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ABSTRACT 

This dissertation investigates the problem of image processing based on stochastic 

resonance (SR) noise and human visual system (HVS) properties, where several novel 

frameworks and algorithms for object detection in images, image enhancement and 

image segmentation as well as the method to estimate the performance limit of image 

segmentation algorithms are developed.  

     Object detection in images is a fundamental problem whose goal is to make a decision 

if the object of interest is present or absent in a given image. We develop a framework 

and algorithm to enhance the detection performance of suboptimal1 detectors using SR 

noise, where we add a suitable dose of noise into the original image data and obtain the 

performance improvement. Micro-calcification detection is employed in this dissertation 

as an illustrative example. The comparative experiments with a large number of images 

verify the efficiency of the presented approach.  

     Image enhancement plays an important role and is widely used in various vision tasks. 

We develop two image enhancement approaches. One is based on SR noise, HVS-driven 

image quality evaluation metrics and the constrained multi-objective optimization (MOO) 

technique, which aims at refining the existing suboptimal image enhancement methods. 

Another is based on the selective enhancement framework, under which we develop 

several image enhancement algorithms. The two approaches are applied to many low 

quality images, and they outperform many existing enhancement algorithms. 

     Image segmentation is critical to image analysis. We present two segmentation 

algorithms driven by HVS properties, where we incorporate the human visual perception 

                                                 
1Suboptimality may be due to inaccurate statistical models, model mismatch and system limitation, such as fixed 

decision threshold. 
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factors into the segmentation procedure and encode the prior expectation on the 

segmentation results into the objective functions through Markov random fields (MRF). 

Our experimental results show that the presented algorithms achieve higher segmentation 

accuracy than many representative segmentation and clustering algorithms available in 

the literature. 

     Performance limit, or performance bound, is very useful to evaluate different image 

segmentation algorithms and to analyze the segmentability of the given image content. 

We formulate image segmentation as a parameter estimation problem and derive a lower 

bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels 

considered in our work, using a modified Cramér–Rao bound (CRB). The derivation is 

based on the biased estimator assumption, whose reasonability is verified in this 

dissertation. Experimental results demonstrate the validity of the derived bound.  
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CHAPTER I 
 

INTRODUCTION 
 

We are living in a world where we are immersed in a variety of visual information, which 

includes different forms and shapes, colors and textures, motion and tranquility. As the 

carrier of this information, still images, graphic and videos play more and more important 

role in our lives. Human perception is capable of acquiring, integrating and interpreting 

the visual information around us, while it is very challenging if we expect to impart such 

capability to a machine [1]. Often images, graphics and videos are of varying quality due 

to the acquisition procedure [2], network/communication conditions [3][4][5], 

image/video compression [6], etc. These factors further add to the difficulties for a 

machine to extract the useful information from different visual scenarios. It is, therefore, 

very important to understand and develop superior techniques to process images, 

graphics and videos, such as detection, enhancement/restoration, segmentation, 

registration and fusion.  

     The goal of this dissertation is to develop novel image processing algorithms which 

improve the capability when a machine is employed to interpret the information 

embedded in images. In this chapter, we briefly review the basic problems in several 

image processing areas that are addressed in this dissertation. They include object 

detection in images, image enhancement and image segmentation. 
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1.1 Object Detection in Images 

The goal of object detection in images is to determine whether a specified object is 

present or not in a given image, and, if present, to determine its location, size or other 

parameters. This task could range from identifying a location to identifying and 

registering components of a particular object class at various levels of detail [7]. We 

could be required to outline precisely the object in the image, to detect a certain number 

of well-defined landmarks on the object, or to determining a deformation from a 

prototype of the object in the image. There are various types of deformations, e.g., a 

simple 2D Affine map or a more detailed non-linear map. The object itself may have 

different degrees of variability. It may be a rigid 2D object, such as a fixed desk surface, 

or a 2D view of a 3D object, or it may be a highly deformable object such as a breast. All 

these issues are included while considering object detection problems. Detection implies 

identifying some aspects of the particular way the object is present in the image, i.e., 

some partial description of the object instantiation. The image processing pipeline for 

object detection shown in Fig. 1.1, which includes the feature extraction step followed by 

a detection algorithm. 

 

objects 3D 2D, 1D,  
procedure Imaging  

procedure imagingabout  knowledgePrior   

objectsabout  knowledgePrior   

image 2D extraction Feature Detector

 

Figure 1.1: Processing pipeline for object detection in images. 
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     The general problem of object detection in static images is challenging, because the 

object detection system is required to distinguish a particular class of objects from all 

others [8]. This requires the algorithm to possess a model of the object class that has high 

inter-class and low intra-class variability. Another difficulty is that a robust object 

detection algorithm should be able to detect objects in uneven illumination, objects which 

are rotated, and objects that are partially occluded or whose parts blend in with the 

background. The outline of an object is, under all of the above conditions, usually altered 

and its entire form may not be discernible. The problem becomes even more challenging 

if recognition, a step that usually follows detection, is required. Recognition refers to the 

classification among objects or subclasses of a general class of objects, which is present 

in a particularly isolated region of the image [7].  

     The object detection systems can be classified into three major categories [8]. The first 

category consists of systems that are model-based, in which a model is defined for the 

object of interest and the system attempts to find a match between this model and 

different parts of the image [9]. The second category includes the image invariance 

methods where matching is based on a set of image pattern relationships, e.g., brightness 

levels. In the ideal case, the pattern relationships uniquely determine the objects being 

searched for [10]. The third set of object detection systems refer to the example-based 

learning algorithms [11]. These systems learn the features of a class from sets of labeled 

positive and negative examples, i.e., training data.  

     From the machine learning perspective, we can also divide all object detection 

methods as generative methods and discriminative methods [12]. In generative methods, 

we attempt to learn significant features of an object, and then combine these features in a 
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suitable way to synthesize a new image. In a classification scenario, these models can be 

reversed and indicate the probability that this particular pixel was generated from this 

model. In the discriminative methods, we learn a decision rule, i.e., classifier, and assign 

features representations of images to different classes. 

     In this dissertation, we focus on the problem of detecting objects in images based on 

statistical decision theory. We model the probability density functions (pdfs), i.e., 

features, of the object and the background (non-object) under two hypotheses, i.e., 

presence or absence of the object in a particular location of an image. The detection is 

carried out under the Neyman-Pearson criterion [13], because we assume that the prior 

probabilities of occurrence of the object and the background are not available. In real-

world applications, it is usually not easy to have the full knowledge of the probability 

distributions of the object and background, so we learn and update the pdfs under the two 

hypotheses in an iterative manner with the detection proceeding. Thus, our method falls 

in the categories of both model-based and example-based learning algorithms, and is a 

combination of the generative method and discriminative method. 

     More specifically, we consider a binary statistical decision problem, where we wish to 

choose between the two hypotheses 

                                                         







)();(:

)();(:

111

000

ypHypH

ypHypH

y

y                                        (1.1) 

where y  is an N-dimensional data vector, i.e., y NR . p0( y ) (or );( 0Hyp ) and p1( y ) 

(or );( 1Hyp ) are the pdfs of y  under H0 (background) and H1 (object) hypotheses, 

respectively. During the decision process, a test is necessary to choose between the two 
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hypotheses, which can be completely characterized by a critical function, or decision 

function, )(y , 1)(0  y , and 

                                                         










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

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where T is the test statistic which is a function of y .   is the threshold, and 10    is a 

suitable number used for randomization. 

     The detection performance of this test can be evaluated in terms of probability of 

detection (PD) and probability of false alarm (PF), 

                                                         
NR

y
D ydypyP )()( 1                                                (1.3) 

                                                        
NR

y
F ydypyP )()( 0                                                (1.4) 

where y
DP  and y

FP  represent the DP  and FP of the detector based on the input y , 

respectively. 

     It is well known that under the Neyman-Pearson criterion, the optimal detector is a 

likelihood ratio test given as  

                                                         
0

1
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1
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


                                             (1.5) 

     The threshold  is found from 

                                                        ydypP yLy
y

F )(0})(:{                                        (1.6) 

where is the desired value of the FP . 
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1.2 Image Enhancement  

Image enhancement aims at producing images with improved brightness/contrast and 

detail, so as to better represent the visual information. It is widely used in many areas, 

such as vision, remote sensing, dynamic scene analysis, autonomous navigation and 

biomedical image analysis. Fig. 1.2 shows an example of enhancing an MRI image, 

where some details in the image become more obvious after enhancement (Fig. 1.2 (b)). 

 

   

                                                        (a)                                                    (b) 

Figure 1.2: An image enhancement example. (a) Original image with low contrast; (b) enhanced image 

with higher contrast. 

 

     A comprehensive survey of image enhancement techniques can be found in [14]. 

Based on the methodology involved, image enhancement methods fall into four main 

categories: point operations, spatial operations, transform operations and pseudo-coloring 

[2]. 

     Point operations are zero memory operations in which a given gray level is mapped 

into another gray level according to a transformation. Point operations include contrast 
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stretching, window slicing, noise clipping and histogram modeling. Histogram 

equalization is one of the well-known point operation methods. Standard histogram 

equalization [2] processes images globally, thus often causes intensity saturation and the 

image is far from a natural one. Its improved versions, such as bi-histogram equalization 

(BiHE) [15] and contrast limited adaptive histogram equalization (CLAHE) [16], 

attempted to achieve the natural contrast enhancement by preserving the brightness of an 

original image and processing images locally. 

     Spatial operations perform enhancement on local neighborhoods of the input pixels, 

where the image is convolved with a finite impulse response filter. Typical methods 

include noise smoothing, median filtering and unsharp masking [17]. A standard spatial 

operation is median filtering. It performs well in some cases, such as suppressing the 

pepper-and-salt noise. Another popular spatial operator is adaptive Wiener filter [18]. It 

can carry out the filtering procedure locally and adaptively. For a digital mammography 

application, J. Dengler et al. [19] used a morphological filter to improve the perspicacity 

of micro-calcifications by enhancing the small square. 

     Transform operations are carried out on a transformed image and followed by the 

inverse transformation for image reconstruction. Typical transform operations include the 

classical Fourier transform, fuzzy logic transform and wavelet decomposition. Fuzzy 

image enhancement can achieve superior performance in mammogram enhancement [20], 

compared with several popularly used methods.  

     Pseudo-coloring methods map a set of images into a color image, whose disadvantage 

is that extensive interactive trials are required to determine a satisfactory mapping. 
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     Since humans are often the ultimate evaluators of image quality, it is desirable to 

include human visual system (HVS) aspects in image enhancement. Recently, several 

methods have used HVS models during enhancement [21][22]. Their goal is to simulate 

the function of HVS for discriminating between useful and useless data [23] to improve 

the enhancement procedure. For example, in [22], HVS-based segmentation was carried 

out in spatial domain to generate three image regions prior to image enhancement. HVS 

considerations could be incorporated in any of the above four classes of enhancement 

methods, thereby improving enhancement performance from human visualization point 

of view. 

 

1.3 Image Segmentation and Performance Limit of Segmentation 

Algorithms 

Image segmentation plays a critical role in image analysis. It subdivides an image into its 

constituent parts in order to extract information regarding objects of interest, and has an 

impact on all the subsequent image analysis tasks, such as object classification and scene 

interpretation [24]. Fig. 1.3 shows an example of image segmentation. 

     Image segmentation is a challenging problem in computer vision, and a wide variety 

of solutions have been presented. These include thresholding techniques [25], Markov 

random fields (MRF)-based approaches [26][27], multi-resolution algorithms [28] and 

partial differential equations (PDE)-based methods [29]. Surveys of image segmentation 

techniques can be found in [24][30][31]. Based on the image information being employed 

for the segmentation task, image segmentation algorithms can be classified into three 
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categories: region-based segmentation, boundary- or edge-based segmentation and the 

methods combining both region and boundary (edge) information.   

 

   

                                           (a)                                                                         (b)  

Figure 1.3: An image segmentation example (from MATLAB Central). (a) Original image; (b) segmented 

image. 

      

Region-based segmentation methods aim at exploiting the image contextual 

information, such as spatial dependency or spatial distribution. The segmented images are 

expected to consist of regions within which the image content is homogeneous, while the 

contrast between neighboring regions is high. Typical methods falling into this category 

include region growing, watershed, some MRF-based methods [26], mean-shift [32] and 

the recently presented lossy data compression-based approach [33]. Segmentation 

methods based on the boundary or edge information are designed to exploit the 

discontinuity of the image features, such as difference in texture or pixel intensity, on the 

two sides of the boundary. Typical methods in this group include gradient-based methods, 

such as the Canny edge detector [34], line detection methods, such as the Hough 

transform [35], those taking into account the interaction between boundaries (or edges) 
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[36][37][38], and the methods derived from physics models [39][40]. There also exist 

algorithms that combine region-based and boundary-based segmentations in order to 

benefit from fusing these two complementary approaches. There are two types of 

algorithms that belong to this category. The first type of algorithms carry out region and 

boundary segmentations sequentially [41][42][43], where one segmentation method is 

employed as the preprocessing or initialization step of another. The second type performs 

segmentation by considering region and boundary information simultaneously [44][45].  

     While development of efficient segmentation algorithms is highly desirable, the 

assessment of their performance is also very important. There are basically three groups 

of methods for segmentation evaluation [24]. These include analysis methods, empirical 

goodness methods and empirical discrepancy methods [24]. The analysis methods treat 

the algorithms for segmentation directly, such as the evaluation of the convergence rate, 

the computation speed and the reasonability of the objective function design. Empirical 

goodness methods judge the segmented image so as to indirectly assess the performance 

of algorithms using quantities such as intra-region uniformity, inter-region contrast and 

region shape. Empirical discrepancy methods compare the segmented image with the 

reference image and use their difference to evaluate the performance of algorithms. For 

instance, position and number of mis-segmented pixels and feature values of segmented 

objects are all performance indicators falling into this class. Surveys of the evaluation 

techniques for image segmentation can be found in [24][43][44]. 

     Much progress has been made recently in evaluating the segmentation results, but 

performance of such methods tends to vary as widely as the techniques themselves. As a 

result, the performance of the evaluation methods is far from being satisfactory. In [24], 



11 
 

the authors listed some of the factors which limit the advancement of evaluation methods 

and, in turn, the performance improvement of segmentation algorithms. These factors 

include a lack of common mathematical models or general strategy for evaluation, the 

challenges in defining wide-ranging performance metrics and statistics, the difficulties in 

defining the ground truth, large costs in performing comprehensive evaluations and the 

fact that the testing data are not representative enough for actual applications.  

     We note that given a specific image, among all the factors possibly affecting the 

performance assessment of segmentation algorithms, the most important factor is the 

image content. Therefore, an investigation of the performance limit or performance 

bound, which is only associated with the available image data and is independent of the 

segmentation algorithms, will be very helpful to evaluate the efficiency of image 

segmentation techniques. A tight performance bound can tell us what the best achievable 

performance of any image segmentation algorithm is for the specific image content. Thus, 

performance bounds can also be used to study how the image content or image 

preprocessing operations affect segmentation performance. The gap between the actual 

segmentation error of an approach and a tight bound can provide us with the efficiency of 

that segmentation approach and available room for improvement.  

     Several contributions in the literature have developed the bounds from a statistical 

perspective, e.g., the work in [46] based on the finite normal mixture (FNM) model 

assumption, that presented in [47] for studying the performance of multi-spectral image 

segmentation based on Rissanen’s minimum description length (MDL) criterion, and the 

one presented in [48] based on MRF-based assumption. All these algorithms attempt to 

determine the performance bounds which can serve as benchmarks for the image dataset 
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and segmentation algorithms. 

 

1.4 Image Processing Based on Stochastic Resonance Noise 

Basically, there exist two approaches to improve the performance of an image processing 

system. One involves the redesign of the existing systems or algorithms, while another 

involves the preprocessing of the image data before sending them to the original 

processing system. In our work, we propose a novel preprocessing approach to improve 

the system performance via stochastic resonance (SR) noise, where system performance 

is improved by adding some suitable noise to the input image signal but the original 

image processing system is kept unchanged.  

     Traditionally considered as a nuisance, noise can sometimes play a constructive role 

in signal processing. SR is one such nonlinear physical phenomenon where the output 

signals of some nonlinear systems can be amplified by adding noise to the input. Fig. 1.4 

shows an image segmentation result from our experiments, where we add noise to the 

original image and better segmentation is observed (Figs. 1.4 (c) and (d)) while the 

original image segmentation algorithm remains fixed. 

     First proposed as an explanation for the ice ages in 1981 [49], the SR effect has been 

observed and applied in numerous nonlinear systems ranging from a bistable system to a 

crayfish [50]. Classic SR signatures include a signal-to-noise ratio (SNR) gain and a 

mutual information (MI) gain. In signal detection theory, SR also plays a very important 

role in improving signal detectability. In [51] and [52], improvement of detection 

performance of a weak sinusoid signal is reported. In [53], an optimal SR based 

procedure for a general binary hypotheses detection problem was addressed, the 
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underlying mechanism of the SR phenomenon was explored, the improvability conditions 

via SR were established subject to a false alarm constraint and the optimum SR noise 

form was determined. The work was later extended to the more general case where the 

detector itself can also be modified [54]. In this dissertation, we employ SR noise to 

refine several image enhancement algorithms and also to improve some existing lesion 

detection algorithms for breast cancer diagnosis. 

 

      

                     (a)                                     (b)                                      (c)                                     (d)  

Figure 1.4: Stochastic resonance noise-enhanced image segmentation. (a) Original image; (b) 

segmentation result of the level set evolution-based method (LSEWRI) [121] without SR noise; (c) 

segmentation results of LSEWRI with Gaussian SR noise (zero mean and variance of 60); (d) segmentation 

results of LSEWRI with uniform SR noise (zero mean and variance of 25). 

 

1.5 Human Visual System-Driven Image Processing 

HVS-driven image processing is motivated by the fact that, in most circumstances, 

humans are the ultimate judge of the quality of the image processing results. So, an image 

processing algorithm is likely to yield more satisfactory results if HVS factors are taken 

into account during the processing procedure. For example, images can be more 

accurately segmented, enhancement can be better carried out, and detection can be more 

efficiently fulfilled, to mention a few major advantages.  
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     In many different image processing applications, the limitations of the HVS can be 

exploited to improve the performance from a visual quality point of view, based on which 

many image processing algorithms have been developed. For example, the image 

enhancement algorithms [21][22[23], as mentioned in Section 1.2, and the image 

segmentation algorithms [55][56][57] are all driven by HVS, and outperform many 

“classical” pixel-based algorithms.  

     Even if the specific requirements for each of these image processing applications are 

different, the common element of building a computational model of the HVS is always 

essential. These computational models are closely dependent on the visual properties of 

the HVS which are characterized by both the psychophysical experiments and the 

understanding of the physiological evidence. Please refer to [58] for a detailed review of 

the vision physiology.  

     HVS models account for a number of psychophysical effects [59], like the luminance 

and color, multi-channel decomposition, contrast and adaptation, contrast sensitivity and 

masking [60]. In our work, we incorporate HVS models into the objective functions for 

image enhancement and image segmentation, and encode the preference of HVS to a 

good image processing result in a mathematical form, which may make the image 

processing output more favored by humans.  

 

1.6 Main Contributions and Dissertation Organization 

The design of efficient object detection, image enhancement and image segmentation 

algorithms is very important for a variety of applications. In this dissertation, several 

aspects of these problems are discussed. We present several schemes to improve object 
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detection, image enhancement and image segmentation based on SR noise and HVS 

properties. We also analyze the performance limit of image segmentation algorithms and 

present quality metrics for evaluate the image enhancement results. Main contributions 

and organization of the dissertation are described as follows. 

     This chapter has introduced the background of object detection, image segmentation 

and image enhancement. The significance of investigating the performance limit of 

image segmentation algorithms was also discussed. The concept and motivation of image 

processing based on SR noise and HVS properties have also been presented. 

     In Chapter 2, we show the feasibility of SR noise-enhanced image processing through 

several examples, where we improve the performance of image processing algorithms by 

adding noise to the images before the processing procedure while the original image 

processing algorithms are kept unchanged. We investigate the effect of SR noise on 

image enhancement, dithering, edge detection and image segmentation.  

     In Chapter 3, we consider the problem of improving the detection of micro-

calcifications in mammograms using SR noise. We develop a SR noise-based detection 

algorithm and a general detection enhancement framework to improve the performance 

of the suboptimal detectors. We attempt to reduce the dependence of the determination of 

the optimum SR noise on the knowledge of the pdfs of the object (lesion) and background 

(normal tissues) by employing iterative learning procedures. We also develop an iterative 

SR noise-based detection enhancement scheme with memory to improve the efficiency 

and robustness of the SR noise-based detection systems. Moreover, a more general SR 

noise-based detection enhancement framework is presented. Our algorithms and the 

framework are tested on a set of 75 representative abnormal mammograms. They yield 
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superior performance when compared with several classification and detection 

approaches developed in our work as well as those available in the literature. 

     In Chapter 4, we present two image enhancement approaches. One is based on SR 

noise and HVS properties, and another is based on selective enhancement technique. In 

the first algorithm, we develop an SR noise-based image enhancement framework and 

apply it to improve a number of existing suboptimal image enhancement methods. The 

enhanced image and the optimum parameters of the SR noise are obtained by solving a 

constrained multi-objective optimization (MOO) problem, where a weighting method is 

used to mimic different HVS preferences and to reduce the size of the non-dominant 

solution set as discussed later. The principle of the SR noise-refined image enhancement 

is explored and the corresponding image enhancement system is presented. Additionally, 

a novel image quality evaluation metric based on HVS is developed which is used as one 

of the objective functions.  

     In the second enhancement approach, we present a selective enhancement framework 

based on image segmentation techniques, which starts with region of interest (ROI) 

selection, and is followed by ROI enhancement and background suppression. Several 

point operation based algorithms under this framework are presented. Compared with 

some popular enhancement algorithms, our methods enjoy the advantages of flexibility, 

robustness and low computational burden, which suggest that the presented methods are 

suitable for real-world CAD applications. We also present a quality metric to evaluate the 

enhancement results by fusing sub-quality metrics. 

     In Chapter 5, we present two image segmentation algorithms. In the first algorithm, 

we aim at designing an algorithm based on HVS properties, with the segmentation 
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performance robust to the variations in the parameter values of the algorithm. More 

specifically, we integrate region label estimation for each pixel with boundary 

localization for each region, according to the quality metrics for region-based and 

boundary-based segmentation evaluations. These metrics attempt to mimic the 

preferences of human vision to good segmentation and thus make the segmentation HVS-

driven. Under a Bayesian framework, the HVS-driven quality metrics are encoded in the 

MRF as the priors of the a posteriori distribution, which is the objective function for 

segmentation. Segmentation is carried out by optimizing the objective function which 

reflects the desired properties of segmentation from both global and local perspectives. 

Three variations of the algorithm are developed. The first one integrates the region and 

boundary information simultaneously during segmentation. The second one carries out 

region-based segmentation and boundary-based segmentation iteratively. The third one 

takes advantage of only the boundary information for segmentation.  

     In the second algorithm, we present an image segmentation framework, which is 

based on a “soft” objective function and considers the effect of the segmentation result 

for a single pixel on the segmentation performance in local regions. A specific 

performance measure, the probability of successful detection, is used to show the 

efficiency and utility of this framework. Moreover, a contrast sensitivity function (CSF), 

as an object feature enhancer, is employed for further improving the segmentation 

performance, which also makes the segmentation procedure HVS-driven. 

     In Chapter 6, we formulate image segmentation as a statistical parameter estimation 

problem and derive Cramér–Rao bounds (CRB) on the performance measure, namely on 

the mean square error (MSE) of the resulting pixel labels, based on the biased estimator 
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assumption and Affine bias model. In addition, an approximation is made when 

computing the expectation of the inverse Fisher information matrix to reduce the 

computational burden. Bootstrapping technique and empirical approximation to the 

second-order statistics are employed to overcome the difficulty that the probability 

distribution of the images is unknown. Our final goal is to derive a tight performance 

bound for the image segmentation problem and compare the bound with the performance 

of various segmentation algorithms when applied to different image datasets.  

     Finally, in Chapter 7, we present the main conclusion of this dissertation and provide 

an outline of our future research plan. 
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CHAPTER II 
 

NOISE-ENHANCED IMAGE PROCESSING 
 

In this chapter, we show the efficiency of stochastic resonance (SR) noise-enhanced 

image processing through several illustrative examples, where the performance of some 

image processing algorithms are improved through the introduction of SR noise into the 

original images while the image processing algorithms themselves remain unchanged. 

The image processing tasks we investigate include image enhancement, dithering, edge 

detection and image segmentation.  

     In this chapter, we adjust the parameters of the SR noise manually and the quality of 

the image processing results is evaluated by observation. In Chapters 3 and 4 we will 

employ SR noise to improve object detection and image enhancement, where we 

formulate these two tasks as optimization problems and develop systematic schemes to 

find the optimum SR noise parameters automatically.   

 
2.1 Types of Stochastic Resonance Noise 

Three types of SR noises are investigated in this chapter. They are Gaussian SR noise 

(GaSR), uniformly distributed SR noise (UnSR), and two peak SR noise (TwSR) [53]. In 

Section 4.2.4 we will also investigate triangle SR noise (TrSR). The adjustable 

parameters of the GaSR and UnSR are means ( ) and variances ( 2 ), and those of TrSR 

are amplitude range and the point where its mass function has maximum value. 

Probability mass function (pmf) of TwSR has the form 

                                         )()1()()( 21 nnnnnp Twopeakn                                (2.1) 
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where   and 1  are the occurrence probabilities of the suitable constants 1n and 2n , 

10  . Its adjustable parameters are  , 1n  and 2n . The SR noise is introduced in the 

degraded image by point-wise addition. 

 

2.2 Illustrative Examples 

2.2.1 Standard Histogram Equalization-Based Image Enhancement  

Fig. 2.1 shows the results of enhancing a mammogram with speculated lesions using 

standard histogram equalization [2] and SR noise. The result shown in Fig.2.1 (b) is 

based on the standard histogram equalization method. This method processes images 

globally, and we can see that it does not take into account the features of the lesions 

which are characterized by the local image contents. The background normal tissues 

surrounding the lesions are also enhanced, such that the contrast between the lesions and 

the normal tissues are not increased. In contrast, the SR noise-enhanced histogram 

equalization method (Fig. 2.1 (c)), where we add Gaussian SR noise, increases the 

contrast between lesion and background, and also makes the enhanced image more 

natural than Fig. 2.1 (b) from visualization perspective. 

 

2.2.2 Contrast limited adaptive histogram equalization-Based Image Enhancement 

Contrast limited adaptive histogram equalization (CLAHE) [16] was originally designed 

for enhancing medical images, which processes images locally and is an improved 

version of the standard histogram equalization method. The experiments are carried out 

using mammograms with two types of lesions, mass and spiculated lesions, as well as the 
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microscope cell image. 

 

                                           

(a)                                                  (b)                                                     (c)   

Figure 2.1: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b) 

enhanced by standard histogram equalization; (c) enhanced by standard histogram equalization with GaSR 

( 0 and 2202  ). 

 

     Figs. 2.2 (b), 2.3 (b), 2.4 (b) and 2.5 (b) show the results of image enhancement using 

CLAHE only. We can see that CLAHE performs better than the standard equalization 

method and achieves contrast improvement. However, some background normal tissues 

in the mammograms are also enhanced (Figs. 2.2 (b), 2.3 (b) and 2.4 (b)). As a result, the 

lesions are still not easily recognizable. For the cell image (Fig. 2.5 (b)), CLAHE only 

stands out the cores of the cells, but does not make the cell body more visible. On the 

other hand, SR noise-enhanced CLAHE increases the intensity of the lesions and at the 

same time decreases that of the normal tissues around lesions, such that the lesions are 

more obvious. Besides, the SR noise-enhanced CLAHE increases the visibility of the 

entire cell bodies.  
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                                                             (a)                                        (b)           

   

                                     (c)                                          (d)                                        (e)        

Figure 2.2: Enhancement results of the mammogram with masses. (a) Original mammogram; (b) enhanced 

by CLAHE; (c) enhanced by CLAHE with TwSR ( 5.0 , 5.21 n and 5.22 n ); (d) enhanced 

by CLAHE with GaSR ( 0 and 152  ); (e) enhanced by CLAHE with UnSR ( 0 and 

522  ).                
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                                                       (a)                                                   (b)           

   

                           (c)                                                    (d)                                                  (e)        

Figure 2.3: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b) 

enhanced by CLAHE; (c) enhanced by CLAHE with TwSR ( 5.0 , 51 n and 52 n ); (d) 

enhanced by CLAHE with GaSR ( 0 and 602  ); (e) enhanced by CLAHE with UnSR 

( 0 and 652  ).                        

 

 

 

 

 



24 
 

   

                                                       (a)                                                   (b)           

   

                                                         (c)                                               (d)           

Figure 2.4: Enhancement results of the mammogram with spiculated lesions. (a) Original mammogram; (b) 

enhanced by CLAHE; (c) enhanced by CLAHE with GaSR ( 0 and 252  ); (d) enhanced by 

CLAHE with UnSR ( 0 and 252  ).                   
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                                                          (a)                                              (b)           

      

                               (c)                                                (d)                                               (e)                                             

Figure 2.5: Enhancement results of the cell image. (a) Original cell image; (b) enhanced by CLAHE; (c) 

enhanced by CLAHE with TwSR ( 5.0 , 301 n and 302 n ); (d) enhanced by CLAHE with 

GaSR ( 0 and 852  ); (e) enhanced by CLAHE with UnSR ( 0 and 552  ).                        

 

2.2.3 Dithering  

In this section, we investigate using SR noise to improve the image dithering algorithm 

[18][61]. Fig. 2.6 (b) shows the dithering result without SR noise, and we can see many 

granularities in the image and the image is far from being a natural one. On the contrary, 

the SR noise-enhanced dithering yields a better result (Fig. 2.6 (c)) and the image 

becomes much smoother and more natural. 
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                               (a)                                               (b)                                                (c)           

Figure 2.6: Dithering results of the mammogram with spiculated lesions. (a) Original mammogram with 

spiculated lesions; (b) dithering without SR noise; (c) dithering with UnSR ( 0 and 252  ).          

               

2.2.4 Edge Detection and Image Segmentation 

Fig. 2.7 shows the results of SR noise-enhanced edge detection using Sobel detector 

[18][62]. We can see from Fig. 2.7 (b) that the original Sobel detector finds all the edges 

of the lesions but also generates many false positives. The SR noise-enhanced Sobel 

detectors (Figs. 2.7 (c) and (d)) keep the lesion edges while dramatically reduce the 

number of false detections.  

 

    
 

                       (a)                                    (b)                                    (c)                                    (d)                                     

Figure 2.7: Edge detection results of the mammogram with micro-calcifications. (a) Original mammogram; 

(b) detected positives (detected “edges”) by Sobel; (c) detected positives by Sobel with GaSR 

( 0 and 452  ); (d) detected positives by Sobel with UnSR ( 0 and 452  ).                        
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     Fig. 2.8 shows the results of sequential image enhancement and edge detection, where 

we first employ CLAHE to enhance the original cell image and then use Sobel detector to 

locate the edges of the cells. Fig. 2.8 (b) shows the edge detection result using Sobel 

detector only, and Fig. 2.8 (c) shows the result of using CLAHE followed by Sobel. We 

can see from the two figures that the edge detection result is not improved. This is 

because the cores of the cells have much higher intensities than other part of the cell body, 

which drives the result of the intensity-based edge detector, such as Sobel. However, as 

shown in Fig. 2.5 (b), CLAHE only enhance the visibility of the cores rather than the cell 

body, so the detection results are still dominated by the cores, which yields the detected 

edges with incomplete cell contour and even false cell boundary. After adding SR noise 

to the enhancement and detection processes respectively, edge detection is improved a lot, 

and the cell location and shape can be recognized much easier (Figs. 2.8 (d) and (e)). 

     An example of SR noise-enhanced image segmentation using a level set-based 

algorithm can be found in Fig. 1.4 in Section 1.4. 

 

2.3 Discussion 

The goal of this chapter was to examine the feasibility of improving performance of 

image processing algorithms when noise is added prior to processing. By means of 

several examples, we observed that performance did improve when images are seen 

qualitatively. In the following chapters, we develop more systematic procedure for 

performance enhancement and evaluation.  
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(a)                                                   (b)                                                 (c)                                    

   
                                          

                                               (d)                                                 (e)                                     

Figure 2.8: Cell image enhancement and edge detection. (a) Original cell image; (b) detected positives 

(detected “edges”) by Sobel edge detection; (c) detected positives (detected “edges”) by CLAHE 

enhancement and Sobel edge detection; (d) detected positives by CLAHE enhancement (GaSR: 

0 and 012  ) and Sobel edge detection (GaSR: 0 and 0012  ); (e) detected positives by 

CLAHE enhancement (GaSR: 0 and 012  ) and Sobel edge detection 

(UnSR: 0 and 0012  );                   
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CHAPTER III 
 

NOISE-ENHANCED DETECTION OF MICRO-
CALCIFICATIONS IN DIGITAL MAMMOGRAMS 

 

In this chapter, we investigate novel algorithms for the detection of micro-calcifications 

using stochastic resonance (SR) noise. In these algorithms, a suitable dose of noise is 

added to the abnormal mammograms such that the performance of a suboptimal lesion 

detector is improved without altering the detector’s parameters. Unlike what has been 

discussed in Chapter 2, in this chapter we formulate the detection problem as an 

optimization problem and develop a systematic scheme to find the optimum parameters 

of SR noise and carry out the detection automatically. 

 

3.1 Introduction  

Breast cancer is a serious disease with high occurrence rate in women [63]. There is clear 

documented evidence which shows that early diagnosis and treatment of breast cancer 

can significantly increase the chance of survival for patients [64]. One of the important 

early symptoms of breast cancer in the mammograms is the appearance of micro-

calcification clusters. An accurate detection of micro-calcifications is highly desirable to 

ensure early diagnosis of breast cancer. 

     Computer-aided diagnosis (CAD) improves the diagnostic performance of radiologists 

[65][66] and is an effective method for early diagnosis thereby increasing survival time 

for women with breast cancer. While advances have been made in the area of CAD for 
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digital mammograms, the main challenge of accurately identifying breast cancer in 

digital mammograms still remains, which is due to the small sizes and subtle contrast of 

the lesions compared with the surrounding normal breast tissues.  

     Much effort has been made for detecting micro-calcifications by using CAD 

techniques. Some methods tried to detect micro-calcifications through a modeling 

procedure. For example, Bazzani et al. [67] and Gurcan et al. [68] detected the micro-

calcifications by using Gaussianity tests in the difference and filtered mammograms, 

respectively. Karssemeijer [69] modeled the mammograms using Markov random fields. 

Nakayama et al. [70] used a Gaussian probability density function (pdf) to model the 

abnormal regions in the subband mammograms generated by a filter bank. Regentova et 

al. [71] characterized the pdfs of the magnitudes of the wavelet coefficients, which are 

assumed to correspond to two hidden Markov states, as zero mean Gaussian distributions 

with different variances. Deepa and Tessamma [72] used a deterministic fractal model to 

characterize breast background tissues. The challenge for these model-based methods is 

that an accurate model is generally not easy to obtain and model mismatch is hard to 

avoid, so the detection results are deteriorated. There are also some methods that attempt 

to avoid the necessity of modeling during the detection process. For example, in [73], a 

relevance vector machine (RVM) was employed as a micro-calcification classifier, and 

its parameters were determined through a supervised learning procedure. Catanzariti et al. 

[74] trained a three-layer feed-forward artificial neural network (ANN) to detect micro-

calcifications using the features extracted by a bank of Gabor filters. Strickland et al. [75], 

Lemaur et al. [76] and Li and Dong [77] proposed wavelet domain thresholding 

techniques to obtain the information of interest for the detection of micro-calcifications. 
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These methods partially bypassed the modeling problem, but determination of the 

optimum parameters, such as the threshold, is still a very challenging task, and the 

detection performance was often affected by the suboptimum parameters. 

     Basically, lesion detection can be considered as an anomaly detection problem [78]. 

Performance of the detectors is heavily dependent on the accuracy of the mathematical 

models and the detector parameters. However, as discussed before, appropriate models 

and optimum parameter values are generally very difficult to obtain in practical 

applications, which often results in unsatisfactory detection performance in terms of high 

probability of false alarm (PF) and low probability of detection (PD). 

     In this chapter, we investigate the use of SR noise to enhance the detection of micro-

calcifications in mammograms. We first develop three lesion detectors based on the 

Gaussian assumption. We will see that they are all suboptimal detectors, suffering from 

model mismatch. Then, we present the main results of some prior work on SR noise-

enhanced signal detection under the Neyman-Pearson criterion, where the optimum form 

of the SR noise is determined. After that, we develop a SR noise-based detection 

algorithm for lesion detection that attempts to improve the suboptimal detectors. An 

iterative detection scheme involving the use of SR noise with memory is also presented. 

A more general SR noise-based detection enhancement framework based on the iterative 

detection scheme is then presented. Finally, experimental results and the performance 

evaluation of several detection and classification algorithms are presented in Section 3.3. 
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3.2 Noise-Enhanced Detection of Micro-Calcifications in Digital 

Mammograms 

3.2.1 Problem Statement and Gaussian Assumption-Based Lesion Detection  

In this section, we first introduce the lesion detection problem from a statistical 

hypothesis testing point of view, and then present three Gaussian assumption-based 

detectors for the lesion detection task. We will show via experiments that the 

performance of these detectors is not satisfactory due to the large number of false alarms. 

This is due to model mismatch, and it results in suboptimality of the detectors. 

     Higher pixel intensity than the surrounding normal tissues distinguishes lesions from 

the normal structures in mammograms, which is one of the most important features of 

abnormal mammograms. The algorithms developed in this chapter perform the detection 

by exploring the pixel intensity information. We deal with this anomaly detection 

problem using statistical hypothesis testing methods. Formally, we want to choose one of 

the two hypotheses corresponding to the absence and presence of micro-calcifications on 

a pixel-by-pixel basis, 

                              
][][][:

][][:
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mwmsmyH

mwmyH




                                       (3.1) 

where m is the pixel index corresponding to the pixel observation under consideration, 

y[m] is the observed pixel intensity, larger than or equal to zero, s[m] is the lesion signal, 

and ][mw is the background noise that is assumed to obey Gaussian distribution with 

mean b and variance 2
b . The noise is assumed to be additive, independently distributed 

and independent of the noise-free mammogram data. A processing window is employed 
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with the pixel under consideration being at the center of the window. This window is 

employed to estimate the parameters of the detector by using the pixels included in it. 

 

3.2.1.1 Gaussian Background Assumption-Based Detector (GBAD) 

The Gaussian background assumption leads to linear and tractable solutions [13]. The 

micro-calcifications, the signals of interest here, are brighter spots than the surrounding 

normal background tissues. So the micro-calcification is modeled as a signal with 

constant amplitude, and the lesion detection problem is to detect a constant signal in 

Gaussian noise, which we refer to as the Gaussian background assumption-based detector 

(GBAD). The lesion signal s[m] in (3.1) is, therefore, a constant intensity.     

As mentioned in Section 1.1, for this anomaly detection problem, the a priori 

probabilities of the background and lesion pixels are unavailable, so we employ the 

Neyman-Pearson criterion [13] for the detection task.     

     Under the Gaussian background and constant signal assumptions, 

);( 1Hyp and );( 0Hyp  all obey Gaussian distribution with the same variance 2
b , and the 

optimal test given in (3.1) can be expressed in terms of the GBAD test statistic )( yTGBAD  

as follows 
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                                  (3.2) 

where y is the intensity of the pixel under consideration, and the threshold 1 is determined 

from the desired PF and the statistical parameters, i.e., mean and variance, of the pixels in 

the processing window.  

     To estimate the detector’s parameters, an initial detection is first carried out in the 
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processing window to perform a coarse detection, and the resulting detected negatives 

( 0H ) and positives ( 1H ) are employed to estimate the parameters. Many methods, such as 

a local maxima filter [79] or adaptive thresholding techniques [80], can perform the 

initial detection. Local maxima filter is employed in this work because the lesion pixels 

generally have a higher intensity than the surrounding normal background tissues.  

     For cancer diagnosis, the most serious mistake is to miss any lesions. To reduce the 

probability of miss, we use a “safer” initial detection and attempt to exclude all the lesion 

pixels from the background. It can be realized by using a local maxima filter with 

appropriate window size and local threshold, permitting more pixels having relatively 

higher intensities in the local regions to be classified into the lesion part.  

     The detection results for GBAD are shown in Figs. 3.2 (b), 3.3 (b) and 3.4 (b) in 

Section 3.3, corresponding to three types of mammograms with micro-calcifications. 

From the figures, we can see that the micro-calcifications are completely detected but 

with a higher FP than the desired value, 0.01, used in our work. At this point, it suffices to 

say that the performance of the detector is not satisfactory. A detailed discussion of the 

experimental results is postponed to Section 3.3. 

 

3.2.1.2 General Gaussian Detector (GGD) 

Micro-calcifications, especially micro-calcification clusters, have a small size but 

generally do not have a constant intensity, so a Gaussian model as opposed to a constant 

signal model is proposed in this section to be a more reasonable model to represent the 

signal part. Thus, the problem can be considered to be the problem of detection of 

Gaussian signals in Gaussian noise. We refer to this detector as the general Gaussian 
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detector (GGD) [13]. The lesion signal s[m] in (3.1) under this assumption obeys 

Gaussian distribution, i.e., s[m]~N( s , 2
s ). 

     The detected positive pixels (corresponding to lesions) and negative pixels 

(corresponding to the background) in the initial detection are employed to coarsely 

estimate the means and variances of the lesion and background pixel intensity pdfs. 

Under the GGD assumption, );( 1Hyp and );( 0Hyp  obey Gaussian distribution but with 

different variances, and the optimal test is still the likelihood ratio test given in (1.5).The 

optimum test can be expressed in terms of  the GGD test statistic )( yTGGD
 as follows 
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where the threshold 2 is determined from the desired FP .The statistical parameters, 

namely the means and the variances, of the initially detected positive and negative pixels 

can be estimated using the processing window with the pixel under consideration at the 

center of the window. 

     We can see that when 02 s , the first term on the right side of (3.3) tends to zero, and 

(3.3) reduces to a form similar to (3.2), which corresponds to s[m] being a constant signal. 

We also notice that (3.3) is a detector with two thresholds because the test statistic is 

quadratic. Due to the nature of the abnormal mammograms, i.e., lesion pixels have 

intensities that are generally higher than the surrounding normal background tissues and 

the probability of the intensities of lesion pixels falling below the lower threshold is 

extremely small, thus, only the higher threshold is employed to classify the mammogram 

pixels into background and lesions. Therefore, the higher threshold of the test in (1.5) is 

used in our work for the detection task.  
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     The detection results for GGD are shown in Figs. 3.2 (c), 3.3 (c) and 3.4 (c) in Section 

3.3, where all the micro-calcifications are discovered by GGD, with less false positives 

compared with the GBAD. 

 

3.2.1.3 GGD-Based Iterative Detector (GGD_ID) 

Encouraged by the improvement achieved by the GGD over GBAD, we propose an 

iterative method to further improve the performance of GGD by increasingly improving 

the estimation of statistical parameters in an iterative manner. 

     At each step of the iteration, the GGD is designed with the parameters, 

s , b , 2
s and 2

b , corresponding to the background and micro-calcifications, estimated 

from the detection result in the preceding iteration as opposed to keeping them fixed 

during all iterations, which results in different thresholds at each iteration.  

     The procedure of the iterative detection algorithm is described as follows: 

     Initialization: Initial detection using the coarse detector described in Section 3.2.1.1. 

 Step 1: Means and variances of the detected positive (lesion) and negative 

(background) pixels are calculated. 

 Step 2: Detection is performed using the GGD (3.3) with the desired FP and the 

updated parameters, s , b , 2
s  and 2

b , calculated in Step 1. If there are no differences 

in the detected positives and negatives between two successive detections, terminate the 

algorithm, else go to Step 1.  

     The presented GGD_ID algorithm is similar in spirit to Gaussian assumption-based 

dynamic clustering (GADC), in which both background and lesions are assumed to obey 

Gaussian distributions, and the detection (or clustering) and parameter updating are 
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performed in an iterative manner [81]. The difference is that the method presented here 

incorporates an additional constraint in terms of the desired value of FP . The reason we 

include FP in the algorithm is that at each step of the iteration, some detected negative 

pixels have intensities much larger than the mean of the detected background pixels and 

are close to that of the detected lesion pixels. In other words, some pixels have a non-

negligible and, in fact, fairly high probability to belong to the lesion part. Since we do not 

want to miss any lesions, these pixels are classified into the lesion part by the desired 

FP value, such as the value 0.01 used in this work. We will observe in Section 3.3 that the 

iterative detection method presented here performs better than the GADC. 

     The detection results for this detector are shown in Figs. 3.2 (d), 3.3 (d) and 3.4 (d) in 

Section 3.3, where the GGD is employed iteratively four times on the mammograms. 

Experiments show that the method generally converges within 5 iterations. 

 

3.2.1.4 Model Mismatch Analysis 

From the experimental results, we can see that the detection performance has improved 

with the melioration of the detection schemes, but the final results are still not 

satisfactory as seen via inexact lesion contours and large number of false positives. The 

resulting diagnosis may result in additional testing and biopsies for spots on 

mammograms that finally turn out to be harmless, which is a weakness of many CAD 

systems exhibit currently [82].  

     One major reason for the unsatisfactory detection is that the Gaussian assumption does 

not accurately model the background distribution and the resulting test including the 

detection threshold is not optimal. A more accurate model for the background, heavy-
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tailed symmetric stable ( SS ) distribution, was proposed in [83]. For verification, we 

draw the amplitude probability distribution (APD) [84] plots of real-world mammogram 

background data of a mammogram from the MIAS Mini-mammographic Database, 

simulated Gaussian distribution and heavy-tailed SS  distribution data on a log-log scale 

(see Fig. 3.1). Plotting APD is a commonly used method to test impulsive noise. It is 

defined as the probability that the noise amplitude is above some threshold. We can see 

from Fig. 3.1 that for small amplitudes, the simulated heavy-tailed distribution and 

Gaussian distribution provide good fits to the mammogram data. At larger amplitudes 

(i.e., at the tails), the simulated heavy-tailed SS distribution is shown to be a better fit 

than the Gaussian one. In addition, the plots of the mammogram data and the simulated 

heavy-tailed SS  data decay linearly with a constant slope compared with that of the 

Gaussian data. These two observations indicate that the heavy-tailed SS distribution 

[83][84] is a better model than the Gaussian model for the background pixel intensities of 

a digital mammogram. Hence, there exists empirical support for the existence of the 

SS noise distribution in mammogram background (as opposed to the Gaussian 

distribution). Theoretical analysis and more detailed discussion on this can be found in 

[83]. 
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Figure 3.1:  The APD plots of the real-world mammogram background data, simulated Gaussian 

distribution and heavy tailed SS distribution data on a log-log scale. It shows that the mammogram pixel 

intensities obey heavy- tailed SS distribution more closely 

 

     One approach to the design of the optimal lesion detector is to derive the optimal test 

under the Neyman-Pearson formulation when the background is modeled as the 

SS distribution. However, the difficulties in learning the parameters of 

the SS distribution from the real-world data as well as the off-line integration when 

calculating the detection threshold constrains the practical application of the optimal 

SS -based detectors. In the following sections, we will investigate an alternate approach, 

namely the application of SR noise, to the lesion detection problem. We will continue to 

use the suboptimal detectors designed based on the Gaussian noise background 

assumption. Admittedly there is a model mismatch, and we will attempt to overcome the 

deterioration in the detector performance by adding SR noise at the input to the detector. 

We will see that the SR noise-based detector yields significant performance enhancement 

and is easy to implement. 
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3.2.2 Optimum SR Noise-Enhanced Signal Detection 

One of the main goals of this chapter is to develop SR noise-enhanced detection methods 

for lesion detection in mammograms. We first discuss in this section how to find the 

optimum SR noise.  

     Based on the binary statistical decision formulation (1.1)~(1.6) in Section 1.1,  we 

popose to add an appropriate noise n  to the original data y , which yields a new data 

vector z  

                                                                z = y + n                                                           (3.4) 

where n  is either a random vector with pdf (.)np  or a nonrandom signal.  

     The binary hypotheses testing problem for this new observed data can be expressed as 
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 In our work, we consider the SR noise-enhanced fixed detectors whose parameters, 

such as the thresholds, are unchanged before and after adding the SR noise, so the critical 

function  of z  is the same as that of y . Therefore, 
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     And similarly we have 
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where  
NR

ii ydyzpzyF )()()(  , corresponds to hypothesis Hi. 

     Thus, our goal is to find the optimum pdf of the SR noise which is the solution to the 
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following optimization problem. 

                                                       Maximize z
DP   

                                   subject to                                                                                     (3.8) 

                                    y
F

z
F PP   0)( ypn and 1)(  NR n ydyp  

     In this section, we discuss two methods to find the optimum solution to (3.8).  

 

3.2.2.1 Linear Programming 

The first method is based on linear programming.  

     From (3.8) we observe that the objective function z
DP  and the constraints are all linear 

functions of the pdf (.)np . Therefore, we could use linear programming methods to find 

the optimum (.)np . Simplex algorithm [85] has been employed in our experiments for 

the optimization task and we achieved very satisfactory results.  

 

3.2.2.2 Convex Hull Theorem 

The second optimization method is based on the Convex Hull Theorem, which is 

discussed in detail in [53]. We present the fundamental results on SR noise-enhanced 

signal detection using the Convex Hull Theorem [53] in this section.  

     The sufficient condition for improvability of detection via SR noise is given in 

Theorem 1 [53]. 

 Theorem 1: If y
D

y
F PPJ )( or 0)('' y

FPJ when )(tJ is second-order continuously 

differentiable around y
FP , then there exists at least one noise process n with pdf (.)np that 

can improve the detection performance, where )(tJ  is defined as the maximum value of 
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1f  given
0f , i.e., ):sup()( 01 tfftJ  . 

0f  and 1f  are the given values of 0F  and 1F , 

respectively. 

     Theorem 2 [53] determines the form of the optimum SR noise when the detector is 

improvable. 

 Theorem 2: To maximize z
DP , under the constraint that y

F
z

F PP  , the optimum noise 

can be expressed as )()1()()( 21 nnnnnpopt
n   , where  and 1  are the 

occurrence probabilities of the suitable N-dimensional vectors 1n  and 2n , 10   .  

     The approach to determine  , 1n  and 2n is discussed in detail in [53]. They can be 

determined in practice using numerical methods. Since the optimum SR noise is a 

randomization of two deterministic vectors, we call it the “Two-peak SR noise” in this 

chapter. 

     The advantage of a SR noise-enhanced fixed detector is that the parameters, such as 

the threshold, of the original detector do not need to be changed, yet better detection 

performance is expected. In other words, model mismatch can be handled fairly easily by 

using this approach. However, to obtain the optimum SR noise, full knowledge of the 

pdfs under the two hypotheses is required, which in real-world applications is generally 

not available. In the next two sections, we will discuss how to find the suitable SR noise 

for enhancing a suboptimal lesion detector when the knowledge of the pdfs is incomplete. 

 

3.2.3 SR Noise-Enhanced Gaussian Assumption-Based Detection  

In this section, the SR noise-enhanced detection approach is employed for finding lesions 

and enhancing the previously discussed suboptimal detectors based on the Gaussian 

assumption. We perform pixel-by-pixel detection. The suboptimal detectors to be 
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improved result from the model mismatch and the lack of information about the 

mammogram statistics. These detectors are excellent candidates for the application of the 

SR noise-enhanced detection scheme. 

     The basic idea of the SR noise-enhanced detection is to obtain the optimum additive 

SR noise based on the knowledge of the pdfs of the lesion and the background signals. 

Since these pdfs are not known, they need to be estimated from the given mammogram 

itself. The mammogram is modified with the optimum additive SR noise determined 

using the estimated pdf, and then the original suboptimal detector performs the detection. 

Two SR noise-based schemes are presented here for improving lesion detection. 

 

3.2.3.1 Two-Peak SR Noise-Enhanced Gaussian Background Assumption-Based 

Detection (2SR-GBAD)  

In this algorithm, we try to reduce the dependence of the SR noise determination on the 

knowledge of the true pdfs and increasingly enhance the suboptimal detectors through an 

iterative procedure.  

     We first use the SR noise to enhance the GBAD discussed in Section 3.2.1.1.To 

achieve this goal, we perform the coarse detection of the lesion and background using the 

local maxima filter mentioned in Section 3.2.1.1. The detection threshold is calculated for 

the GBAD, which is suboptimum due to model mismatch. Then, the probability densities 

under 1H and 
0H  are obtained using the kernel density estimation method [86] based on 

the detected positives and negatives. The parameters of the SR noise are calculated from 

the suboptimum threshold and the estimated densities. The SR noise is added to the 

original mammogram. Detection is performed on the SR noise-modified data using the 
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original detector. This procedure is repeated in an iterative manner until the difference 

between two successive detection results is very small2. The procedure of the 2SR-

GBAD detection algorithm is described as follows: 

     Initialization: Initial detection using the coarse detector described in Section 3.2.1.1. 

 Step 1: Mean b and variance 2
b of the background are estimated based on the detected 

negative pixels. The detection threshold is updated based on the desired PF as well 

as b and 2
b  using (1.6), where we assume that the background obeys Gaussian 

distribution (see GBAD in Section 3.2.1.1). 

 Step 2:  The pixels are detected with the updated threshold found in Step 1. The 

resulting detected positive and negative pixels are employed for estimating probability 

densities under the two hypotheses using the kernel density estimation method.  

 Step 3:  The updated threshold in Step 1 and the newly estimated probability densities 

in Step 2 are used to determine the SR noise with the method mentioned in Section 3.2.2. 

 Step 4: The mammogram data is modified by adding to the original pixel intensities 

the SR noise determined in Step 3. 

 Step 5:  Detection is performed with the detector updated in Step 1 using the modified 

data from Step 4. If the difference between two successive detection results is very small, 

terminate the algorithm else go to Step 1.  

According to the experiments, a good initialization can be generated by schemes such 

as a maxima filter with an appropriate window size and threshold, such that satisfactory 

detection can still be obtained even when the threshold update procedure in Step 1 is not 

                                                 
2 There could be many methods to define and evaluate the difference. In our work, the difference is defined as the 

ratio of the   number of differently labeled pixels in two successive detections to the total number of pixels in the 
mammogram. The labeled pixel here means a pixel classified as a positive (lesion) pixel or a negative (background) 
pixel. The iterative procedure is terminated when the ratio is smaller than a desired value. 
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performed during the iterations. In other words, the critical function can remain fixed 

throughout the iterations if the initial detection is good enough. We can also perform 

threshold updating every several iterations to improve the computation speed.  

     In a similar manner, we can use the above procedure to design the SR noise-enhanced 

GGD test, i.e., 2SR-GGD, where the means, s and b , and variances, 2
s and 2

b , of the 

detected positives and negatives as well as the desired PF are used together to update the 

threshold in Step 1. The rest of the four steps of 2SR-GGD are the same as those of 2SR-

GBAD. Since GGD is a more accurate model for abnormal mammograms, which can be 

seen in the comparison between the detection results of GBAD and GGD, 2SR-GGD 

yields better performance than 2SR-GBAD, according to the experiments. The 2SR-GGD 

method also shows improvement over GGD detection. Moreover, the presented algorithm 

generally needs fewer iterations than GGD_ID discussed in Section 3.2.1.3 to reach 

similar detection results. Also, the final results of the presented algorithm are better than 

GGD_ID. 

 

3.2.3.2 Two-Peak SR Noise-Enhanced Gaussian Assumption-Based Detection with 

Memory (2SR-GBAD-M)  

The experiments show the improved performance of 2SR-GBAD. In this section, we 

further improve its efficiency and robustness by introducing memory in the detection 

enhancement scheme. 

     As we know, to find the optimum SR noise, the exact knowledge of the probability 

distribution under the two hypotheses and the determination of the solution for a set of 

equations are required. However, in real-world applications, due to incomplete 
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information about the distribution, limitations on the accuracy when solving the 

equations and various contents of mammograms, high efficiency and robustness of the 

SR noise-enhanced detection system may not be achievable using the SR noise-based 

enhancement procedure only once. Multiple applications of the procedure may yield 

further enhancement of detection performance. We, therefore, apply suitably arranged 

multiple two-peak SR noises multiple times to increase the efficiency and robustness of 

the detection system, which we refer to as 2SR-GBAD-M.   

     Formally, for the SR noise-based scheme with memory, we have  

                                                                   z = y + *n                                                    (3.9) 

where *n represents multiple-peak SR noises instead of a single two-peak SR noise added 

to the original mammogram data in Step 4 of the algorithm presented in Section 3.2.3.1, 

and 
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where wk is the weight or probability of occurrence of the kth two-peak SR noise, 

10  kw  and 1
1




r

k
kw . r is the number of two-peak SR noises which in our current 

work equals the number of iterations already run plus 1 (i.e., the SR noise determined 

from the estimated probability mass function (pmf) and the updated threshold at current 

iteration is also included, where pmf is used as the specific form of the probability 

distribution for discrete digital mammogram data), and  

                                )()1()()( 21 kkkkn
nnnnnp

k
                            (3.11) 

Of course, we can change the memory size by using different values of r, but in any case 

the latest r two-peak SR noises should be employed. When r=1, a single two-peak noise 
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is used, and the scheme reduces to the scheme without memory.  

     At each step of iteration, a larger weight, i.e., higher probability is allocated to the SR 

noise calculated from the currently estimated pmfs, and the weights for the rest of the SR 

noises are inversely proportional to the distances between their corresponding pmfs and 

the currently estimated ones. The distance D between the pmfs obtained during the lth 

iteration and the latest estimated pmfs is defined as 
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where 
jlHPMF denotes the pmf under hypothesis Hj obtained during the lth iteration, and 

j=0,1. nB is related to the resolution of the image data. For example, 255nB if an 8-bit 

image is used. 
jeHPMF is the estimated PMF under hypothesis Hj obtained at the current 

iteration. The summation is over all possible image intensity values. This approach to 

incorporate memory has resulted in encouraging results as will be seen in the Section 3.3. 

The detection results of the two-peak SR noise enhanced GBAD tests with memory are 

shown in Figs. 3.2 (f), 3.3 (f) and 3.4 (f), from which we can see the Gaussian 

assumption-based detection suffering from model mismatch is improved through the 

addition of SR noise. Experiments also show that 2SR-GGD-M yields better performance 

than 2SR-GBAD-M. 

 

3.2.4 SR Noise-Based Detection Enhancement Framework 

We have presented a SR noise-based detection enhancement method in Section 3.2.3 to 

reduce the model mismatch resulting from the Gaussian assumption. When models other 

than Gaussian models are used to fit data, there may still exist model mismatches, 
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resulting in detector performance degradation, and SR noise may enhance the detector 

performance. In this section, we extend the SR noise-based detection scheme and present 

a more general SR noise-based detection enhancement framework. This framework 

provides much more flexibility and higher efficiency. In this chapter, we only consider 

the detectors (or classifiers) which we have control of, e.g., we can change their 

thresholds. 

     The framework is developed by modifying the first two steps of the detection 

procedure presented in Section 3.2.3 and is shown as follows. 

 Initialization: Initial detection. 

 Step 1:  Probability density estimates are obtained under the two hypotheses using the 

detected positive (lesion) and negative (background) pixels. The detection threshold (or 

the classifier) is updated according to the estimated probability density information. 

     Step 2: The pixels are classified (or detected) with the updated threshold or the 

classifier in Step 1. The resulting detected positive and negative pixels are employed for 

estimating probability densities under the two hypotheses.  

     Step 3:  The updated threshold or classifier in Step 1 and the newly estimated 

probability densities in Step 2 are used to determine the SR noise with the method 

mentioned in Section 3.2.2. 

 Step 4:  The mammogram data is modified by adding SR noise to the original pixel 

intensities. 

 Step 5:  Detection is performed with the detector or classifier updated in Step 1 using 

the modified data from Step 4. If the difference between two successive detection results 

is very small, terminate the algorithm else go to Step 1.  
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     To improve the efficiency and robustness of the detection framework, the two-peak 

SR noise scheme with memory, which yields multi-peak SR noise, can also be used in 

Step 4. 

     We note that no specific constraints are put on the initialization, threshold or classifier 

updating and pdf estimation methods used in this framework. Any reasonable approaches 

could be employed. In the current work, we illustrate the ability of our framework by 

considering different algorithms for threshold or classifier updating and pdf estimation. 

For initialization, we still use the maxima filter discussed in Section 3.2.1.1. A. For 

threshold or classifier updating, one may use the methods that can converge when there is 

no SR noise added, such as GADC and iterative mode separation (IMS) algorithms [81]. 

IMS is an unsupervised learning pattern classification approach, which employs kernel 

density estimation technique to determine the pdf and performs clustering in an iterative 

manner. For pdf estimation, one may use non-parametric methods, such as kernel density 

estimation, k-nearest neighbor density estimation [86] and Bootstrap methods [87][88], 

etc., because we want to reduce the model mismatch during the pdf estimation as well as 

the dependence of the framework on modeling, and to make the framework more 

generally usable. In this chapter, for performance comparison, we employ the kernel 

density estimation approach and threshold update using (3.13) [89], same as those used in 

IMS. We will observe in Section 3.3 that the SR noise-based method can further improve 

the performance of IMS. The threshold updating is carried out by using 

                        P0p0(y
*)=P1p1(y

*)                                                (3.13) 

where y* is the updated detection threshold during the current iteration. P0 and P1 are the a 

priori probabilities of the detected negatives and positives, which can be estimated by 
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nnP ii /ˆ  , where ni is the number of negatively detected pixels when i=0 and positively 

detected pixels when i=1, and n is the total number of pixels in the mammogram. This 

generates a suboptimal detector because the threshold is determined from the coarsely 

estimated a priori probabilities and pdfs by using the plug-in rule [81].  

     Experimental results show that the SR noise-based algorithm presented in this chapter 

generally needs fewer number of iterations than IMS to reach similar detection results. 

Also, the final results of the SR noise-based algorithm are better than IMS, where the 

final results are attained when the difference between two successive detection results is 

very small. In addition, given a good initialization, satisfactory detection can still be 

obtained even when the threshold or classifier update procedure in Step 1 is not 

performed during the iterations.  

     It can be seen that the above iterative procedure includes a scheme for pdf estimation, 

but in our current detection (or clustering) application, the estimated pdfs are not of 

interest as an end in themselves. Instead, we are more interested in the detection results 

which, of course, depend on the estimate. At the same time, an accurate pdf estimate can 

also be obtained from an accurate detection. So, the detection results are used in this 

chapter as an alternative way to evaluate the performance of the pdf estimation algorithm. 

For comparison, a Gaussian mixture modeling (GMM) [90]-based clustering method 

which performs the detection based on the GMM-fitted pdf is employed with the 

detection results shown in Section 3.3. 
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3.3 Experimental Results 

3.3.1 Experimental Data 

The majority of the mammograms used in the experiments are from Digital Database for 

Screening Mammography (DDSM) [91], and a few of them are from the Mammographic 

Image Analysis Society (MIAS) Mini-mammographic Database [92], so the experimental 

parameters, such as the processing window size, are determined mainly based on DDSM. 

DDSM has 2620 cases available in 43 volumes. A case consists of between 6 and 10 

mammograms, where the grey levels are quantized to 16 bits, and resolution of the 

images is 50 microns/pixel. The MIAS Database includes 330 mammograms with the 

resolution being 200 microns/pixel. The location and types (malignant or benign) of the 

mammogram lesions are identified by expert radiologists and used as the ground truth in 

our work. In this chapter, our emphasis is on location detection based on the ground truth. 

     We choose three types of representative abnormal mammograms with micro-

calcifications (clusters) including one having homogeneous background with a small 

number of isolated micro-calcifications, one having homogeneous background with a 

large number of micro-calcifications (clusters) and one having inhomogeneous 

background with a moderate number of micro-calcifications (clusters), respectively. 

These three types of mammograms cover a broad spectrum of mammogram micro-

calcification (cluster) cases. Seventy five images selected from the three types of 

mammograms, 25 for each type, are employed to test the algorithms.  

     Micro-calcifications are very small, their sizes are in the range of 0.05–1.00mm [93], 

and the average is 0.3mm. Those smaller than 0.1 mm cannot be easily distinguished in 

the film-screen mammography from the high-frequency noise [94]. The width of the 
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majority of the micro-calcifications in our study is in the range between 0.25 and 0.5 mm. 

A micro-calcification cluster is considered to be a group of 3 to 5 or more micro-

calcifications, 5 mm apart [95]. We choose the processing window size of 49 by 49 

which is based on experiments that we conducted as well as the characteristics and the 

size of the lesions. Our experiments also indicated that the detection results were not very 

sensitive to the choice of window size provided that the window size was in the range 

between 31 and 61 when processing the data.  

     Since we carry out pixel by pixel detection, any isolated detected positive should not 

be considered to be a lesion due to the micro-calcification size mentioned above as well 

as the fact that the high-frequency noise may have serious influence on an individual 

pixel. Therefore, a micro-calcification (cluster) is declared to be detected only if at least 4 

by 4 positively detected pixels are in a clump.  

 

3.3.2 Performance Comparison and Analysis 

In this section, performance of several lesion detection algorithms is compared and 

analyzed. These algorithms include GBAD, GGD and GGD_ID discussed in Section 

3.2.1, GADC, 2SR-GBAD-M, IMS, GMM-based clustering method, high order statistics 

method based on local maxima detection and adaptive wavelet transform (HOSLW) [96] 

and the SR noise-based detection enhancement framework using a procedure similar to 

IMS, i.e., SR_IMS. 

     The first four algorithms are based on the Gaussian distribution assumption and are 

parametric approaches. GMM is a semi-parametric technique for pdf estimation, in which 

the superposition of a number of parametric densities, e.g., Gaussian distribution, are 
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used to approximate the underlying pdf. It offers a useful compromise between the non-

parametric methods mentioned in Section 3.2.4, and the parametric estimation methods, 

such as those mentioned above. For the clustering application, we first fit the GMM 

given in (3.14) by using the Expectation-maximization algorithm [90] 

                        



g

i
ii yfPyf

1

)()(                                                 (3.14)                              

where )( yf is the density of the observation y, and )(yfi are the component densities of the 

mixture. g is the number of components, which can be preset or automatically determined 

according to the data statistics. In this chapter, we set g=2 to facilitate two-class 

clustering. iP  are the mixing proportions or weights,  10  iP  (i=1,…,g) and 



g

i
iP

1

1.   

     Clustering is performed by using the plug-in rule given in (3.15) based on the Bayes 

rule [90] 

                                                      iyR )(  if )(ˆˆ)(ˆˆ yfPyfP jjii                                        (3.15) 

for j=1,…,g, where iyR )(  denotes that the allocation rule )(yR  assigns the observation 

y to the ith component of the mixture model.
iP̂  and )(ˆ yfi

are the fitted values of iP  and 

)(yfi , respectively. 

     The HOSLW algorithm is proved to have superior performance compared with other 

existing methods [97] in terms of efficiency and reliability. In this method, local maxima 

of the mammogram are determined as the lesion candidates, and the adaptive wavelet 

transform is employed to generate subbands which permit the rank of these maxima in 

the subband mammogram using a higher order statistical test for lesion detection.   

     For fairness, we use the same initial detection for the algorithms compared in the 

experiments. In 2SR-GBAD-M and SR_IMS, the weights of the two-peak SR noise 
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calculated from the currently estimated pdfs are set to 0.5. We have carried out the 

experiments using 75 images and present the results of five detection/classification 

algorithms in Table 3.1, in terms of true-positive fraction (TP) and false positives per 

image (FPI) [98], where TP is defined as the ratio of the number of the true positive 

marks to the number of lesions and FPI is defined as the average number of false 

positives per image. In our work, if a detected positive area has more than 50% overlap 

with the ground truth area, we consider the detected area to be a TP lesion. Otherwise, we 

consider it to be a false positive. This is the same definition as used in [99]. 

     We first present the qualitative evaluation of these algorithms. Figs. 3.2, 3.3 and 3.4 

show the experimental results for the three ROIs cut from three representative 

mammograms, where the detected positive pixels are labeled with small dots.  

     In the experiment shown in Fig. 3.2, a fixed threshold is employed in the 2SR-GBAD-

M and SR_IMS algorithms throughout the iterations. The complexity of the mammogram 

used in these experiments is the lowest compared with the other two to be discussed next. 

From the figures, we can see that the GBAD and GGD methods find all the lesions, but at 

the same time generate many false alarms (see Figs. 3.2 (b) and 3.2 (c)). GGD_ID (Fig. 

3.2 (d)) is a more robust method. It improves the detection of GGD and performs better 

than the GADC and IMS methods shown in Figs. 3.2 (e) and 3.2 (g), but it still fails to 

reduce the false positives satisfactorily. The advantage of the GADC is that it converges 

quickly, generally in no more than 8 iterations in our experiments, while IMS may 

converge to local extrema. HOSLW method (Fig. 3.2 (h)) can find the lesions efficiently, 

but it fails to determine lesion shape which plays a very important role in discriminating 

the benign tumors from the malignant ones. Moreover, its detection performance depends 
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on how accurately we can estimate the number of lesion pixels, which is generally not 

available or known in real-world cases. These detectors suffer from model mismatch and 

parameter suboptimality resulting in suboptimum detection threshold, and their 

performances are degraded. The GMM-based detector finds all the lesions but still does 

not avoid the high PF (see Fig. 3.2 (i)), which is due to the inaccuracy when GMM is 

used to fit the mammogram data. In contrast, the presented 2SR-GBAD-M and SR_IMS 

algorithms yield good detection results in terms of lesion localization, lesion contour 

exploration and PF reduction (see Figs. 3.2 (f) and (j)), which demonstrates the capability 

of the SR noise-based method for enhancing the detectors with model mismatch and 

parameter suboptimality. Comparing Figs. 3.2 (f) and (j), we can see that SR_IMS 

performs a little better than 2SR-GBAD-M in reducing false alarms and determining 

lesion boundaries. 

     

                   (a)                            (b)                           (c)                            (d)                           (e)                                     

     

                   (f)                            (g)                           (h)                            (i)                            (j) 

Figure 3.2: Original abnormal mammogram and the detection results (Abnormal mammogram type 1: 

homogeneous background with small number of isolated micro-calcifications). (a) Original mammogram 

with micro-calcifications; (b) GBAD; (c) GGD; (d) GGD_ID; (e) GADC; (f) 2SR-GBAD-M; (g) IMS; (h) 

HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with dots. 
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     Fig. 3.3 shows a more complex case, where both isolated micro-calcifications and 

crowded clusters exist and the number of lesions is large. We can see that still the 2SR-

GBAD-M and SR_IMS algorithms yield better detections with clearer lesion contours 

and less false positives (see Figs. 3.3 (f) and 3.3 (j)). Compared with GBAD and GGD in 

Figs. 3.3 (b) and 3.3 (c), GGD_ID and GADC method shown in Figs. 3.3 (d) and 3.3 (e) 

perform better but still with high PF’s. IMS fails to find some lesions (see Fig. 3.3 (g)). 

HOSLW (Fig. 3.3 (h)) does not give us much useful information about the lesion 

positions in this crowded micro-calcifications (clusters) case. This is because its detection 

operation is performed in subband images which have a quarter of the size of the original 

mammogram, so the area of the detected positives will be four times of those in the 

subband images when the detection result is shown in the original mammogram. When 

the micro- calcifications (clusters) are close to each other, their boundaries and locations 

are hard to determine. GMM performs better than the rest of the methods (except for Figs. 

3.3 (f) and 3.3 (j)), but still generates many false alarms. 

     

                (a)                             (b)                             (c)                              (d)                            (e)                                       

     

                (f)                             (g)                             (h)                              (i)                              (j) 

Figure 3.3: Original abnormal mammogram and the detection results (Abnormal mammogram type 2: 

homogeneous background with large number of micro-calcifications (clusters)). (a) Original mammogram 

with micro-calcifications; (b) GBAD; (c) GGD; (d) GGD_ID; (e) GADC; (f) 2SR-GBAD-M; (g) IMS; (h) 

HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with dots. 
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     Fig. 3.4 is the most complex case, where the background distribution is 

inhomogeneous and some background pixels have their intensities approaching the lesion 

pixels. It is hard to model the background using just a univariate probability distribution. 

Finite mixture models [90] may be a choice, but to determine the model type and 

parameters is also a challenging task. Also, their performance could be deteriorated by 

the non-stationary nature of the images. Therefore, model mismatch in this type of 

images is more serious and unavoidable. In our experiment, we still use univariate 

Gaussian distribution to model the pixel intensity distributions of the background and 

lesion, respectively, through which the model mismatch is simulated. From Fig. 3.4, we 

can see that the performance of all the detectors degrades to some extent with higher PF 

and lower PD values as well as more imprecise lesion contours compared with the 

previous two cases. But the presented 2SR-GBAD-M and SR_IMS algorithms (see Figs. 

3.4 (f) and 3.4 (j)) still stand out with better detection results, which again demonstrate 

their efficiency in reducing the negative influences of model mismatch and suboptimum 

parameters.  

     Next, we present the results of quantitative performance evaluation. We select three 

methods to compare with 2SR-GBAD-M and SR_IMS, and present the results in Table 

3.1. The reason we choose GADC and IMS is that they are all classical pattern 

classification methods and also based on iterative procedures, like 2SR-GBAD-M and 

SR_IMS. GADC may suffer from model mismatch due to the Gaussian assumption and 

IMS may have suboptimum threshold value due to the inaccuracy of the pdf estimation 

when processing mammogram data. Additionally, HOLSW is said to be superior to 

several micro-calcification detectors [97]. 
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               (a)                             (b)                              (c)                             (d)                             (e)                                       

        

                (f)                             (g)                             (h)                              (i)                              (j) 

Figure 3.4: Original abnormal mammogram and the detection results (Abnormal mammogram type 3: 

inhomogeneous background with moderate number of micro-calcifications (clusters)). (a) Original 

mammogram with micro-calcifications; (b) GBAD; (c) GGD; (d) GGD_ID; (e) GADC; (f) 2SR-GBAD-M; 

(g) IMS; (h) HOSLW; (i) GMM-based detection; (j) SR_IMS. The detected positive pixels are labeled with 

dots.     

TABLE 3.1 
DETECTION PERFORMANCE OF FIVE ALGORITHMS  

                 METHODS 
   
RESULTS 

GADC IMS 2SR-G SR_I HO 

TP 

Range [0.61,1] [0.58,1] [0.80,1] [0.81,1] [0.81,1] 

Mean 0.89 0.90 0.93 0.94 0.94 

Standard 
deviation 

0.25 0.28 0.12 0.11 0.11 

FPI 

Range [0, 20] [0, 17] [0, 9] [0, 7] [0, 14] 

Mean 8.16 7.89 4.91 3.12 5.22 

Standard 
deviation 

6.18 7.08 3.94 2.95 4.82 

2SR-G: 2SR-GBAD-M; SR_I: SR_IMS; HO: HOLSW. 
 

     TP and FPI are employed as the metrics. The means of TP and FPI represent the 

average performance of each method, and their standard deviations are used as a measure 

of the robustness of each method when applied to different types of images. A better 

method is identified to be one with higher mean TP value but lower mean FPI value as 

well as lower TP and FPI standard deviations.  
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     Since HOLSW requires the knowledge of the number of lesions, which is generally 

not available in real-world applications, we adjust the lesion number manually, such that 

the TPs of HOLSW and SR_IMS for each image are the same, and then FPI is employed 

as a criterion for their performance comparison. 

     From Table 3.1, we can see that 2SR-GBAD-M and SR_IMS achieve superior 

performance than the classical methods, GADC and IMS, both in true positive detection 

and in false positive reduction. HOLSW can attain a similar true positive detection 

performance as 2SR-GBAD-M and SR_IMS, but it is worse than the two SR noise-

enhanced detectors in terms of FPI reduction. 2SR-GBAD-M and SR_IMS have similar 

detection results, (actually SR_IMS performs a little better) but SR_IMS yields more 

satisfactory results in terms of FPI reduction. This is because 2SR-GBAD-M updates the 

threshold based on the Gaussian assumption, and is, therefore, affected by the model 

mismatch.     

     It should be emphasized that the detection performance of our detectors may be 

further improved if image enhancement techniques are employed before detection [100] 

and post-processing methods, such as pattern classifiers embedded with other lesion 

features, are used after the detection procedure. 

 

3.4 Summary 

Automatic detection techniques for micro-calcifications are very important for breast 

cancer diagnosis and treatment. Therefore, it is imperative that the detection techniques 

be developed that detect micro-calcifications accurately. This chapter first developed a 

lesion detection approach based on SR noise for enhancing the Gaussian assumption-
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based detectors which suffer from model mismatch, and furthermore presented a more 

general SR noise-based detection enhancement framework. Comparative performance 

evaluation was carried out via experiments between the presented SR noise-based 

detection enhancement schemes and several detection and classification techniques with 

three types of representative abnormal mammograms. The results show that the presented 

algorithm and the framework resulted in highly encouraging performance in terms of 

flexibility, detection efficiency and system robustness, which demonstrates SR noise’s 

capability of enhancing the suboptimal detectors and supports its real-world CAD 

application. 
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CHAPTER IV 
 

IMAGE ENHANCEMENT BASED ON STOCHASTIC 

RESONANCE NOISE AND SELECTIVE 

ENHANCEMENT FRAMEWORK 
 

In this chapter, we present two image enhancement approaches. In the first approach, we 

add a suitable dose of noise to the lower quality images such that the performance of a 

suboptimal image enhancer is improved without altering its parameters. In the second 

approach, we present a framework for image enhancement that is based on the selective 

enhancement technique. Several enhancement algorithms under this framework are 

developed. Mammogram enhancement is used as an example to illustrate the efficiency 

of the framework.  

 

4.1 Introduction 

As described in Section 1.2, there are mainly four types of image enhancement 

algorithms. Many popular enhancement algorithms more or less have some disadvantages, 

which restrain their real-world applications. For example, the standard histogram 

equalization method [2] processes images globally, thus often causes intensity saturation 

and the enhanced image is far from a natural one. Its improved versions, such as bi-

histogram equalization (BiHE) [15] and contrast limited adaptive histogram equalization 

(CLAHE) [16], cannot achieve the naturalness of an original image. Median filtering is a 

standard spatial operation. It often blurs the images and yields poor results when the 

noise is Gaussian or the number of noise pixels in the processing window is large [18]. 
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Another popular spatial operator, adaptive Wiener filter [18], often results in over-

smoothness on the edge. According to [101], a comparative analysis of transform based 

image enhancement shows that the existing transform-based enhancement techniques 

have some commonly occurring problems, such as the introduction of artifacts and partial 

enhancement. In addition, enhancement algorithms attempting to incorporate human 

visual system (HVS) information are well-motivated, but the unsuitable usage of the 

HVS properties or the simplified HVS computational models often degrade their 

performance. 

     In this chapter, we investigate two enhancement approaches to improve image quality. 

In the first approach, we attempt to improve image enhancement via the use of stochastic 

resonance (SR) noise. In recent years, image enhancement methods based on SR noise, 

such as [102][103] and some work from our group, such as those presented in the 

previous chapters in this dissertation and the one presented in [104], have appeared in the 

literature. These methods improve image quality by introducing appropriate noise into 

the image. But they either have complicated procedures to determine suitable SR noises 

or are only suitable for enhancing specific image contents. In Chapter 3, we have 

developed a novel approach to improve the performance of suboptimal breast cancer 

detection systems by adding suitable noise to the mammograms. In these SR noise-based 

image processing work presented in [102]~[104] and Chapter 3, however, HVS 

characteristics during the processing procedures were not considered. In this Chapter, we 

present a new practical approach for image enhancement based on SR noise, where a 

systematic methodology is developed to determine SR noise parameters and promising 

results are shown via a number of illustrative examples. We first formulate the image 
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enhancement problem as a constrained multi-objective optimization (MOO) problem. 

Then, we investigate the principle of the SR noise-refined image enhancement scheme, 

and present an image enhancement system. We also present the method to determine the 

optimum parameters of the SR noise based on MOO, where a weighting scheme is 

employed to mimic HVS preferences while selecting solutions from the dominant 

solution set. In our work, two objective functions are discussed to illustrate the capability 

of the enhancement scheme, and the experimental results together with performance 

evaluation are provided in Section 4.2.4. 

     In the second approach, we present a selective enhancement framework based on 

image segmentation techniques, which starts with region of interest (ROI) selection, and 

is followed by ROI enhancement and background suppression. We first introduce the 

enhancement framework. Then, we introduce thresholding-based enhancement methods, 

including two basic enhancement techniques, i.e. weighted mean gray value- and fuzzy 

cross-over point-based thresholding, and two improved methods, a joint enhancer and an 

iterative enhancement method. After that, we discuss statistical detection-based 

enhancement schemes. Finally, we show the experimental results and the performance 

evaluation of the presented approach in Section 4.3. 

 

4.2 Noise-Refined Image Enhancement Using Multi-Objective 

Optimization 

4.2.1 Problem Formulation 

The problem of improving the quality of images from degraded observations is an ill-
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posed problem. Formally, we have the degraded image model [105], 

                             ))(( XHY                                             (4.1) 

where X is the original image, and Y is the observed and degraded image; H corresponds 

to a shift-invariant point spread function (PSF). The blurred image H(X) is produced and 

recorded by a sensor, which is often accompanied by a nonlinear transformation of H(X), 

i.e., )( . Also, noise  can be introduced by the sensor.  denotes the process by which 

measurement noise gets introduced, e.g., additive or multiplicative noise. 

     In this section, we first formulate the image enhancement problem as a MOO problem, 

where two objective functions )ˆ(Xf  and ),ˆ( YXg  are optimized at the same time. 

Formally, we want to 

1. maximize )ˆ(Xf   

                                                        2. maximize ),ˆ( YXg                                                (4.2) 

where )ˆ(Xf  denotes the desired enhancement characteristic of the enhanced image X̂ , 

and ),ˆ( YXg  is the measure of similarity between the enhanced image and the degraded 

one, to avoid over-enhancement. The specific objective functions used in this work will 

be discussed in Section 4.2.4 where several illustrative examples are also 

presented. )(ˆ YDX  , and D is an existing image enhancement algorithm. Suppose 

YY  and XX ˆˆ  , where Y  is a subset of LKR  , and X̂ is a subset of '' LKR  . R is the set of 

real numbers. (Here, we assume that the pixel intensities of an image can only take 

certain values, e.g., the integers between 0 and 255, which is a subset of R.)  LK   and 

'' LK  are the image sizes of the original image and enhanced image, respectively. In this 

work, without loss of generality, we assume that 'KK   and 'LL  . Obviously, X̂ depends 
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on Y for a given algorithm D such that  YYYDXXX  ),(ˆˆˆ . The two objective 

functions f and g can be considered as quality metrics which evaluate the performance of 

the enhancer D. To regularize the enhancement result and improve the performance, we 

further introduce a constraint in the MOO problem, i.e., bYXg ),ˆ( , that is, we require the 

processed image to have at least certain similarity to the observed image, which also 

determines the feasible set. Thus, we have the constrained MOO problem 

1. maximize )ˆ(Xf  

                                                         2. maximize ),ˆ( YXg  

                                                         subject to bYXg ),ˆ( .                                            (4.3) 

where the selection of the constraint b will be discussed in Section 4.2.4. The feasible set 

of the constrained MOO problem is denoted by FX̂ , and 

}),ˆ(,),(ˆ|ˆ{ˆ bYXgYYYDXXX F  . 

     In the current image enhancement research, lots of efforts have been made to model 

the imaging process (4.1) and design the algorithm D to improve the image quality. 

These are very challenging tasks, because the mismatches between the assumed model 

and the actual underlying data features and the imaging process are very difficult to avoid, 

which often result in poor quality of the processed images. 

     Rather than developing new models and algorithms to obtain better enhancement, in 

this work we investigate how to improve an existing image enhancement algorithm D 

while still keeping the structure including the parameters of D unchanged. From the 

formulation of the constrained MOO problem (4.3), we can see that for fixed f, g and D, 
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one important way to improve the enhancement is to alter the feasible set of solutions FX̂ , 

such that the resulting set possibly contains better solutions. This could be achieved by 

introducing suitable SR noise into the observation Y. The performance improvement will 

be achieved by finding the solution of problems posed in (4.9) and (4.11) from the altered 

feasible set. Details of this process will be discussed in the next two sections. 

 

4.2.2 Stochastic Resonance Noise-Refined Image Enhancement 

In this section, we present the principle of SR noise-refined image enhancement, and 

describe the scheme and system for improving the image enhancement performance. 

 

4.2.2.1 Principle of SR Noise-Refined Image Enhancement 

Given a degraded image Y=y, we obtain the unique enhanced version )(ˆ YDX  employing 

the existing enhancer D. Suppose X̂ satisfies bYXg ),ˆ( , then the feasible set FX̂ includes 

only one element )(ˆˆ yDxX  , and XX F ˆˆ  . Our goal is to enlarge FX̂ via the introduction 

of SR noise. This enlarged FX̂ may potentially contain solutions that are better than )(YD . 

In this chapter, we only consider the additive SR noise case. Other ways of introducing 

SR noise, such as multiplicative SR noise, can be analyzed in a similar manner. 

     Suppose there is a SR noise n with the probability density function (pdf) )(nPn , and 

after adding the SR noise into Y  in a pixel-wise manner, we obtain the modified image 

data Z, 

                                                               NYZ                                                          (4.4) 
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     The enhancer D is applied to the modified data Z to obtain the modified enhancement 

result 

                                                        )()('ˆ NZDZDX                                                   (4.5) 

where N is a SR noise matrix with the same size as Y, and the notation )(NZ  explicitly 

indicates that Z is a function of N. Each element (pixel) of the LK  matrix N of the SR 

noise n is generated using the pdf )(nPn
 in an independent manner. In our work, we 

assume that the added SR noises are independent for different pixel positions, so that the 

pdf of N can be written as 

                                                      





LK

i
inN nPNP

1

)()(                                                     (4.6) 

where i is the pixel index of an image.   

     Let   LKRNNZD  |)(  be the set of all enhancement results of the original 

algorithm D using the SR noise-modified images with all the possible )(nPn
 that are 

candidates for use as SR noise.   includes the original single element set 

 yYYDXXX  ),(ˆ|ˆˆ  when no SR noise is added. Thus, for a given Y=y, we extend the 

set X̂  to a larger set 'X̂  by adding SR noise. So the original constrained MOO problem 

will have a potentially 3  larger feasible set 'ˆ'ˆ XX F  , where 

  }),'ˆ(,,)('ˆ|'ˆ{'ˆ bYXgyYNZDXXX F  , from which better solutions might be generated. 

                                                 
3 It is possible that some elements of  generated by adding SR noise may not satisfy bYXg ),ˆ( . But if there exists at 

least one enhanced image which satisfies the condition, we obtain a larger feasible set and one or more elements of 
this set might yield better solutions than the original one without SR noise, in terms of the values of the two objective 
functions. 
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Here the term “better solutions” corresponds to a “more dominant” Pareto-optimal front4 

for the constrained MOO problem (4.9) to be discussed later. We call this scheme the 

single SR noise refinement scheme as a single realization of N is employed. 

     Since the larger feasible set provides more chances to find a better image 

enhancement result, we may further improve the SR noise refinement scheme by creating 

an even larger feasible set which includes 'ˆ FX  and may yield an “even more dominant” 

Pareto-optimal front. A convex combination using )(NPN  is proposed in this chapter for 

the task. Formally, we have  

                                                       
 

N

N dNNZDNPZD )()()('                                             (4.7) 

     Let   LK

N N RNdNNZDNPZDZD   ,)()()('|)('   be the set of all )(' ZD , which 

includes   and may be viewed as a “convexified” version of  )(NZD  on LKR 
. Thus, 

through randomization we further extend the set 'X̂  to a larger set ''X̂  and obtain 

potentially an even larger feasible set ''ˆ FX  of solutions, i.e., enhanced images, 

where ''ˆ''ˆ XX F   and   }),''ˆ(,,)()()('''ˆ|''ˆ{''ˆ bYXgyYdNNZDNPZDXXX
N

N
F   . We call this 

scheme the multiple SR noise refinement scheme, since from (4.7) we can see that 

multiple SR noise matrices N need to be generated to produce the combination 

coefficients )(NPN
. We will employ this scheme in the chapter to refine the enhancement 

performance. The multiple SR noise matrices are generated by repeating the procedure 

for yielding single realization of matrix N in the single SR noise refinement scheme 

                                                 
4 The Pareto-optimal front is a collection of all the solutions which are not dominated by any other solutions.  A 
solution

1X  is said to dominate another solution 
2X ,  if and only if )()( 21 XfXf   and ),(),( 21 YXgYXg  , or 

vice versa .  
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multiple times, i.e., multiple realizations of the SR noise matrix with the pdf )(NPN
. 

     In real-world applications, it is not easy to find the exact result of (4.7) since the 

integration of D over )(NPN  may be intractable. Therefore, we use the empirical average 

to approximate the expectation over )(NPN
, which is shown in (4.8). 

                                                         
 




M

i
iEmp NZD

M
ZD

1

)(
1

)('                                             (4.8) 

where M is the number of the realizations of the SR noise matrix, N1, N2,…, NM , with pdf 

)(NPN
. Given enough number of SR noise realizations, we may obtain sufficiently 

accurate )(' ZD  [106]. Another advantage of using empirical average is that the output of 

the averaged enhancement result has the same expected output as that using only one SR 

noise realization, but with a smaller variance [104]. This scheme is employed for system 

realization in the next section. 

 

4.2.2.2 SR Noise-Refined Image Enhancement Scheme and System 

So far, we have discussed the principle of SR noise-refined enhancement and the 

underlying mechanism. However, to determine the conditions for improvability of an 

algorithm and to find the pdf of the optimum SR noise for an improvable algorithm are 

tough tasks, since they depend on the properties of D, f, and g and on the observed image. 

So, instead of finding the form of optimum SR noise to achieve the maximum 

performance improvement for any specific properties as mentioned above, in this chapter, 

we pre-decide the form of the SR noise and then determine its optimum parameters 

which yield maximum performance improvement. Of course, this procedure may allow 
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us to only find the sub-optimum SR noise because we fix the form of the SR noise. But it 

makes the procedure more practical, since the knowledge of the required properties in 

real-world applications may not be available or very difficult to determine. Once more 

information, like the monotonicity, continuity and convexity properties of D, f and g and 

the observation, is available, more analytical results may be obtained and the 

performance could be further improved by determining the form of the optimum SR 

noise pdf.  

     The SR noise-refined image enhancement scheme can be summarized as follows. We 

choose the form of a suitable SR noise from a SR noise pool which contains several SR 

noise candidates with controllable parameters, e.g., Gaussian noise with adjustable mean 

and variance. The Pareto-optimal front, consisting of the SR noise-modified non-

dominant solutions, is determined by using a MOO algorithm for the constrained MOO 

problem (4.9). The final solution of the enhanced image and, therefore, the optimum 

parameters of the SR noise are selected by optimizing a cost function shown in (4.11), 

which will be discussed in the next section.  

1. maximize  )(' ZDf  

    2. maximize  YZDg ),('  

                                                      subject to   bYZDg ),(' .                                          (4.9) 

where the optimization is with respect to the parameter n  of the SR noise distribution 

)(nPn
.  

     The SR noise-refined image enhancement system is shown in Fig. 4.1, where the 

image quality is evaluated in terms of the two objective functions and the constraint. It 
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should be noted that the SR noise can be introduced either in spatial domain or in 

transform domain. The original enhancers can be pixel, spatial or transform operators, 

making the SR noise-refined enhancement system applicable to improving a wide variety 

of algorithms. If the SR noise is introduced in spatial domain, i.e., introduced into the 

original image directly, there is no “Transform” block in Fig. 4.1, and YY ' . If the SR 

noise is introduced in the transform domain, Y  in (4.4) is replaced with 'Y , 

and )(ˆ YDX  mentioned above is changed to )'(ˆ YDX  , where 'Y is the transformed image 

without SR noise. The image enhancers in Fig. 4.1 carry out image enhancement in the 

transform domain and then transform back the processed image to spatial domain once 

the enhancement is done. In Fig. 4.1, satisfaction with the result in the decision block 

means that there exists 
n  which is the solution of the problems posed in (4.9) and (4.11). 

As mentioned before, M realizations of the SR noise matrix, N1, N2,…, NM , with pdf 

)(NPN
, are employed, which yield M modified images, Z1, Z2,…, ZM, where Zi= Y+Ni, 

i=1,2,…,M. Each image is enhanced by the original enhancer, D, to yield M enhanced 

images,  )( 1NZD ,  )( 2NZD ,…,  )( MNZD . The empirical expectation as discussed earlier is 

found by the averaging operation.  
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Figure 4.1: SR noise-refined image enhancement system. 
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4.2.3 Selection of Solution Based on Human Visual System Preferences 

In general, the analytical solution to the multiple-step image processing problem shown 

in Fig. 4.1 is not easy to obtain, which is highly dependent on the properties of D, g, f as 

well as on the content of a specific image. Therefore, we employ a genetic algorithm-

based MOO method, non-dominated sorting genetic algorithm–II (NSGA-II) [107], to 

find the Pareto-optimal front for the problem posed in (4.9). For illustration, Fig. 4.2 

shows a typical Pareto-optimal front of the constrained MOO problem (4.9) after 

introducing SR noise into the image, where the solid segment of the front corresponds to 

the solutions satisfying the constraint in (4.9) and the dashed line corresponds to the 

solutions violating the constraint. Points A and B correspond to two types of image 

contents, 1Y and 2Y , respectively. They represent two original solutions without SR noise, 

where point A is below the front and point B is on the front. The original enhancement 

results corresponding to the two solutions could be improved if (4.11) is satisfied, even if 

there is a solution lying on the Pareto optimal front. This is because we will use a non-

dominance criterion to select the solution from the Pareto-optimal front, which 

incorporates HVS information and will be discussed next.  

     We note that the point corresponding to the original enhancement will not lie above 

the front. This is because the Pareto-optimal front consists of all the dominant solutions. 

If the solution corresponding to the original enhancement result (without SR noise) 

dominates the other solutions and, therefore, lies on the Pareto-optimal front such as the 

point B in Fig. 4.2, we can set the SR noise equal to zero. 
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 )(' ZDf

 yYZDg ),('


    111 ),(,)(: YYDgYDfA

b

     222 ),(,)(: YYDgYDfB

 

Figure 4.2: A typical Pareto-optimal front of the constrained MOO problem after introducing SR noise. 

 

     Admittedly, it cannot be guaranteed that all the solutions from the Pareto-optimal 

front generated by adding SR noise can yield better enhancement results than the original 

enhancer in terms of human visualization. Therefore, we need a criterion and a strategy to 

select the solutions from the front which correspond to better quality of the enhanced 

image. In our work, we employ an HVS-weighting scheme for the selection of solutions, 

which is described as follows.  

     According to the previous discussion, we observe that the two objective functions 

represent different image characteristics which are optimized to enhance visualization by 

humans, so a combination of the objective functions may take into account these 

characteristics at the same time. We also note that different people have different visual 

preference for the same object. So, to include human preferences while selecting the 

solution from the Pareto-optimal front, we use a solution selection function, in terms of a 

linear combination of the two objective functions, as the criterion to evaluate the quality 
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of an image and to select the solutions from the front. More specifically, we weigh the 

two objective functions with non-negative real numbers, that is, g is multiplied by a 

weight 1w  and f  is multiplied by 2w , where 1,0 21  ww  and 121 ww . Thus, we have 

                                              ))('()),('(,),(' 2121 ZDfwYZDgwwwZDL                      (4.10)  

where 1w and 2w  denote the tradeoff between the consistency and the desired 

characteristics of the enhanced image. A larger value of 2w indicates that HVS prefers the 

desired image characteristic, while a larger value of 1w  represents the HVS’s preference 

for consistency. A larger value of L denotes better quality of the enhanced image for a 

specific HVS preference. Therefore, a solution from the Pareto-optimal front, and 

correspondingly the parameters of the SR noise, is considered to represent an improved 

performance over the original enhancer for a specified HVS preference, i.e., a specified 

( 1w , 2w ) pair, if (4.11) is satisfied.    

                                                      0,),(,),(' 2121  wwYDLwwZDL                             (4.11) 

where   ))(()),((,),( 2121 YDfwYYDgwwwYDL  , corresponding to the enhancement result 

when no SR noise is introduced.   

     We can see that this selection scheme is different from the one based on the 

dominance criterion in which we require    )()(' YDfZDf   and    YYDgYZDg ),(),('   

(or,    )()(' YDfZDf   and    YYDgYZDg ),(),('  ) at the same time. The advantage of this 

scheme is its flexibility in terms of its ability to select solutions which emphasize the 

desirable goals, where the linear combination is employed to consider the different 

characteristics at the same time. Moreover, if the original enhanced image already has 

some acceptable characteristic which does not need to be refined further, this scheme 
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permits us to improve other desired image attributes while still maintaining the image 

characteristic within an acceptable level. As we will observe in the experiment involving 

SR noise-refined CLAHE in Section 3.2.4, the original CLAHE performs satisfactorily in 

maintaining the similarity between the enhanced image and the degraded one, which can 

be seen in Fig. 4.4 (b). Therefore, in this case, the SR noise is mainly employed to 

improve other characteristics of the enhanced image, such as the contrast information 

represented by f, while the similarity is still maintained to an acceptable extent. Another 

advantage of the selection scheme is that it can reduce the solution size dramatically and 

take into account different preferences of the HVS. If additional information about the 

HVS preferences becomes available, in terms of new weights, it is not necessary to rerun 

the algorithm. We can choose an alternative solution from the non-dominant solution set 

obtained from the MOO which is best suited for the new weights. 

 

4.2.4 Illustrative Examples of Noise-Refined Image Enhancement  

For illustration, in this section we employ a specific objective function pair to illustrate 

the efficiency of the proposed scheme. As mentioned in Section 2.1, we investigate four 

types of SR noises in this chapter. They are Gaussian SR noise (GaSR), uniformly 

distributed SR noise (UnSR), triangle SR noise (TrSR) and two peak SR noise (TwSR) 

[53].  

 

4.2.4.1 Objective Function Design  

One objective function is employed to maintain the consistency between the observation 

and the enhanced image, and to reduce over-enhancement, which is evaluated by the 
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structural similarity (SSIM) index [108] in this work. SSIM measures the similarity 

between the processed image and the original one using image structure information,  
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where 
X̂

 , Y and 
X̂

 , Y as well as 
YX̂

  denote mean intensity and contrast as well as the 

correlation coefficient of images X̂ and Y, respectively; 1C and 2C are constants used to 

avoid instabilities for very small  or  . The value of ),ˆ( YXSSIM is between 0 and 1. A 

higher value means more similarity between two images.  

     The contrast sensitivity information of an image provides an important indication of 

image quality. We, therefore, expect that the enhanced image contains high contrast 

sensitivity information. We represent the contrast sensitivity information by a novel 

metric, )ˆ(XConSen , developed as follows.  

     In [109], a model of the contrast sensitivity function (CSF) for luminance images has 

been considered, which describes human’s sensitivity to spatial frequencies fr and is 

shown in (4.13),  

                                              
1.1)114.0()114.0192.0(6.2)( rf

rr effCSF                           (4.13) 

     When a 4-level discrete wavelet transform (DWT) of an image is carried out, the 

relation between CSF and the spatial frequency ranges is shown in Fig. 4.3 [110]. We 

notice from the figure that the sensitivity information is mainly distributed in the 3rd and 

4th level DWT. Therefore, we weigh the DWT coefficients of these two levels with the 

CSF and add the absolute values of these weighted coefficients together. The summation 

is then divided by the total number of pixels in the image to reduce the effect of the 

image size, as shown in (4.14). This is employed as a quality evaluation metric to 
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measure the average contrast sensitivity information included in an image. A higher value 

indicates that one of the image characteristics, contrast in this chapter, is favored more by 

HVS, which represents a better image quality. This metric is denoted by ConSen
5. The 

wavelet we use is Daubechies-8. 
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                          (4.14) 

where K and L provide the image size as mentioned before. Coef(u,v) are the 

decomposition coefficients, and (u,v) (in cycles/degree) are the directions in 

decomposition domain, with 22 vufr  . [a] denotes the smallest integer larger than a.  

                              

 

Figure 4.3: Luminance CSF along horizontal and vertical directions of four-level wavelet decomposition 

[110]. 

 

     Thus, we have the pair of objective functions 

                                                             )ˆ()ˆ( XConSenXf                                                (4.15)  

                                      ),ˆ(),ˆ( YXSSIMYXg                                               (4.16) 

                                                 
5 This metric is based on joint work with Mr. Vijay Chintham Reddy.  
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     The constraint is specified in terms of g, i.e., bYXg ),ˆ(  , where b is a pre-chosen 

constant, 10  b . It represents the least consistency the enhanced image is required to 

satisfy, which defines the feasible set of solutions for the optimization problem. 

 

4.2.4.2 Experimental Results 

We examine the SR noise-refined CLAHE and fuzzy [111] enhancers in enhancing 

medical images. We also investigate the improvement of image de-noising using median 

and Wiener filters. 

     The population size used in the MOO is 100 and the number of generations is 50. The 

number of noise realizations, M, is 35. In the weighting scheme, we choose uniformly 

spaced weight vectors in the interval [0, 1], i.e., 1w changes from 0 to 1 with the 

increment of 0.1, that is, there are 11 simulated HVS preferences for each SR noise 

system. b is set equal to 0.7. 

 

4.2.4.2.1 Medical Image Enhancement 

Medical images typically suffer from impairments such as low resolution, high level of 

noise, low contrast, geometric deformations and the presence of imaging artifacts [112]. 

Image enhancement is an important part of the computer-aided diagnostic (CAD) 

technique. In this section, contrast enhancement of mammograms is considered, where 

the location and lesion types are identified by the radiologists as the ground-truth used in 

our work. The mammograms are from Digital Database for Screening Mammography 

(DDSM) [91]. 
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4.2.4.2.1.1 CLAHE 

We examine the application of CLAHE to enhance the X-ray mammogram by adding SR 

noise in spatial domain. The enhancement results of mammogram with masses are 

provided in Fig. 4.4. We show the results corresponding to the weight vectors {0.3, 0.7} 

and {0.6, 0.4} for the four types of SR noise-refined systems, representing two HVS 

preferences.   

     From Fig. 4.4, we can visually see that the SR noise system can improve the 

enhancement corresponding to different simulated HVS preferences. Next, we provide 

quantitative evaluation using a non-reference image quality metric. Since the increase of 

contrast is an important sign of improvement of the medical image quality, we choose to 

use the metric presented in [113], which is designed to measure the sharpness of an 

image. We call it “sharpness index”. The higher the value of the index, the better the 

contrast. (Sharpness provides important contrast information, and ConSen is closely related 

to sharpness. Besides the sharpness, we also want to keep the consistency between the 

enhanced image and the original one to some extent, so both ConSen  and SSIM are 

employed to guide the enhancement procedure.) Table 4.1 shows the comparison of the 

enhancement results in Fig. 4.4 with different SR noises. 
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                     (a)                           (b)                          (c)                           (d)                          (e)                               

     

                (f)                           (g)                           (h)                            (i)                          (j) 

Figure 4.4: Enhancement results of the mammogram with masses. (a) Original mammogram; (b) enhanced 

by CLAHE; (c) enhanced by CLAHE with GaSR ({0.3, 0.7}); (d) enhanced by CLAHE with GaSR ({0.6, 

0.4}); (e) enhanced by CLAHE with UnSR ({0.3, 0.7}); (f) enhanced by CLAHE with UnSR ({0.6, 

0.4});(g) enhanced by CLAHE with TrSR ({0.3, 0.7}); (h) enhanced by CLAHE with TrSR ({0.6, 0.4}); (i) 

enhanced by CLAHE with TwSR ({0.3, 0.7}); (j) enhanced by CLAHE with TwSR ({0.6, 0.4}). 

 

     From Table 4.1, we can see that in the mammogram mass enhancement, for the HVS 

preference simulated by {0.3, 0.7} and {0.6,0.4}, GaSR yields best results and TwSR 

performs the worst, but all of the four SR noises improve CLAHE. In the rest of the 

experiments, we will see that the performance ranks of the SR noise change with 

different enhancers, weight vectors and image contents, which indicates that the 

efficiency of the SR noise is problem-dependent and is also closely related to HVS 

preferences. 
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TABLE 4.1 
SHARPNESS INDEX OF THE ENHANCED IMAGES 

 

 
Sharpness 

index 

Mammogram 

with masses: 

CLAHE 

No 

SR 

noise 

Original degraded image 6.3317 

Image enhanced by CLAHE 
only 

6.5372 

With 

SR 

noise 

GaSR 
{0.3,0.7} 7.4873 
{0.6,0.4} 6.8093 

UnSR 
{0.3,0.7} 7.1189 
{0.6,0.4} 6.7213 

TrSR 
{0.3,0.7} 7.0793 
{0.6,0.4} 6.7094 

   TwSR 
{0.3,0.7} 7.0498 

{0.6,0.4} 6.6424 

 

Cell 
image: 

 CLAHE 

No 

SR 

noise 

Original degraded image 6.5365 

Image enhanced by 
CLAHE only 

6.7090 

With 

SR 

noise 

GaSR 
{0.2,0.8} 7.3389 
{0.7,0.3} 6.7490 

UnSR 
{0.4,0.6} 7.3749 
{0.8,0.2} 6.7208 

TrSR 
{0.4,0.6} 7.1233 
{0.7,0.3} 6.7112 

 TwSR 
{0.2,0.8} 7.0689 
{0.8,0.2} 6.7225 

 

Mammogram 

with micro-   

calcifications: 

Fuzzy logic 

enhancer 

No 

SR 

noise 

Original degraded image 6.6518 

Image enhanced by Fuzzy 
logic enhancer only 

6.8225 

With 

SR 

noise 

GaSR 
{0.2,0.8} 7.4139 
{0.7,0.3} 7.2419 

UnSR 
{0.4,0.6} 7.1926 
{0.8,0.2} 7.0817 

TwSR 
{0.2,0.8} 7.4624 
{0.8,0.2} 7.3954 

 

 

     Fig. 4.5 shows the enhancement results of the electroscope cell image using the 

presented SR noise-refined enhancement system, where different weight vectors, 

simulating different HVS preferences, are employed. We can visually see that the SR 



82 
 

noise system improves the enhancement for different simulated HVS preferences. The 

quantitative evaluation results using the sharpness index are shown in Table 4.1. 

 

     

                 (a)                            (b)                             (c)                             (d)                            (e)                       

     

                 (f)                             (g)                            (h)                              (i)                             (j) 

Figure 4.5: Enhancement results of the cell image. (a) Original cell image; (b) enhanced by CLAHE; (c) 

enhanced by CLAHE with GaSR ({0.2, 0.8}); (d) enhanced by CLAHE with GaSR ({0.7, 0.3}); (e) 

enhanced by CLAHE with UnSR ({0.4, 0.6}); (f) enhanced by CLAHE with UnSR ({0.8, 0.2}); (g) 

enhanced by CLAHE with TrSR ({0.4, 0.6}); (h) enhanced by CLAHE with TrSR ({0.7, 0.3}); (i) 

enhanced by CLAHE with TwSR ({0.2, 0.8}); (j) enhanced by CLAHE with TwSR ({0.8, 0.2}). 

      

     From these results, we can see that uniformly distributed SR noise (UnSR) produces 

the best result for the given weight vectors. 

 

4.2.4.2.1.2 Fuzzy Logic Histogram Hyperbolization 

Fuzzy logic enhancers are designed for modeling vague and ambiguous information, two 

characteristics of medical and biological images [114]. We now use SR noise to improve 

the fuzzy logic histogram hyperbolization method [115], where the SR noise is added 
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after the original image is transformed to the fuzzy domain.  

     From the experiments, we notice that there is no solution satisfying (4.9) and (4.11) at 

the same time when triangle noise is used, which indicates that triangle noise cannot 

enhance the image quality for the given weights, D, f, g and the degraded image. The 

enhancement results for the other three types of SR noises are shown in Fig. 4.6, and the 

quantitative evaluation results are also shown in Table 4.1. From the figures, we can see 

that all three of the SR noise-refined enhancers increase the contrast in the images, and 

also reduce the over-enhancement phenomenon of the original fuzzy logic enhancer. For 

the weight vectors used here, TwSR yields the best enhancement. 

 

    

                                     (a)                          (b)                          (c)                          (d)                                

    

           (e)                          (f)                           (g)                          (h) 

Figure 4.6: Enhancement results of the mammogram with micro-calcifications. (a) Original mammogram 

image; (b) enhanced by fuzzy enhancer; (c) enhanced by fuzzy enhancer with GaSR ({0.4, 0.6}); (d) 

enhanced by fuzzy enhancer with GaSR ({0.7, 0.3}); (e) enhanced by fuzzy enhancer with UnSR ({0.3, 

0.7}); (f) enhanced by fuzzy enhancer with UnSR ({0.7, 0.3}; (g) enhanced by fuzzy enhancer with TwSR 

({0.2, 0.8}); (h) enhanced by fuzzy enhancer with TwSR ({0.8, 0.2}). 



84 
 

4.2.4.2.2 Image De-noising 

In this section, we consider the application of the SR noise-refined system to improve the 

quality of images disturbed by Gaussian mixture noise, and present the results 

representing a single HVS preference. We investigate two commonly used filters, i.e., 

median filter for “Lena” image with signal-to-noise ratio (SNR) of 16.61dB and Wiener 

filter for “Cameraman” image with SNR of 12.32 dB. The de-noising results are shown 

in Figs. 4.7 and 4.8. The weight vector for the images is {0.5, 0.5}.  Note that the Wiener 

filter is a linear operation, but it involves the estimation of the local second-order 

statistics of the image signal and noise in the observation, so the effect of the additive 

noise will not be washed off by the averaging operation. Here, we determine the statistics 

locally because image contents are non-stationary. 

     A full-reference quality metric, mean square error (MSE), between the de-noised 

image and the ground-truth image, is employed for quantitative performance evaluation. 

The MSE is defined as 
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where X̂ and 0X  denote the de-noised and the ground-truth noise-free images, 

respectively, and ),( sr are the pixel locations in an image. For each type of SR noise, the 

noise-refined filter is investigated to de-noise the image using 11 HVS preferences. Figs. 

4.9 (a) and (b) show the evaluation results based on the MSE for median and Wiener 

filters, respectively. For each HVS preference, the enhancement improvement is 

identified by the MSEs of the SR noise-refined enhancement results which are lower than 

that of the enhancement without SR noise. Lower MSE denotes more enhancement 
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improvement. The mean value of each curve shows the average performance of one type 

of SR noise, and its variance measures the robustness of the system using this SR noise. 

For clarity, the enhancement results with very large MSE are not shown. The HVS 

preference indices correspond to the weight 
1w  changing from 0 to 1 with the increment 

of 0.1. 

 

   

                                                      (a)                          (b)                         (c)   

    

                                     (d)                           (e)                          (f)                          (g) 

Figure 4.7: Median filter for de-noising “Lena” image. (a) Noise-free image; (b) image disturbed by 

Gaussian mixture noise with the SNR of 16.61dB; (c) de-noised by median filter; (d) de-noised by median 

filter with GaSR; (e) de-noised by median filter with UnSR; (f) de noised by median filter with TrSR; (g) 

de-noised by median filter with TwSR. The weight vector used is{0.5,0.5}. 
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                                                  (a)                             (b)                            (c)   

    

                 (d)                             (e)                            (f)                             (g) 

Figure 4.8: Wiener filter for de-noising “Cameraman” image. (a) Noise-free image; (b) image disturbed by 

Gaussian mixture noise with the SNR of 12.32dB; (c) de-noised by Wiener filter; (d) de-noised by Wiener 

filter with GaSR; (e) de-noised by Wiener filter with UnSR; (f) de-noised by Wiener filter withTrSR; (g) 

de-noised by Wiener filter with TwSR. The weight vector used is{0.5,0.5}. 

 

    

Figure 4.9: MSE of the de-noising results using median and Wiener filters. (a) Median filter-based de-

noising; (b) Wiener filter-based de-noising. OrMe and OrWi mean the de-noising using original median 

and Wiener filter, respectively, without SR noise. 
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    From Figs. 4.7 and 4.8 and the experiments, we observe that the TrSR noise performs 

the best for the “Lena” image, TwSR performs the best for the “Cameraman” image. 

Also, in an informal evaluation, the quality of the enhanced images is deemed better than 

the enhanced image without SR noise by human judges for all the weights. However, 

using MSE as the criterion, we can see from Fig. 4.9 that for some weights, SR noise 

worsens the enhancement. This illustrates that the objective function pair, as a quality 

metric, is more consistent with human evaluation results, while MSE has some 

disadvantages when used as metric for image quality evaluation [116]. 

     Tables 4.2 shows the quantitative evaluation results of image de-noising based on 

MSE statistics, for median and Wiener filters. The MSE statistics include the range, mean 

and variance of the MSE, as well as the number of weight vectors corresponding to the 

enhancement results which have lower MSE than the SR noise-free case. The mean value 

shows the average system performance and the other three statistics illustrate the 

robustness of the system. 
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TABLE 4.2 
MSE STATISTICS OF MEDIAN AND WIENER FILTERS DE-NOISING 

 
 MSE statistics 

De-noising 
using 

median 
filter 

(“Lena”) 

No 
SR 

noise 

MSE value of noisy 
image 

354.0 

MSE value of the de-
nosed image by 

median filter only 
319.7 

With 
SR 

noise 

GaSR 

Range [ 216.8,232.4 ] 
LN* 11 
Mean 225.7 

Variance 15.4 

UnSR 

Range [214.9, 230.6] 
LN* 11 
Mean 227.0 

Variance 18.8 

TrSR 

Range [213.6,235.5] 
LN* 11 
Mean 224.0 

Variance 36.6 

TwSR 

Range [230.2,3385.0] 
LN* 9 
Mean 627.9 

Variance 924870 
 

De-noising 
using 

Wiener 
filter 

(“Camera-
man”) 

No 
SR 

noise 

MSE value of noisy 
image 

1466.4 

MSE value of the de-
noised image by 

Wiener filter only 
849.8 

With 
SR 

noise 

GaSR 

Range [534.3, 850.9] 
LN* 10 
Mean 700.1 

Variance 8073.4 

UnSR 

Range [688.5,1019.0] 
LN* 6 
Mean 842.2 

Variance 1390.3 

TrSR 

Range [505.2,1011.0] 
LN* 10 
Mean 731.5 

Variance 1817 

TwSR 

Range [536.6,726.0] 
LN* 11 
Mean 640.7 

Variance 4224.5 
 
*LN means the number of the weight vectors corresponding to the enhancement results which have lower MSE than 
the SR noise-free case. In this paper there are 11 weight vectors for each SR noise, i.e., w1 changes from 0 to 1 with the 
increment of 0.1. 

 

4.2.4.2.3 Image De-blurring 

We also employ the SR noise-refined system to improve two image de-blurring 
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algorithms, Lucy-Richardson algorithm and regularized filter, which are applied when 

images are suffering from convolution and motion effects, respectively. The convolution 

effect is simulated by using a low-pass Gaussian filter to smooth a ground-truth image. 

The size of the filter is 13 by 13 and its variance is 36. The motion effect is simulated by 

convoluting an image with a filter which models a linear motion of camera with 20 pixels 

and with an angle of 10 degrees in a counterclockwise direction. The images shown use 

the weight vector {0.4,0.6}. 

     The experimental results are shown in Figs. 4.10, 4.11 and 4.12. We can see that 

triangle noise works best when Lucy-Richardson algorithm is used for de-blurring, but 

works worst in the regularized filter case although the resulting enhanced image quality is 

not much visually worse than the SR noise-free case. Uniformly distributed SR noise 

generates the most significant improvement in regularized filter de-blurring.  

     Table 4.3 shows the quantitative evaluation results for image de-blurring based on 

MSE statistics for Lucy-Richardson algorithm and regularized filter. 
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                                        (a)                                       (b)                                      (c)                              

    

                  (d)                                       (e)                                       (f)                                      (g) 

Figure 4.10: Lucy-Richardson algorithm for de-blurring “House” image. (a) Ground-truth image; (b) 

blurred image; (c) de-blurred by Lucy-Richardson; (d) de-blurred by Lucy-Richardson with GaSR; (e) de-

blurred by Lucy-Richardson with UnSR; (f) de-blurred by Lucy-Richardson with TrSR; (g) de-blurred by 

Lucy-Richardson with TwSR. {0.4,0.6}. 
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                                          (a)                                     (b)                                    (c)                              

    

                     (d)                                    (e)                                      (f)                                     (g) 

Figure 4.11: Regularized filter for de-blurring “Cameraman” image. (a) Ground-truth image; (b) blurred 

image; (c) de-blurred by regularized filter; (d) de-blurred by regularized filter with GaSR; (e) de-blurred by 

regularized filter with UnSR; (f) de-blurred by regularized filter with TrSR; (g) de-blurred by regularized 

filter with TwSR. {0.4,0.6}. 

 

 

Figure 4.12: MSE of the de-blurring results using Lucy-Richardson algorithm and regularized filter. (a) 

Lucy-Richardson algorithm de-blurring; (b) regularized filter-based de-blurring. OrLR and OriRF mean the 

de-blurring using Lucy-Richards algorithm and regularized filter, respectively, without SR noise. 
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TABLE 4.3 
MSE STATISTICS OF THE LUCY-RICHARDSON ALGORITHM AND REGULARIZED FILTER DE-BLURRING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MSE 
statistics 

De-blurring 
using Lucy- 
Richardson 
algorithm 
(“House) 

No 
SR 

noise 

MSE value of blurred 
image 

561.6 

MSE value of the de-
blurred image by Lucy-
Richardson algorithm 

only 

538.9  

With 
SR 

noise 

GaSR 

Range [477.7, 4036.1]
LN 7 

Mean 1679.3 
Variance 2775.1 

UnSR 

Range  [493.3, 549.4] 
LN 10 

Mean 511.6 
Variance 312.3 

TrSR 

Range [462.4,524.2] 
LN 11 

Mean 494.9 
Variance 416.3 

TwSR 

Range [462.3,579.5] 
LN 9 

Mean 492.9 
Variance 1816.0 

 

De-blurring 
using 

regularized 
filter 

(“Camera- 
man”) 

No 
SR 

noise 

MSE value of blurred 
image 

1719.3 

MSE value of the de-
blurred image by 

regularized filter only 
445.7 

With 
SR 

noise 

GaSR 

Range [424.6, 445.1] 
LN 11 

Mean 435.5 
Variance 71.7 

UnSR 

Range  [424.6, 444.4] 
LN 11 

Mean 434.5 
Variance 62.9 

TrSR 

Range [465.9,471.6] 
LN 0 

Mean 468.3 
Variance 2.9 

TwSR 

Range [426.2,475.2] 
LN 7 

Mean 440.8 
Variance 247.5 
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     We can see from Table 4.3 as well as Figs. 4.10, 4.11 and 4.12 that the TrSR performs 

the best in Lucy-Richardson algorithm-based de-blurring, and performs the worst in the 

regularized filter case although the resulting enhanced image is not much worse visually 

than the SR noise-free case (Fig. 4.11 (f)). UnSR yields the most significant improvement 

in regularized filter de-blurring. 

     From these experimental results, we see that the SR noise-refined system can improve 

the performance of several types of image enhancement algorithms when dealing with 

different distortion situations.  

 

4.3 Image Enhancement Based on Selective Enhancement 

Framework 

4.3.1 The Selective Enhancement Framework  

We first introduce the “selective enhancement” framework, as shown in Fig. 4.13. In the 

framework, the ROI, e.g., the region containing lesions in a mammogram, is determined, 

and then some image enhancement and noise suppression techniques, such as the gray 

level stretching method, are used to increase the contrast in the ROI and suppress the 

background noise. More generally, we can divide an image into several ROIs according 

to their relative importance and other characteristics, and employ suitable enhancement 

and suppression algorithms for different ROIs. This chapter only deals with the two-class 

case, one ROI and the background. More general cases can be considered in a similar 

manner. 
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Figure 4.13:  “Selective enhancement” framework (two-class case). 

 

     From the diagram, we can see that ROI determination is the first and fundamental step 

of this framework, which leads to the next steps. Based on ROI determination, different 

operations, i.e. enhancement and suppression, are carried out in different areas of the 

image. The main steps of the algorithm, i.e. ROI determination and enhancement as well 

as background suppression, are described as follows. Gray level stretching technique is 

employed in this chapter to carry out the enhancement and suppression operations. Other 

techniques can also be employed under our framework. This type of methodology where 

different operations are used in different parts of the image has been employed in the past 

(e.g. [66][117]). To the best of our knowledge, the framework proposed here has not been 

presented elsewhere. Our main emphasis in this section is to propose a number of 

methods for ROI determination that result in superior enhancement performance.  

     In this section, we will use a specific application of this framework, i.e., mammogram 

enhancement, to illustrate the efficiency of the presented approach. 
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     First, the gray values of the original mammogram are rescaled to the range from zero 

to the full pixel intensity, e.g., 255 in this section. A method is used to find the ROI 

(determination of the ROI will be discussed later).  

     Second, a gray level stretching method is employed on the ROI, according to (4.18), 

                                              nmyxf
mM

nN
yxg 




 ]),([),(                                 (4.18) 

where f(x, y) and g(x, y) are the gray values of the pixel at location (x, y) in the rescaled 

and stretched ROI respectively. [m,M] and [n,N] are the gray value ranges of the rescaled 

and stretched ROI, where M=255 due to the rescaling operation and m is the lowest gray 

value in the rescaled ROI. Here, N is set to 255, the highest gray value, to make the 

enhanced ROI involve the brightest part in the mammogram.  

     Because ROI may contain both actual lesions and some mis-labeled background 

pixels with lower gray values, increase of contrast in the ROI is necessary for a better 

visualization. Therefore, we need N-n>M-m. We can make n=0, such that all the non-ROI 

parts have zero intensity. However, the non-ROI part may also include valuable 

information for diagnosis, so maintenance of the non-ROI information to some moderate 

extent is necessary. Our experiments show that setting n equal to the mean gray value of 

the background of the rescaled mammogram yields satisfactory results, both in having 

lesions stand out and in suppressing the background. To reduce the influence of a small 

number of pixels with extreme values, the mean values in this chapter are all calculated 

by weighting each gray value with the ratio of the number of pixels having the gray value 

to the total number of pixels in the mammogram, i.e. weighted mean is computed and 

used.  



96 
 

      Thirdly, the gray value range of the stretched ROI is from the mean gray value of the 

background of the rescaled mammogram to 255. So we need to change the background 

gray values to some extent, such that background suppression, similarity maintenance 

and image smoothing are achieved at the same time. A reasonable choice is to make the 

background pixel gray values range from zero to the minimum gray value of the stretched 

ROI, using a method similar to (4.18). 

     Finally, an adaptive filter, such as an adaptive Wiener filter, is used for de-noising and 

further smoothing. For abnormal mammograms that include micro-calcifications, a 

matched filter with a Gaussian appearance may be used instead of the adaptive filter to 

further enhance the lesions [67]. 

     As can be seen from the above procedure, ROI determination plays a fundamentally 

important role in enhancement. There are many methods dealing with this problem, such 

as thresholding methods [118][119] and segmentation methods [120][121]. According to 

the pixel intensity properties of the mammograms, we have developed several algorithms 

for selecting the ROI, which will be discussed in the next few sections. 

 

4.3.2 Thresholding-Based Mammogram Enhancement Algorithms  

In this section, several thresholding methods are presented for ROI determination. These 

are based on the pixel intensities of the mammogram under consideration. 

     Higher pixel gray values than the surrounding normal tissues distinguish lesions from 

the normal structures in mammograms, which is one of the most important features of 

abnormal mammograms and widely used in lesion detection and mammogram 

enhancement. The presented algorithm tries to increase the contrast of the lesions against 
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the normal background by exploring the pixel gray value information. 

     For the micro-calcification cases, we set the so-called cross-over point as the threshold, 

which corresponds to the intensity of micro-calcifications and can be determined 

automatically [99].  However, sometimes, the cross-over point value is a little higher than 

the optimal value and some lesions are excluded from the ROI, such that these lesions are 

suppressed during enhancement.  

     The second method is to set the mean gray value of the whole mammogram as the 

threshold, because the lesion intensity generally is above the average gray level of the 

whole mammogram. (Of course, a lower threshold can be used to make sure that all the 

lesions are considered with a higher confidence.) With this threshold, lesions are included 

in the ROI together with more background pixels than the first thresholding scheme, 

because it is a little lower than the optimal value. As a result, contrast between the lesions 

and background is not explored enough through the enhancement process.  

     The enhancement results corresponding to the two thresholding methods are shown in 

Figs. 4.14 (h) and (i) in Section 4.3.4. 

     The two enhancement methods can increase the contrast between the lesions and 

background, benefiting visualization, but a technique to set an appropriate threshold is 

desired. In general, it is not easy to find the optimal threshold by using analytical 

methods, but the tradeoff between the previous two threshold determination schemes 

might yield satisfactory results. Here, we use a simple image fusion technique to find the 

tradeoff, i.e., to average the enhanced mammograms resulting from the two threshold 

schemes respectively. This is named joint enhancer, and the corresponding enhancement 
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result is shown in Fig. 4.14 (j) in Section 4.3.4. 

     As mentioned before, the lesion pixel intensity generally is above the average gray 

value of the whole mammogram, so the thresholding scheme 2 may include all the 

lesions in the ROI. The lesions become more visible through the enhancement process, 

and the gray values of most background pixels will be suppressed in the range from zero 

to the minimum gray value of the stretched ROI through one enhancement operation. 

Accordingly, larger contrast may be expected if the enhancement is iteratively used on 

the mammogram. This is because the threshold includes some background pixels in the 

ROI with relatively lower gray values compared with lesion pixels. And due to the gray 

level stretching applied to ROI, the intensities of some background pixels will be 

decreased below the threshold. Therefore, if we set another appropriate threshold on the 

enhanced mammogram, some background pixels in the previously stretched ROI may be 

moved to the new non-ROI region and therefore be suppressed through the gray level 

stretching process applied to the new non-ROI region. Thus, more and more background 

pixels will be suppressed with the iteration process, which may further increase the 

contrast. By changing thresholds of the mean value thresholding scheme in each iteration, 

we can determine the ROIs in the iterative enhancement procedure. Of course, other 

thresholds, e.g. those larger than a quarter of the full gray level and smaller than the mean 

value threshold, may also yield good results. A more flexible scheme is to use variable 

thresholds, e.g. thresholds decreasing with the number of iterations. We can keep 

iterating until the enhancement result is satisfactory. The stopping criterion can be 

formed simply as follows: at iteration n+1, if the lesions that stood out at iteration n 

disappear or are weakened, then we choose to stop at iteration n. At each step of iteration, 
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some pixels of the old ROI in the prior enhanced mammogram will be excluded. So if the 

iteration number is too large, over-enhancement will arise where some lesion pixels are 

suppressed due to enhancement. Therefore, an appropriate number of iterations is 

required. Through experiments, we find that 3 iterations is a good choice when we use 

the mean value threshold. The results of the iterative enhancement method applied to 

micro-calcifications, mass and spiculated lesions are shown in Fig. 4.14 (k) and Fig. 4.15 

(h) and Fig. 4.16 (h) in Section 4.3.4. 

 

4.3.3 Statistical Detection-Based Mammogram Enhancement 

In this section, decision theory based statistical detection methods are employed for ROI 

determination, where the detected positives are classified as ROI. Two models will be 

considered for the micro-calcifications. 

     A low probability of false alarm (PF) is very important to our enhancement problem. 

This is because if the actual PF is too high, more background pixels will be included in 

the ROI, which worsens the enhancement result. We will show that an acceptable PF is 

achieved with the refinement of the detection schemes.  

 

4.3.3.1 Gaussian Background Assumption-Based Detector and Enhancement 

The micro-calcification detection problem is actually an anomaly detection problem [78], 

and we assume the asymptotic distribution, when the number of reference samples 

approaches infinity, of the background, i.e. normal tissues, to be Gaussian. This leads to 
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linear and tractable solutions [13] and is named the Gaussian Background Assumption-

Based Detector (GBAD). 

     The micro-calcifications, which are considered as the signal of interest here, are 

brighter spots than the surrounding normal tissues. So the signal with constant amplitude 

larger than the average pixel gray value is a gross model for the micro-calcifications. 

Thus, the lesion detection problem is converted to detecting a constant signal embedded 

in Gaussian noise. Recalling (3.1) in Chapter 3, we wish to choose between the two 

hypotheses 
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where y[m] is the pixel gray value, ][mw is the Gaussian background noise with 

mean b and variance 2
b , and A is a positive constant, larger than b . m is the index of the 

pixel to be processed in each detection, and 1,,1,0  Mm  . In the section, we extend the 

statistical test to include more pixels in each detection, instead of the signal pixel 

detection discussed in Chapter 3. 

     Based on the Neyman-Pearson criterion [13], we get the GBAD statistic T(y) and the 

test as follows 
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where the threshold 1 is determined from the given PF and the statistical parameters, 

mean and variance, of the pixels surrounding the pixel to be detected.  

     The parameters are estimated as follows, 
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where the subscript b means that the estimation is carried out for background pixels; Mb 

denotes the number of the background pixels in each processing window, which are used 

to estimate these parameters; m is the pixel index. 

     If we assume a single pixel target [78], that is, in each detection, only one pixel is 

taken as input, then M=1. The statistical test will reduce to the case discussed in Chapter 

3. The detection result is shown in Fig. 4.17 (h) in Section 4.3.4, where the micro-

calcifications are completely detected but with a higher PF than the preset value, 0.01. An 

important reason is that the lesion and background distributions are not well modeled. 

And, therefore, the contrast in the mammogram (see Fig. 4.17 (i)) is not explored enough. 

 

4.3.3.2 General Gaussian Detector and Enhancement 

Micro-calcifications, especially micro-calcification clusters, are small but not with a 

constant intensity, so a Gaussian model as opposed to a constant signal model may be 

more reasonable to represent them, which gives rise to a General Gaussian Detector 

(GGD) test.  

     To design the GGD, we refer to the GBAD. The detected positives of the GBAD, 

which include all the micro-calcifications and some background pixels, are employed to 

roughly estimate the mean, s  and variance, 2
s , of the micro-calcifications for the 

Gaussian model, using an approach similar to that used in (4.21) and (4.22).  
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     In the general Gaussian case, recalling (3.1), we wish to choose between the two 

hypotheses 
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where s[m] denotes the micro-calcification signal obeying Gaussian 

distribution, ),( 2
ssN  . We therefore obtain the statistical test  
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where the threshold 2 is determined from the given FP and the statistical parameters, mean 

and variance, of the pixels surrounding the pixel to be detected.  

     The detection result is shown in Fig. 4.17 (j) in Section 4.3.4, where all the micro-

calcifications are discovered by GGD but with less false positives than the GBAD, and 

therefore the enhancement result (Fig. 4.17 (k)) shows improvement. 

 

4.3.3.3 Iterative Detection and Enhancement Method 

Although the previous two detection-based enhancement algorithms yield good results, 

the detection and accordingly the enhancement may be further improved. Here we 

employ the GGD-based iterative detector (GGD_ID) discussed in Section 3.2.1.3 to 

further improve the detection and therefore the enhancement performance. The detection 

and enhancement results are shown in Figs. 4.17 (l) and (m). 
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4.3.4 Performance Evaluation of Selective Enhancement Framework 

The performances of the enhancement algorithms are evaluated both subjectively 

(qualitatively) and objectively (quantitatively). The subjective evaluation is carried out 

through human eye judgment, in terms of the comparison with the original mammograms 

and several representative enhancement algorithms. 

     For comparison, we implemented six representative enhancement algorithms. These 

algorithms include standard histogram equalization, CLAHE, unsharp masking, fuzzy 

histogram hyperbolization with S-function and norma-function [111][114], and fuzzy 

logic possibility distribution method [122][123] techniques. The qualities of some fuzzy 

contrast enhancement algorithms were evaluated in [113], where fuzzy histogram 

hyperbolization and fuzzy logic possibility distribution method stand out because of their 

good performances in providing global contrast improvement and enhancing the highest 

density regions of a mammogram, respectively.  

 

4.3.4.1 Qualitative Evaluation 

     Fig. 4.14 compares several representative enhancement algorithms with the presented 

algorithms for enhancing mammograms with micro-calcifications. 

     From the figures, we see that although the two threshold determination schemes can 

enhance the lesions to some extent, threshold 1 (h) suppresses some lesions while 

threshold 2 (i) enhances too many background pixels such that some lesions are not 

obvious enough. The joint enhancer (j) emphasizes all the lesions, and there are less 
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enhanced background pixels compared with the other algorithms. The iterative 

enhancement method (k) also yields good result. 

 

 

(a)                                 

     

                  (b)                            (c)                            (d)                            (e)                            (f)                                 

     

                 (g)                            (h)                             (i)                             (j)                            (k)                             

Figure 4.14: Original abnormal mammogram with micro-calcifications and its enhanced versions. (a) 

Original mammogram with micro-calcifications; (b) enhanced mammogram with standard histogram 

equalization; (c) enhanced mammogram with CLAHE; (d) enhanced mammogram with unsharp masking; 

(e) enhanced mammogram with fuzzy histogram hyperbolization (S-functionand); (f) enhanced 

mammogram with fuzzy histogram hyperbolization (norma-function); (g) enhanced mammogram with  

fuzzy logic possibility distribution method; (h) enhanced mammogram with threshold 1; (i) enhanced 

mammogram with threshold 2; (j) enhanced mammogram using the joint enhancer; (k) enhanced 

mammogram using iterative enhancement method. 
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     Figs. 4.15 and 4.16 compare the enhancement results of mammograms with mass and 

spiculated lesions, respectively, using the presented iterative enhancement method and 

several other enhancement algorithms. 

 

    

                     (a)                                     (b)                                    (c)                                     (d) 

                       

                     (e)                                    (f)                                     (g)                                      (h) 

Figure 4.15: Mammogram with mass and its enhanced versions. (a) abnormal mammogram with mass; (b) 

enhanced mass with standard histogram equalization; (c) enhanced mass with CLAHE; (d) enhanced mass 

with unsharp masking; (e) enhanced mass with fuzzy histogram hyperbolization (S-function); (f) enhanced 

mass with fuzzy histogram hyperbolization (norma-function); (g) enhanced mass with fuzzy logic 

possibility distribution method; (h) enhanced mass with iterative enhancement. 
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Figure 4.16: Mammogram with spiculated lesions and its enhanced versions. (a) abnormal mammogram 

with spiculated lesions; (b) enhanced mass with standard histogram equalization; (c) enhanced mass with 

CLAHE; (d) enhanced mass with unsharp masking; (e) enhanced mass with fuzzy histogram 

hyperbolization (S-function); (f) enhanced mass with fuzzy histogram hyperbolization (norma-function); (g) 

enhanced mass with fuzzy logic possibility distribution method; (h) enhanced mass with iterative 

enhancement. 

 

     From Figs. 4.15 and 4.16, we can see that the iterative scheme keeps all the lesions 

and dramatically reduces the false positives compared with other algorithms. The 

corresponding enhanced mammograms (Figs. 4.15 (h) and 4.16 (h)) show very good 

results.  

     The performance of the presented statistical detection-based enhancement is compared 

with other enhancement algorithms in Fig. 4.17. For the ease of comparison, in Fig. 4.17 

we show the enhancement results of several other algorithms provided in Fig. 4.14 again. 

              (a)                                       (b)                                      (c)                                       (d)                          

              (e)                                       (f)                                       (g)                                      (h)                          
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                    (a)                           (b)                           (c)                            (d)                            (e)                               

    

                                   (f)                            (g)                            (h)                            (i)                                 

    

                                    (j)                           (k)                            (l)                            (m)    

Figure 4.17: Detected positives and enhanced mammograms. (a) Original mammogram with micro-

calcifications; (b) enhanced mammogram with standard histogram equalization; (c) enhanced mammogram 

with CLAHE; (d) enhanced mammogram with unsharp masking; (e) enhanced mammogram with fuzzy 

histogram hyperbolization (S-functionand); (f) enhanced mammogram with fuzzy histogram 

hyperbolization (norma-function); (g) enhanced mammogram with  fuzzy logic possibility distribution 

method; (h) detected positives with GBAD; (i) enhanced mammogram based on GBAD; (j) detected 

positives with GGD; (k) enhanced mammogram based on GGD; (l) detected positives with iterative 

detection; (m) enhanced mammogram based on the iterative detection. Detected positives are marked using 

(blue) dots. PF is equal to 0.01. 
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     From Fig. 4.17, we can see that with the refinement of the detectors ((h), (j), (l)), all 

the micro-calcifications and located, the number of false positives are dramatically 

reduced, and better enhancements are achieved ((i), (k), (m)). 

 

4.3.4.2 Quantitative Evaluation  

     The objective evaluation is carried out with quantitative metrics. Several existing 

quality metrics were employed but their evaluation results were inconsistent with the 

human subjective judgment.  

     For visualization and detection, a good enhancement method should be equipped with 

the following three properties: 

(i) The contrast between the objects and background should be increased as much as 

possible, which can be represented by the increased difference between the mean 

gray value of the objects and the maximum value of the background. 

(ii) The ratio of the dynamic gray value ranges between the objects and background 

should be increased as much as possible, which stands the object out and can be 

represented by the increased ratio of gray value variances between the objects and 

background. 

(iii) The number of suspicious pixels, i.e. the pixels in the object and background   

having similar gray values, should be reduced as much as possible.  

(iv) The average distance between the suspicious pixels in the object and background 

should be increased as much as possible.  
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            Method     Joint-En    It-En     Det-En   Hist-Eq  CLAHE   Unsharp   FuzH-S   FuzH-N   Fuz-PD 
             Grade       3.0043     2.5025    4.3282    1.7538     1.9624      1.3907    2.4348    2.3452     2.1025 

(v) To avoid over-enhancement, the similarity between the enhanced image and the 

original one should be maintained to some extent, that is, the enhanced image 

should be similar as the original one as much as possible, which can be measured 

with the similarity metric [108]. 

 

     Based on these criteria, a novel quality evaluation scheme is presented. We first 

calculate 5 quantities for a given image, corresponding to the 5 criteria or metrics 

mentioned above, and then normalize the 5 quantities into the range of [-1, 1], 

respectively. Finally, the summation of the 5 normalized quantities is employed as the 

grade of image quality. The higher the grade is, and the better the image quality will be. 

     Table 4.4 shows the evaluation results based on the combination of the 5 criteria. The 

enhancement algorithms include joint enhancer, iterative enhancer, iterative detection-

based enhancer, standard histogram equalization, CLAHE, unsharp masking and fuzzy 

logic enhancement methods.  

 

TABLE 4.4 
ENHANCEMENT EVALUATION  

 
 
 

Joint-En: joint enhancer; It-En: iterative enhancer; Det-En: iterative detection-based enhancer; Hist-Eq: 
standard histogram equalization method; FuzH-S: fuzzy histogram hyperbolization with S-function; FuzH-
N: fuzzy histogram hyperbolization with norma-function; Fuz-PD: fuzzy logic possibility distribution 
method. 

 

     From Table 4.4 we can see that the iterative detection-based enhancement method 

(Det-En) achieves the best performance, and the joint enhancement (Joint-En) and 
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iterative enhancement (It-En) methods also perform well. Fuzzy histogram 

hyperbolizeation methods yield good results, but their performances are highly 

parameter-dependent, which restricts their CAD applications. 

 

4.4 Summary 

Image enhancement plays a fundamentally important role in nearly all of the vision and 

image processing systems. In this chapter, we presented two novel image enhancement 

approaches. In the first approach, we developed an image enhancement system based on 

SR noise under the constrained MOO framework, for improving the suboptimal image 

enhancers which suffer from model mismatch and yield unsatisfactory enhancement 

results. The principle of SR noise-refined image enhancement was investigated, and a 

genetic algorithm-based MOO method was used to find the SR noise solution, in which 

the HVS preference was included via a weighting scheme for reducing the size of the 

solution set. Four types of SR noises were employed in the system and a number of 

enhancement algorithms were investigated in this chapter. Experimental results show that 

the presented system has highly encouraging performance in terms of simplicity, 

flexibility, efficiency and robustness, which demonstrates SR noise’s capability of 

improving the suboptimal enhancers and supports its real-world CAD application. 

     In the second approach, we employ mammogram enhancement as an example to 

illustrate the efficiency of the presented selective enhancement framework. We have 

presented several schemes to automatically determine the ROI. ROI enhancement and 

background suppression were carried out by using the adaptive gray level stretching 
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technique. Experiments were based on real-world mammograms containing different 

types of lesions, and the comparison with several representative methods showed that the 

presented algorithms can achieve superior performance in terms of both subjective and 

objective evaluations.  
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CHAPTER V 
 

HUMAN VISUAL SYSTEM-DRIVEN IMAGE 

SEGMENTATION 
 

In this chapter, we present two human visual system (HVS)- driven image segmentation 

approaches. In the first approach, the quality metrics for evaluating the segmentation 

result based on human visual perception properties, from both region-based and 

boundary-based perspectives, are integrated into an objective function. The objective 

function encodes the HVS properties into a Markov random fields (MRF) framework, 

where the just-noticeable difference (JND) model is employed when calculating the 

difference of the image contents. In the second approach, we consider image 

segmentation as a detection problem and present a framework for image segmentation. In 

this framework, a “soft” segmentation objective function, in terms of the detection 

performance measured in local regions, is employed to guide the segmentation procedure. 

The human visual system information is incorporated into the segmentation procedure to 

improve the efficiency of the framework through the introduction of a contrast sensitivity 

function (CSF)-filtering operation in the wavelet domain.  

 

5.1 Introduction 

As briefly introduced in Section 1.3, image segmentation is a challenging problem, and 

lots of algorithms have been presented to deal with this task. Design of a suitable 

objective function is crucial to the performance of image segmentation approaches. Good 

segmentation algorithms require an efficient scheme for parameter adjustment and an 
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appropriate description of the desired properties of the segmentation result, which, of 

course, are all very challenging tasks. In real-world applications, the performance of 

some segmentation algorithms is influenced by their dependence on the parameters of 

these algorithms. But the optimum parameters and, therefore, satisfactory segmentation 

results are not easy to obtain. Some segmentation algorithms only partially incorporate 

the feature information from region and boundary perspectives, and fail to fully take 

advantage of fusing the two types of information. For example, Markov Chain Monte 

Carlo (MCMC) has been employed [124] to solve the maximum a posteriori probability 

(MAP)-MRF estimation problem for generative image segmentation. Due to many 

constraints involved in this generative approach, the selection of suitable parameters for 

satisfactory segmentation becomes difficult. It is also not easy for the objective function 

in [36] to yield a satisfactory balance between connecting the boundary and labeling the 

pixels, since there are many parameters which need to be chosen carefully. In [38], the 

proposed objective function does not exploit fully the connectivity property of the 

neighboring edge components. The normalized cut methods [125][126] can capture 

salient parts of an image. However, due to the ad hoc approximations introduced when 

relaxing this NP-hard computational problem, these methods do not exploit well the 

image content information which is useful for segmentation. As a result, the algorithms 

often perform unsatisfactorily.  

     Among all the existing image segmentation models, MRF models are very popular 

ones and have been used to represent contextual information in many pixel-based 

segmentation problems, because they can be employed to characterize the spatial 

dependency or spatial distribution. A statistical method, namely the MAP approach, is 
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often used during MRF-based image segmentation, which has been investigated 

comprehensively. The MAP-MRF method maximizes an objective function consisting of 

the a priori density in terms of the Gibbs distribution and the conditional probability 

density function (pdf for continuous data, and probability mass function, pmf, for discrete 

data) of the observed image data given the distribution of the segmented region, in which 

some image features are often embedded [127][128]. However, some strong assumptions 

and inaccurate estimates of the conditional pdf corresponding to intensity values of single 

pixels limit its performance and application. 

     Another weakness of many existing segmentation algorithms is that they are 

developed based on the information provided only by the image data and neglect the fact 

that the human is the best and usually the ultimate evaluator of the segmentation result. 

That is, these algorithms do not consider the impact of the HVS on object interpretation 

and information extraction. As a result, many algorithms are inconsistent with the 

preferences of human vision. There do exist efforts to incorporate HVS information into 

image segmentation, e.g., [126][127][128], but their performances were constrained by 

the simplistic computational models as well as an insufficient consideration of the HVS 

properties when designing the objective functions. 

     Our first effort is to develop a segmentation algorithm which takes into account HVS 

preference during the segmentation procedure and is also robust to the parameter 

configuration. We first introduce the HVS-driven image segmentation model under the 

MAP-MRF framework. Second, the criteria for evaluating region-based segmentation 

and the resulting energy function are discussed. Thirdly, the boundary-based evaluation 

criteria are discussed and encoded into the energy function via the development of a 



115 
 

novel concept, called boundary element in our work, which describes the interaction 

between pixel labels, boundary configuration and the image content. Then, we integrate 

the objective function that includes both region and boundary information, where the 

optimization method and the three variations of the HVS-driven segmentation algorithm 

are discussed. Experimental results and performance comparisons between the presented 

algorithms and other representative segmentation and clustering algorithms are presented 

in Section 5.2.5.  

     In our second segmentation approach described in Section 5.3, we attempt to address 

two problems mentioned above, i.e., the constraints of the conventional MRF-based 

algorithms and the lack of HVS information during the segmentation procedure. We 

consider image segmentation to be a detection problem, and present a novel image 

segmentation framework. We employ the probability of successful detection as a metric 

when designing the objective function to show the efficiency of this framework. A CSF, 

which takes into account HVS preference to the image content, is used as an object 

feature enhancer to further improve the segmentation performance. Experimental results 

are shown in Section 5.3.4. 

 

5.2 A Human Visual System-Driven Image Segmentation 

Algorithm 

5.2.1 MAP-MRF Framework 

In this section, we develop our segmentation model under the MAP-MRF framework, 

which incorporates the information from both region-based and boundary-based 
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segmentation perspectives. 

     Under the MAP framework, image segmentation can be obtained by solving the 

following optimization problem 

                                         ),(),|(maxarg)|,(maxargˆ,ˆ
,,

BLPBLYPYBLPBL
BLBL BLBL 

                   (5.1) 

where )|,( YBLP is the a posteriori distribution of the label field, L, and the boundary field, 

B, given the observed image, Y. L and B are assumed to have the MRF property, and they 

consist of pixel labels and boundary elements, respectively. The boundary elements will 

be defined in Section 5.2.3. L and B are the configuration spaces of L and 

B.  ML lll ,,, 21  , where il  is the label of the pixel with the index i.  1,,1,0  Ali  , 

and A is the number of possible region types. For example, for binary segmentation, A=2. 

 MB bbb ,,, 21  , where ib is the boundary element of the pixel with the index i. M is the 

total number of pixels in an image. A segmented image region is composed of the pixels 

with the same label. In this section, label-based segmentation is equivalent to region-

based segmentation, and the two terms will be used interchangeably. 

     Thus, we obtain our segmentation model under the MAP-MRF framework with the 

region label MRF L and the boundary MRF B. In our work, the label field L and the 

boundary field B are defined as functions of the image data Y, that is, )(YLL   and 

)(YBB  . )(YL  and )(YB will be precisely defined in the next two subsections. Therefore, 

the likelihood term in (1.1) has the form 

                                                        1))(),(|(),|(  YBYLYPBLYP                                     (5.2) 

     So (5.1) is reduced to  
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                                                    ))(),((maxargˆ,ˆ
,

YBYLPBL
BL BL 

                                    (5.3) 

     Since both L and B have been assumed to exhibit MRF properties, according to the 

Hammersley-Clifford theorem [127], they can be represented in terms of the Gibbs 

distribution and the optimization problem of (5.3) can be written as 

                                                   )(),(exp
1

maxargˆ,ˆ
,

YBYLU
Z

BL
BL BL




                                 (5.4) 

where  )(),( YBYLU is the energy function, denoting the interaction between label and 

boundary configurations as well as the observation. Z is included for normalization and is 

a function of the MRF parameters. For given MRF parameters, (5.4) is equivalent to  

                                                      )(),(minargˆ,ˆ
,

YBYLUBL
BL BL 

                                        (5.5) 

     The energy function  )(),( YBYLU consists of two factors, corresponding to region-based 

and boundary-based segmentations. Here, as in some prior work [24][44], we express the 

energy function in the following additive form 

                                                  )()()(),( YBUYLUYBYLU BL                                    (5.6) 

where the energy functions  )(YLUL  and  )(YBU B  can be considered as the quality metrics 

corresponding to region- and boundary-based evaluations, respectively. We want to 

emphasize that L and B here are two different aspects of the same segmentation result, 

and the corresponding metrics are the complementary evaluations for the same 

segmentation result from region and boundary perspectives, respectively.  
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5.2.2 Energy Function for Region-Based Image Segmentation 

In this section, the energy function  )(YLUL in (5.6) corresponding to region-based 

segmentation is developed. The approach is based on human preference for good 

segmentation, from a region-based segmentation perspective.  

     We note that a human often evaluates the segmentation result in both global and local 

manners, that is, the fitness of a segmentation result to the entire image content and the 

local image region are considered simultaneously. Therefore, both region-based and 

boundary-based segmentation evaluations should be taken into account. In this subsection, 

we only consider region-based evaluation, and postpone the consideration of boundary-

based evaluation to the next subsection. We summarize the desirable properties for good 

segmentation in terms of region-based evaluation as follows. 

(i) The contrast of pixel intensities between two neighboring regions, i.e., inter-region 

contrast, should be large; 

(ii) The contrast of pixel intensities within a region, i.e., intra-region contrast, should 

be small; 

(iii) The pixel labels should correspond to homogeneous regions, that is, neighboring 

pixels prefer having the same label.   

     Criteria (i) and (ii) represent the global properties of a good segmentation, and 

criterion (iii) is a local property which indicates that the segmentation should yield large-

sized regions. 

     Thus, the region-based segmentation evaluation metric  )(YLUL  should consist of two 

types of measures, namely, global inter- and intra-region contrast measures and a local 



119 
 

label homogeneity measure. We express the composite measure also using an additive 

form as follows 

                                                       )()()( YLUYLUYLU LocalGlobalL                                    (5.7) 

     We can see from the three desirable properties that the contrasts between the 

neighboring regions and those between the neighboring pixels need to be calculated in 

order to obtain a quantitative metric for evaluating segmentation quality. In this work, we 

incorporate the HVS properties into the contrast measure via the JND model 

[129][130][131]. HVS is capable of only perceiving pixel intensity changes above a 

certain visibility threshold, which, in turn, is determined by the underlying physiological 

and psychophysical mechanisms. JND refers to the minimum visibility threshold above 

which visual contents can be distinguished. The JND model plays an important role in 

perceptual image and video processing, and has been successfully used in measuring the 

difference or distortion of the image contents [132][133]. In this chapter, we use the 

spatial JND model, i.e., pixel-wise JND, presented in [134], which is defined as a 

nonlinear additive model, 

                                  )(),(min)()()()(JND , iTiTiCiTiTi tLtLtL
p                         (5.8) 

where )(JND ip
is the JND threshold of the pixel indexed by i. )(iT L and )(iT t are the 

visibility thresholds due to luminance adaptation and texture masking, respectively,  and 

)(, iC tL represents the overlapping effect in masking where 1)(0 ,  iC tL . Details on the 

definition of JND and its computation are available in [129][134]. 
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5.2.2.1 Energy Function for Global Contrast 

In order to incorporate the desired characteristic of global inter- and intra-region contrasts 

into the energy function, we define a global neighborhood system, 61 pixels by 61 pixels 

in this chapter, with pixel of interest at the center. The segmentation quality metric based 

on criteria (i) and (ii) can be expressed as 

                                                   IntraInterGlobal CaCaQ  21                                           (5.9) 

where InterC  and IntraC  denote the inter- and intra-region contrasts of the pixel intensity 

based on JND, respectively, and 1a and 2a are two non-negative weights that control the 

contributions of the two types of contrasts to the energy function. A higher value of 

GlobalQ  means a better segmentation quality. 

     Due to the Markov property assumed in our work, the quality metric value 

corresponding to a single pixel, s, is independent on other pixels given the segmentation 

result in the global neighborhood system of s. Therefore, we have the energy function for 

the global contrast as  

           








M

s
sIntrasInter

M

s
sGlobalGlobal sCasCasQYLU sss

1
|2|1

1
|

)()()()(      (5.10)  

where
s

s |  means that the contrast is a function of the label of the pixel s and is 

calculated given that the labels of the rest of the pixels in the global neighborhood system 

of s, 
s

 , are fixed. To speed up the computation, instead of calculating the contrasts in a 

pixel-wise manner, the following region-wise measure of the inter-region contrast is 

employed,  

                                                   ),()( 01||
μμsC ss ssInter 

                                     (5.11) 
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where the calculation is carried out on  ss  , the set consisting of the pixels included 

in
s

 plus pixel s, and “  ” means “union”. Here, 

)]0(JND),1(JNDmin[/),( 0101| RRs
μμμμs 


. )(/

 and ,1
sNyμ u

N

uli iu
u

i
 

 , which is the mean 

value of the pixel intensity in the uth type region,  1,0u  for binary segmentation, 

and )(sNu is the number of pixels with the label u. iy is the ith pixel with the label u. 

)(/)(JND)(JND
 and ,1

sNiu u

N

uli pR
u

i
 

 , which is the average JND value of the regions with 

the label u. Thus, ),( 01|
μμss 

 is the measure of the average intensity difference of the two 

types of regions weighted by the minimum of the average JND values of the two types of 

regions. )(D is a robust function that reduces the impact of outliers and is defined in [33] 

as 

                                                          4

4

)(
DG

D
D


                                                     (5.12) 

where G is a small positive constant. 

     For the intra-region contrast, we define and employ the metric, 

                  )1()0(
)()(

1
)(

||
21

| sss sssIntra sNsN
sC





                       (5.13) 

Still, the calculation is carried out on  ss  , where   
 0

0 and 1 0|
)(/JND)0(

N

li Pis i
s iμy  

and   
 1

1 and 1 1|
)(JND/)1(

N

li Pis i
s iμy . Here, )(JND/ iμy Pji  , j=0 and 1 for binary 

segmentation, is the weighted difference between the intensity of the ith pixel and the 

average intensity of the region to which the pixel belongs. So )0(
| ss

 and )1(
| ss 

  in (5.13) 

measure the “variation”, or the inhomogeneity, of the two types of regions.  
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     We can see that (5.11) and (5.13) measure how the segmentation result of a single 

pixel s, i.e., the label of s, affects the segmentation in a global manner, and take into 

account the inter- and intra-region contrasts at the same time. Therefore, the energy 

function defined in (5.10) reduces the risk of being too biased when segmenting an image 

[125]. For example, an algorithm may become very greedy in finding small but tight 

clusters in the image data if only intra-region contrast is considered [125]. Additionally, 

(5.11) and (5.13) do not require modeling of the probability distributions of the noise and 

the image data, which may improve the robustness of the presented algorithm. 

 

5.2.2.2 Energy Function for Local Homogeneity 

In this subsection, we discuss the energy function based on criterion (iii), incorporating 

local homogeneity for good segmentation. A second-order neighborhood system, that 

includes 8 nearest neighboring pixels of the pixel of interest s, is employed for describing 

local homogeneity. The pixels, excluding s, included in the solid (yellow) rectangular 

shown in Fig. 5.1 (b) form a configuration of the second-order neighborhood system of s. 

Besides the label homogeneity, we also incorporate information about the dynamics of 

the pixel intensity in order to make the metric adaptive to non-stationary image contents. 

The energy function is defined as  

                                        
  









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s sNB
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yllYLU

1 )(
,
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)(exp),()(


                   (5.14) 

where )](JND),(JNDmin[/)(, sPPss syyy
ss

   represents the JND-weighted contrast 

between pixel s and its second-order neighbor s . )(2 sNB  denotes the set of all of the 
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second-order neighbors of s. The cost function for the label configuration of the 

neighboring pixel pair is denoted by ),(
s

lls   and defined in (5.15) for binary 

segmentation. 

                                                      


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


otherwise.   ,

 if ,
),( ,




 


s

s

ll
ll s
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                                       (5.15) 

where  is a non-negative real number and is the cost used to define the label 

homogeneity measure of the neighboring pixel pair. Eq. (5.14) has a form similar to the 

generalized Potts model [135], except for the additional robust estimation shown in (5.12) 

and the JND-weighting operation.  

 

5.2.3 Energy Function for Boundary-Based Image Segmentation 

In this subsection, we develop the energy function for boundary-based segmentation, 

which is also derived from the desirable properties for good segmentation in terms of a 

boundary-based evaluation. These properties are listed below,  

(i) Region boundary should be smooth and of as small a length as possible. In other 

words, the boundary should avoid containing too many sharp angles or turns; 

(ii) The intensity contrast of a neighboring pixel pair on the two sides of the boundary 

should be large, while the contrast within a region enclosed by the boundary 

curve should be small; 

(iii) The pixels lying on the boundary curve should be connected.   
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     Criterion (i) represents a property which is characterized by the image contents in both 

global and local manners. Criteria (ii) and (iii) are properties of a good segmentation in 

small regions, and can be measured locally.    

     When designing the energy function  )(YBU B , due to the huge computational burden 

for the global boundary-based feature measure, we only employ the local properties 

described in the boundary-based segmentation evaluation.  That is,  

                                                         )()( YBUYBU LocalB                                            (5.16) 

     Before deriving the energy function, we first discuss the neighborhood system and 

define a novel concept called the boundary element in the next section. 

 

5.2.3.1 Element and Neighborhood System  

The energy function of boundary-based segmentation is calculated based on a novel 

concept, the boundary element, defined for each boundary pixel. A boundary pixel is a 

pixel for which at least one of its second-order neighbors has a label different from it.  A 

boundary element consists of an angle together with its two directed edges. Suppose s is a 

boundary pixel, the angle of the boundary element of s originates from s, and two edges 

of the angle point to the two neighboring boundary pixels of s which have the same labels 

as s. The two edges separate the pixels into different regions according to whether their 

labels are different from or same as that of s. Some examples of the angles are shown in 

Fig. 5.2. The value of the angle is constrained to be in the range ],0[  , and is related to 

the smoothness of the boundary curve. Small angles correspond to sharp turns and 

therefore to a wiggly boundary, while large angles correspond to a smooth region 
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boundary. Naturally, we prefer large angles. The edges of the boundary element are 

related to the connectedness of the boundary pixels and thus the continuation of the 

boundary contour. The edges also play an important role in determining the cross-

boundary pixel pair, which will be discussed in Section 5.2.3.2.1. The boundary elements 

for two special segmentation configurations, isolated segmentation and interior pixel 

segmentation, will be discussed in Section 5.2.3.2.2, where the pixel of interest has either 

a different label from or the same label as its second-order neighbors. 

     A boundary element is determined from the interaction between the pixel of interest, 

say, s, and its 8 second-order neighbors. The total energy of a neighborhood system 

centered at s is dependent on the boundary elements of s and its 8 neighbors. A change in 

the label of s may affect the boundary elements of its 8 neighbors. Therefore, we define 

the neighborhood system for boundary-based segmentation as one consisting of the 8 

nearest neighbors in the second-order neighborhood system of s plus all the second-order 

neighbors of these 8 pixels, excluding s. This is, in fact, a third-order neighborhood 

system of s, )(3 sNB , i.e.,     ssNBNBsNB s \)()()( 223   , where “ s\ ” means 

“excluding s”. )(3 sNB is shown in Fig. 5.1, in which the pixels, excluding s, included in 

the rectangular bold dot-dash (light blue) line constitute the third-order neighborhood 

system of s for boundary-based segmentation. In Fig. 5.1, s lies at the center of the 

neighborhood system. The pixels represented by the solid points belong to one type of 

region with label zero (0 region). The small circles represent pixels belonging to the 

region with label one (1 region). The thin solid (green) line and the bold solid (black) line 

denote the boundary curves of the 0 and 1 regions, respectively. The solid (red) directed 

edges, paired together with the angle between the edge pair, form the boundary elements 
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of the pixels in the 0 region. The dashed (black) directed edge pairs and the 

corresponding angles form the boundary elements of the pixels in the 1 region. Now, let 

us consider the situation when the label of a pixel changes. The impact of the label 

change of s on the boundary elements of its 8 neighbors is shown in Fig. 5.1 (b), where s 

changes its label from 0 (Fig. 5.1 (a)) to 1 (Fig. 5.1 (b)) and results in the change of the 

boundary elements of its second-order neighbors.  
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                                        (a)                                                                             (b) 

Figure 5.1: Boundary elements, second-order and third-order neighborhood systems. (a) Typical boundary 

elements and third-order neighborhood system; (b) impact of label change of s on the boundary elements of 

its second-order neighbors. 

 

     From Fig. 5.1, we can see that the boundary curve of a region is determined by the 

boundary pixels together with their edge pairs. However, not all the boundary pixels 

contribute directly to the boundary curve, and it is possible that the impact of some 
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boundary pixels is “hidden” by the neighboring boundary pixels when forming the curve. 

For example, pixel c in Fig. 5.1 (a) is a boundary pixel, but the boundary curve, the thin 

solid (green) line, does not pass through c and its two edges, 


ca  and 


cd  . This is because 

the boundary elements a and d together with their edges, 


ab , 


ad and 


da , 


de , hide the 

contribution of c to the curve. However, the change in the label of c will affect the 

boundary elements of a and d, as mentioned above. Thus, we still need to consider the 

boundary element and the energy corresponding to pixel c when updating the pixel labels, 

the parameters of the MRF and therefore the shape of the boundary curve. In other words, 

boundary pixel c impacts the boundary curve in an indirect or implicit manner. The 

energy function corresponding to boundary elements will be discussed in the next section.  

     From Fig. 5.1, we notice that the angles of the boundary elements reflect the variation 

in the boundary shape, and the directed edges represent the interaction and the relative 

locations of the neighboring boundary pixels. 

 

5.2.3.2 Energy Function for Boundary-Based Segmentation  

As indicated earlier, we prefer smooth boundaries, i.e., gentle “turns”. This corresponds 

to large angles, and the energy function is, thus, designed as a monotonically decreasing 

function of the angle value. At the same time, a “reasonable” turn, which results from the 

significant contrast of pixel intensities across the boundary, should also be maintained. 

Furthermore, the intensity contrast of pixels on the same side of the boundary and 

belonging to the same region should be small. In this way, we may make the smoothness 

measure of the boundary curve dynamic and adaptive to non-stationary image content. 
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Thus, the energy function of a boundary element is composed of three terms: the first one 

is related to the angle between the two edges, the second one is related to the intensity 

contrast across the boundary, and the third one is related to the contrast on the same side 

of the boundary which is called intra-pie slice contrast. We define a “pie slice” next. 

 

5.2.3.2.1 Cross-Boundary Contrast and Intra-Pie Slice Contrast 

Consider a boundary pixel, s. A pie-slice of s, by definition, consists of s, as the origin, 

and some other pixels in the second-order neighborhood system of s. These pixels must 

have the same labels as s, and there are no pixels with different labels from s in the pie 

slice. The cross-boundary contrast is calculated as the intensity difference between pixels 

in a pie slice of s and the pixels in the second-order neighborhood system of s but with 

labels different from s. All possible configurations of the single pie slice in a second-

order neighborhood system are shown in Fig. 5.2. The configuration in each figure is 

valid when rotated by 2/ . The configurations of the multi-pie slices, where a second-

order neighborhood system contains more than one pie slice, can be determined in a 

similar manner and an example of it is shown in Fig. 5.3.   

     In Fig. 5.2, s is the pixel of interest. Crosses “ ” represent the pixels with the same 

label as s (including s), and form a pie slice of s. The remaining pixels have labels 

different from s, and are represented by  “+”, “-” and “*”. The cross-boundary contrast of 

a pie slice is determined by averaging the contrast of the so-called cross-boundary pixel 

pairs, which are determined by the two edges of the boundary element. More specifically, 

in the figure the cross-boundary pixel pairs corresponding to the pixels represented by  “-

” and “ ” are determined by the dashed (red) edge, those corresponding to the pixels 
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represented by “+” and “  ” are determined by the solid (blue) edge, and those 

corresponding to the pixels represented by “*” and “ ” are determined by both of the two 

types of edges mentioned above. The cross-boundary pixel pair configuration in each 

figure is valid when rotated by 2/ .    
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Figure 5.2: Possible configurations of the single pie slice in a second-order neighborhood system. The 

configuration in each figure is valid when rotated by 2/ . 
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     Suppose there are )(sNPS  pie slices included in a second-order neighborhood system 

with the origin at s. The cross-boundary contrast of the ith pie slice consists of two terms, 

one including s and another without s, as shown in (5.17) 
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where the first summation is related to the cross-boundary contrast calculated from the 

cross-boundary pixel pairs corresponding to the pixels in the ith pie slice of s (excluding 

s), and the second summation is related to that corresponding to s. Here, ky denotes the 

intensity value of pixel k. 1rP  and 2rP denote the boundary pixels inside and outside the 

ith pie slice of s (excluding s). They form the rth cross-boundary pixel pair, in which 2rP is 

the closest neighboring boundary pixel of 1rP  and has a label different from 1rP , and 

rN denotes the number of such pairs. Here, )(,...,1 sNi PS with 4)( sNPS , 

where )(sNPS denotes the number of pie slices in the second-order neighborhood system of 

s and 4 is the maximum number of pie slices in a second-order neighborhood 

system. jsP  are the boundary pixels outside the ith pie slice and have the labels different 

from s. s and jsP   form the jth cross-boundary pixel pair, and jN denotes the number of 

such pairs. By annotating the pixel in Fig. 5.2 (c), we show an example for calculating 

the cross-boundary contrast using (5.17), where the four “ ” pixels form a pie slice and 

the cross-boundary pixel pairs are determined by the solid and dashed edges. Here, pixel t 

is not involved in the calculation since it is not a boundary pixel when we calculate the 

cross-boundary contrast of s. As mentioned before, in this case there is only one pie slice 

in the second-order neighborhood system. 
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     The intra-pie slice contrast of the ith pie slice is defined as   
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where )(sN iPS  is the number of pixels included in the ith pie slice in the second-order 

neighborhood system of s. iPSμ  is the average intensity value of the pixels in the ith pie 

slice, and jiy   is the observed pixel intensity of the jth pixel in the ith pie slice.   

 

5.2.3.2.2 Energy Function for the Second-Order Neighborhood System 

In this subsection, we develop the energy function for the second-order neighborhood 

system of the pixel of interest. 

     As mentioned before, the energy function is designed to encourage a large turn angle 

and large cross-boundary contrast. At the same time, we would like to have the contrast 

of the pixel intensity within each pie slice to be as small as possible. We first find all the 

pie slices in each second-order neighborhood system of the pixel of interest s, and then 

the contrasts across boundary and inside the pie slice are determined by (5.17) and (5.18) 

for each pie slice. The energy corresponding to a second-order neighborhood system can 

then be calculated as the summation of the energy of each pie slice,  

                        


 
)(

1
543 )()()(exp

sN

i
iPSiCBi

PS

sContrasContrasas               (5.19) 

where )(si , iCBsContr )( and iPSsContr )(  are the angle value, cross-boundary contrast 

and intra-pie slice contrast of the ith pie slice, respectively. The weights 3a , 4a  and 5a are 

non-negative real numbers.  
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     Fig. 5.3 shows an example for calculating the energy of a multi-pie slice segmentation, 

where there exist two pie slices asb and csed . The corresponding energy is  
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)()( exp
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

 

Figure 5.3: A typical multi-pie slice configuration, where there exist two pie slices asb and csed .    

 

     We can see that the multi-pie slice configurations, which correspond to complicated 

and less preferred segmentation, have more terms than the single pie slice case. The 

larger the )(sN PS , the more “messy” the segmentation is. We show in APPENDIX A that 

the energy function (5.19) assigns higher energy and therefore lower probability to the 

multi-pie slice configurations, which is consistent with our expectation.   

     In many practical situations, there exist two special segmentation configurations, 

isolated segmentation and interior pixel segmentation, as mentioned before. Isolated 

segmentation corresponds to a special boundary element, where the angle of the isolated 

segmentation is 2 and the cross-boundary contrast is determined by averaging the JND-

weighted intensity differences between s and its 8 second-order neighbors (with the 

robust function considered).  The intensity contrast within the pie slice for the isolated 
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segmentation is zero since the pie slice includes only one pixel, s itself. Admittedly, the 

interior pixel is not a boundary pixel and does not have the boundary element as defined. 

However, for updating the pixel label we still assign a special boundary element to this 

type of configuration, where the angle of the interior pixel is set to be 2 and the 

corresponding cross-boundary contrast is zero. The intensity contrast within the pie slice 

can be calculated using (5.18), where s and its 8 neighboring pixels included in the 

second-order neighborhood system construct a pie slice. 

 

5.2.3.2.3 Energy Function for Boundary-Based Segmentation 

As mentioned before, a change in the label of s might impact the boundary elements and 

therefore the energy function values of the 8 second-order neighborhood systems 

centered at the 8 second-order neighbors of s, plus the second-order neighborhood system 

of s. Let )(2 sNB s  denote the set of pixels in the second-order neighborhood system of s 

plus s itself, so  ssNBsNB s  )()( 22 , where )(2 sNB represents the 8 second-order 

neighbors of s, as defined in Section 5.2.2.2. Thus, the energy function values of the 

second-order neighborhood systems of the pixels in )(2 sNB s are necessary to calculate 

the energy corresponding to the label configuration of s. Therefore, energy function (5.16) 

can be expressed as    
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where )(/)(
)(

 1
sNh H

sN

h

H 
  is the average energy of the second-order neighborhood systems 

included in the third-order neighborhood system of s. This energy function takes into 
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account the impact of the change in the label of s on the local region. The pixels in 

)(2 sNB s  are indexed by h, and )(sNH  denotes the number of pixels in )(2 sNB s . We can 

see that 9)( sNH  if s is an internal pixel of an image. 

     To speed up the computation, only the energy function of the second-order 

neighborhood system of s is calculated in this chapter, which is sufficient to produce 

satisfactory results and is therefore implemented in the experiments. Thus, we have a 

simplified energy function for boundary-based segmentation, 

                                                            



M

s
B sYBU

1

)()(                                                  (5.22)

  

5.2.4 Overall Energy Function and Optimization 

Having defined the energy functions for region-based and boundary-based segmentations, 

we formulate the overall optimization problem. According to the previous discussion, the 

image segmentation problem can be transformed to an optimization problem with respect 

to the pixel label and region boundary configurations,                                
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where 1 and 2 are two hyper-parameters controlling the contributions of the label and 

the boundary energy functions to the total energy. Finding the optimal configuration of L 

and B includes the minimization of (5.23) with respect to L and B followed by the 
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maximum likelihood estimation (MLE) of   if 1 and 2 are given. The procedure 

proceeds in an iterative manner. The JND weights only need to be calculated once before 

segmentation. We call this scheme HVS-driven segmentation scheme 1 (HDSS-1). 

     The hyper-parameters 1 and 2 can be determined either by trial-and-error or by using 

the method presented in [45]. In our work, we use the trial-and-error method to choose 

these parameters and the experimental results show that the performance of the algorithm 

is not sensitive to these parameters. To further reduce the effort of choosing the hyper-

parameters, the optimization of the energy function is carried out in two steps. In the first 

step, only the energy terms related to region-based segmentation are minimized. In the 

second step, the boundary energy function is minimized which is based on the 

segmentation result from the first step. Steps 1 and 2 are iterated until we achieve a 

satisfactory result. (In our work, the number of iterations is determined by trial-and-error, 

but the experiments show that the performance of the algorithm is not sensitive to the 

number of iterations if the number is larger than a certain value.) We see that in this 

scheme only the hyper-parameter 1  needs to be chosen. We call this scheme the HVS-

driven segmentation scheme 2 (HDSS-2). The two-step procedure is given by 
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     In our experiments, besides the implementation of the above mentioned segmentation 

schemes, we will also present the results when only the boundary element is considered 
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during the optimization, that is, when only the energy function in Step 2 of (5.24) is 

optimized. We call this segmentation method the boundary element-based segmentation 

(BEBS).   

     To the best of our knowledge, HDSS-1, HDSS-2 and BEBS are distinctive from 

existing segmentation algorithms in terms of the design of the objective functions from 

region- and boundary-based perspectives.  

 

5.2.5 Experimental Results  

In this subsection, comparative results of the segmentation of two types of medical 

datasets, mammogram and MRI brain images, and one natural image are shown. The 

comparisons are carried out between the presented algorithms and several representative 

segmentation and clustering algorithms.  

 

5.2.5.1 Experiment Configuration 

The mammogram used in the experiment is from the Digital Database for Screening 

Mammography (DDSM) [91]. The MRI brain image is T1-weighted and is from SUNY 

Upstate Medical University. We use Cameraman image as an example of the natural 

image.  

     In mammogram segmentation, our goal is to find the pixels which represent lesions. 

The segmented positive pixels by the presented algorithms are marked in blue. In 

segmenting the MRI brain image, we wish to segment the white matter (WM) from the 

gray matter (GM) and cerebrospinal fluid (CSF). The segmented non-WM tissues are 
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shown using purple and black colors. For the Cameraman image, we want to segment out 

the man as the foreground from the background, i.e., the building and the meadow. We 

also treat the camera as a background object and do not attempt to segment it out. The 

segmentation result is represented by a binary image, where the dark part is the 

foreground.  

 

5.2.5.2 Segmentation Algorithms 

The algorithms used for comparison purposes are briefly described as follows. 

     The Gaussian assumption-based dynamic clustering algorithm (GADC) [81], as 

described in Section 2.2.1.3, assumes that both background and lesions obey Gaussian 

distributions, where the detection (or clustering) and parameter update are performed in 

an iterative manner.  

     IMS [81], as described in Section 2.2.4, is an unsupervised learning pattern 

classification approach, which employs kernel density estimation technique to determine 

the probability distribution and performs clustering iteratively.  

     The HOSLW algorithm [96], as described in Section 2.3.2, has been shown to have 

superior performance compared with other existing methods for breast cancer detection 

in digital mammograms [97], in terms of efficiency and reliability.  

The conventional MRF-based algorithm [26] is also employed for comparison 

purpose, since the presented algorithms also include the MRF assumptions on the pixel 

label field and boundary element field. In our implementation, the likelihood term of the 

conventional MRF-based algorithm is determined under the Gaussian assumption and the 
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prior term is derived from the Gibbs distribution. An adaptive window size is employed 

to improve its performance, and the parameters of the Gibbs distribution are updated as 

the segmentation process proceeds.  

Otsu thresholding [127][128] is a classical and effective method for image 

segmentation. It is widely used in software for MRI brain image segmentation, such as 

3Dslice. It searches for the threshold by minimizing the intra-class variance. In our 

experiments, the original bi-level thresholding method [136] is employed for 

mammogram and Cameraman segmentations, where our goals are to find the lesion 

pixels and the Cameraman, respectively, while the multi-level version [137] is employed 

for the MRI brain image to segment out the WM. 

The level set evolution-based method, LSEWRI, presented in [121] is a recent 

variational formulation. It forces the level set function to be close to a signed distance 

function, and does not need the costly re-initialization procedure.  

The region-based active contour model (RACM) algorithm [138] is also based on 

level set evolution, which aims at overcoming the difficulties of segmentation due to 

inhomogeneous intensity. The authors employ a region-based active contour model 

which draws upon the intensity information in local regions at a controllable scale. A 

contour and two fitting functions that locally approximate the image intensities on the 

two sides of the contour are defined as the data fitting energy. A variational level set 

formulation incorporates the energy with a level set regularization term, and then energy 

minimization is carried out for the derived curve evolution equation. 

     The multi-scale normalized cuts-based segmentation (MNCut) algorithm [139] uses 

the normalized cut graph partitioning framework of image segmentation, where a graph 
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that encodes pair-wise pixel affinity is constructed and partitioned for image 

segmentation. The algorithm works simultaneously across the graph scales, with an inter-

scale constraint to ensure communication and consistency between the segmentations at 

each scale, such that both coarse and fine level details are captured. 

     We test HDSS-1 and BEBS for mammogram data, HDSS-1, HDSS-1 and BEBS for 

MRI brain image data, and HDSS-1for Cameraman image. To be fair, we use the same 

initialization for all the algorithms implemented in the experiments. We set 1a , 2a , 3a and 

5a to be 1, and 4a to be 15. In HDSS-1, 2  is chosen to be 1. s'1  in HDSS-1 and HDSS-

2 are set to be 0.1. From the experimental results, we notice that the segmentation 

performance is not sensitive to the choice of these parameters. We use the iterative 

conditional modes (ICM) algorithm [140] as the optimization method for all the three 

algorithms. 

 

5.2.5.3 Experimental Results 

Fig. 5.4 shows the segmentation results of the mammogram with lesions, where the blue 

points denote the segmented positives. The regions enclosed by the light green curves in 

Figs. 5.4 (f) and (g) correspond to the segmented lesion regions by LSEWRI and RACM, 

respectively.        
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(a) 

     

       (b)                        (c)                         (d)                         (e)                         (f)   

     

                        (g)                         (h)                         (i)                         (j)                          (k)              

Figure 5.4: Original mammogram and the segmentation results. (a) Original mammogram with lesions; (b) 

segmentation by Otsu thresholding; (c) segmentation by GADC; (d) segmentation by IMS; (e) 

segmentation by HOSLW;  (f) segmentation by LSEWRI; (g) segmentation by RACM; (h) segmentation 

by MNCut; (i) segmentation by conventional MRF;  (j) segmentation by BEBS; (k) segmentation by 

HDSS-1.  

   

     From the figures, we can see that BEBS and HDSS-1, shown in Figs. 5.4 (j) and (k), 

yield better results than the other methods. Otsu thresholding, (b), yields too many false 

alarms. Obviously, for an image in which the intensity contrast is not very high, like the 

mammogram, intra-class variance measure is insufficient for yielding good segmentation. 
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The advantage of GADC (c) is that it converges quickly, but it yields many false 

positives. IMS (d) may converge to local extrema and misses many lesions. HOSLW 

method (e) can find the lesions efficiently, but it still generates false alarms and fails to 

determine the shape of lesion which, however, plays a very important role in 

discriminating the benign tumors from the malignant ones. Moreover, the segmentation 

performance of HOSLW depends on how accurately we can estimate the number of 

lesion pixels, which is usually not available in real-world applications. The LSEWRI 

method, shown in (f), also performs poorly and yields many mis-segmentations. RACM 

(g) finds all the lesions but with many false alarms. Besides, it also fails to determine the 

lesion shapes. The number of iterations of the two level set-based algorithms is set to be 

500, which is sufficient for them to converge. For the MNCut method, we tried several 

numbers of segments, but did not observe any satisfactory results. A typical segmentation 

is shown in (h). Conventional MRF (i) does not find all the lesions and it also fails to 

determine lesion shape. This is because the conventional MRF only emphasizes intra-

region homogeneity and label smoothness, such that it is too conservative and works 

poorly when the image contents are complex. Besides, all the methods used for 

comparison purpose fail to mimic the adaptation of HVS to the complexity and non-

stationarity of the image contents.  

     As shown in Fig. 5.4 (j), BEBS performs satisfactorily, but the lesion contour is not 

smooth. This is because the boundary energy function does not emphasize the label 

homogeneity of the neighboring pixels as well as the global contrast of the image. On the 

contrary, HDSS-1 (k) integrates the boundary information, global contrast and pixel label 

homogeneity, and therefore yields a better result. 
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     Fig. 5.5 shows the results for MRI brain image segmentation, where the non-brain 

background is first removed from the image and segmentation is carried out only on the 

brain pixels. Similar to the mammogram case, our presented algorithms yield better 

segmentations than the representative ones, in terms of smaller mis-segmented area and 

higher accuracy in object boundary determination. In Figs. 5.5 (b), (c), (g), (h) and (i), 

white regions denote the segmented WM by different algorithms. The regions enclosed 

by the light green curves in Figs. 5.5 (d) and (e) correspond to the segmented WM by the 

two level set-based methods with the number of iterations being 2000, which is sufficient 

for them to converge.  

 

       

                (a)                             (b)                             (c)                             (d)                             (e) 

    

                                  (f)                             (g)                             (h)                             (i) 

Figure 5.5: Original MRI brain image and the segmentation results. (a) Original MRI image; (b) 

segmentation by conventional MRF; (c) segmentation by Otsu thresholding; (d) segmentation by LSEWRI; 

(e) segmentation by RACM; (f) segmentation by MNCut; (g) segmentation by BEBS; (h) segmentation by 

HDSS-1; (i) segmentation by HDSS-2. 
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     From the figures, we can see that the conventional MRF-based method (b) is 

conservative, as mentioned before. It puts more weight on pixel label homogeneity so 

misses many fine structures of the WM. Otsu (c) yields an unsuitable threshold such that 

some GM and CSF regions are segmented into the WM part. LSEWRI (d) produces a 

large number of mis-segmentations. RACM (e) includes some GM into WM and also 

yields segments with a very small size in the right half part of the brain image. MNCut (f) 

fails to characterize the fine structures of the WM and GM. The result from BEBS (g) is 

satisfactory, but it also yields some isolated pixels as well as some false positives in the 

bottom and boundary of the image. In contrast, HDSS-1 (h) and HDSS-2 (i) produce 

better segmentations in terms of reduced number of isolated pixels and the strengthened 

homogeneity of the neighboring pixel labels.      

     Fig. 5.6 shows the results of segmenting the Cameraman image. For visualization 

purposes, the results of the Otsu and HDSS-1 algorithms are shown as a binary image. 

From the figures, we can see that Otsu (b) yields a good segmentation of the human body, 

but generates many mis-segmentations in the background building and meadow parts. 

Most of them are segments with small sizes. LSEWRI (c) generates no mis-segmentation 

in the meadow but misses part of the human legs and also segments out a large area of 

background between the man and camera. RACM (d) yields good segmentation of the 

man. It even finds some fine structures of the image. But this method generates a large 

number of mis-segmentations in the meadow. We adjusted the number of segments of the 

MNCut method (e), and observed that it generates many homogeneous patches. 

Obviously, some post-processing algorithms, like region merging, need to be applied to 
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find the human from these patches. (f) shows the result of the presented HDSS-1 method. 

We can see that the man is segmented out with fewer mis-segmentations, especially in 

the meadow part, when compared to other methods. Also, a smaller portion of the camera 

is segmented out by this method. 

               

                                        (a)                                       (b)                                      (c)                                   

   

                                        (d)                                      (e)                                        (f) 

Figure 5.6: Original cameraman image and the segmentation results. (a) Original image; (b) segmentation 

by Otsu thresholding; (c) segmentation by LSEWRI; (d) segmentation by RACM; (e) segmentation by 

MNCut;  (f) segmentation by HDSS-1.  

 

5.3 HVS-Driven Image Segmentation Framework Using Local 

Segmentation Performance Measure 

5.3.1 Image Segmentation Based on MAP-MRF 

Context is important in image segmentation because contiguous pixels are likely to 
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belong to the same region and form homogeneous areas. MRF is an appropriate prior 

contextual model because it can identify the local properties of image regions by 

introducing context or dependence among neighboring pixels. MAP is a frequently used 

approach to obtain the solutions to the MRF-based image segmentation problems. 

Formally, in this approach, we have  

                                           )|(),|(maxarg*  xXPxXyYPx
x

                              (5.25) 

where x denotes the segmented image region label,    x=(x1,…, xs,…,xM); xs is the label of 

the pixel at location s in an image, xs=0,1,…, L-1; L is the number of region types, and M 

is the total number of pixels in an image; y is the observed image data, which is often 

modeled as the noise-free image corrupted by additive noise. θ is the MRF model 

parameter, relevant to the type of the cliques. A clique is a set of pixels that are neighbors 

of each other. P(Y=y|X=x,θ) is the conditional density of the observed image given the 

distribution of regions. P(X=x|θ) is the a priori density of the region process given θ, 

which according to the Hammersley-Clifford theorem [127], can be described by a Gibbs 

density of the form  

                                             ZxXVxXP
C

c /)}|(exp{)|(                                      (5.26) 

Here Z is a constant used for normalization, and the summation is carried out over all 

cliques C. Vc(X=x|θ) is called the potential function associated with clique c. 

     Due to the Markov property and the assumptions that the additive noise is independent 

of the image signal and independent and identically-distributed (i.i.d.), e.g., i.i.d. 

Gaussian noise [140], (5.25) is often approximated by  
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                                     ),|(),|(maxarg ||
*   ssss

s
ssss

x
xXxXPxXyYPx                       (5.27) 

where s|  is the neighborhood of the pixel s. The terms of 

P(Ys=ys|Xs=xs,θ)P(Xs=xs|Xη|s=xη|s,θ) can be considered as objective functions for 

representing the performance of single pixel segmentation.  

 

5.3.2 Image Segmentation Based on Local Segmentation Performance Measure 

In this section, we avoid of the noise modeling, and present a “soft” objective function, in 

which we consider image  segmentation as a detection problem, and employ a local 

segmentation error to measure the impact of individual pixel segmentation on the local 

region and further on the objective function value and the segmentation result 

corresponding to the entire image, such that the interaction between the neighboring pixel 

segmentation as well as the uncertainty of the individual pixel segmentation can be taken 

into account.  

     Image segmentation can be considered as a detection problem. For example, in the 

binary class segmentation case, a pixel can be considered as a detected positive if the 

pixel is segmented into the object region, or a detected negative if segmented into the 

background region. This equivalence is also applicable to multi-class segmentation. 

Therefore, many metrics relevant to detection performance, such as the Ali-Silvey 

distance measures [141], could be appropriate choices for the segmentation objective 

function assignment. In this section, the probability of successful detection ( SucP ) is 

employed as an objective function to show the efficiency of this scheme.  

     The novel objective function for the algorithm is  
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                                                  
s

ssSucP xXPC
sSuc

)(                                             (5.28) 

where 
s
  means the summation over the entire image. )( ssSuc xXP

s
  is a measure for 

successful detection, reflecting the probability of successful segmentation of the pixel s 

when it is labeled with sx . It aims to reflect the impact of the decision of a pixel on the 

segmentation performance of the entire image, and is defined as 

                                              ))|(1()( | ssxexssSuc xXePxXP
sss

                                 (5.29) 

where
sx is the a priori probability of the pixel s labeled with xs, and can be obtained 

from the Gibbs distribution, as shown in (5.26). )|(| ssxe xXeP
s

 is the conditional probability 

of error given the label xs. We define the optimal segmentation to be the one that 

maximizes (5.28).   

     For simplicity, we first consider the number of the types of image regions to be two 

and define Pe|x(e|Xs=xs) as       

                                  













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dyyPy

dyyPyxXeP
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xxxssxe

)())(1(

)()()|(

|1|1

|0|0|



                         (5.30) 

Here 
sx|0 and 

sx|1 are the a priori probabilities of occurrence of regions 0 and 1, with 

ss xx |0|1 1   . They can be estimated from the available segmentation results, i.e., 

Mmixi s
/|  , where mi is the number of pixels segmented into region i, and as 

mentioned before M is the total number of pixels in an image. We will see that the 

estimation of the probabilities of occurrence is not necessary in the binary class 

segmentation case. )(|0 yP
sx

and )(|1 yP
sx

are the pmfs of the discrete digital image data y for 
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the two types of regions, respectively. )( y
sx  is the critical region indicator function 

which gives the probability of assigning label 1 to xs based on the observations.  

     Due to the instability of image contents and the fact that there may exist correlation 

between neighboring pixels, a “hard” threshold, in terms of a “hard” critical function, 

may not be suitable for segmentation. So we define a “soft” critical function, namely a 

“soft” decision rule, according to the data distribution, which is given as follows, 

                                                 ))()(/()()( |0|1|1 yPyPyPy
ssss xxxx                                    (5.31) 

     Substituting (5.30) and (5.31) into (5.29), we get 

                                       )
)()(

)()(
1(

|1|0

|1|0


 
 dy

yPyP

yPyP
P

sz

zs

ss

xx

xx
xSuc                                   (5.32) 

Thus, the estimation of 
sx|0 and

sx|1 is not necessary.   

     For the segmentation with multiple region types, we have  
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where Ri denotes the region indexed by i;
sxi| are the a priori probabilities of occurrence 

of the type i region, with  




1

0 | 1
L

i xi s
 , and can be estimated using the method mentioned 

before; )(| y
sxi are soft decision rules for region i, defined as 

                                            
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and  




1

0 | 1)(
L

i xi y
s

 . )(| yP
sxj  are estimated by the pixels labeled with j given that pixel s is 

classified as type xs.   
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     Now, we can see that the objective function is a soft one. It evaluates the result of 

single pixel segmentation where the statistical information of surrounding pixels is taken 

into account. From (5.32) or (5.33) we notice that 
sx , )(| yP

sxj
 and therefore 

sSucP of different 

pixels are coupled, such that the label configuration of xs’s, which aims at achieving the 

global maximum value of (5.28), are very difficult to obtain. To simplify the optimization 

process, we assume that the label configuration obeys the MRF model, and define a 

local SucP , denoted as SucLP . Thus, 
sSucLP ’s for different pixel locations are independent of 

each other given the neighboring pixels around s. The calculation of 
sSucLP ’s and the 

update of xs’s can be carried out pixel by pixel in an independent manner. Formally, we 

have 

                                
)),|(1(

)|(

||,||

||,|

||

|

ssss
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xxexx
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ssssxxSucLP

xXxXeP
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





 






              (5.35) 

     Thus, the objective function is a measure of the segmentation performance in local 

regions. Each term of (5.35) is calculated from the pixel s and those around s. The 

optimal segmentation based on this criterion is achieved when (5.35) is maximized. The 

parameters of the Gibbs field are updated by fixing the pixel label 
sX  and finding the 

parameters which maximize (5.35). Therefore, 
SucLPC  in our work is maximized by 

updating the pixel label and Gibbs field parameters in an alternative manner.  

     As mentioned before, other metrics relevant to detection performance could also be 

employed instead of probability of successful detection. Thus, we have developed a 

framework of image segmentation incorporating a soft objective function and local 

segmentation measure. It can be seen that only the pixel intensity information is used in 
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this chapter for segmentation. Further work considering other image features beyond 

intensities may yield better results. 

 

5.3.3 HVS-Driven Image Segmentation 

Many image segmentation algorithms devote a great deal of effort in extracting image 

features from the image itself, but overlook the properties of the HVS for characterizing 

the image content. In this section, we present a segmentation scheme that takes care of 

the HVS properties during segmentation. In the scheme, we first transform the original 

image into the wavelet domain and obtain the “wavelet image”, and then the wavelet 

coefficients are weighted by the frequency response of the HVS given by a specified CSF 

in the wavelet domain. The Invariant Single Factor Weighting scheme discussed in [142] 

is employed here for the weighting task. Finally, the weighed “wavelet image” is 

transformed back to the spatial domain, which yields the CSF-enhanced image yCSF. 

Segmentation is then carried out as before on yCSF with HVS information embedded. 

     A number of different CSFs have been proposed in the literature. In this chapter, we 

choose the one discussed in [109] and used in (4.13) of Section 4.2.4.1. 

                                                1.1)114.0()114.0192.0(6.2)( rf
rr effA                                 (4.13) 

where 
rf is the radian spatial frequency in cycles/degree. The wavelet we use is 

Daubechies-8 and the number of decomposition levels is 4. 
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5.3.4 Experimental Results 

In this section, experiments are carried out on real-world mammogram data from the 

Digital Database for Screening Mammography (DDSM) [91], where the location of the 

mammogram lesions are identified by expert radiologists and used as the ground truth in 

our work. 

     Three segmentation algorithms are compared, namely the conventional MAP-MRF, 

LPSuc and CSF-enhanced LPSuc. Simulated annealing (SA) is employed for optimizing 

(5.35). An annealing schedule of c0/log(1+k) [143] is used for the SA procedure, in which 

k is the discrete time variable and c0 is specified by trial and error. In our experiments, a 

second-order neighborhood system, containing 8 pixels with the pixel of interest at the 

center, is employed for calculating
ss xx || 

 . 

     The pmf in all the three methods is estimated by the kernel density technique [86], 

which uses the data in a processing window with the pixel to be labeled at the center of 

the window. The choice of the processing window size is critical. It should be small 

enough such that the effect of the single pixel segmentation result can influence LPSuc and 

CSF-enhanced LPSuc, and the local image information can be included, but not too small 

because an accurate pmf estimation is difficult to achieve given a very small data set. To 

find the tradeoff, we use a processing window shrinking scheme, similar to that used in 

[144]. In the scheme, window size is reduced with the iterations proceeding. The reason 

is that in the early stages of the iterations, a large window is necessary for robust 

estimation of the pmfs. As the algorithm progresses, the segmentation is improved and 

smaller windows provide more local information as well as more reliable pmf values. The 

window shrinking stops when a minimum window size is reached which is set to be 5×5 
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in our experiment. 

     For a fair comparison, the initial segmentations for the three algorithms are assumed 

to be the same, obtained using the local maxima filter [96]. Fig. 5.7 shows the original 

mammogram containing micro-calcifications, as well as the segmentation results of the 

conventional MAP-MRF, LPSuc and the CSF-enhanced LPSuc algorithms, where the 

detected positives are marked with (blue) dots, the false positives and missed lesions are 

pointed out by dashed circles and solid circles, respectively. 

 

    

                   (a)                                    (b)                                    (c)                                    (d) 

Figure 5.7: Original mammogram and segmentation results. (a) Original mammogram with micro-

calcifications; (b) segmentation result with MAP-MRF; (c) segmentation result with LPSuc; (d) 

segmentation result with CSF-enhanced LPSuc. The detected positives are marked with dots, the false 

positives and missed lesions are pointed out by dashed circles and solid circles, respectively. 

 

     From the results, we can see that the conventional MAP-MRF (Fig. 5.7 (b)) yields two 

false positives at the left-bottom of the mammogram, and misses two true positives at the 

right-top and right-middle of the mammogram. LPSuc (Fig. 5.7 (c)) finds all the lesions 

and does not generate any false positives. CSF-enhanced LPSuc (Fig. 5.7 (d)) also detects 
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all the lesions but with more accurate lesion location and clearer lesion boundary than 

LPSuc. The proposed algorithms provide better segmentation than the conventional MAP-

MRF in terms of more accurate lesion localization and shape determination.  

 

5.4 Summary 

Image segmentation is a very important technique but a challenging problem for 

computer vision and image analysis. We presented two HVS-driven image segmentation 

approaches in this chapter. In the first approach, the objective function for segmentation 

was designed by considering the preference of HVS to good segmentation, from both 

region-based and boundary-based perspectives. The metrics were encoded into the MRF 

and the JND model was used to calculate the contrast of the image contents. Comparative 

performance evaluation was carried out via the experiments between the three variations 

of the presented algorithm and several representative segmentation and clustering 

algorithms available in the literature. The results show that the presented algorithms 

resulted in highly encouraging performance in terms of segmentation efficiency, 

robustness and convergence speed. 

     In the second approach, we considered image segmentation as a detection problem, 

and developed a novel image segmentation framework by introducing a local “soft” 

objective function to steer the segmentation. Moreover, the segmentation was further 

improved when the HVS information is embedded into images through a CSF-filtering 

procedure. Real-world mammogram data were used in the experimental comparison, 

which shows that the presented framework has highly encouraging performance. 
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CHAPTER VI 
 

PERFORMANCE LIMIT OF IMAGE 

SEGMENTATION ALGORITHMS 
 

In this chapter, image segmentation is formulated as a statistical parameter estimation 

problem based on varying coefficient model (VCM), and a modified Cramér–Rao bound 

(CRB) combined with the Affine bias model is employed to determine the performance 

limit of image segmentation algorithms. A fuzzy segmentation formulation is considered, 

of which hard segmentation is a special case. The effect of the factors, such as the 

contrast of the image pixel intensity, on the segmentation result is investigated via the 

bound, which gives us insights into the achievable accuracy of a segmentation algorithm 

in segmenting a specific image. Experimental results are obtained where we compare the 

performance of several representative image segmentation algorithms with the derived 

bound on both synthetic and real-world image data. 

 

6.1 Introduction  

As discussed in Section 1.3, the performance bound of image segmentation algorithms, 

which is dependent only on the given image contents, is significant both to the 

development of segmentation algorithms and to the evaluation of the quality of the 

segmentation results.  

     As mentioned in Section 1.3, there do exist efforts on bounding the segmentation 

performance from a statistical perspective. The work in [46] is based on the finite normal 

mixture (FNM) model assumption, where the model parameters, means and variances, 
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are estimated using Expectation-Maximization (EM) and Classification-Maximization 

(CM) algorithms. CRB on the variances of these estimates are derived. However, the 

FNM model is not universally applicable to all the images, and also, the unbiased 

estimator assumption made in [46] does not hold for many real-world segmentation 

algorithms, which will be seen in our experimental results. While studying multi-spectral 

image segmentation [47], the performance of the Markov random fields (MRF)-based 

segmentation algorithms was predicted using false alarm rate which was based on 

Rissanen’s minimum description length (MDL) criterion. The analysis in [48] covered 

many detailed scenarios of segmentation, but the computational complexity, the MRF-

based assumption and the use of multi-spectral image data constrained its application. In 

[48], the true segmentation label and two performance level parameters (sensitivity and 

specificity) were estimated using the EM algorithm. This scheme did not decouple the 

performance bound, i.e., the best achievable segmentation result for the given image data, 

from the specific segmentation algorithm, i.e., the EM algorithm used in [48]. In addition, 

the EM algorithm only guarantees to yield a locally optimal solution, which may not be 

appropriately used as a performance benchmark or bound, a global concept. 

     In this chapter, we derive the bound, or limit, on the performance measure of the 

segmentation result, i.e., the mean square error (MSE) of the pixel labels, based on the 

CRB, biased estimator assumption and Affine bias model. We first show that image 

segmentation problem fits the VCM [138] and image segmentation can be formulated as 

a parameter estimation problem. Second, in order to derive the biased bound, the CRB 

based on the unbiased estimator assumption is discussed as a necessary intermediate step. 

Thirdly, the biased bound and the optimum parameters for the Affine bias model are 
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determined, where the methods used to calculate the bound are also discussed. In the 

experiment section, we compare the derived biased bound with several representative 

image segmentation algorithms using synthetic and real-world image data. We also show 

the results of the unbiased bound, and demonstrate the unsuitability of the unbiasedness 

assumption.  

 

6.2 Performance Limit of Image Segmentation Algorithms 

6.2.1 Problem Formulation 

Image segmentation is a very challenging problem, and many segmentation algorithms 

have been proposed. However, there is a fundamental question to be asked as to whether 

there exists a theoretical limit to image segmentation performance and, more importantly, 

how much room we have to improve the existing algorithms. In this section, as a first 

step to attempt to answer this question, we model the image segmentation problem as a 

linear estimation problem using a VCM, where the parameters of interest, i.e., the pixel 

labels indicating which region a pixel belongs to, are considered to be the coefficients of 

the VCM.  

 

6.2.1.1 Varying-Coefficient Model [145] 

In this section, we briefly introduce the VCM. Consider a random variable s whose 

distribution is dependent on a parameter . In the VCM,  can be expressed as  

                                                 )()( 1110 MMM FhFhF                                          (6.1) 
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where Mhhh ,,, 21    and M ,,, 21   are known as the predictors for  , and 

MFFF ,,, 21  are functions that enable the representation of  . 0F  is the intercept term. 

Thus, the model is linear in the regressors, while their coefficients are allowed to change 

smoothly with the value of other variables which we call “effect modifiers”. is called the 

linear predictor, which is related to the mean  sE  via the link function     . In the 

simplest case of the Gaussian model,    and the data s is normally distributed with 

mean , and model (6.1) has the form 

                                                 )()( 111 MMM FhFhs                                         (6.2) 

where   0E , 2)var(   . Other commonly used models are log-linear models, for 

which   log and s has a Poisson distribution, and the linear logistic model 

with    )1/(log   and s is a binomial variable. A special case occurs when k ’s 

are the same variable, such as time, age or pixel coordinates as used in our work.  

     There are many ways to model the functions )( kkF  . For example, we could use 

flexible parametric representations, such as Fourier series, piecewise polynomials, or 

otherwise and more generally nonparametric functions. In our work, the B-spline function 

(tensor product B-splines) is employed. 

 

6.2.1.2 Image Segmentation Model 

In this section, we model the image segmentation problem using VCM. Suppose we have 

an image with N pixels whose observed intensity values are )(xy , where x are pixel 

indices and ordered through zig-scanning, starting from the top-left to bottom-right in an 
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image, and Nx ,,2,1  . The image segmentation problem can be formulated, based on 

Gaussian model (6.2), as 

                                        
)()()()()(

)(')()()()(

)(')()(

11

11

xwxFxhxFxh

xwxFxhxFxh

xwxsxy

MM

MM








                          (6.3) 

where )(xs are the noise-free intensity values of the pixel x. This model has the signal 

effect modifying variable x , where M is the number of segmented regions, and NM  . 

(Note that the pixels which have the same features or characteristics should be classified 

into the same class, but these pixels classified into the same class need not be connected to 

each other, that is, they may be located in separate regions. The method used to calculate 

the bound in this chapter is based on regions, not on classes, so we will consider regions 

one by one, no matter whether they belong to the same class or not.) )(xhk  is the pixel 

label of x, which can be considered as the membership function, representing the degree to 

which the pixel x belongs to the thk region, 1)(0  xhk  and 1)(
1 


M

k k xh for every x . In the 

rest of the chapter, the terms “label value” and “membership function value” will be used 

interchangeably. This definition enables the model to represent a general image 

segmentation scenario, i.e., fuzzy segmentation [146] where each pixel can belong to 

different regions at the same time. As a special case of fuzzy segmentation, a pixel in hard 

or crisp segmentation has the membership function  1,0)( xhk . In addition to providing a 

more general formulation, another important reason to study fuzzy segmentation is that the 

CRB fails to limit the MSE if the space of a parameter becomes finite [147], i.e., the hard 

segmentation case.  
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     In (6.3), the noise term )(xw consists of two parts, the image noise )(' xw  and the 

smoothing error  . We assume that we have a very powerful smoother and the smoothing 

error is very small compared with the additive noise, so the image noise dominates the 

noise term, i.e., )(')(')( xwxwxw   . In this work, the noise is considered to be 

independent and identically distributed (i.i.d.) Gaussian random variable with zero mean 

and variance 2 . Also, in our work, )(xFk is modeled using the 2D B-spline function with 

the coefficient vector k . Let );()( kk xxF   represent the intensity of the pixel x in 

the thk region, and 


m

l lklk xbx
1

)();(  , where )(xbl are B-spline basis functions and m is the 

number of knots in an image. l is the index of the knots which are ordered through zig-

scanning starting from the top-left to bottom-right in an image. For simplicity, the knots 

are uniformly deployed on the entire image plane. 

     Thus, (6.3) can be written in a matrix form as  

                                         
)()()(

)();()()(

xwxbxh

xwxxhxy
T

T







                                           (6.4) 

where T denotes the matrix transpose, T
M xhxhxhxh )](,),(),([)( 21   and 

T
Mk xxxxx )];(,),;(,),;(),;([);( 21   . Here, )();( xbx T

kk   , where 

T
kmkkk ],,,[ 21    and T

m xbxbxbxb )](,),(),([)( 21  . So )()(],,,[);( 21 xbxbx TT
M

TT    , 

where TT
M

TT ],,,[ 21   . 

     We note that a similar formulation has been used in [148][149] for developing image 

segmentation algorithms. In [148][149], )(xhi is considered to be equal to or very close to 

0 or 1, that is, hard segmentation, while in our formulation we consider a more general 

segmentation configuration, i.e., fuzzy segmentation where )(xhi  lies in [0,1]. In addition, 
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in [148][149], it was argued that the pixel label, with the given Gibbsian distribution as 

the prior, is independent of the image content represented by  . In contrast, we do not 

make any assumptions on the dependence or the prior distribution. 

     There are several advantages to represent the image using the smoothing 

coefficients  , instead of the original pixel intensity information: (i) we can denote 

regions with various shapes and sizes, i.e., different number of pixels, using a “uniform” 

representation, i.e., the basis )(xb and the smoothing coefficients k  with known or 

controllable dimensions. Thus, the segmentation problem can be conveniently 

represented by some linear models, like VCM, and the analysis can be simplified; (ii) 

smoothing can reduce the impact of a small number of pixels with large difference in 

intensity from their neighboring pixels, i.e., outliers, so as to enhance the homogeneity of 

the image regions. It is also helpful in reducing the possibility of yielding regions with 

very small size, i.e., region with very few pixels; (iii) spatially varying intensity and 

interactions between the neighboring image areas can be taken into consideration by the 

smoothing representation to some extent; (iv) the smoothing procedure can represent the 

image content using much smaller number of coefficients compared with the number of 

original image pixels, and, therefore, simplifies the computation. 

     From (6.4), we can see that there are two sets of parameters )(xh and  in the model, 

but we are only interested in the estimation of )(xh . We pack )(xh into a large vector H 

and obtain T
MMM NhNhNhhhhhhhH )](),(),(,),2(,),2(),2(),1(,),1(),1([ 212121  . In this 

chapter, we assume that the segmentation algorithms are biased estimators, that is, the 

output, )(ˆ xh , of a segmentation algorithm is a biased estimator of the true pixel 
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label )(xh . More details about this assumption as well as its justification can be found in 

Section 6.2.3 and Appendix C. Before deriving the MSE bound under the biased 

estimator assumption, we first discuss the Fisher information matrix and the bound based 

on the unbiased estimator assumption in the next section, where the segmentation 

algorithm is assumed to yield an unbiased estimate of the true pixel label. We will see 

that the bound under the unbiasedness assumption is very useful in finding the bound 

under the biasedness assumption and is also helpful in the experimental part to verify the 

validity of the biased estimator assumption. 

 

6.2.2 Fisher Information and Cramér–Rao Bound for Unbiased Estimator 

In this section, we derive the Fisher information matrix and the Cramér–Rao bound based 

on the unbiased estimator assumption.  

     For an estimation problem with two unknown parameters, like H and   in our work, 

one parameter, say, H , can be considered to be the wanted parameter and the other one, 

 , can be considered as the unwanted one. Both of them are assumed to be random. 

Based on this formulation, the performance of four variations of the Bayesian bound for 

estimating the wanted parameter was compared in [150][151]. However, determination of 

all of the bounds requires either the computation of derivatives and expectation over the 

joint probability distributions of the observation Y and the wanted parameter or the 

observation and the whole parameter set, i.e., ),( HYP or ),,( HYP , which is a very 

challenging task given the variety of image contents. Here .)](,),1([ TNyyY   
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     In our work, we assume H and  to be random so as to find a bound with reasonable 

complexity. We first determine the conditional CRB given H and  , and then find the 

expectation of the conditional bound with respect to H and   to obtain the global one. 

We will see that during the computation of expectation it is not necessary to determine 

the joint probability ),( HP  and to even consider the potential dependence between 

H and  .  

 

6.2.2.1 Fisher Information Matrix 

In this section, we derive the Fisher information matrix conditioned on H and  , and 

propose a scheme to deal with the singularity of the matrix which may exist in the single 

image segmentation scenario. Assume that the noise )(xw  is i.i.d. Gaussian random 

variable with zero mean and variance 2 , and the observed pixel intensity is also i.i.d. 

given the membership function H and the smoothing coefficient  . Then the conditional 

pdf of the observation is 
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     So the log likelihood function is given by 

                   

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N
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
        (6.6) 

     We are only interested in estimating H  and assume that the information about   is 

available, which can be estimated from the image contents and the ground-truth 
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segmentation results. This assumption on the availability of   is helpful in simplifying 

the determination of the bound and also in eliminating the ambiguity in model (6.4) due 

to the multiplication of H and  . So we focus on the Fisher information matrix 

corresponding to H and obtain 
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     The detailed derivation and the resulting Fisher information matrix are provided in 

Appendix B.  

     We notice from (B.6) that )(HJ F is singular, which can be verified by multiplying the 

first row of )(HJ F by )1(2 bT and the second row by )1(1 bT . This is because the 

dimension of H is usually higher than the available observation Y, especially for the case 

of single image segmentation, which can be seen more clearly from (6.4). For multi-

spectral image segmentation, there may not exist such a problem, since we have more 

observed image data, and the resulting Fisher information matrix for this case is shown in 

Appendix C. In this chapter, we focus on the derivation of the bound for the segmentation 

of single images, and the bound for multi-spectral image segmentation can be derived in 

a similar manner. 

To overcome the singularity problem, we transform the multi-region segmentation 

problem, where M>2, to a binary-region segmentation problem, i.e., M=2, by maintaining 

the information regarding the region of interest, say, the ith region, and by considering the 

remaining regions as a single “super” region. That is, the membership functions and the 

smoothing coefficients corresponding to the pixels in the ith region remain fixed, and the 

rest of the regions are merged to form a “super” region whose membership functions and 
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the smoothing coefficients are recalculated based on the image contents of the “super” 

region. Thus, the segmentation model (6.4) can be written as  

                                    
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where )(xhi and i are the original parameters of the ith region, and )(xh Si
and 

T

iS correspond to the “super” region.   )()()()(
,1

xbxhxbxh
M

ijj

T
jj

T

ii SS 







 



 , with 0)( xh Si , 

and 1)()(  xhxh Sii , .,,2,1 Mi    

Based on (6.8), the Fisher information matrix of )](,),1([ NhhH iii  , corresponding 

to the ith region, can be calculated as (6.9), by following a similar procedure as in 

Appendix A but with the “super” region considered. 
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which is not singular if 0)()(  xbxb T

i

T
i s . Since the resulting bound also requires the 

determination of the expectation of )()( xbxb T

i

T
i s   with respect to  , which will be 

seen in (6.14), we discuss the invertibility of the Fisher information matrix in the next 

section. 

      Thus, for 0)()(  xbxb T

i

T
i s , we have 
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  The same result can be obtained using the constrained CRB [152] with the “super” 

region scheme where the constraint is 1)()(  xhxh Sii . 

 

6.2.2.2 Cramér–Rao Bound for Unbiased Estimator 

In this section, we derive the Cramér–Rao bound under the unbiased estimator 

assumption, and employ Jensen’s inequality for matrix measures [153] to simplify the 

expectation determination procedure. We assume that the segmentation algorithms yield 

unbiased estimates of the pixel labels. Based on the formulation in the last section, the 

unbiased bound of multi-region segmentation can be calculated in a region by region 

manner. For the ith region, we calculate the Fisher information matrix )( iF HJ  and its 

inverse )(1
iF HJ  which corresponds to the conditional bound of the covariance matrix of 

iĤ . We find the expectation of )(1
iF HJ  with respect to H and  , and obtain the global 

bound for iĤ , which is different from the bounds discussed in [150][151]  as mentioned 

at the beginning of Section 6.2.2. Repeating the procedure for all the regions and 

averaging the resulting bounds, we obtain the average unbiased bound for the entire 

image. In this way, we decompose the estimation problem with the dimensionality equal 

to MN into M sub-problems, each of which has the dimensionality N, the same size as the 
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number of observations (the total number of pixels in an image), and therefore overcome 

the ambiguity due to insufficient number of observations. 

     Now, we study the bound on the covariance of the estimate Ĥ  under the unbiasedness 

assumption. The conditional covariance matrix of iĤ , i.e., ),|ˆ( HHCov i , for the 

unbiased estimator can be written as 

                        )(})ˆˆ)(ˆˆ{(),|ˆ( 1

,|ˆ,|ˆ,| iF
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ii

             (6.11) 

where ),|ˆ(ˆ
,|ˆ   HHE

HHi
 , and the corresponding conditional bound 

),|ˆ( HHCRB iUnbiased is 
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where Tr(U) denotes the trace of the matrix U.  

     The global bound for iH  is determined by finding the expectation of 

),|ˆ( HHCRB iUnbiased  with respect to H and  , i.e.,  ),|ˆ(,  HHCRBE iUnbiasedH .  

     The average bound for the unbiased estimator for an individual region can be found by 

averaging the global bounds of all the regions, that is, 
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where the last equality holds since  )(Tr 1
iF HJ  is not a function of H. 
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     In our work, we further average  HCRB AveUnbiased
ˆ

  over all the pixels in an image and 

the average pixel-level bound serves as the bound on the performance of image 

segmentation. Since iH ’s have the same dimensions, i.e., the number of pixels included 

in an image, we obtain the average pixel-level bound by dividing  HCRB AveUnbiased
ˆ

  with 

the total number of pixels, N, in an image, which is shown in (6.14).  
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    We notice from (6.10) that it is not easy to find the expectation of )(1
iF HJ  over  , so 

we employ an approximation when calculating the bound, by performing the expectation 

operation on )( iF HJ first and then finding its inverse, i.e.,    1)( 
iF HJE . According to 

Theorem 4.2 (Jensen’s inequality for matrix measures) and the Tracial Jensen 

inequalities in [153], we have  
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Thus, a looser bound is found to ease computation, which is called the modified CRB in 

this chapter and is indicated by the superscript Mod. Therefore, from (6.14) we have 
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     We now discuss a special situation, where   2
)()( xbxbE T

i

T
i s   in (6.16) has very 

small values such that its inverse is very large. In this case, the resulting average CRB 

value might be large. We note that the very small values of   2
)()( xbxbE T

i

T
i s   

correspond to an extreme situation where two image regions are not distinguishable at x. 

Because   2
)()( xbxbE T

i

T
i s   evaluates the average intensity difference between the two 

regions with the center at x (due to the expectation operation with respect to  ), it 

reduces the effect when the two different regions have similar pixel intensities at x, by 

making use of the intensity information of a group of pixels. Therefore, there are very 

few components of   2
)()( xbxbE T

i

T
i s   in (6.16) with very small values, given that the 

two image regions are reasonably separable, which has also been verified by our 

experiments. Thus, in our work we simply ignore the contribution of the components to 

the bound when they have very small values. This operation yields a reasonable tight 

bound. However, if we do not incorporate the expectation operation when calculating the 

bound, the performance of the resulting bound might be deteriorated when different 

regions have similar pixel intensities at x, which can be seen in the experimental results 

shown in Figs. 6.1 (c), 6.2 (c) and 6.3 (c). 

From (6.16), we can see that   2
)()( xbxbE T

i

T
i s   actually measures the square of the 

difference between the intensities at pixel x contributed by the region of interest and the 

“super” region. It indicates the interaction between different regions at x. A smaller 

difference means a higher similarity between the two image regions. This result 

corresponds to the image content which is more difficult to segment apart, and the 
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variance of the segmentation label is larger. Here, the intensity difference evaluation is 

carried out by using the spline coefficients and the expectation operation, and, thus, the 

effect of the contribution of the neighboring pixels to the intensity at x, i.e., the 

correlation between neighboring pixels, is also taken into account. It is also interesting to 

notice that the separability of the two regions, which is reflected by the segmentation 

variance, is independent of the membership values and only related to the contrast 

between the intensities of the neighboring regions overlapping at a pixel. Additionally, a 

larger noise energy, i.e., larger 2 , has a larger negative influence on the segmentation 

result, which corresponds to a higher value of the bound. We can see that the bound of 

(6.17) is consistent with these intuitive expectations. 

The bound (6.17) has been obtained under the unbiasedness assumption but as we 

will see in the next section that a biased estimator is a more reasonable assumption for 

real-world image segmentation algorithms. Therefore, the result obtained in this section 

is not applicable in practice. However, it will be very useful in deriving the bound for the 

biased estimator case.  

 

6.2.3 Cramér–Rao Bound for Biased Estimator 

In this section, we assume the estimator of H to be biased, and derive the bound on the 

MSE of the segmentation results. We continue to consider the transformed binary 

segmentation problem in this section. 
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6.2.3.1 Cramér–Rao Bound for Biased Estimator 

From both theoretical and practical points of views, unbiased estimators do not always 

exist. Moreover, biased estimators often have the advantage of lower MSE over unbiased 

ones if they exist [154]. MSE actually includes the tradeoff between bias and covariance. 

In addition, unbiased estimators tend to yield very large variance, especially for some ill-

posed problems, such as image segmentation. Regularization is widely used to solve ill-

posed problems and the resulting estimators are often biased [155]. Many state-of-the-art 

image segmentation algorithms are designed under a regularization framework, in which 

an objective function consisting of both a fidelity term and a penalty term is optimized, 

resulting in biased estimators.  

     Following the same steps as when deriving the average bound for the unbiased 

estimator in the last section, we first write the expression of the conditional MSE in terms 

of bias and covariance, as shown in (6.18) 

                                ),|ˆ(Tr)(,|ˆ 22
 HHCovHgHHHE iiii 





                         (6.18) 

where   iii HHEHg  ˆ)( is the bias vector of iĤ . 

     Under suitable regularity conditions on ),|( HYP , the covariance of a biased 

estimator of Ĥ is bounded by the CRB [150] 

                                               T
iFi AHAJHHCov )(),|ˆ( 1                                      (6.19) 

where  

                                                             
H

g
IA




                                                      (6.20) 

and I is the identity matrix. 
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     In our work, we assume that the behavior of the bias model can be approximated by 

an Affine function. The Affine model has been justified and employed to study the MSE 

bound for estimation problems in [156]. The details of the justification of the Affine bias 

assumption in image segmentation can be found in Appendix D. Formally, we have 

                                                        iiii uHKHg )(                                                  (6.21) 

where iK and iu are Affine parameters for the ith region. So, following the same steps as 

in the last section and considering (6.18)-(6.21), we have the conditional MSE bound of a 

biased estimator for iĤ as follows 

                      T
iiFiiii

T
iiiii KIHJKIuHKuHKHHHE 





   )(Tr,|ˆ 1

2
     (6.22) 

     Therefore, the global MSE bound for iĤ , i.e., )ˆ( iBiased HCRB , is given by  

              dHdHPKIHJKIuHKuHKHCRBHHE T
iiFiiii

T
iiiiBiasedii ),()(Tr)ˆ(ˆ 1

2

 




    (6.23) 

 The average MSE bound, i.e.,  HCRB AveBiased
ˆ

 , can be found by averaging the global 

bound for each region, and we, therefore, obtain  

             



 

M

i

T
iiFiiii

T
iiiAveBiased dHdHPKIHJKIuHKuHK

M
HCRB

1

1 ),()(Tr
1ˆ  (6.24) 

 

6.2.3.2 Optimum Affine Bias Model 

In this section, we determine the optimum  ** , ii uK  of the Affine bias model which yield 

the minimum value of the bound in (6.23), that is, 

                   dHdHPKIHJKIuHKuHKuK T
iiFiiii

T
iii

uK
ii

ii

),()(Trminarg, 1

,

**      (6.25) 
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     There are basically two schemes to find the solution of the optimization problem 

posed in (6.25). The first one is to assume that Ki and ui are functions of H or  and 

 **, ii uK  are found as the solution to the following optimization problem, as discussed in 

[156],  

                             ),0,0(),,(minarg,
,

**
iiii

uK
ii HMSEBHuKMSEBuK

ii

                   (6.26) 

where         T
iiFiiii

T
iiiiii KIHJKIuHKuHKHuKMSEB   )(Tr),,( 1 , and 

),0,0( iHMSEB  corresponds to the unbiased estimator case. As derived in [156], the 

resulting optimum Affine bias parameters are     IcHJHJK iiFiFi   )(Tr/)(Tr 11* and 

     iiiFiFi vcHJHJu   )(Tr/)(Tr 11* , where iii cvH  2 for some vector iv and scalar 

ic >0. The calculation of the bound requires the expectation of the function in (6.23) over 

),( HP , which is usually not tractable.   

We, therefore, use the second scheme, in which we assume that iM  and iu  are not 

functions of H and  . As a further simplification, by using the result of (6.15) and also 

observing that         TiiFiFi KIHJEHJEKI 
 11 )()(  are positive semi-definite, we 

obtain a modified bound )ˆ( i
Mod
Biased HCRB for the biased estimator, which is looser than 

)ˆ( iBiased HCRB  shown in (6.23). Thus, we have 

               
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1



  (6.27) 

The last equality in (6.27) holds because        T
iiFi KIHJEKI 

1
)(Tr   is not a 

function of H and    iii
T

iii uHKuHK   is not a function of  .  
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      Inspired by [157], the optimum Affine model parameters can be obtained by setting 

the derivative of )ˆ( i
Mod
Biased HCRB  with respect to the two parameters to zero, i.e.,  

                                        0
)ˆ(





i

i
Mod
Biased

K

HCRB  and 0
)ˆ(





i

i
Mod
Biased

u

HCRB                              (6.28) 

     Thus, we obtain the optimum parameter pair 
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

 iiFiFi HCovHJEHJEK                           (6.29) 

and  

                                      iHiiFiFi HEHCovHJEHJEu
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111* )()(
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                        (6.30) 

 Substituting *
iK and *

iu into )ˆ( i
Mod
Biased HCRB , we obtain the modified bound for the ith 

region  

                 
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  (6.31) 

 The details of the above derivation for the parameters and the bound can be found in 

Appendix E. 

So the average MSE bound is 
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(6.32) 

     As before, we obtain the average pixel-level MSE bound by averaging 

)ˆ(HCRBMod
AveBiased  with respect to the total number of pixels, N, in an image, and we have 
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     We notice from (6.33) that the decomposition of the terms containing H and   makes 

the solution easily computable and no explicit expression of the joint probability 

),( HP is required. It also avoids the study of the dependence between H and  . 

 

6.2.3.3 Calculation of the MSE Bound 

Computation of (6.33) requires the determination of  )( iF HJE  and  iHCov for the ith 

segmented region. In this section, we discuss the schemes to calculate these quantities. 

 

6.2.3.3.1 Calculation of  )( iF HJE  

We notice that calculation of  )( iF HJE  is not straightforward even if we are able to 

find the distribution of  , which, of course, is also a challenging task given various 

image contents. So we propose to use an empirical approximation to find the expectation 

value.  

 )( iF HJE  is a diagonal matrix, with the diagonal elements   2
)()( xbxbE T

i

T
i s  . 

Therefore, without loss of generality, we only investigate this term.  
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     Thus, we may use empirical estimation to approximate the second-order statistics in 

(6.34) and thereafter find the overall expectation of  2)()( xbxb T

i

T
i s  , which avoids the 

step of finding the probability distribution of  . More specifically, given the noise-free 

image with the segmentation label H, we determine iH and si
H as well as the pixels 

belonging to ith and isth regions. In this way, we separate an image into two layers, one 

corresponding to the ith region, called the ith layer, and another corresponding to the isth 

region, called the isth layer. In particular, if 1)( xhi , the pixel intensity at x of the ith 

layer is set equal to s(x), which is the pixel intensity of the original noise-free image at x; 

if 0)( xhi , the intensity at x of the ith layer is set equal to zero. Otherwise, for a fuzzy 

pixel )()()()()( xsxhxsxhxs Hard

i

Hard
i si

s
i

  with  1,0)( xhi , the pixel intensity at x of the 

ith layer is set equal to )(xsHard

i
. Here )(xsHard

i
is the “original” hard component from the 

ith region, which contributes to the fuzzy pixel. This is motivated by the result of (6.16) in 

Section 6.2.2.2 that the segmentation error is only dependent on the intensity difference 

between the original regions, irrespective of the membership function values. The same 

procedure is carried out for the isth region. We then use the tensor B-splines to find the 

smoothing coefficients i  and si
 for the two layers, respectively.  

     As we know that the empirical statistics will be closer to the true ones if more samples 

from the same distribution are used. To obtain enough valid samples of i  and si
 , we 

use a “non-local” technique. That is, for iq , we search the coefficients with statistics 

similar to iq in the ith layer. iq together with the other similar coefficients are collected 

to form an ensemble, and they are considered to be various realizations of the same 
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random variable. Then the terms including the second-order statistic of iq in (6.34) are 

calculated empirically using the collected coefficients in the ensemble. For example, 

 2
iqi

E 
 is approximated by   D

D

d diq /
1

2
)( 

 , where )(diq is the dth collected coefficient in 

the ensemble of iq , and D is the number of these coefficients, i.e., the size of the 

ensemble. The same procedure is carried out for si
 . The second-order statistics 

including i  and si
 are calculated using the collected coefficients from both the ith and 

isth layers.  

     Ignoring the approximation error, the smoothing coefficients and the pixels are two 

ways to represent the same image content, so we use pixel level features to search for 

similar coefficients because usually the number of pixels is much larger than the 

coefficients and, therefore, the statistics of the pixel level are more reliable. For example, 

when we search for coefficients similar to iq , we divide the image into patches centered 

at each knot with a fixed size, that is, the location of each smoothing coefficient is at the 

center of the patch. A suitable metric is employed to find the patches with a similar 

structure to the patch centered at iq , and the corresponding smoothing coefficients will 

be put in the ensemble of iq .  As will be seen in Section 6.3, we will use a metric called 

structural similarity (SSIM) index [108]. In other words, we use the similarity of the 

patches to represent the similarity of the smoothing coefficients. 

 

6.2.3.3.2 Calculation of  iHCov  

The analytical solution to estimate  iHCov requires the knowledge of the distribution of 
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iH which is unknown and also not easy to find. Therefore, we use the bootstrapping 

technique [158]. Bootstrapping is an approach for statistical inference, and used to 

estimate the properties of an estimator (  iHCov  in our work) by measuring those 

properties when sampling from an approximating distribution. It generates the empirical 

distribution of the observed data by constructing a number of resamples of the observed 

dataset, i.e., iH  in our work, with the same size as the observed dataset. These resamples 

are obtained by random sampling with replacement from the original dataset. 

Bootstrapping procedure is independent of the distribution, and provides an indirect 

method to assess the properties of the distribution which determine the sample and the 

parameters of interest [159]. Besides, bootstrapping is robust with respect to possibly 

small number of samples. 

     In our work, random sampling with replacement is carried out L times on iH , and we 

obtain L bootstrap samples, from which the covariance matrix is calculated. This 

procedure is repeated R times, and the resulting R calculated covariance matrices 

represent an empirical bootstrap distribution of  iHvCo ˆ  obtained from the available 

dataset. We accept the average of the estimated covariance matrices as the estimate of 

 iHvCo ˆ . From this empirical bootstrap distribution, we can derive a bootstrap 

confidence interval which is also the confidence interval of the estimate of the bound and 

can be considered as the variance of the bootstrap estimates. 

     Formally, we have 
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and  
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ˆ                                         (6.36) 

where 
lr

iH  is the lth bootstrap sample of the same size as iH  when generating the rth 

covariance matrix from the empirical bootstrap distribution, and rL
iH

̂ is the mean vector 

of L bootstrap samples 
lr

iH . 

     Repeating the above procedure of estimating  )( iHJE  and  iHCov for all the M 

regions, and plugging these results into (6.33), we obtain the average pixel-level MSE 

bound of image segmentation for the whole image. By substituting the 

estimated  )( iHJE  into (6.17), we can also obtain the average pixel-level unbiased 

bound, which will be used in the next section for comparison purposes. 

 

6.3 Experiments and Analysis 

In this section, we verify the efficiency of the presented MSE bound by comparing it with 

the segmentation results of several representative image segmentation algorithms using 

both synthetic and real-world image data. 

 

6.3.1 Experiment Configuration 

The two synthetic images considered here include one image with hard labels and one 

with hybrid labels. Hybrid here means that some pixels have hard labels and others have 

fuzzy labels. The real-world image is a cut of a mammogram, containing micro-
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calcifications, which is from the Digital Database for Screening Mammography (DDSM) 

[91]. The micro-calcifications are identified by the radiologists, which are used as the 

ground-truth in our work. 

When calculating the empirical second-order statistics, we employ the SSIM index 

[108] to find similar image patches, as mentioned before. SSIM measures the similarity 

between two images using structure information, which was shown in (4.12) and 

recapped in (6.37) 
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where 
1Y , 

2Y and 
1Y ,

2Y as well as 
21YY  denote mean intensity and contrast as well as 

the correlation coefficient of images 1Y and 2Y , respectively; 1C and 2C are constants used 

to avoid instabilities for very small  or  . The value of ),( 21 YYSSIM is between 0 and 1. 

A higher value means more similarity between two images. In this section, 1Y and 2Y  are 

two image patches under comparison, instead of the entire images used in (4.12). 

Admittedly, the patch size, the number of similar patches found for one coefficient, 

the spline type and even the distance between two neighboring knots have an impact on 

the resulting bound. We have carried out the experiments by varying these parameters 

over reasonable ranges and found that the following configuration yields robust and 

efficient bounds. The patch size is 13 by 13 pixels, the knots are deployed every 4 pixels 

in both horizontal and vertical directions, and the spline function is cubic B-spline. There 

are two constraints to determine the number of patches: (i) the patches with the SSIM 

index larger than 0.7 are considered as patches similar to the underlying patch; (ii) the 

first 20 patches with the largest index values are considered as similar patches if the 
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number of patches selected by (i) exceeds 20. 

As a further verification of the biased estimator assumption and Affine bias model, 

the unbiased bound discussed in Section 6.2.2 is also calculated for comparison purposes. 

 

6.3.2 Segmentation Algorithms 

The algorithms for hard image segmentation include the MRF-based algorithm [1275], 

Otsu thresholding [136][137], Gaussian assumption-based dynamic clustering (GADC) 

algorithm [80], the region-based active contour model (RACM) [138], and the multi-

scale normalized cuts-based segmentation (MNCut) [139], where RACM and MNCut are 

more recent and can be considered as the state-of-the-art segmentation algorithms. Those 

for fuzzy image segmentation include fuzzy C-means [160], fuzzy k-nearest neighbor 

(fuzzy k-NN) [161], and the Gath-Geva algorithm [162].    

     MRF-based algorithm, Otsu thresholding, GADC, RACM and MNCut algorithms 

have been introduced in Section 5.2.5.2 and Section 3.2.1.3. 

     The fuzzy C-means clustering algorithm is based on the minimization of the C-means 

functional which is used as the objective function. The minimization of the C-means 

functional is a nonlinear optimization problem that can be solved by using a variety of 

available methods. The most popular one is a Picard iteration through the first-order 

conditions for the stationary points of the C-means functional. The algorithm yields the 

weighted mean of the data items that belong to a cluster, where the weights are the 

membership values. 

Fuzzy k-NN is a fuzzy version of the crisp k-NN algorithm, in which fuzzy sets are 

introduced into the algorithm. The basic step of the fuzzy k-NN algorithm is to assign 
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membership of a vector as a function of the vector’s distance from its k-nearest neighbors 

and those neighbors’ memberships in the possible classes. 

The Gath-Geva algorithm uses a distance norm based on the fuzzy maximum 

likelihood estimates. This distance norm involves an exponential term and thus decreases 

faster than the inner-product norm. The membership degrees are interpreted as the 

posterior probabilities of selecting the ith cluster given a data point. Gath and Geva [162] 

reported that the fuzzy maximum likelihood estimates clustering algorithm is able to 

detect clusters of varying shapes, sizes and densities.   

 

6.3.3 Experimental Results 

Fig. 6.1 (a) shows a synthetic hard image with three intensity values, where the square in 

the upper-left corner has the intensity 90, the central arc has intensity 88, and the rest has 

intensity 80. White Gaussian noise is added into the image with zero mean and 

variance 2 . Fig. 6.1 (b) shows the MSE curves of the segmentation results using the 

above five hard image segmentation algorithms as well as the bound calculated using 

(6.33) based on the biased estimator assumption and Affine bias model. Fig. 6.1 (c) 

shows the variance curves of these segmentation algorithms and the bound calculated 

using (6.17) where we assume that the segmentation algorithms are unbiased estimators. 

The bounds, MSEs and variances are calculated for the particular image of Fig. 6.1 (a) 

under different noise strengths, i.e., different SNRs. At each SNR, the MSE and variance 

of each segmentation algorithm are the averages of 100 segmentation results. This 

procedure is used for all the experiments in this chapter.  
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(c) 

Figure 6.1: Bounds for hard image segmentation (synthetic image). (a) Synthetic hard image; (b) MSEs 

and bound under the biased estimator assumption; (c) variances and bound under the unbiased estimator 

assumption. 

 

     From Fig. 6.1 (b) we can see that the MSE bound (the bold dashed-dot line in the 

lower part of the figure) derived under the biased estimator assumption bounds the MSEs 

of these algorithms from below. With the increase of SNR, the bound and the MSEs 

decrease. When the SNR is very high, the MSEs converge to the bound. These expected 

results show that the bound in (6.33) provides a valid performance prediction of the 

segmentation algorithms and a benchmark of the segmentation results. In comparison, the 

bound in Fig. 6.1 (c) based on the unbiased estimator assumption, the bold dashed line, 

fails to bound the variance of these algorithms, which again verifies the reasonability of 
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the biased estimator and the Affine model assumptions. In Fig. 6.1 (c), we use the bound 

values of 0.5 to represent the invalid cases where the variances calculated from the 

unbiased estimator assumption are very large. However, the variance should have a small 

value, given that the value of the pixel membership function lies in a small range of [0, 1]. 

     From Fig. 6.1 (b), we can see that the MRF-based segmentation algorithm exploits the 

correlation between neighboring pixels and yields a better result, in terms of smaller 

MSE, than the methods which consider pixels to be independent when carrying out 

segmentation, such as dynamic clustering. This also shows the reasonability of our 

representation of the image using smoothing coefficients and the expectation operation 

with respect to   when calculating the bound, which take into account the correlation 

information contained in an image. As a further verification, in Fig. 6.1 (c) we draw the 

“bound” curve, the dotted line at the right hand side of the unbiased bound, which is 

based on the unbiased estimator assumption but calculated by using  2)()( xbxb T

i

T
i s   

directly from the pixel intensity and without the expectation operation with respect to  . 

We can see that not taking correlation into account yields an even worse result. Similar 

results can also be seen in Fig. 6.2 (c) and Fig. 6.3 (c). 

     Fig. 6.2 shows the results when calculating the bounds and MSEs using the real-world 

mammogram data. We can see that the presented biased estimator-based bound performs 

satisfactorily in predicting the performance limit of the algorithms, while the one based 

on the unbiased assumption fails. 
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(c) 

Figure 6.2: Bounds for hard image segmentation (real-world image). (a) Mammogram with micro-

calcifications; (b) MSEs and bound for biased estimator assumption; (c) variances and bound for unbiased 

estimator assumption. 

 

Fig. 6.3 deals with hybrid image segmentation for the synthetic image shown in Fig. 

6.3 (a). There are four basic image regions, corresponding to the intensity values of 120, 

90, 60 and 20, respectively. The three arc regions at the left side of the diagonal curves 

are fuzzy regions, denoted as Regions A, B, and C, and have membership values of [0.5, 

0.2, 0.2, 0.1], [0, 0.6, 0.3, 0.1] and [0, 0, 0.8, 0.2], respectively. The rest of the four 

regions are hard ones with the intensity values mentioned above. Once again white 

Gaussian noise is added into the image with zero mean and variance 2 . Fig. 6.3 (b) 

shows the MSE curves of the segmentation results using the three fuzzy image 
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segmentation algorithms when the biased estimator assumption and Affine bias model are 

employed. Fig. 6.3 (c) shows the variance curves of the segmentation algorithms, the 

bound calculated using (6.17) for the unbiased estimator assumption and the “bound” 

determined by ignoring the expectation operation. We can see from the figures that the 

bound based on the biased estimator assumption is valid but those based on the unbiased 

estimator assumption fail again.  

 

 

(a) 
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Figure 6.3: Bounds for hybrid image segmentation (synthetic image). (a) Synthetic hybrid image; (b) 

MSEs and bound for biased estimator assumption; (c) variances and bound for unbiased estimator 

assumption. 

 

6.4 Summary 

Image segmentation is very important but also very challenging for computer vision and 

image analysis. However, performance limit of segmentation algorithms are seldom 

studied from a statistical perspective, which plays a fundamental critical role in 

developing segmentation algorithms and evaluating segmentation results. This chapter 

developed a systematic method to determine a lower bound on the MSE of image 

segmentation algorithms under a statistical estimation framework. The bound was based 

on the biased estimator assumption and Affine bias model, where an approximation was 

employed to simplify the computation when determining the expectation on the inverse 

of the Fisher information matrix. Additionally, non-local searching and boostrapping 

techniques were used to approximate the unknown second-order statistics during the 

computation of the bound. The theoretical analysis and experimental results show that the 

presented bound is efficient and robust in bounding the performance of the segmentation 

algorithms and providing a benchmark for the segmentation problem.  
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CHAPTER VII 
 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 
 

7.1 Conclusions 

Object detection in images, image enhancement and image segmentation are all critical 

but challenging problems in image processing. In this dissertation, we have investigated 

these three problems based on stochastic resonance (SR) noise and human visual system 

(HVS) properties. Several frameworks and algorithms have been presented to improve 

the performance of object detection, image enhancement and image segmentation. In 

addition, a statistical performance bound has been derived for evaluating and analyzing 

image segmentation algorithms. 

     To detect objects of interest in an image is a difficult problem, especially when the 

image quality is low, which often happens in medical images. As a result, many detection 

algorithms suffer from suboptimality and yield unsatisfactory results. In this dissertation, 

we developed a framework and algorithm to improve the performance of suboptimal 

detectors based on SR noise. We have also developed several schemes to improve the SR 

noise-based detection improvement system, such as probability density function (pdf) 

learning and SR noise with memory (multi-peak SR noise). The experimental results with 

large number of image data show that the presented framework and algorithm are flexible, 

efficient and robust. 
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     Image enhancement is a widely used technique but also a challenging task. Many 

image enhancement algorithms fail to increase the quality of the image due to either the 

complexity of the image content and the image degradation process or the unsuitable 

design of the enhancement procedure. We have presented two image enhancement 

approaches in this dissertation. The first one was based on SR noise, where we developed 

a SR noise-refined image enhancement system, and employed HVS-driven objective 

functions and constrained multi-objective optimization (MOO) techniques to find the 

optimum parameters of the SR noise distribution. The second approach was based on the 

selective enhancement framework, where we enhanced the extracted region of interest 

(ROI) and suppressed the background. Several enhancement algorithms under this 

framework have been developed. The experimental results with various types of 

degraded images show that the two presented approaches can achieve superior 

performance in terms of both subjective and objective evaluations compared with many 

representative image enhancement algorithms. 

     Image segmentation plays a fundamentally important role in image analysis. Its 

challenge lies in the complexity of the image contents and the difficulty in defining 

appropriate segmentation criteria. As a result, many segmentation algorithms fail either in 

the objective function design or in the parameter setting. We have developed two HVS-

driven image segmentation approaches to improve the segmentation performance. One of 

the approaches took into account the preference of HVS to good segmentation from both 

region-based and boundary-based perspectives. Markov random fields (MRF) and the 

just-noticeable difference (JND) model have been employed to encode the HVS 

preference into the objective function for image segmentation. In our second algorithm, 
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we formulated image segmentation as a detection problem, and developed an image 

segmentation framework by introducing a local “soft” objective function for 

segmentation. We further employed contrast sensitivity function (CSF) as a filter to 

preprocess the image, which embedded HVS information into the segmentation 

procedure. Experiments with real-world image data show that the presented approaches 

outperformed many representative segmentation and clustering algorithms. 

     Finally, we investigated a very important but seldom studied problem in image 

segmentation, i.e., the statistical bound or performance limit of segmentation algorithms. 

We have developed a systematic method to determine a lower bound on the mean square 

error (MSE) of segmentation algorithms under a statistical estimation framework, based 

on the biased estimator assumption and Affine bias model. We compared the 

experimental performance of several representative segmentation algorithms with respect 

to this performance bound and a bound derived from the unbiased estimator assumption. 

The efficiency of the bound and the biasedness assumption are verified therein. We also 

analyzed the impact of image contents on the bound, and explained the factors that lead 

to the gap between the bound and the actual MSE performance. In particular, we 

presented analysis and experimental evidence which suggest that the consideration of 

pixel correlation benefits image segmentation. Furthermore, we showed that studying the 

performance bounds provides much insight into the image segmentation problem. We 

expect that this type of analysis would offer guidance to the practitioner for choosing and 

evaluating segmentation algorithms for a given image. 
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7.2 Suggestions for Future Work 

In this section, we suggest the following problems that are worth studying in the future. 

 The first part of the future work is about the SR noise-enhanced micro-calcification 

detection approach presented in Chapter 3. The investigation on optimizing the SR 

noise-based technique with memory, by determining the optimum weights for two-

peak SR noises, will be very useful to further improve the efficiency and robustness 

of the SR noise-based detection enhancement scheme. Extension of the SR noise-

based technique to enhancing fixed multiple threshold detectors is also an important 

research issue. The performance of SR enhanced variable detectors [54] has been 

shown to be superior to the fixed ones, where both the SR noise and the critical 

function can be jointly designed to enhance detection. So SR noise-based detectors 

incorporating variable critical function are likely to be promising. In our current 

work, we only considered the case where signal and background noise are all 

independently distributed. Future research on the correlated signal and noise case 

may further improve the detection performance. In addition, the application of the 

detection schemes developed in this dissertation to other two types of mammogram 

lesions, i.e., mass and spiculated lesions, and even other medical images, will be of 

great interest. Finally, the SR noise-enhanced scheme may also be useful in color 

images, which could be an excellent extension of our work to more real world 

applications. 

 The second part of the future work is about the SR noise-refined image enhancement 

scheme presented in Chapter 4. In our experiments, we investigated the effect of SR 

noise on different distortion situations, such as image sharping, noise reduction and 
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image de-convolution, and showed some of the results in this dissertation. The very 

encouraging results indicate that we may achieve significant performance 

improvement when applying the presented SR noise refinement scheme to other 

enhancement and restoration methods, such as super-resolution. Moreover, the 

extension to video enhancement may also be very promising. In this dissertation, we 

introduced independent SR noise in the image, but the performance may be further 

improved if correlated SR noise is employed. An investigation on other types of SR 

noises will be a very interesting topic to improve the quality of the enhanced image. 

Future research on ameliorating the weighting scheme may also improve the 

enhancement performance. Finally, the SR noise-refined image enhancement 

scheme may also be useful in color images, which could be an excellent extension of 

our work to more real world applications.  

 The third part of the future work is about the HVS-driven image segmentation 

algorithm presented in Chapter 5. An investigation on the segmentation with 

multiple region types or multiple pixel labels, instead of the binary labels, 0 and 1, as 

discussed in this dissertation, will be an interesting extension to the algorithm. This 

would, of course, require the presented objective function to be adjusted accordingly. 

In our current work, we mainly discussed the problem of hard or crisp segmentation, 

that is, a pixel belongs to either region 0 or region 1. Future research on fuzzy 

segmentation, based on the objective function presented in Chapter 5, will be 

another interesting research topic. Perhaps, the scheme of designing the objective 

function for fuzzy MRF, as discussed in [146], will be very helpful. Finally, in 

Chapter 5 we employed iterative conditional modes (ICM) for the optimization task, 
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and the research on approaches which can further improve the computational speed 

and segmentation accuracy will be both theoretically and practically useful. Graph-

cut based methods [27][135] may be promising options.  

 The fourth part of the future work is about the method to determine the performance 

limit of image segmentation algorithms, which was discussed in Chapter 6. An 

investigation on the probability distribution estimation techniques may be helpful to 

improve the computation of the expectation involved in the bound, where statistical 

learning methods may be helpful. In our current work, we mainly discussed the 

problem of segmenting a single image, and only mentioned multi-spectral image 

segmentation in Appendix C and did not consider the 3D scenario. Future research 

on the extension of the developed bound to the multi-spectral and 3D images will be 

an interesting research topic. When developing the bound, the ground truth 

information about the noise-free image and the membership value of each pixel label 

is required. Research on approaches which can reduce the dependence of the bound 

on such information will be both theoretically and practically useful. Perhaps image 

denoising and linear regression techniques will be helpful in handling it. Finally, the 

presented bound may also be useful in color images, which could be an excellent 

extension of our work to more real-world applications. 
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APPENDIX A 

REASONABILITY OF ENERGY FUNCTION (5.19) 
 

In this appendix, we show that the multi-pie slice configuration, with )(sNPS  pie slices, 

may have a large angle value, which can be obtained by adding the angles of the 

)(sNPS pie slices together, but will unnecessarily result in a smooth boundary and thus a 

lower energy due to the exponential function in (5.19).  

     We assume that the cross-boundary contrast and the interior contrast of each pie slice 

are the same as each other. Then (5.19) can be written as         

       


 
)(

1
3

)(

1
543 )( exp)(exp)()()(exp

sN

i
i

sN

i
iPSiCBi

PSPS

sasContrastsContrasContrasas   (A.1) 

where iPSiCB sContrasContrasContrast   )()()( 54 . Suppose we have a favorite 

segmentation with a single pie slice in the second-order neighborhood system of s. Its 

contrast is equal to )(sContrast , and its angle value, )(sfavorite ,  equals the summation of 

the angle values in (A.1), i.e., 

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1
)()(
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PS ss  . Then, it is not difficult to prove that 

                                    












)(

1
3

)(

1
33 )( exp)( exp)( exp

sN

i
i

sN

i
ifavorite

PSPS

sasasa               (A.2) 

given that 0)( si . Therefore, we have 

                                                                ss favorite                                                 (A.3) 

     Thus, the favorite segmentation has lower energy than the multi-pie slice 

configuration and therefore has a higher probability to survive.  
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APPENDIX B 

CALCULATING FISHER INFORMATION MATRIX 

(FOR SINGLE IMAGE) 
 

Assume that the noise )(xw  is i.i.d. Gaussian random variable with zero mean and 

variance 2 , and the observed pixel intensity is also i.i.d. given the membership H and the 

coefficient  . Then the conditional pdf of the observation is 
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     Fisher information matrix is determined as follows, 
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APPENDIX C 

CALCULATING FISHER IFNROMATION MATRIX 

(FOR MULTI-SPECTRAL IMAGES)  
 

For a multi-spectral image set including P images, H is the same for all of them, b can be 

different if the smoothing configuration, such as the number, position and size of the 

spacing of knots, are different from one image to another, but   usually are different for 

different images. Therefore, we have the segmentation model  

                                     )()()()();()()( xwxbxhxwxxhxy iiiTiiTi                             (C.1) 
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i ],,,[ 21   . The noise may be different, so we assume )(xwi are i.i.d. Gaussian 

noise with zero mean and variance 2
i . For simplicity, we use the same knot configuration 

for every image. Then the model is simplified to  

    )()()()( xwxbxhxy iiTi                                            (C.2) 

     We still assume that the observed pixel intensities are i.i.d. given the 

membership H and the coefficient  , so the conditional pdf of the observation is 
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     Therefore,  
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     So we have 

 











































































































































































M
iT

P

i

T
M

i

i

iT
P

i

T
M

i

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

M
iT

P

i

T
M

i

i

iT
P

i

T
M

i

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

M
iT

P

i

T
M

i

i

iT
P

i

T
M

i

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

M
iT

P

i

Ti

i

iT
P

i

Ti

i

MNMN

T

kk
HYF

NbNbNbNb

NbNbNbNb

NbNbNbNb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

xh

L

xh

L
EHJ

























































)()(
1

)()(
1

0000

)()(
1

)()(
1

0000

)()(
1

)()(
1

0000

00)2()2(
1

)2()2(
1

00

00)2()2(
1

)2()2(2
1

00

00)2()2(
1

)2()2(
1

00

0000)1()1(
1

)1()1(
1

0000)1()1(
1

)1()1(
1

0000)1()1(
1

)1()1(
1

)'()(
)(

1
21

1
2

1

221

1

22

1

121

1

12

1
21

1
2

1

221

1
2

1

121

1

12

1
21

1
2

1

221

1

22

1

121

1

12

'
|



























       

                                                                                                                                     (C.7) 

 



201 
 

APPENDIX D 

JUSTIFICATION OF THE BIASED ESTIMATOR 

ASSUMPTION AND AFFINE BIAS MODEL 
 

The estimation problem in linear models was analyzed in [163]~[165]. The linear model 

is 

                                                                 nQY                                                     (D.1)  

where Y is the observation,  is a parameter vector, Q is a model matrix, and n is zero-

mean random vector. The estimator of   is assumed to be linear, i.e., GY̂ , which 

estimates   by performing a weighted average operation over the observation. Linear 

estimators are quite frequently used for least squire estimation problems, whose forms 

have been established by solving optimization problems, with the constraints put on Q,   

and even n. These constraints can be considered as the prior information on these 

parameters and the penalties under the regularization framework. 

     Similarly, image segmentation can also be modeled as a linear estimation problem, as 

shown in (6.4)     

                                                     
)()()(

)();()()(

xwxbxh

xwxxhxy
T

T







                                           (6.4) 

where Tx );(  can be considered as the model matrix and )(xh is the label parameter vector 

to be estimated. During the segmentation procedure, some prior information about );(  x , 

)(xh and )(xw is usually employed as the penalty terms of the objective functions for 

segmentation, to reduce the solution space under regularization framework. For example, 

the smoothness assumption is often made on the labels of the neighboring pixels, like that 
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used in the MRF-based algorithms, which equivalently brings the constraint on )(xh . 

Moreover, local information is often used during the estimation procedure, that is, )(xh is 

often estimated by using the observation Y around the coordinate x. Thus, it is reasonable 

to assume that many image segmentation algorithms, especially the state-of-the-art ones, 

perform the label estimation using linear estimators GYH ˆ .  

     Here, we consider the penalty or prior information resulting from the label smoothness 

assumption, and assume that H forms Gaussian MRF  

                                              
 
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,







                               (D.2) 

where lj
x denotes the indices of the lth neighbor of the pixel jx in the neighborhood 

system jx of jx , and )( jx  is zero mean Gaussian noise vector. Pixel x  also belongs to 

jx . 
lja and xa are the model parameters. In this dissertation, two pixels are called 

neighbors if they are close to each other spatially and their observations have an impact 

on the estimation of the pixel labels of each other. So it is not compulsory for two 

neighboring pixels to be deployed in a way that one is followed immediately by another 

spatially. 

     With the neighboring information incorporated in the segmentation procedure, the 

linear estimator finds the weighted average over the observation in a local window. We 

can also consider that the weighted average is carried out over the whole set of 

observations in an image, but the weights decrease with the increase of the distance 

between the coordinates of the observations and the pixel of interest. Here, we only 

consider the observations which are neighbors of the pixel of interest. We have 
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                                                             xxYGxh )(ˆ                                                       (D.3) 

where xG and xY are the weighting matrix and observation vector corresponding to a 

neighborhood system of the pixel at x. More specifically, 

 TMx gggG ,,, 21  and T
xiCiii gggg ],,,[ )(21  , where Mi ,,2,1  , and C(x) is the total 

number of neighboring pixels of pixel x. C(x) is equal to the size of x , and may be 

different from pixel to pixel . T
xCx xyxyxyY )](,),(),([ )(21  , which is the vector 

consisting of the neighboring pixels of x. 

     We claim that if pixel jx  is the neighbor of pixel x, then pixel x is the neighbor of 

pixel jx .  Thus, substituting (6.4) and (D.2) into (D.3), we have  
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where jg  is the jth column of the matrix xG and )(,,2,1 xCj  .  x
T

jj axg );(  is a 

MM  matrix, and  

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is a scalar. The expected value of 

this linear estimator, given the true value of )(xh , is 



204 
 

 

       

     

     












































































































































 

 

 







j
jj

xxx
ljlj

T
jj

j
x

T
jj

j
jj

xxx
ljlj

T
jj

j
x

T
jj

j
jj

xxx
ljlj

T
jj

j
x

T
jj

xwxxhaxgExhaxgE

xwxxhaxgExhaxgE

xwxxhaxgxhaxgExhxhE

ljjxlj

ljjxlj

ljjxlj

)()();();(

)()();();(

)()();();()(|)(ˆ

,

,

,













 (D.5) 

     So the bias vector of the linear estimator is 
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where   IaxgEK
j
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     The subscript “x” of xK  and xu  means that these two quantities are relevant to pixel x. 

xK  and xu  can be further decomposed for each region type. That is, 

T
Mxxxx KKKK ],,,[ :2:1:  and T

Mxxxx uuuu ],,,[ :,2:1:  . Here, for the ith region 

type, T
Mixixixix KKKK ],,,[ ,:2,:1,::  , a 1M vector,  and ixu : is a scalar, Mi ,,2,1  .  

     In the “super” region scheme employed in our work, we have two regions, i.e., ith and 

isth regions, when we consider the segmentation performance for the ith region. So, 

M=2, T

ixixx sKKK ],[
:: , T

ixixx suuu ],[
::  and T

ixixix KKK ],[ 2,:1,::  . From (D.6) we have  
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where 2,:1,::' ixixix KKK   and ixixix uKu :2,::'   and we have employed the relation of 

1)()(  xhxh Sii  in the derivation. Therefore, we have 
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1N vector .  
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     From the above analysis, we can see that in many segmentation problems, the bias of 

the segmentation label is an affine function of the true label. 
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       APPENDIX E 

DETERMINATION OF THE OPTIMUM 

PARAMETERS FOR THE MODIFIED CRAMER-
RAO BOUND  

 

We first find the optimum values of iK  and iu  for the modified Cramér–Rao bound (6.27) 

by setting the derivative of (6.27) with respect to iK  and iu  to zero, respectively. Then 

the modified Cramér–Rao bound is obtained through submitting the resulting *
iK and 

*
iu into (6.27). 
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     Using (E.1), we have 
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     Substituting *
iK and *

iu into )ˆ( i
Mod
Biased HCRB , we obtain the modified bound for the ith 

region as follows  
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