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ABSTRACT

This dissertation investigates the problem of image processing based on stochastic
resonance (SR) noise and human visual system (HVS) properties, where several novel
frameworks and algorithms for object detection in images, image enhancement and
image segmentation as well as the method to estimate the performance limit of image
segmentation algorithms are developed.

Object detection in images is a fundamental problem whose goal is to make a decision
if the object of interest is present or absent in a given image. We develop a framework
and algorithm to enhance the detection performance of suboptimal' detectors using SR
noise, where we add a suitable dose of noise into the original image data and obtain the
performance improvement. Micro-calcification detection is employed in this dissertation
as an illustrative example. The comparative experiments with a large number of images
verify the efficiency of the presented approach.

Image enhancement plays an important role and is widely used in various vision tasks.
We develop two image enhancement approaches. One is based on SR noise, HVS-driven
image quality evaluation metrics and the constrained multi-objective optimization (MOO)
technique, which aims at refining the existing suboptimal image enhancement methods.
Another is based on the selective enhancement framework, under which we develop
several image enhancement algorithms. The two approaches are applied to many low
quality images, and they outperform many existing enhancement algorithms.

Image segmentation is critical to image analysis. We present two segmentation

algorithms driven by HVS properties, where we incorporate the human visual perception

'Suboptimality may be due to inaccurate statistical models, model mismatch and system limitation, such as fixed
decision threshold.



factors into the segmentation procedure and encode the prior expectation on the
segmentation results into the objective functions through Markov random fields (MRF).
Our experimental results show that the presented algorithms achieve higher segmentation
accuracy than many representative segmentation and clustering algorithms available in
the literature.

Performance limit, or performance bound, is very useful to evaluate different image
segmentation algorithms and to analyze the segmentability of the given image content.
We formulate image segmentation as a parameter estimation problem and derive a lower
bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels
considered in our work, using a modified Cramér—Rao bound (CRB). The derivation is
based on the biased estimator assumption, whose reasonability is verified in this

dissertation. Experimental results demonstrate the validity of the derived bound.
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CHAPTER 1

INTRODUCTION

We are living in a world where we are immersed in a variety of visual information, which
includes different forms and shapes, colors and textures, motion and tranquility. As the
carrier of this information, still images, graphic and videos play more and more important
role in our lives. Human perception is capable of acquiring, integrating and interpreting
the visual information around us, while it is very challenging if we expect to impart such
capability to a machine [1]. Often images, graphics and videos are of varying quality due
to the acquisition procedure [2], network/communication conditions [3][4][5],
image/video compression [6], etc. These factors further add to the difficulties for a
machine to extract the useful information from different visual scenarios. It is, therefore,
very important to understand and develop superior techniques to process images,
graphics and videos, such as detection, enhancement/restoration, segmentation,
registration and fusion.

The goal of this dissertation is to develop novel image processing algorithms which
improve the capability when a machine is employed to interpret the information
embedded in images. In this chapter, we briefly review the basic problems in several
image processing areas that are addressed in this dissertation. They include object

detection in images, image enhancement and image segmentation.



1.1 Object Detection in Images

The goal of object detection in images is to determine whether a specified object is
present or not in a given image, and, if present, to determine its location, size or other
parameters. This task could range from identifying a location to identifying and
registering components of a particular object class at various levels of detail [7]. We
could be required to outline precisely the object in the image, to detect a certain number
of well-defined landmarks on the object, or to determining a deformation from a
prototype of the object in the image. There are various types of deformations, e.g., a
simple 2D Affine map or a more detailed non-linear map. The object itself may have
different degrees of variability. It may be a rigid 2D object, such as a fixed desk surface,
or a 2D view of a 3D object, or it may be a highly deformable object such as a breast. All
these issues are included while considering object detection problems. Detection implies
identifying some aspects of the particular way the object is present in the image, i.e.,
some partial description of the object instantiation. The image processing pipeline for
object detection shown in Fig. 1.1, which includes the feature extraction step followed by

a detection algorithm.

Prior knowledge about imaging procedure

gogndoe |
1D, 2D, 3D objects)——————» 2D mmage |—»| Feature ex&acﬁm@

Figure 1.1: Processing pipeline for object detection in images.



The general problem of object detection in static images is challenging, because the
object detection system is required to distinguish a particular class of objects from all
others [8]. This requires the algorithm to possess a model of the object class that has high
inter-class and low intra-class variability. Another difficulty is that a robust object
detection algorithm should be able to detect objects in uneven illumination, objects which
are rotated, and objects that are partially occluded or whose parts blend in with the
background. The outline of an object is, under all of the above conditions, usually altered
and its entire form may not be discernible. The problem becomes even more challenging
if recognition, a step that usually follows detection, is required. Recognition refers to the
classification among objects or subclasses of a general class of objects, which is present
in a particularly isolated region of the image [7].

The object detection systems can be classified into three major categories [8]. The first
category consists of systems that are model-based, in which a model is defined for the
object of interest and the system attempts to find a match between this model and
different parts of the image [9]. The second category includes the image invariance
methods where matching is based on a set of image pattern relationships, e.g., brightness
levels. In the ideal case, the pattern relationships uniquely determine the objects being
searched for [10]. The third set of object detection systems refer to the example-based
learning algorithms [11]. These systems learn the features of a class from sets of labeled
positive and negative examples, i.e., training data.

From the machine learning perspective, we can also divide all object detection
methods as generative methods and discriminative methods [12]. In generative methods,

we attempt to learn significant features of an object, and then combine these features in a



suitable way to synthesize a new image. In a classification scenario, these models can be
reversed and indicate the probability that this particular pixel was generated from this
model. In the discriminative methods, we learn a decision rule, i.e., classifier, and assign
features representations of images to different classes.

In this dissertation, we focus on the problem of detecting objects in images based on
statistical decision theory. We model the probability density functions (pdfs), i.e.,
features, of the object and the background (non-object) under two hypotheses, i.e.,
presence or absence of the object in a particular location of an image. The detection is
carried out under the Neyman-Pearson criterion [13], because we assume that the prior
probabilities of occurrence of the object and the background are not available. In real-
world applications, it is usually not easy to have the full knowledge of the probability
distributions of the object and background, so we learn and update the pdfs under the two
hypotheses in an iterative manner with the detection proceeding. Thus, our method falls
in the categories of both model-based and example-based learning algorithms, and is a
combination of the generative method and discriminative method.

More specifically, we consider a binary statistical decision problem, where we wish to

choose between the two hypotheses

H,:p;(y;H,)=py(y) (1.1)
H, :py,(y;H,)=p,(y)

where ¥ is an N-dimensional data vector, i.e., ¥ € RY. po(¥) (or p(3:H,)) and pi(¥)
(or p(y;H,)) are the pdfs of y under H, (background) and H; (object) hypotheses,

respectively. During the decision process, a test is necessary to choose between the two



hypotheses, which can be completely characterized by a critical function, or decision

function, ¢(3), 0<¢(y)<1, and

L:T(y)>y
(7)) =18:T(M) =7 (1.2)
0:T(y)<y

where T is the test statistic which is a function of y. y is the threshold, and 0 < g <1 isa

suitable number used for randomization.
The detection performance of this test can be evaluated in terms of probability of

detection (Pp) and probability of false alarm (Pp),

P} = [40)p (v (13)

P! = [¢(3)p, )y (1.4)

where P] and P} represent the P, and P, of the detector based on the input y ,
respectively.
It is well known that under the Neyman-Pearson criterion, the optimal detector is a

likelihood ratio test given as

decide H,

L= >, (15)
Po(y) <
decide H,
The threshold y is found from
P = I{E:L(§)>7}p0()7)d)7 - (1.6)

where « is the desired value of the P, .



1.2 Image Enhancement

Image enhancement aims at producing images with improved brightness/contrast and
detail, so as to better represent the visual information. It is widely used in many areas,
such as vision, remote sensing, dynamic scene analysis, autonomous navigation and
biomedical image analysis. Fig. 1.2 shows an example of enhancing an MRI image,

where some details in the image become more obvious after enhancement (Fig. 1.2 (b)).

(2) (b)

Figure 1.2: An image enhancement example. (a) Original image with low contrast; (b) enhanced image

with higher contrast.

A comprehensive survey of image enhancement techniques can be found in [14].
Based on the methodology involved, image enhancement methods fall into four main
categories: point operations, spatial operations, transform operations and pseudo-coloring
[2].

Point operations are zero memory operations in which a given gray level is mapped

into another gray level according to a transformation. Point operations include contrast



stretching, window slicing, noise clipping and histogram modeling. Histogram
equalization is one of the well-known point operation methods. Standard histogram
equalization [2] processes images globally, thus often causes intensity saturation and the
image is far from a natural one. Its improved versions, such as bi-histogram equalization
(BiHE) [15] and contrast limited adaptive histogram equalization (CLAHE) [16],
attempted to achieve the natural contrast enhancement by preserving the brightness of an
original image and processing images locally.

Spatial operations perform enhancement on local neighborhoods of the input pixels,
where the image is convolved with a finite impulse response filter. Typical methods
include noise smoothing, median filtering and unsharp masking [17]. A standard spatial
operation is median filtering. It performs well in some cases, such as suppressing the
pepper-and-salt noise. Another popular spatial operator is adaptive Wiener filter [18]. It
can carry out the filtering procedure locally and adaptively. For a digital mammography
application, J. Dengler et al. [19] used a morphological filter to improve the perspicacity
of micro-calcifications by enhancing the small square.

Transform operations are carried out on a transformed image and followed by the
inverse transformation for image reconstruction. Typical transform operations include the
classical Fourier transform, fuzzy logic transform and wavelet decomposition. Fuzzy
image enhancement can achieve superior performance in mammogram enhancement [20],
compared with several popularly used methods.

Pseudo-coloring methods map a set of images into a color image, whose disadvantage

is that extensive interactive trials are required to determine a satisfactory mapping.



Since humans are often the ultimate evaluators of image quality, it is desirable to
include human visual system (HVS) aspects in image enhancement. Recently, several
methods have used HVS models during enhancement [21][22]. Their goal is to simulate
the function of HVS for discriminating between useful and useless data [23] to improve
the enhancement procedure. For example, in [22], HVS-based segmentation was carried
out in spatial domain to generate three image regions prior to image enhancement. HVS
considerations could be incorporated in any of the above four classes of enhancement
methods, thereby improving enhancement performance from human visualization point

of view.

1.3 Image Segmentation and Performance Limit of Segmentation
Algorithms

Image segmentation plays a critical role in image analysis. It subdivides an image into its
constituent parts in order to extract information regarding objects of interest, and has an
impact on all the subsequent image analysis tasks, such as object classification and scene

interpretation [24]. Fig. 1.3 shows an example of image segmentation.

Image segmentation is a challenging problem in computer vision, and a wide variety
of solutions have been presented. These include thresholding techniques [25], Markov
random fields (MRF)-based approaches [26][27], multi-resolution algorithms [28] and
partial differential equations (PDE)-based methods [29]. Surveys of image segmentation
techniques can be found in [24][30][31]. Based on the image information being employed

for the segmentation task, image segmentation algorithms can be classified into three



categories: region-based segmentation, boundary- or edge-based segmentation and the

methods combining both region and boundary (edge) information.

(a) (b)

Figure 1.3: An image segmentation example (from MATLAB Central). (a) Original image; (b) segmented

image.

Region-based segmentation methods aim at exploiting the image contextual
information, such as spatial dependency or spatial distribution. The segmented images are
expected to consist of regions within which the image content is homogeneous, while the
contrast between neighboring regions is high. Typical methods falling into this category
include region growing, watershed, some MRF-based methods [26], mean-shift [32] and
the recently presented lossy data compression-based approach [33]. Segmentation
methods based on the boundary or edge information are designed to exploit the
discontinuity of the image features, such as difference in texture or pixel intensity, on the
two sides of the boundary. Typical methods in this group include gradient-based methods,
such as the Canny edge detector [34], line detection methods, such as the Hough

transform [35], those taking into account the interaction between boundaries (or edges)



[36][37][38], and the methods derived from physics models [39][40]. There also exist
algorithms that combine region-based and boundary-based segmentations in order to
benefit from fusing these two complementary approaches. There are two types of
algorithms that belong to this category. The first type of algorithms carry out region and
boundary segmentations sequentially [41][42][43], where one segmentation method is
employed as the preprocessing or initialization step of another. The second type performs

segmentation by considering region and boundary information simultaneously [44][45].

While development of efficient segmentation algorithms is highly desirable, the
assessment of their performance is also very important. There are basically three groups
of methods for segmentation evaluation [24]. These include analysis methods, empirical
goodness methods and empirical discrepancy methods [24]. The analysis methods treat
the algorithms for segmentation directly, such as the evaluation of the convergence rate,
the computation speed and the reasonability of the objective function design. Empirical
goodness methods judge the segmented image so as to indirectly assess the performance
of algorithms using quantities such as intra-region uniformity, inter-region contrast and
region shape. Empirical discrepancy methods compare the segmented image with the
reference image and use their difference to evaluate the performance of algorithms. For
instance, position and number of mis-segmented pixels and feature values of segmented
objects are all performance indicators falling into this class. Surveys of the evaluation
techniques for image segmentation can be found in [24][43][44].

Much progress has been made recently in evaluating the segmentation results, but
performance of such methods tends to vary as widely as the techniques themselves. As a

result, the performance of the evaluation methods is far from being satisfactory. In [24],
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the authors listed some of the factors which limit the advancement of evaluation methods
and, in turn, the performance improvement of segmentation algorithms. These factors
include a lack of common mathematical models or general strategy for evaluation, the
challenges in defining wide-ranging performance metrics and statistics, the difficulties in
defining the ground truth, large costs in performing comprehensive evaluations and the
fact that the testing data are not representative enough for actual applications.

We note that given a specific image, among all the factors possibly affecting the
performance assessment of segmentation algorithms, the most important factor is the
image content. Therefore, an investigation of the performance limit or performance
bound, which is only associated with the available image data and is independent of the
segmentation algorithms, will be very helpful to evaluate the efficiency of image
segmentation techniques. A tight performance bound can tell us what the best achievable
performance of any image segmentation algorithm is for the specific image content. Thus,
performance bounds can also be used to study how the image content or image
preprocessing operations affect segmentation performance. The gap between the actual
segmentation error of an approach and a tight bound can provide us with the efficiency of
that segmentation approach and available room for improvement.

Several contributions in the literature have developed the bounds from a statistical
perspective, e.g., the work in [46] based on the finite normal mixture (FNM) model
assumption, that presented in [47] for studying the performance of multi-spectral image
segmentation based on Rissanen’s minimum description length (MDL) criterion, and the
one presented in [48] based on MRF-based assumption. All these algorithms attempt to

determine the performance bounds which can serve as benchmarks for the image dataset
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and segmentation algorithms.

1.4 Image Processing Based on Stochastic Resonance Noise

Basically, there exist two approaches to improve the performance of an image processing
system. One involves the redesign of the existing systems or algorithms, while another
involves the preprocessing of the image data before sending them to the original
processing system. In our work, we propose a novel preprocessing approach to improve
the system performance via stochastic resonance (SR) noise, where system performance
is improved by adding some suitable noise to the input image signal but the original
image processing system is kept unchanged.

Traditionally considered as a nuisance, noise can sometimes play a constructive role
in signal processing. SR is one such nonlinear physical phenomenon where the output
signals of some nonlinear systems can be amplified by adding noise to the input. Fig. 1.4
shows an image segmentation result from our experiments, where we add noise to the
original image and better segmentation is observed (Figs. 1.4 (¢) and (d)) while the
original image segmentation algorithm remains fixed.

First proposed as an explanation for the ice ages in 1981 [49], the SR effect has been
observed and applied in numerous nonlinear systems ranging from a bistable system to a
crayfish [50]. Classic SR signatures include a signal-to-noise ratio (SNR) gain and a
mutual information (MI) gain. In signal detection theory, SR also plays a very important
role in improving signal detectability. In [51] and [52], improvement of detection
performance of a weak sinusoid signal is reported. In [53], an optimal SR based

procedure for a general binary hypotheses detection problem was addressed, the
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underlying mechanism of the SR phenomenon was explored, the improvability conditions
via SR were established subject to a false alarm constraint and the optimum SR noise
form was determined. The work was later extended to the more general case where the
detector itself can also be modified [54]. In this dissertation, we employ SR noise to
refine several image enhancement algorithms and also to improve some existing lesion

detection algorithms for breast cancer diagnosis.

(2) (b) (c) (d)

Figure 1.4: Stochastic resonance noise-enhanced image segmentation. (a) Original image; (b)
segmentation result of the level set evolution-based method (LSEWRI) [121] without SR noise; (c)
segmentation results of LSEWRI with Gaussian SR noise (zero mean and variance of 60); (d) segmentation

results of LSEWRI with uniform SR noise (zero mean and variance of 25).

1.5 Human Visual System-Driven Image Processing

HVS-driven image processing is motivated by the fact that, in most circumstances,
humans are the ultimate judge of the quality of the image processing results. So, an image
processing algorithm is likely to yield more satisfactory results if HVS factors are taken
into account during the processing procedure. For example, images can be more
accurately segmented, enhancement can be better carried out, and detection can be more

efficiently fulfilled, to mention a few major advantages.
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In many different image processing applications, the limitations of the HVS can be
exploited to improve the performance from a visual quality point of view, based on which
many image processing algorithms have been developed. For example, the image
enhancement algorithms [21][22[23], as mentioned in Section 1.2, and the image
segmentation algorithms [55][56][57] are all driven by HVS, and outperform many
“classical” pixel-based algorithms.

Even if the specific requirements for each of these image processing applications are
different, the common element of building a computational model of the HVS is always
essential. These computational models are closely dependent on the visual properties of
the HVS which are characterized by both the psychophysical experiments and the
understanding of the physiological evidence. Please refer to [58] for a detailed review of
the vision physiology.

HVS models account for a number of psychophysical effects [59], like the luminance
and color, multi-channel decomposition, contrast and adaptation, contrast sensitivity and
masking [60]. In our work, we incorporate HVS models into the objective functions for
image enhancement and image segmentation, and encode the preference of HVS to a
good image processing result in a mathematical form, which may make the image

processing output more favored by humans.

1.6 Main Contributions and Dissertation Organization

The design of efficient object detection, image enhancement and image segmentation
algorithms is very important for a variety of applications. In this dissertation, several

aspects of these problems are discussed. We present several schemes to improve object
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detection, image enhancement and image segmentation based on SR noise and HVS
properties. We also analyze the performance limit of image segmentation algorithms and
present quality metrics for evaluate the image enhancement results. Main contributions
and organization of the dissertation are described as follows.

This chapter has introduced the background of object detection, image segmentation
and image enhancement. The significance of investigating the performance limit of
image segmentation algorithms was also discussed. The concept and motivation of image
processing based on SR noise and HV'S properties have also been presented.

In Chapter 2, we show the feasibility of SR noise-enhanced image processing through
several examples, where we improve the performance of image processing algorithms by
adding noise to the images before the processing procedure while the original image
processing algorithms are kept unchanged. We investigate the effect of SR noise on
image enhancement, dithering, edge detection and image segmentation.

In Chapter 3, we consider the problem of improving the detection of micro-
calcifications in mammograms using SR noise. We develop a SR noise-based detection
algorithm and a general detection enhancement framework to improve the performance
of the suboptimal detectors. We attempt to reduce the dependence of the determination of
the optimum SR noise on the knowledge of the pdfs of the object (lesion) and background
(normal tissues) by employing iterative learning procedures. We also develop an iterative
SR noise-based detection enhancement scheme with memory to improve the efficiency
and robustness of the SR noise-based detection systems. Moreover, a more general SR
noise-based detection enhancement framework is presented. Our algorithms and the

framework are tested on a set of 75 representative abnormal mammograms. They yield
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superior performance when compared with several classification and detection
approaches developed in our work as well as those available in the literature.

In Chapter 4, we present two image enhancement approaches. One is based on SR
noise and HVS properties, and another is based on selective enhancement technique. In
the first algorithm, we develop an SR noise-based image enhancement framework and
apply it to improve a number of existing suboptimal image enhancement methods. The
enhanced image and the optimum parameters of the SR noise are obtained by solving a
constrained multi-objective optimization (MOO) problem, where a weighting method is
used to mimic different HVS preferences and to reduce the size of the non-dominant
solution set as discussed later. The principle of the SR noise-refined image enhancement
is explored and the corresponding image enhancement system is presented. Additionally,
a novel image quality evaluation metric based on HVS is developed which is used as one
of the objective functions.

In the second enhancement approach, we present a selective enhancement framework
based on image segmentation techniques, which starts with region of interest (ROI)
selection, and is followed by ROI enhancement and background suppression. Several
point operation based algorithms under this framework are presented. Compared with
some popular enhancement algorithms, our methods enjoy the advantages of flexibility,
robustness and low computational burden, which suggest that the presented methods are
suitable for real-world CAD applications. We also present a quality metric to evaluate the
enhancement results by fusing sub-quality metrics.

In Chapter 5, we present two image segmentation algorithms. In the first algorithm,

we aim at designing an algorithm based on HVS properties, with the segmentation

16



performance robust to the variations in the parameter values of the algorithm. More
specifically, we integrate region label estimation for each pixel with boundary
localization for each region, according to the quality metrics for region-based and
boundary-based segmentation evaluations. These metrics attempt to mimic the
preferences of human vision to good segmentation and thus make the segmentation HV'S-
driven. Under a Bayesian framework, the HVS-driven quality metrics are encoded in the
MREF as the priors of the a posteriori distribution, which is the objective function for
segmentation. Segmentation is carried out by optimizing the objective function which
reflects the desired properties of segmentation from both global and local perspectives.
Three variations of the algorithm are developed. The first one integrates the region and
boundary information simultaneously during segmentation. The second one carries out
region-based segmentation and boundary-based segmentation iteratively. The third one
takes advantage of only the boundary information for segmentation.

In the second algorithm, we present an image segmentation framework, which is
based on a “soft” objective function and considers the effect of the segmentation result
for a single pixel on the segmentation performance in local regions. A specific
performance measure, the probability of successful detection, is used to show the
efficiency and utility of this framework. Moreover, a contrast sensitivity function (CSF),
as an object feature enhancer, is employed for further improving the segmentation
performance, which also makes the segmentation procedure HVS-driven.

In Chapter 6, we formulate image segmentation as a statistical parameter estimation
problem and derive Cramér—Rao bounds (CRB) on the performance measure, namely on

the mean square error (MSE) of the resulting pixel labels, based on the biased estimator
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assumption and Affine bias model. In addition, an approximation is made when
computing the expectation of the inverse Fisher information matrix to reduce the
computational burden. Bootstrapping technique and empirical approximation to the
second-order statistics are employed to overcome the difficulty that the probability
distribution of the images is unknown. Our final goal is to derive a tight performance
bound for the image segmentation problem and compare the bound with the performance
of various segmentation algorithms when applied to different image datasets.

Finally, in Chapter 7, we present the main conclusion of this dissertation and provide

an outline of our future research plan.
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CHAPTER 11

NOISE-ENHANCED IMAGE PROCESSING

In this chapter, we show the efficiency of stochastic resonance (SR) noise-enhanced
image processing through several illustrative examples, where the performance of some
image processing algorithms are improved through the introduction of SR noise into the
original images while the image processing algorithms themselves remain unchanged.
The image processing tasks we investigate include image enhancement, dithering, edge
detection and image segmentation.

In this chapter, we adjust the parameters of the SR noise manually and the quality of
the image processing results is evaluated by observation. In Chapters 3 and 4 we will
employ SR noise to improve object detection and image enhancement, where we
formulate these two tasks as optimization problems and develop systematic schemes to

find the optimum SR noise parameters automatically.

2.1 Types of Stochastic Resonance Noise

Three types of SR noises are investigated in this chapter. They are Gaussian SR noise
(GaSR), uniformly distributed SR noise (UnSR), and two peak SR noise (TwSR) [53]. In

Section 4.2.4 we will also investigate triangle SR noise (TrSR). The adjustable
parameters of the GaSR and UnSR are means ( x ) and variances (o), and those of TrSR

are amplitude range and the point where its mass function has maximum value.

Probability mass function (pmf) of TWwSR has the form

Po-twopear () = @0 (n—=n,) + (1= )5 (n —n,) 2.1)

19



where o and 1-«a are the occurrence probabilities of the suitable constants s, andn, ,
0<a<1. Its adjustable parameters are «, n, and n,. The SR noise is introduced in the

degraded image by point-wise addition.

2.2 Illustrative Examples

2.2.1 Standard Histogram Equalization-Based Image Enhancement

Fig. 2.1 shows the results of enhancing a mammogram with speculated lesions using
standard histogram equalization [2] and SR noise. The result shown in Fig.2.1 (b) is
based on the standard histogram equalization method. This method processes images
globally, and we can see that it does not take into account the features of the lesions
which are characterized by the local image contents. The background normal tissues
surrounding the lesions are also enhanced, such that the contrast between the lesions and
the normal tissues are not increased. In contrast, the SR noise-enhanced histogram
equalization method (Fig. 2.1 (c)), where we add Gaussian SR noise, increases the
contrast between lesion and background, and also makes the enhanced image more

natural than Fig. 2.1 (b) from visualization perspective.

2.2.2 Contrast limited adaptive histogram equalization-Based Image Enhancement
Contrast limited adaptive histogram equalization (CLAHE) [16] was originally designed
for enhancing medical images, which processes images locally and is an improved
version of the standard histogram equalization method. The experiments are carried out

using mammograms with two types of lesions, mass and spiculated lesions, as well as the

20



microscope cell image.

(a) (b (c)
Figure 2.1: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b)

enhanced by standard histogram equalization; (c) enhanced by standard histogram equalization with GaSR

(=0ando’ =220).

Figs. 2.2 (b), 2.3 (b), 2.4 (b) and 2.5 (b) show the results of image enhancement using
CLAHE only. We can see that CLAHE performs better than the standard equalization
method and achieves contrast improvement. However, some background normal tissues
in the mammograms are also enhanced (Figs. 2.2 (b), 2.3 (b) and 2.4 (b)). As a result, the
lesions are still not easily recognizable. For the cell image (Fig. 2.5 (b)), CLAHE only
stands out the cores of the cells, but does not make the cell body more visible. On the
other hand, SR noise-enhanced CLAHE increases the intensity of the lesions and at the
same time decreases that of the normal tissues around lesions, such that the lesions are
more obvious. Besides, the SR noise-enhanced CLAHE increases the visibility of the

entire cell bodies.
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(c) (d) (e)

Figure 2.2: Enhancement results of the mammogram with masses. (a) Original mammogram; (b) enhanced

by CLAHE; (c) enhanced by CLAHE with TwSR (& =0.5, n, =2.5and n, =-2.5); (d) enhanced
by CLAHE with GaSR (£ =0and o* =15); (e) enhanced by CLAHE with UnSR ( z =0 and

o’ =25).
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(c) (d) (e)

Figure 2.3: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b)

enhanced by CLAHE; (c) enhanced by CLAHE with TwSR (¢ =0.5, n, =5and n, =-5); (d)
enhanced by CLAHE with GaSR ( £ =0 and o° =60 ); (e) enhanced by CLAHE with UnSR

(#=0ando’ =65).
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(© (d)

Figure 2.4: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b)

enhanced by CLAHE; (c) enhanced by CLAHE with GaSR ( =0and o> =25); (d) enhanced by

CLAHE with UnSR (£ =0ando* = 25).
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(©) (d) (e)

Figure 2.5: Enhancement results of the cell image. (a) Original cell image; (b) enhanced by CLAHE; (c)

enhanced by CLAHE with TwSR (a =0.5, n, =30and n, =—-30); (d) enhanced by CLAHE with

GaSR (1 =0and o> = 85); (¢) enhanced by CLAHE with UnSR (£ = 0 and &~ = 55).

2.2.3 Dithering

In this section, we investigate using SR noise to improve the image dithering algorithm
[18][61]. Fig. 2.6 (b) shows the dithering result without SR noise, and we can see many
granularities in the image and the image is far from being a natural one. On the contrary,
the SR noise-enhanced dithering yields a better result (Fig. 2.6 (c)) and the image

becomes much smoother and more natural.
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(a) (b) (c)

Figure 2.6: Dithering results of the mammogram with spiculated lesions. (a) Original mammogram with

spiculated lesions; (b) dithering without SR noise; (c) dithering with UnSR ( & = 0 and c? =25 ).

2.2.4 Edge Detection and Image Segmentation

Fig. 2.7 shows the results of SR noise-enhanced edge detection using Sobel detector
[18][62]. We can see from Fig. 2.7 (b) that the original Sobel detector finds all the edges
of the lesions but also generates many false positives. The SR noise-enhanced Sobel
detectors (Figs. 2.7 (c) and (d)) keep the lesion edges while dramatically reduce the

number of false detections.

(a) (b) (©) (d)

Figure 2.7: Edge detection results of the mammogram with micro-calcifications. (a) Original mammogram,;

(b) detected positives (detected “edges”) by Sobel; (c) detected positives by Sobel with GaSR

(1 =0andc” =45); (d) detected positives by Sobel with UnSR (1 = 0ando® =45).
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Fig. 2.8 shows the results of sequential image enhancement and edge detection, where
we first employ CLAHE to enhance the original cell image and then use Sobel detector to
locate the edges of the cells. Fig. 2.8 (b) shows the edge detection result using Sobel
detector only, and Fig. 2.8 (c) shows the result of using CLAHE followed by Sobel. We
can see from the two figures that the edge detection result is not improved. This is
because the cores of the cells have much higher intensities than other part of the cell body,
which drives the result of the intensity-based edge detector, such as Sobel. However, as
shown in Fig. 2.5 (b), CLAHE only enhance the visibility of the cores rather than the cell
body, so the detection results are still dominated by the cores, which yields the detected
edges with incomplete cell contour and even false cell boundary. After adding SR noise
to the enhancement and detection processes respectively, edge detection is improved a lot,
and the cell location and shape can be recognized much easier (Figs. 2.8 (d) and (e)).

An example of SR noise-enhanced image segmentation using a level set-based

algorithm can be found in Fig. 1.4 in Section 1.4.

2.3 Discussion

The goal of this chapter was to examine the feasibility of improving performance of
image processing algorithms when noise is added prior to processing. By means of
several examples, we observed that performance did improve when images are seen
qualitatively. In the following chapters, we develop more systematic procedure for

performance enhancement and evaluation.
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(d) (e)

Figure 2.8: Cell image enhancement and edge detection. (a) Original cell image; (b) detected positives
(detected “edges”) by Sobel edge detection; (c) detected positives (detected “edges”) by CLAHE

enhancement and Sobel edge detection; (d) detected positives by CLAHE enhancement (GaSR:

#=0ando” =10) and Sobel edge detection (GaSR: 1 =0ando” =100); (e) detected positives by
CLAHE enhancement (GaSR: x#=0 and o° =10 ) and Sobel edge detection

(UnSR: £z =0andc” =100 );
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CHAPTER 111

NOISE-ENHANCED DETECTION OF MICRO-
CALCIFICATIONS IN DIGITAL MAMMOGRAMS

In this chapter, we investigate novel algorithms for the detection of micro-calcifications
using stochastic resonance (SR) noise. In these algorithms, a suitable dose of noise is
added to the abnormal mammograms such that the performance of a suboptimal lesion
detector is improved without altering the detector’s parameters. Unlike what has been
discussed in Chapter 2, in this chapter we formulate the detection problem as an
optimization problem and develop a systematic scheme to find the optimum parameters

of SR noise and carry out the detection automatically.

3.1 Introduction

Breast cancer is a serious disease with high occurrence rate in women [63]. There is clear
documented evidence which shows that early diagnosis and treatment of breast cancer
can significantly increase the chance of survival for patients [64]. One of the important
early symptoms of breast cancer in the mammograms is the appearance of micro-
calcification clusters. An accurate detection of micro-calcifications is highly desirable to
ensure early diagnosis of breast cancer.

Computer-aided diagnosis (CAD) improves the diagnostic performance of radiologists
[65][66] and is an effective method for early diagnosis thereby increasing survival time

for women with breast cancer. While advances have been made in the area of CAD for
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digital mammograms, the main challenge of accurately identifying breast cancer in
digital mammograms still remains, which is due to the small sizes and subtle contrast of
the lesions compared with the surrounding normal breast tissues.

Much effort has been made for detecting micro-calcifications by using CAD
techniques. Some methods tried to detect micro-calcifications through a modeling
procedure. For example, Bazzani et al. [67] and Gurcan et al. [68] detected the micro-
calcifications by using Gaussianity tests in the difference and filtered mammograms,
respectively. Karssemeijer [69] modeled the mammograms using Markov random fields.
Nakayama et al. [70] used a Gaussian probability density function (pdf) to model the
abnormal regions in the subband mammograms generated by a filter bank. Regentova et
al. [71] characterized the pdfs of the magnitudes of the wavelet coefficients, which are
assumed to correspond to two hidden Markov states, as zero mean Gaussian distributions
with different variances. Deepa and Tessamma [72] used a deterministic fractal model to
characterize breast background tissues. The challenge for these model-based methods is
that an accurate model is generally not easy to obtain and model mismatch is hard to
avoid, so the detection results are deteriorated. There are also some methods that attempt
to avoid the necessity of modeling during the detection process. For example, in [73], a
relevance vector machine (RVM) was employed as a micro-calcification classifier, and
its parameters were determined through a supervised learning procedure. Catanzariti et al.
[74] trained a three-layer feed-forward artificial neural network (ANN) to detect micro-
calcifications using the features extracted by a bank of Gabor filters. Strickland et al. [75],
Lemaur et al. [76] and Li and Dong [77] proposed wavelet domain thresholding

techniques to obtain the information of interest for the detection of micro-calcifications.
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These methods partially bypassed the modeling problem, but determination of the
optimum parameters, such as the threshold, is still a very challenging task, and the
detection performance was often affected by the suboptimum parameters.

Basically, lesion detection can be considered as an anomaly detection problem [78].
Performance of the detectors is heavily dependent on the accuracy of the mathematical
models and the detector parameters. However, as discussed before, appropriate models
and optimum parameter values are generally very difficult to obtain in practical
applications, which often results in unsatisfactory detection performance in terms of high
probability of false alarm (Pr) and low probability of detection (Pp).

In this chapter, we investigate the use of SR noise to enhance the detection of micro-
calcifications in mammograms. We first develop three lesion detectors based on the
Gaussian assumption. We will see that they are all suboptimal detectors, suffering from
model mismatch. Then, we present the main results of some prior work on SR noise-
enhanced signal detection under the Neyman-Pearson criterion, where the optimum form
of the SR noise is determined. After that, we develop a SR noise-based detection
algorithm for lesion detection that attempts to improve the suboptimal detectors. An
iterative detection scheme involving the use of SR noise with memory is also presented.
A more general SR noise-based detection enhancement framework based on the iterative
detection scheme is then presented. Finally, experimental results and the performance

evaluation of several detection and classification algorithms are presented in Section 3.3.
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3.2 Noise-Enhanced Detection of Micro-Calcifications in Digital
Mammograms

3.2.1 Problem Statement and Gaussian Assumption-Based Lesion Detection

In this section, we first introduce the lesion detection problem from a statistical
hypothesis testing point of view, and then present three Gaussian assumption-based
detectors for the lesion detection task. We will show via experiments that the
performance of these detectors is not satisfactory due to the large number of false alarms.
This is due to model mismatch, and it results in suboptimality of the detectors.

Higher pixel intensity than the surrounding normal tissues distinguishes lesions from
the normal structures in mammograms, which is one of the most important features of
abnormal mammograms. The algorithms developed in this chapter perform the detection
by exploring the pixel intensity information. We deal with this anomaly detection
problem using statistical hypothesis testing methods. Formally, we want to choose one of
the two hypotheses corresponding to the absence and presence of micro-calcifications on
a pixel-by-pixel basis,

H, :y[m] = s[m]+ w[m]

where m is the pixel index corresponding to the pixel observation under consideration,
y[m] is the observed pixel intensity, larger than or equal to zero, s[m] is the lesion signal,

and w{m]is the background noise that is assumed to obey Gaussian distribution with
mean y, and variance ;. The noise is assumed to be additive, independently distributed

and independent of the noise-free mammogram data. A processing window is employed
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with the pixel under consideration being at the center of the window. This window is

employed to estimate the parameters of the detector by using the pixels included in it.

3.2.1.1 Gaussian Background Assumption-Based Detector (GBAD)

The Gaussian background assumption leads to linear and tractable solutions [13]. The
micro-calcifications, the signals of interest here, are brighter spots than the surrounding
normal background tissues. So the micro-calcification is modeled as a signal with
constant amplitude, and the lesion detection problem is to detect a constant signal in
Gaussian noise, which we refer to as the Gaussian background assumption-based detector
(GBAD). The lesion signal s[m] in (3.1) is, therefore, a constant intensity.

As mentioned in Section 1.1, for this anomaly detection problem, the a priori
probabilities of the background and lesion pixels are unavailable, so we employ the
Neyman-Pearson criterion [13] for the detection task.

Under the Gaussian background and constant signal  assumptions,

p(¥;H,)and p(y; H,) all obey Gaussian distribution with the same variances;, and the
optimal test given in (3.1) can be expressed in terms of the GBAD test statistic 7,,,, ()

as follows

decide H,

>
Topp (¥) =y — n, < V1 (3.2)

decide H
where y is the intensity of the pixel under consideration, and the threshold y,is determined
from the desired Pr and the statistical parameters, i.e., mean and variance, of the pixels in
the processing window.

To estimate the detector’s parameters, an initial detection is first carried out in the
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processing window to perform a coarse detection, and the resulting detected negatives

H, ) and positives ( H,) are employed to estimate the parameters. Many methods, such as
0 P 1 ploy p y

a local maxima filter [79] or adaptive thresholding techniques [80], can perform the
initial detection. Local maxima filter is employed in this work because the lesion pixels
generally have a higher intensity than the surrounding normal background tissues.

For cancer diagnosis, the most serious mistake is to miss any lesions. To reduce the
probability of miss, we use a “safer” initial detection and attempt to exclude all the lesion
pixels from the background. It can be realized by using a local maxima filter with
appropriate window size and local threshold, permitting more pixels having relatively
higher intensities in the local regions to be classified into the lesion part.

The detection results for GBAD are shown in Figs. 3.2 (b), 3.3 (b) and 3.4 (b) in
Section 3.3, corresponding to three types of mammograms with micro-calcifications.
From the figures, we can see that the micro-calcifications are completely detected but

with a higher P, than the desired value, 0.01, used in our work. At this point, it suffices to

say that the performance of the detector is not satisfactory. A detailed discussion of the

experimental results is postponed to Section 3.3.

3.2.1.2 General Gaussian Detector (GGD)

Micro-calcifications, especially micro-calcification clusters, have a small size but
generally do not have a constant intensity, so a Gaussian model as opposed to a constant
signal model is proposed in this section to be a more reasonable model to represent the
signal part. Thus, the problem can be considered to be the problem of detection of

Gaussian signals in Gaussian noise. We refer to this detector as the general Gaussian
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detector (GGD) [13]. The lesion signal s[m] in (3.1) under this assumption obeys
Gaussian distribution, i.e., s[m]~N( u, ,05?).

The detected positive pixels (corresponding to lesions) and negative pixels
(corresponding to the background) in the initial detection are employed to coarsely
estimate the means and variances of the lesion and background pixel intensity pdfs.

Under the GGD assumption, p(y; H,)and p(y; H,) obey Gaussian distribution but with

different variances, and the optimal test is still the likelihood ratio test given in (1.5).The

optimum test can be expressed in terms of the GGD test statistic 7, (y) as follows

) decide H,
o,

>
Toop (¥) = z(y_ﬂh)z"'zﬂs(y_ﬂb) < 72

O-b

(3.3)

decide H
where the threshold y, is determined from the desired P, .The statistical parameters,

namely the means and the variances, of the initially detected positive and negative pixels
can be estimated using the processing window with the pixel under consideration at the
center of the window.

We can see that when &2 — 0, the first term on the right side of (3.3) tends to zero, and

(3.3) reduces to a form similar to (3.2), which corresponds to s[m] being a constant signal.
We also notice that (3.3) is a detector with two thresholds because the test statistic is
quadratic. Due to the nature of the abnormal mammograms, i.e., lesion pixels have
intensities that are generally higher than the surrounding normal background tissues and
the probability of the intensities of lesion pixels falling below the lower threshold is
extremely small, thus, only the higher threshold is employed to classify the mammogram
pixels into background and lesions. Therefore, the higher threshold of the test in (1.5) is

used in our work for the detection task.
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The detection results for GGD are shown in Figs. 3.2 (¢), 3.3 (¢) and 3.4 (¢) in Section
3.3, where all the micro-calcifications are discovered by GGD, with less false positives

compared with the GBAD.

3.2.1.3 GGD-Based Iterative Detector (GGD_ID)
Encouraged by the improvement achieved by the GGD over GBAD, we propose an
iterative method to further improve the performance of GGD by increasingly improving
the estimation of statistical parameters in an iterative manner.

At each step of the iteration, the GGD 1is designed with the parameters,

u,,u,,oandg;, corresponding to the background and micro-calcifications, estimated

from the detection result in the preceding iteration as opposed to keeping them fixed
during all iterations, which results in different thresholds at each iteration.

The procedure of the iterative detection algorithm is described as follows:

Initialization: Initial detection using the coarse detector described in Section 3.2.1.1.

Step 1. Means and variances of the detected positive (lesion) and negative
(background) pixels are calculated.

Step 2: Detection is performed using the GGD (3.3) with the desired P, and the
updated parameters, u ,u,, o and o, calculated in Step 1. If there are no differences
in the detected positives and negatives between two successive detections, terminate the
algorithm, else go to Step 1.

The presented GGD _ID algorithm is similar in spirit to Gaussian assumption-based
dynamic clustering (GADC), in which both background and lesions are assumed to obey

Gaussian distributions, and the detection (or clustering) and parameter updating are
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performed in an iterative manner [81]. The difference is that the method presented here

incorporates an additional constraint in terms of the desired value of P,.. The reason we
include P, in the algorithm is that at each step of the iteration, some detected negative

pixels have intensities much larger than the mean of the detected background pixels and
are close to that of the detected lesion pixels. In other words, some pixels have a non-
negligible and, in fact, fairly high probability to belong to the lesion part. Since we do not
want to miss any lesions, these pixels are classified into the lesion part by the desired

P, value, such as the value 0.01 used in this work. We will observe in Section 3.3 that the

iterative detection method presented here performs better than the GADC.
The detection results for this detector are shown in Figs. 3.2 (d), 3.3 (d) and 3.4 (d) in
Section 3.3, where the GGD is employed iteratively four times on the mammograms.

Experiments show that the method generally converges within 5 iterations.

3.2.1.4  Model Mismatch Analysis
From the experimental results, we can see that the detection performance has improved
with the melioration of the detection schemes, but the final results are still not
satisfactory as seen via inexact lesion contours and large number of false positives. The
resulting diagnosis may result in additional testing and biopsies for spots on
mammograms that finally turn out to be harmless, which is a weakness of many CAD
systems exhibit currently [82].

One major reason for the unsatisfactory detection is that the Gaussian assumption does
not accurately model the background distribution and the resulting test including the

detection threshold is not optimal. A more accurate model for the background, heavy-
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tailed symmetric & stable (SaS') distribution, was proposed in [83]. For verification, we
draw the amplitude probability distribution (APD) [84] plots of real-world mammogram
background data of a mammogram from the MIAS Mini-mammographic Database,
simulated Gaussian distribution and heavy-tailed SaS distribution data on a log-log scale
(see Fig. 3.1). Plotting APD is a commonly used method to test impulsive noise. It is
defined as the probability that the noise amplitude is above some threshold. We can see
from Fig. 3.1 that for small amplitudes, the simulated heavy-tailed distribution and
Gaussian distribution provide good fits to the mammogram data. At larger amplitudes
(i.e., at the tails), the simulated heavy-tailed SaS distribution is shown to be a better fit
than the Gaussian one. In addition, the plots of the mammogram data and the simulated
heavy-tailed SaS data decay linearly with a constant slope compared with that of the
Gaussian data. These two observations indicate that the heavy-tailed SaS distribution
[83][84] is a better model than the Gaussian model for the background pixel intensities of
a digital mammogram. Hence, there exists empirical support for the existence of the
SaS noise distribution in mammogram background (as opposed to the Gaussian

distribution). Theoretical analysis and more detailed discussion on this can be found in

[83].
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Figure 3.1: The APD plots of the real-world mammogram background data, simulated Gaussian

distribution and heavy tailed SaS distribution data on a log-log scale. It shows that the mammogram pixel

intensities obey heavy- tailed SasS distribution more closely

One approach to the design of the optimal lesion detector is to derive the optimal test
under the Neyman-Pearson formulation when the background is modeled as the
SaS distribution. However, the difficulties in learning the parameters of
the SasS distribution from the real-world data as well as the off-line integration when
calculating the detection threshold constrains the practical application of the optimal
Sas -based detectors. In the following sections, we will investigate an alternate approach,
namely the application of SR noise, to the lesion detection problem. We will continue to
use the suboptimal detectors designed based on the Gaussian noise background
assumption. Admittedly there is a model mismatch, and we will attempt to overcome the
deterioration in the detector performance by adding SR noise at the input to the detector.

We will see that the SR noise-based detector yields significant performance enhancement

and is easy to implement.
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3.2.2 Optimum SR Noise-Enhanced Signal Detection

One of the main goals of this chapter is to develop SR noise-enhanced detection methods
for lesion detection in mammograms. We first discuss in this section how to find the
optimum SR noise.

Based on the binary statistical decision formulation (1.1)~(1.6) in Section 1.1, we
popose to add an appropriate noise 7 to the original datay, which yields a new data
vector z

Z=y+n 34
where 7 is either a random vector with pdf p.(.) or a nonrandom signal.

The binary hypotheses testing problem for this new observed data can be expressed as

H,:p.(zZ;H,) = py(2) = J‘(po()_/)pz(z_j/)d)—/

(3.5)
Hy:p.(ZH) = pi(5) = [ p(P)p,(E=P)dy

In our work, we consider the SR noise-enhanced fixed detectors whose parameters,
such as the thresholds, are unchanged before and after adding the SR noise, so the critical

function ¢ of z is the same as that of y . Therefore,

Py = [ 4G)p () = [ p, (y)( | ¢(z)p1<z—y>dedy
RY RY RN (3 6)

= [F)p, (v

And similarly we have

P = [¢2)p,(B)dz = [ F,(D)p, )y (3.7)
RN RN
where F () = I $(Z)p,(z - y)dy , corresponds to hypothesis H;
RJ\’

Thus, our goal is to find the optimum pdf of the SR noise which is the solution to the
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following optimization problem.
Maximize P
subject to (3.8)

P/ <P p;(3)=0and [ p,()dv=1

In this section, we discuss two methods to find the optimum solution to (3.8).

3.2.2.1 Linear Programming

The first method is based on linear programming.

From (3.8) we observe that the objective function P, and the constraints are all linear
functions of the pdf p-(.). Therefore, we could use linear programming methods to find
the optimum p.(.). Simplex algorithm [85] has been employed in our experiments for

the optimization task and we achieved very satisfactory results.

3.2.2.2 Convex Hull Theorem
The second optimization method is based on the Convex Hull Theorem, which is
discussed in detail in [53]. We present the fundamental results on SR noise-enhanced
signal detection using the Convex Hull Theorem [53] in this section.

The sufficient condition for improvability of detection via SR noise is given in
Theorem 1 [53].

Theorem 1: If J(P))>P) or J"(P!)>0 when J(r) is second-order continuously
differentiable around P} , then there exists at least one noise process 7 with pdf p.(.) that

can improve the detection performance, where J(¢) is defined as the maximum value of
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f, given f, , 1.e., J(t)=sup(f,:f,=t). f, and f, are the given values of F, and F|,
respectively.

Theorem 2 [53] determines the form of the optimum SR noise when the detector is
improvable.

Theorem 2: To maximize P,/ , under the constraint that P/ < P}, the optimum noise
can be expressed as p¥(n)=A5(m—n)+(1-A)8(n—n,) , where 1 and 1-1 are the
occurrence probabilities of the suitable N-dimensional vectors n, and n,, 0<A1<1.

The approach to determine 4,7, and 7, is discussed in detail in [53]. They can be

determined in practice using numerical methods. Since the optimum SR noise is a
randomization of two deterministic vectors, we call it the “Two-peak SR noise” in this
chapter.

The advantage of a SR noise-enhanced fixed detector is that the parameters, such as
the threshold, of the original detector do not need to be changed, yet better detection
performance is expected. In other words, model mismatch can be handled fairly easily by
using this approach. However, to obtain the optimum SR noise, full knowledge of the
pdfs under the two hypotheses is required, which in real-world applications is generally
not available. In the next two sections, we will discuss how to find the suitable SR noise

for enhancing a suboptimal lesion detector when the knowledge of the pdfs is incomplete.

3.2.3 SR Noise-Enhanced Gaussian Assumption-Based Detection
In this section, the SR noise-enhanced detection approach is employed for finding lesions
and enhancing the previously discussed suboptimal detectors based on the Gaussian

assumption. We perform pixel-by-pixel detection. The suboptimal detectors to be
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improved result from the model mismatch and the lack of information about the
mammogram statistics. These detectors are excellent candidates for the application of the
SR noise-enhanced detection scheme.

The basic idea of the SR noise-enhanced detection is to obtain the optimum additive
SR noise based on the knowledge of the pdfs of the lesion and the background signals.
Since these pdfs are not known, they need to be estimated from the given mammogram
itself. The mammogram is modified with the optimum additive SR noise determined
using the estimated pdf, and then the original suboptimal detector performs the detection.

Two SR noise-based schemes are presented here for improving lesion detection.

3.2.3.1 Two-Peak SR Noise-Enhanced Gaussian Background Assumption-Based
Detection (2SR-GBAD)

In this algorithm, we try to reduce the dependence of the SR noise determination on the

knowledge of the true pdfs and increasingly enhance the suboptimal detectors through an

iterative procedure.

We first use the SR noise to enhance the GBAD discussed in Section 3.2.1.1.To
achieve this goal, we perform the coarse detection of the lesion and background using the
local maxima filter mentioned in Section 3.2.1.1. The detection threshold is calculated for
the GBAD, which is suboptimum due to model mismatch. Then, the probability densities

under #,and A, are obtained using the kernel density estimation method [86] based on

the detected positives and negatives. The parameters of the SR noise are calculated from
the suboptimum threshold and the estimated densities. The SR noise is added to the

original mammogram. Detection is performed on the SR noise-modified data using the
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original detector. This procedure is repeated in an iterative manner until the difference
between two successive detection results is very small®. The procedure of the 2SR-
GBAD detection algorithm is described as follows:

Initialization: Initial detection using the coarse detector described in Section 3.2.1.1.

Step 1: Mean g, and variance o; of the background are estimated based on the detected

negative pixels. The detection threshold is updated based on the desired Pr as well

as u, and o, using (1.6), where we assume that the background obeys Gaussian

distribution (see GBAD in Section 3.2.1.1).

Step 2: The pixels are detected with the updated threshold found in Step 1. The
resulting detected positive and negative pixels are employed for estimating probability
densities under the two hypotheses using the kernel density estimation method.

Step 3: The updated threshold in Step 1 and the newly estimated probability densities
in Step 2 are used to determine the SR noise with the method mentioned in Section 3.2.2.

Step 4: The mammogram data is modified by adding to the original pixel intensities
the SR noise determined in Step 3.

Step 5: Detection is performed with the detector updated in Step 1 using the modified
data from Step 4. If the difference between two successive detection results is very small,
terminate the algorithm else go to Step 1.

According to the experiments, a good initialization can be generated by schemes such
as a maxima filter with an appropriate window size and threshold, such that satisfactory

detection can still be obtained even when the threshold update procedure in Step 1 is not

2 There could be many methods to define and evaluate the difference. In our work, the difference is defined as the
ratio of the number of differently labeled pixels in two successive detections to the total number of pixels in the
mammogram. The labeled pixel here means a pixel classified as a positive (lesion) pixel or a negative (background)
pixel. The iterative procedure is terminated when the ratio is smaller than a desired value.
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performed during the iterations. In other words, the critical function can remain fixed
throughout the iterations if the initial detection is good enough. We can also perform
threshold updating every several iterations to improve the computation speed.

In a similar manner, we can use the above procedure to design the SR noise-enhanced

GGD test, i.e., 2SR-GGD, where the means, 4 and y,, and variances, o?ands}, of the

detected positives and negatives as well as the desired Pr are used together to update the
threshold in Step 1. The rest of the four steps of 2SR-GGD are the same as those of 2SR-
GBAD. Since GGD is a more accurate model for abnormal mammograms, which can be
seen in the comparison between the detection results of GBAD and GGD, 2SR-GGD
yields better performance than 2SR-GBAD, according to the experiments. The 2SR-GGD
method also shows improvement over GGD detection. Moreover, the presented algorithm
generally needs fewer iterations than GGD ID discussed in Section 3.2.1.3 to reach
similar detection results. Also, the final results of the presented algorithm are better than

GGD _ID.

3.2.3.2 Two-Peak SR Noise-Enhanced Gaussian Assumption-Based Detection with
Memory (2SR-GBAD-M)
The experiments show the improved performance of 2SR-GBAD. In this section, we
further improve its efficiency and robustness by introducing memory in the detection
enhancement scheme.
As we know, to find the optimum SR noise, the exact knowledge of the probability
distribution under the two hypotheses and the determination of the solution for a set of

equations are required. However, in real-world applications, due to incomplete
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information about the distribution, limitations on the accuracy when solving the
equations and various contents of mammograms, high efficiency and robustness of the
SR noise-enhanced detection system may not be achievable using the SR noise-based
enhancement procedure only once. Multiple applications of the procedure may yield
further enhancement of detection performance. We, therefore, apply suitably arranged
multiple two-peak SR noises multiple times to increase the efficiency and robustness of
the detection system, which we refer to as 2SR-GBAD-M.

Formally, for the SR noise-based scheme with memory, we have

Z=y+n’ (3.9)
where 7" represents multiple-peak SR noises instead of a single two-peak SR noise added

to the original mammogram data in Step 4 of the algorithm presented in Section 3.2.3.1,

and
P = Z W, Dy, (3.10)
k=1

where wj is the weight or probability of occurrence of the &” two-peak SR noise,

0<w, <1 and Zr:Wk =1. r is the number of two-peak SR noises which in our current
k=1

work equals the number of iterations already run plus 1 (i.e., the SR noise determined
from the estimated probability mass function (pmf) and the updated threshold at current
iteration is also included, where pmf is used as the specific form of the probability

distribution for discrete digital mammogram data), and

p, (M =AM —n,)+(1-4)6(n - n,,) (3.11)
Of course, we can change the memory size by using different values of 7, but in any case
the latest » two-peak SR noises should be employed. When =1, a single two-peak noise
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is used, and the scheme reduces to the scheme without memory.
At each step of iteration, a larger weight, i.e., higher probability is allocated to the SR
noise calculated from the currently estimated pmyfs, and the weights for the rest of the SR

noises are inversely proportional to the distances between their corresponding pmfs and

the currently estimated ones. The distance D between the pmfs obtained during the [
iteration and the latest estimated pmfs is defined as
BH
D, =3 [| PME,, (i)~ PMF,, () [+ | PMFy, (i) = PMF, () | (3.12)

i=0

where pymF,, denotes the pmf under hypothesis H; obtained during the I" iteration, and

j=0,1. B, is related to the resolution of the image data. For example, B, =255if an 8-bit

image is used. pMF,, is the estimated PMF under hypothesis H; obtained at the current

iteration. The summation is over all possible image intensity values. This approach to
incorporate memory has resulted in encouraging results as will be seen in the Section 3.3.
The detection results of the two-peak SR noise enhanced GBAD tests with memory are
shown in Figs. 3.2 (f), 3.3 (f) and 3.4 (f), from which we can see the Gaussian
assumption-based detection suffering from model mismatch is improved through the
addition of SR noise. Experiments also show that 2SR-GGD-M yields better performance

than 2SR-GBAD-M.

3.2.4 SR Noise-Based Detection Enhancement Framework
We have presented a SR noise-based detection enhancement method in Section 3.2.3 to
reduce the model mismatch resulting from the Gaussian assumption. When models other

than Gaussian models are used to fit data, there may still exist model mismatches,
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resulting in detector performance degradation, and SR noise may enhance the detector
performance. In this section, we extend the SR noise-based detection scheme and present
a more general SR noise-based detection enhancement framework. This framework
provides much more flexibility and higher efficiency. In this chapter, we only consider
the detectors (or classifiers) which we have control of, e.g., we can change their
thresholds.

The framework is developed by modifying the first two steps of the detection
procedure presented in Section 3.2.3 and is shown as follows.

Initialization: Initial detection.

Step 1: Probability density estimates are obtained under the two hypotheses using the
detected positive (lesion) and negative (background) pixels. The detection threshold (or
the classifier) is updated according to the estimated probability density information.

Step 2: The pixels are classified (or detected) with the updated threshold or the
classifier in Step 1. The resulting detected positive and negative pixels are employed for
estimating probability densities under the two hypotheses.

Step 3: The updated threshold or classifier in Step 1 and the newly estimated
probability densities in Step 2 are used to determine the SR noise with the method
mentioned in Section 3.2.2.

Step 4: The mammogram data is modified by adding SR noise to the original pixel
intensities.

Step 5: Detection is performed with the detector or classifier updated in Step 1 using
the modified data from Step 4. If the difference between two successive detection results

is very small, terminate the algorithm else go to Step 1.
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To improve the efficiency and robustness of the detection framework, the two-peak
SR noise scheme with memory, which yields multi-peak SR noise, can also be used in
Step 4.

We note that no specific constraints are put on the initialization, threshold or classifier
updating and pdf estimation methods used in this framework. Any reasonable approaches
could be employed. In the current work, we illustrate the ability of our framework by
considering different algorithms for threshold or classifier updating and pdf estimation.
For initialization, we still use the maxima filter discussed in Section 3.2.1.1. A. For
threshold or classifier updating, one may use the methods that can converge when there is
no SR noise added, such as GADC and iterative mode separation (IMS) algorithms [81].
IMS is an unsupervised learning pattern classification approach, which employs kernel
density estimation technique to determine the pdf and performs clustering in an iterative
manner. For pdf estimation, one may use non-parametric methods, such as kernel density
estimation, k-nearest neighbor density estimation [86] and Bootstrap methods [87][88],
etc., because we want to reduce the model mismatch during the pdf estimation as well as
the dependence of the framework on modeling, and to make the framework more
generally usable. In this chapter, for performance comparison, we employ the kernel
density estimation approach and threshold update using (3.13) [89], same as those used in
IMS. We will observe in Section 3.3 that the SR noise-based method can further improve
the performance of IMS. The threshold updating is carried out by using

Pypo(y )=Pip1(y) (3.13)
where " is the updated detection threshold during the current iteration. Pyand P, are the a

priori probabilities of the detected negatives and positives, which can be estimated by
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ISi =n,/n, where n; is the number of negatively detected pixels when i=0 and positively

detected pixels when i=1, and # is the total number of pixels in the mammogram. This
generates a suboptimal detector because the threshold is determined from the coarsely
estimated a priori probabilities and pdfs by using the plug-in rule [81].

Experimental results show that the SR noise-based algorithm presented in this chapter
generally needs fewer number of iterations than IMS to reach similar detection results.
Also, the final results of the SR noise-based algorithm are better than IMS, where the
final results are attained when the difference between two successive detection results is
very small. In addition, given a good initialization, satisfactory detection can still be
obtained even when the threshold or classifier update procedure in Step 1 is not
performed during the iterations.

It can be seen that the above iterative procedure includes a scheme for pdf estimation,
but in our current detection (or clustering) application, the estimated pdfs are not of
interest as an end in themselves. Instead, we are more interested in the detection results
which, of course, depend on the estimate. At the same time, an accurate pdf estimate can
also be obtained from an accurate detection. So, the detection results are used in this
chapter as an alternative way to evaluate the performance of the pdf estimation algorithm.
For comparison, a Gaussian mixture modeling (GMM) [90]-based clustering method
which performs the detection based on the GMM-fitted pdf is employed with the

detection results shown in Section 3.3.
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3.3 Experimental Results

3.3.1 Experimental Data
The majority of the mammograms used in the experiments are from Digital Database for
Screening Mammography (DDSM) [91], and a few of them are from the Mammographic
Image Analysis Society (MIAS) Mini-mammographic Database [92], so the experimental
parameters, such as the processing window size, are determined mainly based on DDSM.
DDSM has 2620 cases available in 43 volumes. A case consists of between 6 and 10
mammograms, where the grey levels are quantized to 16 bits, and resolution of the
images is 50 microns/pixel. The MIAS Database includes 330 mammograms with the
resolution being 200 microns/pixel. The location and types (malignant or benign) of the
mammogram lesions are identified by expert radiologists and used as the ground truth in
our work. In this chapter, our emphasis is on location detection based on the ground truth.

We choose three types of representative abnormal mammograms with micro-
calcifications (clusters) including one having homogeneous background with a small
number of isolated micro-calcifications, one having homogeneous background with a
large number of micro-calcifications (clusters) and one having inhomogeneous
background with a moderate number of micro-calcifications (clusters), respectively.
These three types of mammograms cover a broad spectrum of mammogram micro-
calcification (cluster) cases. Seventy five images selected from the three types of
mammograms, 25 for each type, are employed to test the algorithms.

Micro-calcifications are very small, their sizes are in the range of 0.05-1.00mm [93],
and the average is 0.3mm. Those smaller than 0.1 mm cannot be easily distinguished in

the film-screen mammography from the high-frequency noise [94]. The width of the
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majority of the micro-calcifications in our study is in the range between 0.25 and 0.5 mm.
A micro-calcification cluster is considered to be a group of 3 to 5 or more micro-
calcifications, 5 mm apart [95]. We choose the processing window size of 49 by 49
which is based on experiments that we conducted as well as the characteristics and the
size of the lesions. Our experiments also indicated that the detection results were not very
sensitive to the choice of window size provided that the window size was in the range
between 31 and 61 when processing the data.

Since we carry out pixel by pixel detection, any isolated detected positive should not
be considered to be a lesion due to the micro-calcification size mentioned above as well
as the fact that the high-frequency noise may have serious influence on an individual
pixel. Therefore, a micro-calcification (cluster) is declared to be detected only if at least 4

by 4 positively detected pixels are in a clump.

3.3.2 Performance Comparison and Analysis
In this section, performance of several lesion detection algorithms is compared and
analyzed. These algorithms include GBAD, GGD and GGD_ID discussed in Section
3.2.1, GADC, 2SR-GBAD-M, IMS, GMM-based clustering method, high order statistics
method based on local maxima detection and adaptive wavelet transform (HOSLW) [96]
and the SR noise-based detection enhancement framework using a procedure similar to
IMS, i.e., SR_IMS.

The first four algorithms are based on the Gaussian distribution assumption and are
parametric approaches. GMM is a semi-parametric technique for pdf estimation, in which

the superposition of a number of parametric densities, e.g., Gaussian distribution, are
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used to approximate the underlying pdf. It offers a useful compromise between the non-
parametric methods mentioned in Section 3.2.4, and the parametric estimation methods,
such as those mentioned above. For the clustering application, we first fit the GMM

given in (3.14) by using the Expectation-maximization algorithm [90]
g
FM=2.Pf(») (3.14)
i=1

where f(y)is the density of the observation y, and f,(y)are the component densities of the

mixture. g is the number of components, which can be preset or automatically determined

according to the data statistics. In this chapter, we set g=2 to facilitate two-class

clustering. P are the mixing proportions or weights, 0< P <1 (i=1,...,g) and i P=1-

Clustering is performed by using the plug-in rule given in (3.15) based on the Bayes
rule [90]

R(y)=i if Bj(» 2P f,(») (3.15)

for j=1,...,g, where R(y)=i denotes that the allocation rule R(y) assigns the observation

y to the i" component of the mixture model. P and f(y)are the fitted values of P and

f,(y), respectively.

The HOSLW algorithm is proved to have superior performance compared with other
existing methods [97] in terms of efficiency and reliability. In this method, local maxima
of the mammogram are determined as the lesion candidates, and the adaptive wavelet
transform is employed to generate subbands which permit the rank of these maxima in
the subband mammogram using a higher order statistical test for lesion detection.

For fairness, we use the same initial detection for the algorithms compared in the

experiments. In 2SR-GBAD-M and SR _IMS, the weights of the two-peak SR noise
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calculated from the currently estimated pdfs are set to 0.5. We have carried out the
experiments using 75 images and present the results of five detection/classification
algorithms in Table 3.1, in terms of true-positive fraction (TP) and false positives per
image (FPI) [98], where TP is defined as the ratio of the number of the true positive
marks to the number of lesions and FPI is defined as the average number of false
positives per image. In our work, if a detected positive area has more than 50% overlap
with the ground truth area, we consider the detected area to be a TP lesion. Otherwise, we
consider it to be a false positive. This is the same definition as used in [99].

We first present the qualitative evaluation of these algorithms. Figs. 3.2, 3.3 and 3.4
show the experimental results for the three ROIs cut from three representative
mammograms, where the detected positive pixels are labeled with small dots.

In the experiment shown in Fig. 3.2, a fixed threshold is employed in the 2SR-GBAD-
M and SR_IMS algorithms throughout the iterations. The complexity of the mammogram
used in these experiments is the lowest compared with the other two to be discussed next.
From the figures, we can see that the GBAD and GGD methods find all the lesions, but at
the same time generate many false alarms (see Figs. 3.2 (b) and 3.2 (c)). GGD_ID (Fig.
3.2 (d)) is a more robust method. It improves the detection of GGD and performs better
than the GADC and IMS methods shown in Figs. 3.2 (e) and 3.2 (g), but it still fails to
reduce the false positives satisfactorily. The advantage of the GADC is that it converges
quickly, generally in no more than 8 iterations in our experiments, while IMS may
converge to local extrema. HOSLW method (Fig. 3.2 (h)) can find the lesions efficiently,
but it fails to determine lesion shape which plays a very important role in discriminating

the benign tumors from the malignant ones. Moreover, its detection performance depends
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on how accurately we can estimate the number of lesion pixels, which is generally not
available or known in real-world cases. These detectors suffer from model mismatch and
parameter suboptimality resulting in suboptimum detection threshold, and their
performances are degraded. The GMM-based detector finds all the lesions but still does
not avoid the high Pr (see Fig. 3.2 (i)), which is due to the inaccuracy when GMM is
used to fit the mammogram data. In contrast, the presented 2SR-GBAD-M and SR _IMS
algorithms yield good detection results in terms of lesion localization, lesion contour
exploration and Pr reduction (see Figs. 3.2 (f) and (j)), which demonstrates the capability
of the SR noise-based method for enhancing the detectors with model mismatch and
parameter suboptimality. Comparing Figs. 3.2 (f) and (j), we can see that SR IMS
performs a little better than 2SR-GBAD-M in reducing false alarms and determining

lesion boundaries.

(a) (b) (©) (d) (e)
® (2 (h) @ )

Figure 3.2: Original abnormal mammogram and the detection results (4bnormal mammogram type 1:

homogeneous background with small number of isolated micro-calcifications). (a) Original mammogram
with micro-calcifications; (b) GBAD; (c) GGD; (d) GGD_ID; (e) GADC; (f) 2SR-GBAD-M,; (g) IMS; (h)

HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with dots.
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Fig. 3.3 shows a more complex case, where both isolated micro-calcifications and
crowded clusters exist and the number of lesions is large. We can see that still the 2SR-
GBAD-M and SR _IMS algorithms yield better detections with clearer lesion contours
and less false positives (see Figs. 3.3 (f) and 3.3 (j)). Compared with GBAD and GGD in
Figs. 3.3 (b) and 3.3 (c¢), GGD_ID and GADC method shown in Figs. 3.3 (d) and 3.3 (e)
perform better but still with high Pz’s. IMS fails to find some lesions (see Fig. 3.3 (g)).
HOSLW (Fig. 3.3 (h)) does not give us much useful information about the lesion
positions in this crowded micro-calcifications (clusters) case. This is because its detection
operation is performed in subband images which have a quarter of the size of the original
mammogram, so the area of the detected positives will be four times of those in the
subband images when the detection result is shown in the original mammogram. When
the micro- calcifications (clusters) are close to each other, their boundaries and locations
are hard to determine. GMM performs better than the rest of the methods (except for Figs.

3.3 (f) and 3.3 (j)), but still generates many false alarms.

® ( (h) (M) W)

Figure 3.3: Original abnormal mammogram and the detection results (4bnormal mammogram type 2:
homogeneous background with large number of micro-calcifications (clusters)). (a) Original mammogram
with micro-calcifications; (b) GBAD; (c) GGD; (d) GGD _ID; (e) GADC; (f) 2SR-GBAD-M; (g) IMS; (h)

HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with dots.
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Fig. 3.4 is the most complex case, where the background distribution is
inhomogeneous and some background pixels have their intensities approaching the lesion
pixels. It is hard to model the background using just a univariate probability distribution.
Finite mixture models [90] may be a choice, but to determine the model type and
parameters is also a challenging task. Also, their performance could be deteriorated by
the non-stationary nature of the images. Therefore, model mismatch in this type of
images is more serious and unavoidable. In our experiment, we still use univariate
Gaussian distribution to model the pixel intensity distributions of the background and
lesion, respectively, through which the model mismatch is simulated. From Fig. 3.4, we
can see that the performance of all the detectors degrades to some extent with higher Pr
and lower Pp values as well as more imprecise lesion contours compared with the
previous two cases. But the presented 2SR-GBAD-M and SR_IMS algorithms (see Figs.
3.4 (f) and 3.4 (j)) still stand out with better detection results, which again demonstrate
their efficiency in reducing the negative influences of model mismatch and suboptimum
parameters.

Next, we present the results of quantitative performance evaluation. We select three
methods to compare with 2SR-GBAD-M and SR_IMS, and present the results in Table
3.1. The reason we choose GADC and IMS is that they are all classical pattern
classification methods and also based on iterative procedures, like 2SR-GBAD-M and
SR _IMS. GADC may suffer from model mismatch due to the Gaussian assumption and
IMS may have suboptimum threshold value due to the inaccuracy of the pdf estimation
when processing mammogram data. Additionally, HOLSW is said to be superior to

several micro-calcification detectors [97].
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Figure 3.4: Original abnormal mammogram and the detection results (4bnormal mammogram type 3:

inhomogeneous background with moderate number of micro-calcifications (clusters)). (a) Original

mammogram with micro-calcifications; (b) GBAD; (c¢) GGD; (d) GGD_ID; (e) GADC; (f) 2SR-GBAD-M,;

(g) IMS; (h) HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with

dots.

TABLE 3.1
DETECTION PERFORMANCE OF FIVE ALGORITHMS
METHODS
GADC IMS 2SR-G SR I HO
RESULTS
Range  [0.61,1] [0.58,1]  [0.80,1] [0.81,1] [0.81,1]
TP Mean 0.89 0.90 0.93 0.94 0.94
Standard ) 5 0.28 0.12 0.11 0.11
deviation
Range [0,20] [0, 17] [0, 9] 0,717 [0, 14]
FPI Mean 8.16 7.89 491 3.12 522
Standard 6.18 7.08 3.94 2.95 4.82

deviation

2SR-G: 2SR-GBAD-M; SR_I: SR_IMS; HO: HOLSW.

TP and FPI are employed as the metrics. The means of TP and FPI represent the

average performance of each method, and their standard deviations are used as a measure

of the robustness of each method when applied to different types of images. A better

method is identified to be one with higher mean TP value but lower mean FPI value as

well as lower TP and FPI standard deviations.
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Since HOLSW requires the knowledge of the number of lesions, which is generally
not available in real-world applications, we adjust the lesion number manually, such that
the TPs of HOLSW and SR_IMS for each image are the same, and then FPI is employed
as a criterion for their performance comparison.

From Table 3.1, we can see that 2SR-GBAD-M and SR IMS achieve superior
performance than the classical methods, GADC and IMS, both in true positive detection
and in false positive reduction. HOLSW can attain a similar true positive detection
performance as 2SR-GBAD-M and SR_IMS, but it is worse than the two SR noise-
enhanced detectors in terms of FPI reduction. 2SR-GBAD-M and SR_IMS have similar
detection results, (actually SR_IMS performs a little better) but SR_IMS yields more
satisfactory results in terms of FPI reduction. This is because 2SR-GBAD-M updates the
threshold based on the Gaussian assumption, and is, therefore, affected by the model
mismatch.

It should be emphasized that the detection performance of our detectors may be
further improved if image enhancement techniques are employed before detection [100]
and post-processing methods, such as pattern classifiers embedded with other lesion

features, are used after the detection procedure.

3.4 Summary

Automatic detection techniques for micro-calcifications are very important for breast
cancer diagnosis and treatment. Therefore, it is imperative that the detection techniques
be developed that detect micro-calcifications accurately. This chapter first developed a

lesion detection approach based on SR noise for enhancing the Gaussian assumption-
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based detectors which suffer from model mismatch, and furthermore presented a more
general SR noise-based detection enhancement framework. Comparative performance
evaluation was carried out via experiments between the presented SR noise-based
detection enhancement schemes and several detection and classification techniques with
three types of representative abnormal mammograms. The results show that the presented
algorithm and the framework resulted in highly encouraging performance in terms of
flexibility, detection efficiency and system robustness, which demonstrates SR noise’s
capability of enhancing the suboptimal detectors and supports its real-world CAD

application.
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CHAPTER 1V

IMAGE ENHANCEMENT BASED ON STOCHASTIC
RESONANCE NOISE AND SELECTIVE
ENHANCEMENT FRAMEWORK

In this chapter, we present two image enhancement approaches. In the first approach, we
add a suitable dose of noise to the lower quality images such that the performance of a
suboptimal image enhancer is improved without altering its parameters. In the second
approach, we present a framework for image enhancement that is based on the selective
enhancement technique. Several enhancement algorithms under this framework are
developed. Mammogram enhancement is used as an example to illustrate the efficiency

of the framework.

4.1 Introduction

As described in Section 1.2, there are mainly four types of image enhancement
algorithms. Many popular enhancement algorithms more or less have some disadvantages,
which restrain their real-world applications. For example, the standard histogram
equalization method [2] processes images globally, thus often causes intensity saturation
and the enhanced image is far from a natural one. Its improved versions, such as bi-
histogram equalization (BiHE) [15] and contrast limited adaptive histogram equalization
(CLAHE) [16], cannot achieve the naturalness of an original image. Median filtering is a
standard spatial operation. It often blurs the images and yields poor results when the

noise is Gaussian or the number of noise pixels in the processing window is large [18].
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Another popular spatial operator, adaptive Wiener filter [18], often results in over-
smoothness on the edge. According to [101], a comparative analysis of transform based
image enhancement shows that the existing transform-based enhancement techniques
have some commonly occurring problems, such as the introduction of artifacts and partial
enhancement. In addition, enhancement algorithms attempting to incorporate human
visual system (HVS) information are well-motivated, but the unsuitable usage of the
HVS properties or the simplified HVS computational models often degrade their

performance.

In this chapter, we investigate two enhancement approaches to improve image quality.
In the first approach, we attempt to improve image enhancement via the use of stochastic
resonance (SR) noise. In recent years, image enhancement methods based on SR noise,
such as [102][103] and some work from our group, such as those presented in the
previous chapters in this dissertation and the one presented in [104], have appeared in the
literature. These methods improve image quality by introducing appropriate noise into
the image. But they either have complicated procedures to determine suitable SR noises
or are only suitable for enhancing specific image contents. In Chapter 3, we have
developed a novel approach to improve the performance of suboptimal breast cancer
detection systems by adding suitable noise to the mammograms. In these SR noise-based
image processing work presented in [102]~[104] and Chapter 3, however, HVS
characteristics during the processing procedures were not considered. In this Chapter, we
present a new practical approach for image enhancement based on SR noise, where a
systematic methodology is developed to determine SR noise parameters and promising

results are shown via a number of illustrative examples. We first formulate the image
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enhancement problem as a constrained multi-objective optimization (MOQO) problem.
Then, we investigate the principle of the SR noise-refined image enhancement scheme,
and present an image enhancement system. We also present the method to determine the
optimum parameters of the SR noise based on MOO, where a weighting scheme is
employed to mimic HVS preferences while selecting solutions from the dominant
solution set. In our work, two objective functions are discussed to illustrate the capability
of the enhancement scheme, and the experimental results together with performance

evaluation are provided in Section 4.2.4.

In the second approach, we present a selective enhancement framework based on
image segmentation techniques, which starts with region of interest (ROI) selection, and
is followed by ROI enhancement and background suppression. We first introduce the
enhancement framework. Then, we introduce thresholding-based enhancement methods,
including two basic enhancement techniques, i.e. weighted mean gray value- and fuzzy
cross-over point-based thresholding, and two improved methods, a joint enhancer and an
iterative enhancement method. After that, we discuss statistical detection-based
enhancement schemes. Finally, we show the experimental results and the performance

evaluation of the presented approach in Section 4.3.

4.2 Noise-Refined Image Enhancement Using Multi-Objective
Optimization
4.2.1 Problem Formulation

The problem of improving the quality of images from degraded observations is an ill-
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posed problem. Formally, we have the degraded image model [105],
Y =¢(H(X))On (4.1)

where X is the original image, and Y is the observed and degraded image; H corresponds
to a shift-invariant point spread function (PSF). The blurred image H(X) is produced and
recorded by a sensor, which is often accompanied by a nonlinear transformation of H(X),

i.e.,4(-). Also, noiser can be introduced by the sensor. ® denotes the process by which

measurement noise gets introduced, e.g., additive or multiplicative noise.

In this section, we first formulate the image enhancement problem as a MOO problem,

where two objective functions f(X) and g(X,y) are optimized at the same time.
Formally, we want to

1. maximize f(X)

2. maximize g(X,Y) 4.2)
where £(X) denotes the desired enhancement characteristic of the enhanced image X,
and g(X,Y) is the measure of similarity between the enhanced image and the degraded

one, to avoid over-enhancement. The specific objective functions used in this work will
be discussed in Section 4.2.4 where several illustrative examples are also

presented. X =D(Y), and D is an existing image enhancement algorithm. Suppose

YeYand X e X, where ¥ is a subset of R*, and Xis a subset of RX**". R is the set of
real numbers. (Here, we assume that the pixel intensities of an image can only take
certain values, e.g., the integers between 0 and 255, which is a subset of R.) KxL and

K'xL'are the image sizes of the original image and enhanced image, respectively. In this

work, without loss of generality, we assume that K =K' and L=L'. Obviously, X depends
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on Y for a given algorithm D such that X :{)?‘)A( =D(Y),Y e?}. The two objective

functions f'and g can be considered as quality metrics which evaluate the performance of
the enhancer D. To regularize the enhancement result and improve the performance, we

further introduce a constraint in the MOO problem, i.e., g(X,Y)>b, that is, we require the

processed image to have at least certain similarity to the observed image, which also

determines the feasible set. Thus, we have the constrained MOO problem
1. maximize f(X)
2. maximize g(X,Y)
subject to g(X,Y)>b. (4.3)

where the selection of the constraint b will be discussed in Section 4.2.4. The feasible set

of the constrained MOO  problem is denoted by X7 , and

X' ={(X|X=D®Y),YeY,g(X,Y)2b}.

In the current image enhancement research, lots of efforts have been made to model
the imaging process (4.1) and design the algorithm D to improve the image quality.
These are very challenging tasks, because the mismatches between the assumed model
and the actual underlying data features and the imaging process are very difficult to avoid,

which often result in poor quality of the processed images.

Rather than developing new models and algorithms to obtain better enhancement, in
this work we investigate how to improve an existing image enhancement algorithm D
while still keeping the structure including the parameters of D unchanged. From the

formulation of the constrained MOO problem (4.3), we can see that for fixed £, g and D,
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one important way to improve the enhancement is to alter the feasible set of solutions x* ,
such that the resulting set possibly contains better solutions. This could be achieved by
introducing suitable SR noise into the observation Y. The performance improvement will
be achieved by finding the solution of problems posed in (4.9) and (4.11) from the altered

feasible set. Details of this process will be discussed in the next two sections.

4.2.2 Stochastic Resonance Noise-Refined Image Enhancement
In this section, we present the principle of SR noise-refined image enhancement, and

describe the scheme and system for improving the image enhancement performance.

4.2.2.1 Principle of SR Noise-Refined Image Enhancement

Given a degraded image Y=y, we obtain the unique enhanced version X = D(Y)employing
the existing enhancer D. Suppose X satisfies 2(X,Y)>b, then the feasible set X" includes
only one element X = % = D(y), and X" = X. Our goal is to enlarge X" via the introduction

of SR noise. This enlarged xr may potentially contain solutions that are better than D(Y).

In this chapter, we only consider the additive SR noise case. Other ways of introducing

SR noise, such as multiplicative SR noise, can be analyzed in a similar manner.

Suppose there is a SR noise n with the probability density function (pdf) P,(n), and

after adding the SR noise into ¥ in a pixel-wise manner, we obtain the modified image

data Z,

Z=Y+N (4.4)
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The enhancer D is applied to the modified data Z to obtain the modified enhancement

result
X'=D(Z)=D(Z(N)) 4.5)

where N is a SR noise matrix with the same size as Y, and the notation Z(N) explicitly
indicates that Z is a function of N. Each element (pixel) of the K x L matrix N of the SR
noise n is generated using the pdf p (n) in an independent manner. In our work, we
assume that the added SR noises are independent for different pixel positions, so that the
pdf of N can be written as

KxL

B =[]A0) (4.6)

where i is the pixel index of an image.

Let F:{D(Z(N))|N eRKxL} be the set of all enhancement results of the original
algorithm D using the SR noise-modified images with all the possible p () that are
candidates for use as SR noise. I' includes the original single element set
X= {X | X =D(Y),Y = y} when no SR noise is added. Thus, for a given Y=y, we extend the
set X toa larger set X'=r by adding SR noise. So the original constrained MOO problem
will have a potentially * larger feasible set X7'eX , where

XT=(X| X'=D(Z(N)).Y = y,g(X",¥) > b}, from which better solutions might be generated.

? It is possible that some elements of I" generated by adding SR noise may not satisfy g(X,Y)=p. But if there exists at

least one enhanced image which satisfies the condition, we obtain a larger feasible set and one or more elements of
this set might yield better solutions than the original one without SR noise, in terms of the values of the two objective
functions.
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Here the term “better solutions™ corresponds to a “more dominant” Pareto-optimal front’
for the constrained MOO problem (4.9) to be discussed later. We call this scheme the

single SR noise refinement scheme as a single realization of N is employed.

Since the larger feasible set provides more chances to find a better image

enhancement result, we may further improve the SR noise refinement scheme by creating

an even larger feasible set which includes X”' and may yield an “even more dominant”

Pareto-optimal front. A convex combination using p,(N) is proposed in this chapter for

the task. Formally, we have

D'(Z)= [ P(N)D(Z(N)JIN (4.7)

Let E={D'(Z)|D’(Z)=INPN(N)D(Z(N))dN,NeRKXL} be the set of all p(z), which
includes T' and may be viewed as a “convexified” version of D(Z(N)) on R“*  Thus,

through randomization we further extend the set X' to a larger set X"'== and obtain

potentially an even larger feasible set X" of solutions, i.e., enhanced images,

where X7e X and)T(F"z{)A("|)A(":D'(Z)=J.PN(N)D(Z(N))dN,Yzy,g()}'”,Y)Zb}- We call this
N

scheme the multiple SR noise refinement scheme, since from (4.7) we can see that
multiple SR noise matrices N need to be generated to produce the combination

coefficients p (v). We will employ this scheme in the chapter to refine the enhancement

performance. The multiple SR noise matrices are generated by repeating the procedure

for yielding single realization of matrix N in the single SR noise refinement scheme

* The Pareto-optimal front is a collection of all the solutions which are not dominated by any other solutions. A
solution)(l is said to dominate another solution X, if and only if f(X) = f(X) and g(X,Y)> g(X,,Y), or

vice versa .
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multiple times, i.e., multiple realizations of the SR noise matrix with the pdf p,(v).

In real-world applications, it is not easy to find the exact result of (4.7) since the

integration of D over P,(N) may be intractable. Therefore, we use the empirical average

to approximate the expectation over p, (n), which is shown in (4.8).
Dy, (2= 3 D(Z(N) (4.8)

where M is the number of the realizations of the SR noise matrix, N;, N> ..., Ny, with pdf

P,(N) . Given enough number of SR noise realizations, we may obtain sufficiently
accurate D'(Z) [106]. Another advantage of using empirical average is that the output of

the averaged enhancement result has the same expected output as that using only one SR
noise realization, but with a smaller variance [104]. This scheme is employed for system

realization in the next section.

4.2.2.2 SR Noise-Refined Image Enhancement Scheme and System

So far, we have discussed the principle of SR noise-refined enhancement and the
underlying mechanism. However, to determine the conditions for improvability of an
algorithm and to find the pdf of the optimum SR noise for an improvable algorithm are
tough tasks, since they depend on the properties of D, f, and g and on the observed image.
So, instead of finding the form of optimum SR noise to achieve the maximum
performance improvement for any specific properties as mentioned above, in this chapter,
we pre-decide the form of the SR noise and then determine its optimum parameters

which yield maximum performance improvement. Of course, this procedure may allow

69



us to only find the sub-optimum SR noise because we fix the form of the SR noise. But it
makes the procedure more practical, since the knowledge of the required properties in
real-world applications may not be available or very difficult to determine. Once more
information, like the monotonicity, continuity and convexity properties of D, fand g and
the observation, is available, more analytical results may be obtained and the
performance could be further improved by determining the form of the optimum SR

noise pdf.

The SR noise-refined image enhancement scheme can be summarized as follows. We
choose the form of a suitable SR noise from a SR noise pool which contains several SR
noise candidates with controllable parameters, e.g., Gaussian noise with adjustable mean
and variance. The Pareto-optimal front, consisting of the SR noise-modified non-
dominant solutions, is determined by using a MOO algorithm for the constrained MOO
problem (4.9). The final solution of the enhanced image and, therefore, the optimum
parameters of the SR noise are selected by optimizing a cost function shown in (4.11),

which will be discussed in the next section.

1. maximize f(D'(Z))

2. maximize g(D'(2),Y)

subject to g(D'(2),Y)>b. (4.9)
where the optimization is with respect to the parameter ¢ of the SR noise distribution
P, (n)-

The SR noise-refined image enhancement system is shown in Fig. 4.1, where the

image quality is evaluated in terms of the two objective functions and the constraint. It
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should be noted that the SR noise can be introduced either in spatial domain or in
transform domain. The original enhancers can be pixel, spatial or transform operators,
making the SR noise-refined enhancement system applicable to improving a wide variety
of algorithms. If the SR noise is introduced in spatial domain, i.e., introduced into the
original image directly, there is no “Transform” block in Fig. 4.1, and Y'=Y . If the SR
noise is introduced in the transform domain, Y in (4.4) is replaced with Y',
and X = D(Y)mentioned above is changed to X = D(¥"), where Y'is the transformed image
without SR noise. The image enhancers in Fig. 4.1 carry out image enhancement in the
transform domain and then transform back the processed image to spatial domain once
the enhancement is done. In Fig. 4.1, satisfaction with the result in the decision block
means that there exists g which is the solution of the problems posed in (4.9) and (4.11).
As mentioned before, M realizations of the SR noise matrix, N;, N..., Ny, with pdf
P,(N), are employed, which yield M modified images, Z;, Z> ..., Zy, where Z= Y+N,,
i=1,2,...,M. Each image is enhanced by the original enhancer, D, to yield M enhanced
images, p(z(N,))» D(Z(N,)),---» D(Z(N,,))- The empirical expectation as discussed earlier is

found by the averaging operation.

Optimum SR

Xony =DsnyD|  Image Yes _ .
) > d noise parameters
Average quality and enhanced
evaluation

image

|
\Z,
y—PiTranstom} > y' — >

]
L
]
I N
\ !
]
. Adjust SR

f noise_parameters

D(Z(N,)))

Figure 4.1: SR noise-refined image enhancement system.
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4.2.3 Selection of Solution Based on Human Visual System Preferences

In general, the analytical solution to the multiple-step image processing problem shown
in Fig. 4.1 is not easy to obtain, which is highly dependent on the properties of D, g, f as
well as on the content of a specific image. Therefore, we employ a genetic algorithm-
based MOO method, non-dominated sorting genetic algorithm—II (NSGA-II) [107], to
find the Pareto-optimal front for the problem posed in (4.9). For illustration, Fig. 4.2
shows a typical Pareto-optimal front of the constrained MOO problem (4.9) after
introducing SR noise into the image, where the solid segment of the front corresponds to
the solutions satisfying the constraint in (4.9) and the dashed line corresponds to the
solutions violating the constraint. Points 4 and B correspond to two types of image

contents, ¥, and Y, , respectively. They represent two original solutions without SR noise,

where point A4 is below the front and point B is on the front. The original enhancement
results corresponding to the two solutions could be improved if (4.11) is satisfied, even if
there is a solution lying on the Pareto optimal front. This is because we will use a non-
dominance criterion to select the solution from the Pareto-optimal front, which

incorporates HVS information and will be discussed next.

We note that the point corresponding to the original enhancement will not lie above
the front. This is because the Pareto-optimal front consists of all the dominant solutions.
If the solution corresponding to the original enhancement result (without SR noise)
dominates the other solutions and, therefore, lies on the Pareto-optimal front such as the

point B in Fig. 4.2, we can set the SR noise equal to zero.
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Figure 4.2: A typical Pareto-optimal front of the constrained MOO problem after introducing SR noise.

Admittedly, it cannot be guaranteed that all the solutions from the Pareto-optimal
front generated by adding SR noise can yield better enhancement results than the original
enhancer in terms of human visualization. Therefore, we need a criterion and a strategy to
select the solutions from the front which correspond to better quality of the enhanced
image. In our work, we employ an HVS-weighting scheme for the selection of solutions,

which is described as follows.

According to the previous discussion, we observe that the two objective functions
represent different image characteristics which are optimized to enhance visualization by
humans, so a combination of the objective functions may take into account these
characteristics at the same time. We also note that different people have different visual
preference for the same object. So, to include human preferences while selecting the
solution from the Pareto-optimal front, we use a solution selection function, in terms of a

linear combination of the two objective functions, as the criterion to evaluate the quality

73



of an image and to select the solutions from the front. More specifically, we weigh the
two objective functions with non-negative real numbers, that is, g is multiplied by a
weight w, and f is multiplied by w,, where 0<w,w, <1 and w;, +w, =1. Thus, we have

L(D"(Z), W, w,) = w,g(D'(Z),Y) +w, f(D'(Z)) (4.10)
where w, and w, denote the tradeoff between the consistency and the desired
characteristics of the enhanced image. A larger value of w, indicates that HVS prefers the
desired image characteristic, while a larger value of w, represents the HVS’s preference
for consistency. A larger value of L denotes better quality of the enhanced image for a
specific HVS preference. Therefore, a solution from the Pareto-optimal front, and
correspondingly the parameters of the SR noise, is considered to represent an improved
performance over the original enhancer for a specified HVS preference, i.e., a specified
(w,,w,) pair, if (4.11) is satisfied.

L(D'(Z),w,,w,)— L(D(Y), w,,w,)>0 (4.11)

where L(D(Y),w,,w,)=w,g(D(Y),Y)+w,f(D()), corresponding to the enhancement result
when no SR noise is introduced.

We can see that this selection scheme is different from the one based on the
dominance criterion in which we require f(D'(2))> f(D(Y)) and g(D'(2),Y)> g(D(Y),Y)
(or, £(D'(2))> f(D(v)) and g(D'(Z),Y)> g(D(Y),Y)) at the same time. The advantage of this
scheme is its flexibility in terms of its ability to select solutions which emphasize the
desirable goals, where the linear combination is employed to consider the different
characteristics at the same time. Moreover, if the original enhanced image already has

some acceptable characteristic which does not need to be refined further, this scheme

74



permits us to improve other desired image attributes while still maintaining the image
characteristic within an acceptable level. As we will observe in the experiment involving
SR noise-refined CLAHE in Section 3.2.4, the original CLAHE performs satisfactorily in
maintaining the similarity between the enhanced image and the degraded one, which can
be seen in Fig. 4.4 (b). Therefore, in this case, the SR noise is mainly employed to
improve other characteristics of the enhanced image, such as the contrast information
represented by f, while the similarity is still maintained to an acceptable extent. Another
advantage of the selection scheme is that it can reduce the solution size dramatically and
take into account different preferences of the HVS. If additional information about the
HVS preferences becomes available, in terms of new weights, it is not necessary to rerun
the algorithm. We can choose an alternative solution from the non-dominant solution set

obtained from the MOO which is best suited for the new weights.

4.2.4 Ilustrative Examples of Noise-Refined Image Enhancement

For illustration, in this section we employ a specific objective function pair to illustrate
the efficiency of the proposed scheme. As mentioned in Section 2.1, we investigate four
types of SR noises in this chapter. They are Gaussian SR noise (GaSR), uniformly
distributed SR noise (UnSR), triangle SR noise (TrSR) and two peak SR noise (TwSR)

[53].

4.2.4.1 Objective Function Design

One objective function is employed to maintain the consistency between the observation

and the enhanced image, and to reduce over-enhancement, which is evaluated by the
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structural similarity (SS/M) index [108] in this work. SSIM measures the similarity

between the processed image and the original one using image structure information,

Quipy +C)20,, +C,) (4.12)

SSIM (X,Y) = ———4= —xr
(ﬂ;g"‘ﬂy"’cl)(a)g"'ay"'cz)

where 4,4, and o ,0,as well as o denote mean intensity and contrast as well as the
correlation coefficient of images X and Y, respectively; C,and C,are constants used to

avoid instabilities for very small 4 or o. The value of SSIM(X,Y)is between 0 and 1. A

higher value means more similarity between two images.

The contrast sensitivity information of an image provides an important indication of
image quality. We, therefore, expect that the enhanced image contains high contrast
sensitivity information. We represent the contrast sensitivity information by a novel

metric, ConSen(X) , developed as follows.

In [109], a model of the contrast sensitivity function (CSF) for luminance images has
been considered, which describes human’s sensitivity to spatial frequencies f, and is

shown in (4.13),
CSF(f.) =2.6(0.192+0.114 f )¢~ 114" (4.13)

When a 4-level discrete wavelet transform (DWT) of an image is carried out, the
relation between CSF and the spatial frequency ranges is shown in Fig. 4.3 [110]. We
notice from the figure that the sensitivity information is mainly distributed in the 3™ and
4™ level DWT. Therefore, we weigh the DWT coefficients of these two levels with the
CSF and add the absolute values of these weighted coefficients together. The summation
is then divided by the total number of pixels in the image to reduce the effect of the

image size, as shown in (4.14). This is employed as a quality evaluation metric to
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measure the average contrast sensitivity information included in an image. A higher value
indicates that one of the image characteristics, contrast in this chapter, is favored more by
HVS, which represents a better image quality. This metric is denoted by ConSen. The

wavelet we use is Daubechies-8.

2 Y Coef wv)-CSF () (4.14)
KL

ConSen()A( )=

where K and L provide the image size as mentioned before. Coef(u,v) are the
decomposition coefficients, and (u,v) (in cycles/degree) are the directions in

decomposition domain, with 7. =/u?+* . [a] denotes the smallest integer larger than a.
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Figure 4.3: Luminance CSF' along horizontal and vertical directions of four-level wavelet decomposition

[110].

Thus, we have the pair of objective functions
f(X) = ConSen(X) (4.15)

g(X,Y)=SSIM(X,Y) (4.16)

> This metric is based on joint work with Mr. Vijay Chintham Reddy.
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The constraint is specified in terms of g, i.e., g(X,Y)>b , where b is a pre-chosen

constant, 0 <h <1. It represents the least consistency the enhanced image is required to

satisty, which defines the feasible set of solutions for the optimization problem.

4.2.4.2  Experimental Results

We examine the SR noise-refined CLAHE and fuzzy [111] enhancers in enhancing
medical images. We also investigate the improvement of image de-noising using median

and Wiener filters.

The population size used in the MOO is 100 and the number of generations is 50. The
number of noise realizations, M, is 35. In the weighting scheme, we choose uniformly

spaced weight vectors in the interval [0, 1], i.e., w, changes from 0 to 1 with the

increment of 0.1, that is, there are 11 simulated HVS preferences for each SR noise

system. b is set equal to 0.7.

4.24.2.1 Medical Image Enhancement

Medical images typically suffer from impairments such as low resolution, high level of
noise, low contrast, geometric deformations and the presence of imaging artifacts [112].
Image enhancement is an important part of the computer-aided diagnostic (CAD)
technique. In this section, contrast enhancement of mammograms is considered, where
the location and lesion types are identified by the radiologists as the ground-truth used in
our work. The mammograms are from Digital Database for Screening Mammography

(DDSM) [91].
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4242.1.1 CLAHE

We examine the application of CLAHE to enhance the X-ray mammogram by adding SR
noise in spatial domain. The enhancement results of mammogram with masses are
provided in Fig. 4.4. We show the results corresponding to the weight vectors {0.3, 0.7}
and {0.6, 0.4} for the four types of SR noise-refined systems, representing two HVS

preferences.

From Fig. 4.4, we can visually see that the SR noise system can improve the
enhancement corresponding to different simulated HVS preferences. Next, we provide
quantitative evaluation using a non-reference image quality metric. Since the increase of
contrast is an important sign of improvement of the medical image quality, we choose to
use the metric presented in [113], which is designed to measure the sharpness of an
image. We call it “sharpness index”. The higher the value of the index, the better the
contrast. (Sharpness provides important contrast information, and conSen is closely related
to sharpness. Besides the sharpness, we also want to keep the consistency between the
enhanced image and the original one to some extent, so both ConSen and SSIM are
employed to guide the enhancement procedure.) Table 4.1 shows the comparison of the

enhancement results in Fig. 4.4 with different SR noises.
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Figure 4.4: Enhancement results of the mammogram with masses. (a) Original mammogram; (b) enhanced
by CLAHE; (c) enhanced by CLAHE with GaSR ({0.3, 0.7}); (d) enhanced by CLAHE with GaSR ({0.6,
0.4}); (e) enhanced by CLAHE with UnSR ({0.3, 0.7}); (f) enhanced by CLAHE with UnSR ({0.6,
0.4});(g) enhanced by CLAHE with TrSR ({0.3, 0.7}); (h) enhanced by CLAHE with TrSR ({0.6, 0.4}); (i)

enhanced by CLAHE with TwSR ({0.3, 0.7}); (j) enhanced by CLAHE with TwSR ({0.6, 0.4}).

From Table 4.1, we can see that in the mammogram mass enhancement, for the HVS
preference simulated by {0.3, 0.7} and {0.6,0.4}, GaSR yields best results and TwSR
performs the worst, but all of the four SR noises improve CLAHE. In the rest of the
experiments, we will see that the performance ranks of the SR noise change with
different enhancers, weight vectors and image contents, which indicates that the
efficiency of the SR noise is problem-dependent and is also closely related to HVS

preferences.
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TABLE 4.1
SHARPNESS INDEX OF THE ENHANCED IMAGES

Sharpness
index
No Original degraded image 6.3317
SR Image enhanced by CLAHE
B 6.5372
noise only
Mammogram {0.3,0.7} 7.4873
with masses: GaSR {0.6,0.4} 6.8093
With {0.3,0.7} 7.1189
CLAHE . UnSR 0.6,0.4) 6.7213
TSR {0.3,0.7} 7.0793
noise {0.6,0.4} 6.7094
{0.3,0.7} 7.0498
TwSR {0.6,0.4} 6.6424
No Original degraded image 6.5365
SR I hanced b
mage enhanced by
noise CLAHE Only 6.7090
Cell {0.2,0.8} 7.3389
image: | GaSR {0.7,0.3} 6.7490
CLAHE UnSR {0.4,0.6} 7.3749
SR {0.8,0.2} 6.7208
' {0.4,0.6} 7.1233
noise TrSR {0.7,0.3} 6.7112
{0.2,0.8} 7.0689
TwSR {0.8,0.2} 6.7225
No Original degraded image 6.6518
Mammogram SR
Image enhanced by Fuzzy 6.8225
with micro- | oice logic enhancer only ’
calcifications: 0.2,0.8) 74139
With GaSR = -
Fuzzy logic {0.7,0.3} 7.2419
SR UnSR {0.4,0.6} 7.1926
enhancer {0.8,0.2} 7.0817
noise TwSR {0.2,0.8} 7.4624
W {0.8,0.2} 7.3954

Fig. 4.5 shows the enhancement results of the electroscope cell image using the
presented SR noise-refined enhancement system, where different weight vectors,

simulating different HVS preferences, are employed. We can visually see that the SR
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noise system improves the enhancement for different simulated HVS preferences. The

quantitative evaluation results using the sharpness index are shown in Table 4.1.

¢ (2 (h) (@) )

Figure 4.5: Enhancement results of the cell image. (a) Original cell image; (b) enhanced by CLAHE; (c)
enhanced by CLAHE with GaSR ({0.2, 0.8}); (d) enhanced by CLAHE with GaSR ({0.7, 0.3}); (e)
enhanced by CLAHE with UnSR ({0.4, 0.6}); (f) enhanced by CLAHE with UnSR ({0.8, 0.2}); (g)
enhanced by CLAHE with TrSR ({0.4, 0.6}); (h) enhanced by CLAHE with TrSR ({0.7, 0.3}); (i)

enhanced by CLAHE with TwSR ({0.2, 0.8}); (j) enhanced by CLAHE with TwSR ({0.8, 0.2}).

From these results, we can see that uniformly distributed SR noise (UnSR) produces

the best result for the given weight vectors.

4.2.4.2.1.2  Fuzzy Logic Histogram Hyperbolization
Fuzzy logic enhancers are designed for modeling vague and ambiguous information, two
characteristics of medical and biological images [114]. We now use SR noise to improve

the fuzzy logic histogram hyperbolization method [115], where the SR noise is added
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after the original image is transformed to the fuzzy domain.

From the experiments, we notice that there is no solution satisfying (4.9) and (4.11) at
the same time when triangle noise is used, which indicates that triangle noise cannot
enhance the image quality for the given weights, D, f, g and the degraded image. The
enhancement results for the other three types of SR noises are shown in Fig. 4.6, and the
quantitative evaluation results are also shown in Table 4.1. From the figures, we can see
that all three of the SR noise-refined enhancers increase the contrast in the images, and
also reduce the over-enhancement phenomenon of the original fuzzy logic enhancer. For

the weight vectors used here, TwSR yields the best enhancement.

(@) (b) (© (d)
(e) ® (2) (h)

Figure 4.6: Enhancement results of the mammogram with micro-calcifications. (a) Original mammogram
image; (b) enhanced by fuzzy enhancer; (c) enhanced by fuzzy enhancer with GaSR ({0.4, 0.6}); (d)
enhanced by fuzzy enhancer with GaSR ({0.7, 0.3}); (e) enhanced by fuzzy enhancer with UnSR ({0.3,
0.7}); (f) enhanced by fuzzy enhancer with UnSR ({0.7, 0.3}; (g) enhanced by fuzzy enhancer with TWSR

({0.2, 0.8}); (h) enhanced by fuzzy enhancer with TwSR ({0.8, 0.2}).
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4.2.42.2 Image De-noising

In this section, we consider the application of the SR noise-refined system to improve the
quality of images disturbed by Gaussian mixture noise, and present the results
representing a single HVS preference. We investigate two commonly used filters, i.e.,
median filter for “Lena” image with signal-to-noise ratio (SNR) of 16.61dB and Wiener
filter for “Cameraman” image with SNR of 12.32 dB. The de-noising results are shown
in Figs. 4.7 and 4.8. The weight vector for the images is {0.5, 0.5}. Note that the Wiener
filter is a linear operation, but it involves the estimation of the local second-order
statistics of the image signal and noise in the observation, so the effect of the additive
noise will not be washed off by the averaging operation. Here, we determine the statistics

locally because image contents are non-stationary.

A full-reference quality metric, mean square error (MSE), between the de-noised
image and the ground-truth image, is employed for quantitative performance evaluation.

The MSE is defined as

L

SN [X(r,5) - Xy (r,9)T

MSE(X, X,) === = (4.17)

where X and X, denote the de-noised and the ground-truth noise-free images,
respectively, and (7,s) are the pixel locations in an image. For each type of SR noise, the
noise-refined filter is investigated to de-noise the image using 11 HVS preferences. Figs.
4.9 (a) and (b) show the evaluation results based on the MSE for median and Wiener
filters, respectively. For each HVS preference, the enhancement improvement is
identified by the MSEs of the SR noise-refined enhancement results which are lower than

that of the enhancement without SR noise. Lower MSE denotes more enhancement
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improvement. The mean value of each curve shows the average performance of one type
of SR noise, and its variance measures the robustness of the system using this SR noise.
For clarity, the enhancement results with very large MSE are not shown. The HVS

preference indices correspond to the weight w, changing from 0 to 1 with the increment

of 0.1.

(d) (e) ® ®

Figure 4.7: Median filter for de-noising “Lena” image. (a) Noise-free image; (b) image disturbed by
Gaussian mixture noise with the SNR of 16.61dB; (c) de-noised by median filter; (d) de-noised by median
filter with GaSR; (e) de-noised by median filter with UnSR; (f) de noised by median filter with TrSR; (g)

de-noised by median filter with TwSR. The weight vector used is{0.5,0.5}.
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(d) (e) ® (2

Figure 4.8: Wiener filter for de-noising “Cameraman” image. (a) Noise-free image; (b) image disturbed by
Gaussian mixture noise with the SNR of 12.32dB; (c) de-noised by Wiener filter; (d) de-noised by Wiener
filter with GaSR; (e) de-noised by Wiener filter with UnSR; (f) de-noised by Wiener filter withTrSR; (g)

de-noised by Wiener filter with TwSR. The weight vector used is{0.5,0.5}.

(a) HW'S preference index

— Y
e 3a5R

(b) H¥S preference index

Figure 4.9: MSE of the de-noising results using median and Wiener filters. (a) Median filter-based de-
noising; (b) Wiener filter-based de-noising. OrMe and OrWi mean the de-noising using original median

and Wiener filter, respectively, without SR noise.
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From Figs. 4.7 and 4.8 and the experiments, we observe that the TrSR noise performs
the best for the “Lena” image, TWSR performs the best for the “Cameraman” image.
Also, in an informal evaluation, the quality of the enhanced images is deemed better than
the enhanced image without SR noise by human judges for all the weights. However,
using MSE as the criterion, we can see from Fig. 4.9 that for some weights, SR noise
worsens the enhancement. This illustrates that the objective function pair, as a quality
metric, iS more consistent with human evaluation results, while MSE has some

disadvantages when used as metric for image quality evaluation [116].

Tables 4.2 shows the quantitative evaluation results of image de-noising based on
MSE statistics, for median and Wiener filters. The MSE statistics include the range, mean
and variance of the MSE, as well as the number of weight vectors corresponding to the
enhancement results which have lower MSE than the SR noise-free case. The mean value
shows the average system performance and the other three statistics illustrate the

robustness of the system.
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TABLE 4.2
MSE STATISTICS OF MEDIAN AND WIENER FILTERS DE-NOISING

MSE statistics
MSE vglue of noisy 354.0
No image
SR MSE value of the de-
noise nosed image by 319.7
median filter only
Range [216.8,232.4 ]
LN* 11
GaSR Mean 2257
De-noising Variance 154
using Ranie [214.9, 230.6]
median UnSR LN 11
filter ) Mean 227.0
(“Lena”) V\éﬁh Variance 18.8
. Range [213.6,235.5]
noise -
TrSR LN 11
Mean 224.0
Variance 36.6
Range [230.2,3385.0]
LN* 9
TWSR ™ Mean 627.9
Variance 924870
MSE vglue of noisy 1466.4
No image
SR MSE value of the de-
noise noised image by 849.8
Wiener filter only
Range [534.3, 850.9]
LN* 10
GaSR Mean 700.1
De-noising Variance 8073.4
using Range [688.5,1019.0]
Wiener LN* 6
 filter | USRI Mean 842.2
( Camfra— With Variance 1390.3
man n(s)}:e Range | [505.2,1011.0]
LN* 10
TSR Mean 7315
Variance 1817
Range [536.6,726.0]
LN* 11
TWSR ™ Mean 640.7
Variance 4224.5

*LN means the number of the weight vectors corresponding to the enhancement results which have lower MSE than
the SR noise-free case. In this paper there are 11 weight vectors for each SR noise, i.e., w; changes from 0 to 1 with the
increment of 0.1.

4.2.4.2.3 Image De-blurring

We also employ the SR noise-refined system to improve two image de-blurring
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algorithms, Lucy-Richardson algorithm and regularized filter, which are applied when
images are suffering from convolution and motion effects, respectively. The convolution
effect is simulated by using a low-pass Gaussian filter to smooth a ground-truth image.
The size of the filter is 13 by 13 and its variance is 36. The motion effect is simulated by
convoluting an image with a filter which models a linear motion of camera with 20 pixels
and with an angle of 10 degrees in a counterclockwise direction. The images shown use
the weight vector {0.4,0.6}.

The experimental results are shown in Figs. 4.10, 4.11 and 4.12. We can see that
triangle noise works best when Lucy-Richardson algorithm is used for de-blurring, but
works worst in the regularized filter case although the resulting enhanced image quality is
not much visually worse than the SR noise-free case. Uniformly distributed SR noise
generates the most significant improvement in regularized filter de-blurring.

Table 4.3 shows the quantitative evaluation results for image de-blurring based on

MSE statistics for Lucy-Richardson algorithm and regularized filter.
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(a) (b) (©)

(d) (e) 6] (2

Figure 4.10: Lucy-Richardson algorithm for de-blurring “House” image. (a) Ground-truth image; (b)
blurred image; (c) de-blurred by Lucy-Richardson; (d) de-blurred by Lucy-Richardson with GaSR; (e) de-
blurred by Lucy-Richardson with UnSR; (f) de-blurred by Lucy-Richardson with TrSR; (g) de-blurred by

Lucy-Richardson with TwSR. {0.4,0.6}.
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(d) (e) ) (2

Figure 4.11: Regularized filter for de-blurring “Cameraman” image. (a) Ground-truth image; (b) blurred
image; (c) de-blurred by regularized filter; (d) de-blurred by regularized filter with GaSR; (e) de-blurred by
regularized filter with UnSR; (f) de-blurred by regularized filter with TrSR; (g) de-blurred by regularized

filter with TwSR. {0.4,0.6}.

(b} Hv'S preference index

Figure 4.12: MSE of the de-blurring results using Lucy-Richardson algorithm and regularized filter. (a)
Lucy-Richardson algorithm de-blurring; (b) regularized filter-based de-blurring. OrLR and OriRF mean the

de-blurring using Lucy-Richards algorithm and regularized filter, respectively, without SR noise.
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TABLE 4.3
MSE STATISTICS OF THE LUCY-RICHARDSON ALGORITHM AND REGULARIZED FILTER DE-BLURRING

MSE
statistics
MSE Vailrtllz ;)i blurred 561.6
No MSE value of the de-
SR blurred image by Lucy-
notse Richardson algorithm 338.9
only
Range [477.7, 4036.1]
LN 7
4 GaSR Mean 1679.3
De?-blurrlng Variance 2775.1
using Lucy- Range [493.3, 549.4]
Richardson LN 10
algorithm UnSR Mean 511.6
(“House) | With Variance 312.3
SR Range [462.4,524.2]
noise
LN 11
TrSR Mean 4949
Variance 416.3
Range [462.3,579.5]
LN 9
TwSR Mean 492.9
Variance 1816.0
MSE Va.lue of blurred 17193
No image
SR MSE value of the de-
noise blurred image by 445.7
regularized filter only
Range [424.6, 445.1]
LN 11
. GaSR Mean 435.5
De-bl}lrrlng Variance 71.7
using Range [424.6, 444.4]
regularized LN 11
filter UnSR Mean 5345
(“Camera- | With Variance 62.9
man SR Range [465.9,471.6]
noise
LN 0
TrSR Mean 4633
Variance 2.9
Range [426.2,475.2]
LN 7
TwSR Mean 440.8
Variance 247.5
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We can see from Table 4.3 as well as Figs. 4.10, 4.11 and 4.12 that the TrSR performs
the best in Lucy-Richardson algorithm-based de-blurring, and performs the worst in the
regularized filter case although the resulting enhanced image is not much worse visually
than the SR noise-free case (Fig. 4.11 (f)). UnSR yields the most significant improvement
in regularized filter de-blurring.

From these experimental results, we see that the SR noise-refined system can improve
the performance of several types of image enhancement algorithms when dealing with

different distortion situations.

4.3 Image FEnhancement Based on Selective Enhancement
Framework

4.3.1 The Selective Enhancement Framework

We first introduce the “selective enhancement” framework, as shown in Fig. 4.13. In the
framework, the ROI, e.g., the region containing lesions in a mammogram, is determined,
and then some image enhancement and noise suppression techniques, such as the gray
level stretching method, are used to increase the contrast in the ROI and suppress the
background noise. More generally, we can divide an image into several ROIs according
to their relative importance and other characteristics, and employ suitable enhancement
and suppression algorithms for different ROIs. This chapter only deals with the two-class
case, one ROI and the background. More general cases can be considered in a similar

manner.
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Figure 4.13: “Selective enhancement” framework (two-class case).

From the diagram, we can see that ROI determination is the first and fundamental step
of this framework, which leads to the next steps. Based on ROI determination, different
operations, i.e. enhancement and suppression, are carried out in different areas of the
image. The main steps of the algorithm, i.e. ROI determination and enhancement as well
as background suppression, are described as follows. Gray level stretching technique is
employed in this chapter to carry out the enhancement and suppression operations. Other
techniques can also be employed under our framework. This type of methodology where
different operations are used in different parts of the image has been employed in the past
(e.g. [66][117]). To the best of our knowledge, the framework proposed here has not been
presented elsewhere. Our main emphasis in this section is to propose a number of

methods for ROI determination that result in superior enhancement performance.

In this section, we will use a specific application of this framework, i.e., mammogram

enhancement, to illustrate the efficiency of the presented approach.
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First, the gray values of the original mammogram are rescaled to the range from zero
to the full pixel intensity, e.g., 255 in this section. A method is used to find the ROI

(determination of the ROI will be discussed later).

Second, a gray level stretching method is employed on the ROI, according to (4.18),

N-n
g(x,y)—M

[f(x,y)—m]+n (4.18)

where f(x, y) and g(x, y) are the gray values of the pixel at location (x, y) in the rescaled
and stretched ROI respectively. [m,M] and [n,N] are the gray value ranges of the rescaled
and stretched ROI, where M=255 due to the rescaling operation and m is the lowest gray
value in the rescaled ROI. Here, N is set to 255, the highest gray value, to make the

enhanced ROI involve the brightest part in the mammogram.

Because ROI may contain both actual lesions and some mis-labeled background
pixels with lower gray values, increase of contrast in the ROI is necessary for a better
visualization. Therefore, we need N-n>M-m. We can make n=0, such that all the non-ROI
parts have zero intensity. However, the non-ROI part may also include valuable
information for diagnosis, so maintenance of the non-ROI information to some moderate
extent is necessary. Our experiments show that setting n equal to the mean gray value of
the background of the rescaled mammogram yields satisfactory results, both in having
lesions stand out and in suppressing the background. To reduce the influence of a small
number of pixels with extreme values, the mean values in this chapter are all calculated
by weighting each gray value with the ratio of the number of pixels having the gray value
to the total number of pixels in the mammogram, i.e. weighted mean is computed and

used.
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Thirdly, the gray value range of the stretched ROI is from the mean gray value of the
background of the rescaled mammogram to 255. So we need to change the background
gray values to some extent, such that background suppression, similarity maintenance
and image smoothing are achieved at the same time. A reasonable choice is to make the
background pixel gray values range from zero to the minimum gray value of the stretched

ROI, using a method similar to (4.18).

Finally, an adaptive filter, such as an adaptive Wiener filter, is used for de-noising and
further smoothing. For abnormal mammograms that include micro-calcifications, a
matched filter with a Gaussian appearance may be used instead of the adaptive filter to

further enhance the lesions [67].

As can be seen from the above procedure, ROI determination plays a fundamentally
important role in enhancement. There are many methods dealing with this problem, such
as thresholding methods [118][119] and segmentation methods [120][121]. According to
the pixel intensity properties of the mammograms, we have developed several algorithms

for selecting the ROI, which will be discussed in the next few sections.

4.3.2 Thresholding-Based Mammogram Enhancement Algorithms
In this section, several thresholding methods are presented for ROI determination. These

are based on the pixel intensities of the mammogram under consideration.

Higher pixel gray values than the surrounding normal tissues distinguish lesions from
the normal structures in mammograms, which is one of the most important features of
abnormal mammograms and widely used in lesion detection and mammogram

enhancement. The presented algorithm tries to increase the contrast of the lesions against
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the normal background by exploring the pixel gray value information.

For the micro-calcification cases, we set the so-called cross-over point as the threshold,
which corresponds to the intensity of micro-calcifications and can be determined
automatically [99]. However, sometimes, the cross-over point value is a little higher than
the optimal value and some lesions are excluded from the ROI, such that these lesions are

suppressed during enhancement.

The second method is to set the mean gray value of the whole mammogram as the
threshold, because the lesion intensity generally is above the average gray level of the
whole mammogram. (Of course, a lower threshold can be used to make sure that all the
lesions are considered with a higher confidence.) With this threshold, lesions are included
in the ROI together with more background pixels than the first thresholding scheme,
because it is a little lower than the optimal value. As a result, contrast between the lesions

and background is not explored enough through the enhancement process.

The enhancement results corresponding to the two thresholding methods are shown in

Figs. 4.14 (h) and (i) in Section 4.3.4.

The two enhancement methods can increase the contrast between the lesions and
background, benefiting visualization, but a technique to set an appropriate threshold is
desired. In general, it is not easy to find the optimal threshold by using analytical
methods, but the tradeoff between the previous two threshold determination schemes
might yield satisfactory results. Here, we use a simple image fusion technique to find the
tradeoff, i.e., to average the enhanced mammograms resulting from the two threshold

schemes respectively. This is named joint enhancer, and the corresponding enhancement
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result is shown in Fig. 4.14 (j) in Section 4.3.4.

As mentioned before, the lesion pixel intensity generally is above the average gray
value of the whole mammogram, so the thresholding scheme 2 may include all the
lesions in the ROI. The lesions become more visible through the enhancement process,
and the gray values of most background pixels will be suppressed in the range from zero
to the minimum gray value of the stretched ROI through one enhancement operation.
Accordingly, larger contrast may be expected if the enhancement is iteratively used on
the mammogram. This is because the threshold includes some background pixels in the
ROI with relatively lower gray values compared with lesion pixels. And due to the gray
level stretching applied to ROI, the intensities of some background pixels will be
decreased below the threshold. Therefore, if we set another appropriate threshold on the
enhanced mammogram, some background pixels in the previously stretched ROI may be
moved to the new non-ROI region and therefore be suppressed through the gray level
stretching process applied to the new non-ROI region. Thus, more and more background
pixels will be suppressed with the iteration process, which may further increase the
contrast. By changing thresholds of the mean value thresholding scheme in each iteration,
we can determine the ROIs in the iterative enhancement procedure. Of course, other
thresholds, e.g. those larger than a quarter of the full gray level and smaller than the mean
value threshold, may also yield good results. A more flexible scheme is to use variable
thresholds, e.g. thresholds decreasing with the number of iterations. We can keep
iterating until the enhancement result is satisfactory. The stopping criterion can be
formed simply as follows: at iteration n+1, if the lesions that stood out at iteration »

disappear or are weakened, then we choose to stop at iteration n. At each step of iteration,
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some pixels of the old ROI in the prior enhanced mammogram will be excluded. So if the
iteration number is too large, over-enhancement will arise where some lesion pixels are
suppressed due to enhancement. Therefore, an appropriate number of iterations is
required. Through experiments, we find that 3 iterations is a good choice when we use
the mean value threshold. The results of the iterative enhancement method applied to
micro-calcifications, mass and spiculated lesions are shown in Fig. 4.14 (k) and Fig. 4.15

(h) and Fig. 4.16 (h) in Section 4.3.4.

4.3.3 Statistical Detection-Based Mammogram Enhancement
In this section, decision theory based statistical detection methods are employed for ROI
determination, where the detected positives are classified as ROI. Two models will be

considered for the micro-calcifications.

A low probability of false alarm (Pr) is very important to our enhancement problem.
This is because if the actual Pr is too high, more background pixels will be included in
the ROI, which worsens the enhancement result. We will show that an acceptable Pr is

achieved with the refinement of the detection schemes.

4.3.3.1 Gaussian Background Assumption-Based Detector and Enhancement

The micro-calcification detection problem is actually an anomaly detection problem [78],
and we assume the asymptotic distribution, when the number of reference samples

approaches infinity, of the background, i.e. normal tissues, to be Gaussian. This leads to
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linear and tractable solutions [13] and is named the Gaussian Background Assumption-

Based Detector (GBAD).

The micro-calcifications, which are considered as the signal of interest here, are
brighter spots than the surrounding normal tissues. So the signal with constant amplitude
larger than the average pixel gray value is a gross model for the micro-calcifications.
Thus, the lesion detection problem is converted to detecting a constant signal embedded
in Gaussian noise. Recalling (3.1) in Chapter 3, we wish to choose between the two

hypotheses

H, : y[m]=w{m] (4.19)
H, :y[m]=A+wm]

where y[m] is the pixel gray value, w{m] is the Gaussian background noise with
mean g, and variance o} , and 4 is a positive constant, larger than 4, . m is the index of the
pixel to be processed in each detection, and m =0,1,---, M —1. In the section, we extend the

statistical test to include more pixels in each detection, instead of the signal pixel

detection discussed in Chapter 3.

Based on the Neyman-Pearson criterion [13], we get the GBAD statistic 7(y) and the

test as follows

decide  H

T =X Glml- a7 (4.20)

m=0
decide  H

where the threshold y,1s determined from the given Pr and the statistical parameters,

mean and variance, of the pixels surrounding the pixel to be detected.
The parameters are estimated as follows,
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LI o B 4.21
) 2yl (4.21)
o = X (il - ) (4.22)

b m
where the subscript b means that the estimation is carried out for background pixels; M}
denotes the number of the background pixels in each processing window, which are used

to estimate these parameters; m is the pixel index.

If we assume a single pixel target [78], that is, in each detection, only one pixel is
taken as input, then M=1. The statistical test will reduce to the case discussed in Chapter
3. The detection result is shown in Fig. 4.17 (h) in Section 4.3.4, where the micro-
calcifications are completely detected but with a higher Pr than the preset value, 0.01. An
important reason is that the lesion and background distributions are not well modeled.

And, therefore, the contrast in the mammogram (see Fig. 4.17 (1)) is not explored enough.

4.3.3.2 General Gaussian Detector and Enhancement

Micro-calcifications, especially micro-calcification clusters, are small but not with a
constant intensity, so a Gaussian model as opposed to a constant signal model may be
more reasonable to represent them, which gives rise to a General Gaussian Detector

(GGD) test.

To design the GGD, we refer to the GBAD. The detected positives of the GBAD,

which include all the micro-calcifications and some background pixels, are employed to

roughly estimate the mean, , and variance, o, of the micro-calcifications for the

Gaussian model, using an approach similar to that used in (4.21) and (4.22).
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In the general Gaussian case, recalling (3.1), we wish to choose between the two

hypotheses

H,: y[m]=w[m] (3.1)
H, : y[m]=s[m]+w[m]

where  s[m] denotes the micro-calcification signal obeying  Gaussian

distribution, N(x,,o’) . We therefore obtain the statistical test

decide H

M -1 2
T(3)= X (Iml=my+ ) Z 75 (4.23)
m=0 s decide H

where the threshold y, is determined from the given P, and the statistical parameters, mean

and variance, of the pixels surrounding the pixel to be detected.

The detection result is shown in Fig. 4.17 (j) in Section 4.3.4, where all the micro-
calcifications are discovered by GGD but with less false positives than the GBAD, and

therefore the enhancement result (Fig. 4.17 (k)) shows improvement.

4.3.3.3 Iterative Detection and Enhancement Method

Although the previous two detection-based enhancement algorithms yield good results,
the detection and accordingly the enhancement may be further improved. Here we
employ the GGD-based iterative detector (GGD ID) discussed in Section 3.2.1.3 to
further improve the detection and therefore the enhancement performance. The detection

and enhancement results are shown in Figs. 4.17 (1) and (m).
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4.3.4 Performance Evaluation of Selective Enhancement Framework

The performances of the enhancement algorithms are evaluated both subjectively
(qualitatively) and objectively (quantitatively). The subjective evaluation is carried out
through human eye judgment, in terms of the comparison with the original mammograms

and several representative enhancement algorithms.

For comparison, we implemented six representative enhancement algorithms. These
algorithms include standard histogram equalization, CLAHE, unsharp masking, fuzzy
histogram hyperbolization with S-function and norma-function [111][114], and fuzzy
logic possibility distribution method [122][123] techniques. The qualities of some fuzzy
contrast enhancement algorithms were evaluated in [113], where fuzzy histogram
hyperbolization and fuzzy logic possibility distribution method stand out because of their
good performances in providing global contrast improvement and enhancing the highest

density regions of a mammogram, respectively.

4.3.4.1 Qualitative Evaluation

Fig. 4.14 compares several representative enhancement algorithms with the presented

algorithms for enhancing mammograms with micro-calcifications.

From the figures, we see that although the two threshold determination schemes can
enhance the lesions to some extent, threshold 1 (h) suppresses some lesions while
threshold 2 (i) enhances too many background pixels such that some lesions are not

obvious enough. The joint enhancer (j) emphasizes all the lesions, and there are less
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enhanced background pixels compared with the other algorithms. The iterative

enhancement method (k) also yields good result.

(2) (h) (1) @ (k)

Figure 4.14: Original abnormal mammogram with micro-calcifications and its enhanced versions. (a)

Original mammogram with micro-calcifications; (b) enhanced mammogram with standard histogram
equalization; (c) enhanced mammogram with CLAHE; (d) enhanced mammogram with unsharp masking;
(¢) enhanced mammogram with fuzzy histogram hyperbolization (S-functionand); (f) enhanced
mammogram with fuzzy histogram hyperbolization (rorma-function); (g) enhanced mammogram with
fuzzy logic possibility distribution method; (h) enhanced mammogram with threshold 1; (i) enhanced
mammogram with threshold 2; (j) enhanced mammogram using the joint enhancer; (k) enhanced

mammogram using iterative enhancement method.
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Figs. 4.15 and 4.16 compare the enhancement results of mammograms with mass and
spiculated lesions, respectively, using the presented iterative enhancement method and

several other enhancement algorithms.

(e ) (& (h)

Figure 4.15: Mammogram with mass and its enhanced versions. (a) abnormal mammogram with mass; (b)
enhanced mass with standard histogram equalization; (c) enhanced mass with CLAHE; (d) enhanced mass
with unsharp masking; (e) enhanced mass with fuzzy histogram hyperbolization (S-function); (f) enhanced
mass with fuzzy histogram hyperbolization (norma-function); (g) enhanced mass with fuzzy logic

possibility distribution method; (h) enhanced mass with iterative enhancement.
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(d)

(e) ® (® (h)

Figure 4.16: Mammogram with spiculated lesions and its enhanced versions. (a) abnormal mammogram
with spiculated lesions; (b) enhanced mass with standard histogram equalization; (c) enhanced mass with
CLAHE; (d) enhanced mass with unsharp masking; (e) enhanced mass with fuzzy histogram
hyperbolization (S-function); (f) enhanced mass with fuzzy histogram hyperbolization (norma-function); (g)
enhanced mass with fuzzy logic possibility distribution method; (h) enhanced mass with iterative

enhancement.

From Figs. 4.15 and 4.16, we can see that the iterative scheme keeps all the lesions
and dramatically reduces the false positives compared with other algorithms. The
corresponding enhanced mammograms (Figs. 4.15 (h) and 4.16 (h)) show very good

results.

The performance of the presented statistical detection-based enhancement is compared
with other enhancement algorithms in Fig. 4.17. For the ease of comparison, in Fig. 4.17

we show the enhancement results of several other algorithms provided in Fig. 4.14 again.
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0) (k) 1)) (m)

Figure 4.17: Detected positives and enhanced mammograms. (a) Original mammogram with micro-
calcifications; (b) enhanced mammogram with standard histogram equalization; (c¢) enhanced mammogram
with CLAHE; (d) enhanced mammogram with unsharp masking; (e) enhanced mammogram with fuzzy
histogram hyperbolization (S-functionand); (f) enhanced mammogram with fuzzy histogram
hyperbolization (norma-function); (g) enhanced mammogram with fuzzy logic possibility distribution
method; (h) detected positives with GBAD; (i) enhanced mammogram based on GBAD; (j) detected
positives with GGD; (k) enhanced mammogram based on GGD; (1) detected positives with iterative
detection; (m) enhanced mammogram based on the iterative detection. Detected positives are marked using

(blue) dots. Pris equal to 0.01.
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From Fig. 4.17, we can see that with the refinement of the detectors ((h), (j), (1)), all
the micro-calcifications and located, the number of false positives are dramatically

reduced, and better enhancements are achieved ((i), (k), (m)).

4.3.4.2 Quantitative Evaluation

The objective evaluation is carried out with quantitative metrics. Several existing
quality metrics were employed but their evaluation results were inconsistent with the

human subjective judgment.

For visualization and detection, a good enhancement method should be equipped with

the following three properties:

(1) The contrast between the objects and background should be increased as much as
possible, which can be represented by the increased difference between the mean
gray value of the objects and the maximum value of the background.

(i1) The ratio of the dynamic gray value ranges between the objects and background
should be increased as much as possible, which stands the object out and can be
represented by the increased ratio of gray value variances between the objects and
background.

(iii)) The number of suspicious pixels, i.e. the pixels in the object and background
having similar gray values, should be reduced as much as possible.

(iv) The average distance between the suspicious pixels in the object and background

should be increased as much as possible.
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(v) To avoid over-enhancement, the similarity between the enhanced image and the
original one should be maintained to some extent, that is, the enhanced image
should be similar as the original one as much as possible, which can be measured

with the similarity metric [108].

Based on these criteria, a novel quality evaluation scheme is presented. We first
calculate 5 quantities for a given image, corresponding to the 5 criteria or metrics
mentioned above, and then normalize the 5 quantities into the range of [-1, 1],
respectively. Finally, the summation of the 5 normalized quantities is employed as the

grade of image quality. The higher the grade is, and the better the image quality will be.

Table 4.4 shows the evaluation results based on the combination of the 5 criteria. The
enhancement algorithms include joint enhancer, iterative enhancer, iterative detection-
based enhancer, standard histogram equalization, CLAHE, unsharp masking and fuzzy

logic enhancement methods.

TABLE 4.4
ENHANCEMENT EVALUATION

Method Joint-En It-En  Det-En Hist-Eq CLAHE Unsharp FuzH-S FuzH-N Fuz-PD
Grade  3.0043 2.5025 4.3282 1.7538 1.9624 1.3907 2.4348 2.3452 2.1025

Joint-En: joint enhancer; It-En: iterative enhancer; Det-En: iterative detection-based enhancer; Hist-Eq:
standard histogram equalization method; FuzH-S: fuzzy histogram hyperbolization with S-function; FuzH-
N: fuzzy histogram hyperbolization with norma-function; Fuz-PD: fuzzy logic possibility distribution
method.

From Table 4.4 we can see that the iterative detection-based enhancement method

(Det-En) achieves the best performance, and the joint enhancement (Joint-En) and
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iterative enhancement (It-En) methods also perform well. Fuzzy histogram
hyperbolizeation methods yield good results, but their performances are highly

parameter-dependent, which restricts their CAD applications.

4.4 Summary

Image enhancement plays a fundamentally important role in nearly all of the vision and
image processing systems. In this chapter, we presented two novel image enhancement
approaches. In the first approach, we developed an image enhancement system based on
SR noise under the constrained MOO framework, for improving the suboptimal image
enhancers which suffer from model mismatch and yield unsatisfactory enhancement
results. The principle of SR noise-refined image enhancement was investigated, and a
genetic algorithm-based MOO method was used to find the SR noise solution, in which
the HVS preference was included via a weighting scheme for reducing the size of the
solution set. Four types of SR noises were employed in the system and a number of
enhancement algorithms were investigated in this chapter. Experimental results show that
the presented system has highly encouraging performance in terms of simplicity,
flexibility, efficiency and robustness, which demonstrates SR noise’s capability of

improving the suboptimal enhancers and supports its real-world CAD application.

In the second approach, we employ mammogram enhancement as an example to
illustrate the efficiency of the presented selective enhancement framework. We have
presented several schemes to automatically determine the ROI. ROI enhancement and

background suppression were carried out by using the adaptive gray level stretching
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technique. Experiments were based on real-world mammograms containing different
types of lesions, and the comparison with several representative methods showed that the
presented algorithms can achieve superior performance in terms of both subjective and

objective evaluations.
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CHAPTER V

HUMAN VISUAL SYSTEM-DRIVEN IMAGE
SEGMENTATION

In this chapter, we present two human visual system (HVS)- driven image segmentation
approaches. In the first approach, the quality metrics for evaluating the segmentation
result based on human visual perception properties, from both region-based and
boundary-based perspectives, are integrated into an objective function. The objective
function encodes the HVS properties into a Markov random fields (MRF) framework,
where the just-noticeable difference (JND) model is employed when calculating the
difference of the image contents. In the second approach, we consider image
segmentation as a detection problem and present a framework for image segmentation. In
this framework, a “soft” segmentation objective function, in terms of the detection
performance measured in local regions, is employed to guide the segmentation procedure.
The human visual system information is incorporated into the segmentation procedure to
improve the efficiency of the framework through the introduction of a contrast sensitivity

function (CSF)-filtering operation in the wavelet domain.

5.1 Introduction

As briefly introduced in Section 1.3, image segmentation is a challenging problem, and
lots of algorithms have been presented to deal with this task. Design of a suitable
objective function is crucial to the performance of image segmentation approaches. Good
segmentation algorithms require an efficient scheme for parameter adjustment and an
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appropriate description of the desired properties of the segmentation result, which, of
course, are all very challenging tasks. In real-world applications, the performance of
some segmentation algorithms is influenced by their dependence on the parameters of
these algorithms. But the optimum parameters and, therefore, satisfactory segmentation
results are not easy to obtain. Some segmentation algorithms only partially incorporate
the feature information from region and boundary perspectives, and fail to fully take
advantage of fusing the two types of information. For example, Markov Chain Monte
Carlo (MCMC) has been employed [124] to solve the maximum a posteriori probability
(MAP)-MRF estimation problem for generative image segmentation. Due to many
constraints involved in this generative approach, the selection of suitable parameters for
satisfactory segmentation becomes difficult. It is also not easy for the objective function
in [36] to yield a satisfactory balance between connecting the boundary and labeling the
pixels, since there are many parameters which need to be chosen carefully. In [38], the
proposed objective function does not exploit fully the connectivity property of the
neighboring edge components. The normalized cut methods [125][126] can capture
salient parts of an image. However, due to the ad hoc approximations introduced when
relaxing this NP-hard computational problem, these methods do not exploit well the
image content information which is useful for segmentation. As a result, the algorithms

often perform unsatisfactorily.

Among all the existing image segmentation models, MRF models are very popular
ones and have been used to represent contextual information in many pixel-based
segmentation problems, because they can be employed to characterize the spatial

dependency or spatial distribution. A statistical method, namely the MAP approach, is
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often used during MRF-based image segmentation, which has been investigated
comprehensively. The MAP-MRF method maximizes an objective function consisting of
the a priori density in terms of the Gibbs distribution and the conditional probability
density function (pdf for continuous data, and probability mass function, pmf, for discrete
data) of the observed image data given the distribution of the segmented region, in which
some image features are often embedded [127][128]. However, some strong assumptions
and inaccurate estimates of the conditional pdf corresponding to intensity values of single

pixels limit its performance and application.

Another weakness of many existing segmentation algorithms is that they are
developed based on the information provided only by the image data and neglect the fact
that the human is the best and usually the ultimate evaluator of the segmentation result.
That is, these algorithms do not consider the impact of the HVS on object interpretation
and information extraction. As a result, many algorithms are inconsistent with the
preferences of human vision. There do exist efforts to incorporate HVS information into
image segmentation, e.g., [126][127][128], but their performances were constrained by
the simplistic computational models as well as an insufficient consideration of the HVS

properties when designing the objective functions.

Our first effort is to develop a segmentation algorithm which takes into account HVS
preference during the segmentation procedure and is also robust to the parameter
configuration. We first introduce the HVS-driven image segmentation model under the
MAP-MRF framework. Second, the criteria for evaluating region-based segmentation
and the resulting energy function are discussed. Thirdly, the boundary-based evaluation

criteria are discussed and encoded into the energy function via the development of a
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novel concept, called boundary element in our work, which describes the interaction
between pixel labels, boundary configuration and the image content. Then, we integrate
the objective function that includes both region and boundary information, where the
optimization method and the three variations of the HVS-driven segmentation algorithm
are discussed. Experimental results and performance comparisons between the presented
algorithms and other representative segmentation and clustering algorithms are presented

in Section 5.2.5.

In our second segmentation approach described in Section 5.3, we attempt to address
two problems mentioned above, i.e., the constraints of the conventional MRF-based
algorithms and the lack of HVS information during the segmentation procedure. We
consider image segmentation to be a detection problem, and present a novel image
segmentation framework. We employ the probability of successful detection as a metric
when designing the objective function to show the efficiency of this framework. A CSF,
which takes into account HVS preference to the image content, is used as an object
feature enhancer to further improve the segmentation performance. Experimental results

are shown in Section 5.3 .4.

52 A Human Visual System-Driven Image Segmentation
Algorithm

5.2.1 MAP-MRF Framework
In this section, we develop our segmentation model under the MAP-MRF framework,

which incorporates the information from both region-based and boundary-based
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segmentation perspectives.

Under the MAP framework, image segmentation can be obtained by solving the

following optimization problem

(£,B)= argmax P(L,B|Y)=argmax P(Y | L, B)P(L, B) (5.1)

LeQ,; ,BeQy LeQ,; ,BeQy

where P(L,B|Y)is the a posteriori distribution of the label field, L, and the boundary field,
B, given the observed image, Y. L and B are assumed to have the MRF property, and they
consist of pixel labels and boundary elements, respectively. The boundary elements will
be defined in Section 5.2.3. @, and @, are the configuration spaces of L and
B.Q, =1{,.1,,--.1, }, where [, is the label of the pixel with the index i. /. ={0,1,---, 41},
and A4 is the number of possible region types. For example, for binary segmentation, 4=2.
Q, =1{b,,b,,---,b,, }, Where b;is the boundary element of the pixel with the index i. M is the

total number of pixels in an image. A segmented image region is composed of the pixels
with the same label. In this section, label-based segmentation is equivalent to region-

based segmentation, and the two terms will be used interchangeably.

Thus, we obtain our segmentation model under the MAP-MRF framework with the
region label MRF L and the boundary MRF B. In our work, the label field L and the
boundary field B are defined as functions of the image data Y, that is, L=L(Y) and

B=B(Y). L(Y) and B(y)will be precisely defined in the next two subsections. Therefore,

the likelihood term in (1.1) has the form
P(Y|L,B)=P(Y|L(Y),B(Y))=1 (5.2)

So (5.1) is reduced to
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(Zé): argmax P(L(Y),B(Y)) (5.3)
LeQ,; ,BeQy

Since both L and B have been assumed to exhibit MRF properties, according to the
Hammersley-Clifford theorem [127], they can be represented in terms of the Gibbs

distribution and the optimization problem of (5.3) can be written as

(i, é) = argmax iexp{— U(L(Y), B(Y))} (5.4)
LeQ); ,BeQp

where U(L(Y),B(Y)) is the energy function, denoting the interaction between label and
boundary configurations as well as the observation. Z is included for normalization and is

a function of the MRF parameters. For given MRF parameters, (5.4) is equivalent to

(i,é): argmin  U(L(Y),B(Y)) (5.5)
LeQ; ,BeQy

The energy function U(L(Y),B(Y)) consists of two factors, corresponding to region-based
and boundary-based segmentations. Here, as in some prior work [24][44], we express the

energy function in the following additive form
UL, B(Y) = U (LX) + U (B(Y)) (5.6)

where the energy functions U, (L(¥)) and Ugz(B(Y)) can be considered as the quality metrics
corresponding to region- and boundary-based evaluations, respectively. We want to
emphasize that L and B here are two different aspects of the same segmentation result,
and the corresponding metrics are the complementary evaluations for the same

segmentation result from region and boundary perspectives, respectively.
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5.2.2 Energy Function for Region-Based Image Segmentation

In this section, the energy function v, (L(y))in (5.6) corresponding to region-based

segmentation is developed. The approach is based on human preference for good

segmentation, from a region-based segmentation perspective.

We note that a human often evaluates the segmentation result in both global and local
manners, that is, the fitness of a segmentation result to the entire image content and the
local image region are considered simultaneously. Therefore, both region-based and
boundary-based segmentation evaluations should be taken into account. In this subsection,
we only consider region-based evaluation, and postpone the consideration of boundary-
based evaluation to the next subsection. We summarize the desirable properties for good

segmentation in terms of region-based evaluation as follows.

(1) The contrast of pixel intensities between two neighboring regions, i.e., inter-region

contrast, should be large;

(i1) The contrast of pixel intensities within a region, i.e., intra-region contrast, should

be small;

(ii1) The pixel labels should correspond to homogeneous regions, that is, neighboring

pixels prefer having the same label.

Criteria (1) and (i1) represent the global properties of a good segmentation, and
criterion (iii) is a local property which indicates that the segmentation should yield large-

sized regions.

Thus, the region-based segmentation evaluation metric U, (L(y)) should consist of two

types of measures, namely, global inter- and intra-region contrast measures and a local
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label homogeneity measure. We express the composite measure also using an additive

form as follows
UL (L(Y)): UGlobal (L(Y))+ ULocal (L(Y)) (5 7)

We can see from the three desirable properties that the contrasts between the
neighboring regions and those between the neighboring pixels need to be calculated in
order to obtain a quantitative metric for evaluating segmentation quality. In this work, we
incorporate the HVS properties into the contrast measure via the JND model
[129][130][131]. HVS is capable of only perceiving pixel intensity changes above a
certain visibility threshold, which, in turn, is determined by the underlying physiological
and psychophysical mechanisms. JND refers to the minimum visibility threshold above
which visual contents can be distinguished. The JND model plays an important role in
perceptual image and video processing, and has been successfully used in measuring the
difference or distortion of the image contents [132][133]. In this chapter, we use the
spatial JND model, i.e., pixel-wise JND, presented in [134], which is defined as a

nonlinear additive model,
IND, (i) = T* (i) + T' (i) - C* (i) - min{T* (i), T' (i) (5.8)
where IND (i) is the JND threshold of the pixel indexed by i. 7*(i)and 7°(i) are the

visibility thresholds due to luminance adaptation and texture masking, respectively, and

Cc* (i) represents the overlapping effect in masking where 0<C*/(i)<1. Details on the

definition of JND and its computation are available in [129][134].
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5.2.2.1 Energy Function for Global Contrast

In order to incorporate the desired characteristic of global inter- and intra-region contrasts
into the energy function, we define a global neighborhood system, 61 pixels by 61 pixels
in this chapter, with pixel of interest at the center. The segmentation quality metric based

on criteria (i) and (ii) can be expressed as
QGlahal = al ' Clnter - a2 : Clntm (59)

where C, . and C,  denote the inter- and intra-region contrasts of the pixel intensity

Inter Intra

based on JND, respectively, and a; and a, are two non-negative weights that control the

contributions of the two types of contrasts to the energy function. A higher value of

Oaira MeaNSs a better segmentation quality.

Due to the Markov property assumed in our work, the quality metric value
corresponding to a single pixel, s, is independent on other pixels given the segmentation
result in the global neighborhood system of s. Therefore, we have the energy function for

the global contrast as

U lobal L(Y) Z O iopal v\r Z [al : Cjnmﬂu_\ (s)—a,- CJmmﬂ\r\ (S)] (5.10)

where s | T" means that the contrast is a function of the label of the pixel s and is

calculated given that the labels of the rest of the pixels in the global neighborhood system
of s, T, are fixed. To speed up the computation, instead of calculating the contrasts in a
pixel-wise manner, the following region-wise measure of the inter-region contrast is
employed,

C]nter—s\l"" (S) = ¢{ES|1-\'(IUI,IMO)} (511)
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where the calculation is carried out on r’ U {s} , the set consisting of the pixels included

(13 2

in T plus pixel s, and ) means  “union”.  Here,

o y,/N,(s), which is the mean

i=1,and /;=u

2 (i 10) =|pt, — 1] /min[IND . (1), IND, (0)] . s, =Y
value of the pixel intensity in the u” type region, u e {0,1} for binary segmentation,
and N, (s)is the number of pixels with the label u. y,is the i pixel with the label u.
IND, (u) = Zildn 412 IND ,()/N,(s), which is the average JND value of the regions with
the label u. Thus, B (s ,)1s the measure of the average intensity difference of the two

types of regions weighted by the minimum of the average JND values of the two types of

regions. (D) is a robust function that reduces the impact of outliers and is defined in [33]

as

¢(D)=G+;4 (5.12)
where G is a small positive constant.
For the intra-region contrast, we define and employ the metric,
Cppp )= O+ () (5.13)
N,(s)+ N,(s)

) .. . B N, .
Still, the calculation is carried out onr* U {s}, where @ .(0)= > 1o gz)q ¥, — Uo|/TND »())

and D . (1)=Zillandl:lq)Qyi—ul\/JNDP(i)). Here, yi—yj|/JNDP(i),j=0 and 1 for binary

segmentation, is the weighted difference between the intensity of the i” pixel and the

average intensity of the region to which the pixel belongs. So D .(0) and o (D in (5.13)

measure the “variation”, or the inhomogeneity, of the two types of regions.
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We can see that (5.11) and (5.13) measure how the segmentation result of a single
pixel s, i.e., the label of s, affects the segmentation in a global manner, and take into
account the inter- and intra-region contrasts at the same time. Therefore, the energy
function defined in (5.10) reduces the risk of being too biased when segmenting an image
[125]. For example, an algorithm may become very greedy in finding small but tight
clusters in the image data if only intra-region contrast is considered [125]. Additionally,
(5.11) and (5.13) do not require modeling of the probability distributions of the noise and

the image data, which may improve the robustness of the presented algorithm.

5.2.2.2  Energy Function for Local Homogeneity

In this subsection, we discuss the energy function based on criterion (iii), incorporating
local homogeneity for good segmentation. A second-order neighborhood system, that
includes 8 nearest neighboring pixels of the pixel of interest s, is employed for describing
local homogeneity. The pixels, excluding s, included in the solid (yellow) rectangular
shown in Fig. 5.1 (b) form a configuration of the second-order neighborhood system of s.
Besides the label homogeneity, we also incorporate information about the dynamics of
the pixel intensity in order to make the metric adaptive to non-stationary image contents.

The energy function is defined as

M
ULoca/ (L(Y)): _Z { z l//(ls s l'l,,- ) eXp [_ ¢(A RN (y))]} (5. 14)
s=1 | n,eNB,(s)
where A, (y)=|y, -y, |/min[JND,(s),JND,(n,)] represents the JND-weighted contrast

between pixel s and its second-order neighbor 77,. NB,(s) denotes the set of all of the
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second-order neighbors of s. The cost function for the label configuration of the

neighboring pixel pair is denoted by w(,.;,) and defined in (5.15) for binary

segmentation.

w(l,l,) :{ e (5.15)

— [, otherwise.

where g is a non-negative real number and is the cost used to define the label
homogeneity measure of the neighboring pixel pair. Eq. (5.14) has a form similar to the
generalized Potts model [135], except for the additional robust estimation shown in (5.12)

and the IND-weighting operation.

5.2.3 Energy Function for Boundary-Based Image Segmentation
In this subsection, we develop the energy function for boundary-based segmentation,
which is also derived from the desirable properties for good segmentation in terms of a

boundary-based evaluation. These properties are listed below,

(1) Region boundary should be smooth and of as small a length as possible. In other

words, the boundary should avoid containing too many sharp angles or turns;

(i1) The intensity contrast of a neighboring pixel pair on the two sides of the boundary
should be large, while the contrast within a region enclosed by the boundary

curve should be small;

(ii1) The pixels lying on the boundary curve should be connected.
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Criterion (i) represents a property which is characterized by the image contents in both
global and local manners. Criteria (ii) and (iii) are properties of a good segmentation in

small regions, and can be measured locally.

When designing the energy functionu,(8(r)), due to the huge computational burden

for the global boundary-based feature measure, we only employ the local properties

described in the boundary-based segmentation evaluation. That is,
UB (B(Y)) = ULocal (B(Y)) (5 16)

Before deriving the energy function, we first discuss the neighborhood system and

define a novel concept called the boundary element in the next section.

5.2.3.1 Element and Neighborhood System

The energy function of boundary-based segmentation is calculated based on a novel
concept, the boundary element, defined for each boundary pixel. A boundary pixel is a
pixel for which at least one of its second-order neighbors has a label different from it. A
boundary element consists of an angle together with its two directed edges. Suppose s is a
boundary pixel, the angle of the boundary element of s originates from s, and two edges
of the angle point to the two neighboring boundary pixels of s which have the same labels
as s. The two edges separate the pixels into different regions according to whether their
labels are different from or same as that of s. Some examples of the angles are shown in
Fig. 5.2. The value of the angle is constrained to be in the range [0,7], and is related to
the smoothness of the boundary curve. Small angles correspond to sharp turns and

therefore to a wiggly boundary, while large angles correspond to a smooth region
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boundary. Naturally, we prefer large angles. The edges of the boundary element are
related to the connectedness of the boundary pixels and thus the continuation of the
boundary contour. The edges also play an important role in determining the cross-
boundary pixel pair, which will be discussed in Section 5.2.3.2.1. The boundary elements
for two special segmentation configurations, isolated segmentation and interior pixel
segmentation, will be discussed in Section 5.2.3.2.2, where the pixel of interest has either

a different label from or the same label as its second-order neighbors.

A boundary element is determined from the interaction between the pixel of interest,
say, s, and its 8 second-order neighbors. The total energy of a neighborhood system
centered at s is dependent on the boundary elements of s and its 8 neighbors. A change in
the label of s may affect the boundary elements of its 8 neighbors. Therefore, we define
the neighborhood system for boundary-based segmentation as one consisting of the 8
nearest neighbors in the second-order neighborhood system of s plus all the second-order
neighbors of these 8 pixels, excluding s. This is, in fact, a third-order neighborhood

system of s, NB,(s), i.e., NB,(s)={UNB,(n)}U{NB,(s)}\s , where “\s ” means
“excluding s”. NB,(s)1s shown in Fig. 5.1, in which the pixels, excluding s, included in

the rectangular bold dot-dash (light blue) line constitute the third-order neighborhood
system of s for boundary-based segmentation. In Fig. 5.1, s lies at the center of the
neighborhood system. The pixels represented by the solid points belong to one type of
region with label zero (0 region). The small circles represent pixels belonging to the
region with label one (1 region). The thin solid (green) line and the bold solid (black) line
denote the boundary curves of the 0 and 1 regions, respectively. The solid (red) directed

edges, paired together with the angle between the edge pair, form the boundary elements
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of the pixels in the 0 region. The dashed (black) directed edge pairs and the
corresponding angles form the boundary elements of the pixels in the 1 region. Now, let
us consider the situation when the label of a pixel changes. The impact of the label
change of s on the boundary elements of its 8 neighbors is shown in Fig. 5.1 (b), where s
changes its label from 0 (Fig. 5.1 (a)) to 1 (Fig. 5.1 (b)) and results in the change of the

boundary elements of its second-order neighbors.

f Second-order neighborhood
@] [¢] [¢] [¢] [¢] o (¢] @]
Third-order neighborhood Third-order neighborhood
o o o o o o o o o o o o o o o o o o
(a) (b)

Figure 5.1: Boundary elements, second-order and third-order neighborhood systems. (a) Typical boundary
elements and third-order neighborhood system; (b) impact of label change of s on the boundary elements of

its second-order neighbors.

From Fig. 5.1, we can see that the boundary curve of a region is determined by the
boundary pixels together with their edge pairs. However, not all the boundary pixels

contribute directly to the boundary curve, and it is possible that the impact of some
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boundary pixels is “hidden” by the neighboring boundary pixels when forming the curve.

For example, pixel c in Fig. 5.1 (a) is a boundary pixel, but the boundary curve, the thin
solid (green) line, does not pass through ¢ and its two edges, ca and cd . This is because

the boundary elements a and d together with their edges, a?a, ad and cfa, 573, hide the
contribution of ¢ to the curve. However, the change in the label of ¢ will affect the
boundary elements of a and d, as mentioned above. Thus, we still need to consider the
boundary element and the energy corresponding to pixel ¢ when updating the pixel labels,
the parameters of the MRF and therefore the shape of the boundary curve. In other words,
boundary pixel ¢ impacts the boundary curve in an indirect or implicit manner. The

energy function corresponding to boundary elements will be discussed in the next section.

From Fig. 5.1, we notice that the angles of the boundary elements reflect the variation
in the boundary shape, and the directed edges represent the interaction and the relative

locations of the neighboring boundary pixels.

5.2.3.2  Energy Function for Boundary-Based Segmentation

As indicated earlier, we prefer smooth boundaries, i.e., gentle “turns”. This corresponds
to large angles, and the energy function is, thus, designed as a monotonically decreasing
function of the angle value. At the same time, a “reasonable” turn, which results from the
significant contrast of pixel intensities across the boundary, should also be maintained.
Furthermore, the intensity contrast of pixels on the same side of the boundary and
belonging to the same region should be small. In this way, we may make the smoothness

measure of the boundary curve dynamic and adaptive to non-stationary image content.
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Thus, the energy function of a boundary element is composed of three terms: the first one
is related to the angle between the two edges, the second one is related to the intensity
contrast across the boundary, and the third one is related to the contrast on the same side

of the boundary which is called intra-pie slice contrast. We define a “pie slice” next.

5.2.3.2.1 Cross-Boundary Contrast and Intra-Pie Slice Contrast

Consider a boundary pixel, s. A pie-slice of s, by definition, consists of s, as the origin,
and some other pixels in the second-order neighborhood system of s. These pixels must
have the same labels as s, and there are no pixels with different labels from s in the pie
slice. The cross-boundary contrast is calculated as the intensity difference between pixels
in a pie slice of s and the pixels in the second-order neighborhood system of s but with
labels different from s. All possible configurations of the single pie slice in a second-
order neighborhood system are shown in Fig. 5.2. The configuration in each figure is
valid when rotated by z/2. The configurations of the multi-pie slices, where a second-
order neighborhood system contains more than one pie slice, can be determined in a

similar manner and an example of it is shown in Fig. 5.3.

13 2

In Fig. 5.2, s is the pixel of interest. Crosses “x” represent the pixels with the same
label as s (including s), and form a pie slice of s. The remaining pixels have labels
different from s, and are represented by “+”, “-” and “*”. The cross-boundary contrast of
a pie slice is determined by averaging the contrast of the so-called cross-boundary pixel
pairs, which are determined by the two edges of the boundary element. More specifically,
in the figure the cross-boundary pixel pairs corresponding to the pixels represented by -

” and “x” are determined by the dashed (red) edge, those corresponding to the pixels
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represented by “+” and “x” are determined by the solid (blue) edge, and those
corresponding to the pixels represented by “*” and “x” are determined by both of the two
types of edges mentioned above. The cross-boundary pixel pair configuration in each

figure is valid when rotated by /2.

o+t x4+ 4+ % X+ X X X X X X
. /\ Pi-in Pi2
X ¢ X * % % X X | + Ky X X
s s s s ey X IR N
— — — - — % plps . — % % — % +
@ (b) () (d) ()
X X X X X X X 4+ 4+ x x + X X X
s
X SX XX osx X —V%S—i- — Xt XAt
\ | I
* ok X ok VX X — — %k — % 4
® (@ (h) @) )
X X X% X X X X X X X X X
<
— XS X - X * xS x Txs X
X N J
£ x4 ¥ 4+ X ¥ X X X X X

(k) M (m) (n)

Figure 5.2: Possible configurations of the single pie slice in a second-order neighborhood system. The

configuration in each figure is valid when rotated by z /2.
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Suppose there are N, (s) pie slices included in a second-order neighborhood system

with the origin at s. The cross-boundary contrast of the i pie slice consists of two terms,

one including s and another without s, as shown in (5.17)

Contr (8)cy_; =

o= vr | ﬂ (5.17)

i@ ‘yn,\’yu,:‘ . 0
N, +N,|“"| min[JND ,(P,_),JND ,(P,_,)] | “="| min[ IND ,(s),JND ,(P,_,)]

where the first summation is related to the cross-boundary contrast calculated from the
cross-boundary pixel pairs corresponding to the pixels in the i pie slice of s (excluding
s), and the second summation is related to that corresponding to s. Here, y, denotes the
intensity value of pixel k. P_, and P_,denote the boundary pixels inside and outside the
i" pie slice of s (excluding s). They form the 7" cross-boundary pixel pair, in which P_,1s
the closest neighboring boundary pixel of P_ and has a label different frompP_, and
N, denotes the number of such pairs. Here, i=1,...,N,(s) with N, (s)<4 ,
where N, (s) denotes the number of pie slices in the second-order neighborhood system of
s and 4 is the maximum number of pie slices in a second-order neighborhood
system. P,_; are the boundary pixels outside the i" pie slice and have the labels different

from s. s and P_; form the ;™ cross-boundary pixel pair, and N, denotes the number of

such pairs. By annotating the pixel in Fig. 5.2 (c), we show an example for calculating
the cross-boundary contrast using (5.17), where the four “x” pixels form a pie slice and
the cross-boundary pixel pairs are determined by the solid and dashed edges. Here, pixel ¢
is not involved in the calculation since it is not a boundary pixel when we calculate the

cross-boundary contrast of s. As mentioned before, in this case there is only one pie slice

in the second-order neighborhood system.
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The intra-pie slice contrast of the i” pie slice is defined as

Yij — Hps_;
JND (/)

1 Npg_i(s)
Contr () ps_; = Noo (s) Z @
PS—i J=1

] (5.18)

where N, (s) is the number of pixels included in the i pie slice in the second-order

PS—i

neighborhood system of s. u,, ;is the average intensity value of the pixels in the i" pie

slice, and y, ; is the observed pixel intensity of the j™ pixel in the i pie slice.

5.2.3.2.2 Energy Function for the Second-Order Neighborhood System
In this subsection, we develop the energy function for the second-order neighborhood

system of the pixel of interest.

As mentioned before, the energy function is designed to encourage a large turn angle
and large cross-boundary contrast. At the same time, we would like to have the contrast
of the pixel intensity within each pie slice to be as small as possible. We first find all the
pie slices in each second-order neighborhood system of the pixel of interest s, and then
the contrasts across boundary and inside the pie slice are determined by (5.17) and (5.18)
for each pie slice. The energy corresponding to a second-order neighborhood system can

then be calculated as the summation of the energy of each pie slice,

¢(s) = Nf)exp[— a,-a;(s)—a, -Contr(s)q,_; +as - Contr(s)PS,l.] (5.19)

i=1
where o,(s), Contr(s)., ,and Contr(s),s , are the angle value, cross-boundary contrast
and intra-pie slice contrast of the i”" pie slice, respectively. The weights a,, a, and a,are

non-negative real numbers.
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Fig. 5.3 shows an example for calculating the energy of a multi-pie slice segmentation,

where there exist two pie slices Aasb and Acsed. The corresponding energy is

¢(S) =exp {_ a 3 Ay, — Ay - Contr () ep_pup +as - Contrpg_ (S)} (520)
+exp {_ aya,  —a,-Contr (8) cponesea + a5 - Contr pg_y iy (5)
{ < d (0]
a b

Figure 5.3: A typical multi-pie slice configuration, where there exist two pie slices Adsb and Acsed

We can see that the multi-pie slice configurations, which correspond to complicated
and less preferred segmentation, have more terms than the single pie slice case. The

larger the N,

< (s), the more “messy” the segmentation is. We show in APPENDIX A that
the energy function (5.19) assigns higher energy and therefore lower probability to the

multi-pie slice configurations, which is consistent with our expectation.

In many practical situations, there exist two special segmentation configurations,
isolated segmentation and interior pixel segmentation, as mentioned before. Isolated
segmentation corresponds to a special boundary element, where the angle of the isolated
segmentation is -2z and the cross-boundary contrast is determined by averaging the JND-
weighted intensity differences between s and its 8 second-order neighbors (with the

robust function considered). The intensity contrast within the pie slice for the isolated
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segmentation is zero since the pie slice includes only one pixel, s itself. Admittedly, the
interior pixel is not a boundary pixel and does not have the boundary element as defined.
However, for updating the pixel label we still assign a special boundary element to this
type of configuration, where the angle of the interior pixel is set to be 2z and the
corresponding cross-boundary contrast is zero. The intensity contrast within the pie slice
can be calculated using (5.18), where s and its 8 neighboring pixels included in the

second-order neighborhood system construct a pie slice.

5.2.3.2.3 Energy Function for Boundary-Based Segmentation

As mentioned before, a change in the label of s might impact the boundary elements and
therefore the energy function values of the 8 second-order neighborhood systems
centered at the 8 second-order neighbors of s, plus the second-order neighborhood system

of s. Let NB,, (s) denote the set of pixels in the second-order neighborhood system of s
plus s itself, so NB,, (s)= NB,(s)u{s}, where NB,(s) represents the 8 second-order

neighbors of s, as defined in Section 5.2.2.2. Thus, the energy function values of the

second-order neighborhood systems of the pixels in NB,, (s)are necessary to calculate

2+s
the energy corresponding to the label configuration of s. Therefore, energy function (5.16)

can be expressed as

UAB(Y))&[ 1 Nf%(h)} (5.21)

Ny (s) =

where > g(h)/ N, (s) is the average energy of the second-order neighborhood systems

included in the third-order neighborhood system of s. This energy function takes into
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account the impact of the change in the label of s on the local region. The pixels in

NB, . (s) are indexed by A4, and N,,(s) denotes the number of pixels in NB,, (s). We can

2+s

see that N, (s) =9 if s is an internal pixel of an image.

To speed up the computation, only the energy function of the second-order
neighborhood system of s is calculated in this chapter, which is sufficient to produce
satisfactory results and is therefore implemented in the experiments. Thus, we have a

simplified energy function for boundary-based segmentation,

UL(B)=3 4 (5.22)

5.2.4 Overall Energy Function and Optimization

Having defined the energy functions for region-based and boundary-based segmentations,
we formulate the overall optimization problem. According to the previous discussion, the
image segmentation problem can be transformed to an optimization problem with respect

to the pixel label and region boundary configurations,

(£, B)= argmin U(L(Y), B(Y)) = argmin{U, (L(¥))+ U, (BOY))} = argmin {U g, (L) + U oo LOD)+ U (B}

LeQ, ,BeQy LeQ); ,BeQy LeQ; ,BeQy

_i[al .(p[Eﬂr\ (#1’/10)]_ a, .m[cpw 0)+@ . (1)]} (5.23)

= argmin —%i{ w0, expl-ola,, (y))]}

LeQ, ,BeQy s=1 | n,eNB,(s)

M | Nps(s)
7 Z|: Zexp(— ay - a,(s)—ay, - Contr(s) oy, +as - Contr(s) pg ; ):|

s=1 i=1

where 7, and y, are two hyper-parameters controlling the contributions of the label and

the boundary energy functions to the total energy. Finding the optimal configuration of L

and B includes the minimization of (5.23) with respect to L and B followed by the
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maximum likelihood estimation (MLE) of g if 5 and y, are given. The procedure

proceeds in an iterative manner. The JND weights only need to be calculated once before

segmentation. We call this scheme HVS-driven segmentation scheme 1 (HDSS-1).

The hyper-parameters j, and y, can be determined either by trial-and-error or by using

the method presented in [45]. In our work, we use the trial-and-error method to choose
these parameters and the experimental results show that the performance of the algorithm
is not sensitive to these parameters. To further reduce the effort of choosing the hyper-
parameters, the optimization of the energy function is carried out in two steps. In the first
step, only the energy terms related to region-based segmentation are minimized. In the
second step, the boundary energy function is minimized which is based on the
segmentation result from the first step. Steps 1 and 2 are iterated until we achieve a
satisfactory result. (In our work, the number of iterations is determined by trial-and-error,
but the experiments show that the performance of the algorithm is not sensitive to the
number of iterations if the number is larger than a certain value.) We see that in this

scheme only the hyper-parameter 5, needs to be chosen. We call this scheme the HVS-

driven segmentation scheme 2 (HDSS-2). The two-step procedure is given by

3 . 1
Step 1: . B ;(dl -(0[.:.S‘p (:ula:uo)]_ a, ']vl(s)_i_]vz(s)[q)ﬂ-c(o) + (Ds\l"" (1)]J

L = arg min

S 7 i{ D w1, )exp [— go(Aw (y))]}

s=1 | n,eNB,(s)

n M | Nps(s)
Step2: B = arg min {Z[ D exp (—ay-a,(s)—a, -Contr (s) 5., + as - Contr () ps_. )}} (5.24)
“| 4

BeQy S= i=1

In our experiments, besides the implementation of the above mentioned segmentation

schemes, we will also present the results when only the boundary element is considered
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during the optimization, that is, when only the energy function in Step 2 of (5.24) is
optimized. We call this segmentation method the boundary element-based segmentation

(BEBS).

To the best of our knowledge, HDSS-1, HDSS-2 and BEBS are distinctive from
existing segmentation algorithms in terms of the design of the objective functions from

region- and boundary-based perspectives.

5.2.5 Experimental Results

In this subsection, comparative results of the segmentation of two types of medical
datasets, mammogram and MRI brain images, and one natural image are shown. The
comparisons are carried out between the presented algorithms and several representative

segmentation and clustering algorithms.

5.2.5.1 Experiment Configuration

The mammogram used in the experiment is from the Digital Database for Screening
Mammography (DDSM) [91]. The MRI brain image is T1-weighted and is from SUNY
Upstate Medical University. We use Cameraman image as an example of the natural

image.

In mammogram segmentation, our goal is to find the pixels which represent lesions.
The segmented positive pixels by the presented algorithms are marked in blue. In
segmenting the MRI brain image, we wish to segment the white matter (WM) from the

gray matter (GM) and cerebrospinal fluid (CSF). The segmented non-WM tissues are
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shown using purple and black colors. For the Cameraman image, we want to segment out
the man as the foreground from the background, i.e., the building and the meadow. We
also treat the camera as a background object and do not attempt to segment it out. The
segmentation result is represented by a binary image, where the dark part is the

foreground.

5.2.5.2  Segmentation Algorithms

The algorithms used for comparison purposes are briefly described as follows.

The Gaussian assumption-based dynamic clustering algorithm (GADC) [81], as
described in Section 2.2.1.3, assumes that both background and lesions obey Gaussian
distributions, where the detection (or clustering) and parameter update are performed in

an iterative manner.

IMS [81], as described in Section 2.2.4, is an unsupervised learning pattern
classification approach, which employs kernel density estimation technique to determine

the probability distribution and performs clustering iteratively.

The HOSLW algorithm [96], as described in Section 2.3.2, has been shown to have
superior performance compared with other existing methods for breast cancer detection

in digital mammograms [97], in terms of efficiency and reliability.

The conventional MRF-based algorithm [26] is also employed for comparison
purpose, since the presented algorithms also include the MRF assumptions on the pixel
label field and boundary element field. In our implementation, the likelihood term of the

conventional MRF-based algorithm is determined under the Gaussian assumption and the
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prior term is derived from the Gibbs distribution. An adaptive window size is employed
to improve its performance, and the parameters of the Gibbs distribution are updated as

the segmentation process proceeds.

Otsu thresholding [127][128] is a classical and effective method for image
segmentation. It is widely used in software for MRI brain image segmentation, such as
3Dslice. It searches for the threshold by minimizing the intra-class variance. In our
experiments, the original bi-level thresholding method [136] is employed for
mammogram and Cameraman segmentations, where our goals are to find the lesion
pixels and the Cameraman, respectively, while the multi-level version [137] is employed

for the MRI brain image to segment out the WM.

The level set evolution-based method, LSEWRI, presented in [121] is a recent
variational formulation. It forces the level set function to be close to a signed distance

function, and does not need the costly re-initialization procedure.

The region-based active contour model (RACM) algorithm [138] is also based on
level set evolution, which aims at overcoming the difficulties of segmentation due to
inhomogeneous intensity. The authors employ a region-based active contour model
which draws upon the intensity information in local regions at a controllable scale. A
contour and two fitting functions that locally approximate the image intensities on the
two sides of the contour are defined as the data fitting energy. A variational level set
formulation incorporates the energy with a level set regularization term, and then energy

minimization is carried out for the derived curve evolution equation.

The multi-scale normalized cuts-based segmentation (MNCut) algorithm [139] uses

the normalized cut graph partitioning framework of image segmentation, where a graph
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that encodes pair-wise pixel affinity is constructed and partitioned for image
segmentation. The algorithm works simultaneously across the graph scales, with an inter-
scale constraint to ensure communication and consistency between the segmentations at

each scale, such that both coarse and fine level details are captured.

We test HDSS-1 and BEBS for mammogram data, HDSS-1, HDSS-1 and BEBS for
MRI brain image data, and HDSS-1for Cameraman image. To be fair, we use the same

initialization for all the algorithms implemented in the experiments. We set a,, a,,a,and
asto be 1, and a,to be 15. In HDSS-1, », is chosen to be 1. y,'s in HDSS-1 and HDSS-

2 are set to be 0.1. From the experimental results, we notice that the segmentation
performance is not sensitive to the choice of these parameters. We use the iterative
conditional modes (ICM) algorithm [140] as the optimization method for all the three

algorithms.

5.2.5.3  Experimental Results

Fig. 5.4 shows the segmentation results of the mammogram with lesions, where the blue
points denote the segmented positives. The regions enclosed by the light green curves in
Figs. 5.4 (f) and (g) correspond to the segmented lesion regions by LSEWRI and RACM,

respectively.
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Figure 5.4: Original mammogram and the segmentation results. (a) Original mammogram with lesions; (b)
segmentation by Otsu thresholding; (c) segmentation by GADC; (d) segmentation by IMS; (e)
segmentation by HOSLW; (f) segmentation by LSEWRI; (g) segmentation by RACM; (h) segmentation
by MNCut; (i) segmentation by conventional MRF; (j) segmentation by BEBS; (k) segmentation by

HDSS-1.

From the figures, we can see that BEBS and HDSS-1, shown in Figs. 5.4 (j) and (k),
yield better results than the other methods. Otsu thresholding, (b), yields too many false
alarms. Obviously, for an image in which the intensity contrast is not very high, like the

mammogram, intra-class variance measure is insufficient for yielding good segmentation.
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The advantage of GADC (c) is that it converges quickly, but it yields many false
positives. IMS (d) may converge to local extrema and misses many lesions. HOSLW
method (e) can find the lesions efficiently, but it still generates false alarms and fails to
determine the shape of lesion which, however, plays a very important role in
discriminating the benign tumors from the malignant ones. Moreover, the segmentation
performance of HOSLW depends on how accurately we can estimate the number of
lesion pixels, which is usually not available in real-world applications. The LSEWRI
method, shown in (f), also performs poorly and yields many mis-segmentations. RACM
(g) finds all the lesions but with many false alarms. Besides, it also fails to determine the
lesion shapes. The number of iterations of the two level set-based algorithms is set to be
500, which is sufficient for them to converge. For the MNCut method, we tried several
numbers of segments, but did not observe any satisfactory results. A typical segmentation
is shown in (h). Conventional MRF (i) does not find all the lesions and it also fails to
determine lesion shape. This is because the conventional MRF only emphasizes intra-
region homogeneity and label smoothness, such that it is too conservative and works
poorly when the image contents are complex. Besides, all the methods used for
comparison purpose fail to mimic the adaptation of HVS to the complexity and non-

stationarity of the image contents.

As shown in Fig. 5.4 (j), BEBS performs satisfactorily, but the lesion contour is not
smooth. This is because the boundary energy function does not emphasize the label
homogeneity of the neighboring pixels as well as the global contrast of the image. On the
contrary, HDSS-1 (k) integrates the boundary information, global contrast and pixel label

homogeneity, and therefore yields a better result.
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Fig. 5.5 shows the results for MRI brain image segmentation, where the non-brain
background is first removed from the image and segmentation is carried out only on the
brain pixels. Similar to the mammogram case, our presented algorithms yield better
segmentations than the representative ones, in terms of smaller mis-segmented area and
higher accuracy in object boundary determination. In Figs. 5.5 (b), (¢), (g), (h) and (i),
white regions denote the segmented WM by different algorithms. The regions enclosed
by the light green curves in Figs. 5.5 (d) and (e) correspond to the segmented WM by the
two level set-based methods with the number of iterations being 2000, which is sufficient

for them to converge.

¢ (2 (b (M)

Figure 5.5: Original MRI brain image and the segmentation results. (a) Original MRI image; (b)
segmentation by conventional MRF; (c) segmentation by Otsu thresholding; (d) segmentation by LSEWRI;
(e) segmentation by RACM; (f) segmentation by MNCut; (g) segmentation by BEBS; (h) segmentation by

HDSS-1; (i) segmentation by HDSS-2.
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From the figures, we can see that the conventional MRF-based method (b) is
conservative, as mentioned before. It puts more weight on pixel label homogeneity so
misses many fine structures of the WM. Otsu (c) yields an unsuitable threshold such that
some GM and CSF regions are segmented into the WM part. LSEWRI (d) produces a
large number of mis-segmentations. RACM (e) includes some GM into WM and also
yields segments with a very small size in the right half part of the brain image. MNCut (f)
fails to characterize the fine structures of the WM and GM. The result from BEBS (g) is
satisfactory, but it also yields some isolated pixels as well as some false positives in the
bottom and boundary of the image. In contrast, HDSS-1 (h) and HDSS-2 (i) produce
better segmentations in terms of reduced number of isolated pixels and the strengthened

homogeneity of the neighboring pixel labels.

Fig. 5.6 shows the results of segmenting the Cameraman image. For visualization
purposes, the results of the Otsu and HDSS-1 algorithms are shown as a binary image.
From the figures, we can see that Otsu (b) yields a good segmentation of the human body,
but generates many mis-segmentations in the background building and meadow parts.
Most of them are segments with small sizes. LSEWRI (c) generates no mis-segmentation
in the meadow but misses part of the human legs and also segments out a large area of
background between the man and camera. RACM (d) yields good segmentation of the
man. It even finds some fine structures of the image. But this method generates a large
number of mis-segmentations in the meadow. We adjusted the number of segments of the
MNCut method (e), and observed that it generates many homogeneous patches.

Obviously, some post-processing algorithms, like region merging, need to be applied to
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find the human from these patches. (f) shows the result of the presented HDSS-1 method.
We can see that the man is segmented out with fewer mis-segmentations, especially in
the meadow part, when compared to other methods. Also, a smaller portion of the camera

is segmented out by this method.

(a) () ©

(d) (e) )

Figure 5.6: Original cameraman image and the segmentation results. (a) Original image; (b) segmentation
by Otsu thresholding; (c) segmentation by LSEWRI; (d) segmentation by RACM; (e) segmentation by

MNCut; (f) segmentation by HDSS-1.

5.3 HVS-Driven Image Segmentation Framework Using Local
Segmentation Performance Measure

5.3.1 Image Segmentation Based on MAP-MRF

Context is important in image segmentation because contiguous pixels are likely to
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belong to the same region and form homogeneous areas. MRF is an appropriate prior
contextual model because it can identify the local properties of image regions by
introducing context or dependence among neighboring pixels. MAP is a frequently used
approach to obtain the solutions to the MRF-based image segmentation problems.

Formally, in this approach, we have

x" =argmax P(Y = y| X = x,0)P(X =x|0) (5.25)

where x denotes the segmented image region label, x=(x,..., X,...,Xu); X; is the label of
the pixel at location s in an image, x,=0,1,..., L-1; L is the number of region types, and M
is the total number of pixels in an image; y is the observed image data, which is often
modeled as the noise-free image corrupted by additive noise. 6 is the MRF model
parameter, relevant to the type of the cliques. A clique is a set of pixels that are neighbors
of each other. P(Y=y|X=x,0) is the conditional density of the observed image given the
distribution of regions. P(X=x|0) is the a priori density of the region process given 6,
which according to the Hammersley-Clifford theorem [127], can be described by a Gibbs

density of the form

P(X =x|0)=expi-D V.(X =x|0)}/ Z (5.26)

Here Z is a constant used for normalization, and the summation is carried out over all

cliques C. V.(X=x|6) is called the potential function associated with clique c.

Due to the Markov property and the assumptions that the additive noise is independent
of the image signal and independent and identically-distributed (i.i.d.), e.g., i.i.d.

Gaussian noise [140], (5.25) is often approximated by
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x* zargrnaXHP(Y; =ys ‘Xv =x.v99)P(Xv =xs ‘Xq\s ='x771x’€) (527)

where 7|s is the neighborhood of the pixel 5. The terms of
P(Y=ys| X=x,,0) P(Xs=x| X, =xy5,0) can be considered as objective functions for

representing the performance of single pixel segmentation.

5.3.2 Image Segmentation Based on Local Segmentation Performance Measure

In this section, we avoid of the noise modeling, and present a “soft” objective function, in
which we consider image segmentation as a detection problem, and employ a local
segmentation error to measure the impact of individual pixel segmentation on the local
region and further on the objective function value and the segmentation result
corresponding to the entire image, such that the interaction between the neighboring pixel
segmentation as well as the uncertainty of the individual pixel segmentation can be taken

1nto account.

Image segmentation can be considered as a detection problem. For example, in the
binary class segmentation case, a pixel can be considered as a detected positive if the
pixel is segmented into the object region, or a detected negative if segmented into the
background region. This equivalence is also applicable to multi-class segmentation.
Therefore, many metrics relevant to detection performance, such as the Ali-Silvey
distance measures [141], could be appropriate choices for the segmentation objective

function assignment. In this section, the probability of successful detection (P, ) is

employed as an objective function to show the efficiency of this scheme.

The novel objective function for the algorithm is
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Cp, =2 Py (X, =x,) (5.28)

where 3 means the summation over the entire image. p, (X, =x,) is a measure for
successful detection, reflecting the probability of successful segmentation of the pixel s
when it is labeled with x . It aims to reflect the impact of the decision of a pixel on the

segmentation performance of the entire image, and is defined as

PSuqS (Xs =xs)=7xx(1—P

dx,

(e| X, =x,) (5.29)

wherey is the a priori probability of the pixel s labeled with x;, and can be obtained

from the Gibbs distribution, as shown in (5.26). p

elx

(e| X, = x,)1s the conditional probability

of error given the label x;,. We define the optimal segmentation to be the one that

maximizes (5.28).
For simplicity, we first consider the number of the types of image regions to be two

and define P,.(e|X;=x;) as

Py (el X, =x) =7y [ ¢ (0P, (»)dy (5.30)

w1y | =g B (0)dy

Here 7, and 7, are the a priori probabilities of occurrence of regions 0 and 1, with
7y, =1-7m, . They can be estimated from the available segmentation results, i.e.,

7, =m,/M , where m; is the number of pixels segmented into region i, and as

ilx,
mentioned before M is the total number of pixels in an image. We will see that the
estimation of the probabilities of occurrence is not necessary in the binary class

segmentation case. 7, (y)and P (y)are the pmfs of the discrete digital image data y for
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the two types of regions, respectively. ¢, (y) is the critical region indicator function
which gives the probability of assigning label 1 to x, based on the observations.

Due to the instability of image contents and the fact that there may exist correlation
between neighboring pixels, a “hard” threshold, in terms of a “hard” critical function,
may not be suitable for segmentation. So we define a “soft” critical function, namely a

“soft” decision rule, according to the data distribution, which is given as follows,
¢ (v)=hH, WIB, ) +F, (V) (5.31)

Substituting (5.30) and (5.31) into (5.29), we get

_ (11— *© E)\x»,_(y)Pux_,(y) 5.32
Foe 2120 Iw%E00+R%ood) 532

Thus, the estimation of 7, andz,, is not necessary.

For the segmentation with multiple region types, we have

L-1L-1

Pu =7, (=P )=y (=2 ¥ a, [ P () (5.33)

i=0 j#i

=7 =3 7 [ 4, ()P, ()

where R; denotes the region indexed by i; z,, are the a priori probabilities of occurrence
of the type i region, with S in, =1 and can be estimated using the method mentioned

before; ¢, (y)are soft decision rules for region i, defined as

8. ()= 2P G)(L=DL P, () (5-34)

and Sl =1 P () are estimated by the pixels labeled with j given that pixel s is

classified as type x;.
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Now, we can see that the objective function is a soft one. It evaluates the result of
single pixel segmentation where the statistical information of surrounding pixels is taken

into account. From (5.32) or (5.33) we notice that y P, (y) and therefore Py, of different

Suc,
pixels are coupled, such that the label configuration of x,’s, which aims at achieving the
global maximum value of (5.28), are very difficult to obtain. To simplify the optimization
process, we assume that the label configuration obeys the MRF model, and define a

local P, , denoted as LP;,. . Thus, LP,, s for different pixel locations are independent of

each other given the neighboring pixels around s. The calculation of LP,_’s and the

Suc,
update of x;’s can be carried out pixel by pixel in an independent manner. Formally, we
have

CLPS‘“ = Z PSuc\x,,xq‘\. (Xs = xs ‘ Xr]\s = xr]\s)

s (5.35)
= Z }/x\\x,”‘ (1 - Pe\x“x,]‘. (@ | X.s' = xs’Xrﬂs = 'xrﬂs ))

Thus, the objective function is a measure of the segmentation performance in local
regions. Each term of (5.35) is calculated from the pixel s and those around s. The
optimal segmentation based on this criterion is achieved when (5.35) is maximized. The

parameters of the Gibbs field are updated by fixing the pixel label x and finding the
parameters which maximize (5.35). Therefore, C;, in our work is maximized by
updating the pixel label and Gibbs field parameters in an alternative manner.

As mentioned before, other metrics relevant to detection performance could also be
employed instead of probability of successful detection. Thus, we have developed a
framework of image segmentation incorporating a soft objective function and local

segmentation measure. It can be seen that only the pixel intensity information is used in
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this chapter for segmentation. Further work considering other image features beyond

intensities may yield better results.

5.3.3 HVS-Driven Image Segmentation

Many image segmentation algorithms devote a great deal of effort in extracting image
features from the image itself, but overlook the properties of the HVS for characterizing
the image content. In this section, we present a segmentation scheme that takes care of
the HVS properties during segmentation. In the scheme, we first transform the original
image into the wavelet domain and obtain the “wavelet image”, and then the wavelet
coefficients are weighted by the frequency response of the HVS given by a specified CSF
in the wavelet domain. The Invariant Single Factor Weighting scheme discussed in [142]
is employed here for the weighting task. Finally, the weighed “wavelet image” is
transformed back to the spatial domain, which yields the CSF-enhanced image ycsr.

Segmentation is then carried out as before on ycsr with HVS information embedded.

A number of different CSF's have been proposed in the literature. In this chapter, we

choose the one discussed in [109] and used in (4.13) of Section 4.2.4.1.
A(f)=2.6(0.192+0.114 1 )e 114" (4.13)

where f is the radian spatial frequency in cycles/degree. The wavelet we use is

Daubechies-8 and the number of decomposition levels is 4.
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5.3.4 Experimental Results

In this section, experiments are carried out on real-world mammogram data from the
Digital Database for Screening Mammography (DDSM) [91], where the location of the
mammogram lesions are identified by expert radiologists and used as the ground truth in
our work.

Three segmentation algorithms are compared, namely the conventional MAP-MREF,
LPg,. and CSF-enhanced LPg,. Simulated annealing (SA) is employed for optimizing
(5.35). An annealing schedule of cy/log(1+k) [143] is used for the SA procedure, in which
k is the discrete time variable and ¢y is specified by trial and error. In our experiments, a
second-order neighborhood system, containing 8 pixels with the pixel of interest at the

center, is employed for calculating o

The pmf in all the three methods is estimated by the kernel density technique [86],
which uses the data in a processing window with the pixel to be labeled at the center of
the window. The choice of the processing window size is critical. It should be small
enough such that the effect of the single pixel segmentation result can influence LPs,. and
CSF-enhanced LPyg,., and the local image information can be included, but not too small
because an accurate pmf estimation is difficult to achieve given a very small data set. To
find the tradeoff, we use a processing window shrinking scheme, similar to that used in
[144]. In the scheme, window size is reduced with the iterations proceeding. The reason
is that in the early stages of the iterations, a large window is necessary for robust
estimation of the pmfs. As the algorithm progresses, the segmentation is improved and
smaller windows provide more local information as well as more reliable pmfvalues. The

window shrinking stops when a minimum window size is reached which is set to be 5x5
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in our experiment.

For a fair comparison, the initial segmentations for the three algorithms are assumed
to be the same, obtained using the local maxima filter [96]. Fig. 5.7 shows the original
mammogram containing micro-calcifications, as well as the segmentation results of the
conventional MAP-MRF, LPg,. and the CSF-enhanced LPs,. algorithms, where the
detected positives are marked with (blue) dots, the false positives and missed lesions are

pointed out by dashed circles and solid circles, respectively.

(a) (b) (c) (d)
Figure 5.7: Original mammogram and segmentation results. (a) Original mammogram with micro-
calcifications; (b) segmentation result with MAP-MRF; (c) segmentation result with LPSuc; (d)
segmentation result with CSF-enhanced LPSuc. The detected positives are marked with dots, the false

positives and missed lesions are pointed out by dashed circles and solid circles, respectively.

From the results, we can see that the conventional MAP-MRF (Fig. 5.7 (b)) yields two
false positives at the left-bottom of the mammogram, and misses two true positives at the
right-top and right-middle of the mammogram. LPyg,. (Fig. 5.7 (c)) finds all the lesions

and does not generate any false positives. CSF-enhanced LPs,. (Fig. 5.7 (d)) also detects
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all the lesions but with more accurate lesion location and clearer lesion boundary than
LPyg,.. The proposed algorithms provide better segmentation than the conventional MAP-

MREF in terms of more accurate lesion localization and shape determination.

5.4 Summary

Image segmentation is a very important technique but a challenging problem for
computer vision and image analysis. We presented two HVS-driven image segmentation
approaches in this chapter. In the first approach, the objective function for segmentation
was designed by considering the preference of HVS to good segmentation, from both
region-based and boundary-based perspectives. The metrics were encoded into the MRF
and the JND model was used to calculate the contrast of the image contents. Comparative
performance evaluation was carried out via the experiments between the three variations
of the presented algorithm and several representative segmentation and clustering
algorithms available in the literature. The results show that the presented algorithms
resulted in highly encouraging performance in terms of segmentation efficiency,

robustness and convergence speed.

In the second approach, we considered image segmentation as a detection problem,
and developed a novel image segmentation framework by introducing a local “soft”
objective function to steer the segmentation. Moreover, the segmentation was further
improved when the HVS information is embedded into images through a CSF-filtering
procedure. Real-world mammogram data were used in the experimental comparison,

which shows that the presented framework has highly encouraging performance.
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CHAPTER VI

PERFORMANCE LIMIT OF IMAGE
SEGMENTATION ALGORITHMS

In this chapter, image segmentation is formulated as a statistical parameter estimation
problem based on varying coefficient model (VCM), and a modified Cramér—Rao bound
(CRB) combined with the Affine bias model is employed to determine the performance
limit of image segmentation algorithms. A fuzzy segmentation formulation is considered,
of which hard segmentation is a special case. The effect of the factors, such as the
contrast of the image pixel intensity, on the segmentation result is investigated via the
bound, which gives us insights into the achievable accuracy of a segmentation algorithm
in segmenting a specific image. Experimental results are obtained where we compare the
performance of several representative image segmentation algorithms with the derived

bound on both synthetic and real-world image data.

6.1 Introduction

As discussed in Section 1.3, the performance bound of image segmentation algorithms,
which is dependent only on the given image contents, is significant both to the
development of segmentation algorithms and to the evaluation of the quality of the

segmentation results.

As mentioned in Section 1.3, there do exist efforts on bounding the segmentation
performance from a statistical perspective. The work in [46] is based on the finite normal
mixture (FNM) model assumption, where the model parameters, means and variances,
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are estimated using Expectation-Maximization (EM) and Classification-Maximization
(CM) algorithms. CRB on the variances of these estimates are derived. However, the
FNM model is not universally applicable to all the images, and also, the unbiased
estimator assumption made in [46] does not hold for many real-world segmentation
algorithms, which will be seen in our experimental results. While studying multi-spectral
image segmentation [47], the performance of the Markov random fields (MRF)-based
segmentation algorithms was predicted using false alarm rate which was based on
Rissanen’s minimum description length (MDL) criterion. The analysis in [48] covered
many detailed scenarios of segmentation, but the computational complexity, the MRF-
based assumption and the use of multi-spectral image data constrained its application. In
[48], the true segmentation label and two performance level parameters (sensitivity and
specificity) were estimated using the EM algorithm. This scheme did not decouple the
performance bound, i.e., the best achievable segmentation result for the given image data,
from the specific segmentation algorithm, i.e., the EM algorithm used in [48]. In addition,
the EM algorithm only guarantees to yield a locally optimal solution, which may not be

appropriately used as a performance benchmark or bound, a global concept.

In this chapter, we derive the bound, or limit, on the performance measure of the
segmentation result, i.e., the mean square error (MSE) of the pixel labels, based on the
CRB, biased estimator assumption and Affine bias model. We first show that image
segmentation problem fits the VCM [138] and image segmentation can be formulated as
a parameter estimation problem. Second, in order to derive the biased bound, the CRB
based on the unbiased estimator assumption is discussed as a necessary intermediate step.

Thirdly, the biased bound and the optimum parameters for the Affine bias model are
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determined, where the methods used to calculate the bound are also discussed. In the
experiment section, we compare the derived biased bound with several representative
image segmentation algorithms using synthetic and real-world image data. We also show
the results of the unbiased bound, and demonstrate the unsuitability of the unbiasedness

assumption.

6.2 Performance Limit of Image Segmentation Algorithms

6.2.1 Problem Formulation

Image segmentation is a very challenging problem, and many segmentation algorithms
have been proposed. However, there is a fundamental question to be asked as to whether
there exists a theoretical limit to image segmentation performance and, more importantly,
how much room we have to improve the existing algorithms. In this section, as a first
step to attempt to answer this question, we model the image segmentation problem as a
linear estimation problem using a VCM, where the parameters of interest, i.e., the pixel
labels indicating which region a pixel belongs to, are considered to be the coefficients of

the VCM.

6.2.1.1 Varying-Coefficient Model [145]

In this section, we briefly introduce the VCM. Consider a random variable s whose

distribution is dependent on a parameter . In the VCM, 7, can be expressed as

77=E)+h1Fl(Zl)+"'+hMFM(ZM) (61)
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where 4, b, h and y,,%,,*, ¥y, are known as the predictors for 5 , and

M

F,F,,, F), are functions that enable the representation of . F, is the intercept term.

Thus, the model is linear in the regressors, while their coefficients are allowed to change

smoothly with the value of other variables which we call “effect modifiers”.  is called the
linear predictor, which is related to the mean A = E{s} via the link functionz = x(A) . In the
simplest case of the Gaussian model, «(A)= A and the data s is normally distributed with
mean  , and model (6.1) has the form
s=hFE(y)++h,F,(x,)+e (6.2)
where Efe}=0 , var(¢)=0,> . Other commonly used models are log-linear models, for
which 5 =log(A) and s has a Poisson distribution, and the linear logistic model
withx{A}=1log{A/(1-A)} and s is a binomial variable. A special case occurs when y,’s
are the same variable, such as time, age or pixel coordinates as used in our work.
There are many ways to model the functions F,(y,). For example, we could use

flexible parametric representations, such as Fourier series, piecewise polynomials, or
otherwise and more generally nonparametric functions. In our work, the B-spline function

(tensor product B-splines) is employed.

6.2.1.2  Image Segmentation Model

In this section, we model the image segmentation problem using VCM. Suppose we have
an image with N pixels whose observed intensity values are y(x) , where x are pixel

indices and ordered through zig-scanning, starting from the top-left to bottom-right in an
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image, and x=12,---,N . The image segmentation problem can be formulated, based on

Gaussian model (6.2), as

y(x)=s(x) +w'(x)
= [ (X)F,(x) + -+ hy, (X)F,, (x) + €]+ W (x) (6.3)
= () (X)+-+ by (0O F, (x) + w(x)

where s(x) are the noise-free intensity values of the pixel x. This model has the signal
effect modifying variable x , where M is the number of segmented regions, and M <N .
(Note that the pixels which have the same features or characteristics should be classified
into the same class, but these pixels classified into the same class need not be connected to
each other, that is, they may be located in separate regions. The method used to calculate
the bound in this chapter is based on regions, not on classes, so we will consider regions

one by one, no matter whether they belong to the same class or not.) /;(x) is the pixel
label of x, which can be considered as the membership function, representing the degree to

which the pixel x belongs to the " region, 0 <4, (x) <1 and ZZ} n, (x)=1for everyx. In the

rest of the chapter, the terms “label value” and “membership function value” will be used
interchangeably. This definition enables the model to represent a general image
segmentation scenario, i.e., fuzzy segmentation [146] where each pixel can belong to
different regions at the same time. As a special case of fuzzy segmentation, a pixel in hard

or crisp segmentation has the membership function, (x) € {0,1}. In addition to providing a

more general formulation, another important reason to study fuzzy segmentation is that the
CRB fails to limit the MSE if the space of a parameter becomes finite [147], i.e., the hard

segmentation case.
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In (6.3), the noise term w(x) consists of two parts, the image noise w'(x) and the
smoothing error ¢ . We assume that we have a very powerful smoother and the smoothing
error is very small compared with the additive noise, so the image noise dominates the
noise term, i.e., wx)=e+w'(x)~w'(x) . In this work, the noise is considered to be
independent and identically distributed (i.i.d.) Gaussian random variable with zero mean
and variance o*. Also, in our work, F,(x)is modeled using the 2D B-spline function with
the coefficient vector B, . Let F,(x) = ¢(x; 3,) represent the intensity of the pixel x in

the #” region, and ¢(x;8,)=3"" B,b,(x), Where b, (x) are B-spline basis functions and m is the

number of knots in an image. / is the index of the knots which are ordered through zig-
scanning starting from the top-left to bottom-right in an image. For simplicity, the knots

are uniformly deployed on the entire image plane.

Thus, (6.3) can be written in a matrix form as

y(x) = h(x)" - $(x; B) + w(x) (6.4)
= h(x)" - - b(x) + w(x)

where T denotes the matrix transpose, h(x)=[h (x),h,(x),"--,h, (x)]" and
96 B) =05 B9 Bo)se - 805 B ) b By Here, ¢(x;8)= ﬂkT b(x) where
Br =B Bravs Brl” and @) =[0(x0).b3 ()b I . S0 g0 =18, 87 . B 1 -b(x) = B-b(),
where g =(8".5,",---.p, 1"

We note that a similar formulation has been used in [148][149] for developing image

segmentation algorithms. In [148][149], %, (x)is considered to be equal to or very close to

0 or 1, that is, hard segmentation, while in our formulation we consider a more general

segmentation configuration, i.e., fuzzy segmentation where #,(x) lies in [0,1]. In addition,
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in [148][149], it was argued that the pixel label, with the given Gibbsian distribution as
the prior, is independent of the image content represented by £ . In contrast, we do not
make any assumptions on the dependence or the prior distribution.

There are several advantages to represent the image using the smoothing
coefficients £, instead of the original pixel intensity information: (i) we can denote
regions with various shapes and sizes, i.e., different number of pixels, using a “uniform”
representation, i.e., the basis »(x) and the smoothing coefficients g, with known or
controllable dimensions. Thus, the segmentation problem can be conveniently
represented by some linear models, like VCM, and the analysis can be simplified; (ii)
smoothing can reduce the impact of a small number of pixels with large difference in
intensity from their neighboring pixels, i.e., outliers, so as to enhance the homogeneity of
the image regions. It is also helpful in reducing the possibility of yielding regions with
very small size, i.e., region with very few pixels; (iii) spatially varying intensity and
interactions between the neighboring image areas can be taken into consideration by the
smoothing representation to some extent; (iv) the smoothing procedure can represent the
image content using much smaller number of coefficients compared with the number of
original image pixels, and, therefore, simplifies the computation.

From (6.4), we can see that there are two sets of parameters 4(x) and £ in the model,
but we are only interested in the estimation of4(x). We pack /(x) into a large vector H
and obtain A =[A, (1), h, (1), hy, (1),7,(2), 1y (2), <+ By, (2),+, 1y (N), Ity (N, -+, (N)] . In this
chapter, we assume that the segmentation algorithms are biased estimators, that is, the

output, i;(x) , of a segmentation algorithm is a biased estimator of the true pixel
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label 2(x) . More details about this assumption as well as its justification can be found in
Section 6.2.3 and Appendix C. Before deriving the MSE bound under the biased
estimator assumption, we first discuss the Fisher information matrix and the bound based
on the unbiased estimator assumption in the next section, where the segmentation
algorithm is assumed to yield an unbiased estimate of the true pixel label. We will see
that the bound under the unbiasedness assumption is very useful in finding the bound
under the biasedness assumption and is also helpful in the experimental part to verify the

validity of the biased estimator assumption.

6.2.2 Fisher Information and Cramér—Rao Bound for Unbiased Estimator
In this section, we derive the Fisher information matrix and the Cramér—Rao bound based
on the unbiased estimator assumption.

For an estimation problem with two unknown parameters, like /' and £ in our work,
one parameter, say, H , can be considered to be the wanted parameter and the other one,
B, can be considered as the unwanted one. Both of them are assumed to be random.
Based on this formulation, the performance of four variations of the Bayesian bound for
estimating the wanted parameter was compared in [150][151]. However, determination of
all of the bounds requires either the computation of derivatives and expectation over the
joint probability distributions of the observation Y and the wanted parameter or the

observation and the whole parameter set, i.e., P(Y,H) or P(Y,H, /), which is a very

challenging task given the variety of image contents. Here Y =[y(1),---, y(N)]".
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In our work, we assume H and £ to be random so as to find a bound with reasonable
complexity. We first determine the conditional CRB given H and B, and then find the
expectation of the conditional bound with respect to // and S to obtain the global one.

We will see that during the computation of expectation it is not necessary to determine

the joint probability p(H,p) and to even consider the potential dependence between

Handp.

6.2.2.1 Fisher Information Matrix

In this section, we derive the Fisher information matrix conditioned on 4 and £, and
propose a scheme to deal with the singularity of the matrix which may exist in the single
image segmentation scenario. Assume that the noise w(x) is iid. Gaussian random
variable with zero mean and variances?, and the observed pixel intensity is also i.i.d.
given the membership function # and the smoothing coefficient #. Then the conditional

pdf of the observation is

(6.5)

2

LY =2 ) =h()" - B-b(x)]

So the log likelihood function is given by

1

2
(o}

L=IWn[P(Y:H,B)]= —%m 2706° ———= > () —h(x)" - f-b(N)]  (6.6)

We are only interested in estimating /4 and assume that the information about A is

available, which can be estimated from the image contents and the ground-truth
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segmentation results. This assumption on the availability of £ is helpful in simplifying
the determination of the bound and also in eliminating the ambiguity in model (6.4) due
to the multiplication of H and # . So we focus on the Fisher information matrix

corresponding to A and obtain

S

The detailed derivation and the resulting Fisher information matrix are provided in

Appendix B.
We notice from (B.6) thatJ . (H)is singular, which can be verified by multiplying the

first row of J,(H) by S,/b(1)and the second row by AB'b(1). This is because the

dimension of H is usually higher than the available observation Y, especially for the case
of single image segmentation, which can be seen more clearly from (6.4). For multi-
spectral image segmentation, there may not exist such a problem, since we have more
observed image data, and the resulting Fisher information matrix for this case is shown in
Appendix C. In this chapter, we focus on the derivation of the bound for the segmentation
of single images, and the bound for multi-spectral image segmentation can be derived in

a similar manner.

To overcome the singularity problem, we transform the multi-region segmentation
problem, where M>2, to a binary-region segmentation problem, i.e., M=2, by maintaining
the information regarding the region of interest, say, the i region, and by considering the
remaining regions as a single “super” region. That is, the membership functions and the
smoothing coefficients corresponding to the pixels in the i region remain fixed, and the
rest of the regions are merged to form a “super” region whose membership functions and
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the smoothing coefficients are recalculated based on the image contents of the “super”
region. Thus, the segmentation model (6.4) can be written as

Y() =h(x)" - B b(x) + w(x)

3 (1,047

=hf(X)’ﬂfT’b(X)+{

J=lj#i

)} b(x) + w(x)

=h(x): B -b(x)+ h(x)- B
= h(x)-(B] = B5)-b(x)+ 5

-b(x) +w(x)
-b(x) +w(x)

(6.8)

where %;(x) and B, are the original parameters of the i” region, and hs(x) and

(057

J=1 =i

,B; correspond to the “super” region. s (x)- g7 - b(x) = { )} -b(x)» With A (x) >0,

and hi(x)""his(x):l , =12, M.
Based on (6.8), the Fisher information matrix of H, =[4,(1),---,k(N)], corresponding

to the i region, can be calculated as (6.9), by following a similar procedure as in

Appendix A but with the “super” region considered.

(8760)-8.700)f 0 : 0 0
| 0 (8702)-p. b)) - 0 0 (6.9)
Je(H)=— : : .. : :
’ 0 0 o (BTN -1 =g TBN D] 0
] 0 0 0 (870n) - 0)f |

which is not singular if g b(x)— B,"b(x) = 0. Since the resulting bound also requires the
determination of the expectation of g'h(x)— B, b(x) With respect to s, which will be

seen in (6.14), we discuss the invertibility of the Fisher information matrix in the next

section.

Thus, for 8"b(x) - B,"b(x) %0, we have
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Ji(H)=0"

(87 b1)-B."b)f
0

1

0

1

(ﬁjrb(z)_.ﬂp Tb(z))[

0

i

0

(6.10)

gTv-n- B BN-D)
0 0 0

1
(876n)-p. 0N |

The same result can be obtained using the constrained CRB [152] with the “super”

region scheme where the constraint is /,(x) + 4 (x) = 1.

6.2.2.2  Cramér—Rao Bound for Unbiased Estimator

In this section, we derive the Cramér—Rao bound under the unbiased estimator
assumption, and employ Jensen’s inequality for matrix measures [153] to simplify the
expectation determination procedure. We assume that the segmentation algorithms yield
unbiased estimates of the pixel labels. Based on the formulation in the last section, the
unbiased bound of multi-region segmentation can be calculated in a region by region

manner. For the i region, we calculate the Fisher information matrix J,(#;) and its
inverse J,'(H,) which corresponds to the conditional bound of the covariance matrix of
H ;- We find the expectation of J;'(H,) with respect to H and 8, and obtain the global

bound for ﬁi, which is different from the bounds discussed in [150][151] as mentioned

at the beginning of Section 6.2.2. Repeating the procedure for all the regions and
averaging the resulting bounds, we obtain the average unbiased bound for the entire
image. In this way, we decompose the estimation problem with the dimensionality equal

to MN into M sub-problems, each of which has the dimensionality &, the same size as the
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number of observations (the total number of pixels in an image), and therefore overcome

the ambiguity due to insufficient number of observations.
Now, we study the bound on the covariance of the estimate H under the unbiasedness
assumption. The conditional covariance matrix of H. ., 1e., Cov(l:l | H,pB), for the

unbiased estimator can be written as

Cov(H, | H, ) = Eyy y4(H, = iy, JH, = fi, 0 'Y= T (H) (6.11)
where [JmH p :E(I:I |H,p) , and the corresponding conditional bound

CRBUnbiased (]:]z | H’ ﬂ) iS

CRE a1 | H.9) =T 1)) 6.12)

= (8760 -, b(x))

where Tr(U) denotes the trace of the matrix U.

The global bound for H, is determined by finding the expectation of
CRBUnbiased(ﬁi | H, ) withrespectto H and /3, i.e., E,, , {CRBUW.M,(IQII. |H,,B)}.

The average bound for the unbiased estimator for an individual region can be found by

averaging the global bounds of all the regions, that is,

N .
CRBUnbiased—Ave (H): HZEH,ﬂ {CRBUnbiased (Hz | H? IB)}
i=1
:ﬁiEW freot ) (6.13)

_ ﬁiTr{Eﬁ 7))

where the last equality holds since Tr|J;'(#,)|is not a function of H.
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In our work, we further average CRB, o0 1ve (I:I ) over all the pixels in an image and
the average pixel-level bound serves as the bound on the performance of image

segmentation. Since /1,’s have the same dimensions, i.e., the number of pixels included

in an image, we obtain the average pixel-level bound by dividing CRB,,,....i s (I:I ) with

n

the total number of pixels, N, in an image, which is shown in (6.14).

A

CRBy_ybiased-ave (H ) = % CRBypiased-ave (I:[ ) (6.14)

=MLNiZMI“Tr{E/, )}

We notice from (6.10) that it is not easy to find the expectation of J,'(H,) over S, so
we employ an approximation when calculating the bound, by performing the expectation
operation on J.(H,) first and then finding its inverse, i.e., (E 5 [J.(H i)])_1 . According to
Theorem 4.2 (Jensen’s inequality for matrix measures) and the Tracial Jensen
inequalities in [153], we have

E 7 )2 (B, [ (H)) and T{E, [77 (1) | = Te(E, [, ()]} (6.15)

where

1/15/,{@%(1) -8 Tb(l))z} 0 . 0 0
0 l/Eﬁkﬂ,Tb(Z)—ﬁ[\ Tb(Z))Z} 0 0 (6.16)
(Bl = : : : :
0 0 1/@,{(/{1;(1\1—1)—@ Tb(N—l))Z} 0
0 0 . 0 VE|AHN-4 Tb(N))Z}

MxN

Thus, a looser bound is found to ease computation, which is called the modified CRB in

this chapter and is indicated by the superscript Mod. Therefore, from (6.14) we have
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crg, )= Sele, b)) (6.17)

We now discuss a special situation, where E, {(ﬂfb(x)— ﬂ,.,\Tb(X))Z} in (6.16) has very
small values such that its inverse is very large. In this case, the resulting average CRB

value might be large. We note that the very small values of Eﬂ{(ﬂf b(x)-pB." b(x))z}

correspond to an extreme situation where two image regions are not distinguishable at x.

Because £, {(ﬁf b(x)— B, b( x))z} evaluates the average intensity difference between the two

regions with the center at x (due to the expectation operation with respect to f), it

reduces the effect when the two different regions have similar pixel intensities at x, by

making use of the intensity information of a group of pixels. Therefore, there are very

few components of £, {(ﬂ;r b(x)-B."b (x))z } in (6.16) with very small values, given that the

two image regions are reasonably separable, which has also been verified by our
experiments. Thus, in our work we simply ignore the contribution of the components to
the bound when they have very small values. This operation yields a reasonable tight
bound. However, if we do not incorporate the expectation operation when calculating the
bound, the performance of the resulting bound might be deteriorated when different
regions have similar pixel intensities at x, which can be seen in the experimental results

shown in Figs. 6.1 (c), 6.2 (c) and 6.3 (c).
From (6.16), we can see that g, {(ﬂfb(x)— ,gikfb(x))z} actually measures the square of the

difference between the intensities at pixel x contributed by the region of interest and the
“super” region. It indicates the interaction between different regions at x. A smaller
difference means a higher similarity between the two image regions. This result
corresponds to the image content which is more difficult to segment apart, and the
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variance of the segmentation label is larger. Here, the intensity difference evaluation is
carried out by using the spline coefficients and the expectation operation, and, thus, the
effect of the contribution of the neighboring pixels to the intensity at x, i.e., the
correlation between neighboring pixels, is also taken into account. It is also interesting to
notice that the separability of the two regions, which is reflected by the segmentation
variance, is independent of the membership values and only related to the contrast
between the intensities of the neighboring regions overlapping at a pixel. Additionally, a
larger noise energy, i.e., largero?, has a larger negative influence on the segmentation
result, which corresponds to a higher value of the bound. We can see that the bound of

(6.17) is consistent with these intuitive expectations.

The bound (6.17) has been obtained under the unbiasedness assumption but as we
will see in the next section that a biased estimator is a more reasonable assumption for
real-world image segmentation algorithms. Therefore, the result obtained in this section
is not applicable in practice. However, it will be very useful in deriving the bound for the

biased estimator case.

6.2.3 Cramér—Rao Bound for Biased Estimator
In this section, we assume the estimator of H to be biased, and derive the bound on the
MSE of the segmentation results. We continue to consider the transformed binary

segmentation problem in this section.
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6.2.3.1 Cramér—Rao Bound for Biased Estimator

From both theoretical and practical points of views, unbiased estimators do not always
exist. Moreover, biased estimators often have the advantage of lower MSE over unbiased
ones if they exist [154]. MSE actually includes the tradeoff between bias and covariance.
In addition, unbiased estimators tend to yield very large variance, especially for some ill-
posed problems, such as image segmentation. Regularization is widely used to solve ill-
posed problems and the resulting estimators are often biased [155]. Many state-of-the-art
image segmentation algorithms are designed under a regularization framework, in which
an objective function consisting of both a fidelity term and a penalty term is optimized,

resulting in biased estimators.

Following the same steps as when deriving the average bound for the unbiased
estimator in the last section, we first write the expression of the conditional MSE in terms

of bias and covariance, as shown in (6.18)
E{HH - |4, ﬁ} =lgCH)| +Telcovd, | H. )} (6.18)

where g(H,) = E{ﬁi}—Hl. is the bias vector of H, .
Under suitable regularity conditions on P(Y | H, ) , the covariance of a biased

estimator of A is bounded by the CRB [150]

Cov(H, |H,p)> AJ; (H)A" (6.19)
where
A=1+28 (6.20)
oH

and / is the identity matrix.
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In our work, we assume that the behavior of the bias model can be approximated by
an Affine function. The Affine model has been justified and employed to study the MSE
bound for estimation problems in [156]. The details of the justification of the Affine bias

assumption in image segmentation can be found in Appendix D. Formally, we have
g(H)=K,H, +u, (6.21)

where K, and u, are Affine parameters for the i" region. So, following the same steps as

in the last section and considering (6.18)-(6.21), we have the conditional MSE bound of a

biased estimator for / .as follows

E{H —u |4, ﬂ} > (K H, +u, ) (K.H, +u)+Te(1+ K, 7 (H)I+K,) ) (6.22)

Therefore, the global MSE bound for [:Il. ,1.e., CRBy, .. (H ;). 1s given by
{1~ |2 CRB i) = [+ (K )T+ K )1 ) et pratiap (6:23)

The average MSE bound, i.e., CRB;,, Ave(I:I ), can be found by averaging the global

bound for each region, and we, therefore, obtain

CRB s )= i i [t 4 )k H, v+ Tol(1+ Ko7 (1)1 + K, Y pce, prdrap (6.24)

6.2.3.2  Optimum Affine Bias Model
In this section, we determine the optimum {K,.*,u,.*} of the Affine bias model which yield
the minimum value of the bound in (6.23), that is,

K, = argmin{[ (K, H, +0, Y (K H, +u)+ o1+ K07 (H)(+ K, P prardp) (6.25)
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There are basically two schemes to find the solution of the optimization problem

posed in (6.25). The first one is to assume that K; and u; are functions of H or fand

{K i*, ui*} are found as the solution to the following optimization problem, as discussed in
[156],

K. u,” = argmin{MSEB(K,,u,, H,) — MSEB(0,0, H,)} (6.26)

Ko
where MSEB(Ki,u,,,Hi)=(KiH,,+ui)T(KiHi+u,,)+Tr((1+Ki)J;1(H,)(1+Ki)T) , and
MSEB(0,0,H,) corresponds to the unbiased estimator case. As derived in [156], the
resulting optimum Affine bias parameters are K, =-Tr{J;'(H)}/(Tr{s; (H,)}+¢,)I and
u =-Tr{ H) (T )+ e, v, . Where [H, —v,|” <¢, for some vector v, and scalar

¢,>0. The calculation of the bound requires the expectation of the function in (6.23) over

P(H, ), which is usually not tractable.

We, therefore, use the second scheme, in which we assume that M, and u, are not
functions of H and . As a further simplification, by using the result of (6.15) and also
observing that (7 + K, ){E f Vi) f b)) Jl(l + K, ) are positive semi-definite, we
obtain a modified bound CRB d(l:li)for the biased estimator, which is looser than

Biase,

CRB

Biased

(A,) shown in (6.23). Thus, we have

CRB, 1) > CRAL ()= [ 114K B, 7, ) (1 K Jptena s [ (K 1, (., + )P, Bt (6 27
1+ KN, D) (1 P U 0 (K, Pt

The last equality in (6.27) holds because Tr(([ +K[)(Eﬂ[JF(H[)])_l(I +K,) ) is not a

function of H and (K,H, +u,)" (K,H, +u,) is not a function of /.
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Inspired by [157], the optimum Affine model parameters can be obtained by setting

the derivative of CRBY (H.) with respect to the two parameters to zero, i.e.,

Mod 2 A
OCRB ey (1) _ ) and OCRBz () _ (6.28)
oK, ou,

1

Thus, we obtain the optimum parameter pair
* — _ -1
K =B, 1)) e 1)) + Conta,) (629)

and
w =Bl )Y b))+ coren)f B, (1) (6.30)

Substituting k,"and u, into CRBY™ (F,), we obtain the modified bound for the i

Biased

region
CRBY () = Tr{(Eﬂ o)) -, e ) e, )+ contan)f (, 1, (H»])’l} (6.31)

The details of the above derivation for the parameters and the bound can be found in

Appendix E.

So the average MSE bound is

N 1 ¥ N
CRBZI;IIZ\de -Ave = CRBZ{;{ZSde Hz)*
e ase(H) le e 632)

_ i i“Tr{(Eﬁ Vo)) (B, @) {(E )]+ coH, )}71 (E ) }

As before, we obtain the average pixel-level MSE bound by averaging

CRBj Ave(ﬁ ) with respect to the total number of pixels, N, in an image, and we have
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CRBﬁjg[a.\ed—Ave (I:I )= CRBg:\ded—Ave (I:I )

% (6.33)

= ﬁi“{(@ o)) -, ) {(Eﬂ [, @) +CouH, )}71 (£, (H[)D_l}

We notice from (6.33) that the decomposition of the terms containing H and f makes

the solution easily computable and no explicit expression of the joint probability

P(H, B)is required. It also avoids the study of the dependence between H and £ .

6.2.3.3 Calculation of the MSE Bound
Computation of (6.33) requires the determination of E, [J - (Hi)] and Cov(H,)for the i*

i

segmented region. In this section, we discuss the schemes to calculate these quantities.

6.2.33.1 Calculation of E,|J, (H,)]

We notice that calculation of £ [J P (H l.)] is not straightforward even if we are able to

find the distribution of £, which, of course, is also a challenging task given various

image contents. So we propose to use an empirical approximation to find the expectation

value.
E, [J F(Hi)] is a diagonal matrix, with the diagonal elements Eﬁ{(ﬂfb(x)— B b(x))z}.

Therefore, without loss of generality, we only investigate this term.

Eﬁ {(ﬂfrb(x) - ﬂi’ Tb(x))z }= 2bq(x)2 {Eﬂi(ﬂic12)+ Eﬂi" (ﬁi"qz)}_ 2i i Eﬂ (ﬁiqﬂi*z})q(x)b!(x) (634)

g=1 t=1

+23 Y b,k 0E, 8,8+ E,. (8.8,

g=1t=g+1
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Thus, we may use empirical estimation to approximate the second-order statistics in
(6.34) and thereafter find the overall expectation of (ﬂf b(x)—p. Tb(x))z , which avoids the
step of finding the probability distribution of . More specifically, given the noise-free
image with the segmentation label H, we determine H, and H, as well as the pixels

belonging to i and /" regions. In this way, we separate an image into two layers, one
corresponding to the i”" region, called the i layer, and another corresponding to the i
region, called the i layer. In particular, if 4 (x) =1, the pixel intensity at x of the i"
layer is set equal to s(x), which is the pixel intensity of the original noise-free image at x;

if ,(x) =0, the intensity at x of the i" layer is set equal to zero. Otherwise, for a fuzzy

pixel s(x) = A, (x)s"™" (x) + h, (x)s"" (x) with h,(x) (0,1), the pixel intensity at x of the

i" layer is set equal to s (x). Here s (x)is the “original” hard component from the

i region, which contributes to the fuzzy pixel. This is motivated by the result of (6.16) in
Section 6.2.2.2 that the segmentation error is only dependent on the intensity difference
between the original regions, irrespective of the membership function values. The same
procedure is carried out for the i region. We then use the tensor B-splines to find the

smoothing coefficients S, and f, for the two layers, respectively.
As we know that the empirical statistics will be closer to the true ones if more samples
from the same distribution are used. To obtain enough valid samples of S, and ., we

use a “non-local” technique. That is, for , we search the coefficients with statistics

iq

similar to f, in the i" layer. B, together with the other similar coefficients are collected

to form an ensemble, and they are considered to be various realizations of the same
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random variable. Then the terms including the second-order statistic of S, in (6.34) are

calculated empirically using the collected coefficients in the ensemble. For example,

E ﬁi(ﬂiqz) is approximated by(Z“j:1 B d)z)/ D, where B, ,1s the d™ collected coefficient in
the ensemble of g, , and D is the number of these coefficients, i.c., the size of the
ensemble. The same procedure is carried out for ﬁis . The second-order statistics
including f; and g, are calculated using the collected coefficients from both the i" and

" layers.

Ignoring the approximation error, the smoothing coefficients and the pixels are two
ways to represent the same image content, so we use pixel level features to search for
similar coefficients because usually the number of pixels is much larger than the
coefficients and, therefore, the statistics of the pixel level are more reliable. For example,

when we search for coefficients similar to B, , we divide the image into patches centered

at each knot with a fixed size, that is, the location of each smoothing coefficient is at the
center of the patch. A suitable metric is employed to find the patches with a similar

structure to the patch centered at S, , and the corresponding smoothing coefficients will

iq
be put in the ensemble of S, . As will be seen in Section 6.3, we will use a metric called

structural similarity (SS/M) index [108]. In other words, we use the similarity of the

patches to represent the similarity of the smoothing coefficients.

6.2.3.3.2 Calculation of Cov(H ,-)

The analytical solution to estimate Cov(H [)requires the knowledge of the distribution of
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H,which is unknown and also not easy to find. Therefore, we use the bootstrapping

technique [158]. Bootstrapping is an approach for statistical inference, and used to
estimate the properties of an estimator ( Cov(H,) in our work) by measuring those
properties when sampling from an approximating distribution. It generates the empirical
distribution of the observed data by constructing a number of resamples of the observed
dataset, 1.e., H, in our work, with the same size as the observed dataset. These resamples
are obtained by random sampling with replacement from the original dataset.
Bootstrapping procedure is independent of the distribution, and provides an indirect
method to assess the properties of the distribution which determine the sample and the
parameters of interest [159]. Besides, bootstrapping is robust with respect to possibly

small number of samples.

In our work, random sampling with replacement is carried out L times on /,, and we
obtain L bootstrap samples, from which the covariance matrix is calculated. This
procedure is repeated R times, and the resulting R calculated covariance matrices

represent an empirical bootstrap distribution of Coﬁ(H ,-) obtained from the available

dataset. We accept the average of the estimated covariance matrices as the estimate of
Coﬁ(H ) . From this empirical bootstrap distribution, we can derive a bootstrap
confidence interval which is also the confidence interval of the estimate of the bound and
can be considered as the variance of the bootstrap estimates.
Formally, we have
| &
Cov )= ﬁ;(

1

T
r/ A
y j(H,, - yHiL,.j (6.35)
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and

Cov(H,)= %ZCOG(H,. )y (6.36)

r=1
where Hl."l is the 1" bootstrap sample of the same size as A, when generating the 7

covariance matrix from the empirical bootstrap distribution, and 4 , is the mean vector
H

of L bootstrap samples H i’l .
Repeating the above procedure of estimating £ [J(H ,)]and Cov(H,)for all the M

regions, and plugging these results into (6.33), we obtain the average pixel-level MSE
bound of image segmentation for the whole image. By substituting the

estimated £ [J (H, )] into (6.17), we can also obtain the average pixel-level unbiased

bound, which will be used in the next section for comparison purposes.

6.3 Experiments and Analysis

In this section, we verify the efficiency of the presented MSE bound by comparing it with
the segmentation results of several representative image segmentation algorithms using

both synthetic and real-world image data.

6.3.1 Experiment Configuration
The two synthetic images considered here include one image with hard labels and one
with hybrid labels. Hybrid here means that some pixels have hard labels and others have

fuzzy labels. The real-world image is a cut of a mammogram, containing micro-
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calcifications, which is from the Digital Database for Screening Mammography (DDSM)
[91]. The micro-calcifications are identified by the radiologists, which are used as the

ground-truth in our work.

When calculating the empirical second-order statistics, we employ the SSIM index
[108] to find similar image patches, as mentioned before. SSIM measures the similarity
between two images using structure information, which was shown in (4.12) and

recapped in (6.37)

Quypty, + €20y, +Cy) (6.37)

SSIM (Y,,Y,) =
e (uy + py, +C (o) +0; +C))

where 4, , p, and o, ,0, as well as o, denote mean intensity and contrast as well as
1 2 142

the correlation coefficient of images Y, and Y,, respectively; C,and C,are constants used
to avoid instabilities for very small 4 or . The value of SSIM(Y,,Y,)1s between 0 and 1.
A higher value means more similarity between two images. In this section, ¥, and Y, are
two image patches under comparison, instead of the entire images used in (4.12).

Admittedly, the patch size, the number of similar patches found for one coefficient,
the spline type and even the distance between two neighboring knots have an impact on
the resulting bound. We have carried out the experiments by varying these parameters
over reasonable ranges and found that the following configuration yields robust and
efficient bounds. The patch size is 13 by 13 pixels, the knots are deployed every 4 pixels
in both horizontal and vertical directions, and the spline function is cubic B-spline. There
are two constraints to determine the number of patches: (i) the patches with the SSIM
index larger than 0.7 are considered as patches similar to the underlying patch; (ii) the

first 20 patches with the largest index values are considered as similar patches if the
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number of patches selected by (i) exceeds 20.

As a further verification of the biased estimator assumption and Affine bias model,

the unbiased bound discussed in Section 6.2.2 is also calculated for comparison purposes.

6.3.2 Segmentation Algorithms

The algorithms for hard image segmentation include the MRF-based algorithm [1275],
Otsu thresholding [136][137], Gaussian assumption-based dynamic clustering (GADC)
algorithm [80], the region-based active contour model (RACM) [138], and the multi-
scale normalized cuts-based segmentation (MNCut) [139], where RACM and MNCut are
more recent and can be considered as the state-of-the-art segmentation algorithms. Those
for fuzzy image segmentation include fuzzy C-means [160], fuzzy k-nearest neighbor

(fuzzy k-NN) [161], and the Gath-Geva algorithm [162].

MRF-based algorithm, Otsu thresholding, GADC, RACM and MNCut algorithms
have been introduced in Section 5.2.5.2 and Section 3.2.1.3.

The fuzzy C-means clustering algorithm is based on the minimization of the C-means
functional which is used as the objective function. The minimization of the C-means
functional is a nonlinear optimization problem that can be solved by using a variety of
available methods. The most popular one is a Picard iteration through the first-order
conditions for the stationary points of the C-means functional. The algorithm yields the
weighted mean of the data items that belong to a cluster, where the weights are the

membership values.

Fuzzy k-NN is a fuzzy version of the crisp A~-NN algorithm, in which fuzzy sets are
introduced into the algorithm. The basic step of the fuzzy A-NN algorithm is to assign
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membership of a vector as a function of the vector’s distance from its k-nearest neighbors

and those neighbors’ memberships in the possible classes.

The Gath-Geva algorithm uses a distance norm based on the fuzzy maximum
likelihood estimates. This distance norm involves an exponential term and thus decreases
faster than the inner-product norm. The membership degrees are interpreted as the
posterior probabilities of selecting the i"™ cluster given a data point. Gath and Geva [162]
reported that the fuzzy maximum likelihood estimates clustering algorithm is able to

detect clusters of varying shapes, sizes and densities.

6.3.3 Experimental Results

Fig. 6.1 (a) shows a synthetic hard image with three intensity values, where the square in
the upper-left corner has the intensity 90, the central arc has intensity 88, and the rest has
intensity 80. White Gaussian noise is added into the image with zero mean and
variance o?. Fig. 6.1 (b) shows the MSE curves of the segmentation results using the
above five hard image segmentation algorithms as well as the bound calculated using
(6.33) based on the biased estimator assumption and Affine bias model. Fig. 6.1 (¢)
shows the variance curves of these segmentation algorithms and the bound calculated
using (6.17) where we assume that the segmentation algorithms are unbiased estimators.
The bounds, MSEs and variances are calculated for the particular image of Fig. 6.1 (a)
under different noise strengths, i.e., different SNRs. At each SNR, the MSE and variance
of each segmentation algorithm are the averages of 100 segmentation results. This

procedure is used for all the experiments in this chapter.
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Figure 6.1: Bounds for hard image segmentation (synthetic image). (a) Synthetic hard image; (b) MSEs
and bound under the biased estimator assumption; (c) variances and bound under the unbiased estimator

From Fig. 6.1 (b) we can see that the MSE bound (the bold dashed-dot line in the

lower part of the figure) derived under the biased estimator assumption bounds the MSEs
of these algorithms from below. With the increase of SNR, the bound and the MSEs
decrease. When the SNR is very high, the MSEs converge to the bound. These expected
results show that the bound in (6.33) provides a valid performance prediction of the
segmentation algorithms and a benchmark of the segmentation results. In comparison, the
bound in Fig. 6.1 (c) based on the unbiased estimator assumption, the bold dashed line,

fails to bound the variance of these algorithms, which again verifies the reasonability of
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the biased estimator and the Affine model assumptions. In Fig. 6.1 (c), we use the bound
values of 0.5 to represent the invalid cases where the variances calculated from the
unbiased estimator assumption are very large. However, the variance should have a small

value, given that the value of the pixel membership function lies in a small range of [0, 1].

From Fig. 6.1 (b), we can see that the MRF-based segmentation algorithm exploits the
correlation between neighboring pixels and yields a better result, in terms of smaller
MSE, than the methods which consider pixels to be independent when carrying out
segmentation, such as dynamic clustering. This also shows the reasonability of our
representation of the image using smoothing coefficients and the expectation operation

with respect to f when calculating the bound, which take into account the correlation

information contained in an image. As a further verification, in Fig. 6.1 (c) we draw the

“bound” curve, the dotted line at the right hand side of the unbiased bound, which is

based on the unbiased estimator assumption but calculated by using (ﬂin(x)— ﬂi\.Tb(x))z

directly from the pixel intensity and without the expectation operation with respect to £ .
We can see that not taking correlation into account yields an even worse result. Similar
results can also be seen in Fig. 6.2 (c) and Fig. 6.3 (c).

Fig. 6.2 shows the results when calculating the bounds and MSEs using the real-world
mammogram data. We can see that the presented biased estimator-based bound performs
satisfactorily in predicting the performance limit of the algorithms, while the one based

on the unbiased assumption fails.
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Figure 6.2: Bounds for hard image segmentation (real-world image). (a) Mammogram with micro-

calcifications; (b) MSEs and bound for biased estimator assumption; (c) variances and bound for unbiased

estimator assumption.

Fig. 6.3 deals with hybrid image segmentation for the synthetic image shown in Fig.

6.3 (a). There are four basic image regions, corresponding to the intensity values of 120,
90, 60 and 20, respectively. The three arc regions at the left side of the diagonal curves
are fuzzy regions, denoted as Regions A, B, and C, and have membership values of [0.5,
0.2, 0.2, 0.1], [0, 0.6, 0.3, 0.1] and [0, 0, 0.8, 0.2], respectively. The rest of the four
regions are hard ones with the intensity values mentioned above. Once again white
Gaussian noise is added into the image with zero mean and variance o*. Fig. 6.3 (b)

shows the MSE curves of the segmentation results using the three fuzzy image
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segmentation algorithms when the biased estimator assumption and Affine bias model are
employed. Fig. 6.3 (c¢) shows the variance curves of the segmentation algorithms, the
bound calculated using (6.17) for the unbiased estimator assumption and the “bound”
determined by ignoring the expectation operation. We can see from the figures that the
bound based on the biased estimator assumption is valid but those based on the unbiased

estimator assumption fail again.
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Figure 6.3: Bounds for hybrid image segmentation (synthetic image). (a) Synthetic hybrid image; (b)
MSEs and bound for biased estimator assumption; (c) variances and bound for unbiased estimator

assumption.

6.4 Summary

Image segmentation is very important but also very challenging for computer vision and
image analysis. However, performance limit of segmentation algorithms are seldom
studied from a statistical perspective, which plays a fundamental critical role in
developing segmentation algorithms and evaluating segmentation results. This chapter
developed a systematic method to determine a lower bound on the MSE of image
segmentation algorithms under a statistical estimation framework. The bound was based
on the biased estimator assumption and Affine bias model, where an approximation was
employed to simplify the computation when determining the expectation on the inverse
of the Fisher information matrix. Additionally, non-local searching and boostrapping
techniques were used to approximate the unknown second-order statistics during the
computation of the bound. The theoretical analysis and experimental results show that the
presented bound is efficient and robust in bounding the performance of the segmentation

algorithms and providing a benchmark for the segmentation problem.
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CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

7.1 Conclusions

Object detection in images, image enhancement and image segmentation are all critical
but challenging problems in image processing. In this dissertation, we have investigated
these three problems based on stochastic resonance (SR) noise and human visual system
(HVS) properties. Several frameworks and algorithms have been presented to improve
the performance of object detection, image enhancement and image segmentation. In
addition, a statistical performance bound has been derived for evaluating and analyzing
image segmentation algorithms.

To detect objects of interest in an image is a difficult problem, especially when the
image quality is low, which often happens in medical images. As a result, many detection
algorithms suffer from suboptimality and yield unsatisfactory results. In this dissertation,
we developed a framework and algorithm to improve the performance of suboptimal
detectors based on SR noise. We have also developed several schemes to improve the SR
noise-based detection improvement system, such as probability density function (pdf)
learning and SR noise with memory (multi-peak SR noise). The experimental results with
large number of image data show that the presented framework and algorithm are flexible,

efficient and robust.
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Image enhancement is a widely used technique but also a challenging task. Many
image enhancement algorithms fail to increase the quality of the image due to either the
complexity of the image content and the image degradation process or the unsuitable
design of the enhancement procedure. We have presented two image enhancement
approaches in this dissertation. The first one was based on SR noise, where we developed
a SR noise-refined image enhancement system, and employed HVS-driven objective
functions and constrained multi-objective optimization (MOO) techniques to find the
optimum parameters of the SR noise distribution. The second approach was based on the
selective enhancement framework, where we enhanced the extracted region of interest
(ROI) and suppressed the background. Several enhancement algorithms under this
framework have been developed. The experimental results with various types of
degraded images show that the two presented approaches can achieve superior
performance in terms of both subjective and objective evaluations compared with many
representative image enhancement algorithms.

Image segmentation plays a fundamentally important role in image analysis. Its
challenge lies in the complexity of the image contents and the difficulty in defining
appropriate segmentation criteria. As a result, many segmentation algorithms fail either in
the objective function design or in the parameter setting. We have developed two HVS-
driven image segmentation approaches to improve the segmentation performance. One of
the approaches took into account the preference of HVS to good segmentation from both
region-based and boundary-based perspectives. Markov random fields (MRF) and the
just-noticeable difference (JND) model have been employed to encode the HVS

preference into the objective function for image segmentation. In our second algorithm,
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we formulated image segmentation as a detection problem, and developed an image
segmentation framework by introducing a local “soft” objective function for
segmentation. We further employed contrast sensitivity function (CSF) as a filter to
preprocess the image, which embedded HVS information into the segmentation
procedure. Experiments with real-world image data show that the presented approaches

outperformed many representative segmentation and clustering algorithms.

Finally, we investigated a very important but seldom studied problem in image
segmentation, i.e., the statistical bound or performance limit of segmentation algorithms.
We have developed a systematic method to determine a lower bound on the mean square
error (MSE) of segmentation algorithms under a statistical estimation framework, based
on the biased estimator assumption and Affine bias model. We compared the
experimental performance of several representative segmentation algorithms with respect
to this performance bound and a bound derived from the unbiased estimator assumption.
The efficiency of the bound and the biasedness assumption are verified therein. We also
analyzed the impact of image contents on the bound, and explained the factors that lead
to the gap between the bound and the actual MSE performance. In particular, we
presented analysis and experimental evidence which suggest that the consideration of
pixel correlation benefits image segmentation. Furthermore, we showed that studying the
performance bounds provides much insight into the image segmentation problem. We
expect that this type of analysis would offer guidance to the practitioner for choosing and

evaluating segmentation algorithms for a given image.
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7.2 Suggestions for Future Work

In this section, we suggest the following problems that are worth studying in the future.

The first part of the future work is about the SR noise-enhanced micro-calcification
detection approach presented in Chapter 3. The investigation on optimizing the SR
noise-based technique with memory, by determining the optimum weights for two-
peak SR noises, will be very useful to further improve the efficiency and robustness
of the SR noise-based detection enhancement scheme. Extension of the SR noise-
based technique to enhancing fixed multiple threshold detectors is also an important
research issue. The performance of SR enhanced variable detectors [54] has been
shown to be superior to the fixed ones, where both the SR noise and the critical
function can be jointly designed to enhance detection. So SR noise-based detectors
incorporating variable critical function are likely to be promising. In our current
work, we only considered the case where signal and background noise are all
independently distributed. Future research on the correlated signal and noise case
may further improve the detection performance. In addition, the application of the
detection schemes developed in this dissertation to other two types of mammogram
lesions, i.e., mass and spiculated lesions, and even other medical images, will be of
great interest. Finally, the SR noise-enhanced scheme may also be useful in color
images, which could be an excellent extension of our work to more real world
applications.

The second part of the future work is about the SR noise-refined image enhancement
scheme presented in Chapter 4. In our experiments, we investigated the effect of SR

noise on different distortion situations, such as image sharping, noise reduction and
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image de-convolution, and showed some of the results in this dissertation. The very
encouraging results indicate that we may achieve significant performance
improvement when applying the presented SR noise refinement scheme to other
enhancement and restoration methods, such as super-resolution. Moreover, the
extension to video enhancement may also be very promising. In this dissertation, we
introduced independent SR noise in the image, but the performance may be further
improved if correlated SR noise is employed. An investigation on other types of SR
noises will be a very interesting topic to improve the quality of the enhanced image.
Future research on ameliorating the weighting scheme may also improve the
enhancement performance. Finally, the SR noise-refined image enhancement
scheme may also be useful in color images, which could be an excellent extension of

our work to more real world applications.

The third part of the future work is about the HVS-driven image segmentation
algorithm presented in Chapter 5. An investigation on the segmentation with
multiple region types or multiple pixel labels, instead of the binary labels, 0 and 1, as
discussed in this dissertation, will be an interesting extension to the algorithm. This
would, of course, require the presented objective function to be adjusted accordingly.
In our current work, we mainly discussed the problem of hard or crisp segmentation,
that is, a pixel belongs to either region 0 or region 1. Future research on fuzzy
segmentation, based on the objective function presented in Chapter 5, will be
another interesting research topic. Perhaps, the scheme of designing the objective
function for fuzzy MRF, as discussed in [146], will be very helpful. Finally, in

Chapter 5 we employed iterative conditional modes (ICM) for the optimization task,
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and the research on approaches which can further improve the computational speed
and segmentation accuracy will be both theoretically and practically useful. Graph-

cut based methods [27][135] may be promising options.

The fourth part of the future work is about the method to determine the performance
limit of image segmentation algorithms, which was discussed in Chapter 6. An
investigation on the probability distribution estimation techniques may be helpful to
improve the computation of the expectation involved in the bound, where statistical
learning methods may be helpful. In our current work, we mainly discussed the
problem of segmenting a single image, and only mentioned multi-spectral image
segmentation in Appendix C and did not consider the 3D scenario. Future research
on the extension of the developed bound to the multi-spectral and 3D images will be
an interesting research topic. When developing the bound, the ground truth
information about the noise-free image and the membership value of each pixel label
1s required. Research on approaches which can reduce the dependence of the bound
on such information will be both theoretically and practically useful. Perhaps image
denoising and linear regression techniques will be helpful in handling it. Finally, the
presented bound may also be useful in color images, which could be an excellent

extension of our work to more real-world applications.
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APPENDIX A
REASONABILITY OF ENERGY FUNCTION (5.19)

In this appendix, we show that the multi-pie slice configuration, with N, (s) pie slices,

may have a large angle value, which can be obtained by adding the angles of the

N, (s)pie slices together, but will unnecessarily result in a smooth boundary and thus a

lower energy due to the exponential function in (5.19).

We assume that the cross-boundary contrast and the interior contrast of each pie slice

are the same as each other. Then (5.19) can be written as

Nps(s) Npg ()

#(s)= Zexp[— ay-a,(s)—a, - Contr(s)q,_, +as-Contr(s) ps_; ] = exp[Contrast(s)] Zexp(— a,a,s)) (A.1)

i=1

where Contrast(s)=—a, - Contr(s) o ; +as -Contr(s) ., - Suppose we have a favorite

segmentation with a single pie slice in the second-order neighborhood system of s. Its

contrast is equal to Contrast(s), and its angle value, a ., (s), equals the summation of

the angle values in (A.1), i.e., &, ()= ""a,(s). Then, it is not difficult to prove that

Npg(s) Npg(s)
XD @ (5)) = exp[—a ¥ (s)] < Dexpl-aya(s) (A-2)
given that ¢ (s)> 0. Therefore, we have

B(5) o < 8(5) (A3)

Thus, the favorite segmentation has lower energy than the multi-pie slice

configuration and therefore has a higher probability to survive.
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APPENDIX B

CALCULATING FISHER INFORMATION MATRIX
(FOR SINGLE IMAGE)

Assume that the noise w(x) is i.i.d. Gaussian random variable with zero mean and

variance o*, and the observed pixel intensity is also i.i.d. given the membership # and the

coefficient s . Then the conditional pdf of the observation is

N
Vo =D @)=k B b
1 =
P(Y;H, B) = x B.1
(Y:H, ) [ 2”02] exp) - (B.1)
So
L=In[P(Y;H, S)]
:—%ln27z02 ‘T;Zl[y(x)‘h(x)r B-HT (B.2)

__N 1 [90) =[5y () + Boby () +++++ By by () + iy OBy (6 + By (6) -+ By, b, ()|
=——In2z0’ ——z
2 202 S+ by () Boy by (6) + Buoby () + -4 Brpb (0]

Therefore,
oL __ 1 o7 4.
() g2 kP (B.3)
where k=12,---,M.
oL a1 1 7 Nt

E{{ahk(x)}{ahk,(x')} }_E{a“ﬂk -b(x) - w(x) - w(x')-b(x") ﬁk} B4

= %ﬁkr-b(x}b(x)r-ﬂk,, if  x=x
0, if x=#x

Fisher information matrix is determined as follows,

197



(), = By [aL }{ ﬂ (B.5)
and

a T a |
‘]F(H)_EYIIﬁ{{ahk(x):||:ahk’(xn)} }mv N -

[ AR B BTEOBO B, L0 0 ot 0
BN B+ B BOBD) B 0 0 e 0
. | . ||
By bW B B OB By L0 0 el 0 e 0
0 0 L BIBBQR) B BB By 1 0
T T T T ! !
| 0 0 B BBQRY B BB By 0
- : | : (.
00 BNORRNA e BN 0 e 0
,,,,,,,, : ,,,,,,,,\,,,,,,,,E,,,,,,,,L‘:L,,,,,,,,:,,,,,,,,,
0 0 : 0 0 Lo L BIONBNY B BIBN)BNY By
0 0 w 0 0 LB BNBNY B B BNIB(N)' B,
. | . | | .
0 0 : 0 0 L LBBNBNY B By BNIB(NY B, ]

(B.6)
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APPENDIX C

CALCULATING FISHER IFNROMATION MATRIX
(FOR MULTI-SPECTRAL IMAGES)

For a multi-spectral image set including P images, H is the same for all of them, b can be
different if the smoothing configuration, such as the number, position and size of the
spacing of knots, are different from one image to another, but g usually are different for
different images. Therefore, we have the segmentation model
Y@ =h@" W @ =k b )+ () (C.1)
where i=12,.P , x=12-,N , 5()=[H ().by' 0.0, @F , B =[BT , and
By =[f%, 8w, B'm] - The noise may be different, so we assume w’(x) are i.i.d. Gaussian
noise with zero mean and variance s; . For simplicity, we use the same knot configuration
for every image. Then the model is simplified to
Y@ =h" b+ () (C.2)
We still assume that the observed pixel intensities are iid. given the

membership # and the coefficient g, so the conditional pdf of the observation is

_ii [y (x) —h(;czz- B b))

=

=

.
P(Y;H,ﬂ‘,ﬂ%--»ﬂ”):[nﬁJ exp(
i=l 4270,

(C.3)

=

S ()~ h@)” - B bOOT

P 1 v P
i=1 ,/27[0',-2 o ; 20',-2

So
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L=In[PV:H, B, f, -, ﬂP)]

N& ) -
:—EZInZHGi 722 Z[y X)—h(x)" B -b)T (C4)

i=1 O-, x=1

Z{y O Ah B B+ B By ()44 B, By () 4y (B B+ B By ()4, B, ()Y

i=1 2
7—Zln27rq.2
2 4
Therefore,
P
oL L T i
:Z—zﬁ kT b(x)-w' (x) (C.5)
Ohy. (x) prler
oL oL | L '
E =E —ﬂ’kr b(x)-w'(x) ﬂ .b(x')~wi(x')
[th(x)}[ahk,(x')} {Z o} le o
L L1 T i
=B Y YL ) W ()b () (C.6)
j=1 =1 O; g;
P P . . :
K zz zﬂ -b(x)-w’(x)-wj(x')-b(x')T 'ﬂ/k’
=1 =l O-L
P
"b(x)-b(x)" Bl if x=x"and i= j
i=1 i
0,if x=x'
So we have
S [ oL }{ oL P _
ifﬁv‘ ()b fr Zp:%ﬁ#b(l)b(l)’-ﬁ’v 0 0 0 !
Eplﬁﬁ Tob()bAY B Zrlaiﬂz b1)-bO) - 'y 0 0 0 ’
if/f W b)Y B if/w B)-bOY By 0 0 0 ’
0 0 V(%/f RUORCI I i%ﬁw’-bmb@)"ﬁ'v 0 0
0 0 i%ﬁz’ BRYBRY B S b b 0 0
0 0 igiﬂ‘/-b(z)-b(z)’-ﬂw Ef)(%ﬂw b2)b@) i 0 0
, . 0 0 Zaiﬂ BN BNY - f Z{,L BB - B
, . . 0 ﬁaiff BN)BNY B Zf Tb(N)-b(N)" - B
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(C.7)
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APPENDIX D

JUSTIFICATION OF THE BIASED ESTIMATOR
ASSUMPTION AND AFFINE BIAS MODEL

The estimation problem in linear models was analyzed in [163]~[165]. The linear model
is

Y=00+n (D.1)
where Y is the observation, ¢is a parameter vector, QO is a model matrix, and » is zero-
mean random vector. The estimator of ¢ is assumed to be linear, i.e., =Gy, which
estimates ¢ by performing a weighted average operation over the observation. Linear
estimators are quite frequently used for least squire estimation problems, whose forms
have been established by solving optimization problems, with the constraints put on Q, ¢
and even n. These constraints can be considered as the prior information on these
parameters and the penalties under the regularization framework.

Similarly, image segmentation can also be modeled as a linear estimation problem, as

shown in (6.4)

y(x) = h(x)" - ¢(x; B) + w(x) (6.4)
=h(x)" - B b(x) + w(x)

where ¢(x; 5)" can be considered as the model matrix and x(x) is the label parameter vector
to be estimated. During the segmentation procedure, some prior information about ¢(x;5),
h(x) and w(x) is usually employed as the penalty terms of the objective functions for

segmentation, to reduce the solution space under regularization framework. For example,

the smoothness assumption is often made on the labels of the neighboring pixels, like that
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used in the MRF-based algorithms, which equivalently brings the constraint on i(x) .
Moreover, local information is often used during the estimation procedure, that is, i(x) is
often estimated by using the observation Y around the coordinate x. Thus, it is reasonable
to assume that many image segmentation algorithms, especially the state-of-the-art ones,

perform the label estimation using linear estimators # = Gy .

Here, we consider the penalty or prior information resulting from the label smoothness

assumption, and assume that H forms Gaussian MRF

h(xj)= za,igh(xj1)+ a)(x.i)
XM (D.2)
= Z“f;h(xf/)+ o(x,)+a,h(x)

Xj €T X EX

lt h

where x;, denotes the indices of the /™ neighbor of the pixel x; in the neighborhood

system 7, of x;, and w(x;) is zero mean Gaussian noise vector. Pixel x also belongs to
N . 4, and a, are the model parameters. In this dissertation, two pixels are called

neighbors if they are close to each other spatially and their observations have an impact
on the estimation of the pixel labels of each other. So it is not compulsory for two
neighboring pixels to be deployed in a way that one is followed immediately by another
spatially.

With the neighboring information incorporated in the segmentation procedure, the
linear estimator finds the weighted average over the observation in a local window. We
can also consider that the weighted average is carried out over the whole set of
observations in an image, but the weights decrease with the increase of the distance
between the coordinates of the observations and the pixel of interest. Here, we only

consider the observations which are neighbors of the pixel of interest. We have
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h(x) = G, Y, (D.3)
where G, and v, are the weighting matrix and observation vector corresponding to a
neighborhood system of  the pixel at X. More specifically,
G, =[g.g, gy ] andg, =[g,.80s s &icry ] » Wherei=12,---,M , and C(x) is the total
number of neighboring pixels of pixel x. C(x) is equal to the size of 77, and may be
different from pixel to pixel . Y, =[y(x,), y(x,), -, y(xc(x))]r , which is the vector
consisting of the neighboring pixels of x.
We claim that if pixel x, is the neighbor of pixel x, then pixel x is the neighbor of

pixel x,. Thus, substituting (6.4) and (D.2) into (D.3), we have

h(x)=G.Y,
=2.8,5(x))

=38, (b ) i) + i)

(D.4)
zzgf ¢(xf;ﬂ)T' Za”h(x”)-i-a)(xj)—kaxh(x) +W(xj)

Xj €l X j EX

O EI o I A R

Xj X #X

=Yg e p) ~ax}4(x)+zgj[¢<xj;ﬂ>r [ Zaj,h(xj,)w(xj)}w(xj)]

Xj €l X j EX

where g, is the ™ column of the matrix G, and j=12,-,C(x) . gj[¢(xj; ,B)T-ax]is a

Xj €l X X

M x M matrix, and #(x;; B’ [ Za/;h(le)+ o(x; )] is a scalar. The expected value of

this linear estimator, given the true value of A(x), is
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Efi) 1)) = E{Z g P 0 b+ e, [¢(xj By { > hls,, )+ o, )] wl, )]}

Xjy €My X X

(D.5)
:E{ng [¢(xj;ﬂ)f ‘ax}”(x)}*'E{zg/[fé(x/;ﬂ)T [ zaj/h(xj/)+ a)(xj)}- w(xj)]}

:E{Zgj [¢(xj;ﬁ)r 'ax]}.h(x)JrE{ng[¢(xj§ﬂ)T [ Z“uh(xu)er(x/)]Jr W(Xf):l}

Xj €My X X

So the bias vector of the linear estimator is

() = EYa(x) | hx) |- h(x)
:E{Zg,-[mxf;mr -ax]}~h<x>+E{Zg,-[¢<x,-;ﬂ>T [ Za,-,h(x,-,)+w<x,->]+w<x,~>”—h<x> (D.6)

Xj € X X

:[E{Zg,[(/ﬁ(xf;ﬂ)r .ax]}—IJ.h(x)+E{Zg/[¢(xl_;ﬂ)T { Za”h(x”)+ a)(x,.)]+w(xf)]}

=K _-h(x)+u,

X, €l X X

Wherer = E{Zgj [¢(xj§,3)T ‘a, ]}_]and u, =E{Zgj[¢(xj;ﬂf [ zajzh(sz)+a)(xj)J+ij)]}'

The subscript “x” of K and u_ means that these two quantities are relevant to pixel x.

K., and u, can be further decomposed for each region type. That is,

T T th :
K., and wu =[u,,u,,-u.,] . Here, for the i" region

w1 KK 17, a Mx1vector, and uis ascalar, i =12,--,M .

type, K, =[K
In the “super” region scheme employed in our work, we have two regions, i.e., i" and
i regions, when we consider the segmentation performance for the i region. So,

M=2,K, =[K K 1 ,u =[u,u_1 and K, =[K,,,K,,]" . From (D.6) we have

xi?
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2(h,(0)= i, () [ h() 1~ h, (x)
= E{/%,. ()| 7, (x), B (x)}— h,(x)
= (K oy B () + Ky by (0)) 4, (D.7)
= (Kx:i,l -K.» ) h(x)+K,,,+u,
=K' _-h(x)+u',

where K' =K, — K, and u' =K, +u,_ and we have employed the relation of

xi,1

h.(x)+hs(x)=1 in the derivation. Therefore, we have

g(H,)=ElA, |H,|-H,

= E{H |H,H, }— H,
i Kl:i,lhi(l) 1T Kl:i,zh,«s (1) ] u,
K2:i,lhi (2) Kz;;,zh,-s (2) Uu,,;

Kx:i,lhi (x) Kx;i,zh,s (x) u..

| Kyiihi (V) | _KN:i,Zh[S (N)_ | YN |

i (Klzi,l -K,;, )hi @ 171 Ky, +uy ]
(K2:i,l -K,, )hi(z) Kyir+u,,

(Kx:i,l - Kx:i,2 )hl (x) Kx:i,Z + u)c:i (D'S)

_(KN:i,l —Ky,, )hi (N)_ | Ko +ty, |

=K,-H, +u,
_(Klzi,l _Ku,z) 0 |
0 Kz:i,l _KZH',Z) 0 0
where : : B
K. = . ‘
i 0 (szl _KX:i~2) 0
L 0 0 ce (KN;i,l KNii~2 )_ NxN

. . T
dlagonal matrlX’ and ui = [Kl:i,Z + ul:i H KZ:I',Z + u2:i s T K,\’:i,Z + ux:i [ KN:/',Z + uN:i] 2 a

N x1vector .
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From the above analysis, we can see that in many segmentation problems, the bias of

the segmentation label is an affine function of the true label.
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APPENDIX E

DETERMINATION OF THE OPTIMUM
PARAMETERS FOR THE MODIFIED CRAMER-
RAO BOUND

We first find the optimum values of K, and u; for the modified Cramér—Rao bound (6.27)
by setting the derivative of (6.27) with respect to K, and u, to zero, respectively. Then
the modified Cramér-Rao bound is obtained through submitting the resulting K, and
u; into (6.27).

OCRBjmy () _ 0 frel(r + & WE [, 1)) (14 K, )+ [+, ) (K H + u, \P(H)dH | =0

ou, ou,
= j{ (K,H, +u,) (K.H, +u,.)}P(H)dH =0 (E.1)
= [{2(K,H, +u, )}P(H)dH =0
=>u; :_KiIHip(HyH:_KiEH, (Hz)

Using (E.1), we have

OCRBM™™ (H) 8 " r r
aKl.() 5K {TI‘((1+K )( ﬂ[JF(Hi)]) ([+K1) )+J(KiHi+ui) (Kin 'H"i)P(H)dH}:O

= 21+ K NE [ (H)) ' + [2(K H, +u,)H, P(H)dH =0

{E o))+ [HH, P(H)dH} {( B[, (H)) "+ u[H[TP(H)dH} ©2)
:K{E o))+ [HH, P(H)dH}:{( D) _[KE H)HTp(H)dHJ

= kB, ) +Elma =-{E,, @) -k E HI(H,)EHl(H,.)T}
= KB, D) + Blet 1 -, (118, (11 =B, )

= K (B, + ot =~(8, 1))

= K =~(E, [, ) B, 7, 1)) + o)

So

207



”: :_KiEHi (Hz)

(E.3)
= (Eﬁ [JF (Hi)])_l {(Eﬂ [JF (Hi)])_l + COV(Hi )}_l E, (Hz)

Substituting K, and «,” into CRBY* (), we obtain the modified bound for the i
region as follows

CrRBY (A =Te|(1+ K NE, 7, (H)) ' (1 + K T)+j K H, +u,) (KT H, +u )P(H)dH

Tl & YE o, ) (4 k) )+ (KH ~K.E, (H) (K H, - K,E, (H)P(H)dH

T

+{(m, - )k K( E, (H,))P(H)dH

)
J+
T)+ H{( VKK (H, - E, (H))}
o
)

Tr(([ + K NE [ )] 1+ K

Tr((1+1<,.* YE, (D) 1+ &
")+ E {Tr[K (7, - E, (H,)\H, - E,, (H)K; T]}
+Tr{K E,|H -E, XH -E, )]K T}

Tr((] + K NE [, D) 1+ K

)1+ k)
)1+ ;)
)1+ &)

Tr((1+1< YE D)) 1+ K )
)1+ k)
)

o+ ke, ) 1+ K 4 KB, [, - ‘)(H[ E,, ) |
(1+&;) +K Cov, (H )K"T}

Tr{(1+1< NE, [ (1)

el [, )+ 260 (B, [, )+ K8, ) K+ K Cov, (1)K |
E 7)) 28, L, ) E L, D) + Corin, ) (, 10, 1))
T+ E 7)) 8, 1)) + Corla ) L 1)) + Cov, (11,)f
e, ) e, )+ conten )|
(£, 7 @) ) = 2E, [, ) HE L)) + Corla ) (£, 7, a1)))”
U ) e, e )+ o) (B, 1))
:Tr{(Eﬁ Vo)) &, ) e, )+ conten ) (8, )

(E.4)
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