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Abstract

We compare the resonant and non-resonant contributions in various regions of phase
space for the D → Kπ semileptonic transition amplitude, computed in a chiral model
which incorporates the heavy quark symmetry. Remarks on the significance for experi-
ment and for chiral perturbation theory are made.
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1. INTRODUCTION

In this note we shall examine the weak hadronic current matrix element for the decay

D0 → K−π0e+νe using a chiral Lagrangian which incorporates the heavy quark symmetry.

Previous works have treated this process in a chiral model which includes only light

pseudoscalars [1] and in chiral models with both light pseudoscalars and light vectors

present but with the approximation that the decay be replaced by D0 → K∗−e+νe [2-6].

Here we will consider both contributions together. This is interesting, of course, in its own

right. It also holds some interest for the question of what is the best way to incorporate

vector mesons in the chiral perturbation theory program [7]. It may actually be easier to

investigate this question in the framework of chiral light-heavy interactions rather than

light-light interactions since the “heavy end” might eventually be under better control.

For the present process we find that there is no region of phase space in which the light

vector K∗ piece does not make a non-negligible contribution and that it is typically very

dominant. This perhaps suggests the adoption of a framework in which light pseudoscalars

and light vectors are treated together from the beginning.

The detailed points include the discussion of the way the chiral theorem is maintained

in the appropriate unphysical limit and the treatment of the phase space kinematics for

the hadronic matrix element. The transition amplitude is given in Section 2 (see also

the Appendix) after our notation has been introduced. Section 3 contains the kinematics

and the comparison of the resonant and non-resonant pieces of the amplitude in various

regions of phase space. Some caveats and remarks on the experimental aspect of K∗

dominance are given in Section 4.
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2. Decay Amplitudes

We are interested in the chiral invariant interactions of both the light pseudoscalar

nonet φ(x) and the light vector nonet ρµ(x) with the heavy meson field. We shall follow

the notation of Ref. [3]; other treatments include Refs. [2, 4, 5, 6]. The chiral interactions

involving only the light pseudoscalars were discussed in Ref. [8]. Using the “heavy field”

H(x) which contains both heavy pseudoscalar as well as heavy vector pieces, the leading

order (in heavy meson mass M and in number of derivatives of the light fields) strong

interaction is compactly written as [3]:

1

M
Llight − heavy = iVµ Tr {H [∂µ − iαg̃ρµ − i(1 − α)vµ]H}

+ id Tr [Hγµγ5pµH] +
ic

mv
Tr [HγµγνFµν(ρ)H ], (2.1)

wherein mv is the light vector meson mass introduced just to keep the coupling constant

c dimensionless and

vµ, pµ =
i

2
(ξ∂µξ

† ± ξ†∂µξ), (2.2)

with the chiral matrix ξ = exp(iφ/Fπ). Furthermore our normalization convention sets

Fπ ≃ 132 MeV. Vµ is the heavy meson 4-velocity and the heavy field H here is taken

to have the canonical dimension of one. g̃ ≃ 3.93 is the light vector-light pseudoscalars

coupling constant. Heavy quark symmetry breaking terms, SU(3) symmetry breaking

terms as well as the chiral Lagrangian of the light sector have not been explicitly written.

Notice that the light-heavy interaction (2.1) is characterized by the three dimensionless

coupling constants α, c and d (denoted g in [8]). The choice α = 1 corresponds to a

natural notion of light vector meson dominance. This choice sets to zero the coefficient of

vµ = i/(2F 2
π )(φ∂µφ− ∂µφφ) + ... so that two pseudoscalars in a p-wave state can only be

emitted through an intermediate light vector particle from a single heavy meson vertex.

Whether, in fact, α ≈ 1 remains to be determined.
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For our present application we also require the four fermion effective weak interaction:

LW =
GF√

2
J (+)

µ J (−)
µ ,

J (−)
µ = iνeγµ(1 + γ5)e + ... ,

J (+)
µ = iV ∗

cssγµ(1 + γ5)c + ... , (2.3)

with usual conventions [3] and where Vcs is the Kobayashi-Maskawa matrix element. The

chiral covariant realization of the left handed hadronic current, J (+)
µ in terms of heavy

and light meson fields is

J (+)
µ /V ∗

cs = FD[∂µDb + iα′g̃Daρµab + i(1 − α′)Davµab + MD∗
µb](ξ

†)b3 + ... , (2.4)

where the SU(3) triplet fields (D1, D2, D3) stand for D0, D+D+
s ) and similarly for the

heavy vectors. (Eq. (2.4) is the same as (4.6) of [3], but we have redefined (α + α′) by

α′ to avoid confusion). In (2.4) α′ is a new dimensionless coupling constant (which scales

however as M) characterizing the phenomenological hadron weak current. We can rewrite

(2.4) in the heavy quark limit as

J (+)
µ /V ∗

cs =
−iFDM

2
Tr [γµ(1 + γ5)Ha](ξ

†)a3 +
1

2
FDα′ Tr (γ5Ha)(g̃ρµab − vµab)(ξ

†)b3 + ... .

(2.5)

Now let us compute the hadronic matrix element for the process D0(p) → K−(p′) +

π0(p′′) + e+(qe) + νe(qν) We define the 4-momentum

q = qe + qν = p − p′ − p′′ , (2.6)

and employ the following form factor decomposition:

√

8p0p′0p
′′
0〈K−(p′)π0(p′′)|J (+)

µ /V ∗
cs|D0(p)〉

= −i[qµr + (p′ + p′′)µω+ + (p′ − p′′)µω− + hǫµαρνpρp
′
νp

′′
α] . (2.7)

3



The first term on the right hand side of (2.7) does not contribute to the net weak amplitude

since qµ dotted into the leptonic factor vanishes for zero lepton masses. Hence the form

factor r is irrelevant. There are contributions to the form factors both with and without

intermediate light vector meson K∗ poles. The “non-resonant” (NR) diagrams without

the intermediate K∗ are discussed in the Appendix. Taking the leading order in M

contribution to each form factor yields

(ω+)NR =

(

FD

2
√

2F 2
π

)

dM

△− V · p′′ ,

(ω−)NR =

(

FD

2
√

2F 2
π

)(

− dM

△− V · p′′ + α′

)

,

hNR =
FDd2

√
2F 2

π

1

△∗
s − V · (p′ + p′′)

1

△− V · p′′ , (2.8)

where Vµ = pµ/M is the 4-momentum of the initial D0, △ = M(D∗) − M(D) and

△∗
s = M(D∗

s) − M(D). ω+ and ω− both scale as M1/2 while h (since it multiplies pρ)

scales as M−1/2. Eq. (2.8) differs from an earlier calculation [1] in the model with light

pseudoscalars only by the α′ term in (ω−)NR. α′ is due to the presence of light vectors,

as may be seen from (2.4). Chiral covariance demands an additional pseudoscalar piece

when we add the light vectors. The analogous “strong” parameter α does not appear in

(2.8) but does show up in the form factor rNR given in (A7).

The computation of the diagrams containing K∗ poles can be simplified by making

use of earlier results on the D → K∗ weak current matrix element [2-6]. From section 5

of [3] we obtain the leading large M contribution in this case as

√

4p0k0〈K∗−(k, ǫ)|J (+)
µ /V ∗

cs|D0(p)〉

=
√

4p0k0〈K∗0
(k, ǫ)|J+

µ /V ∗
cs|D+(p)〉

= iFDǫν

[

α′g̃δµν +
2cM

mv
ǫσνµβ

Vβkσ

△∗
s − V · k − αg̃Vνqµ

△s − V · k

]

, (2.9)

wherein qµ = pµ − kµ. Additional corrections due to higher derivative interactions [3,4],

loops [4] and excited heavy states [2,6] have been discussed in the literature but (2.9)
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seems sufficient for our present purpose. The pieces of the D0(p) → K−(p′) + π0(p′′)

transition matrix element in (2.7) involving K∗ poles can be found from (2.9) simply by

defining

kµ = p′µ + p′′µ (2.10)

and replacing ǫν by the factor,

Fν =
g̃

2
√

2

(

mv

Fπg̃

)2
[p′ν − p′′ν − kν(m

2
K − m2

π)/m2
K∗]

k2 + m2
K∗ − im∗

KΓK∗

, (2.11)

wherein the combination ( mv

Fπ g̃
)2 is numerically close to 2.0. Eq. (2.11) is the product of

the vector -2 pseudoscalar coupling constant and the K∗ propagator. Since the K∗ can go

“on shell” we include the conventional width correction in the denominator to maintain

unitarity. Decomposing the “resonant” K∗ pole amplitudes (subscript R) into the form

factors defined in (2.7) gives:

(ω+)R = −m2
K − m2

π

m2
K∗

(ω−)R ,

(ω−)R = −
(

FD

2
√

2F 2
π

)

α′m2
v

k2 + m2
K∗ − imK∗ΓK∗

,

hR =
2cg̃FD√

2mv

(

mv

Fπg̃

)2
1

△∗
s − V · (p′ + p′′)

1

k2 + m2
K∗ − imK∗ΓK∗

(2.12)

The net results for the D0 → K−π0 current transition form factors in the limit of

heavy charmed particles interacting with “soft” light pseudoscalars and vectors are given

by the sums of the corresponding terms appearing in (2.8) and in (2.12). The precise range

of validity of the concepts of a soft light pseudoscalar and (especially) a soft light vector

are probably best left to a comparison with experiment. Certain results, which depend

only on the existence of spontaneously broken chiral symmetry, are designated “current

algebra theorems” and should hold for zero mass pseudoscalars as their 4-momenta go to

zero. In particular we may note that (ω+)R vanishes in this limit and that (ω−)R (when

we set m2
v = m2

K∗ and ΓK∗ = 0, the latter corresponding to a pure effective Lagrangian

computation which thereby satisfies chiral symmetry by construction) cancels off the α′
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piece of (ω−)NR. In this unphysical limit ω+ = −ω− [9]. We should stress that the fact

that α′ cancels out in this limit does not mean that it is not an important parameter for

describing the decay; actually, it turns out to be the most important parameter.

To proceed with a comparison of the resonant and non-resonant contributions we need

at least a rough idea of the magnitudes of the “strong” parameters α, c and d as well as the

“weak” parameter α′. Bounds on the value of d have been obtained in the literature [10]

which agree with a simple estimate [3] based on pole dominance of the D → K transition

form factor:

d ≈ 0.53 . (2.13)

Information about c and α′ may be obtained by comparing (2.9) with experimental infor-

mation on the decays D → K∗e+νe. Eq. (2.9) is expected to be most reliable for “soft”

K∗’s, which implies that (−q2) should be as large as kinematically possible. Now the ex-

perimental data is analyzed in terms of form factors characterizing (2.9) which have the q2

dependence, M∗2
s /(M∗2

s + q2). Evaluating (2.9) at the extreme value −q2 = (M −mK∗)2,

assuming the above q2 dependence to extrapolate to small −q2 and comparing with the

experimental values [11] yields the estimates

|α′| ≈ 1.73, |c| ≈ 1.6 . (2.14)

α is not determined from this analysis. However a study of the binding energy of heavy

baryons as solitons of the meson Lagrangian involving (2.1) shows that (5.3) of Ref. [12]

may be fit with the choice

d = 0.53, c = 1.6, α = −2 . (2.15)

We stress that the numerical estimates (2.13)-(2.15) are preliminary in nature; however

they should suffice to draw qualitative conclusions.
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3. Comparison of Light Pseudoscalar and Light Vector Amplitudes

First we must discuss the kinematics associated with the hadronic matrix element

(2.7). For the decay D0(p) → K−(p′)+π0(p′′)+ e+(qe)+νe(qν) there are five independent

dynamical variables needed to specify the momentum configuration; a recent discussion

is given in Ref. [1] (see also [13]) based on earlier treatments [14] of ke4 decays. It is

somewhat simpler if we confine our attention just to the hadronic part (2.7). Then, for

each value of the invariant lepton squared mass −q2 we have in effect a three body final

state. The classic Dalitz plot analysis shows that the kaon energy E ′ and the pion energy

E ′′ (both in the D0 rest frame) are sufficient. Altogether this gives E ′, E ′′ and q2 as a

possible complete set of variables to describe (2.7). Since k2 plays an important role in

the K∗ pole amplitude we shall choose the alternative set

(k2, q2, E ′′) . (3.1)

A convenient formula relating the two sets is

E ′ + E ′′ =
M2 − k2 + q2

2M
≡ Q(k2, q2) , (3.2)

where M is the D0 mass. With the neglect of the lepton masses, −k2 satisfies

(mπ + mk)
2 ≤ −k2 ≤ M2 . (3.3)

For a given k2, q2 must satisfy

0 ≤ −q2 ≤ (M −
√
−k2)2 . (3.4)

The region defined by (3.3) and (3.4) is illustrated in Fig. 1. Now, for each value of q2

there is a Dalitz plot boundary in the k2 −E ′′ plane obtained by rewriting the condition

|p′ · p′′| = |p′||p′′| in terms of the set (3.1). The allowed regions, corresponding to
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horizontal slices perpendicular to the page in Fig. 1, are illustrated in Fig. 2. A simple

formula can be given for the “average” value of E ′′ at each (k2, q2):

E
′′
(k2, q2) =

1

2

[

E ′′
max(k

2, q2) + E ′′
min(k

2, q2)
]

=
1

2
Q(k2, q2)

[

1 +
m2

K − m2
π

k2

]

. (3.5)

Notice that Fig. 1 does not correspond to a fixed E ′′ slice but rather represents the

projection of the (k2, q2, E ′′) boundary surface into the (k2, q2) plane.

The expressions for the form factors in the heavy quark limit given by (2.8) + (2.12)

are expected to be most reliable for large (−q2), corresponding to “soft” π0 and K−

particles as well as, in the spirit of the present Lagrangian, soft K∗ particles. Refering

to Fig. 1, we see that the soft K∗ condition suggests that we consider the effective

Lagrangian expressions to hold in the region where −q2 is greater than around 0.5 GeV2.

This represents a fairly large portion of the entire phase space. Nevertheless it is not

unreasonable from an experimental point of view inasmuch as the Particle Data Group

tables state [15] that “it is generally agreed that the Kπe+νe decays of the D† and D0 are

dominantly K
∗
e+νe.” Experimentally, it is also known that the amplitudes are damped

for decreasing (−q2); this can be seen from Fig. 1 to decrease the importance of the larger

−k2 region.

From a theoretical point of view it is very interesting to compare the pseudoscalar

and vector contributions to the hadronic form factors. Nature tells us, of course, that the

vector contributions dominate when one folds in the leptons and integrates their “squares”

over all phase space. Nevertheless, it is important to get an idea of the “local” ratios of

the two contributions in various kinematic regions. The phenomenological analysis of

Ref. [16], for example, shows that it is the form factor proportional to ǫµ in (2.9) (i.e,

the α′ term) which mainly supplies the total width for D0 → K∗−e+νe. This form factor

contributes to both (ω+)R and (ω−)R in (2.12) but (ω−)R is clearly the dominat one;
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(ω+)R would vanish when the k and the π masses are equal or neglected. Hence we will

focus our attention on the ω− form factor. It is convenient to rewrite it as follows (in the

D0 rest frame):

ω− =
FD

2
√

2F 2
π

[

α′

(

1 − m2
K∗

k2 + m2
K∗ − imK∗ΓK∗

)

− dM

△ + E ′′

]

. (3.6)

We noted earlier that the coefficient of the α′ term (which corresponds to the extra piece

introduced by adding light vectors to the effective Lagrangian) vanishes in the unphysical

kµ → 0 limit (with ΓK∗ = 0) in agreement with expectations. Let us then consider the

ratio of the magnitude of the α′ term to the magnitude of the last term:

ratio =

∣

∣

∣

∣

∣

α′

d

∣

∣

∣

∣

∣

(△ + E ′′)

M

[

k4 + m2
K∗Γ2

K∗

(k2 + m2
K∗)2 + m2

K∗Γ2
K∗

]1/2

. (3.7)

Only α′ and d are not very well known; we will use the estimates in (2.13) and (2.14)

which are certainly qualitatively reasonable. There is a lower bound for the above,

ratio ≥
∣

∣

∣

∣

∣

α′

d

∣

∣

∣

∣

∣

△ + mπ

M

(mK + mπ)2

m2
K∗ − (mK + mπ)2

≈ 0.5, (3.8)

where ΓK∗ was set to zero for simplicity since it has a negligible effect when (−k2) is

as small as possible. This result indicates that there is no region in which the vector

contribution is negligible compared to the pseudoscalar contribution. So if one were to

make the usual derivative expansion of the chiral perturbation theory approach, there

would be large corrections to the first order results due to the existence of the K∗. Of

course, the pseudoscalar piece takes on its largest value near the cusp in Fig. 1.

Since (3.7) depends only on k2 and E ′′ it is convenient to display curves of constant

ratio in Fig. 2. We notice that there is only a very small region for which the ratio is less

than unity. Because of the small width of the K∗ (50 MeV) the ratio rises dramatically

to around 15 at −k2 = m2
K∗. It is seen that the large ratio of amplitudes persists over a

non-negligible region.
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The ratio
∣

∣

∣

hR

hNR

∣

∣

∣ of the magnitudes of the vector and pseudoscalar contributions to the

weak vector current form factor is seen from (2.8) and (2.12) to be the same as the ratio

(3.7) when we multiply the latter by the factor

2

∣

∣

∣

∣

∣

c

α′g̃

∣

∣

∣

∣

∣

mK∗M

(k4 + m2
K∗Γ2

K∗)1/2
. (3.9)

This is numerically around 1.0 in the phase space region of interest so the K∗ contribution

is also dominant for this form factor.

Tu sum up, in the large (−q2) region (optimistically as large as −q2 ≥ 0.5 GeV 2) the

K∗ contribution overwhelms the pseudoscalar contribution nearly everywhere. Even for

the very largest (−q2), where the soft pseudoscalar results are expected to be most signif-

icant, the K∗ amplitudes are relatively sizeable. This situation would seem to suggest the

desirability of a modified chiral perturbation theory program in which both pseudoscalars

and vectors are retained in the effective Lagrangian from the very beginning. Some re-

cent discussion of this point of view has been given in Ref. [17]. In the case where one

is considering a non-strange transition matrix element (like B → ππ) we should replace

in (3.8), (mK + mπ) by 2mπ and mK∗by mρ. Then there would be a very small region

in which the pseudoscalar piece might be considered dominant, but the overall picture

would be qualitatively similar.

4. Remarks

1. Of course, it would be a better approximation to deal with the B rather than the

D meson as an example of a heavy field. Similarly it would be a better approximation to

restrict the light particles to the non-strange ones. Thus a similar analysis (with basically

identical formulas) would be somewhat cleaner for B → ππ current transitions rather

than D → Kπ transitions. Nevertheless there is at present much more experimental data

for the D → Kπ case and it is quite identeresting in its own right.
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2. As noted after (2.9), the formula we are using for the resonant contribution ne-

glects a number of effects which are subleading from the light meson point of view but

may be necessary to take into account if the relatively small form factor which would be

proportional to pµ in (2.9) is actually non-zero. However we expect that our approxi-

mation is sufficient for the purpose of comparing the relative strengths of the vector and

pseudoscalar contributions.

3. The ratio of the non-resonant part of Γ(D → Kπe+νe) to Γ(D → K
∗
e+νe) is of

evident experimental interest. The precise meaning of this quantity depends on the man-

ner in which it is extracted from experiment. Apparently, there is no universal method.

The most straightforward way is simply to define the resonant contribution as everything

within a certain band of −k2 surrounding m2
K∗ . This definition has, however, the mis-

leading feature that is counts non-resonant background near the peak as resonant. It is

particularly easy to apply this definition to the present case when one makes the reason-

able approximation that the entire amplitude is dominated by the K∗ pole diagrams. As

recently illustrated for a different decay in Ref. [13] both the phase space and the squared

amplitudes factorize in this approximation so that one obtains

Γ(D0 → K−π0e+νe) ≈
Γ(K∗− → K−π0)

ΓK∗

Γ(D0 → K∗−e+νe)
1

π

∫ ∞

−∞

dx

x2 + 1
, (4.1)

where x is defined by k2 + m2
K∗ = xΓK∗mK∗. If the “resonant” region is taken to be

that range of −k2 for which |
√
−k2 − mK∗| < NΓK∗ then integrating (4.1) yields the

non-resonant/resonant ratio to be about

π

2 tan−1(2N)
− 1. (4.2)

This gives a 19% non resonant contribution for N = 2 and 12% for N = 3. The extent

to which the data obeys (4.2) as a function of N might be considered a measure of how

good is the K∗ dominance. The fact that we do get a non-resonant contribution at all

with pole dominance is, of course, an artifact of its definition. However, it also illustrates
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the difficulty in giving a meaningful experimental definition of the non-resonant/resonant

ratio. Since the “theoretical” resonant and non-resonant amplitudes have the same order

of magnitude outside the resonance region, the above numbers may give a satisfactory

rough order of magnitude estimate for any reasonable definition of the ratio.
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Appendix

For the process D0 → K−π0e+νe we require the hadronic matrix element

√

8p0p′0p
′′
0〈K−(p′)π0(p′′)|J+

µ /V ∗
cs|D0(p)〉, (A1)

where the states are normalized in a unit volume. We shall proceed by first using the

ordinary, rather than “heavy”, meson fields to compute (A1) (see section V of Ref.[3]) and

then take the heavy quark limit. The contribution to (A1) from the contact (non-pole)

diagram is:

−iFD

2
√

2F 2
π

[pµ + (α′ − 1)(p′µ − p′′µ)]. (A2)

The D+
s pole diagram, wherein D0(p) → K−(p′) + π0(p′′) + D+

s (q) followed by D+
s (q) →

e+νe, contributes the term

iFD(1 − α)

2
√

2F 2
π

(p
′ − p

′′

) · (p + q)

M2
s + q2

qµ , (A3)

in which Ms is the D+
s mass and qµ ≡ pµ − (p′ + p′′)µ. The D∗0 pole diagram, wherein

D0 → π0 + D∗0 at the strong vertex followed by D∗0 → K− + µ+νµ at the weak vertex,

contributes:

−i
√

2M2FDd

F 2
π

[p′′µ + (p − p′′)µ(p − p′′) · p′′/M∗2]

(p − p′′)2 + M∗2
, (A4)

in which M∗ is the D∗0 mass. There are also two double-pole diagrams. The first features

D0 → π0 + D∗0 at a strong vertex followed by D∗0 → K− + D∗+
s at another strong vertex

which, in turn, is followed by D∗+
s → e+νe at the weak vertex. The contribution to (A1)

is

−i2
√

2d2M2FD

F 2
π

ǫµαρνpρp
′
νp

′′
α

[M∗2
s + q2][M∗2 + (p − p′′)2]

, (A5)

in which M∗
s is the D∗+

s mass. Finally, the diagram with D0 → π0 + D∗0, D∗0 → K− +

D+
s , D+

s → e+νe gives

−i2
√

2FDM2d2

F 2
π

qµ[p′ · p′′ + p′ · (p − p′′)p′′ · (p − p′′)/M∗2]

[q2 + M2
s ][(p − p′′)2 + M∗2]

. (A6)
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In order to obtain a model independent result corresponding to M → ∞ we should delete

terms which fall off faster than M1/2, the scale behavior of (A1). For example, using

FD ∼ M−1/2, and α′ ∼ M , (A2) →

−iFD

2
√

2F 2
π

[pµ + α′(p′ − p′′)µ]. (A2′)

In taking the limit of (A3) we set pµ = MVµ and throw away terms of quadratic order

in p′ and p′′. The resonance denominator of (A3) becomes 2M [△s − V · (p′ + p′′)] with

△s = Ms − M and (A3) →

−iFD(1 − α)

2
√

2F 2
π

V · (p′ − p′′)

△s − V · (p′ + p′′)
qµ . (A3′)

The other diagrams are treated similarly. With the form factor decomposition defined

in (2.7) we obtain the results listed in (2.8) for the three experimentally significant form

factors. For the sake of completeness we also give here:

rNR =
FD√
2F 2

π

[

1

2
+

(1 − α)

2F 2
π

V · (p′ − p′′)

△s − V · (p′ + p′′)
+

dV · p′′
△− V · p′′ +

d2(p′ · p′′ + V · p′V · p′′)
[△s − V · (p′ + p′′)](△− V · p′′)

]

.

(A7)
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Figure Captions

Fig. 1 Projection of the three dimensional (k2, q2, E ′′) phase space boundary into the

(k2, q2) plane.

Fig. 2 Phase space boundaries in the k2 − E ′′ plane at various values of q2. In increasing

order of size the closed curves correspond respectively to −q2 = 0.925, 0.725, 0.525,

0.325 and 0.025 GeV2. Also shown are points on the contour lines on which the ratio

in (3.7) takes on fixed values; the circles, crosses and squares correspond respectively

to the ratio equal to 1,3 and 9.
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