  150 180 .  

Transition from a perfectly conducting surface to an aperture which exposes chiral material to the 

advancing plane electromagnetic wave is observed to produce sharp up and down swings.  

Improvement in the E-field solution of this situation has been published.  Our theory involves the E-

field as well as the H-field solution of  the problem, as such up and down fluctuations in the 

aperture space cannot be improved.  However the average of these fluctuations agrees with the 

computed result.   
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Figure 7-4.2.9  Magnitude of   component of  equivalent magnetic current in the 0   plane 

(varying chiralities) ( Insert taken from Altunkilic [3] ). 

Figure 7-4.2.10 plots   component of external electric current in 0  plane and Figure 7-4.2.11  

plots   component of internal electric current in 0  plane. 

    

Figure 7-4.2.10  Magnitude of  component of external equivalent electric current in 0   plane 

(varying chiralities). The generating  curve is approximated by 426 straight line segments.   
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Figure 7-4.2.11  Magnitude of  component of external equivalent electric current in 0   plane 

(varying chiralities) ( Insert taken from Altunkilic [3] ).  

 

Figure 7-4.2.12 Magnitude of   component of internal equivalent electric current in 0   plane 

(varying chiralities).  The generating curve is approximated by 426 straight line segments. 
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Figure 7-4.2.13 Magnitude of   component of internal equivalent electric current in 0   plane 

(varying chiralities).  This graph is taken from Altunkilic [3]. 

Graph readings for 0.2r   and 0.4r   in the Figure 7-4.2.12 and the Figure 7-4.2.13   are about 

the same in the conducting space which is about 72%  of the total sphere surface.  Graph mapping 

of our graph of the Figure 7-4.2.12 is smooth and free from any zigzagging in direction in this 

space.  However, in the aperture space which is about 28% of the total sphere surface our graph 

shows sharp and down swings compared to the graph of  Altunkilic [3].  The reason for these up 

and down fluctuations are explained above. 

Figure 7-4.2.14 plots   component of physical electric current in 0  plane and Figure 7-4.2.13  

plots   component of magnetic current in 0  plane. 

 

Figure 7-4.2.14  Magnitude of   component  of physical electric current in the 0   plane 

(varying chiralities). The generating  curve is approximated by 426 straight line segments.  
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Figure 7-4.2.15  Magnitude of   component  of physical electric current in the 0   plane 

(varying chiralities). This graph is taken from Altunkilic [3]. 

     

Figure 7-4.2.16 Magnitude of   component of equivalent magnetic current in the 0   plane 

(varying chiralities). The generating curve is approximated by 426 straight line segments.  
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Figure 7-4.2.17 Magnitude of   component of equivalent magnetic current in the 0   plane 

(varying chiralities). This graph is taken from Altunkilic [3]. 

The graphs of the Figures 7-4.2.16 7-4.2.16, show zero values on the conducting surface.  In the 

aperture space  150 180  our graph of the Figure 7-4.2.16 shows sharp up and down swings. As 

explained above transition from the conducting surface to the chiral space produces sharp 

fluctuations in the graph.  Suggestion for improved E-field solution of this problem has been 

published by Harrington and Mautz.  Suggestion for improved E-field and H-field solution of this 

problem that pertains to our case has not been published.  However, the average value of the graph 

readings in the aperture space agrees with the averaged computed result in this space. 

7-4.3  Computed results of the Chirality vs. Bistatic RCS 

Figure 7-4.4.1 and the Figure 7-4.4.2  (taken from Altunkilic [3]) plot the   (co-polarized bistatic 

radar cross section) of varying chiralities.  Our graphs of the Figure 7-4.4.1show overlapping 

because of extremely small variations in the graph readings.  Figure 7-4.4.3  produces graphs of the 

cross polarized   of the obstacle for varying chiralities.  Figure 7-4.4.4 and the Figure 7-4.4.5  

(taken from Altunkilic [3]) plot the   (co-polarized bistatic radar cross section) of varying wave 

numbers.  Graphs of the  Figure 7-4.4.4 and the graphs of the Figure 7-4.4.5  (taken from Altunkilic 

[3]) show markedly almost one hundred resemblance to each other. Figure 7-4.4.6  plots  graphs of 

the cross polarized   of the obstacle for varying wave numbers. 

7-4.4 Chirality vs. Bistatic Radar Cross Sections (RCS) 

Figure 7-4.4.1, shown below, indicates insignificant variations in the overall RCS values as chirality 

varies from 0.2r   to 0.9r    with parameters 1.5ek  , 2r  , and 1r  .   
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Figure 7-4.4.1   of the obstacle (varying chiralities)
 
. Generating curve is approximated by 1200 

straight line segments. 

 

Figure 7-4.4.2   of the obstacle (varying chiralities) ( Insert taken from Altunkilic [3]}. 

 We see marked resemblance between our graph of Fig 7-4.4.1 and that of the insert of Altunkilic's 

graph of Figure 7-4.4.2 .   
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 Figure 7-4.4.3    of the obstacle (varying chiralities) . Generating curve is approximated by 1200 

straight line segments.       

             

 Figure 7-4.4.4    of the perfectly conducting spherical shell with 30  aperture at its bottom that 

exposes enclosed chiral material (varying wave numbers).  Generating curve is approximated by 

1200 straight line segments. 
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Figure 7-4.4.5    of the obstacle (varying wave numbers) ( Insert taken from Altunkilic [3] ).  

 We see marked resemblance between our graph of Fig 7-4.4.4 and that of the insert of Altunkilic's  

[3] graph of Figure 7-4.4.5 .   

 

Figure 7-4.4.6    of the perfectly conducting spherical shell with 30  aperture at its bottom That 

exposes enclosed chiral materia l (varying wave numbers). Generating curve is approximated by 

1200 straight line segments. 
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7-4.5 Computed Results of the Internal fields 

 At the end, we wanted to obtain the best results, therefore, we chose 102 points on the z-axis, in 

contrast with 52 points on the z-axis, which Alltunkilick [3] uses.  In  pursuit of our goal of 

attaining the utmost we divided the generating curve  into 3132 straight line segments leading to 

two matrices of size 6260 6260  to produce each graph of the following section.  We have been 

using 426 straight line segments leading to two matrices of size 848 848 to produce our earlier 

graphs.  The graphs of the Figures 7-4.6.17-4.6.6  are the results of our great effort. 

7-4.6  Internal fields 

 

Figure 7-4.6.1  Magnitude of x-component of internal electric field along z-axis (varying 

chiralities).  Generating curve is approximated by 3132 straight line segments and 102 points on z-

axis were used to obtain the graph. 
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Figure 7-4.6.2  Magnitude of y-component of internal electric field along z-axis (varying 

chiralities).  Generating curve is approximated by 3132 straight line segments and 102 points on z-

axis were used to obtain the graph.   

 

Figure 7-4.6.3  Magnitude of x-component of internal electric field along z-axis (varying wave 

numbers).  Generating curve is approximated by 3132 straight line segments and 102 points on z-

axis were used to obtain the graph. 
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Figure 7-4.6.4  Magnitude of y-component of internal electric field along z-axis (varying wave 

numbers).  Generating curve is approximated by 3132 straight line segments and 102 points on z-

axis were used to obtain the graph. 

 

Figure 7-4.6.5 Magnitude of x-component of internal electric field along z-axis (varying 

permittivities).  Generating curve is approximated by 3132 straight line segments and 102 points on 

z-axis were used to obtain the graph. 
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Figure 7-4.6.6  Magnitude of y-component of internal electric field along z-axis (varying 

permittivities).  Generating curve is approximated by 3132 straight line segments and 102 points on 

z-axis were used to obtain the graph. 
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7-5 Cylinder 

7-5.1 A Cylinder and its Generating Curve. 

 

 7-5.1  The generating curve of the cylinder in the 0   plane. 

Figure 7-5.1 shows a cylinder shaped body of revolution (BOR) that illustrates the generating curve 

and the direction of unit vectors 
l

a  and ta  placed on the generating curve. Unit vector 
l

a  traverses 

along the length of the generating curve as shown in the Figure 7-5.1 and unit vector ta  provides 

transverse perpendicular direction along the length of the generating curve as shown in the Figure 7-

5.1.  This figure also shows the three dimensional coordinate axes as well height "h" of the cylinder.  

It also shows  the length l  along the perimeter of the cross section of the cylinder in the 0   

plane. We will use the direction of unit vectors, perimeter length l and radius and height of the 

cylinder for computational purposes.   

Figure 7-5 shows a plane electromagnetic wave incident from the bottom of the Chiral 

Cylinder.  The cylinder is assumed to be illuminated by a  -polarized plane wave incident from the 
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bottom of the chiral cylinder where 180 , 0inc inc   , inc inc jkz

xE e E a , and 
inc inc jkz

yH e H a  

Here k  is the wave number of free space.   

7-6 A Chiral Cylinder 

 

Figure 7-6  A chiral cylinder. 
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( Figure 7-12.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 

7-6.1 Computed Results of the Internal Fields 

Figures in this section include figures of the graphs plotted by the application of our numerical 

approach and the figures of the corresponding graphs obtained by  Altunkilic [3] by the application 

of a distinctly different numerical approach than ours. Graphs taken from Altunkilic [3]  are 

included for comparison purpose.  

  Figures 7-6.2.17-6.2.4 that include the graphs taken from Altunkilic [3] for comparison 

purpose, deal with internal electric fields. Figure 7-6.3.1  7-6.3.4  that include the graphs taken 

from Altunkilic [3] for comparison purpose, plot   (co-polarized) and   (cross-polarized)  

bistatic RCS.  `Figures 7-6.4.17-6.4.7 that include the graphs taken from Altunkilic [3] for 

comparison purpose, plot  t -transverse   and l -longitudinal components  of equivalent surface 

currents in the 0   plane.   

.  Figure 7-7.1 and Figure 7-7.2 plot amplitude of the E -field along the axis of an open 

cylinder of perfectly conducting surface whose top surface is taken as aperture thereby filling it up 

with air. 

  Parameters shown as part of the title of each graph in this section are used in the plotting of 

that graph. 

  Characteristics of the graphs produced by the application of our numerical approach is 

compared and contrasted with the corresponding graphs produced by Altunkilic's numerical 

approach.  Comments are properly placed below the graphs that are being compared and contrasted.  

        All the graphs produced in this section involve two matrices of 688 688  compared to the 

huge size matrix  from a size of 5500 5500  up to a size of 6350 6350  used by Altunkilic [3] for 

producing each of his graphs. We thus save enormous amount of computer memory and 

computational time. 
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7-6.2 Internal Fields 

 

Figure 7-6.2.1  Magnitude of x-component of the internal E-field along z-axis. 

 

Figure 7-6.2.2  Magnitude of x-component of the internal E-field along z-axis (taken from 

Altunkilic [3] ).  

Figure 7-6.2.2 shows a graph (in red color) plotted from data computed by D. Worasawate.  Our 

graph of Figure 7-6.2.1 shows striking almost one hundred percent resemblance to the exact graph 

of the  Figure 7-6.2.2. In order to run his Matlab program Altunkilic [3] places a small circular 

perfectly conducting metallic patch of radius 0.01a , where a  is the radius of the sphere, at the top 

(north pole) of the chiral sphere. Because of the placement of the metallic patch the x-component of 

the internal E-field along z-axis, shown in the Figure 7-6.2.2 in blue color,  plunges to zero at the 

north pole.  
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  Figure 7-6.2.3 Magnitude of y-component of the internal E-field along z-axis. 

 

 Figure 7-6.2.4 Magnitude of y-component of the internal E-field along z-axis (taken from 

Altunkilic [3] ). 

Figure 7-6.2.4 shows a graph (in red color) plotted from data computed by D. Worasawate.  Our 

graph of Figure 7-6.2.3 shows remarkable almost one hundred percent resemblance to the exact 

graph of the  Figure 7-6.2.4. In order to run his Matlab program Altunkilic [3] places a small 

circular perfectly conducting metallic patch of radius 0.01a , where a  is the radius of the sphere, at 

the top (north pole) of the chiral sphere. Because of the placement of the metallic patch the y-

component of the internal E-field along z-axis, shown in the Figure 7-6.2.4 in blue color,  plunges to 

zero at the north pole. Altunkilic [3] refers this structure  as a perfectly conducting body of 
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revolution with an aperture of 179  that exposes the chiral material to the plane electromagnetic 

wave. 

 

 Figure 7-6.3.1  of the obstacle. 

 

 

Figure 7-6.3.2   of the obstacle (taken from Altunkilic [3] ). 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 (degrees)




/

2

Chiral cylinder, ka = 1.5, h = 0.35, 
r
 = 0.4, 

r
 = 2, 

r
 =1



 

131 

 

Our graph of  Figure 7-6.3.1 shows remarkable almost one hundred percent conformability with the 

graph (shown in red color) of data computed by by D. Worasawate of the Figure 7-6.3.2. 

7-6.3 Bistatic RCS 

 

Figure 7-6.3.3   of the obstacle. 

 

Figure 7-6.3.4   of the obstacle (taken from Altunkilic [3])  
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Again our graph of Figure 7-6.3.3 shows striking almost one hundred percent likeness with the 

graph (shown in red color) of data computed by D. Worasawate of the Figure 7-6.3.4. 

7-6.4 Surface Currents 

 

Figure 7-6.4.1 Magnitude of t -component of magnetic current  in the 0  plane. 

 

Figure 7-6.4.2 Magnitude of t -component of magnetic current in the 0  plane (taken from 

Altunkilic [3]). 

Our graph of the Figure 7-6.4.1 maps smooth curve from the start of the generating curve till it 

traverses the distance of 1 m on the generating curve where a sharp change in the geometry of the 

cylinder occurs as shown in the Figure 7-6.4.3.  Our graph reacts to the abrupt change in the 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

l/a

|M
t/E

in
c
|

Chiral cylinder,ka = 1.5, h = 0.35, 
r
 = 0.4, 

r
 = 2, 

r
 =1



 

133 

 

geometry of the cylinder by producing sharp abrupt upward swing at this point. Thereafter graph 

mapping of our graph resumes its smooth course until it encounters another abrupt change in the 

geometry of the cylinder when it has traversed a distance of 2.5 meter on the generating curve as 

shown in the Figure 7-6.4.3.  The graph, as expected, reacts to this abrupt change in the geometry of 

the cylinder as shown in the Figure 7-6.4.1 and resumes its almost smooth mapping thereafter. 

Noticing the sensitivity, and smoothness, as well as abrupt glitches that occur in our graph which 

correspond to the abrupt sharp changes in the geometry of the cylinder we assert that accuracy of 

the graph mapping of our graph stands to be more in the fitness of things than Altunkilic’s graph of 

the Figure 7-6.4.2.  The fact of the matter is that our and Altunkilic’s graphs are produced by using 

two distinctly different numerical approaches and, therefore, in the absence of analytically 

calculated exact graph to compare with, it is just a matter of opinion as to which of the graph is 

correct.  One may notice that graph readings of our earlier graphs  and Altunkilic’s earlier 

graphs are about the same.  The caption at the top in Figure 7-6.4.2 reads 1.5ka  and 0.35h  , 

therefore,   
2
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Figure 7-6.4.4 Magnitude of  l -component of magnetic current in the 0   plane. 

 

Figure 7-6.4.5 Magnitude of l -component of magnetic current in the 0   plane (taken from 

Altunkilic). 

Graph readings of the Figure 7-6.4.4 and Figure7-6.4.5 in which red markers represent the graph of 

D. warasawate show good agreement. 
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 Figure 7-6.4.6 Magnitude of  l -component of equivalent electric current in the 0   plane. 

 

Figure 7-6.4.7 Magnitude of  l -component of equivalent electric current in the 0   plane (taken 

from Altunkilic). 

Graph readings of the Figure 7-6.4.6 and Figure 7-6.4.57 in which red markers represent the  graph 

of D. warasawate show good agreement. 
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7-7  Empty Conducting Cylindrical Shell with an Aperture: 

 

 

Figure 7-7  Plane wave incident on conducting shell of empty cylinder. 

Figure 7-7 shows an empty  conducting cylindrical shell top surface of which is open and has air 

 0, 1, 1r r r     inside it. Top surface of the cylinder is taken as aperture. Plane 

electromagnetic wave is illuminates from the top ( 0inc   and 0inc  ) as shown in Figure 7-7. 
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Figure 7-7.1 Amplitude of  E -field on the axis of an open ended cylinder. 

 

Figure 7-7.2 Amplitude of  E -field on axis of an open ended cylinder (taken from Altunkilic). 

Graphs  of Figure 7-7.1 and Figure 7-7.2 show agreeable graph mapping. 
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7-8 Cylinder-shaped Perfectly Conducting Cylindrical Surface of 

Revolution  enclosing Chiral material with b/a =0.5  at its top. 

 

 

Figure 7-8 Plane electromagnetic wave impinges on  the top of the cylinder. 
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7-8.1 Computed Results  

Figures in this section include figures of the graphs plotted by the application of our numerical 

approach and the figures of the corresponding graphs obtained by  Altunkilic [3] by the application 

of a distinctly different numerical approach than ours. Graphs taken from Altunkilic [3]  are 

included for comparison purpose.  

    Figure 7-8.2.1 and the  Figure 7-8.2.2  (taken from Altunkilic [3]), representing Magnitude 

of x-component of the internal E -field along z-axis, show close conformability of the graph 

mappings as well as the graph readings.  Figure 7-8.2.3 and the  Figure 7-8.2.4  (taken from 

Altunkilic [3]), representing Magnitude of y-component of the internal E -field along z-axis, also 

show close conformability of the graph mappings as well as the graph readings.  Figure 7-8.3.1 and 

the  Figure 7-8.3.2   (taken from Altunkilic [3]), representing bistatic co-polarized cross section 

of the obstacle, show close almost one hundred percent conformability of the graph mappings as 

well as the graph readings.  Our graphs of the Figure 7-8.3.1 plotted for varying chiralities show 

overlapping of these graphs thereby pointing out clearly that chiralities of the chiral material do not 

affect  of the obstacle in the far away zone.  Figure 7-8.3.3 and the Figure 7-8.3.4  (taken from 

Altunkilic [3]), representing bistatic cross polarized cross section  of the obstacle, show variance 

of the graph mappings as well as the graph readings. The graph readings of these two graphs are so 

extremely small that differences with respect to the pictorial conformability of these two graphs 

may be inconsequential.  After all, the graphs of the Figure 7-8.3.3 and the Figure 7-8.3.4  (taken 

from Altunkilic [3]), are plotted using approximate values by applying two distinctly different 

numerical approaches. 

  Figure 7-8.4.1 and the Figure 7-8.4.2 (taken from Altunkilic [3]), representing magnitude 

of l -component of magnetic current in the 0   plane show one hundred percent conformability of 

the graph mappings as well as the graph readings on the conducting surface (about 85% of the total 

cylindrical surface).  However, our graph of the Figure 7-8.4.1 shows sharp up and down swings in 

the aperture space (about 15% of the total cylinder surface).  However, the red colored graph of the  

Figure 7-8.4.1 plotted for the chirality value of 0.3r  gives the position of the average value of the 

graph reading  in the aperture space  as 0.15.  The green colored graph of the  Figure 7-8.4.1 plotted 

for the chirality value of 0.7r  gives the position of the average value of the graph reading  in the 

aperture space  as 0.5.  The reason for these fluctuation in the aperture space are thoroughly 

discussed and summarized above in a paragraph in italic  in the the context of the surface current 

graphs of the sphere.  The graph of the Figure 7-8.4.2 (taken from Altunkilic [3]) shows up and 

down zigzagging  in direction along the course of the graph mapping in the aperture space. 

  Figure 7-8.4.3  and the Figure 7-8.4.4 (taken from Altunkilic [3]) representing magnitude 

of  t -component of magnetic current in the 0   plane show one hundred percent conformability 

of the graph mappings as well as the graph readings on the conducting surface (about 85% of the 

total cylindrical surface).  Reason for the variations of the graph mapping  in the aperture space in 

our graph of the Figure 7-8.4.3 is the same as that explained above.   
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  Our graphs of the Figure 7-8.4.5 representing magnitude of l -component of physical 

electric  current in the 0   plane show smooth graph mapping of both the graphs on the 

conducting surface of the cylinder (about 85% of the total cylindrical surface) and show correct zero 

values in the aperture space.  Graphs of the Figure 7-8.4.6 (taken from Altunkilic [3] ) representing 

magnitude of  l -component of physical electric  current in the 0   plane show correct zero values 

in the aperture space.  However,  these graphs show up and down zigzagging  in direction along the 

course of the graph mapping on the conducting surface. Graph readings of our graph of the Figure 

7-8.4.5 differ slightly  on the conducting surface from the graph readings of the Figure 7-8.4.6 

(taken from Altunkilic [3]) on the conducting surface.  The reason for the slight variations in the 

graph readings is due to the approximate values used, based on the different numerical approaches, 

in the compilation of ours and Altunkilic's graphs. 

  Our graphs of the Figure 7-8.4.7 representing magnitude of t -component  of physical 

electric current in the 0   plane show smooth graph mapping of both the graphs on the 

conducting surface of the cylinder (about 85% of the total cylindrical surface) and show correct zero 

values in the aperture space.  In Matlab overlapping of the graphs is shown in a single color.  

Graphs of the Figure 7-8.4.8 (taken from Altunkilic [3] ) representing magnitude of  t -component 
of physical electric  current in the 0   plane  do not show zero values in the aperture space.  His 

graphs show up and down zigzagging  in direction along the course of the graph mapping on the 

conducting surface as well as in the aperture space. Altunkilic's graphs of the Figure 7-8.4.8 

incorrectly do not show zero values in the aperture space. Graph readings of our graph of the Figure 

7-8.4.7 differ slightly  on the conducting surface but sharply in the aperture space from the graph 

readings of the Figure 7-8.4.8 (taken from Altunkilic [3]).  The reason for the  variations in the 

graph readings is due to the approximate values used, based on the different numerical approaches, 

in the compilation of ours and Altunkilic's graphs. 

  All the graphs produced in this section involve two matrices of 688 688  compared to the 

huge size matrix  from a size of 5500 5500  up to a size of 6350 6350  used by Altunkilic [3] for 

producing each of his graphs. We thus save enormous amount of computer memory and 

computational time. 
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7-8.2 Internal Fields 

 

Figure 7-8.2.1 Magnitude of x-component of the internal E -field along z-axis. 

 

Figure 7-8.2.2 Magnitude of x-component of the internal E -field along z-axis (taken from 

Altunkilic [3] ). 
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Our graph of Figure 7-8.2.1 is pictorially in good agreement to a great extent with the graph of 

Figure 7-8.2.2 (taken from Altunkilic [3] ). 

 

Figure 7-8.2.3 Magnitude of y-component of the internal E -field along z-axis. 

 

Figure 7-8.2.4 Magnitude of y-component of the internal E -field along the z-axis (taken from 

Altunkilic [3] ). 
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Our graph of Figure 7-8.2.3 is pictorially in good agreement to a great extent with the graph of 

Figure 7-8.2.4 (taken from Altunkilic [3] ). 

7-8.3 Chirality versus Bistatic Radar Cross Sections (RCS) 

 

Figure 7-8.3.1  of the obstacle.  

 

Figure 7-8.3.2  of the obstacle (taken from Altunkilic [3] ). 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 (degrees) 




/

2

 

 

 
r
 = 0.9

 
r
 = 0.7

 
r
 = 0.5

 
r
 = 0.3



 

144 

 

Graphs of Figure 7-8.3.1 and Figure 7-8.3.2 show striking almost one hundred percent resemblance. 

 

Figure 7-8.3.3   of the obstacle. 

 

Figure 7-8.3.4   of the obstacle (taken from Altunkilic [3] ). 

Graphs of Figure 7-8.3.4 and Figure 7-8.3.4  represent cross polarization and as expected have 

insignificant graph readings.  The accuracy of one graph relative to that of the other cannot be 

evaluated because both graphs are approximate. 
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7-8.4 Chirality versus Surface Currents 

  

Figure 7-8.4.1 Magnitude of  l -component of magnetic current in the 0   plane.  

 

Figure 7-8.4.2 Magnitude of l -component of magnetic current in the 0   plane (taken from 

Altunkilic [3] ). 

Graphs of Figure 7-8.1.9 and Figure 7-8.1.10 as expected show zero values on the perfectly 

conducting surface.  These graphs show  different up and down variations in the chiral space.  These 

variances shown in the chiral space of these two graphs cannot be evaluated because of the fact that 

both of these graphs are obtained by the application of two distinctly different numerical 

approaches.  
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Figure 7-8.4.3  Magnitude of  t -component of magnetic current in the 0   plane.  

 

Figure 7-8.4.4 Magnitude of  t -component of magnetic current in the 0   plane (taken from 

Altunkilic [3] ). 

Graphs of Figure 7-8.4.3 and Figure 7-8.4.4 as expected show zero value on the perfectly 

conducting surface.  These graphs show different up and down variations in the chiral space. These 
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variances shown in the chiral space of these two graphs cannot be evaluated because of the fact that 

both of these graphs are approximate graphs.  

 

Figure 7-8.4.5  Magnitude of  l -component of physical electric  current in the 0   plane.  

 

Figure 7-8.4.6 Magnitude of  l -component of physical electric  current in the 0   plane (taken 

from Altunkilic [3] ). 
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Graphs of Figure 7-8.4.5 and Figure 7-8.4.6 (taken from Altunkilic [3] ), as expected, show zero 

values over the chiral surface.  Our graph of Figure 7-8.4.5 is smooth and is free from any zigzag 

direction changes along the course of graph mapping in the conductor space.  Variations in graph 

readings between these two graphs cannot be evaluated because of the fact that both of these graphs 

are produced by the application of two distinctly different numerical approaches.  

 

Figure 7-8.4.7 Magnitude of  t -component of physical electric current in the 0   plane.  

 

Figure 7-8.4.8 Magnitude of  t -component of physical electric current in the 0   plane (taken 

from Altunkilic [3] ). 
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Our graph of Figure 7-8.4.7 unlike the graph of  Figure 7-8.4.8 (taken from Altunkilic [3] ), as 

expected, shows zero values of physical current in the aperture space and is smooth and free from 

zigzagging in direction on the conducting surface except at the edge of the aperture.  

7-9 Perfectly Conducting Cylindrical surface of revolution enclosing 

Chiral material with an Aperture ratio of  b/a =1  at its top. 

 

Figure 7-9  Plane electromagnetic wave impinges on the top of the cylinder. 
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( Figure 7-9 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 

7-9.1 Computed Results   

Figures in this section include figures of the graphs plotted by the application of our numerical 

approach and the figures of the corresponding graphs obtained by  Altunkilic [3] by the application 

of a distinctly different numerical approach than ours. Graphs taken from Altunkilic [3]  are 

included for comparison purpose.  

    Figure 7-9.2.1 and the  Figure 7-9.2.2  (taken from Altunkilic [3]), representing Magnitude 

of x-component of the internal E -field along z-axis, show close conformability of the graph 

mappings as well as the graph readings. Figure 7-9.2.3 and the  Figure 7-9.2.4  (taken from 

Altunkilic [3]), representing Magnitude of y-component of the internal E -field along z-axis, also 

show close almost one hundred percent  conformability of the graph mappings as well as the graph 

readings.  Figure 7-9.3.1 and the  Figure 7-9.3.2   (taken from Altunkilic [3]), representing bistatic 

co-polarized cross section  of the obstacle, show striking almost one hundred percent 

conformability of the graph mappings as well as the graph readings. Figure 7-9.3.3 and the Figure 

7-9.3.4  (taken from Altunkilic [3]), representing bistatic cross polarized cross section  of the 

obstacle, show variance of the graph mappings as well as the graph readings. The graph readings of 

these two graphs are so extremely small that differences with respect to the pictorial conformability 

of these two graphs are not worthy of great weight. After all, the graphs of the Figure 7-9.3.3 and 

the Figure 7-9.3.4  (taken from Altunkilic [3]), are plotted using approximate values by applying 

two distinctly different numerical approaches. 

  Figure 7-9.4.1 and the Figure 7-9.4.2 (taken from Altunkilic [3]), representing magnitude 

of t -component of magnetic current in the 0   plane show one hundred percent conformability of 

the graph mappings as well as the graph readings on the conducting surface (about 85% of the total 

cylindrical surface).  However, our graph of the Figure 7-9.4.1 shows sharp up and down swings in 

the aperture space (about 15% of the total cylinder surface).  However, the red colored graph of the  

Figure 7-9.4.1 plotted for the chirality value of 0.3r  gives the position of the average value of the 

graph reading  in the aperture space approximately  as 3.5.  The blue colored graph of the  Figure 7-

9.4.1 plotted for the chirality value of 0.5r 
 
gives the position of the average value of the graph 

reading  in the aperture space approximately  as 3.5.  The reason for these fluctuation in the aperture 

space are thoroughly discussed and summarized above in a paragraph  in the context of the surface 

current graphs of the sphere.  The graphs of the Figure 7-9.4.2 (taken from Altunkilic [3]) show up 

and down unexplainable zigzagging  in direction along the course of the graph mapping in the 

aperture space. 

  Figure 7-9.4.3  and the Figure 7-9.4.4 (taken from Altunkilic [3]) representing magnitude 

of l -component of magnetic current in the 0   plane show one hundred percent conformability of 

the graph mappings as well as the graph readings on the conducting surface (about 85% of the total 

cylindrical surface).  Our graph of the Figure 7-9.4.3 produces smooth curves in the aperture space. 
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The graph of the Figure 7-9.4.4 (taken from Altunkilic [3]) shows up and down unexplainable 

zigzagging  in direction along the course of the graph mapping in the aperture space. Comparison of 

the graph readings between these two set of graphs in the aperture space is impossible.  

  Our graphs of the Figure 7-9.4.5 representing magnitude of t -component of physical 

electric  current in the 0   plane show smoothness on the conducting surface of the cylinder.   

The three graphs of the Figure 7-9.4.5 for the chiralities of 0.1, 0.3,r r    and 0.5r  , as 

expected, show zero values in the aperture space.  These three graphs overlap in the aperture space 

showing just one color representing zero values instead of the three colors.  The graphs of the 

Figure 7-9.4.6 (taken from Altunkilic [3]) show up and down unexplainable zigzagging  in direction 

along the course of the graph mapping not only on the conducting surface but in the aperture space 

as well. Only one of the graphs of the Figure 7-9.4.6 (taken from Altunkilic [3]) that corresponds to 

the chirality of 0.1r   shows zero values in the aperture space. 

  Graphs of the Figure 7-9.4.7 and the Figure 7-9.4.8 (taken from Altunkilic [3]), 

representing magnitude of l -component of the physical current in the 0   plane show zero values 

in the aperture space (about 15% of the total cylindrical surface).  Our graphs of the Figure 7-9.4.7 

show smooth curves on the conducting surface. The graphs of the Figure 7-9.4.2 (taken from 

Altunkilic [3]) show up and down unexplainable zigzagging  in direction along the course of the 

graph mapping in the aperture space.  It is difficult to compare the graph readings between these 

two set of graphs.  The graph plotted for the chirality value of 0.5r  shows a peak value of about 

2.3 right at the left end of the graph in our graph as well as in the graph of Altunkilic [3].  However, 

graphs representing the chiralities of 0.1r   and 0.3r  show variance in the graph readings all 

along the graph mappings. 

  All the graphs produced in this section involve two matrices of 688 688  compared to the 

huge size matrix  from a size of 5500 5500  up to a size of 6350 6350  used by Altunkilic [3] for 

producing each of his graphs. We thus save enormous amount of computer memory and 

computational time. 
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7-9.2 Internal Fields 

 

Figure 7-9.2.1 Magnitude of x-component of the internal E -field along z-axis. 

 

Figure 7-9.2.2 Magnitude of x-component of the internal E -field along z-axis (taken from 

Altunkilic). 

Graph of the Figure 7-9.2.1 shows good agreement with the graph of Figure 7-9.2.2 (taken from 

Altunkilic). 
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Figure 7-9.2.3 Magnitude of y-component of the internal E -field along z-axis 

 

Figure 7-9.2.4 Magnitude of y-component of the internal E -field along z-axis (taken from 

Altunkilic). 

Our graph of the Figure 7.9.2.3 shows striking resemblance with the graph of Figure 7.9.2.4 (taken 

from Altunkilic). 
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7-9.3 Chirality versus Bistatic Radar Cross Sections (RCS) 

 

Figure 7-9.3.1    of the obstacle. 

 

Figure 7-9.3.2    of the obstacle (taken from Altunkilic). 
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Our graph of the Figure 7-9.3.1 shows marked almost one hundred percent resemblance to the graph 

of Figure 7-9.3.2 (taken from Altunklic). 

 

Figure 7-9.3.3    of the obstacle. 

 

Figure 7-9.3.4    of the obstacle (taken from Altunklic). 

Graph of the Figure 7-9.3.3 and the Figure 7-9.3.4 represent cross polarization and as expected have 

small graph readings.  The accuracy of one graph relative to that of the other cannot be evaluated 

because both graphs are approximate.   
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7-9.4 Chirality versus Surface Currents 

 

Figure 7-9.4.1  Magnitude of t -component of magnetic current in 0   plane. 

 

Figure 7-9.4.2 Magnitude of t -component of magnetic current in 0   plane (taken from 

Altunkilic). 

Graph of the Figure 7-9.4.1 shows, as expected, is one hundred percent accurate with respect to the 

graph of the Figure 7-9.4.2 (taken from Altunklic) on the conducting surface (both showing zero 

values) which is almost 85 % of the total conducting cylinder shaped BOR space which encloses 
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chiral material and exposes it through an aperture at its top.  The up and down variations in these 

two graphs in the chiral space ( about 15% of the total cylinder surface), with respect to each other, 

cannot be evaluated because both these graphs are produced by approximate numerical values. 

However, it is to be noted that in the chiral space both graphs give almost the same average value. 

 

Figure 7-9.4.3 Magnitude of l -component of magnetic current in 0   plane. 

 

Figure 7-9.4.4 Magnitude of l -component of magnetic current in 0   plane (taken from 

Altunkilic). 

Graph of the Figure 7.8.4.3  shows, as expected, one hundred percent accuracy with respect to the 

graph of the Figure 7-9.4.4 (taken from Altunkilic) on the conducting surface. Both graphs showing 

zero values in the conducting space which is almost 85 % of the total conducting cylinder surface 
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which encloses chiral material and exposes it through an aperture at its top.  The up and down 

variations in these two graphs in the chiral space ( about 15 % of the total cylinder surface) with 

respect to each other cannot be evaluated because both these graphs are produced by approximate 

numeerical values. However, it is to be noted that in the chiral space both graphs give almost the 

same average value. It is also to be noted that our graph of the Figure 7-9.4.3, unlike the graph of 

the Figure 7-9.4.4, shows smooth curves in the chiral space. 

 

Figure 7-9.4.5 Magnitude of t -component of physical electric current in the 0   plane. 

 

Figure 7-9.4.6 Magnitude of t -component of physical electric current in the 0   plane (taken 

from Altunkilic). 

Graph of the Figure 7-9.4.5, unlike the graph of the Figure 7-9.4.6 (taken from Altunkilic),   shows 

smooth curves joined with abrupt upward swings at 1 meter and (1+h/a) meter. The reason for this 

abrupt changes is thoroughly explained above.  Our graph of the Figure 7-9.4.5, unlike the graph of 

the Figure 7-9.4.6 (taken from Altunkilic), correctly shows zero values for all the chiralities in the 
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evaluated because of the fact that both of these graphs are produced by different numerical 

approaches. 

 

Figure 7-9.4.7  Magnitude of l -component of physical electric current in the 0   plane. 

 

Figure 7-9.4.8 Magnitude of l -component of physical electric current in the 0   plane (taken 

from Altunkilic). 

Both the graphs of the Figures 7-9.4.7 7-9.4.8 show zero values in the aperture space.   Graph of 

the Figure 7-9.4.7, unlike the graph of the Figure 7-9.4.8 (taken from Altunkilic), shows smooth 

curves.  The graph taken from Altunkilic shows zigzagging in direction all over the mappings of the 

graph on the conducting surface.   
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7-10  Cone 

7-10.1 Chiral Cone   

 

Figure 7-10.1  Chiral Cone 

( Figure 7-10.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 
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7-10.2  Computed Results. 

In this section we will present relevant characteristics of our results and graphs that are plotted in 

the following section(s).  We will also explain and clarify the results and the graphs wherever such 

elucidation is conducive in understanding the mapping of the graphs.    

  Figure 7-10.3.1 and the Figure  7-10.3.2  plot the graphs of the t-directed component of 

external  and  internal equivalent electric current (varying chiralities).  Since the figure of reference 

is the chiral cone, therefore, we expect the graphs of the external  and  internal equivalent electric 

current (varying chiralities) to be exactly the same.  The graphs of the  Figure 7-10.3.1 and the 

Figure  7-10.3.2 met this expectation.  We see in both graphs a glitch at 1 meter from the point P of 

the generating curve.  In the Figure 7-10.1, this location is named ' a ' which is precisely 1 meter to 

the right of  P on the generating curve of the cone.  At the point  ' a '  a sharp change in the geometry 

of the cone takes place.  It is encouraging to note that a glitch in both the above-mentioned graphs 

and the graphs that follow occurs right at the point ' a ' of the Figure 7-10.1.  The graphs, therefore, 

have to be correct.  Figure  7-10.3.3 represents magnitude of t-directed component of physical 

current (varying chiralities). In the case of a chiral cone magnitude of t-directed component of 

physical current (varying chiralities) is expected to be zero.  The graph of the Figure  7-10.3.3  met 

this expectation.  Figure 7-10.3.4 produces graphs of the magnitude of t-directed component of 

equivalent magnetic current (varying chiralities). Figure 7-10.3.5 produces magnitude of  

directed component of equivalent external current (varying chiralities).  Figure 7-10.3.6  plots 

graphs of the magnitude of   directed component of internal electric current (varying chiralities).  

Figure 7-10.3.7  plots graphs of the magnitude of   directed component of physical current 

(varying chiralities).  Both the graphs of the Figure 7-10.3.7, as expected, show zero values and the 

overlap.  Figure 7-10.3.8 plots the magnitude of   directed component of magnetic current 

(varying chiralities).     

  Figure 7-10.4.1  plots the co-polarized  of the obstacle (varying chiralities) and the 

Figure 7-10.4.2  plots the cross polarized   of the obstacle (varying chiralities). 

  Figure 7-11.2.1 plots the magnitude of t -component of equivalent external current of a 

perfectly conducting cone shell.  Figure 7-11.2.2  plots the co-polarized    of the perfectly 

conducting cone shell.   

7-10.3 Surface currents  

As expected graphs of Figure 7-10.3.1 and Figure 7-10.3.2 show that external and internal currents 

are the same giving rise to zero value of physical current shown in Figure 7-10.3.3.  As expected, 

graphs of  Figure 7-10.3.1 and Figure 7-10.3.2 show a little deviation from their normal path at 1 

meter from the origin.  Point  ' a ',   shown in Figure 7-10.1.1, where the base of the cone meets 

its hypotenuse precisely at a distance of one meter from the point P represents cause of the glitch 
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in the graph. These graphs show variations as chirality of the chiral material changes from 0.3r   

to 0.5r  . 

 

Figure 7-10.3.1 Magnitude of t-directed component of external equivalent electric current (varying 

chiralities). 1.5ek   is the free space wavenumber.  The generating curve is approximated by 426 

straight line segments.   

 

Figure  7-10.3.2  Magnitude of t-directed component of internal equivalent electric current (varying 

chiralities). The generating curve is approximated by 426 straight line segments. 
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Figure  7-10.3.3  Magnitude of t-directed component of physical current (varying chiralities). The 

generating curve is approximated by 426 straight line segments.    

 

Figure 7-10.3.4 Magnitude of t-directed component of equivalent magnetic current (varying 

chiralities). The generating curve is approximated by 426 straight line segments.    
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Figure 7-10.3.5  Magnitude of   directed component of equivalent external current (varying 

chiralities).  The generating curve is approximated by 426 straight line segments.   

 

 

Figure 7-10.3.6  Magnitude of   directed component of internal electric current (varying 

chiralities).  The generating curve is approximated by 426 straight line segments.  
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Figure 7-10.3.7  Magnitude of   directed component of physical current (varying chiralities).  The 

generating curve is approximated by 426 straight line segments.  

 

Figure 7-10.3.8  Magnitude of   directed component of magnetic current (varying chiralities).  

The Generating curve is approximated by 426 straight line segments.  
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 7-10.4  Bistatic co-polarize and cross polarized RCS.  

Radar cross sections of the chiral cone shown in Figure 7-10.1 are plotted in Figure 7-10.4.1 and 

Figure 7-10.4.2. 

 

Figure 7-10.4.1   of the obstacle (varying chiralities) .
 
   Generating curve is approximated by 

426 straight line segments 

 

Figure 7-10.4.2    of the obstacle (varying chiralities).  Generating curve is approximated by 426 

straight line segments 
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7-11.1   Perfectly conducting metallic cone 

Figure 7.11.1 shows a perfectly conducting metallic cone. A plane electromagnetic wave 

illuminates the cone at its bottom along the z-axis. 

 

Figure 7-11.1 Perfectly conducting metallic cone  
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( Figure 7-11.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following section). 

7-11.2  Surface currents and a radar cross sections 

 

Figure 7-11.2.1 Magnitude of t -component of equivalent external current.  Generating curve is 

approximated by 1200 straight line segments 

   

Figure 7-11.2.2     of the perfectly conducting cone shell.  The generating  curve is approximated 

by 1200 straight line segments.    
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7-12.1  Cone-shaped perfectly conducting metallic BOR surface enclosing chiral 

material with an aperture of radius 0.5 meter at its bottom. 

 

 

 Figure 7-12.1.1  Perfectly conducting conical shell with an aperture enclosing chiral material 

( Figure 7-12.1 will be the frame of reference in relation to the results and the graphs that are 

obtained in the following sections). 
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7-12.2  Computed Results. 

In this section we will present relevant characteristics of our results and graphs that are plotted in 

the following section(s).  We will also explain and clarify the results and the graphs wherever such 

elucidation is conducive in understanding the mapping of the graphs. 

  Figure  7-12.3.1 plots the magnitude of t-directed  component of equivalent external 

current (varying chiralities).  The graph shows up and down swings in the aperture space followed 

by smooth curve on the conducting surface of the shell cone.  Figure  7-12.3.2  plots the magnitude 

of t-directed  component of equivalent internal current (varying chiralities).  The graph shows up 

and down swings in the aperture space followed by smooth curve on the conducting surface of the 

shell cone.  Figure 7-12.3.4 plots the magnitude of  t-directed  component of equivalent magnetic 

current in 0   plane (varying chiralities).  As expected, the graphs of the Figure 7-12.3.4 show 

zero values on the conducting surface.  Figures  7-12.3.512.3.6  plot the magnitudes of  -

component of equivalent external and internal electric current in 0   plane.  These graphs show 

sharp up and down fluctuations in the aperture space.  We have discussed about it above in a 

paragraph (initalics.).  Figure 7-12.3.7 produces magnitude of  -component of physical electric 

current in 0   plane (varying chiralities).  The graphs of the Figure 7-12.3.7,as expected, show 

zero values in the aperture space.  Figure 7-12.3.8 plots Magnitude of   component of equivalent 

magnetic current in 0   plane (varying chiralities). The two graphs of the Figure 7-12.3.8 show 

correctly zero values of equivalent magnetic currents on the conducting surface of the shell cone.  

7-12.3  Surface currents  

 

Figure 7-12.3.1 Magnitude of  t-directed  component of equivalent external current (varying 

chiralities). The generating curve is approximated by 426 straight line segments. 
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Figure 7-12.3.2  Magnitude of  t-directed  component of equivalent internal electric current (varying 

chiralities). The generating curve is approximated by 426 straight line segments. 

 

Figure 7-12.3.3 Magnitude of  t-directed  component of physical current (varying chiralities). The 

generating curve is approximated by 426 straight line segments 



 

172 

 

 

Figure 7-12.3.4 Magnitude of  t-directed  component of equivalent magnetic current in 0   plane 

(varying chiralities). The generating curve is approximated by 426 straight line segments.    

 

Figure 7-12.3.5  Magnitude of  -component of equivalent external electric current in 0   plane 

(varying chiralities). The generating curve is approximated by 426 straight line segments.     
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Figure 7-12.3.6 Magnitude of  -component of equivalent internal electric current in 0   plane 

(varying chiralities). The generating curve is approximated by 426 straight line segments.   

 

Figure 7-12.3.7 Magnitude of  -component of physical electric current in 0   plane (varying 

chiralities). The generating curve is approximated by 426 straight line segments.    
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Figure 7-12.3.8 Magnitude of   component of equivalent magnetic current in 0   plane 

(varying chiralities). The generating curve is approximated by 426 straight line segments.    

7-12.4  Computed Results. 

Figure 7-12.5.1   plots the bistatic co-polarized RCS   of the obstacle (varying chiralities) and the 

Figure 7-12.5.2  plots the bistatic cross polarized RCS   of the obstacle. 

7-12.5  Radar cross sections 

 

Figure 7-12.5.1    of the obstacle (varying chiralities). Generating curve is approximated by 3132 

straight line segments. 
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Figure 7-12.5.2    of the obstacle. The generating curve is approximated by 3132 straight line 

segments. 

7-12.6  Computed Results. 

Figures 7-12.7.17-12.7.2 plot the x- and y- components of the external electric fields, respectively 

along z-axis (varying chiralities).  Figures 7-12.7.37-12.7.4 plot the x- and y- components of the 

internal electric fields, respectively along z-axis (varying chiralities). Figures 7-12.7.57-12.7.6 

plot the x- and y- components of the internal electric fields, respectively along z-axis (varying wave 

numbers).    
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7-12.7  Internal fields 

 

Figure 7-12.7.1  Magnitude of x-component of external electric field along z-axis (varying 

chiralities).  Generating curve is approximated by 3132 straight line segments and 98 points on z-

axis were used to obtain the graph. 

 

Figure 7-12.7.2  Magnitude of y-component of external electric field along z-axis (varying 

chiralities).  Generating curve is approximated by 3132 straight line segments and 98 points on z-

axis were used to obtain the graph. 
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Figure 7-12.7.3  Magnitude of x-component of internal electric field along z-axis (varying 

permittivities).  Generating curve is approximated by 3132 straight line segments and 98 points on 

z-axis were used to obtain the graph. 

 

Figure 7-12.7.4  Magnitude of y-component of internal electric field along z-axis (varying 

chiralities).  Generating curve is approximated by 3132 straight line segments and 98 points on z-

axis were used to obtain the graph. 
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Figure 7-12.7.5  Magnitude of x-component of internal electric field along z-axis (varying wave 

numbers).  Generating curve is approximated by 3132 straight line segments and 98 points on z-axis 

were used to obtain the graph. 

 

Figure 7-12.7.6 Magnitude of y-component of internal electric field along z-axis (varying wave 

numbers).  Generating curve is approximated by 3132 straight line segments and 98 points on z-axis 

were used to obtain the graph.  
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Chapter  8  

Conclusion. 

We sum up in conclusion:  

①  The sound theoretical framework developed in chapters two through six was validated by 

comparison of our results for various BOR's with exact results and existing numerical results 

whenever available. We have proven that our graphs of Figure 7-1.1.1 and Figure 7-1.1.2, bear 

remarkable almost one hundred percent resemblance with the analytically calculated graphs of 

the Figure 7-1.1.3 and the Figure 7-1.1.4.  Our graph of the Figure7-1.1.5 bears striking almost 

one hundred percent likeness with analytically calculated graph of the Figure 7-1.1.7.  Our graph 

of the Figure 7-1.1.10 bears noticeable almost one hundred percent likeness with analytically 

calculated graph of the Figure 7-1.1.11.  Our graph of the Figure 7-1.1.12  bears striking almost 

one hundred percent likeness with analytically calculated graph of the Figure 7-1.1.13.  Our 

graph of the Figure 7-2.2 bears striking almost one hundred percent resemblance with 

analytically calculated graph of the Figure 7-2.3. Our graph of the Figure 7-5.2.1 bears 

remarkable almost one hundred percent resemblance with analytically calculated graph of the 

Figure 7-5.2.2. Our graph of the Figure 7-5.2.3 bears striking almost one hundred percent 

resemblance with the analytically calculated graph of the Figure 7-5.2.4.  Our graph of the Figure 

7-5.3.1 bears striking almost one hundred percent likeness with analytically calculated graph of 

the Figure 7-5.3.2.  Our graph of the Figure 7-5.3.3 bears noticeable almost one hundred percent 

resemblance with analytically calculated graph of the Figure 7-5.3.4. Due to good grounding and 

validity of our theoretical framework by reason of almost one hundred percent pictorial 

conformability of our graph mappings, our graph forms and accuracy of our graph readings with 

the exact graphs is established.   

   From comparisons, our graph mappings and our graph readings with respect to the 

graphs of Altunkilic [3]  representing the same parameters vary in degrees from  almost the same to 

being at variance primarily with respect to the smoothness of the graph mappings.  His graph 

mappings veer along in a zigzag course moving up and down alternately thereby depriving 

meaningful comparison of his graph readings with ours. Our graphs are remarkably quick to detect 

and respond to sharp changes in the geometry of the cylinder and the cone with instant sharp surges 

that correspond to the sharp changes in the geometry of the figure.  Altunkilic's graphs have shown 

lack of response to sharp changes in the geometry of the figure.  It is assumed that the above-

mentioned disadvantages in Altunkilic's graphs have to do with the basic numerical approach he 

uses in obtaining his graphs. Aside from these disadvantages in comparison of our graphs with his 

graphs, graph readings between ours and his graphs in most cases show about the same values.  For 

example, our graph of the Figure7-3.2.1 with Altunkilic's graph of the Figure7-3.2.2 show 

remarkable likeness with respect to graph readings and the form of these two graphs.  The graph of 

the Figure 7-3.2.1 bears striking almost one hundred percent resemblance with the graph of the 

Figure 7-3.2.2. Similarly our graph of the Figure 7-3.2.4 bears remarkable almost one hundred 

percent likeness with Altunkilic's  graph of the Figure 7-3.2.5.  Our graph of the Figure 7-7.3.1 
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bears striking almost one hundred percent resemblance with Altunkilic's graph of the Figure 7-7.3.2. 

Our graph of the Figure 7-8.3.1 bears remarkable almost one hundred percent likeness with 

Altunkilic's graph of the Figure 7-8.3.2.   

②  Our thesis primarily pertains to the case of a partially shielded chiral body of revolution 

(BOR) with rotationally symmetric aperture(s) that exposes chiral material and the shielded 

surface of the body to a plane electromagnetic wave that impinges upon the chiral material that is 

exposed through the aperture(s) as well as upon the shielded perfectly conducting surface. The 

method discussed and applied in our thesis is that of Harrington and Mautz [10 ], [38], one of the 

most commonly used methods of solving BOR  problems using the method of moments (MoM) 

technique.  

  Our formulation involves surface currents on a BOR using triangular expansion functions 

that are sub-sectional and piecewise linear in the longitudinal t̂ -direction and a finite Fourier series 

in the azimuthal ̂ -direction.  The advantage of this method is that the expansion functions are one 

dimensional and its coefficients exist only on the generating curve that defines the BOR, resulting 

in a matrix equation of compact size for each Fourier mode.   

  Taking 
jme 

 dependent testing functions and 
jne 

dependent expansion functions where 

 , 0, 1, 2,...m n    , the electromagnetic field of an 
jne 

dependent expansion function tested 

with an 
jme 

testing function is because of the rotational symmetry of the BOR, zero for m n so 

that the moment matrix consists of diagonally arranged sub-matrices surrounded by sub-matrices all 

of whose elements are zero.  We thus save enormous amount of computational time and computer 

memory.   

Altunkilic's [3] formulation uses the method of moments (MoM) involving primarily the 

case of a perfectly conducting surface of arbitrary shape which encloses chiral material and has 

arbitrarily shaped aperture(s) that expose the chiral material as well as the perfectly conducting 

surface to a plane electromagnetic wave that impinges upon the chiral material that is exposed 

through the aperture(s) as well as upon the  perfectly conducting arbitrary surface.  Ours is a special 

case of Altunkilic's problem.  For example our theory cannot handle the case of a cubic-shaped or 

square-shaped partially shielded chiral body with aperture(s) for the simple reason that cubes and 

squares are not bodies of revolution.  

  Altunkilic [3] uses computer aided design (CAD) software using planar triangles which 

have the ability to conform to an arbitrarily shaped surface.  CAD programs have the ability to 

generate triangular meshes of exceptionally high quality.  Altunkilic [3] uses Rao-Wilton_Glisson 

(RWG) triangular expansion and testing functions.  His theoretical formulations, unlike ours, are 

deprived of rotational symmetry.  Moreover using two dimensional expansion and testing functions 

leads to very huge size matrices.  He uses matrices of size of 5500 5500  up to size 

6200 6200  to produce the same graphs which we have produced by using two matrices of  size 

848 848 , thereby saving an enormous amount of computer memory and computational time.  
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The curves of our graphs were smooth and without zigzag changes of direction compared with the 

curves of Altunkilic [3]. Moreover our graphs demonstrated acute sensitivity to abrupt changes in 

the geometry of the cylinder and the cone by producing a sharp abrupt upward swing at points 

where changes in the geometry of the figure occur. Noticing the sensitivity, smoothness, as well as 

abrupt glitches in our graphs that correspond to the abrupt sharp changes in the geometry of the 

cylinder and the cone we assert that the accuracy of the graph mapping of our graphs stand out to 

be more in the fitness of things. 

  The fact of the matter is that ours and Altunkilic's graphs are produced by using two 

distinctly different numerical approaches.  Therefore, in the absence of an analytically calculated 

exact graph to compare with, it is just a matter of opinion as to which graph is correct. It is to be 

noted that graph readings unlike the graph mappings of ours and Altunkilic's graphs are about the 

same.           

③   If computer time and memory are limited, our BOR formulation can handle BORs that are 

much larger than those handled by Altunkilic's formulation [3]. For example, we analyzed and 

obtained, for the free space wavelength of 
2

4.2
1.5

m m


 , graphs of surface currents induced on 

the two meter diameter and 3  meter high chiral cone covered by a perfectly conducting surface 

with an aperture at the bottom of the cone.  We also obtained internal electromagnetic fields and 

radar cross sections of this object. Our theoretical framework is applicable to the rocket shaped 

BOR structure which encloses chiral material as shown in Figure 8 (a).  We can obtain radar 

cross sections of this huge structure. Altunkilic [3] uses value of 1.5ka   in most of his graphs. 

Hence, for a  wavelength of 1 meter he uses  a radius of length 0.2387 m and matrices of the size 

6200 6200  to produce requisite graphs of the sphere. His theoretical framework, as such, 

cannot handle a huge structure shown in Figure 8(a) because of the extremely huge size 

unsolvable matrices this structure needs for producing graphs of radar cross sections. 

Future research:  

It is very tempting to suggest that our research work can produce the radar cross section of a rocket 

in flight such as shown in Figure 8(c).  The main drawback in this suggestion is that our theory is 

based on the homogeneous case of a chiral material.  However, if  future research establishes that 

the flue gases emitted from the bottom aperture of a rocket in flight are homogeneous and also 

determines the constitutive parameters of the flue gases then MoM based integral formulations of 

our theory may go a long way in furthering the theoretical framework with respect to the flue gases.  
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Figure 8(a) A rocket-shaped perfectly conducting body of revolution with a single aperture at its 

bottom which encloses chiral material.  

Figure 8(b) Generating curve of the rocket of the Figure 8(a), Figure 8(c) A rocket in flight. 
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Figure 8 (c) Figure 8 (a), Figure 8 (b)  
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APPENDIX  A 

A_1.1   Equivalence Principle 

In the application of Equivalence Principle, we need to make sure that, 

   Original impressed sources that existed in the original problem are preserved  

      in the Equivalent problem. 

   The same mediums that existed in the original problem are preserved. 

    All boundary conditions that existed in the original problem are preserved. 

A_1.1(a)  Original Problem 

A pictorial representation of the  original problem (Figure A_1.1.1) shows two regions separated by 

a bounding surface.  The internal region has  dielectric with parameters  and the external 

region  has a different dielectric parameters . A plane electromagnetic wave, generated by  

impressed sources, would produce in all space filled with the medium of region  the fields 

 
in the both external region  and the internal region .  Now due to the presence of 

medium of region 
 
bounded by , the total  electric and magnetic fields that come into play  in 

the external region are 

          (A_1.1.1) 

          (A_1.1.2)  

Here  and  are the scattered electric and magnetic fields in the external region.  We are 

interested in finding  and .  

    In order to find  and  conveniently, we formulate two equivalent problems namely the 

External Equivalence and the Internal Equivalence. 

A_1.1(b) External Equivalence 

In the External Equivalence we create an equivalent representation in the external region by 

replacing the bounding surface of the original problem by a fictitious surface  as shown in Figure 

A_1.1.2.  We fill up the internal region of space with the external dielectric with parameters  
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Figure A-1.1.1  Original problem. 

 thereby creating an unbounded space filled with the dielectric  that existed in the 

external region of the original problem.  We denote the region  of the original problem as the 

region of no interest or excluded region . As such, we choose the internal fields in this region as we 

please.  In this case we will choose the fields in the region  to be .  Now with 
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 in the region  and fields  in the external region , the jump from the 

external electric field  to the internal electric field  and the jump from the external 

magnetic field  to the internal magnetic field 0H  can only be  obtained by placing  on the 

fictitious boundary surface S the equivalent currents,  

          (A_1.1.3) 

          (A_1.1.4) 

 and   are the equivalent sources on which radiating all over the space in 

the external region  produce the scattered electric and magnetic fields  and  

 all over the region .   From these equivalent currents (Figure A_1.1.2) we can 

compute the far away fields in the external region. With reference to (A_1.1.1) and (A_1.1.2), we 

can deduce that 

         (A_1.1.5) 

         (A_1.1.6) 

   The internal face of   that is  does not belong to the region .   Since  in 

the internal region , we can deduce that 

          (A_1.1.7) 

          (A_1.1.8) 

We can write (A_1.1.1) and (A_1.1.2), with reference to (A_1.1.5) and (A_1.1.6) as: 

 

         (A_1.1.9) 

 

0 E H iR  1 1,E H
eR

1E 0E

1H

1
ˆ

e J = n H

1
ˆ  M n E

1
ˆ

e J = n H 1
ˆ  M n E S

eR  ,e eE J M

 ,e eH J M
eR

 ,s

e eE = E J M

 ,s

e eH = H J M

S S 

eR 0 E H

iR

1 tan
0

S
   E

1 tan
0

S
   H

1

inc s  E E E

 1 ,inc

e e E E E J M

1

inc s  H H H
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Figure A-1.1.2  External equivalence. 

Region : iR

 ,e e   

n̂  

Region : eR

 ,e e   

 

Fictitious Boundary surface S   

Plane electromagnetic  

wave  ,inc inc
E H  

0 E H  

 2 2,E H  

eJ  

M  
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         (A_1.1.10) 

Substituting (A_1.3.9)  into (A_1.3.7) , we obtain 

 

               (A_1.1.11)                                

  

 Eq. (A_1.1.11) implies        

 

Since  remains unchanged taken either tangential to  or  tangential to , as such, we can 

write 

                 (A_1.1.12) 

or 

                                                               (A_1.1.13) 

     

Substituting (A_1.1.10) in (A_1.1.8), we obtain 

 

 

Since  remains unchanged taken either tangential to  or  tangential to , as such, we can 

write 

            (A_1.1.14) 

 

 

 1 ,inc

e e H H H J M

    
tantantan

, , 0inc inc

e e e e
SS


       
  

E E J M E E J M

 
tan tan

, inc

e e
S S
 

   
   
E J M E

 , inc

e e S S
 

      E J M E

inc
E S S 

 , inc

e e S S


      E J M E

 
1 1

, inc

e e S S
e e 


      E J M E

    
tantantan

, , 0inc inc

e e e e
SS


       
  

H H J M H H J M

 
tan tan

, inc

e e
S S
 

   
   
H J M H

inc
H S S 

 , inc

e e S S


      H J M H
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A_1.1(c) Internal Equivalence 

In the Internal Equivalence we fill up the whole space, including the external region, with the 

 

Figure  A-1.1.3  Internal equivalence. 

Region : iR

 ,i i   

n̂  

Region : eR

 ,i i   

 

Fictitious Boundary surface of  Region  
iR : S  

 2 2,E H  

eJ  

M  

0 E H  
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filled with the dielectric that existed in the internal region of the original problem  This time, the  

external region  is designated as the region of no interest in which we are free to choose 

whatever fields we desire.  It will be convenient to choose  in the region .  The 

internal region of the original problem had no impressed source.  Therefore the whole unbounded 

space has no impressed source. 

    Now we have fields   in the internal region and  in the external region .  As a 

result a jump in electric field from  in the internal region to  in the external region occurs.  

Similarly a jump in magnetic field from  in the internal region to  in the external region 

takes place.  These jumps in the electric and magnetic fields are supported by placing equivalent 

electric and magnetic currents on the fictitious boundary.  In this case the equivalent currents are 

 

              (A_1.1.15) 

 

               (A_1.1.16) 

The derivations of (A_1.1.15) and (A_1.1.16) accord with the direction of unit vector  which 

points into the external region. 

    The equivalent surface currents thus placed on the fictitious bounding surface radiate in 

unbounded space filled with the dielectric which existed only in the interior region of the original 

problem. These surface currents produce electric and magnetic fields at every point in the 

unbounded space. These electric and magnetic fields brought about by the equivalent surface 

currents  and  placed on the fictitious bounding surface are denoted as  

                 (A_1.1.17) 

                 (A_1.1.18) 

       exists in the external region. We meet this situation with the knowledge that zero 

tangential components of   and  on  guarantee that  in the 

external region.   is the side that faces the external region.   The statement that the tangential 

field components are zero on  is expressed by the following two equations. 

              (A_1.1.19) 

eR

0 E H eR

 2 2,E H 0 E H

2E 0E

2H 0H =

2
ˆ (0 )e    J n H

2
ˆ

e   J n H

 2
ˆ     M n E

2
ˆ  M n E

n̂

eJ M

 ,i e E J M

 ,i e H J M

0 E H

 ,i e E J M  ,i e H J M S  0 E H

S 

S 

 
tan

, 0i e
S

   
 
E J M
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              (A_1.1.20) 

Eqs. (A_1.1.19)  and (A_1.1.20) imply 

                (A_1.1.21) 

               (A_1.1.22) 

Multiplying (A_1.1.21) by an arbitrary constant  and adding it to (A_1.1.13) gives 

           (A_1.1.23) 

Multiplying (A_1.1.22) by an arbitrary constant  and adding it to (A_1.1.14) gives 

            (A_1.1.24) 

The unknowns in (A_1.1.23) and (A_1.1.24) are  and  on .  Therefore  (A_1.1.23) and 

(A_1.1.24) can be solved by the Method of Moments (MoM).  The equations that can be solved by 

the method of moments are the tangential components of (A_1.1.23) and (A_1.1.24). 

 

 

 

 

 

 

 

 

 

 

 
tan

, 0i e
S

   
 
H J M

 , 0i e S
    E J M

 , 0i e S
    H J M



    
1 1

, , inc

e e i eS S S
e e


 

 
             E J M E J M E



    , , inc

e e i eS S S


 
             H J M H J M H

eJ M S
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APPENDIX  B 

B_1.1  The Method of Moments (MoM) 

Electromagnetic problems usually involve solution of linear partial differential or integral 

equations.  The general form of such a linear equation is the operator equation. 

   x xLf g    a x b              (B_1.1.1) 

where  L  is a linear operator 

             f is the function to be calculated 

             g  is a known function 

To solve (B_1.1.1), the method of moments begins by approximating the unknown function  xf  

by a linear combination of known functions  n x  referred to as basis functions (expansion 

functions).  Let us choose a set of  N basis functions  n x  and expand the unknown function 

 xf  as a linear combination of these: 

     
1

N

n n

n

x x x


  f f               (B_1.1.2)   

Here n  are expansion coefficients to be determined. These basis functions are so selected that with 

appropriate values for the parameters n , the right side of  (B_1.1.2) is  exact as N   .  In other 

words, we want to make 

   x xLf g                (B_1.1.3) 

Substituting (B_1.1.2)  into (B_1.1.3) results in the following equation, 

     
1

N

n n

n

x x x


 
  

 
Lf = L g   a x b                          (B_1.1.4) 

By subtracting (B_1.1.1) from   xLf  of (B_1.1.4), we obtain a residual   equal to 

         
1 1

N N

n n n n

n n

x x x x x 
 

   
         

   
 L Lf L g            (B_1.1.5) 
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We would like to force the residual to zero, that is 

     
1

0
N

n n

n

x x x


     L g   a x b                       (B_1.1.6) 

If we can find coefficients n  that make the residual small for all x ,  a x b  , then we take  xf  

to be a good approximation for  xf .    

To determine n , one of two methods is generally used. 

B_1.2 Method of collocation (Point matching) 

Rather than seeking n  that require the residual   to be small for all x  in  ,a b , we set  the 

residual   identically zero at N  discrete  match points  mx   as many as basis functions   n x  

that lie within this interval. 

  0mx x       1,2,...,m N          (B_1.2.1) 

Therefore, from  (B_1.1.6), we deduce that 

     
1

0
m

N

n n mx x
n

x x x




       L g                                   (B_1.2.2) 

    
1

m

N

n n mx x
n

x x




   L = g                           (B_1.2.3) 

For the point matching solution, we can choose N  equidistant points defined as  

 
1

m

b a m
x a

N


 


  1,2...,m N               (B_1.2.4) 

The point matching solution process can be implemented by satisfying (B_1.2.2) at the points mx . 

This approach results in the following matrix equation 

    mn n ml b             1,2,...,m N                          (B_1.2.5) 

and         m mb x g           1,2,...,m N   `                      (B_1.2.6) 
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Once  the n  have been determined, they can be used in (B_1.1.2) to obtain approximation  xf  to 

 xf . 

B_1.3 Method of Weighted residuals 

An alternative to Collocation (or point matching) is to set the N  weighted averages of the residual 

to zero.  In the weighted residual method, the weighting functions  or testing functions 
mw   ( which, 

in general,  are not the same as the expansion functions) are chosen as many as expansion functions 

such that the integral of a weighted residual of the approximation is zero, i.e., 

    0

b

m

a

w x x dx    1,2,...,m N               (B_1.3.1) 

  

or 

, 0mw                     (B_1.3.2) 

where    
b

m

a

w x x dx   or  ,mw   are referred to as the inner product. 

Substituting (B_1.1.6) in (B_1.3.1), we get 

     
1

0

b N

n n m

na

x x w x dx


 
      

 
 L g  

        
1

b bN

n n m m

n a a

x w x dx x w x dx


     L g  1,2,...,m N            (B_1.3.3) 

The system of linear equations (B_1.3.3) can be cast into matrix form 

    mn n ml b       1,2,...,m N             (B_1.3.4) 

Here 

   
b

mn n m

a

l x w x dx   L                 (B_1.3.5) 

and 
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   
b

m m

a

b x w x dx g                  (B_1.3.6) 

Solving for n  in (B_1.3.4) and substituting these values in (B_1.1.2), we get an approximate 

solution to (B_1.1.1).  Collocation is a special case of the weighting function method with 

   m mw x x x      1,2,...,m N              (B_1.3.7) 

here  mx x   is called the dirac delta function.. 

B_1.4  Choice of basis (expansion) and weighting(testing) functions. 

Basis and weighting functions can be broadly classed as follows 

1.  subdomain functions  are defined only over part of the domain of the unknown function.  

Included  in this category are: 

B-1.4(a). Piecewise uniform or pulse functions: 

Let us consider the range of interest or domain size as 0 1x  , and divide this range into 1N 
equal subintervals (subdomains) of width 

1

1
x

N
 


                  (B_1.4.1) 

The  thm  subinterval extends from 1mx x   to mx  where 

,
1

m

m
x

N



 0,1,2,3,..., 1m N                 (B_1.4.2) 

The subintervals and points mx  are shown in Figure B_1.4.1  for 4N  .  A pulse function which is  

centered about mx  is defined as 

 
1

,2 2

0

x x
m m

m

for x x x
P x x

elsewhere

 
   

  



  1,2,3,...,m N  where  
1

1N
 


( B_1.4.3) 

   A linear combination of pulse functions according to    
1

N

n m

n

f x P x x


  gives a step or 

staircase approximation as shown in Figure B_1.4.2. It may be noted that Pulse functions are 



 

195 

 

orthogonal in nature because they do not overlap with others.  The derivative of a pulse function 

consists of two Dirac delta functions. 

     

  

 

B_1.4 (b).  Triangular basis functions 

A triangular function or piecewise linear function is defined as 

 

1
1

1

1
1

1

0

m
m m

m m

m
m mm

m m

x x
for x x x

x x

x x
for x x xT x x

x x

elsewhere












  


 

   






     (B_1.4.4) 

  

2x  3x  4x  1 0 

 f x  

Figure  B_1.4.2 

1 

2x  3x  4x  1 

Pulse basis functions 
 2P x x  

Figure B-1.4.1 
1x  

0 

Step approximation of a function using pulse functions 
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For 4N  , the function  2T x x  is shown in Figure B_1.4.3(a).  Figure B_1.4.3 shows a 

piecewise linear approximation to f . 

 

 

 

How does one select the "best" testing functions for a choice of basis functions?  Equation (B_1.1.1) 

is tested the best by any set of testing functions that is a basis for the range of the operator L .  the 

range of  L  is the space of   
1

N

n n

n

x


   L  where n  is arbitrary.  A basis for a space is a linearly 

independent functions that are in the space and are such that any function in the space can be 

0 
1x  2x  

3x  1 

 f x  

1x  2x  3x  0 
4x  1 

1 
 2T x x  

 a  

 b  

Figure B_1.4.3 Triangular functions and approximation using them:  a a 

triangular function and (b) piecewise linear approximation of a function using 

triangular functions 

4x  
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written as a linear combination of them.  As far as forcing the residual to zero, the best we can do is 

to require the residual to be orthogonal to each basis function in the sense.   

    0

b

m

a

w x x     1,2,3,...,m N             (B_1.4.5)   

Substituting (B_1.1.5) in (B_1.4.5), we get 

     
1

0

b N

m n n

na

w x x x dx


 
      

 
 L g  

       
1

b bN

n n m m

n a a

x w x dx x w x dx


     L g               (B_1.4.6) 

Equation (B_1.4.6) is identical to (B_1.3.3). 

Consider 

   m mw x x ,     1,2,3,...,m N                (B_1.4.7) 

This special case of the MoM in which basis and weighting functions are identical is called 

Galerkin's method. 

B_1.5   Galerkin's method 

We will illustrate application of Galerkin's method by an example [24]. 

Example(B1.5) Consider the following differential equation 

2
2

2
1 4

d f
x

dx
                     (B_1.5.1) 

subject to (0) (1) 0f f  .  The analytical solution of (2.5.1) is 

2 45
( )

6 2 3

x x x
f x                     (B_1.5.2) 

We will use method of moments to solve (B_1.5.1), compare results with the exact solution 

(B_1.5.2) and plot graphs of both exact solution and MoM solution.    

With reference to the theoretical framework developed in above paragraphs, we have 
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2

2

d

dx
L =                   (B_1.5.3) 

and  

  21 4x x g                   (B1.5.4) 

We will choose basis function  n x  to be 

  1,n

n x x x       1,2,3,...,n N                (B_1.5.5) 

and, therefore from (B_1.5.3) and (B_1.1.2), 

     
2

2
1 1

N N

n n n n

n n

d
x x x

dx
 

 

   
       

   
 Lf L             (B_1.5.6) 

Substituting (B_1.5.5) into (B_1.5.6), we get 

     
2

1

2
1 1

N N
n

n n n

n n

d
x x x x

dx
  

 

   
       

   
 Lf L             (B_1.5.7) 

    1 1 1n nd
x x n x

dx

 
       
 

  

     
2

1 1

2
0 1n nd

x x n n x
dx

  
       
 

 

   
2

1 1

2
1n nd

x x n n x
dx

  
    
 

               (B_1.5.8) 

       

Galerkin's approach requires replacement of weighting function  mw x  with  m x  according to 

(B_1.4.7).  We will  now use (B_1.3.3) replacing in it  mw x  with  m x  thus obtaining 

       
1 1

1 0 0

N

n n m m

n

x x dx x x dx


       L g    1,2,3,...,m N                  (B_1.5.9) 

Eq. (B_1.5.9) can, according to (B_1.3.4)  be cast in matrix form  
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    mn n ml b      1,2,3,...,m N           (B_1.5.10) 

Here , unlike (B_1.3.5)  and (B_1.3.6), we have  

   
1

0

mn n ml x x dx    L  1,2,3,...,m N            (B_1.5.11)

   
1

0

m mb x x dx g                (B_1.5.12)

  1m

m x x x                   (B_1.5.13) 

Substituting (B_1.5.13) , (B_1.5.5) and (B_1.5.3)  into (B_1.5.11), we obtain 

       
1 1 2

1 1

2

0 0

n m

mn n m

d
l x x dx x x x x dx

dx

  
          

 
 L            (B_1.5.14) 

Substituting (B_1.5.8) into (B_1.5.14), we get 

        
1 1

1 1

0 0

1 n m

mn n ml x x dx n n x x x dx         L             (B_1.5.15) 

   
1 11 1 1 1

0 0 0 0

1 1
1 1

n m n
n m n

mn

x x
l n n x dx x dx n n

n m n

  


  
        
      

   

   
  

1 1 1 1
1 1

1 1 1 1
mn

m n n
l n n n n

n m n n m n

     
                 

 

 1
mn

mn
l

m n


 
                (B_1.5.16) 

We substitute (B_1.5.4) and (B_1.5.13) into (B_1.5.12) and obtain  

      
1 1 1

2 1 2 1 2

0 0 0

1 4 1 4 1 4m m

mb x x x dx x x dx x x dx                     (B_1.5.17) 

 
1 11 2 4

2

0 0 0

1 3
1 4 4 1

2 4 2 2

x x
x x dx

   
        

      
              (B_1.5.18) 
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 
       

 

  

1
1 2 4

1 2

0 0

4 4 81 4
1 4 4

2 4 2 4 2 4

m m
m

m mx x
x x dx

m m m m m m

 


      
           

          
   

                              (B_1.5.19) 

Substituting (B_1.5.17) and (B_1.5.18) into (B_1.5.17), we obtain 

   

     

2 23 18 24 10 24 3 8

2 2 4 2 2 4
m

m m m m m
b

m m m m

    
  

   
 

 

  

3 8

2 2 4
m

m m
b

m m




 
                          (B_1.5.20) 

We will rewrite (B_1.5.16) and (B_1.5.20) as 

   
 

,
1

mn m n

mn
l x x

m n
   

 
L                (B_1.5.21) 

   
 

  

3 8)
,

2 2 4
m m

m m
b x x

m m


  

 
g               (B_1.5.22) 

Galerkin method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion and 

weighting functions and g(m) stands for mb . 

Using Matlab program, we obtained the following results including graph of f  

and f . 

 

============== 

     N 

============== 

     1 

============== 
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 L(m,n) 

    0.3333 

 

g(m)  

    0.3667 

 

 

alpha = 

 

    1.1000 

 

Galerkin method 

   

============== 

     N 

============== 

     2 

============== 

 L(m,n) 

    0.3333    0.5000 

    0.5000    0.8000 

 

g(m)  
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    0.3667 

    0.5833 

 

alpha = 

 

    0.1000 

    0.6667 

 

Galerkin method 

   

============== 

     N 

============== 

     3 

============== 

 L(m,n) 

    0.3333    0.5000    0.6000 

    0.5000    0.8000    1.0000 

    0.6000    1.0000    1.2857 

 

g(m)  

    0.3667 

    0.5833 
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    0.7286 

 

alpha = 

    0.5000 

    0.0000 

    0.3333 

 

Galerkin method 

   

============== 

     N 

============== 

    10 

============== 

 L(m,n) 

    0.3333    0.5000    0.6000    0.6667    0.7143    0.7500    0.7778    0.8000    0.8182    0.8333 

    0.5000    0.8000    1.0000    1.1429    1.2500    1.3333    1.4000    1.4545    1.5000    1.5385 

    0.6000    1.0000    1.2857    1.5000    1.6667    1.8000    1.9091    2.0000    2.0769    2.1429 

    0.6667    1.1429    1.5000    1.7778    2.0000    2.1818    2.3333    2.4615    2.5714    2.6667 

    0.7143    1.2500    1.6667    2.0000    2.2727    2.5000    2.6923    2.8571    3.0000    3.1250 

    0.7500    1.3333    1.8000    2.1818    2.5000    2.7692    3.0000    3.2000    3.3750    3.5294 

    0.7778    1.4000    1.9091    2.3333    2.6923    3.0000    3.2667    3.5000    3.7059    3.8889 

    0.8000    1.4545    2.0000    2.4615    2.8571    3.2000    3.5000    3.7647    4.0000    4.2105 
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    0.8182    1.5000    2.0769    2.5714    3.0000    3.3750    3.7059    4.0000    4.2632    4.5000 

    0.8333    1.5385    2.1429    2.6667    3.1250    3.5294    3.8889    4.2105    4.5000    4.7619 

 

g(m)  

    0.3667 

    0.5833 

    0.7286 

    0.8333 

    0.9127 

    0.9750 

    1.0253 

    1.0667 

    1.1014 

    1.1310 

 

alpha = 

    0.5000 

    0.0000 

    0.3333 

   -0.0001 

    0.0001 

   -0.0003 

    0.0005 
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   -0.0002 

    0.0000 

   -0.0000 

 

Figure B_1.5.1 Graph of Exact and Approximate solution  (Galerkin's method). 

B_1.6   Point Matching method 

We will illustrate application of the Point Matching method by an example [24]. 

Example(B1.6) Consider the following differential equation 

2
2

2
1 4

d f
x

dx
             (B_1.6.1) 

subject to (0) (1) 0f f  .  The analytical solution of (B_2.6.1) is 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(
x
)

x

Graphs(Example B1.5,Galerkin method), using 1,2,3, and 10 expansion functions

 

 

 f exact

 f approximate for N=1

 f approximate for N=2

 f approximate for N=3

 f approximate for N=10
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2 45
( )

6 2 3

x x x
f x             (B_1.6.2) 

We will use method of moments to solve (B_1.6.1), compare results with the exact solution 

(B_1.6.2) and plot graphs of both exact solution and MoM solution. 

With reference to the theoretical framework developed in above paragraphs, we have 

2

2

d

dx
L =           (B_1.6.3) 

and  

  21 4x x g           (B_1.6.4) 

We will choose basis function  n x  to be 

  1n

n x x x             (B_1.6.5) 

and, therefore from (B_1.6.3) 

     
2

2
1 1

N N

n n n n

n n

d
x x x

dx
 

 

   
       

   
 Lf L      (B_1.6.6) 

Substituting (B_1.6.5) into (B_1.6.6), we get 

     
2

1

2
1 1

N N
n

n n n

n n

d
x x x x

dx
  

 

   
       

   
 Lf L     (B_1.6.7) 

    1 1 1n nd
x x n x

dx

 
       
 

  

     
2

1 1

2
0 1n nd

x x n n x
dx

  
       
 

 

   
2

1 1

2
1n nd

x x n n x
dx

  
    
 

       (B_1.6.8)  

For the Point Matching solution, we choose N equidistant points defined as  
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1
m

m
x

N



   1,2,3,...,m N      (B_1.6.9) 

Matching  (B_1.6.7) and (B_1.6.4) at mx , we obtain 

  11
m

n

mn x x
l n n x 


      1,2,3,...,m N ,  1,2,3,...,n N     (B_1.6.10) 

  21 4
m

m x x
x x


   g   1,2,3,...,m N      (B_1.6.11) 

we can cast (B_2.6.9)   (2.6.11)  into a matrix form as 

    mn n ml g     1,2,3,...,m N      (B_1.6.12) 

Point Matching method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion and 

weighting functions and g(m) stands for mb .     

Using Matlab program, we obtained the following results including graph of f  

and f . 

 

============== 

     N 

============== 

     1 

============== 

 L(m,n) 

    9.8696 

 

g(m)  
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     2 

 

alpha = 

    0.2026 

 

 

============== 

     N 

============== 

     2 

============== 

 L(m,n) 

    8.5473   34.1893 

    8.5473  -34.1893 

 

g(m)  

    1.4444    2.7778 

 

alpha = 

    0.2470 

   -0.0195 

 

============== 
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     N 

============== 

     3 

============== 

L  

    6.9789   39.4784   62.8098 

    9.8696    0.0000  -88.8264 

    6.9789  -39.4784   62.8098 

 

g  

    1.2500 

    2.0000 

    3.2500 

 

alpha = 

    0.2625 

   -0.0253 

    0.0067 

 

============== 

     N 

============== 

    10 
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============== 

L  

    2.7806   21.3436   67.1305  143.6433  244.2287  351.6893  439.9077  477.3728  432.2088  278.0589 

    5.3359   35.9108   87.9223  119.3432   69.5147 -100.1012 -365.4885 -625.2253 -727.1943 -533.5911 

    7.4589   39.0766   48.0232  -44.4894 -224.4427 -323.1975 -136.2489  341.4983  791.3008  745.8949 

    8.9777   29.8358  -25.0253 -156.3063 -133.3978  192.0928  478.6882  177.9577 -604.1749 -897.7708 

    9.7691   11.1224  -80.7994  -85.3746  186.4737  268.5222 -261.4596 -574.5733  225.2277  976.9146 

    9.7691  -11.1224  -80.7994   85.3746  186.4737 -268.5222 -261.4596  574.5733  225.2277 -976.9146 

    8.9777  -29.8358  -25.0253  156.3063 -133.3978 -192.0928  478.6882 -177.9577 -604.1749  897.7708 

    7.4589  -39.0766   48.0232   44.4894 -224.4427  323.1975 -136.2489 -341.4983  791.3008 -745.8949 

    5.3359  -35.9108   87.9223 -119.3432   69.5147  100.1012 -365.4885  625.2253 -727.1943  533.5911 

    2.7806  -21.3436   67.1305 -143.6433  244.2287 -351.6893  439.9077 -477.3728  432.2088 -278.0589 

 

g  

    1.0331 

    1.1322 

    1.2975 

    1.5289 

    1.8264 

    2.1901 

    2.6198 

    3.1157 

    3.6777 

    4.3058 
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alpha = 

    0.2798 

   -0.0314 

    0.0130 

   -0.0036 

    0.0025 

   -0.0009 

    0.0007 

   -0.0003 

    0.0002 

   -0.0001 



 

212 

 

 

Figure  B_1.6.1  Graph of Exact and Approximate solution  ( Point Matching method). 

B_1.7  Triangular function 

We will illustrate application of Triangular function or piecewise linear function application by an 

example [24].  Both basis and triangular functions are triangular functions. 

Example(B1.7) Consider the following differential equation [24]. 

2
2

2
1 4

d f
x

dx
                  (B_1.7.1) 

subject to (0) (1) 0f f  .  The analytical solution of (B_1.7.1) is 

2 45
( )

6 2 3

x x x
f x                    (B_1.7.2) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(
x
)

x

Graphs(Example B1.6, Point Matching method) using 1,2,3, and 10 expansion functions

 

 

 f exact

 f approximate for N=1

 f approximate for N=2

 f approximate for N=3

 f approximate for N=10
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We will use the method of moments to solve (B_1.7.1), compare results with the exact solution 

(B_1.7.2) and plot graphs of both exact solution and MoM solution. 

We will choose basis function  n x  to be 

 

1
1

1

1
1

1

,

,

n
n n

n n

n

n
n n

n n

x x
x x

x x
x

x x
x x

x x












 

  
 

 

 

With reference to theoretical framework developed in above paragraphs, we have 

2

2

d

dx
L =                (B_1.7.3) 

and  

  21 4x x g                (B_1.7.4)  

Here 

2( 1)

( 1) 1

0 1

mn

N m n

l N m n

m n

  


    
  

             (B_1.7.5) 

 
 

 
 1

1

1 12 2

1 1

1 4 1 4
m m

m m

x x

m m

m

m m m mx x

x x x x
g x dx x dx

x x x x





 

 

 
   

    

1 1

1

1
m m m mx x x x

N
      


 

let 

1mu x x    

1mv x x   

then 



 

214 

 

     
0

2 2

1 1

0

1 1
1 4 1 4m m mg u x udu x v vdv



 



     
    

    2 2

1 1

0 0

1 1
1 4 1 4m m mg u x udu x v vdv

 

      
    

    2 2

1 1

0

1
1 4 1 4m m mg u x x u udu



      
 

 

  2 2 2 2

1 1 1 1

0

1
2 4 2 2m m m m mg u ux x x ux u udu



         
 

 

   2 2 2

1 1 1 1

0

1
2 4 2 2m m m m mg u u x x x x udu



        
 

 

     2 22 2 2

0

1
2 4 2 4 1 1mg u u m m udu



        
 

 

     2 2 2 2 2

0

1
2 4 2 4 2 1 2 1mg u u m m m m udu



          
 

 

   2 2 2

0

1
2 4 2 4 2 2mg u u m udu



     
 

 

  2 2 2

0

2
1 4 8 4 4mg u u m udu



     
 

 

  3 2 2 2

0

2
4 8 4 4mg u u u m u du



     
 

 

 
2 2

4 3 2 2

0

2 8
4 4

2 3 2
m

u u
g u u m



 
       
  

 

 
2 4

4 4 22 8
4 4

2 3 2
mg m

  
      
  
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2
4 22 8

2 1 2
2 3

mg m
   

       
   

 

2
4 22 1

2
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mg m
   

     
   

 

3 2 1
2 2

3
mg m

  
      

  
 

2 22
1 4

3
mg m

  
      

  
 

 

 

2

2

4 2 / 31
1

1 1
m

m
g

N N

 
  

   

        (B_1.7.6) 

Triangle function method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion 

and weighting functions and g(m) stands for mb .  Five triangle functions are used. 

Using Matlab program, we obtained the following results including graph of f  

and f . 

 

L  

    12    -6     0     0     0 

    -6    12    -6     0     0 

     0    -6    12    -6     0 

     0     0    -6    12    -6 

     0     0     0    -6    12 
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g  

    0.1867 

    0.2423 

    0.3349 

    0.4645 

    0.6312 

 

alpha = 

    0.1241 

    0.2171 

    0.2697 

    0.2665 

    0.1858 

L  

    12    -6     0     0     0 

    -6    12    -6     0     0 

     0    -6    12    -6     0 

     0     0    -6    12    -6 

     0     0     0    -6    12 

 

g  

    0.1867 

    0.2423 
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    0.3349 

    0.4645 

    0.6312 

alpha = 

    0.1241 

    0.2171 

    0.2697 

    0.2665 

    0.1858

 

Figure B-1.7.1        Graph of Exact and Approximate solution (Triangle function method), using  

                                five expansion functions 
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Triangle function method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion 

and weighting functions and g(m) stands for mb .  Ten  triangle functions are used. 

Using Matlab program, we obtained the following results including graph of f  

and f . 

L  

    22   -11     0     0     0     0     0     0     0     0 

   -11    22   -11     0     0     0     0     0     0     0 

     0   -11    22   -11     0     0     0     0     0     0 

     0     0   -11    22   -11     0     0     0     0     0 

     0     0     0   -11    22   -11     0     0     0     0 

     0     0     0     0   -11    22   -11     0     0     0 

     0     0     0     0     0   -11    22   -11     0     0 

     0     0     0     0     0     0   -11    22   -11     0 

     0     0     0     0     0     0     0   -11    22   -11 

     0     0     0     0     0     0     0     0   -11    22 

 

g  

    0.0942 

    0.1032 

    0.1182 

    0.1392 

    0.1663 
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    0.1993 

    0.2384 

    0.2835 

    0.3346 

    0.3917 

 

alpha = 

    0.0715 

    0.1344 

    0.1880 

    0.2308 

    0.2609 

    0.2759 

    0.2728 

    0.2481 

    0.1975 

    0.1166 
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Figure B-1.7.2        Graph of Exact and Approximate solution (Triangle function method), using  

                                ten expansion functions. 

Triangle function method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion and 

weighting functions and g(m) stands for mb .  Fifteen  triangle functions are used. 

Using Matlab program, we obtained the following results including graph of f  

and f . 

L  

    32   -16     0     0     0     0     0     0     0     0     0     0     0     0     0 

   -16    32   -16     0     0     0     0     0     0     0     0     0     0     0     0 

     0   -16    32   -16     0     0     0     0     0     0     0     0     0     0     0 
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     0     0   -16    32   -16     0     0     0     0     0     0     0     0     0     0 

     0     0     0   -16    32   -16     0     0     0     0     0     0     0     0     0 

     0     0     0     0   -16    32   -16     0     0     0     0     0     0     0     0 

     0     0     0     0     0   -16    32   -16     0     0     0     0     0     0     0 

     0     0     0     0     0     0   -16    32   -16     0     0     0     0     0     0 

     0     0     0     0     0     0     0   -16    32   -16     0     0     0     0     0 

     0     0     0     0     0     0     0     0   -16    32   -16     0     0     0     0 

     0     0     0     0     0     0     0     0     0   -16    32   -16     0     0     0 

     0     0     0     0     0     0     0     0     0     0   -16    32   -16     0     0 

     0     0     0     0     0     0     0     0     0     0     0   -16    32   -16     0 

     0     0     0     0     0     0     0     0     0     0     0     0   -16    32   -16 

     0     0     0     0     0     0     0     0     0     0     0     0     0   -16    32 

 

g  

    0.0636 

    0.0665 

    0.0714 

    0.0782 

    0.0870 

    0.0977 

    0.1104 

    0.1251 

    0.1417 
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    0.1602 

    0.1807 

    0.2032 

    0.2276 

    0.2540 

    0.2823 

 

alpha = 

    0.0501 

    0.0962 

    0.1382 

    0.1757 

    0.2083 

    0.2354 

    0.2565 

    0.2707 

    0.2770 

    0.2745 

    0.2620 

    0.2382 

    0.2016 

    0.1509 

    0.0843 
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Figure B-1.7.3        Graph of Exact and Approximate solution (Triangle function method), using  

                                fifteen expansion functions. 

Example(B1.8) Consider the following differential equation [24]. 

2
2

2
1 4

d f
x

dx
                  (B_1.8.1) 

subject to (0) (1) 0f f  .  The analytical solution of (B_1.7.1) is 

2 45
( )

6 2 3

x x x
f x                    (B_1.8.2) 

We will use the method of moments to solve (B_1.8.1), compare results with the exact solution 

(B_1.8.2) and plot graphs of both exact solution and MoM solution. 
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Graphs (Example B1.7, using Triange function and fifteen expansion functions
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Solution 

     
2

2
1 1

N N

n n n n

n n

d
x x x

dx
 

 

   
       

   
 Lf L              (B_1.8.3) 

2

2

d

dx
 L                             (B_1.8.4) 

21 4xg =                  (B_1.8.5) 

We will choose basis function  n x  to be 

   sinn x n x                          (B_1.8.6) 

 
 

   
2

2

2
sin

n

n

d x
x n n x

dx
 


     L               (B_1.8.7) 

   
1

0

mn n ml x x dx    L                            (B_1.8.8) 

      

     

1
2

0

1
2

0

sin sin

sin sin

mn

mn

l n n x m x dx

l n n x m x dx

  

  

 

 





 

For m n  

   
1

2 2

0

sinmnl n n x dx                   (B_1.8.9) 

Let  

x u                     (B_1.8.10) 

hence 

dx du                    (B_1.8.11) 

substituting (B_1.8.10)  and (B_1.8.11) into (B_1.8.9), one obtains 
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   
2 2

0

sinmn m n

du
l n nu






 
  

 
                (B_1.8.12) 

 
 

2

2

0

sinmn m n

n
l nu du




   

   
2

0

1 cos 2

2
mn m n

n nu
l du





 
  

 
  

 
 

 
  

   

 
 

2

0

2

0 0

2

0

2

1 cos 2
2

cos 2
2

sin 2

2 2

2

mn m n

mn m n

mn m n

mn m n

n
l nu du

n
l du nu du

n nu
l

n

n
l



 





























  

 
   

 

  
   

  

 



 
 

 
2

2
mn m n

n
l



                   (B_1.8.13) 

   
1

2

0

1 4 sinmb x m x dx                          (B_1.8.14) 

   
1 1

2

0 0

sin 4 sinmb m x dx x m x dx                           (B_1.8.15) 

 
 

   
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0 0

1
1

0
0

cos
sin

1
sin cos

m x
m x dx

m

m x dx m x
m






 


 
   
  

         





 

   
1

0

1
sin 1 cosm x dx m

m
 



 
  
 

                (B_1.8.16) 
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   
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 

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   

   
   

 
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 
   

   
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2

2

cos sin cos2 1
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x m x
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

    


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       

     
        

     





 

 
   

 
 

 
 
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
  
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             (B_1.8.17) 

and 
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 
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   
 

 
   

1

2

2 2 2

0

1 2 2 2
sin cos cosx m x dx m m

m m m m
  

   

   
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           (B_1.8.18) 
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1 8 8
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Substituting  (B_1.8.16) and (B_1.8.19) into (B_1.8.15), one obtains 

     
 

 
 

1 1

2

2 2

0 0

1 8 8
sin 4 sin 1 cos 4cos cosmb m x dx x m x dx m m m

m m m
    

  

  
        

    
 

                            (B_1.8.20) 

Using Matlab program, we obtained the following results including graph of f  and f . 

Galerkin method 

  In the matlab script  L m,n  stands for mnl  and N stands for number of expansion and 

weighting functions and g(m) stands for mb .   

 

Galerkin method 

   

============== 

     N 

============== 

     1 

============== 

 L(m,n) 

    4.9348 

 

g(m)  

    1.3938 

 

alpha = 



 

228 

 

    0.2824 

 

 

============== 

     N 

============== 

     2 

============== 

 L(m,n) 

    4.9348         0 

         0   19.7392 

 

g(m)  

    1.3938   -0.6366 

 

alpha = 

    0.2824 

   -0.0323 

 

============== 

     N 

============== 

     3 
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============== 

L  

    4.9348         0         0 

         0   19.7392         0 

         0         0   44.4132 

 

g  

    1.3938 

   -0.6366 

    0.6175 

 

alpha = 

    0.2824 

   -0.0323 

    0.0139 

 

============== 

     N 

============== 

     5 

============== 

L  

    4.9348         0         0         0         0 
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         0   19.7392         0         0         0 

         0         0   44.4132         0         0 

         0         0         0   78.9568         0 

         0         0         0         0  123.3701 

 

g  

    1.3938 

   -0.6366 

    0.6175 

   -0.3183 

    0.3778 

 

alpha = 

    0.2824 

   -0.0323 

    0.0139 

   -0.0040 

    0.0031 
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Figure B-1.8.1        Graph of Exact and Approximate solution (Galerkin method), using                                  

1, 2, 3, and 5 expansion functions.     sinn x n x   is the  expansion function .  
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APPENDIX  C 

 C 3.1 Chiral media 

Because of novel features of chiral media, we have chosen our research field to be a chiral BOR 

enclosed within a perfectly conducting thin metallic BOR with apertures which is exactly similar in 

form and symmetrical around z-axis  with the chiral BOR.  

  Chiral media exhibit electromagnetic chirality which embraces optical activity and circular 

dichroism.  Optical activity refers to the rotation of the plane of polarization of optical waves by a 

medium while circular dichroism indicates a change in the polarization ellipticity of  optical waves  

medium.  Chiral media has been known in optics under the more common name of optically active 

materials.  Such materials are characterized by an intrinsic left- or right-handedness at optical 

frequencies, due to a helical natural structure.  Consequently, waves of different circular 

polarization propagate in these media at different velocities.  As a result linearly polarized 

electromagnetic wave incident on a chiral medium emerges with its plane of polarization rotated 

about its direction. 

  A chiral medium is a particular case of bi-isotropic medium, characterized by linear 

constitutive relations which couple the electric and magnetic field by three scalars  , ,    .  

Beside the potential application of chiral media in optical and sub-optical frequencies [58] [61], 

considerable interest has been generated in isotropic chiral media.  This interest is based on the 

existence of one additional parameter, the chirality admittance  , that could make the practical 

design more flexible. Chirality means a lack of bilateral symmetry. The most outstanding properties 

of chiral media concerning the propagation of electromagnetic fields are their ability for rotating the 

plane of polarization of an electromagnetic wave.  Electromagnetic properties of unbounded chiral 

media have been investigated and published [62] [65].  

 Electromagnetic plane wave scattering  and Maxwell's Equations  

The twentieth century has been the century of electromagnetic waves.  With Maxwell’s 

electromagnetic theory and Hertz’s experiments in the nineteenth century, as the point of departure, 

Marconi’s “wireless” communication systems have been running and various types of 

electromagnetic waves in the form of radio and television are now criss-crossing the earth, endlessly 

carrying information. 

  The wireless systems using the propagation of electromagnetic waves in space include 

other applications such as satellite communication systems, cell phones, automobile telephones, 

radar and GPS systems.   Waveguides and strip lines use the propagation of  electromagnetic waves 

over long tubes and strip conductors.  Optical fibers guide waves along thin dielectric wires called 

cores. 
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  The aforementioned phenomena or devices are all treated as electromagnetic wave 

problems in which Maxwell’s equations are to be solved under some boundary, media, or excitation 

conditions.  Maxwell’s equations form an intellectual edifice in this thesis.   

  

C_3.3  ELECTRIC AND MAGNETIC FIELD EQUATIONS AND FIELD SOURCES IN 

CHIRAL MEDIA  

In the past few years, the attention paid to the study of electromagnetic wave propagation in 

biisotropic and bianisotropic chiral media has increased notably.  This increasing interest is raised 

by the potential applications of the chiral material.  A chiral object is one that can not be brought 

into congruence with its mirror image by translation or rotation.  A collection of such objects is then 

characterized by right or left-handedness and, therefore, chirality means a lack of bilateral 

symmetry.  The most outstanding properties of chiral media concerning the propagation of 

electromagnetic fields are their ability for rotating the plane of polarization of an electromagnetic 

wave.   

  The description of chiral media is contained in the material parameters of the constitutive 

relations. The literature contains several ways of writing the constitutive relations for chiral media.  

We will use the following commonly used set of constitutive relations: 

j  D E H                            (C_3.1.1) 

j  B H E                 (C_3.1.2) 

where ,   and  are permittivity, permeability and chirality  of the chiral media.  Equations 

(C_3.1.1) and (C_3.1.2) can be cast into matrix form as 

j

j

 

 

     
     

     

D E

B H
              (C_3.1.3) 

We define the relative chirality r  as 

r





                (C_3.1.4) 

The Maxwell equations in frequency domain can be written as 

j   E B M               (C_3.1.5) 

j  H D J               (C_3.1.6) 
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where , ,E B D  and H  are the electromagnetic field vectors and J  and M are the electric and 

magnetic current source vectors.   

Substituting   (C_3.1.2) and (C_3.1.1), in (C_3.1.5) and (C_3.1.6), respectively, we obtain 

     j j j j j j                    E H E M H E M E H M       (C_3.1.7)  

 j j     H E H J              (C_3.1.8) 

Equations (C_3.1.7) and (C_3.1.8) can be cast in matrix form as 

j
j

j

 


 

         
         

       

E E M

H H J
                      (C_3.1.9)  

We denote 

j
K j

j

 


 

  
  

 
                        (C_3.1.10) 

and write  (C_3.1.9) as 

K
     

       
     

E E M

H H J
                       (C_3.1.11) 

Choose a matrix 

1 1

A j j

 

 
  
 
  

                            (C_3.1.12) 

The inverse of matrix A is 

1
11

12

j
A

j






 

  
 

                        (C_3.1.13) 

We can bring about diagonalization of matrix  A  

i.e., 
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1
0

0

k
A KA

k





 
  

 
                             (C_3.1.14) 

where 

     1 1 1r rk k


        




 
         

 

                              (C_3.1.15)          

and 

     1 1 1r rk k


        




 
         

 

                              (C_3.1.16) 

where  

k and    are given by  

k                             (C_3.1.17) 





                            (C_3.1.18) 

The right-handed (+) and left-handed ( ) fields and currents are defined by 

+ 1A



   
   

  

E E

E H
                                              (C_3.1. 19) 

+ 1A



   
    

  

M M

M J
                           (C_3.1.20) 

+
+ j


 

E
H                              (C_3.1.21) 

j



  
E

H                              (C_3.1.22) 

+
+ j


 

M
J                               (C_3.1.23) 
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j



  

M
J                               (C_3.1.24) 

Substituting (C_3.1.13) into (C_3.1.19), we obtain  

+ 11 1

12 2

j j

j j

 

 

        
        

      

E E E H

E H E H
                                   (C_3.1.25) 

i.e., 

 +

1

2
j E E H                         (C_3.1.26) 

 
1

2
j  E E H                          (C_3.1.27) 

Adding (C_3.1.26) and (C_3.1.27), we get 

+  E E E                         (C_3.1.28)  

Substituting  (C_3.1.26) into (C_3.1.21) and (C_3.1.27) into (C_3.1.22), we get 

 
+

1
12

2

j
j

j



 


 

    
 

E H
E

H H                      (C_3.1.29) 

and 

 
1

12

2

j
j

j



 



 

    
 

E H
E

H H                      (C_3.130) 

Adding  (C_3.1.29) and (C_3.1.30), we get 

+ H H + H                            (C_3.1.31) 

Similarly, substituting (C_3.1.13) into (C_3.1.20), we get 

+ 1
11 1

12 2

j j
A

j j

 

 





            
             

        

M M M M J

M J J M J
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i.e., 

 +

1

2
j M M J                         (C_3.1.32) 

and 

   
1

2
j  M M J                         (C_3.1.33) 

Adding (C_3.1.32) and (C_3.1.33), we get 

+  M M M                                     (C_3.1.34) 

Substituting (C_3.1.32) and (C_3.1.33) respectively into equations (C_3.1.23) and (C_3.1.24), we 

get 

 
+

1
12

2

j
j

j



 


 

    
 

M J

J J M                                     (C_3.1.35) 

and 

 
1

12

2

j
j

j



 



 

    
 

M J

J J M                                 (C_3.1.36) 

or 

1

2

j




 
  

 
J J M                                       (C_3.1.36a) 

Adding (C_3.1.35) and (C_3.1.36), we get 

+  J J J                          (C_3.1.37) 

From Equation (C_3.1.3), we get   

j  D E H                                        (C_3.1.38) 

and 
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j  B E H                                        (C_3.1.39) 

                     

By using  Equations (C_3.1.21),  (C_3.1.22), (C_3.1.28), and (C_3.1.31), we can write Equation 

(C_3.1.38) as 

+
+ + +j j j j j j       

 


  

   
           

   

E E
D E E H H E E  

+
+ +j j j j

 
     

   


 

       
               

       

E E
D E E E E                     (C_3.1.40) 

Similarly from Equation (C_3.1.39), we obtain  

      +
+ + +j j j j j     

 


  

 
          

 

E E
B E H E E H H E E

 

  +
+ +

j j
j j j j j

 
   

   


 

     
            

     

E E
B E E E E   

   
+ +

j jj j
j j

    
 

   
 

        
           
       

B E E E E                     (C_3.1.41)           

We can cast Equations (C_3.1.40) and (C_3.1.41) into matrix form as 

   
+

-j j

 
 

 

   

 

 
  

  
    
      
 
 

ED

EB
                         (C_3.1.42) 

We define the right-handed (+) and left-handed ( ) electric displacement  and magnetic  

flux density vectors D  and B  as 

+ +D E                           (C_3.1.43) 

  D E                          (C_3.1.44) 
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+ +B H                              (C_3.1.45) 

  B H                              (C_3.1.46)

 

 

where 


 


                                       (C_3.1.47)


 


                            (C_3.1.48)

                               (C_3.1.49) 

                              (C_3.1.50) 

Use of (C_3.1.40), (C_3.1.47), (C_3.1.48), (C_3.1.43), (C_3.1.26), and (C_3.1.44) gives 

D D D                               (C_3.1.51) 

Use of (C_3.1.41), (C_3.1.21), (C_3.1.22), (C_3.1.49), (C_3.1.50), and (C_3.1.46) gives  

B B B                              (C_3.1.52) 

From (C_3.1.15) 

1 1k
 

 
 



  
      

  
                       (C_3.1.53) 

Equation (C_3.1.53) is rewritten as 

 k


   




 
   

 
                        (C_3.1.54) 

Equations (C_3.1.49) and (C_3.1.47) simplify (C_3.1.54) to 

k                     (C_3.1.55) 

From (C_3.1.16) 
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1 1k
 

 
 



  
      

  
              (C_3.1.56) 

Equation (C_3.1.56) is rewritten as 

 k


   




 
   

 
                (C_3.1.57) 

Equations (C_3.1.50) and (C_3.1.48) simplify (C_3.1.57) to 

k                       (C_3.1.58) 

So far, we have formulated the values of 

+ + + + + +, , , , , , , , , , , , , ,          E E H H M M J J D D B B and  .  Now, we will formulate the values 

of  +E , E , +H and H in the following way; 

From Equation (C_3.1.19), we get 

+

-

A
  

   
   

EE

EH
                          (C_3.1.59) 

We now manipulate  (C_3.1.11), and (C_3.1.59)  

to obtain 

+

-

A K
      

         
      

EE E M

EH H J
                     (C_3.1.60) 

+ +
A K KA

 

         
            

        

E EE M M

E EH J J
 

i.e., 

+ +
A KA

 

     
       

    

E E M

E E J
                (C_3.1.61) 

Substituting values of  1A  and 1A KA from  (C_3.1.13) and (C_3.1.14) into the above Equation  
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we obtain 

0 11

0 12

k j

k j





  

  

          
                    

E E M

E E J
 

i.e., 

1

2

k j

k j





  

  

      
             

E E M J

E E M J
                  (C_3.1.62)

                 

From (C_3.1.32) and (C_3.1.33), 

 
1

2
j    M J M                  (C_3.1.63) 

 
1

2
j   M + J M                         (C_3.1.64) 

Substituting (C_3.1.63) and (C_3.1.64) into (C_3.1.62), we obtain 

k

k

   

   

     
       

      

E E M

E E M
 

i.e., 

k     E E M                         (C_3.1.65) 

k      E E M                         (C_3.1.66) 

From (C_3.1.21), 

j  E H                    (C_3.1.67) 

From (C_3.1.22), 

j E H                    (C_3.1.68) 

From (C_3.1.23), 
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jn M J                    (C_3.1.69) 

From (C_3.1.24), 

jn  M J                    (C_3.1.70) 

Substituting  (C_3.1.67)   (C_3.1.70)  into   (C_3.1.65) and (C_3.1.66), we obtain 

k     H H J                                  (C_3.1.71) 

and 

k      H H J                              (C_3.1.72) 

Substituting (C_3.1.67) into (C_3.1.65) and substituting (C_3.1.21) into (C_3.1.71), we obtain  

jk       E H M                 (C_3.1.73) 

k
j



   H E + J                  (C_3.1.74) 

Substituting (C_3.1.68) into (C_3.1.66) and substituting (C_3.1.22) into (C_3.1.72), we obtain 

jk       E H M                  (C_3.1.75) 

k
j



   H E + J                              (C_3.1.76) 

Wave impedance   and   are defined by 











                   (C_3.1.77) 

Substituting    (C_3.1.47)   (C_3.1.50)  into (C_3.1.77), we obtain 

 











                  (C_3.1.78) 

Equation (C_3.1.78) is rewritten as 
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 

1

1




 









                            (C_3.1.79) 

where   is given by (C_3.1.18).  In view of (C_3.1.18), 

1 1

  
                  (C_3.1.80) 

Equation (C_3.1.80) reduces (C_3.1.79) to 

                    (C_3.1.81) 

Using (C_3.1.81), (C_3.1.77), (C_3.1.55), and (C_3.1.58), we cast (C_3.1.73)   (C_3.1.76)   as 

j      E H M                 (C_3.1.82) 

j    H E + J                  (C_3.1.83) 

j      E H M                 (C_3.1.84) 

j    H E + J                  (C_3.1.85) 

Equations (C_3.1.82) and (C_3.1.83) are the Maxwell equations for the hypothetical medium 

characterized by  ,   .  Equations (C_3.1.84) and (C_3.1.85)  are the Maxwell equations for the 

hypothetical medium characterized by  ,   .  The electric and magnetic fields E and H  in the 

chiral medium are given by (C_3.1.28) and (C_3.1.31) where E  and H  are obtained by using 

vector and scalar potentials to solve (C_3.1.82) and (C_3.1.83), and E and H are obtained by 

similarly solving (C_3.1.84) and (C_3.1.85). 

The (+) subscripts appearing in all the above equations represent right-handed fields and 

waves and their constitutive parameters.  The right-handed fields are due to the right-handed 

sources radiating into a homogeneous isotropic medium characterized by  ,  
. 

The ( ) subscripts appearing in all the above equations represent left-handed fields and 

waves and their constitutive parameters.  The left-handed fields are due to the left-handed sources 

radiating into a homogeneous isotropic medium characterized by
 
 ,   . 
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C 3.2 The vector potential A  for an electric current source J  in a 

homogeneous medim 

For a vector field A  we will prove in the following steps that 0A = ; that is the 

divergence of the curl of any vector field is zero. 

ˆ ˆ ˆ

, ,

x y z

x y z x y z

A A A

      
  

      

x y z

A =  

, , , ,
y yx xz z

A AA AA A

x y z y z x z x y

              
            

               
A =  

y yx xz z
A AA AA A

x y z y x z z x y

         
         

            
A =  

2 22 22 2
y yx xz z

A AA AA A

x y x z y x y z z x z y

   
     

           
A =  

0A =  

because  
2 2

z zA A

x y y x

 


   
, 

2 2

y yA A

x z z x

 


   
, and 

2 2

x xA A

y z z y

 


     

One of the Maxwell's equations for time harmonic fields is 0B =  (the magnetic flux B  is 

always solenoidal) 

Any solenoidall vector is the is the curl of some other vector.  Hence 

0  B = B A                 (C_3.2.1)  

We will refer to A , vector potential.  A  is useful in solving for the electromagnetic field generated 

by a given harmonic electric current J .  We will particularize (C_3.2.1) as 

A A B H A                  (C_3.2.2) 

or 
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1
A


 H A                               (C_3.2.3) 

where subscript A indicates the field due to the A potential.   

 The time-harmonic Maxwell’s equations in terms of vector fields E  and H and sources  ,e J  in 

a simple (linear, isotropic, and homogeneous) medium are 

j  E H                           (C_3.2.3a) 

j  H J E                         (C_3.2.3b) 

e


 E                               (C_3.2.3c) 

0 H                               (C_3.2.3d)       

Substituting (C_3.2.2) into Maxwell’s curl equation (C_3.2.3a), we obtain 

A Aj j j  


 
        

 

A
E H A                              (C_3.2.4a) 

We can write the above equation as 

0A j   E A  

or 

  0A j  E A                            (C_3.2.4b) 

In general, as shown below, the curl of a gradient of a scalar is always zero. 

  , ,e e e
e

x y z

  


   
    

   

 
2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ 0e e e e e e
e

e e e

x y z y z y z x z x z x y x y

x y z

     


  

             
                 

                    

  

  

x y z

x y z  
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0e 
 

Furthermore, any curl-free vector is the gradient of some scalar so that  (C_3.2.4b) implies that
 

 A ej   E A                   (C_3.2.5) 

or 

A e j   E A                   (C_3.2.6) 

The scalar function e represents an arbitrary electric scalar potential which is a function of position. 

Taking the curl of both sides of (C_3.2.2),  

we get
1

A


  H A  

A H A                   (C_3.2.7) 

Now we will use the following vector identity and the above equation  

  2   A A A                         (C_3.2.8) 

to obtain  

  2

A   H A A                         (C_3.2.9) 

We will now use Maxwell’s Equation (C_3.2.3b) with fields subscripted with A to obtain  

A Aj  H J E                            (C_3.2.10a) 

or 

A Aj    H J E                                      (C_3.2.10b) 

Substituting Equation (C_3.2.10b) into (C_3.2.9), we get 

  2

A Aj       H J E = A A  

i.e., 
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  2

Aj    J E A A                        (C_3.2.11) 

Substituting (C_3.2.6) into the above equation we get 

  2( )ej j        J A A A  

i.e., 

     2 2 2( )e ej j j                  J A A A J A A A  

or 

     2 2 2 2

e ej k k j              J A A A A A J A  

or 

 2 2

ek j       A A J A                      (C_3.2.12) 

where  

2 2k    

A vector is uniquely determined by its curl and divergence .  In (C_3.2.1), we specified the curl of 

A .  We are still free to choose the divergence of A .  In order to simplify (C_3.2.12), let 

1
e ej

j
 


      A A                     (C_3.2.13) 

which is known as the Lorentz condition.  Before (C_3.2.13) is applied e  is arbitrary but after 

(C_3.2.13) is applied e  is no longer arbitrary. Substituting (C_3.2.13) into (C_3.2.12), we get 

 2 2 2 21
( )k j k

j
  



 
                

 
A A J A A A A J A A  

i.e., 

2 2k    A A J                        (C_3.2.14) 

Now substituting (C_3.2.13) into (C_3.2.6), we get 
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 
1 1

( )A e A Aj j j
j j

   
 

              E A E A A E A A  

 
1

A j j


    E A A                                                                        (C_3.2.15) 

That is,              

once A  and e  are known, AH can be found from  (C_3.2.2) and AE  from either  (C_3.2.6) or  

(C_3.2.15). 

3.3  The vector potential F  for a magnetic current source M  in a homogeneous 

medium 

Although magnetic currents appear to be physically unrealizable, equivalent magnetic currents arise 

when we use the volume or surface equivalence theorems.  The fields  generated by a harmonic 

magnetic current in a homogeneous region, with 0J  but 0M  must satisfy 0 D .  Therefore 

FE can be expressed as the curl of the vector potential F  by  

F

1


  E F                   (C_3.3.1) 

We can particularize Maxwell’s curl equation j  H J E  as 

F Fj H E     (as 0J  )                 (C_3.3.2) 

Substituting (C_3.3.1) into (C_3.3.2), we get 

F

1
j j 



 
       

 
H F F  

i.e., 

 F 0j  H F                   (C_3.3.3) 

Because a vector whose curl is zero can be written as the gradient of a scalar, it follows that 

F m j   H F                               (C_3.3.4) 

where m  represents an arbitrary magnetic scalar potential which is a function of position. 



 

249 

 

Taking the curl of (C_3.3.1), we get 

F

1


   E F  

Now we will use the following vector identity to simplify the above equation 

  2   F F F                          (C_3.3.5) 

as 

2

F

1


      E F F                         (C_3.3.6) 

We will now particularize the Maxwell’s equation  

j   E M H  

as 

F Fj   E M H                          (C_3.3.7)

  

Now substituting (C_3.3.7) into (C_3.3.6), we get 

2 2

F F

1 1
j

 
                E F F M H F F  

The above can be simplified as 

 2 2

F F

1
j j  


                M H F F M H F F  

i.e., 

2

Fj    F H F M                  (C_3.3.8) 

Substituting (C_3.3.4) into (C_3.3.8), we get 

   2 2 2

m mj j j k               F F F M F F F M  

i.e., 
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 2 2 ( ) mk j       F F M F                                   (C_3.3.9) 

  

By letting 

1
m mj

j
 


      F F                (C_3.3.10) 

and substituting the above equation into (C_3.3.9), we get 

2 2 1
( ) ( ) ( ) ( )k j

j
  



  
                

  
F F M F F M F F  

i.e., 

2 2k    F F M                   (C_3.3.11) 

Now substituting (C_3.3.10) into (C_3.3.4), we get 

F F

1 1
( )j j

j j
 

 

   
             

   
H F F H F F  

i.e., 

  F

j
j


    H F F                                                                    (C_3.3.12)

        

Once F  and e  are known FE  can be found from (C_3.3.1) and FH  from either (C_3.3.4)  or 

(C_3.3.12) 

C 3.4  Electric and magnetic fields for electric ( J )  and magnetic (M ) current 

sources 

In Sections 3.2 and 3.3 we developed equations that can be used to find the electric and magnetic 

fields generated by an electric current source  J  and a magnetic current source M . The procedure 

requires that the potential functions A and F generated, respectively, by J  and M are found first.  

In turn, the corresponding electric and magnetic fields are then determined ( A A,E H due to A and 

F F,E H  due to F ).  The total fields are then obtained by superposition of the individual fields due to 

A and F  ( J  and  M ). 
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 In summary form, the procedure that can be used to find the fields is as follows: 

Summary 

1. Specify  J  and  M  (electric and magnetic current source). 

2. a.  Find A  ( due to J  ) using     

4

jkR

V

e
dv

R







 A J                (C_3.4.1) 

             which is the solution of the inhomogeneous vector wave equation of (C_3.2.14) 

 b.  Find  F  ( due to  M  ) using   

  
4

jkR

V

e
dv

R







 F M                             (C_3.4.2) 

 which is the solution of the inhomogeneous vector wave equation  of (C_3.3.11). 

In (C_3.4.1) and  (C_3.4.2), 2 2k    and R is the distance from any point in the source to the 

observation point.   

a.  Find  AH  using (C_3.2.2)  and    AE using either (C_3.2.6)  or (C_3.2.15). 

b. Find  FE  using (C_3.3.1)  and FH  using either (C_3.3.4) or (C_3.3.12). 

3. The total fields are then given by 

A F

1
ej 


      E E E A F                (C_3.4.3a)

           

         A F

1 1
j j

 
        E E E A A F                                    (C_3.4.3b) 

        A F

1
mj 


     H H H A F                                     (C_3.4.4a)   

        or      
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        A F

1 1
j j

 
       H H H A F F                                                          (C_3.4.4b)  

C 3.5 Equivalent representations in chiral media of equations (C_3.4.3a) and       

  (C_3.4.4a) 

Equivalent representations in chiral media of equations (C_3.4.3a) and (C_3.4.4a), which are 

reproduced below are the following equations: 

A F

1
ej 

  



      E E E A F  

A F

1
mj 


   



     H H H A F  

We will replace ,e  which represents an electric scalar potential which is a function of position, 

with V   and replace  ,m  which represents a magnetic scalar potential which is a function of 

position, with U  and write the above two equations as 

     
 r

r j r V r




  




    

F
E A                (C_3.5.1) 

     
 r

r j r U r




  




    

A
H F                (C_3.5.2) 

where 

 + +,E H represents the right handed electromagnetic field in the chiral media, and  - -,E H  

represents the left-handed electromagnetic field in the chiral media.  

In (C_3.5.1) and (C_3.5.2),  

     ,
4

G ds





  
    A r J r r r              (C_3.5.3) 

     ,
4

G ds





  
    F r M r r r               (C_3.5.4) 

     
1

,
4

eV G ds


  



    r r r r               (C_3.5.5) 
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     
1

,
4

mU G ds


  



    r r r r               (C_3.5.6) 

  -1
,

-

jk
G e  


 



r r
r r

r r
              (C_3.5.7) 

The electric surface charge density e    and the magnetic surface charge density m   are given in 

terms of   J and  M as 

   
1

e s
j




 
     r J r                  (C_3.5.8) 

    
1

m s
j




 
     r M r                 (C_3.5.9) 

The scattering problem will be formulated with J  and  M  as independent unknowns.   For this 

purpose we will substitute Equations (C_3.1.35) and (C_3.1.36), which are reproduced below 

 
+

1
12

2

j
j

j



 


 

    
 

M J

J J M                                     (C_3.5.10) 

and 

 
1

12

2

j
j

j



 


 

    
 

-

M J

J J M                                   (C_3.5.11) 

i.e., substituting 

1

2

j




 
  

 
J J M                         (C_3.5.12) 

into  (C_3.5.3), we get 

       
1

, ,
4 4 2

j
G ds G ds

 

  
 

   

 
        

 
 A r J r r r J M r r  

i.e., 
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       
1 1

, ,
4 2 4 2

j
G ds G ds

 

  
 

  

 
       

 
 A r J r r r M r r                    (C_3.5.13) 

From (C_3.1.81), (C_3.1.77), we obtain 


 








                               (C_3.5.14) 

Substituting (C_3.5.14)  into (C_3.5.13), we get 

       
1 1

, ,
4 2 4 2

j
G ds G ds

 

  



 
  





 
 
      
 
 
  

 A r J r r r M r r  

i.e., 

         
1 1

, ,
4 2 4 2

G ds j G ds
  

  
  

  



 
        

 
 A r J r r r M r r         

i.e., 

         
1 1

, ,
4 2 4 2

G ds j G d
   

   
   

  

 

  
        

  
 A r J r r r M r r  

i.e., 

         
1 1

, ,
4 2 4 2

G ds j G ds
  

  
  

  



 
        

 
 A r J r r r M r r  

i.e., 

         
1 1

, ,
4 2 4 2

G ds j G ds
 


 
 

  
       A r J r r r M r r                          (C_3.5.15) 

with  

     ,
4

G ds





 
   A r J r r r                 (C_3.5.16) 
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and 

     ,
4

G ds





 
   F r M r r r                   (C_3.5.17) 

we can write Equation (C_3.5.15) as 

      
1

2
j  

 A r A r F r                                                   (C_3.5.18)          

Similarly combining (C_3.1.32) and (C_3.1.33), which are, 

 +

1

2
j M M J                        (C_3.5.19) 

 -

1

2
j M M J                     (C_3.5.20) 

as 

 
1

2
j  M M J                         (C_3.5.21) 

and substituting the above equation into  (C_3.5.4), we get 

           
1 1 1

, , ,
4 2 4 2 4 2

j G ds G ds j G ds
  

 
  
  

   

 
          

 
  F r M J r r M r r J r r  

now substituting Equation (C_3.5.14) into the above equation, we get 

     
1 1

, ,
4 2 4 2

G ds j G ds
  

  
  

  



 
        

 
 F r M r r J r r  

i.e., 

       
1 1

, ,
4 2 4 2

G ds j G ds
   

   
   

  

 

  
         

  
 F r M r r J r r  

i.e., 
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       
1 1

, ,
4 2 4 2

G ds j G ds
  

  
  

  



 
        

 
 F r M r r J r r          

i.e., 

       
1 1 1

, ,
4 2 4 2

G ds j G ds
 

  
 

  

 
       

 
 F r M r r J r r                          (C_3.5.22) 

Equation (C_3.5.17) is rewritten as 

     
1

2

j


  

  
    

  
F r F r A r                                                                (C_3.5.23) 

where  A r  and  F r  are defined by (C_3.5.16) and (C_3.5.17), respectively 

In a similar way , we derive the following two equations 

      
1

V V
2

j U  
 r r r                   (C_3.5.24) 

and 

     
1

V
2

j
U U


  

 
   

 
r r r                  (C_3.5.25) 

where  

     
1

V ,
4

e G ds


 



   r r r r                (C_3.5.26)       

and 

     
1

,
4

mU G ds


 



   r r r r                  (C_3.5.27) 

The electric surface charge density and the magnetic surface charge density are given in terms of J  

and M  as 
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   
1

e s
j




     r J r                    (C_3.5.28)            

 

   
1

m s
j




     r M r                    (C_3.5.29) 

Now, we expand  (C_3.5.1), reproduced below 

     
 

j V




  




    

F r
E r A r r       (C_3.5.30) 

as 

     
 

+ j V




 




    

F r
E r A r r                  (C_3.5.31) 

and             

     
 

j V




  




    

F r
E r A r r               (C_3.5.32) 

In (C_3.5.31) and (C_3.5.32),  
A r ,  F r , and  V

 r  are, according to (C_3.5.18), (C_3.5.23), 

and (C_3.5.24), respectively, given by  

      
1

2
j  

 A r A r F r                                                                 (C_3.5.33) 

     
1

2

j


  

  
    

  
F r F r A r                                                                            (C_3.5.34)

      
1

V
2

V j U  
 r r r                               (C_3.5.35) 

Equation (C_3.1.28), reproduced below, is 

      E r E r + E r                       (C_3.5.36) 

First, we substitute (C_3.5.31)  and (C_3.5.32) into (C_3.5.36) to get  
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         
 

   
 

+ j V j V 
 

 

    

 

 
           

F r F r
E r E r E r A r r A r r  

     
   

   j j V V 
 

 

   

 

 
         

F r F r
E r A r A r r r  

     
   

   j V V
 

 

   

 

 
 

   
                 

  
 
 

F r F r
E r A r A r r r

 

Substituting (C_3.5.33)   (C_3.5.35)   into the above equation, we obtain 

               
1 1 1 1

2 2 2

j
j j j  

 
     




      

           
       



E r A r F r A r F r F r A r  

 `              
1 1 1 1

2 2 2

j
V j U V j U 

 
     






     
           

      



F r A r r r r r      

                  (C_3.5.37) 

Knowing that  
 


  

 

 

   , we can obtain 

           
j j j

           
 

 

     

       
 

 

 
                           
  

A r A r A r A r A r A r
 

         
   

j
k k

  

 

 
   

 

A r A r

     (C_3.5.38) 
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 Substituting (C_3.5.38) into (C_3.5.37), we get 

         
   1

2
j V V

 

 

   

 


 

              
 



F r F r
E r A r A r r r  

         
   

j U U j
k k

    

   

 




 
               

 



A r A r
F r F r r r  

                       (C_3.5.39) 

Now, we expand (C_3.5.2), reproduced below, 

     
 r

r j r U r




  




    

A
H F                 (C_3.5.40) 

     
 r

r j r U r




  




    

A
H F       (C_3.5.41) 

     
 r

r j r U r




  




    

A
H F       (C_3.5.42) 

In (C_3.5.41) and (C_3.5.42), 
A , 

F , and U
  are, according to (C_3.5.18), (C_3.5.23), and 

(C_3.5.25), respectively given by  

      
1

2
j  

 A r A r F r         (C_3.5.43) 

     
1

2

j


  

  
    

  
F r F r A r        (C_3.5.44) 

     
1

V
2

j
U U


  

 
   

 
r r r         (C_3.5.45) 

Equation (C_3.1.31),reproduced below, is 
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+ H H + H           (C_3.4.46) 

First, we substitute (C_3.5.41) and (C_3.5.42) into (C_3.5.46) to get 

     
 

   
 r r

r j r U r j r U r 
 

 

   

 

 
         

A A
H F F  

     
   

   
r r

r j r r U r U r
 

 

   

 

  
                

 

A A
H F F  

Substituting (C_3.5.43)   (C_3.5.45)   into the above equation, we obtain 

         
1 1

2 2

j j
r j

 
   




       
            

         



H F r A r F r A r  

                     
         

1 1

2 2
j j 

 

   

 

 
  

  
 
 

A r F r A r F r

 

                                
1 1

V V
2 2

j j
U U

 
   




     
        

    



r r r r  

         
1 1

2 2

j j
r j

 
   




       
            

         



H F r A r F r A r  

                               
1 1 1 1

2 2
j j 

 
   

 

   
      

   
A r F r A r F r  
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                                      
1 1

V V
2 2

j j
U U

 
   




     
        

    



r r r r   (C_3.5.47) 

knowing that 
 


  

 

 

   , we will simplify the middle two terms in (C_3.5.47) 

         

   
   

1 1 1 1

2 2

1 1 1 1

2 2 2 2

j j

j

 
 

 

   

   

 

 

 

   

   
      

   

   
        

  

A r F r A r F r

F r F r
A r A r

 

         

   
   

1 1 1 1

2 2

1 1 1 1

2 2 2 2

j j

j

 
 

 

 

   

   

 

 
 

 

 

   

   
      

   

 
 

           
 
  

A r F r A r F r

F r F r

A r A r

 

         

   
   

1 1 1 1

2 2

1 1 1 1

2 22 2

j j

j

 
 

    

   

 

 

 

    

   
      

   

   
        

    

A r F r A r F r

F r F r
A r A r

 

         

   
   

1 1 1 1

2 2

1 1 1 1

2 22 2

j j

j

 
 


      

   

 

 

 

    

   
      

   

   
        

    

A r F r A r F r

F r F r
A r A r

 

         
1 1 1 1

2 2
j j 

 
   

 

   
      

   
A r F r A r F r  
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   

   
1 1 1 1

2 2 2 2
j

k k


 

 

 

   

   
        

  

F r F r
A r A r   (C_3.5.48) 

Substituting (C_3.5.48) into (C_3.5.47), we get 

         
1 1

2 2

j j
r j

 
   




       
            

         



H F r A r F r A r

 

                 
   

   
1 1 1 1

2 2 2 2
j

k k


 

 

 

   

   
       

  

F r F r
A r A r     

                                            
1 1

V V
2 2

j j
U U

 
   




     
        

    



r r r r

          
1

2

j j
r j





   


   

           
 



H F r F r A r A r   

   
   

   
1 1

j
k k


 

 

 

   

   
       

  

F r F r
A r A r    

                                     V V
j j

U U
 

   




   
      

  



r r r r

          
1

2
r j U U    




         



H F r F r r r  

          
1 1 

  
   

 

 
       

 
A r A r A r A r  
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         
   

V V
j

j
k k




 

 

 




 
         

 



F r F r
r r   (C_3.5.49) 
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THE FOLLOWING SET OF EQUATIONS REPRESENT THE   ELECTRIC AND 

MAGNETIC FIELDS OF ELECTRIC AND MAGNETIC CURRENT SOURCES IN 

CHIRAL MEDIA 

 

         
   1

2
j V V

 

 

   

 


 

              
 



F r F r
E r A r A r r r  

         
   

j U U j
k k

    

   

 




 
               

 



A r A r
F r F r r r  

                                                           (C_3.5.50) 

 

         
   1

2
j U U

 

 

   

 


 

              
 



A r A r
H r F r F r r r  

              
   j

V V j
k k




 

 

   

 




 
               

 



F r F r
A r A r r r  

                              (C_3.5.51) 

Where (see (C_3.5.16), (C_3.5.17), (C_3.5.26), (C_3.5.27), (C_3.5.7), (C3.5.28), and 

((C_3.5.29),respectively) 

 

     ,
4

G ds





 
   A r J r r r     (C_3.5.52) 

     ,
4

G ds





 
   F r M r r r     (C_3.5.53)
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     
1

,
4

eV G ds


 



   r r r r     (C_3.5.54) 

     
1

,
4

mU G ds


 



   r r r r     (C_3.5.55) 

  -1
,

-

jk
G e  


 



r r
r r

r r
     (C_3_.5.56) 

   
1

e Sr J r
j




                                                                            (C_3.5.57) 

   
1

m Sr M r
j




                                                                          (C_3.5.58) 

 

 

When the chirality 0  , 

      ,  A r A r A r  

       F r F r F r  

     V V V  r r r  

     U U U  r r r  

      

      

  With the above substitutions (3.5.50) and (3.5.51)reduce to: 

       
1

j V


    E r A r r F r               (C_3.5.59) 

       
1

j U


    H r F r r A r               (C_3.5.60)  
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APPENDIX  D 

 

x-axis 

y-axis 

z-axis 

ŷ  

ẑ  

x̂  

angle   angle   

z  

z  

y 

x 

r  

r  

r r  

ˆ   
̂  

  

  

with reference to the above Figure, we deduce:  

ˆ ˆ ˆx y z  r x y z  ......  1
 

ˆ ˆ ˆx y z     r x y z ......  2
 

     ˆ ˆ ˆx x y y z z         r r x y z .....  3
 

     
2 2 2

x x y y z z         r r .......  4
 

ˆ ˆ ˆcos sin   x y  ....  5
 

ˆ ˆ ˆcos sin x y  ...  6
 

 

Figure D-1 
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Figure D-1 Rectangular and Cylindrical Coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ ˆ ˆ ˆ ˆcos sinz z       r z = x y z ...  7
 

ˆ ˆ ˆ ˆ ˆcos sinz z               r z = x y z .....  8

     ˆ ˆ ˆcos cos sin sin z z                  r r x y z ......  9  

     
2 2 2

cos cos sin sin z z                  r r  ......  10   
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t̂  

̂  

angle   

angle   

x-axis 

y-axis 

x̂  

ŷ  

z-axis 

̂  

y-axis 

ˆ ˆ ˆsin cos t = z

ˆ ˆ ˆˆ ˆ ˆ ˆcos sin cos sin      x y x y  

ˆ ˆ ˆ ˆsin cos sin sin cos     t = x y z  

 

angle  90   

ˆ ˆ ˆˆ ˆ ˆ ˆsin cos sin cos    x y = x y       

t̂  

Figure D2 Three dimensional  

directional vector relationships 
̂  

angle    
x-axis 

̂  
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From Figure  D 2,  we deduce: 

ˆ ˆ ˆsin cos t = z           (D.1)

ˆ ˆ ˆcos sin  x y           (D.2)

ˆ ˆ ˆ ˆsin cos sin sin cos     t = x y z         (D.3)

ˆ ˆ ˆsin cos x y             (D.4) 

Following the same steps as applied in the derivation of vectors t̂ , ̂  and ̂ , we can derive the 

following: ˆ ˆ ˆsin cos    t = z          (D.5)

ˆ ˆ ˆˆ ˆ ˆ ˆcos sin cos sin            x y x y          (D.6)

ˆ ˆ ˆ ˆsin cos sin sin cos          t = x y z        (D.7)

ˆ ˆ ˆˆ ˆ ˆ ˆsin cos sin cos          x y = x y            (D.8) 

From  Figure D1, we obtain 

     ˆ ˆ ˆcos cos sin sin z z                  r r x y z      (D.9) 

     
2 2 2

cos cos sin sin z z                  r r             (D.10) 

     ˆ ˆ ˆx x y y z z         r r x y z        (D.11) 

     
2 2 2

x x y y z z         r r        (D.12) 

   From  (A.7) and (A.9), we get  

    (D.13)           

 

from (D.3) and (D.13), we get 

 

 

     

ˆ ˆ ˆ

ˆ sin cos sin sin cos

cos cos sin sin z z

    

       

        

      

x y z

t r r
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                                   (D.14 )  

We will expand the above matrix equation in the following steps: 

 

       

                             

      ˆ ˆ sin sin sin cos sin cosz z v v             t t r r  

       sin cos cos sin sin sin cos cosv v                     

        sin cos cos sin sin sin cos cosv v                    

      ˆ ˆ sin sin sin cos sin cosz z v v             t t r r  

       sin cos sin cos sin cos sin cos sin cosv v                      

         sin cos sin cos sin cos sin cos sin cosv v                  (D.15) 

        ˆ ˆ sin sin sin sin cos sinz z v v v v                t t r r  

                                                sin cos sinv v        

       ˆ ˆ sin cos sin cos sin sin sinv v v v z z v v                 t t r r   (D.16) 

From (D.3),  (D.7), and (D.12),  we get 

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin sin sin cos sin cos sin sin cosv v v v v v             t t = x y z x y z  

ˆ ˆ cos sin sin cos sin sin sin sin cos cosv v v v v v          t t =  

  
     

cos sin sin sin cos

ˆ ˆ sin cos sin sin cos

cos cos sin sin z z

    

    

       

         

      

t t r r

  ˆ ˆ    t t r r    cos sin z z sin sin cos sin sin                 

   sin sin z z sin cos cos cos cos                  

   cos sin cos sin sin sin sin cos cos                        
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 ˆ ˆ sin sin cos cos sin sin cos cosv v v v         t t =  

 ˆ ˆ sin sin cos cos cosv v v v      t t =        (D.17) 

From (D.4) and (D.7), we obtain 

   ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos sin cos sin sin cos                t = x y x y z   

ˆ ˆ sin sin cos cos sin sin           t =   

 ˆ ˆ sin cos sin sin cos        t =   

 ˆ ˆ sin sin     t =
          (D.18) 

From (D.4) and (D.8), we obtain 

   ˆ ˆ ˆ ˆ ˆ ˆsin cos sin cos          x y x y   
 

   ˆ ˆ ˆ ˆ ˆ ˆsin cos sin cos          x y x y   
 

ˆ ˆ sin sin cos cos         
 

          

               (D_19) 

           (D.20)    

                   (D.21) 

And 

     
2 2 2

x x y y z z         r r

  ˆ ˆ ˆ
jk

e
G

x y z

  



   
      

       

r r

r r x y z
r r

ˆ ˆ cos( )     
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      (D.22) 

And 

 

 

And 

 

 

 

And 

  ˆ ˆ ˆ
jk

e
G

x y z

  



   
     

    

r r

r r x y z
r r

     

     

1
2 2 2 2x x y y z z

1
2 2 2 2x x y y z z

jkjk
e e

x x




            

 
  

  
              

  

r r

r r

     

     

1
2 2 2 2x x y y z z

1
2 2 2 2x x y y z z

jkjk
e e

x x




            

 
  

  
            

  

r r

r r

     
     

1
2 2 2 2

1
x x y y z z 2 2 2 2x x y y z z

jk
jke

e
x x




            

                              

r r

r r

     
     

1
2 2 2 2

1
x x y y z z 2 2 2 2x x y y z z

jk
jke

e
x x




            

                            

r r

r r

       
     

         

     
         

1
2 2 2 2

1
2 2 2 2

1
x x y y z z2 2 2 2

1
2 2 2 2

3
x x y y z z 2 2 2 2

1
x x y y z z

2

2 x x 1 x x y y z z

1
x x y y z z 2 x x 1

2

jk

jk

jk

jk e

e

x

e







           


  

          

  
           

 

                     

 
               

 

r r

r r


 
 
 
 


 
 
 
 
 



 

273 

 

 

 

And 

 
  3

21 1
2

2 2

jk
jk jkx xe

jk e e x x
x



 

 
    



    
      

          

r r
r r r r

r r r r r r r r
 

 2 3

1
jk

jkjke
x x e

x





 
 

   
   

       

r r
r r

r r r r r r
 

And 

 2 3

1
jk

jkjke
x x e

x





 
 

   
    

      

r r
r r

r r r r r r
 

 

 3

1jk
jkjke

x x e
x





 
 

    
  

     

r r
r rr r

r r r r
       (D.23) 

And 

 3

1jk
jkjke

x x e
x





 
 

    
   

    

r r
r rr r

r r r r
      (D.24) 

Carrying out the same steps as done in the derivation of (D.23) and (D.24 ), we get 

       
     

         

     
         

1
2 2 2 2

1
2 2 2 2

1
x x y y z z2 2 2 2

1
2 2 2 2

3
x x y y z z 2 2 2 2

1
x x y y z z

2

2 x x 1 x x y y z z

1
x x y y z z 2 x x 1

2

jk

jk

jk

jk e

e

x

e







           


  

          

  
              


                   

 
              

 

r r

r r






 


 
 
 
 
 

 
  3

21 1
2 x x

2 2

jk
jk jkx xe

jk e e
x



    

 
 



     
       

           

r r r r

r r

r r r r r r r r
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                               (D.25) 

And 

       (D.26) 

                                                                (D.27) 

And 

       (D.28) 

Substituting (D.23), (D.25), and (D.27) into (D.21), we get 

 

 

 

               (D.29) 

W can write (D.29) as 

    G R G R 
    r r          (D.30) 

where 

 3

1jk
jkjke

y y e
y





 
 

    
  

     

r r
r rr r

r r r r

 3

1jk
jkjke

y y e
y





 
 

    
   

    

r r
r rr r

r r r r

 3

1jk
jkjke

z z e
z





 
 

    
  

     

r r
r rr r

r r r r

 3

1jk
jkjke

z z e
z





 
 

    
   

    

r r
r rr r

r r r r

       3 3 3

1 1 1
ˆ ˆ ˆx x

jkjk jk jk
G y y z z e     



         
            

      

r rr r r r r r
r r x y z

r r r r r r

       3

1
ˆ ˆ ˆx x

jkjk
G y y z z e   



   
              

  

r rr r
r r x y z

r r

   3

1 jkjk
G e   



   
      

  

r rr r
r r r r

r r

   3

1 jkjk
G e   



   
      

  

r rr r
r r r r

r r
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  3

1 jk Rjk R
G R e

R





            (D.31) 

In a similar way, we can derive 

   3

1
ejk Re

e

jk R
G R e

R

 
    

 
r r         (D.32) 

W can write (D.33) as 

    e eG R G R    r r          (D.33) 

where 

  3

1
ejk Re

e

jk R
G R e

R


            (D.34) 

Substituting (D.24), (D.26), and (D.28) into (D.22), we get 

        3

1
ˆ ˆ ˆ jkjk

G x x y y z z e
 



  
           

  

r rr r
r r x y z

r r
     

  

               (D.35) 

From (D.29) and (D.35) , we conclude  

   G G 
      r r r r          (D.36) 

that is, the gradient of  G
r r  with respect to the primed variables equals the negative of the 

gradient of  G
r r  with respect to the unprimed variables.  

Since the term    in (D.29) is a scalar term, hence we can write 

   3

1 jkjk
G e   



   
      

  

r rr r
r r r r

r r

3

1 jkjk
e   

 



r rr r

r r
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                 (D.37) 

substituting (D.16 ) in (D.37), we get 

  

                      ( D.38) 

Equations (D.8), and (D.3) are recalled as 

                    (D.39) 

                 ( D.40) 

 

 

         (D.41)  

Equation (D.9) is repeated as  

               (D.42)   

                      (D.43) 

Using (D.35), (D.34), and (D.37), we get 

 

 

     3

1
ˆ ˆ ˆ ˆjkjk

G e   



   
           

  

r rr r
t t r r t t r r

r r

       3

1
ˆ ˆ sin cos sin cos z z sin sin sin

jkjk
G e            



   
                 

  

r rr r
t t r r

r r

ˆ ˆsin cos   x y  

ˆ ˆ ˆ ˆsin cos sin sin cos      t x y z

ˆˆ sin sin cos sin cos sin         t   

 ˆˆ sin sin cos cos sin        t   

 ˆˆ sin sin     t  

       ˆ ˆ ˆcos cos sin sin z z                  r r x y z

ˆ ˆsin cos   x y  

  
     

sin cos sin sin cos

ˆˆ sin cos 0

cos cos sin sin z z

    

 

       

       

      

t r r

  
       

     

sin cos cos z z sin sin sin z z
ˆˆ

cos sin sin sin cos cos cos

     

          

        
      

             

t r r
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    (D.44) 

From (D.4), (D.7), and (D.9), we derive 

  
     

sin cos 0

ˆ ˆ ˆ ˆ sin cos sin sin cos

cos cos sin sin

v v v

z z

 

 

       



         

      

t r r  

        ˆ ˆ ˆ ˆ sin sin sin sin sin cosv z z v                     t r r  

        cos sin cos cos cos cosv z z v                  

      ˆ ˆ ˆ ˆ sin sin sin sin sin sin cosv z z v                    t r r  

      cos sin cos cos cos cos cosv z z v                 

      2ˆ ˆ ˆ ˆ sin sin sin cos cos sin cosv z z v                  t r r  

     2sin sin cos cos cos cos cos cosv v v                  

        2 2ˆ ˆ ˆ ˆ sin cos sin cos cosv z z v                 t r r  

             sin sin cos cos cosv           

  
  

2 2

sin z z cos cos sin sin
ˆˆ

cos sin sin sin cos cos cos

    

          

     
      

             

t r r

  
   

 

sin z z cos
ˆˆ

cos cos cos sin sin

  

      

    
      

         

t r r

  
   

 

sin z z cos
ˆˆ

cos cos

  

    

    
      

        

t r r

        ˆˆ cos cos cos sin z z cos                     t r r

       ˆˆ cos cos z z sin cos                 t r r
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        ˆ ˆ ˆ ˆ sin cos cos cos cosv z z v v                       t r r  

      ˆ ˆ ˆ ˆ cos cos sin cosv v v z z                     t r r  

      ˆ ˆ ˆ ˆ cos cos sin cosv v z z v                    t r r     (D.45) 

From (D.4), (D.7), and (D.38), we obtain 

  
     

sin cos 0

ˆ ˆ ˆ ˆ sin cos 0

cos cos sin sin z z

 

 

       



       

      

r r   

        ˆ ˆ ˆ ˆ sin cos cos sinz z z z                       r r   

     ˆ ˆ ˆ ˆ sin cos cos sinz z              r r   

      ˆ ˆ ˆ ˆ sinz z           r r   

      ˆ ˆ ˆ ˆ sinz z           r r          (D.46) 

Trigonometric identities: 

        
1

sin sin cos cos
2

mx nx m n x m n x               (D.47) 

        
1

sin cos sin sin
2

mx nx m n x m n x               (D.48) 

        
1

cos cos cos cos
2

mx nx m n x m n x               (D.49) 
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