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Abstract

Statistical decision making has wide ranging applications, from communications and

signal processing to econometrics and finance. In contrast to the classical one source -

one receiver paradigm, several applications have been identified in the recent past

that require acquiring data from multiple sources or sensors. Information from the

multiple sensors are transmitted to a remotely located receiver known as the fusion

center which makes a global decision. Past work has largely focused on fusion of

information from homogeneous sensors. This dissertation extends the formulation to

the case when the local sensors may possess disparate sensing modalities. Both the

theoretical and practical aspects of multimodal signal processing are considered.

The first and foremost challenge is to ‘adequately’ model the joint statistics of such

heterogeneous sensors. We propose the use of copula theory for this purpose. Copula

models are general descriptors of dependence. They provide a way to characterize

the nonlinear functional relationships between the multiple modalities, which are

otherwise difficult to formalize. The important problem of selecting the ‘best’ copula

function from a given set of valid copula densities is addressed, especially in the

context of binary hypothesis testing problems. Both, the training-testing paradigm,

where a training set is assumed to be available for learning the copula models prior to

system deployment, as well as generalized likelihood ratio test (GLRT) based fusion

rule for the online selection and estimation of copula parameters are considered.

The developed theory is corroborated with extensive computer simulations as well as

results on real-world data.

Sensor observations (or features extracted thereof) are most often quantized be-

fore their transmission to the fusion center for bandwidth and power conservation. A

detection scheme is proposed for this problem assuming unifom scalar quantizers at

each sensor. The designed rule is applicable for both binary and multibit local sensor

decisions. An alternative suboptimal but computationally efficient fusion rule is also
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designed which involves injecting a deliberate disturbance to the local sensor decisions

before fusion. The rule is based on Widrow’s statistical theory of quantization. Ad-

dition of controlled noise helps to linearize the higly nonlinear quantization process

thus resulting in computational savings. It is shown that although the introduction

of external noise does cause a reduction in the received signal to noise ratio, the

proposed approach can be highly accurate when the input signals have bandlimited

characteristic functions, and the number of quantization levels is large.

The problem of quantifying neural synchrony using copula functions is also in-

vestigated. It has been widely accepted that multiple simultaneously recorded elec-

troencephalographic signals exhibit nonlinear and non-Gaussian statistics. While the

existing and popular measures such as correlation coefficient, corr-entropy coefficient,

coh-entropy and mutual information are limited to being bivariate and hence ap-

plicable only to pairs of channels, measures such as Granger causality, even though

multivariate, fail to account for any nonlinear inter-channel dependence. The ap-

plication of copula theory helps alleviate both these limitations. The problem of

distinguishing patients with mild cognitive impairment from the age-matched control

subjects is also considered. Results show that the copula derived synchrony measures

when used in conjunction with other synchrony measures improve the detection of

Alzheimer’s disease onset.
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Chapter 1

Introduction

Multimodal/Heterogeneous signal processing refers to the joint analyses and fusion

of data from a variety of sensors (e.g., acoustic, seismic, magnetic, video and infra-

red) to solve a common inference task. One of the prime examples of a multimodal

system is the human brain, which integrates diverse sensory information such as

sight, smell, touch, hearing and taste to infer about the surrounding environment.

For example, speech perception is known to be a bimodal process that involves both

auditory and visual inputs [69]. Visual cues such as lip movements of the speaker have

shown to significantly improve speech intelligibility especially in environments when

the auditory signal is compromised. Similarly, building an automated system that

can consolidate information from diverse sources of information, could offer several

advantages and new possibilities for performance improvement. For example, video

surveillance cameras can be augmented with audio sensors to mitigate the effects of

screen flicker noise. The acoustic modality is unaffected by the lighting conditions

and can provide the much needed robustness. Thus, in general, noise in one modality

(e.g. poor lighting conditions) may not affect the signal-to-noise ratio of the other

modality (such as audio) and may result in enhanced overall system performance.
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Additionally, much useful information can be extracted from the joint analysis of

the different modalities that is otherwise unavailable if the signal modalities are con-

sidered independently. The use of multiple modalities may provide complementary

information and thus increase the accuracy of the overall decision making process.

For example, fusion of ‘functional’ images from positron emission tomography (PET)

and ‘structural’ data from magnetic resonance imaging (MRI) has become common-

place in clinical practice and in preclinical biomedical research [22]. Even within

MRI, structural images of high resolution are acquired along with low-resolution im-

ages of brain chemistry or blood flow. Thus, an efficient system design is the one

which exploits both the shared and the complementary information contained in the

multimodal signals.

While humans have a natural ability to handle and process such diverse streams

of information, teaching machines to do the same remains a challenge. Some of these

challenges are listed below:

1. Signals of different modalities are typically acquired at different rates. There

may be differences in the processing times of individual modalities. The re-

sulting temporal non-synchronicity between the signals complicates the fusion

task. For example, the mean amplitude feature from the audio sensor data may

span a large time interval, and may not be directly linked to the appearance

and movement of an object in the visual image data. Thus, features from one

sensor data stream may temporally lag those from another and the fusion center

has to be made aware of this delay between the inputs.

2. There may be differences in the dimensionality as well as the support space

across the different signals. In the audio-visual fusion example, the audio stream

is a 1-D signal, while video signals are 3-D measurements.

2



3. Data provided by different sensors are generally incommensurate and are char-

acterized by considerably different features. Thus, it is unclear how one would

weight each modality in the fusion process.

4. Inter-modal correlations can be quite complex, and it is not straightforward to

extract useful information shared by the different data modalities.

5. The ‘nice’ properties of linearity and Gaussianity may be too inaccurate to

model the structural properties of the underlying phenomenon.

6. Fusion of heterogeneous signals is a complex problem, and the solutions pro-

posed so far have largely been problem specific [6, 117]. Hence, they are not

easily scalable in terms of the number and diversity of modalities used in the

fusion process.

Thus, while signal processing for single modality signals is a well researched area, the

problem of jointly analyzing heterogeneous signals is more complex and has not been

investigated in detail. However, some advances have been reported in the past. We

review these studies in the next section.

1.1 Literature Survey

Fusion of audio and visual information has been dealt with in studies involving audio-

visual segmentation, retrieval and summarization of multimedia streams [109], joint

audio-video tracking [9], audio-visual face and speech recognition [17], and audio-

visual event detection in sports events [67]. Below, we discuss some of the noteworthy

contributions.

Hershey and Movellan [49] were among the first to consider the problem of mea-

suring audio-visual synchrony. They proposed to use mutual information to measure

audio-visual synchrony. The authors compute mutual information between the energy

3



of an audio track and individual pixels in video under the assumption that both the

audio and video features are jointly Gaussian. Slaney and Covell [91] generalized this

approach and measure synchrony between audio features and video images (instead

of single pixels). The authors use canonical correlation analysis (CCA) which allows

the comparison of sequences of different dimensions, and thus deduce relationships

between audio features and video frames. The application of CCA was also considered

by Kidron et al. [63] for an audio-video localization problem. The goal is to localize

pixels in images that correspond to the acquired audio signal. By exploiting the spar-

sity of cross-modal events, their algorithm is shown to provide a unique solution, and

gives promising results even in the presence of visual distractions. In [84], the authors

use CCA to extract lip features that are maximally correlated to the Mel-Frequency

Cepstral Coefficients (MFCC) [81] extracted from the audio signal. Lip features such

as 2D-discrete cosine transform (DCT) coefficients of the intensity based image, op-

tical flow vectors within the lip region, and distances between pre-defined points on

the lip contour were considered.

The problem of speaker detection is addressed in [24] where a time-delay neu-

ral network is used to learn the correlation between a single microphone signal and

a camera image. Normalized cross correlation between consecutive images is em-

ployed as the video feature, while cepstral representation is used for the audio signal.

Probabilistic models such as Hidden Markov Models (HMM) and Bayesian networks

(e.g. [9]) have also been employed to represent a sequence of detected events in a

video stream. These ideas have been extended to develop coupled HMMs to combine

probabilistic models developed for each sensing modality [41]. However, the audio

and video observations are typically assumed to be conditionally independent.

The methods discussed above are based on rather restrictive assumptions such

as linearity, joint Gaussianity and statistical independence; they fail to extract any

nonlinear dependence information between the different modalities. In order to ad-
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dress these issues, information-theoretic approaches have been proposed in the recent

past. Fisher and co-workers [39, 40] have developed a multimodal signal-level fusion

framework based on a probabilistic generation model. The audio and video features,

namely, audio periodograms and pixel intensities, are first projected onto a lower-

dimensional subspace. The projection rules are restricted to be linear and are chosen

so that they maximize the mutual information (instead of the correlation coefficient)

between the projected audio and video representations. The audio-video joint density

required to compute the maximally informative projections are estimated using the

Parzen’s density estimator [76] instead of making the Gaussian assumption. A similar

approach is proposed in [15] by Butz and Thiran. Correspondence between the au-

dio and video signals is quantified by maximizing the ratio between the audio-visual

mutual information and the audio-visual joint entropy. The distributions are again

estimated using the nonparametric Parzen’s estimator. The use of Parzen windows

to estimate mutual information, however, requires a considerable amount of data for

reliable estimation, and thus may not scale very well with the number of sensors.

In contrast to the previous research efforts that mainly address the data associa-

tion problem, we consider a more general formulation in this dissertation. While the

main interest of the previous studies was in detecting changes in the statistical depen-

dence between heterogeneous sources, our goal here is to detect both, the changes in

statistical dependence (common information) between the heterogeneous sources, as

well as variations in the marginal distributions (complementary information). Our so-

lution is based on the statistical theory of copulas [70] which allows us to approximate

joint distributions with arbitrary marginal distribution functions. Copulas allow mod-

eling of the potential nonlinear relationships between multiple modalities, and thus do

not require linearity and Gaussianity assumptions. Further, the parametric nature of

our solution makes the algorithms easily scalable with respect to the number of sen-

sors. No prior knowledge regarding signal models or functional relationship between

5



the modalities is assumed. Instead, joint distributions are approximated directly from

the acquired data using copula theory.

1.2 Thesis Organization and Main Contributions

As discussed above, the problem of fusing or joint processing of heterogeneous data is

difficult and the solutions proposed have largely been problem specific. The central

goal of this dissertation is to develop a principled methodology for fusion of sensors

with different sensing capabilities. Our objective is to model correlated multi-modal

data, so that effective techniques can be developed for inference problems such as

detection, estimation and tracking. This dissertation investigates the use of copula

functions for modeling heterogeneous random vectors. Particularly, our focus is on

developing a framework for general binary hypothesis testing problems.

More precisely, in Chapter 2, we discuss the issues involved in modeling het-

erogeneous random vectors, and propose a solution based on the statistical theory

of copulas. Copula functions are more general descriptors of dependence (than the

well-known Pearson’s correlation coefficient ρ) and are good candidates for modeling

complex relationships between multiple modalities such as audio and video. We show,

in this chapter, how they possess all the ingredients necessary to model heterogeneous

measurements. We give clear points of comparison between the proposed copula-based

models and other approaches that are currently adopted for characterizing heteroge-

neous random vectors. Several methods for estimating copula parameters from the

acquired data, and the estimation performance, are also reviewed in this chapter.

The problem of multisensor detection is formulated as a general two hypotheses

testing problem in Chapter 3, and a copula-based test statistic is derived. Particularly

important here is the choice of the copula function. Different copula functions would

associate the same set of individual modalities to different joint distributions, thus
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resulting in different detection performances. This important problem of identifying

the best copula is addressed in this chapter. In addition to the simulation results,

we also test our methodology on real-data and present results for a multibiometric

fusion application.

Hypothesis testing in the presence of unknown model parameters is considered in

Chapter 4. The use of the generalized likelihood ratio test (GLRT) is well-known [61]

in the classical setting, where, the PDFs of the observations under both hypotheses

are completely known but for some model parameters. We consider the case when

one has only partial knowledge regarding the PDFs. Specifically, a copula model that

would converge to the true dependence structure is unknown. We call the resultant

test, the misspecified GLRT (mGLRT), and also propose methods for large sample

performance analysis. As an application, we solve the problem of detecting the pres-

ence of a human using footstep signals from seismic and acoustic sensors. An approach

based on CCA and copula theory is employed to derive mGLRT. Experimental results

based on real data collected at the U.S. Army Research Lab (US-ARL) are presented

which show significant improvements in detection performance for different walking

styles.

A distributed detection problem is formulated in Chapter 5. Local measurements

are first compressed using uniform scalar quantizers before their transmission to a

fusion center. The fusion center employs a copula-based rule to fuse the received

correlated multi-bit decisions. It is acknowleged that the exact fusion rule is com-

putationally expensive especially when the number of sensors and/or the number

of quantization levels increase. A suboptimal procedure based on Widrow’s quanti-

zation model [112, 113] is proposed that requires injecting an artificial noise at the

receiver before fusion. The proposed system greatly reduces the computational com-

plexity of the system, and can be considerably accurate, especially when the number
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of quantization levels is large. An upper bound on the loss of detection rate due to

quantization, at a fixed probability of false alarm PF , is also derived.

In Chapter 6, we address the problem of quantifying dependence between mul-

tiple time series. As a specific application, we study the phenomenon of synchro-

nization between multiple simultaneously recorded electroencephalographic (EEG)

signals. Quantification of synchrony between EEG channels is an important problem

as it is known to be indicative of several neurophysiological disorders. Several mea-

sures have been proposed in the past to test if the EEG channels are inter-related, and

also quantify the ‘strength’ of this relation. While some measures are limited to being

bivariate, some others, even though multivariate, may fail to account for nonlinear

dependencies. We exploit copula theory to alleviate both these limitations. The cop-

ula derived synchrony measures are then used for diagnosing Alzheimer’s disease at

a very early stage. Results show that the use of the proposed synchrony measures in

conjunction with other synchrony measures such as Granger causality and stochastic

event synchrony improves the detection of Alzheimer’s disease onset.

Finally, in Chapter 7, we summarize the findings and results of this dissertation

and draw some conclusions. Several directions and ideas for future research are also

presented.
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Chapter 2

Statistical Modeling of

Heterogeneous Signals

Given a set of observations z = {z1l, z2l, . . . , zNl}L−1l=0 generated from an unknown

joint density f(z), it is often required to represent the data by fitting a parametric

model {f̂(z;ψ ∈ Ψ ⊂ R
a)} where ‘a’ denotes the dimensionality of the parameter

vector ψ. This is the first step when developing algorithms for signal processing

applications such as detection, estimation and tracking. An important aspect is the

choice of the model {f̂(·; Ψ)}. It is necessary to consider the underlying physical

principles, together with difficulties of measurement and observations (noise sources)

when formulating a parametric probability model. Appropriate statistical techniques,

such as the method of maximum likelihood (ML), can then be used for purposes of

estimation and statistical inference.

Determining {f̂(z; Ψ)}, however, is not always straightforward. This is especially

the case with data streams of disparate modalities (such as audio and video) that

typically share complex relationships. As Fisher and Darrell [39] note, one of the main

difficulties limiting the development of algorithms that could process heterogeneous

data is the scarcity of ‘good’ models to describe their joint statistics. In this chapter,
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an approach based on the statistical theory of copulas is proposed as a solution. It

will be helpful for later discussions to partition the parameter vector ψ as below,

ψ =












ψp =









ψ1

...

ψN









ψd












(2.1)

where ψp ∈ Ψp ⊂ R
ap and ψd ∈ Ψd ⊂ R

ad denote the marginal and dependence param-

eter vectors respectively. For example, for a bivariate Gaussian density, f(z1, z2) ∼

N (µ1, µ2, σ
2
1, σ

2
2, ρ), ψp = (µ1, µ2, σ

2
1, σ

2
2)
T
and ψd = ρ.

The remainder of the chapter is organized as follows. In Section 2.1, we identify

the key requirements that a model needs to satisfy to ‘adequately’ model heteroge-

neous random vectors. Modeling approaches that are commonly adopted, and their

limitations are also reviewed here. Section 2.2 discusses the theory of copulas. We

begin with Sklar’s theorem which is central to copula theory, give examples and para-

metric forms of copula densities used in this dissertation in Section 2.2.1, and discuss

approaches for estimating copula parameters from the acquired data in Section 2.2.2.

Relationship between copula parameters and nonlinear rank dependence measures

such as Kendall’s τ and Spearman’s ρ, are also discussed in this section. Motiva-

tion for developing methods for copula selection is provided in Section 2.2.3, before

summarizing the chapter in Section 2.3.

2.1 Modeling Heterogeneous Data - Challenges

Heterogeneous data streams are not always commensurate. The physics governing

each modality may be different and so may be their dimensionality, support and

sampling rates during data acquisition. These differences require the formulation of
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multivariate statistical models that allow for marginals that follow disparate distri-

bution functions. A formal definition for heterogeneous observations follows.

Definition 2.1. A random vector Z = {Zn}Nn=1 governing the joint statistics of an

N-variate data set is termed as heterogeneous if the marginals Zn are non-identically

distributed.1

Further, in most information fusion applications, the signals share a common

source and thus may exhibit statistical dependence. Consider, for example, an acous-

tic sensor and a video camera monitoring a region for trespassers. Presence of a target

may result in an increase in both the acoustic energy and the pixel intensities of the

images acquired by the video camera. Both sensors provide information about the

same event (and hence are statistically dependent) but in different domains. Thus, the

following two requirements are expected of a good model for heterogeneous random

variables:

1. The model should allow for disparate marginal distribution functions.

2. The model must also account for any statistical dependence that may be present

between the disparate marginal distribution functions.

Section 2.2 reviews the theory of copulas and shows how copula densities possess

properties that allow us to satisfy the above requirements. We first provide a brief

discussion on some commonly adopted models. While these approaches are attrac-

tive due to their analytical tractability, each of them leads to suboptimal solutions.

Assessment of these shortcomings will motivate the proposed copula based solution.

1Definition 2.1 is, of course, inclusive of the special case when the marginals are identically
distributed and/or are statistically independent. It also encompasses the case when the signals,
although sharing a common modality (e.g., two acoustic sources or two video sources), may exhibit
different statistics (due to different locations, signal strengths, etc.). Hence, we prefer the term
heterogeneous in this dissertation in place of multimodal as used by some others in the literature.
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2.1.1 Commonly Adopted Approaches for Modeling Hetero-

geneous Data

The Product Model

Often statistical independence is assumed when dealing with heterogeneous data sets

for mathematical tractability. The joint density f(z;ψ) is approximated as a product

of the marginal densities,

f̂(z;ψ) = fp(z;ψp) =
N∏

n=1

fn(zn;ψn ∈ Ψn) (2.2)

As is evident, the product model, fp(z;ψp) allows for disparate marginals but com-

pletely neglects the dependence across the disparate marginals.

The Multivariate Gaussian Model

The use of the multivariate Gaussian density

f̂(z;ψ) = fG(z;µ,Σ) =
1

(2π)
N
2 det

1

2 (Σ)
exp

[

−1
2
(z− µ)TΣ−1(z− µ)

]

(2.3)

to model multivariate random data is quite prevalent in the literature. Two limita-

tions plague this approach:

1. Marginals are constrained to follow Gaussian distributions.

2. The correlation matrix Σc characterizes only the linear relationship and is

thus a weak measure of dependence [68]. For example, in Fig. 2.1, although

dependence between variables is evident in the scatter plot, the correlation

coefficient ρ computed for this bivariate data is zero. Inter-modal interactions

are usually much more complex (than just being linear).
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Figure 2.1: Correlation coefficient is a weak measure of dependence

Copulas are more general descriptors of dependence that can describe the func-

tional relationship between multiple random variables more accurately as will be

discussed in Section 2.2.

The Nataf Transform

Nataf transform, first introduced in the reliability literature [53], involves transform-

ing the marginals to the standard normal space, Yn = Φ−1(Fn(Zn;ψn)) where Φ is the

standard normal cummulative distribution function (CDF). After this transformation,

the joint density f(z) is given as

f̂(z;ψ) = fNataf (z;ψp,Σc) = fp(z;ψp)
φ(y1, . . . , yN ; Σc)

φ(y1) · · ·φ(yN)
(2.4)

where φ(y; Σc) and φ(yn) are the N-dimensional multivariate and univariate standard

normal densities respectively. Σc is the covariance matrix in the transformed (normal)

space. As will be evident in Section 2.2, Nataf transform is equivalent to using the

Gaussian copula density. Thus, the copula approach is a general framework that

includes the Nataf transform approach as a special case.
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2.2 Copula Theory

We begin with the definition of a copula.

Definition 2.2. An N-dimensional copula is an N-variate CDF on [0, 1]N whose

univariate marginals are uniformly distributed on [0, 1].

Thus, copulas functions ‘couple’ multivariate joint distribution functions to their

component marginal distribution functions [56, 65, 70]. The following theorem by

Sklar is central to the statistical theory of copulas.

Theorem 2.1. (Sklar’s Theorem, 1959)

Let F be an N-dimensional CDF with continuous marginal CDFs F1, F2, . . . , FN .

Then there exists a unique copula C such that for all z1, z2, · · · , zn in [−∞,∞],

F (z1, z2, · · · zN) = C(F1(z1), F2(z2), . . . , FN(zN)) (2.5)

Note that the marginal CDFs of the copula C(u1, u2, · · · , uN) are uniform due to

the probability integral transform (Un = Fn(Zn) ∼ U(0, 1)). The joint probability

density function (PDF) is obtained by taking the N th order derivative of (2.5),

f(z) =
∂N

∂z1 . . . ∂zN
(C(F1(z1), F2(z2), . . . , FN(zN)))

= fp(z)c(F1(z1), · · · , FN(zN)) (2.6)

It is interesting to note the form of Eq. (2.6). The copula density re-weights the zero

dependence or the product model fp(z) to incorporate statistical dependence between

the variables.

Theorem 2.1 also admits the following converse when one wants to construct a

statistical model by considering, separately, the univariate behavior of the components

of a random vector and the dependence structure defined by some copula. The
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converse is especially useful in practice when the true CDF F (and hence the true

copula C) is unknown. Note that this property of separating the dependence structure

from the univariate marginals is also well-suited for modeling heterogeneous random

variables where a different distribution might be needed for each marginal (see Section

2.1).

Theorem 2.2. If F1, F2, . . . , FN are univariate marginal CDFs and if K is an N

dimensional copula, then the function Fk : R
N → [0, 1],

Fk(z1, . . . , zN) = K(F1(z1), . . . , FN(zN)), (2.7)

is a valid N-variate CDF with marginals F1, F2, . . . , FN .

A copula based parametric model can be derived by taking theN th order derivative

of Eq. (2.7) to obtain

f̂(z;ψ) = fp(z;ψp)k(F1(z1;ψ1), . . . , FN(zN ;ψN);ψd). (2.8)

A variety of copula functions, with different dependence properties, exist in the liter-

ature [65, 70]. The most popular ones out of these are the Student’s t and Gaussian

copula functions, and copula functions that belong to the Archimedean family. De-

tails of these copula functions, their functional form and the parameters incorporating

dependence, are summarized next.

2.2.1 Some Well-known Copula Families

Elliptical Copulas

Copulas of elliptically contoured distribution functions are known as elliptical copulas.

The two well-known elliptical copulas are the Gaussian and the t copulas that are

derived from the multivariate Gaussian and the Student’s t distributed functions
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respectively. Both specify dependence using the correlation matrix and are given as

follows.

KG(·|Σ) = ΦGΣ
(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(uN)

)
(2.9)

where ΦGΣ denotes the multivariate Gaussian CDF with correlation matrix Σ and Φ

denotes the univariate Gaussian CDF, and,

Kt(·|Σ, ν) = tν,Σ
(
t−1ν (u1), . . . , t

−1
ν (uN)

)
(2.10)

where, tΣ,ν is the multivariate Student-t distribution with correlation matrix Σ and

ν degrees of freedom (ν ≥ 3) and tν denotes the univariate Student’s t distribution

with ν degrees of freedom. As ν → ∞, the t copula approaches the Gaussian copula

function.

Archimedean Copulas

Archimedean copulas form an important family of copulas and are given as follows.

K(·|ψd) = ζ−1
N∑

n=1

ζ(ui) (2.11)

where, ζ is the so called generator function. By appropriately choosing the generator

function, different copula functions with different dependence properties can be gen-

erated. The generator functions for Clayton, Frank, Gumbel and the product copulas

and their parametric forms are shown in Table 2.1.

The product copula is a special case which results in the joint density equal to the

product of the marginal PDFs, i.e., it corresponds to zero inter-modal dependence.
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Table 2.1: Archimedean Copula functions

Copula Generator Function Parametric Form Range of ψd

Clayton 1
ψd

(
u−ψd − 1

) (
∑N

n=1 u
−ψd
i − 1

)− 1

ψd [−1,∞)\{0}

Frank exp−ψd −1
exp−ψdu−1

−1
ψd
log

(

1 +
∏N
n=1(exp−ψdun −1)

exp−ψd −1

)

R\{0}

Gumbel − log uψd exp

{

−
(
∑N

n=1(− log u)ψd
) 1

ψd

}

[1,∞)

Product − log u
∏N

n=1 un NA

The Farlie-Gumbel-Morgenstern (FGM) Family

The FGM copula is given as

K(·;ψd) =
(

N∏

n=1

un

)[

1 +
N∑

n=2

∑

1≤j1<...<jn≤N

ψdj1j2...jn(1− uj1)(1− uj2) . . . (1− ujn)

]

.

(2.12)

It is the only copula that is quadratic in all its arguments un.

While many other copula families have been defined, the above mentioned copula

functions are the ones considered in this work. However, the theory developed is

applicable to all valid copula functions.

2.2.2 Estimation of Model Parameters

In this section, we discuss methods for estimating the model parameters ψ = (ψp, ψd)
T ,

while assuming full knowledge of the specific copula function that would best char-

acterize the given data. The issue of selecting the copula function is taken up in

Section 2.2.3.
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Maximum likelihood estimation

The parameter vector ψ in Eq. (2.8) is typically unknown and is estimated from

the acquired observations. Given L independent and identically distributed (i.i.d.)

samples of the N -variate data, the ML estimate ψ̂mle maximizes the log-likelihood

function,

L(z;ψ) =
L∑

l=1

log f̂k (zl;ψ) (2.13)

=
L∑

l=1

log

{(
N∏

n=1

fn(znl;ψn)

)

k (F1(z1l;ψ1), . . . , F1(zNl;ψN);ψd)

}

(2.14)

Thus,

ψ̂mle = argmax
ψ∈Ψ

{
L∑

l=1

log k (F1(z1l;ψ1), . . . , F1(zNl;ψN);ψd)

+
L∑

l=1

N∑

n=1

fn(znl;ψn)

}

(2.15)

Assuming that the usual regularity conditions [104] hold so that the asymptotic

ML theory remains valid, the ML estimate ψ̂mle is known to be consistent and asymp-

totically efficient. In the limit (L→ ∞),

√
L(ψ̂L − ψ0) N (0,F−1(ψ0)), (2.16)

where, ‘ ’ denotes convergence in distribution, F(ψ0) is the Fisher information ma-

trix, and ψ0 is the true value of ψ. However, Eq. (2.16) holds only when the underlying

parametric model is well-specified (see Definition 2.3 below).

Definition 2.3. (Well-specified model, White 1994 [110])

A parametric model {f(x; Θ)} is well-specified for a random variable X if there
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exists a unique θ
′ ∈ Θ such that f(x; θ

′

) ∈ {f(x; Θ)} corresponds to the true density

of X. Otherwise, {f(x; Θ)} is said to be misspecified for X [57].

Quasi-Maximum Likelihood Estimation

When the model is misspecified, ψ̂L is no longer consistent with the true value ψ0.

Statistical properties of ψ̂L in such cases can be studied using the quasi-maximum

likelihood (QML) framework developed by White [110].

Let ψ∗, where

ψ∗ = argmax
ψ∈Ψ

Ef

(

1

L

L∑

l=1

∂

∂ψ
log f̂k(zl;ψ)

)

, (2.17)

be a point in the interior of a compact set Ψ ⊂ Rp. The expectation in Eq. (2.17) is

with respect to the true PDF f(z). ψ∗ is also known as the pseudo-true value asso-

ciated with the model f̂k(zl;ψ). Under the usual regularity conditions, the estimate

ψ̂L is determined by solving the following equation,

ξL(ψ) =
1

L

L∑

l=1

∂

∂ψ
log f̂k(zl;ψ). (2.18)

That is, ξL(ψ̂L) = 0. For simplicity of presentation, let ψ be a scalar parameter. By

mean value theorem,

√
L
(

ψ̂L − ψ∗

)

=

√
L
(

ξL(ψ̂L)− ξL(ψ∗)
)

ξ
′

L(ψ̃)

= −
√
LξL(ψ∗)

ξ̇L(ψ̃)
(2.19)

where, ψ̃ is a point between ψ̂L and ψ∗, and, ξ̇L(ψ) denotes the derivative of ξL(ψ)

with respect to ψ. By Central limit theorem (CLT), the numerator −
√
LξL(ψ∗) =

−
√
L
∑

l
∂
∂ψ
log f̂(zl;ψ)|ψ=ψ∗ converges to a normal distribution with mean zero and
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variance aψ∗ = Ef

[
∂
∂ψ
log f̂k(z;ψ)|ψ=ψ∗

]2

. We now analyze the term in the denom-

inator. Since ψ∗ < ψ̃ < ψ̂L and ψ̃
p→ ψ∗ (Theorem 3.4 in [110]), we have ξ̇L(ψ̃)

p→

bψ∗ = Ef

[
∂2

∂ψ2 log f̂k(z;ψ)|ψ=ψ∗
]

. Now, using Slutsky’s theorem, −
√
L ξL(ψ∗)

ξ
′

L
(ψ̃)

p→ x
bψ∗

where the random variable x ∼ N (0, aψ∗). Thus,

√
L
(

ψ̂ − ψ∗

)

 N
(

0,
aψ∗
b2ψ∗

)

(2.20)

The above result can be easily extended to the case when ψ is a p-dimensional

vector (p > 2). In this case,

√
L
(

ψ̂L − ψ∗

)

 N (0,Σ). (2.21)

The p× p covariance matrix, is given by

Σ = B−1ψ∗Aψ∗B
−1
ψ∗

(2.22)

where

Aψ ≡ Ef

[
∂

∂ψ
log f̂k(z;ψ)

∂

∂ψ′
log f̂k(z;ψ)

]

, Bψ ≡ Ef

[
∂2

∂ψ∂ψ′
log f̂k(z;ψ)

]

.

(2.23)

When the model is well-specified and the regularity conditions hold, Bψ∗ = −Aψ∗ and

therefore, Σ = −B−1ψ∗ = F−1(ψ0), as expected.

Method of Inference for Margins

Maximizing Eq. (2.15) can be computationally intensive especially for higher dimen-

sions (i.e., when N is large) as it requires the joint estimation of the marginal and

20



copula parameters. A simpler approach known as the method of inference for the

margins (IFM) [57] estimates ψ in two steps:

• Step 1: Estimation of the marginal parameters

ψ̂p = argmax
ψp∈Ψp

N∑

n=1

L∑

l=1

log fn(znl;ψn) (2.24)

• Step 2: Estimation of the copula dependence parameter

ψ̂d = argmax
ψd∈Ψd

L∑

l=1

log k
(

F1(z1l; ψ̂1), . . . , FN(zNl; ψ̂N);ψd

)

(2.25)

where the marginal parameters in Eq. (2.15) have been replaced by their estimates

computed in Step 1. From Eqs. (2.24) and (2.25), we have

ψ̂ifm =
(

ψ̂p, ψ̂d

)

(2.26)

Note that, equivalence between the IFM and ML estimates does not hold in gen-

eral. To see this, let L, Ln and Lk denote the full, marginal and copula likelihood

functions respectively. That is,

L(z) =
L∑

l=1

log f̂k (z1l, z2l, . . . , zNl;ψ) (2.27)

Ln(z) =
L∑

l=1

log fn (znl;ψn) (2.28)

Lk(z) =
L∑

l=1

log k (z1l, z2l, . . . , zNl;ψd) (2.29)

Now, while ψ̂mle is obtained by solving

(
∂λ

∂ψ1

, . . . ,
∂λ

∂ψN
,
∂λ

∂ψd

)

= 0, (2.30)
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the IFM estimate is computed by solving

(
∂λ1
∂ψ1

, . . . ,
∂λN
∂ψN

,
∂λk
∂ψd

)

= 0. (2.31)

It is also possible to consider a semi-parametric approach where a parametric form

is assumed only for the dependence structure. The marginal CDFs in Eq. (2.25) are

replaced with their empirical estimates. This approach is known as the canonical

maximum likelihood (CML) method and the estimate is computed as below.

ψ̂cml = argmax
ψd∈Ψd

L∑

l=1

log k
(

F̃1(z1l), . . . , F̃N(zNl);ψd

)

. (2.32)

where,

F̃n(a) =
1

L

L∑

l=1

I(znl ≤ a). (2.33)

I(E) in Eq. (2.33) indicates the occurrence of event E .

Chapters 3 and 4 of this dissertation consider the use of IFM for estimating model

parameters. The CML approach is adopted in Chapter 6.

Estimation via nonparametric dependence measures

The copula dependence parameter ψd can also be estimated by exploiting its relation

with several concordance measures such as Kendall’s τ and Spearman’s ρ [70]. Let

(z1i, z2i) and (z1j, z2j) be two observations from a bivariate vector (Z1, Z2). The

observations are said to be concordant if (z1i − z1j) (z2i − z2j) > 0 and discordant if

(z1i − z1j) (z2i − z2j) < 0.
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The population version of Kendall’s τ1,2 between the variables Z1 and Z2 can be

expressed in terms of a copula function K(·;ψd) as

τ1,2 = 4

∫

u1,u2

K(u1, u2;ψd)dK − 1 (2.34)

where un = Fn(zn) ∼ U(0, 1) (see Section 2.2). The above integral equation Eq.

(2.34) can be used to express ψd in terms of τ1,2. For example, the following relation

holds for elliptical copulas [70],

ψd = sin
(πτ1,2

2

)

(2.35)

Given observations {z1l, z2l}L−1l=0 , we first rank order them and obtain the sample

estimate of Kendall’s τ1,2,

τ̂1,2 =
nc − nd
nc + nd

(2.36)

where, nc and nd are the number of concordant and discordant pairs respectively. An

estimate of ψ̂d can be obtained by using τ̂1,2 in Eq. (2.34) (equivalently in Eq. (2.35)

for elliptical copulas).

The extension to the N -variate case is straightforward in the case of elliptical

copulas where each element of the N ×N correlation matrix Σi,j (i, j = 1, 2, . . . , N)

can be obtained by computing the pair-wise Kendall’s τi,j.

Similar relations are available for Spearman’s correlation coefficient, ρs, as well.

The population version of ρs can be given in terms of the copula function K(·) as

below [70]:

ρs1,2 = 12

∫

u1,u2

u1 · u2 dK(·;ψd)− 3. (2.37)
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The above integral equation Eq. (2.37) can be used to express ψd in terms of ρ
s
1,2.

When ρs1,2 is unknown, its sample estimate can be used in Eq. (2.37). Bivariate

measurements (z1l, z2l) are first converted to rankings xi and yi. The sample estimate

ρ̂s is then given as [70],

ρ̂1,2 = 1− 6
∑
d2i

L(L2 − 1)
, (2.38)

where,

di = ai − bi

= difference between the ranks of z1 and z2

L = number of observations

In Chapter 4, we use Kendall’s τ to generate a synthetic heterogeneous dataset.

2.2.3 Selection of the Copula Function

As discussed above, several copula functions, with different dependence characteris-

tics, have been defined in the literature. Different copula functions associate the same

set of marginals to different joint distributions. With such one-to-many possible map-

pings of the marginals, an important question that arises is: How does one choose a

particular copula from (say) a finite set Ak of valid copula functions?. This is essen-

tially a model selection problem. Approaches in the past have mostly focused on data

modeling, i.e., select the copula that best fits the data. Several copula goodness-of-fit

tests have been developed in the past (see [10, 43] for recent surveys). In this dis-

sertation, we propose a more application-specific paradigm for copula selection (than

data modeling as the primary goal).
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Classification performance of a binary hypothesis test depends on the statistics of

the detector functional and the resultant hyperplane separating the two hypotheses,

rather than the density estimates of the observations under each hypothesis. Thus,

although density estimates may be coarse, the resultant classification rates may still

be within the required limits [89, pg. no. 124]. Thus, attempts to model densities

with high accuracy may prove to be an overkill for hypotheses testing problems.

In Chapter 3, two approaches for copula selection are proposed. The first copula

selection method is based on D(f, f̂k), the Kullback-Leibler (KL) divergence between

the true joint PDF and its copula-based estimate. We show that D(f, f̂k) is related

to the area under the probability of detection curve, and under certain conditions

quantifies the ‘distance’ between the distributions of the test statistic under the two

competing hypotheses. The second approach considers maximizing the area under

the receiver operating characteristic curve (AUC), a global measure of classifier per-

formance. Note that these methods (particularly the AUC based method) can be

viewed as discriminative training methods [11,71,79,101] that do not concentrate on

modeling the data distribution under each hypothesis. Instead, the aim is to directly

separate the competing hyotheses through design of effective decision boundaries.

2.3 Summary

Statistical signal processing tasks such as detection, estimation and tracking require

complete specification of the joint distribution functions of the observed samples.

However, in many cases, the derivation of the joint distribution functions becomes

mathematically intractable. In problems such as processing of heterogeneous signals,

random variables associated with each source may follow disparate distribution func-

tions due to differences in physics governing each modality. Moreover, inter-modal

interactions may be complex and well-known measures such as Pearson’s correlation
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coefficient ρ may be insufficient to characterize statistical dependence across multiple

modalities.

In this chapter, statistical theory of copulas especially in the context of modeling

heterogeneous random variables has been discussed. Copula theory provides a re-

parametrization of joint densities where the dependence structure is separated out

from the constituent marginals; a key property useful for modeling heterogeneous

random vectors. They are more general descriptors of statistical dependence and

possess all the ingredients necessary to model heterogeneous data. Several copula

functions have been defined in the literature. The performance of a copula based

system depends strongly on the chosen copula density, and, it is important to derive

formal methods for copula selection which will be done in the following chapters for

binary hypothesis testing problems.
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Chapter 3

Hypothesis Testing With

Heterogeneous Data

In Chapter 2, the problem of modeling heterogeneous random vectors was consid-

ered. It was discussed how disparate marginals give rise to heterogeneity, and also,

how copula functions allow construction of multivariate distributions with disparate

marginals, while also incorporating the inter-modal dependence structure. In this

chapter, the developed copula based statistical model is applied to solve a classifica-

tion problem, one of the fundamental problems in statistical signal processing.

As shown in Fig. 3.1, a parallel network of N heterogeneous sensors monitor

a common region of interest (ROI), and communicate their observations (or fea-

tures extracted thereof) to a remotely located fusion center. We denote by z̄n =

(zn1, zn2, . . . , znL)
T , the vector of L observations (over time) received at the fusion

center from sensor n, and consider the following binary hypothesis testing problem

at the fusion center,

H0 : (z̄1, z̄2, . . . , z̄N) ∼ pZ(z;H0) = g(z̄1, . . . , z̄N),

H1 : (z̄1, z̄2, . . . , z̄N) ∼ pZ(z;H1) = f(z̄1, . . . , z̄N), (3.1)
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Figure 3.1: A multisensor system with common region of interest (ROI). Different
shapes for the sensors denote different sensing capabilities.

where g(·) and f(·) denote the appropriate PDFs. The fusion center consolidates

the data received from local sensors, and computes the test statistic, T (z), based

on the received data for the presence (H1) or absence (H0) of a target. Two types

of error are possible at the fusion center. Type 1 error or the probability of false

alarm, PF , is the probability of deciding in favor of H1 when, in fact, H0 is true,

PF = Pr(decide H1|H0). On the other hand, the probability of favoring H0 when H1

is true is called the Type 2 error or the probability of miss, PM = Pr(decide H0|H1).

Adopting the Neyman-Pearson approach, the goal of the fusion center is to maximize

the detection probability, PD = 1− PM , for a fixed PF = α.

The remaining part of the chapter is organized as follows. The copula-based fusion

rule is derived in Section 3.1. The important problem of selecting the best copula is

considered in Section 3.2. Two selection rules, the KL divergence and the AUC-based

copula selection rules are presented, along with simulation results. The method is also

tested on real-data provided by the National Institute of Standards and Technology
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(NIST), for the multibiometrics fusion problem. The chapter is summarized in Section

3.4.

3.1 Copula-Based Fusion Rule

Given the densities, pZ(z;H0) and pZ(z;H1), and PF , decision rule at the fusion

center can be derived using the Neyman-Pearson (NP) lemma, which states that, the

likelihood ratio (LR) test, or equivalently, the log-likelihood ratio (LLR) test,

TLLR(z) = log
pZ(z;H1)

pZ(z;H0)
︸ ︷︷ ︸

LR

H1

≷
H0

η, (3.2)

results in the maximum PD for a given PF , where η is the detector threshold. PD and

PF for a given test ‘T (z) ≷H1

H0
η’ are given as,

PD =

∫

{z:T (z)>η}

pZ(z;H1)dz, and PF =

∫

{z:T (z)>η}

pZ(z;H0)dz. (3.3)

We make the following assumptions in this chapter.

Assumption 3.1. Each sensor n employs an analog compression rule γn : R
Dn 7→

R
dn, dn < Dn, so that the compressed observations zn = γn(·), n = 1, 2, . . . , N , follow

continuous distribution functions.

Note that γn(·) can be interpreted as a feature extraction step where data at each

sensor is transformed so that only relevant information is extracted and retained.

Any further processing is performed on the reduced representation rather than the

full size input. This alleviates the well-known curse of dimensionality.

Assumption 3.2. The N-variate sequences {z1l, . . . , zNl}Ll=1 are independent and

identically distributed (i.i.d).
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Now, given the above assumptions, the PDFs f(·) and g(·) can be expressed in

terms of their copula functions and Eq. (3.2) can be written as

TLLR(z) = log
f(z̄1, . . . , z̄N)

g(z̄1, . . . , z̄N)
(3.4)

=
L∑

l=1

log

(
fp(zl)

gp(zl)

c1(F1(z1l), . . . , FN(zNl))

c0(G1(z1l), . . . , GN(zNl))

)

(3.5)

=
L∑

l=1

{(
N∑

n=1

log
fn(znl)

gn(znl)

)

+ log
c1(F1(z1l), . . . , FN(zNl))

c0(G1(z1l), . . . , GN(zNl))

}

, (3.6)

where the copula density ci(·) denotes the actual statistical dependence structure

between the variables under the hypothesis Hi, i ∈ {0, 1}. The subscript ‘p’ in

Eq. (3.5) is used to denote the product densities under the two hypotheses. fn(·)

(respectively Fn(·)) denotes the marginal PDF (respectively CDF) of Zn under the

hypothesis H1. Similarly, their counterparts under H0 are denoted as gn(·) and Gn(·)

respectively.

It is interesting to note the form of the test statistic in Eq. (3.5). The first term,

Tp (z) =
L∑

l=1

N∑

n=1

log
fn(znl)

gn(znl)
(3.7)

corresponds to the differences in the marginal statistics of each modality (or the

product distribution) across the two hypotheses while the cross-modal dependence

and interactions are included in the second term. Tp(·) in (3.7), is also the test statistic

obtained when, (a) the variables Z1, Z2, . . . , ZN are statistically independent, or, (b)

when dependence between them is deliberately neglected for analytical simplicity or

due to lack of knowledge of dependence structures c1(·) and/or c0(·). The latter case

naturally results in a suboptimal performance. In contrast, we replace the unknown

dependence structures c1(·) and c0(·) in Eq. (3.5) by copula densities k1(·;ψd) and

k0(·;λd) chosen from a finite set Ak of valid copula densities. The resulting test
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statistic is given as,

Tk(z) =
L∑

l=1

{(
N∑

n=1

log
fn(znl)

gn(znl)

)

+ log
k1(F1(z1l), . . . , FN(zNl);ψd)

k0(G1(z1l), . . . , GN(zNl);λd)

}

, (3.8)

where, the copula parameters ψd and λd, and the marginal PDFs (if unknown), are

estimated from training data which is assumed to be available. Note that the copula

approach allows us to simplify the complex task of multivariate density estimation.

The problem can now be solved in two steps: (1) estimation of univariate marginal

PDFs, and (2) selection of copula densities to approximate the unknown statistical

dependence.

In the following, we assume that the marginal PDFs are either known or have been

estimated from the given training data. We focus primarily on designing rules for cop-

ula selection. This allows us to test the efficacy of copula modeling relative to the

simpler and more commonly adopted product model (that assumes inter-modal inde-

pendence) in the context of binary classification. The assumption of known marginal

PDFs allows us to compare the copula approach with the best performing product

model (since there is no uncertainty in the marginal PDFs).

3.2 Copula Selection for Hypothesis Testing Prob-

lems

In this section, we derive methods for choosing copula densities to fuse local sensors’

observations using Eq. (3.8).

3.2.1 The Kullback-Leibler Divergence Criterion

Assume that the goal is to select the copula density k1(·), and thus estimate PDF

hypothesized to be true under H1. Denote this PDF estimate based on the copula
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density k1(·) by fk1(·). Ideally, we wish to select the model that is closest to the true

PDF. Measures belonging to the φ− divergence family [5] have been widely used to

quantify the distance between two distributions (see [75] and references therein). Of

all φ − divergence measures, the most popular is the KL divergence which, for two

PDFs pX(x) and qX(x), is given as,
1

D(p, q) =

∫

pX(x) log
pX(x)

qX(x)
dx. (3.9)

D(p, q) measures how different pX(x) is relative to qX(x). It is important to note that

D(p, q) is not a true measure of distance since it is not symmetric (D(p, q) 6= D(q, p)),

and, does not satisfy the triangular inequality. Nevertheless, it has useful properties:

a) D(p, q) ≥ 0, and b) D(p, q) = 0 iff p = q, and therefore, can be an effective

quantification of model mismatch error.

The KL divergence between the true PDF, f(·), and its copula based estimate,

fk1(·) is

D(f, fk1) =

∫

z

f(z) log
f(z)

fk1(z)
dz (3.10)

=

∫

z

f(z) log
fp(z)c1(·)
fp(z)k1(·)

dz

=

∫

z

f(z) log c1(·)dz
︸ ︷︷ ︸

=I1(Z1;··· ;ZN )

−
∫

z

f(z) log k1(·)dz
︸ ︷︷ ︸

=Ef log k1(·)=Ik1 (Z1;··· ;ZN )

. (3.11)

The term Ik1(·) in Eq. (3.11) can be interpreted as a copula-based estimate of multi-

information [94], I1(·). Note that I1(·) (which reduces to the well-known mutual

information when N = 2) describes the complete nature of dependence between the

variables and bounds the copula expectation term from above, i.e., Ik1(·) ≤ I1(·)

since D(f, fk1) ≤ 0. It is also clear that Ik1(·) should be strictly greater than zero for
1The base of the logarithm in Eq. (3.9) is arbitrary. We use natural logarithm in our definition.
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the copula-based model to be ‘closer’ to the true PDF than the product model, i.e.,

D(f, fk1) < D(f, fp) iff 0 < Ik1 (3.12)

Thus, of all the copula densities in set Ak that satisfy Eq. (3.12), the copula density

k1(·), where,

k1(·) = argmax
k(·)∈Ak

Ef log k(·) (3.13)

≈ argmax
k(·)∈Ak

1

L

L−1∑

l=0

log k(F1(z1l, . . . , FN(zNl), (3.14)

results in minimal mismatch (in terms of the KL divergence), and is thus the best

choice to model the inter-modal dependence structure under H1. Note that it is not

possible to evaluate Eq. (3.13) since the expectation is with respect to the true joint

PDF f(z) which is unknown. We, therefore, approximate it by taking the sample

expectation as shown in Eq. (3.14).

An interesting link between the mismatch error D(f, fk1), and detection perfor-

mance exists. In problems where the distribution under one of the hypotheses, (say)

H0 is known, it has been shown in [35] that the average loss in detection power,

∆loss =
∫ (

PD(η)− P̂D(η)
)

dη, when f(z) is misspecified as fk1(z) in Eq. (3.4) is

equal to D(f, fk1). Note that ∆loss is, in fact, a global measure obtained by integrat-

ing over all possible detector thresholds (η). In other words, ∆loss is the amount by

which the area under PD, denoted as APD , decreases due to mismatch in f(z). The

selection rule proposed in Eq. (3.13) minimizes ∆loss. Also, it is easy to see that the

performance gain (increase in area under PD) achieved due to the use of the copula
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density k1(·) over the product model is,

Gain = ∆loss(fp)−∆loss(fk1) (3.15)

= D(f, fp)−D(f, fk1)

= I1(·)− {I1(·)− Ik1(·)}

= Ik1(·). (3.16)

For cases when the distribution of the test static under H0 does not vary too

much across different models in contention, ∆loss measures the “separation” be-

tween pTk(tk;H0) and pTk(tk;H1), the PDFs of the test statistic under H0 and H1

respectively.

Next, we present an illustrative example.

Example 3.1

Consider a network of three (N = 3) heterogeneous sensors monitoring a region

of interest (ROI) for the presence of a target. We assume that the heterogeneous

observations, z1, z2 and z3, received at the fusion center under hypothesis Hi follow

the Gaussian, exponential and beta distribution functions respectively,

Z1 ∼ N
(
0, σ2

i

)
, Z2 ∼ exponential (λi) , Z3 ∼ beta (ai, bi = 1) , (3.17)

where σ2
1 > σ2

0, λ1 > λ0 and a1 > a0. Further, without loss of generality, we assume

c0(·) = 1 (the product copula under H0), i.e., g(z) =
3∏

n=1

gn(zn). A common random

phenomenon causes a change in the statistics of the three sensors’ data and the

sensor measurements are thus statistically dependent under hypothesis H1. In order

to generate dependent data with the marginals given in Eq. (3.17), we define two

auxiliary random variables W1 ∼ N (0, σ2
1) and W2 ∼ gamma(α1, β1 = λ1). It follows
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Figure 3.2: Scatter plot of 500 realizations. Non-zero dependence between observa-
tions under H1 (Column 1) is evident from the figure.

then that

Z2 = Z2
1 +W 2

1 ∼ exponential(λ1 = 2σ2
1) (3.18)

Z3 =
W2

W2 + Z2

∼ beta(a1 = α1, b1 = 1). (3.19)

Statistical dependence between sensor observations is evident from the scatter plot

shown in Fig. 3.2. Their joint PDF can be derived as (see Appendix A),

f(z1, z2, z3) =
I(z2 > z21)

2πΓ(α1)λ
1+α1

1

zα1

2 zα1−1
3

√

z2 − z21 (1− z3)
1+α1

exp

(

− z2
λ1 (1− z3)

)

,

where, z1 ∈ (−∞,∞), z2 ∈ (0,∞) and z3 ∈ (0, 1), I(E) is an indicator of event E

and Γ(z) =
∫∞

0
xz−1e−xdx is the gamma function. The optimal LR test at the fusion
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Figure 3.3: PD vs. η obtained for different copula functions: Pa-
rameters for the marginal PDFs are (σ2

0 = 1, σ2
1 = 1.1), (λ0 = 2.1, λ1 = 2.2),

(b0 = b1 = 1, a0 = 1.8, a1 = 2). The shaded region represents the increase in the area
(over the product model) when FGM copula is used to model dependence under H1.

center can now be obtained as (see Appendix A),

TLR =

L∏

l=1

za12l z
a1−1
3l (1− z3l)

−(1+a1)

2πΓ(a1)λ
1+a1
1

√

z2l − z21l
exp

(

− z2l
λ1 (1− z3l)

)

L∏

l=1

1
√

2πσ2
0

a0
λ0
za0−13l exp

(

−
(
z21l
2σ2

0

+
z2l
λ0

)) I(z2 > z21)

H1

≷
H0

η. (3.20)

In cases where PDF under H1 is unknown, we use the copula based test given in

(3.8) in place of Eq. (3.20) at the fusion center. We set the decision window, L, to

20 samples and plot PD (averaged over 5000 Monte Carlo trials) as a function of the

decision threshold η for several copula functions in Fig. 3.3. The plot for the optimal

test is also included. The shaded region in the figure represents the increase in APD

(over the product model) when fusion rule based on the FGM copula is employed. In

this problem, the t-copula yields the best performance as its corresponding PD curve

is the right most curve in Fig. 3.3. Further, as derived in Eq. (3.16), the increase in

the area under the PD vs. threshold curve, APD , achieved by using the copula density

k1(·), is exactly equal to the multi-information, Ik1 . This is confirmed in Fig. 3.4
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Figure 3.4: Multi-information estimates (averaged over 5000 Monte Carlo trials) with
symmetric one standard deviation error bars, and Gain (Eq. (3.15)) computed using
the trapezoidal rule, for several copula functions. The number of trials (in %) for
each copula for which the improvability condition (3.12) was NOT satisfied is also
indicated.

which shows that the sample based estimates of Ik1 and ‘Gain’ (Eq. (3.15)) computed

using the trapezoidal rule are more or less equal for all copula functions. The figure

also shows that value of the multi-information estimate is the largest in the case of

the Student’s t-copula, and thus the selection rule given by Eq. (3.14) would choose

the Student’s t-copula as the model to characterize dependence between observations

under H1. Receiver operating characteristic (ROC) curves obtained for the optimal

test and tests using different copula densities are shown in Fig. 3.5. Note that the

optimal test achieves zero false alarm rate for all detector thresholds. This is because,

it is highly likely that I(z2l > z21l) = 0 for at least one of the L observations belonging

to H0. Thus, PF = P (TLR(zL;H0) > η) → 0 as L increases.

The number of trials for which the improvability condition (Ik1 > 0) was not

satisfied is indicated in Fig. 3.4. For the Clayton copula model, Ik1 was less than

zero for 4833 of the 5000 trials (≈ 96% of the trials). For the other three copulas,

Ik1 was almost never less than zero during the 5000 trials. This is the cause for

the Clayton copula based ROC to be lower than that obtained using the product
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Figure 3.5: Monte Carlo based Receiver Operating Characteristics: Pa-
rameters for the marginal PDFs are (σ2

0 = 1, σ2
1 = 1.1), (λ0 = 2.1, λ1 = 2.2),

(b0 = b1 = 1, a0 = 1.8, a1 = 2).

model (Fig. 3.5). The mismatch between the actual dependence structure and the

Clayton copula density is quite severe so that it results in a nonconcave ROC. It is

thus important to develop good copula selection rules. As evident from Fig. 3.4, the

selection rule (3.14), derived in this chapter correctly discards the Clayton copula and

identifies the Students’ t-copula as the best choice among the four copulas tested in

this example.

3.2.2 The Area Under the Receiver Operating Characteristic

Curve Criterion

Area under the ROC curve (AUC) is a classification-specific criterion, and has been

used as a performance measure in many fields such as mathematical psychology [8],

psychophysics [46], medical diagnostics, signal processing [47] and machine learning

[13]. By definition,

AUC =

∫ 1

0

PD(PF )dPF , (3.21)
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where, 0 ≤ AUC ≤ 1 since it is a portion of a unit square. The measure is completely

independent of the threshold η and summarizes the entire ROC in a single number.

Further, AUC can also be related to the Bayesian probability of error, PE. When

the two hypotheses have equal probabilities of occurence (π0 = π1 = 0.5), it has been

shown in [87] that,

1− AUC ≤ PE ≤
√

1

2
− AUC

2
. (3.22)

Thus, AUC-based copula selection is applicable for both the Neyman-Pearson and

Bayesian detection frameworks.

When the test statistic follows a Gaussian distribution under both hypotheses,

that is,

p(tk;Hi) =
1

√

2πσ2
i

exp

(

−(tk − µi)
2

2σ2
i

)

, i = 0, 1, (3.23)

it was shown in [90] that

AUC = Φ−1
(
da√
2

)

(3.24)

where Φ denotes the CDF of a standard normal distribution, and

da =
µk1 − µk0
√

σ2

k1
+σ2

k0

2

. (3.25)

From Eq. (3.25), it is clear that da is a monotonic function of AUC. We, thus,

have a selection rule where we choose copula densities k1(·) and k0(·) such that da is

maximized. Note that the da based selection rule is more accurate in the case of large

L when the PDFs of the test statistic under both hypotheses approach normality due

to the well-known central limit theorem (CLT).
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For the case when the test statistic under the two hypotheses do not follow Gaus-

sian distributions, one can use the Wilcoxon-Mann-Whitney (WMW) statistic, a

nonparametric approach to estimate AUC [8, 23]. Given {l1a}Laa=1 and {l0b}Lbb=1, the

log-likelihood ratios (LLRs) under H1 and H0 respectively, the WMW statistic (also

known as the U-statistic) is given as

U =

∑La
a=1

∑Lb
b=1 I(l1a > l0b)

LaLb
. (3.26)

Note that (3.26) is the estimate of the probability Pr (Tk(z;H0) < Tk(z;H1)) =

AUC [8].

Next, we present an illustrative example.

Example 3.2

We consider a two sensor example where the observations Z1 and Z2 follow Gaussian

and Exponential distributions respectively under the two competing hypotheses. In

order to generate dependent data Z1 and Z2 with prescribed marginals, we use the

auxiliary random variable method described above (see Eq. (3.18)). Thus,

Z1 ∼ N (0, σ2
i ) Z2 ∼ exponential(λi = 2σ2

i ) (3.27)

However, unlike Example 3.1, we consider dependence under both hypotheses and

consider AUC based copula selection.

AUC estimate, U(k0,k1), for copula pairing k0(·) and k1(·), is evaluated using Eq.

(3.26). We also calculate the difference Uδ = U(k0,k1) − Up, where Up is the AUC esti-

mated using product copula under both H0 and H1, i.e., k0(·) = k1(·) = 1. Table 3.1

contains U(k0,k1), and corresponding Uδ in parentheses, for several copula pairings. For

example, when Clayton and Gumbel copula densities are used to model dependence

under H1 and H0 respectively, AUC is approximately 64%. Further, a negative Uδ
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Table 3.1: AUC estimated using the Wilcoxon-Mann-Whitney statistic
`

`
`
`

`
`
`

`
`
`
`
`

Copula H1

Copula H0 Clayton Frank Gaussian Gumbel

Clayton
0.7026 0.69182 0.6782 0.6392

(0.0010743) (−0.0097022) (−0.023321) (−0.06232)

Frank
0.70898 0.7 0.6877 0.6474

(0.0074573) (−0.0015188) (−0.013825) (−0.05412)

Gaussian
0.72191 0.71288 0.70296 0.66424

(0.020384) (0.011353) (0.0014352) (−0.037283)

Gumbel
0.70981 0.69974 0.68781 0.65761

(0.0082926) (−0.0017851) (−0.013709) (−0.043912)

Figure 3.6: ROC curves obtained when Clayton and Gumbel copula densities model
H1 and H0 respectively.

(≈ −0.062) suggests that the product model outperforms the copula approach. This

is confirmed in Fig. 3.6 which shows the ROCs obtained using both the copula and

product models. On the contrary, it can be seen from Table 3.1, that the copula ap-

proach, when Gaussian and Clayton copula densities model H1 and H0 respectively,

performs better than the product model (in terms of AUC). The corresponding ROC

is shown in Fig. 3.7.

Remark. It is important to note that, while the KL divergence and AUC are attractive

because of their simplicity, they are still heuristic measures and their optimization may

not always result in the best PD vs. PF tradeoff. As discussed in Section 3.2.1, the KL
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Figure 3.7: ROC curves obtained when Gaussian and Clayton copula densities model
H1 and H0 respectively.

divergence is not a true distance metric. It is asymmetrical (D(f, fk1) 6= D(fk1 , f)),

and also does not satisfy the triangular inequality. This limits the utility of APD , the

area under the PD curve, when used to compare different detectors. For example,

the perceptible gap between the ROCs obtained using the product and Clayton copula

models (as well as its non concavity) (Fig. 3.5) is not evident in Fig. 3.3. Nevertheless,

the APD based comparison is a useful approach due to its reduced complexity while still

providing a systematic KL divergence based approach for copula selection.

Similarly, it may be useful in some applications to focus on the area computed for

a portion of the ROC (as opposed to the entire ROC):

AUCα =

∫ α

0

PD(PF )dPF , α ≪ 1

It is likely that in many cases a closed form for AUCα is not available. One may need

numerical integration in such cases.

In the next section, we apply the copula based selection framework to a real-world

application.
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3.3 Biometric Authentication: An Application

The process of authentication involves verifying the identity of a person claiming

access to one or more resources of a system. Authentication systems can be based on

passwords, security tokens or biometrics or combinations of them [72]. Passwords are

words, phrases or alphanumeric personal identification numbers (PINs) that serve

as short form indicators of a person’s identity. They are usually created by the

authorized users during the enrollment or registration phase (e.g., creating computer

user accounts) and are kept secret from others. Security tokens, on the other hand,

are physical devices that the users are required to carry in order to be allowed access

to the system. More recent designs of automatic human recognition systems involve

the use of features such as face, fingerprints, iris or behavioral traits such as gait

or rate of keystrokes, etc. For example, in building access control applications, a

person’s face may be matched to templates stored in a database consisting of all

enrolled users. Decision to allow or deny entry is then taken based on the similarity

score generated by the face matching algorithm. Such security systems that rely on

biometrics have several advantages over the more conventional ones (passwords or

security tokens). For example, a PIN, if leaked, may be used by an unauthorized

person causing serious security concerns. However, a person’s physical signature

belongs only to that individual and is extremely difficult if not impossible to emulate

it. Further, biometric systems may be more convenient and user-friendly as there is no

password to remember or any token to carry. See [72] for a more detailed comparison

of the three approaches especially in terms of achievable security, convenience of use

and the overall cost of the system.
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3.3.1 Fusion of Multiple Biometric Modalities

A biometric authentication task is essentially a binary hypotheses testing problem

where,







H0 : claimant an impostor

H1 : claimant a genuine user

are the two competing hypotheses. While biometric authentication systems have

several advantages over the more conventional systems, they are still not devoid of

limitations. Biometric traits such as face and voice change with age. One may be

required to update the systems’ database to counter this time variability. Environ-

mental noise and noise in the acquisition system further affect the accuracy and

reliability of the system. Overlap between physical features or inter-class similarity

(e.g., twins with identical facial features) limits the system’s ability to distinguish

between the classes. There also exist intra-class variations due to differences between

the acquired biometric signature of an individual requesting the access and his/her

template registered in the database. Apart from noise sources stated above, these

differences may also stem from the psychological and behavioral variations of an in-

dividual at different instances of time. One method to overcome these limitations is

to consider combining multiple sources of information. It may include fusing obser-

vations of disparate modalities (e.g., voice and face) or multiple features (extracted

from the same biometric trait), multiple classifiers or multiple samples of the same

source. This method of fusing several biometric sources is called multi-biometrics.

Figure 3.8 shows a multimodal biometric system which considers fusion of disparate

biometric signatures such as face, iris and fingerprints. We also note that, although

the figure shows fusion of multimodal observations, the copula framework is general

enough to handle other problems where heterogeneity in the acquired data is due to
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Figure 3.8: A multibiometric authentication system. Biometric signatures of dis-
parate modalities such as face, iris and fingerprint are fused.

multiple samples, algorithms or multiple classifiers, i.e., the variables {Zn}Nn=1 may

also denote multiple samples or multiple features (extracted from the same modality)

or output of multiple algorithms which are combined (jointly processed) at a fusion

center.

3.3.2 Experimental Results

The performance of the copula based test is evaluated on NIST-BSSR 1 [2], a publicly

available database that includes similarity scores from two commercial face recognizers

and one fingerprint system, and is partitioned into three sets. We use the NIST-face

dataset which consists of match scores from three thousand subjects in our experi-

ment. Two samples (match scores) are available per subject, thus resulting in a total

of 2 × 3000 genuine and 2 × 3000 × 2999 impostor scores. The scores are heteroge-

neous as the two face recognizers use different algorithms to match the frontal face

images of the subjects under test. Face matcher 1 quantifies the similarity between

two images using a scale from zero to one while the second matcher outputs score

values ranging from zero to one hundred with higher values indicating a better match

between the face image of the subject under test and the template recorded previously

and stored in the database. A scatter plot of both the genuine and impostor scores

is shown in Fig. 3.9.
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Figure 3.9: Scatter plot of the genuine and impostor scores from the two face matchers

The scatter plot shows that sometimes a score of −1 is reported by face matcher 1.

Surprisingly, this is true even with some genuine match scores, i.e., when the acquired

face image of a subject was matched to his/her own template in the database. This

may have been due to errors during data acquisition, image registration or feature

extraction due to the poor quality of the image. Negative one thus serves as an

indicator to flag the incorrect working of the matcher. The fusion performance will

thus depend on how this anomaly is handled in the decision making. For example,

the fusion center can be designed to respond in one of the following ways upon the

reception of the error flag,

1. Request for a retrial : The fusion center does not make a global decision upon

receiving the error flag. Instead the subject claiming an identity is requested to

provide his/her biometric measurement again. The design ensures that scores

are always in the valid range (z1 ∈ [0, 1]). We emulate this by deleting all

the users whose match scores were reported as −1 and present results using

(2× 2992) genuine and (2× 2992× 2991) impostor scores. However, there may

be applications where the system does not have the liberty to request for a

retrial and the fusion center has to make a decision after each match.
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2. Censoring (face matchers that generate the error flag): In our example, face

matcher 1 generates the error flag. Upon the reception of the error flag (z1 =

−1), the terms of the log likelihood ratio test that depend on z1 are discarded.

Thus, the first and the third terms in

Tk(z1, z2) = log
f(z1;ψ1)

g(z1;λ1)
︸ ︷︷ ︸

=0

+ log
f(z2;ψ2)

g(z2;λ2)
+ log

k1(F1(z1;ψ1), F2(z2;ψ2);ψd)

k0(G1(z1;λ1), G2(z2;λ2);λd)
︸ ︷︷ ︸

=0

(3.28)

are set to zero.

3. Accept H0: The system decides in favor of H0 when one or more of the face

matchers generate an error flag. This design is conservative and is thus suitable

for applications where one desires minimal false alarm rates.

4. Accept H1: The system decides in favor of H1 when one or more error flags are

generated.

5. Random decision: Toss a fair coin to decide between H0 and H1.

Data (under each hypothesis) is partitioned into two subsets of equal size where

the first subset is the training set used for model fitting and the second is the testing

set used for system’s performance evaluation. Thirty different training-testing sets

(resamples or trials) are obtained from the same data by randomizing the partitioning

process described above. We denote each resample/trial by r ∈ 1, 2, . . . , 30. System

performance averaged across all r trials is then obtained. We now describe the training

and the performance evaluation steps in detail.

Given the training set, the joint PDF (of scores from the two face matchers) is

estimated by first modeling the marginal PDFs and then estimating the parameters

of the selected copula densities k1(·) and k0(·). A Gaussian mixture model (GMM)
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is used to fit the scores generated by both face matchers [38]. Fig. 3.10 shows the

estimated marginal PDFs for both impostor and genuine scores. This is followed by

the copula modeling step. We consider five families of copula functions, namely, the

Gaussian copula, the Student’s t-copula, Clayton copula, Frank copula and the Gum-

bel copula. ML estimates of parameters of each copula function are obtained using

the IFM approach disscussed in Section 2.2.2, and copula functions are compared

on the basis of the resultant detection performance. Specifically, the AUC criterion

is used as the performance metric and we choose k1(·) and k0(·) so that AUC (Eq.

(3.26)) is maximized. This results in the choice of the Gumbel and the Frank copula

densities for modeling the dependence structure between the two matching scores

under H0 and H1 respectively.

Model fitting is then followed by performance evaluation using the testing data.

False alarm and detection rates are computed for each r (P
(r)
F , P

(r)
D ). A mean ROC

curve is obtained by averaging P
(r)
F and P

(r)
D across the thirty training-testing sets,

i.e., PF = MEAN
r

(P
(r)
F ) and PD = MEAN

r
(P

(r)
D ). We show performance results for all

five designs in Fig. 3.11.

The product fusion rule performs better than each of the individual face match-

ers, as expected. The copula based processing, in addition to the differences in the

marginal PDFs, also exploits the differences in the dependence structures across the

two hypotheses. This is evident from Fig. 3.12 which shows the average (over all

thirty resamples) mutual information between the genuine and impostor scores for

the ‘request for retrial’ design. Further, of all the five designs, the ‘request for a

retrial’ approach achieves the best performance. This is because the method ensures

that input data are of good quality. The performance of ‘censoring’ and ‘accept H0’

are similar. With a few terms set to zero in the ‘censoring’ design, the rule decides

in favor of H0 in most cases (when the error flag is received). The ‘accept H1’ and

‘random decision’ methods are more liberal (or favor H1) and thus show increased
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Table 3.2: Peak increase in PD due to copula processing
(
P k
D − P p

D

)
. Corresponding

PF for ‘Request for retrial’, ‘Censoring’ and ‘Accept H0’ designs is 0.0026%, and that
for ‘Accept H1’ and ‘Random decision’ designs is 9.9%.

Fusion rule Increase in Average PD 95% Confidence interval

Request for retrial 3.31% (2.82%, 3.81%)
Censoring 4.40% (3.73%, 5.07%)
Accept H0 4.38% (3.71%, 5.05%)
Accept H1 0.64% (0.59%, 0.67%)
Random decision 0.71% (0.66%, 0.77%)

false-alarm rates. ROCs in Fig. 3.11 show the superiority of each of the above copula

based fusion designs over the product rule. Peak improvements in the average PD

computed as the difference between the copula based average PD denoted as (P k
D)

and that achieved using the product rule, (P p
D), are given in Table 3.2 for all the five

designs. We note here that [25] addressed the biometrics scores fusion problem us-

ing copulas but observed no improvement over the product fusion rule. The authors

modeled the marginal PDFs as a mixture of discrete and continuous components to

account for the error flags (negative ones). However, copula methods require the

marginal distributions to be strictly continuous. Further, their analysis was limited

to the use of Gaussian copula densities which may be insufficient to model the inter-

modal dependence. In this chapter, we have employed different approaches to handle

error flags and have considered the use of a more general family of copula functions

with the potential of improving system performance. These reasons could explain the

differences between our results and those in [25].

We now consider the Bayesian framework [61] where one is able to assign or know

a priori, the probabilities of occurence, Pr(H0) and Pr(H1) (= 1− Pr(H0)), for the

two hypotheses H0 and H1 respectively. The objective of a Bayesian classifier is to

minimize the probability of error (more generally, the Bayes risk function), i.e.,

PE = min (Pr(H0|z), P r(H1|z)) , (3.29)
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where Pr(H0|z) and Pr(H1|z) are the posterior probabilities of the two hypotheses.

In Fig. 3.13, we plot PE averaged over the thirty resamples as a function of the

prior probability Pr(H1) for all five strategies. We see that the copula-based test

achieves the best performance over the entire range of priors.

3.4 Summary

In this chapter, a binary hypothesis testing problem with heterogeneous observations

was considered, and a test based on copula theory was obtained. The copula-based

test is able to exploit both, the differences in the marginal PDFs and the differences

in the dependence structures across the two hypotheses. The problem of identifying

the best copula from a given library of valid copula densities was also considered.

Two classification-specific methods, the KL divergence and the AUC-based methods

were presented, that quantify classification performance enhancement due to copula

processing. Under certain conditions, the KL divergence between the true PDF and

the copula approximated PDF relates to the area under the PD curve. The selection

methods (particularly the AUC based approach) can be viewed as a discriminative

training method [11,71,79,101] that aims to directly maximize classification accuracy

rather than model the observations accurately. As shown in [11, 79], discriminative

training methods can partially compensate for the unavoidable mismatch, which is

always present between the hypothesized model and the true distribution, and thus

helps achieve better performance. Illustrative examples were provided for both copula

selection methods.

The proposed approach was also successfully tested on real-data using the NIST

database for a biometric authentication application. The dataset consists of similar-

ity scores from two commercial face recognizers that employ different algorithms to

match the frontal face images of the subjects under test. Thus, in this example, the
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heterogeneity in the scores was due to the use of multiple algorithms. Results for

both, the Neyman-Pearson and the Bayesian detection frameworks, were presented.
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(a) FM C Impostor scores

(b) FM G Impostor scores

(c) FM C Genuine scores

(d) FM G Genuine scores

Figure 3.10: Gaussian mixture models for match scores from the two face matchers
(FM)
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(a) Request for retrial

(b) Censoring

(c) Accept H0

Figure 3.11: Receiver operating characteristic curves
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(d) Accept H1

(e) Random Decision

Figure 3.11: Receiver operating characteristic curves

Figure 3.12: Mutual Information estimates averaged over thirty resamples for ‘request
for retrial’ design. The plot also shows symmetric one standard deviation error bars.
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(a) Request for retrial
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(b) Censoring
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(c) Accept H0

Figure 3.13: Probability of error vs. Pr(H1)
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(d) Accept H1
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(e) Random Decision

Figure 3.13: Probability of error vs. Pr(H1)
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Chapter 4

Hypothesis Testing With

Heterogeneous Data: Uncertain

Parameters

In Chapter 2, it was discussed how one could use copula theory to construct statistical

models for heterogeneous random vectors. A binary hypothesis testing problem was

then formulated and a copula based-test for the same was derived in Chapter 3.

It was, however, assumed that data models under both the competing hypotheses

could be constructed offline, i.e., prior to system deployment. Selection of the copula

function and estimation of its parameters could be performed using a training dataset.

Enough data samples were assumed to be available so that the copula parameters,

as well as those of the marginal PDFs (if unknown) could be consistently estimated.

However, in some applications, it may not be possible to learn the PDFs of sensor

observations prior to system deployment. This could be due to several reasons. For

example, acquisition of training samples is often very expensive. In some applications,

especially biomedical, collection of data under controlled conditions may not even be

possible.
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In this chapter, we address the multisensor detection problem with a parallel net-

work of heterogeneous sensors shown in Fig. 3.1, and derive a copula-based testing

procedure to be employed at the fusion center. Unlike the methodology developed in

Chapter 3, the method discussed in this chapter considers online (real-time) selection

and estimation of copula models. In addition to the copula parameters, there could

also be uncertainties associated with the marginal PDFs. We express these uncer-

tainties by including parameters ψn and λn in the description of the marginal PDFs

(e.g., fn(z;ψn) and gn(z;λn), ∀n). While the parameters ψp = (ψ1, . . . , ψN)
T and

λp = (λ1, . . . , λN)
T are unknown and are to be estimated in real-time, it is assumed

that the forms of the marginal PDFs are completely known.

Assumption 4.1. The parametric models for marginal densities {fn(z;ψn)} and

{gn(z;λn)} are well-specified (see Definition 2.3)

However, no assumption such as above is made for copula densities. It is clear that

the problem described above can be formulated as a composite hypothesis test [61]

at the fusion center. However, unlike the classical formulation which assumes the

knowledge of the parametric model up to certain parameters, the problem considered

here requires online estimation of both, the PDF family and its parameters.

The two main approaches to composite hypothesis testing are the Bayesian

methodology and the generalized likelihood ratio test (GLRT). Under the Bayesian

approach, one has access to the prior PDFs, p(ψ) and p(λ), of the unknown param-

eters ψ = (ψp, ψd)
T and λ = (λp, λd)

T respectively. Using the priors, the unknown

58



parameters in the LLRT statistic can be integrated out as below,

TB(z) = log

∫

ψ

f(z;ψ)p(ψ)dψ

∫

λ

g(z;λ)p(λ)dλ
(4.1)

= log

∫

ψ=(ψp,ψd)

f(z;ψp)c1 {F1(z1;ψ1), . . . , FN(zN ;ψN);ψd} p(ψ)dψ
∫

λ=(λp,λd)

g(z;λp)c0 {G1(z1;λ1), . . . , GN(zN ;λN);λd} p(λ)dλ
(4.2)

Alternatively, the unknown parameters can be replaced by their ML estimates com-

puted from the acquired data, to compute the likelihood ratio. The resultant test is

known as the generalized likelihood ratio test (GLRT) [61,66] given as,

TG(z) = log
max
ψ∈Ψ

f(z;ψp)c1 {F1(z1;ψ1), . . . , FN(zN ;ψN);ψd}
max
λ∈Λ

g(z;λp)c0 {G1(z1;λ1), . . . , GN(zN ;λN);λd}
H1

≷
H0

η. (4.3)

We construct a similar test in the next section.

4.1 (Misspecified) Generalized Likelihood Ratio

Test Based Fusion Rule

Although the GLRT does not always guarantee optimality (optimal for all null and

alternative hypotheses), it is often employed in composite hypothesis testing problems

due to its simplicity. Replacing the true but unknown copula densities c1(·) and c0(·)

in Eq. (4.3) by copula densities k1(·;ψd) and k0(·;λd), we employ the following test
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at the fusion center,

Tk (z) = log

max
Ψp,k1(·;Ψd)∈Ak

fp(z;ψp)k1(F1(z1;ψ1), . . . , FN(zN ;ψN);ψd)

max
Λp,k0(·;Λd)∈Ak

gp(z;λp)k0(G1(z1;λ1), . . . , GN(zN ;λN);λd)

=
L∑

l=1

N∑

n=1

log
fn(znl; ψ̂n)

gn(znl; λ̂n)
+

L∑

l=1

log
k∗1(F1(z1l; ψ̂1), . . . , FN(zNl; ψ̂N); ψ̂d)

k∗0(G1(z1l; λ̂1), . . . , GN(zNl; λ̂N); λ̂d)

H1

≷
H0

η
′

, (4.4)

where L is the number of i.i.d N − variate observations received at the fusion center.

Note that the maximization in Eq. (4.4) is over the unknown parameters as well as

the copula densities belonging to the set Ak. Unlike the classical formulation which

would have required the knowledge of the true copula densities upto their parameters,

we allow for the case when the set Ak may not be inclusive of the true models c1(·)

and/or c0(·). Thus, the copula densities k∗1(·) and k∗0(·) chosen after maximization

may still be misspecified. We, therefore, call the test a misspecified GLRT (mGLRT).

Thus, (ψ̂n, λ̂n) and (ψ̂d, λ̂d) in Eq. (4.4) denote the ML and QML estimates (see

Section 2.2.2) of (ψn, λn) and (ψd, λd) respectively.

Following the NP formulation, the next step is to determine the threshold η
′

in Eq.

(4.4) so that the false alarm rate is constrained (PF ≤ α). This, however, requires the

knowledge of p(tk|H0), the PDF of the test statistic under the null hypothesis. Since

the postulated statistical models {f(z;ψ ∈ Ψ ⊂ R
a)} and {g(z;λ ∈ Λ ⊂ R

b)} are

only approximations of the true underlying distributions, it is not possible to derive

the exact distribution of the test statistic under either hypothesis. However, some

advancement is possible when L is large. The following theorem, due to Wilks [114],

makes this feasible.

Theorem 4.1. Suppose the following conditions hold:

C 1. {f(z; Ψ ⊂ R
a)} and {g(z; Λ ⊂ R

b)} are well-specified under H0,
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C 2. {g(z; Λ)} is nested in {f(z; Ψ)}, i.e., g(z;λ) ∈ {f(z; Ψ)}, ∀λ ∈ Λ.

Then the modified test statistic, 2Tk(·), converges to a chi-square distribution with

ν (= a− b) degrees of freedom under the null hypothesis.

2Tk(z) χ2
a−b, under H0 (4.5)

From Eq. (4.5), we have

PF = Pr
(

2Tk(·) > 2η
′

;H0

)

L→∞
= Qχ2

a−b

(

2η
′

)

(4.6)

where Qχ2
ν
(·) denotes the right-tail probability of a chi-squared random variable with

ν degrees of freedom. One can thus obtain the threshold η
′

so that PF is constrained

to a desired level α ∈ (0, 1) as below:

η
′

=
Q−1
χ2

a−b

(α)

2
(4.7)

The assumption of a well-specified g(·;λ) is reasonable for many applications. For

example, it is always possible to collect enough training data under H0 (when there

is no signal present), so that g(·) can be consistently estimated. The formulation is

related to the classical universal hypothesis testing problem, where one has to decide

whether the samples are drawn from a fixed distribution [66]; we however limit the

class of distributions under H1 to the family {f(z; Ψ)}, and assume that it converges

to g(·) under H0. This problem is also known in the engineering literature as anomaly

detection where the (nominal) null hypothesis is known while the (anomalous) alter-

native hypothesis is unknown.
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4.1.1 Fixed vs. Variable Threshold Design

Note that the distribution of 2Tk(z; λ̂, ψ̂) under the null hypothesis depends only

on the model complexities of {f(·; Ψ)} and {g(·; Λ)}, i.e., the number of uncertain

parameters a and b. If the set Ak consists of copula densities with parameters of

different dimensions, the threshold η
′

must be adjusted accordingly (see Eq. (4.7)) to

maintain a constant false alarm probability. Alternatively, one could restrict the set

Ak to include copula models with equal complexity to avoid the extra step of varying

η
′

in real-time.

4.2 Performance Analysis

In the classical GLRT setting, it has been shown that under certain conditions, the

modified test statistic, 2T (·) under H1, converges asymptotically to a noncentral chi-

squared-distribution, where, the non-centrality parameter is a function of the true

parameter ψ [61]. Thus, given ψ, one can exactly compute the detection probability,

PD, at a given false-alarm rate. The above convergence result does not extend to the

misspecified GLRT formulation considered here. However, upper bounds on PD at a

given PF can be derived as we show below. Computation of these bounds require the

knowledge of only the first and second order moments of the mGLRT statistic.

4.2.1 Upper Bounds on Detection Power

We derive upper bounds on PD, assuming the knowledge of only the first two moments,

the mean µi and the variance σ
2
i , of the mGLRT statistic under each hypothesis Hi.

Approximate expressions for µi and σ2
i are also derived which allow computation

of the moments given the marginal statistics and the copula densities k1(·;ψ∗d) and

k0(·;λ∗d), where ψ∗d and λ∗d, are the pseudo-true values associated with the respective

copula densities (see Eq. (2.17)). An important point to note here is that while the
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bounds remain valid, the efficacy of these bounds to quantify detection performance

depends on their tightness to the true PD.

Proposition 4.1. (Bound based on the Cantelli inequality)

The detection power, PD, of mGLRT is bounded from above as

PD(α) ≤ 1

1 +

(
Q−1

χ2
a−b

(α)−µ1

σ1

)2 , µ1 < Q−1
χ2

a−b

(α), (4.8)

where α is the probability of false alarm, and µ1 and σ2
1 are the mean and variance of

the modified mGLRT statistic, 2Tk(·), under the hypothesis H1.

Proof. The upper bound on PD is the result of the direct application of Cantelli’s

inequality (one-sided Tchebycheff inequality) [74].

Given a random variable X with mean µ1 and variance σ
2
1, we have the following

bound due to Cantelli’s inequality,

Pr(X − µ1 > aσ1) ≤
1

1 + a2
, a > 0. (4.9)

Setting X = 2Tk(z) and aσ1 + µ1 = 2η
′

in Eq. (4.9), we have

Pr
(

2Tk(z) > 2η
′

;H1

)

≤ 1

1 +
(

2η′−µ1
σ1

)2 , where µ1 < 2η
′

. (4.10)

Using Eq. (4.7) in the above equation gives the desired result.

The bound derived above can be improved further if the PDF, p(tk;H1), is assumed

to be unimodal.

Proposition 4.2. (Bound based on the Vysochanskii-Petunin inequality)

Given that the PDF, p(tk;H1), is unimodal, the detection power, PD, of the mGLRT
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is bounded from above as

PD(α) ≤ max







4

9

1

1 +

(
Q−1

χ2
a−b

(α)−µ1

σ1

)2 ,
4

3

1

1 +

(
Q−1

χ2
a−b

(α)−µ1

σ1

)2 − 1

3







, µ1 < Q−1
χ2

a−b

(α),

(4.11)

where α is the probability of false alarm, and µ1 and σ2
1 are the mean and variance of

the modified mGLRT statistic, 2Tk(·), under the hypothesis H1.

Proof. Given a random variable X with mean µ1 and variance σ2
1, we have the fol-

lowing bound due to the one-sided Vysochanskii-Petunin inequality [108].

Pr(X − µ1 ≥ a) ≤ max

{
4

9

σ2
1

σ2
1 + a2

,
4

3

σ2
1

σ2
1 + a2

− 1

3

}

, a > 0. (4.12)

The desired result can now be obtained by following the steps given for Proposition

4.1.

Taylor Series Approximation for µi and σ2i

The first and second order statistics, µ1 and σ2
1, of the mGLRT statistic, required

to compute the upper bounds derived above can be approximated using Taylor’s

theorem.

Denote by θi = (θ1i, θ2i, . . . , θNi)
T , the mean vector of sensor observations under

the hypothesis Hi. Suppose that the test statistic Tk(z;Hi), is sufficiently ‘smooth’

so that it is differentiable to the required order. Then, the first-order Taylor series of

Tk(z;Hi) about θi is
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Tk(z;Hi) = Tk(θi) +
N∑

n=1

Ṫkn(θi) (zni − θni) + Remainder, (4.13)

where

Ṫkn(θi) =
∂

∂zn
Tk(z)

∣
∣
∣
∣
∣
z1=θ1i,...,zN=θNi

. (4.14)

Dropping the remainder and taking the expectation on both sides of Eq. (4.13), we

have,

µ
′

i ≈ Tk(θi) +
N∑

n=1

Ṫkn(θi)E (zni − θni)
︸ ︷︷ ︸

=0

= Tk(θi). (4.15)

Thus,

µ
′

1 = E {Tk(z;H1)}

≈ L

[
N∑

n=1

log
fn(θn1)

gn(θn1)
+ log

k1 {F1(θ11), . . . , FN(θN1);ψd∗}
k0 {G1(θ11), . . . , GN(θN1);λd∗}

]

, (4.16)

where ψd∗ and λd∗ denote the pseudo-true values,

ψd∗ = argmax
ψd∈Ψd

log fp(z)k1(·;ψd), (4.17)

λd∗ = argmax
λd∈Λd

log gp(z)k0(·;λd). (4.18)
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Similarly, we can approximate the variance under each hypothesis Hi by

σ
′2

i ≈ E [Tk(z;Hi)− Tk(θi)]2 (4.19)

≈ E





(
N∑

n=1

Ṫkn(θi)(zni − θni)

)2


 (4.20)

=
N∑

n=1

Ṫkn(θi)2V ar(zn;Hi) + 2
∑

n>m

Ṫkn(θi)Ṫkm(θi)Cov(zn, zm;Hi). (4.21)

The mean, µ1, and the variance, σ
2
1, of the modified test statistic, 2Tk(·) can be

approximated as,

µ1 ≈ 2µ
′

1 and σ2
1 ≈ 4σ

′2

1 (4.22)

Thus, given the first and second order statistics of the marginals, and the first

order pair-wise correlation between the variables, we can compute µ1 and σ
2
1. These

values can be subsequently used with Propositions 4.1 or 4.2 to derive the respective

upper bounds on PD.

Next, we present an illustrative example.

4.3 Example

Consider a parallel network of two heterogeneous sensors (N = 2). Measurements z1

and z2 at the fusion center are set to normal and beta distributions respectively, i.e.,

Z1 ∼ N (µi, σ
2
i ) and Z2 ∼ Beta(αi, βi), i ∈ {0, 1}. Without loss of generality (w.l.o.g),

we assume that the variables Z1 and Z2 are statistically independent and completely

known under H0, i.e.,

g(z1, z2;λ) = g1
(
z1;µ0, σ

2
0

)
g2 (z2;α0, β0) , (4.23)

66



and ‘b’ is equal to zero. A Student’s t-copula with four degrees of freedom and

Kendall’s τ = 0.2 is used to generate correlated sensor observations under H1. To do

this, we first obtain the copula dependence parameter ψd given Kendall’s τ (see Eq.

(2.35)). The fully specified Student’s t-copula is then used to generate L i.i.d real-

izations of a uniformly distributed bivariate random vector, Ul = [U1l U2l]l=0,...,L−1.

Each sample is finally transformed using the inverse CDF function to obtain the

desired marginal PDFs,

znl = F−1n (unl), ∀n, l (4.24)

Fig. 4.1 shows the scatter plot of the bivariate random vector (500 realizations).

Dependence between the two marginals under H1 is evident from this figure. It must

also be noted that Kendall’s τ is preserved under the inverse CDF transform due to

its invariance property under strict monotonic mappings, i.e., τZ = τU [70].

We consider three models, the FGM, Frank and Gaussian copula functions, in the

set Ak and evaluate the performance of the mGLRT derived in Eq. (4.4). Each of

these copula functions converge to the independence model underH0, i.e., k(·; ψ̂d) H0→ 1

for all the three copula densities. Thus, Theorem 4.1 is applicable and can be used

to determine the detector threshold. Denoting by dim(x), the dimensionality of

parameter x, we have a = dim(ψ1) + dim(ψ2) + dim(ψd) = 2 + 2 + 1 = 5. Thus,

PF = Qχ2

5
(2η

′

) by Theorem 4.1. Fig. 4.2 shows a plot of this theoretical PF . Also,

shown are simulated false-alarm values obtained using 10000 Monte-carlo trials with

L set to 100 samples. A good match between the theoretical and simulation PF

values is evident from the figure. The ROC curves for the product and copula-based

models are shown in Fig. 4.3. It can be seen from the figure that the mGLRT clearly

outperforms the test based on the product model
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(b) Hypothesis H1

Figure 4.1: Scatter plot of 500 realizations. Non-zero dependence between Z1 ∼
N (µ1, σ

2
1) and Z2 ∼ Beta (α1, β1) (under H1) is evident from the figure.

In the next section, we apply the copula-based framework to a real-world appli-

cation.
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Figure 4.2: Application of Theorem 4.1 for determining the detector thresholds. Sim-
ulation parameters are: (µ0, σ

2
0) = (0, 1), (µ1, σ

2
1) = (0.1, 1.1), (α0, β0) = (2, 2),

(α0, β0) = (2.2, 2.2) and Kendall’s τ |H1 = 0.2. The detector makes a decision af-
ter processing L = 100 samples.

4.4 Application: Footstep Detection

General security applications often require monitoring of the indoor/outdoor envi-

ronments using multiple sensors, for the purpose of personnel monitoring and surveil-

lance. The goals include detection, localization and tracking of personnel moving in a

sensor field, thus invoking algorithms that perform data or feature-level fusion. While

video is the most common mode of sensing for zone monitoring, in some scenarios

(e.g. military applications), a direct line-of-sight (LOS) may not be available. The

deployed sensors may also be required to possess long sensing range capabilities. An

unattended ground sensor (UGS) network of acoustic and seismic sensors is usually

employed in such scenarios [37, 92].
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Figure 4.3: Monte Carlo based receiver operating characteristic curves: Pa-
rameters for the marginal PDFs are (µ0 = 0, σ2

0 = 1 and µ1 = 0.1, σ2
1 = 1.1) and

(α0 = 2, β0 = 2 and α1 = 2.2, β1 = 2.2).

We consider, in this work, a personnel detection problem using an acoustic-seismic

sensor network that is capable of sensing the vibrations and sound signatures resulting

from human footsteps. Data (or features extracted) from all the sensors are fused

to arrive at a final decision regarding the presence or absence of human activity.

Both acoustic and seismic sensors have an added advantage of being passive and

inconspicuous, inexpensive and easy to install.

4.4.1 Related Work and Our Approach

The topic of detecting footsteps using acoustic and/or seismic sensors has been con-

sidered in the past. Succi et al. [96, 97] have considered the problem of footstep
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signal detection and personnel tracking using seismic sensors. They have suggested

the use of kurtosis as a test statistic, which is motivated by the idea that the presence

of footsteps would increase the “peakedness” of the underlying probability distribu-

tion resulting in higher kurtosis. A scheme based on autoregressive (AR) modeling

of acoustic and seismic time series has been proposed by Bland [12]. Ekimov and

Sabatier [36] have reported experimental results for vibration and sound characteris-

tics with different walking styles in an indoor environment. Wavelet based heuristics

have been proposed in [116]. Dilabar et al. [32] have considered the use of a neu-

ral network to detect and classify perimeter intrusion using geophones. Houston et

al. [52] have developed a cadence based method for footstep detection.

In this work, we formulate the detection problem as a binary hypothesis testing

problem where the hypothesis H1 indicates the presence of human footsteps while H0

corresponds to background noise alone. A novel approach based on canonical correla-

tion analysis (CCA) and copula theory is proposed to fuse the acquired acoustic and

seismic signals. From the given time series, localized frequency content is estimated

using the short-time Fourier transform (STFT), and the acoustic and seismic STFT

matrices, Xr×L and Ys×L respectively, are obtained. Column l of X and Y contains

the absolute values of complex discrete Fourier transform (DFT) coefficients for the

time bin l. Assuming the DFT coefficients to be i.i.d. over time, CCA is used to

project the coefficients onto a space of lower dimensionality to obtain new variates,

u (acoustic) and v (seismic); u,v ∈ R
d, d = min(r, s). 1 The variates are processed

through a likelihood ratio detector, and a final decision regarding the presence or

absence of footsteps is obtained.

Application of CCA allows us to operate in the space where the inter-modal corre-

lation is “emphasized”. In addition, for most practical scenarios, the first few pairs of

canonical variates are able to incorporate a major proportion of correlation structure

1The i.i.d. assumption implies X ∈ R
r and Y ∈ R

s
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present in the data. Thus, further reduction in dimensionality can be achieved by

discarding the variates with insignificant correlation values. We note here that the use

of CCA for multimodal signal processing problems has been considered in the past.

For example, Kidron et al. [62] have considered the use of CCA for audio-video fusion,

and, Sargin et al. [84] use CCA to integrate audio and lip-motion features. However,

the formulation in these approaches has largely been that of data association. The

algorithms focus only on the ‘common information’ between different modalities. In

this work, we present a framework that could account for the information specific

to individual modalities (complementary information) in addition to the information

‘common’ to all modalities. The basics of CCA are briefly discussed below; more

details can be found in [44,54].

Canonical Correlation Analysis

Denote by X = (X1, . . . , Xr)
T and Y = (Y1, . . . , Ys)

T , the two multidimensional

variables. CCA considers the linear relationship between X and Y. The method

seeks to replace the variables, X and Y, by d pairs of new variables,

(ui, vi) , i = 1, 2, . . . , d, d ≤ min(r, s), (4.25)

where

uj = aTj X = a1jX1 + a2jX2 + . . .+ arjXr

vj = bTj Y = b1jY1 + b2jY2 + . . .+ bsjYs

(4.26)

j = 1, 2, . . . , d, are linear projections of X and Y respectively. The jth pair of co-

efficient vectors, aj = (a1j, . . . , arj)
T and bj = (b1j, . . . , bsj)

T are chosen so that,

(a) the pairs (ui, vi) are ranked according the correlation ρj = corr(uj, vj), so that
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1 > ρ1 ≥ ρ2 . . . ≥ ρd > 0, and, (b) both uj and vj are uncorrelated with the previously

derived variates uk and vk respectively, k < j.

One can use singular value decomposition (SVD) to obtain the new vector variates,

u = AX, v = BY (4.27)

where each row of the matrices Ad×r and Bd×s jointly corresponds to one pair of

coefficient vectors. Let

Z =






X

Y






denote the collection of the r+s variables partitioned into two disjoint subsets, where

X and Y are jointly distributed with zero mean and covariance,

RZZ = E
(
ZZT

)
=






RXX RXY

RY X RY Y




 . (4.28)

The superscript ‘T’ in Eq. (4.28) denotes the matrix-transpose operation. Now,

to solve for the canonical correlations and variates, SVD of the coherence matrix,

Ch = R
− 1

2

XXRXYR
−T

2

Y Y , is obtained so that

Ch = LKMT , (4.29)

where L and M are unitary matrices [85]. The diagonal matrix Kd×d is the canonical

correlation matrix, and the canonical variates are given as,

u = LTR
− 1

2

XX
︸ ︷︷ ︸

A

X, v = MTR
− 1

2

Y Y
︸ ︷︷ ︸

B

Y. (4.30)
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Figure 4.4: Footstep data collection at the US Army Research Lab: Experimental
setup

4.4.2 Data Acquisition and Preprocessing

In this section, we describe experiments for footstep data collection and also discuss

how the signals are processed before they are input to the likelihood ratio detector.

Experiments were conducted at the U.S. Army Research Lab in the basement of

a building. Sensors of diverse modalities such as acoustic, seismic, magnetic, electro-
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Figure 4.5: Footstep signals and their spectrograms due to normal walk

static and passive infrared (PIR) were placed along a long hallway (see Fig. 4.4) [95]

to record movements of various classes of people (e.g., male, female, single, group

etc.). In this work, we have used data from acoustic and seismic sensors to detect

the presence of a single person. Different styles of walking such as normal walk, brisk

walk and running were considered. In addition, an experiment for background noise

characterization was also included wherein all sensors monitored the hallway in the

absence of any deliberate activity for approximately two minutes.

Acoustic and seismic signals were collected at 16384 Hz and 8192 Hz respectively,

and were resampled at an equal rate of 6000 Hz. The detector collects the data for one

second before making a decision. A Hamming window of length 20 millisecond with

50% overlap is used alongwith 128-point fast Fourier transform (FFT) to compute

the STFT matrices. Fig. 4.5 shows a typical plot of footstep signals due to normal

walk along with their spectrograms.

Nineteen acoustic bands (r = 19, 187 - 1013 Hz) and ten seismic bands (s = 10,

0 - 468 Hz) are then linearly combined to obtain the CCA variates, u and v. In Fig.

4.6, we compare the canonical correlation coefficients estimated for different walking
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Figure 4.6: Canonical correlation coefficients for noise alone and footsteps plus noise.
The plot also shows symmetric one standard deviation error bars.

styles. Data is divided into one second frames and average correlation coefficients are

shown along with symmetric one standard deviation error bars. The plot shows a

systematic increase in the statistical dependence among the variates, due to the pres-

ence of footstep signals. As expected, correlation is highest for signals corresponding

to the running activity and lowest in the absence of footstep signals. This trend is

true for all the ten (d = 10) possible variates.

4.4.3 Statistical Modeling and Detector Design

In order to reduce the detector complexity, we discard all but the first significant pair

(u1, v1), and employ the mGLRT (see Eq. (4.4)) at the fusion center,

T (u1,v1) =
L∑

l=1

log

max
Ψ1,Ψ2,k1(·;Ψd)∈Ak

f(u1l;ψ1)f(v1l;ψ2)k1(·;ψd)

g(u1l;λ1)g(v1l;λ2)k0(·;λd)
H1

≷
H0

η. (4.31)

Note that, in Eq. (4.31), we have assumed full knowledge of g(u1, v1;λ), the joint PDF

of the variates under H0. This is a reasonable assumption provided the background

noise does not exhibit high frame-to-frame variability as one can always perform noise
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characterization before system deployment. We now discuss statistical modeling of

the variates under both H1 and H0.

We consider the generalized Gaussian (GG) distribution as a candidate family for

modeling the univariate marginals. A random variable X is said to be distributed as

a generalized Gaussian if it has the following PDF,

p(x) =
β

2αΓ(1/β)
e−(|x|/α)

β

, (4.32)

where Γ(·) is the Gamma function, i.e., Γ(z) =
∫∞

0
e−ttz−1dt, z > 0, α = σ

√
Γ(1/β)
Γ(3/β)

is

a scaling factor that allows the variance to be σ2, and β is the shaping factor. The

shape of the GG density for different values of β is shown in Fig. 4.7. The family

allows to parametrize a continuum of symmetric, platykurtic densities (β > 2), and

a continuum of symmetric, leptokurtic densities (0 < β < 2). Also, the well-known

Laplacian and the Gaussian distributions belong to the GG family with β = 1 and

β = 2 respectively. In the limiting cases, when β →∞, p(x) converges to a uniform

distribution, whereas for β → 0+, Eq. (4.32) approaches an impulse function.

The use of GG distribution is quite prevalent in the signal processing literature

due to its flexibility to model data with different shapes. For example, it has been

used in speech modeling [64], wavelet-based texture retrieval [33], image and video

coding [58, 88] and many other applications. As we show below, the CCA variates

can be accurately modeled using GGD; the noise-only variates are characterized by

the standard Gaussian distribution (β = 2), while the presence of footsteps results in

a more peaked distribution given by reduced values of β (< 2).

Several approaches such as method of moments (MM) [7,103], entropy matching [4]

or the ML framework [33] can be adopted to estimate the parameters of a GGD.

Following [33], we use the ML approach and consider the following log-likelihood
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Figure 4.7: The probability density of the generalized Gaussian model for different
values of the shape parameter, β = 0.6, 1, 2 and 10. All distributions are normalized
to unit variance and have zero mean.

function,

L(X;α, β) =
L∑

l=1

log p(xl;α, β). (4.33)

The associated Euler-Lagrange (EL) equations can be derived by setting the deriva-

tives, ∂
∂α
L(x;α, β) and ∂

∂β
L(x;α, β), to zero. That is,

∂

∂α
L(x;α, β) =

L∑

l=1

∂

∂α
log p(xl;α, β) = 0

=⇒
L∑

l=1

{

∂

∂α
log

β

2αΓ( 1
β
)
− ∂

∂α

( |xl|
α

)β
}

= 0

=⇒ −L
α
+

L∑

l=1

β|xl|βα−β
α

= 0, (4.34)
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and,

∂

∂β
L(x;α, β) =

L∑

l=1

∂

∂β
log p(xl;α, β) = 0

=⇒
L∑

l=1

{

∂

∂β
log

β

2αΓ(1/β)
− ∂

∂β

( |xl|
α

)β
}

= 0

=⇒
L∑

l=1

{

Γ (1/β)

β

∂

∂β

β

Γ (1/β)
− ∂

∂β

( |xl|
α

)β
}

= 0

=⇒ L

β
+
LΨ(1/β)

β2
−

L∑

l=1

( |xl|
α

)β

log

( |xl|
α

)

= 0, (4.35)

where Ψ(·) is the digamma function
(

Ψ(z) = Γ̇(z)
Γ(z)

)

, are solved to obtain the ML esti-

mates of α and β. Given β̂, Eq. (4.34) defines a unique estimator α̂ =
(
β
L

∑L
l=1|xl|β

) 1

β

which on substitution in Eq. (4.35) gives the following equation,

1 +
Ψ(1/β̂)

β̂
−

∑L
l=1|xl|β̂ log|xl|
∑|xl|β̂

+
log

(
β̂
L

∑|xl|β̂
)

β̂
= 0. (4.36)

Equation (4.36) has been shown to have a unique root at least in probability [105]

which corresponds to the ML estimate of β. The equation has to be solved numeri-

cally, and we adopt the Newton-Raphson iterative procedure proposed in [33].

Fig. 4.8(a) shows histogram of the CCA variate u1 computed from a one second

noise-only frame, together with the fitted GG density. A similar plot for footstep

signals is shown in Fig. 4.8(b). As expected, the presence of footsteps results in a

more ‘peakier’ distribution. The GGD fits were equally good for the seismic CCA

variate, v1, as well (see Fig. 4.9).

It is interesting to note that the value of β estimated for the noise-only frame

is very close to 2 for both, u1 and v1, suggesting a Gaussian model for the variates

underH0. Fig. 4.10 which analyzes the range of β computed from multiple one second

noise-only frames, shows that this is indeed the case. The histogram of β estimates,
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(a) Noise alone:
(

α̂ = 1.4, β̂ = 1.98
)
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(b) Running:
(

α̂ = 0.29, β̂ = 0.72
)

Figure 4.8: Histogram of the acoustic CCA variate, u1, together with the fitted
generalized Gaussian density
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(a) Noise alone:
(

α̂ = 1.46, β̂ = 2.10
)
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(b) Running:
(

α̂ = 0.5, β̂ = 0.9
)

Figure 4.9: Histogram of the seismic CCA variate, v1, together with the fitted gener-
alized Gaussian density

for both the acoustic and the seismic variates, peaks at β = 2 with a low frame-to-

frame variance of 0.25 and 0.36 respectively. In order to increase our confidence in

the estimated values, we have used the moving block bootstrap technique [118] to

generate Q overlapping frames each one second in duration to plot the histograms.

The Gaussanity of the variates is further confirmed by the Kolmogorov-Smirnov (KS)

goodness-of-fit test [66]. All Q frames passed the test for normality when tested at
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(a) β̂ for the acoustic CCA variate, u1.
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(b) β̂ for the seismic CCA variate, v1.

Figure 4.10: Histogram of β estimated using the ‘noise-alone’ data

Table 4.1: Mean and symmetric one standard deviation confidence in-
tervals for β̂

Modality Noise Alone Normal Walk Brisk Walk Run

Acoustic 2.13 (±0.5) 1.1 (±0.34) 1.08 (±0.29) 1.0 (±0.16)

Seismic 2.19 (±0.62) 1.14 (±0.35) 1.13 (±0.35) 0.95 (±0.15)

0.05 significance level. The mean and symmetric one standard deviation confidence

intervals for the β̂ for all the activities considered here, are shown in Table 4.1.

We now focus on choosing the copula density, k0(·;λd), to characterize the depen-

dence structure between the variates u1 and v1 under H0. Using the KL divergence

(see Section 3.2.1) as a criterion for model selection, we observe that the Gaussian

copula with λd = 0.66 best fits the data set. Thus, g(u1, v1) ∼ N [( 00 ) ; (
1.0 0.66
0.66 1.0 )]. The

copula model for the data under H1 is estimated online under the mGLRT framework

(see Eq. (4.31)).

4.4.4 Results

In this section, we investigate the performance of the proposed copula based approach

for footstep detection. Probability of detection, PD, was estimated using the footstep

81



recordings when a single person traversed from the origin, A, to the destination,

B, and back by (a) walking at a normal pace (for approximately 15 seconds), (b)

walking at a relatively brisk pace (for about 12 seconds) and (c) running for about 8

seconds. A decision window of length 6000 samples was used. Moving block bootstrap

technique was used to generate Q1 overlapping resamples under H1. Thus,

P̂D =
# decisions in favor of H1

Q1

. (4.37)

Probability of false alarm, PF , was estimated from the two minute noise-only record-

ings following the same procedure. The ROC plots for the three walking styles are

shown in Fig. 4.11.

As evident from the figure, the CCA-copula detector outperformed the product

rule in all the three cases.

4.5 Summary

In this chapter, a composite hypothesis testing problem with heterogeneous obser-

vations was formulated, and a GLRT based test for the same was derived. It was

assumed that the joint PDF under the null hypothesis H0, and the marginal PDFs

under both hypotheses are well-specified. However, no such assumptions were made

for the copula density used to approximate the joint PDF of observations under H1.

We, therefore, call the test a misspecified GLRT. Copula selection was embedded in

the estimation step of the GLRT. When conditions are satisfied so that Wilks theo-

rem is applicable, it becomes possible to determine the detector threshold and also

compute upper bounds on PD, at a fixed value of PF . The developed theory was

then applied to solve the problem of detecting human footsteps using a network of

acoustic and seismic sensors. A novel approach based on CCA and copula theory was

presented. Application of CCA allows one to operate in the space where the inter-
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modal correlation is “emphasized” while also achieving dimensionality reduction. It

was shown that the CCA variates of both, the acoustic and the seismic signals, could

be modeled using a generalized gaussian density. Different styles of walking were

considered and it was shown that the proposed CCA-copula detector led to signifi-

cant improvement over the product fusion rule which fails to characterize inter-modal

correlations.
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Figure 4.11: Receiver operating characteristic curves for the CCA-copula based de-
tector
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Figure 4.11: Receiver operating characteristic curves for the CCA-copula based de-
tector
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Chapter 5

Hypothesis Testing With

Quantized Sensor Measurements

In the earlier chapters, a multisensor detection problem was considered where sensors

of disparate modalities transmit their observations (or features extracted thereof) to

a fusion center. While designing the copula based fusion rule, it was assumed that

the fusion center had access to the exact real-valued (analog) version of the locally

processed data. However, in many cases (e.g. wireless sensor networks), there could be

limitations on both the transmission power and the bandwidth available for sensor-to-

fusion center communication. It may, thus, be necessary to quantize the information

at each sensor before its transmission to the fusion center. The goal of this chapter is

to design a decision fusion rule for combining quantized heterogeneous information,

thereby extending the formulation in the preceeding chapter to a distributed setting

(see Fig. 5.1).

Distributed detection has long been an active and important research area [106].

The design of a distributed detection system involves designing the local and fu-

sion center decision rules under different criteria and constraints [19, 51, 106]. Under

the assumptions that local observations are conditionally independent given the hy-
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Figure 5.1: Distributed heterogeneous sensor network: A parallel architecture.

pothesis and the fusion center receives the local sensor outputs without any loss,

the optimality of the LRT for local sensor decision rules under the Bayesian crite-

rion and the Neyman-Pearson criterion have been proved in [50] and [99]. However,

the problem becomes highly complex when conditional independence does not hold.

The LR based decision rules at the local sensors may no longer result in an optimal

system design [3,115]. It has also been shown that distributed detection with depen-

dent observations is an NP-complete problem; it cannot be solved using a polynomial

time algorithm [73, 100]. The problem is usually simplified by constraining the local

sensors to be binary quantizers. In [34], Drakopoulos and Lee have derived a rule

for fusing correlated decisions under the assumption that the correlation coefficients

between the sensor decisions are known and local sensor thresholds generating the

correlated decisions are given. Kam et. al [59], employed another approach, namely,

the Bahadur-Lazarsfeld series expansion of PDFs to derive the optimum fusion rule

for correlated local decisions. It was assumed that the joint distribution of sensor

observations was completely known. In this chapter, we present another approach

based on copula theory for fusing statistically dependent decisions from the local het-

erogeneous sensors. The application of copula theory for fusing correlated decisions
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has been recently considered in [98]. The local sensors were binary quantizers, and

it was assumed that the true copula generating data under each hypothesis is known

a priori. In this work, we relax this assumption, and also extend the formulation to

multibit quantizers. A copula based GLRT (mGLRT), similar to the one designed

in Chapter 4, is employed. An alternative suboptimal but computationally efficient

fusion rule is also proposed which involves deliberately adding an external noise to

the quantized observations before fusion. While noise is generally perceived as an

unwanted signal, interestingly, several studies have shown that addition of controlled

noise could in fact be beneficial in some cases. For example, dithering, the process

of adding noise to the signal before quantization has been shown to improve signal

quality and mitigate the artifacts introduced due to quantization [45,82,86]. Also, it

has been observed by many researchers that some types of signals get amplified by

a nonlinear system when noise is added to the input signal (see [20] and references

therein). This phenomenon is popularly known as stochastic resonance (SR). Here,

we use this approach of adding external noise to address the issue of computational

complexity.

One of the main limitations of the copula-based rule for fusing discrete decisions

is the considerable increase in computational complexity as the number of sensors

and/or quantization levels increases. As the authors in [98] note, implementation

of a copula based GLRT for N binary quantizers requires one to compute 2N N -

dimensional integrals, and optimize over an N(N − 1)/2 dimensional space for ML

estimation (of elliptical copula parameters). The system proposed here greatly sim-

plifies the fusion rule, and can be considerably accurate especially when the number

of quantization levels is large. The key is to choose a suitable noise PDF for the

external noise to be added. We call this noise, the low pass filter noise (LPF-noise),

for reasons that will become clear later. Our approach is based on Widrow’s additive

quantization noise model [111,113] and is similar to Gustafsson and Karlson [48] who
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have considered the problem of estimating a deterministic parameter in noise using

quantized observations. However, unlike [48] where the authors propose to inject

the artificial dither noise before quantization, we add the deliberate disturbance post

quantization and at the fusion center. As we show later, the addition of noise after

quantization is equivalent to low pass filtering in the characteristic function (CF)

domain, unlike dithering which amounts to anti-alias filtering [48,112].

The rest of the chapter is orgainized as follows. We formulate the problem in Sec-

tion 5.1 and define the input-output transfer function of the quantizers used in this

chapter. A copula based rule for fusing correlated local sensor decisions is derived in

Section 5.2. Section 5.3 addresses the issue of computational complexity associated

with the fusion rule derived in the previous section. An alternative suboptimal but

computationally efficient fusion rule based on Widrow’s pseudo-quantization noise

model (PQN) is proposed. It is shown that under some conditions, the PQN model-

based fusion rule can be highly accurate, while also reducing the computational com-

plexity. An illustrative example is presented in Section 5.4 to elucidate the theory

presented in the previous sections. Section 5.5 is a brief summary of the chapter.

5.1 Problem Formulation

The problem of signal detection is formulated as a binary hypothesis test where the

hypothesis H1 indicates the presence of a signal, while H0 indicates the absence of

the same. As in Chapter 4, observations at each sensor n are assumed to be i.i.d

with PDFs fn(zn;ψn) and gn(zn;λn) under H1 and H0 respectively. We assume that

the marginal PDFs are well-specified under both hypotheses; however no knowledge

is available regarding the dependence structure between the heterogeneous sensed

data streams. We approximate the unknown dependence structures using copula

functions. Sensor observations are further passed through uniform scalar quantizers
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Figure 5.2: Input-output transfer function of a uniform scalar quantizer

(see Fig. 5.1) before their transmission to a remotely located fusion center. The

input-output transfer function of the quantizer at each sensor is shown in Fig. 5.2.

Thus, the quantizer output, during any time interval 1 ≤ l ≤ L, can be given as

unl = Qm(znl) =







−mnqn +
qn
2
, znl < −mnqn,

qn⌊ znlqn ⌋+
qn
2
, −mnqn < znl ≤ mnqn,

mnqn − qn
2
, znl ≥ mnqn,

(5.1)

where, qn and 2mn correspond to the quantizer step size and the number of quantiza-

tion levels respectively, at sensor n. Further, ⌊x⌋ stands for the floor operation that

denotes an integer smaller than or equal to x. The quantized value at sensor n can

be represented with an integer in = −mn + 1,−mn + 2, . . . ,mn.

Observations thus received at the fusion center are used to estimate the unknown

model parameters, and a GLRT based fusion rule is employed for global decision

making. In addition to estimating the model parameters, the selection of copula

densities is also performed in real-time (see Section 4.1). Sensor observations and

hence their quantized versions are assumed to be i.i.d in time, and, the focus is
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on designing a fusion rule that could exploit the spatial correlation between sensor

decisions for improved detection performance.

5.2 (Misspecified) GLRT Based Fusion of Soft De-

cisions

In the following, we consider a two-sensor network noting that the extension to more

number of sensors is straightforward.

Under hypothesis H1, the probability that the data Rl = (u1l, u2l) received at the

fusion center at the time instant l takes a specific value
(
i1q1 − q1

2
, i2q2 − q2

2

)
is

Pi1,i2 =

∫ i1q1

(i1−1)q1

∫ i2q2

(i2−1)q2

f(z1, z2) dz2 dz1, (5.2)

where f(z1, z2) is the true but unknown joint PDF of unquantized sensor observations

under H1. Now, approximating the dependence structure using a copula density (say)

k1 {F1(z1;ψ1), F2(z2;ψ2);ψd} contained in some set Ak of valid copula densities, we

have

P̂i1,i2(ψ) =

∫ i1q1

(i1−1)q1

∫ i2q2

(i2−1)q2

f1(z1;ψ1)f2(z2;ψ2)k1 (F1(z1;ψ1), F2(z2;ψ2);ψd) dz2dz1

= K1 {F1(i1q1;ψ1), F2(i2q2;ψ2);ψd} −

K1 {F1((i1 − 1)q1;ψ1), F2((i2 − 1)q2;ψ2);ψd} , (5.3)

where ψ = (ψ1, ψ2, ψd)
T ∈ Ψ ⊂ R

a are the unknown parameters that will be esti-

mated from the received data, K1{·} is the copula CDF and Fn(·) is the CDF of Zn

under hypothesis H1. The dependence of P̂i1,i2(ψ) on K1{·} is not made explicit for

notational convenience.
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The likelihood function of the data Rl under hypothesis H1 can now be written

as

P̂ (Rl;ψ,H1) =
∏

i1

∏

i2

[

P̂i1,i2(ψ)
]δ(u1−i1q1+ q1

2
,u2−i2q2+

q2
2
)
, (5.4)

where δ(·) is the two-dimensional Kronecker-delta function defined as

δ(x, y) =







1, x, y = 0

0, x, y 6= 0.

(5.5)

The log-likelihood function of Rl is, therefore,

log P̂ (Rl;ψ,H1) =
∑

i1

∑

i2

δ
(

u1l − i1q1 +
q1
2
, u2l − i2q2 +

q2
2

)

log P̂i1,i2(ψ). (5.6)

Similarly, the likelihood function of Rl under H0, when a copula density

k0 (G1(z1;λ1), F2(z2;λ2);λd) ∈ Ak is used to approximate the joint distribution under

H0, can be derived as,

log P̂ (Rl;λ,H0) =
∑

i1

∑

i2

δ
(

u1l − i1q1 +
q1
2
, u2l − i2q2 +

q2
2

)

log Q̂i1,i2(λ), (5.7)

where

Q̂i1,i2(λ) = K0 {G1(i1q1;λ1), G2(i2q2;λ2);λd} −

K0 {G1((i1 − 1)q1;λ1), G2((i2 − 1)q2;λ2);λd} . (5.8)

λ = (λ1, λ2, λd)
T ∈ Λ ⊂ R

b are the unknown parameters associated with the model

under H0, K0{·} is the copula CDF and Gn(·) is the CDF of Zn under hypothesis H0.
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With Eqs. (5.6) and (5.7), it is straightforward to derive the mGLRT to be

employed at the fusion center,

T qk (u1,u2) = log

max
k1(·)∈Ak,Ψ

∏

l

P̂ (Rl;ψ,H1)

max
k0(·)∈Ak,Λ

∏

l

P̂ (Rl;λ,H0)

H1

≷
H0

η (5.9)

which results in

∑

l

∑

i1

∑

i2

δ
(

u1l − i1q1 +
q1
2
, u2l − i2q2 +

q2
2

)

log
P̂ ∗i1,i2(ψ̂)

Q̂∗i1,i2(λ̂)

H1

≷
H0

η,

(5.10)

where P̂ ∗i1,i2(ψ̂) and Q̂∗i1,i2(λ̂) correspond to the copula functions K∗
1(·) and K∗

0(·)

respectively, which maximize the terms on the left hand side of Eq. (5.9). The

superscript ‘q’ in Eq. (5.9) denotes that the detector receives quantized data at its

input.

When the conditions of Theorem 4.1 are satisfied, the modified test statistic

2T qk (u;H0) converges asymptotically (L → ∞) to a chi-squared distribution with

ν = a− b degrees of freedom. Thus, the probability of false alarm, P
q
F , is

P
q
F = Pr

(

2T qk (·) > 2η;H0

)

L→∞
= Qχ2

a−b
(2η) , (5.11)

where Qχ2
ν
(·) denotes the right-tail probability of a chi-squared random variable with

ν degrees of freedom. One can thus obtain the threshold η so that P
q
F is constrained

to a desired level α ∈ (0, 1) as below:

η =
Q−1
χ2

a−b

(α)

2
. (5.12)
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Next, we derive a suboptimal but computationally much simpler test as an alter-

native to Eq. (5.9).

5.3 A Computationally Efficient Fusion Rule

The copula-based fusion approach involves solving multi-dimensional integrals to eval-

uate the joint probabilities (see Eq. (5.3)). Given N sensors each with a binary quan-

tizer, there are 2N possible pairs of joint decisions, and the probability of each pair

requires the evaluation of an N−dimensional integral. Thus, the application of the

mGLRT becomes highly prohibitive as the number of sensors N and/or quantization

levels increases due to the increased computational complexity. In this section, we

derive a computationally efficient test at the fusion center that is based on Widrow’s

pseudo-quantization noise (PQN) model. The test, although suboptimal, can be

highly accurate especially for fine quantization systems (qn → 0). We first review

Widrow’s statistical theory of quantization.

5.3.1 Widrow’s Statistical Theory of Quantization: A Re-

view

The statistical theory of quantization was developed by Widrow and co-workers [111–

113]. They interpreted quantization of a random variable as sampling of its PDF, and

showed that the PDF of the quantized signal is the convolution of the input signal

PDF with a rectangular pulse function followed by conventional sampling. Thus, the

PDF of the quantizer output, unl, at sensor n and at any time instant, can be given

as

pUn(z) =
(

pWn
(z) ⋆ pZn(z)

)

· cδ′n(z), (5.13)
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Figure 5.3: Pseudo-quantization noise (PQN) model for quantization

where pn(z) is the PDF of the random variable at the input Zn, pWn
(z) denotes the

rectangular pulse function,

pWn
(z) =







1
qn
, −qn/2 < z < qn/2

0, elsewhere,

(5.14)

and cδ′n(z) denotes the impulse train,

cδ′n(z) =
∞∑

i=−∞

qnδ
′

(

z − inqn −
qn
2

)

. (5.15)

The ‘⋆’ in Eq. (5.13) denotes the convolution operation, and δ
′

(·) in Eq. (5.15) is the

dirac-delta function. This process of convolution followed by conventional sampling

is popularly known as “area sampling” [113]. Also, note that pWn
(·) is also the PDF

of a uniform random variable, Wn ∼ U
(
− qn

2
, qn

2

)
.

Area sampling motivates the PQN model shown in Fig. 5.3. The idea is to model

the quantization process as the addition of a uniformly distributed external noise

wn with PDF pWn
(·) given in Eq. (5.14). It is important to note that the external

noise wn is different from the actual quantization noise ǫn = un − zn. While wn is

statistically independent of the input zn, there is a deterministic relationship between

ǫn and zn. However, under certain conditions, it becomes possible to substitute the
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highly nonlinear quantization process by a simple linear additive uniform noise (AUN)

model. These conditions can be explained in the characteristic function (CF) domain.

The CF of a random variable X is obtained by taking the Fourier transform of its

PDF pX(x),

φX(v) =

∫ ∞

−∞

pX(x) exp
jvx dx = E

[
expjvx

]
. (5.16)

Taking the Fourier transform of Eq. (5.13), one obtains the CF of output variable

Un,

φUn(v) =
∞∑

in=−∞

e−jin
2π
qn

qn
2 φZn

(

v + in
2π

qn

)

sinc

(

qn(v + in
2π
q
)

2

)

=
∞∑

in=−∞

(−1)in φZn
(

v + in
2π

qn

)

sinc

(

qn(v + in
2π
q
)

2

)

(5.17)

where φZn(v) is the CF of the input Zn and sinc(v) = sin(v)
v

. Fig. 5.4 shows the

operations in the ’frequency’ domain. Note that the central lobe (in = 0 in Eq.

(5.17)),

φZn+Wn
(v) = φZn(v) · sinc

(qnv

2

)

, (5.18)

corresponds to the CF one would obtain by adding an independent and uniformly

distributed random variable Wn to the input Zn. It is clear from Fig. 5.4 (d) that,

in addition to the error introduced due to the addition of uniform noise, quantization

also causes an aliasing error due to overlapping lobes of φZn+Wn
(v). 1

However, if the input PDF is band-limited so that φZn(v) = 0 for |v| > π
qn
, then

the replicated versions of φZn+Wn
(v) do not overlap and, in principle, the original PDF

can be reconstructed from the knowledge of pUn(·). This is Widrow’s first quantization

theorem:

1Note that unlike the central lobe, the repititions have an additional phase shift (Eq. (5.17)),
i.e., the odd numbered lobes (in = ±1,±3, . . .) are, in fact, the negative of the central lobe. This is
not shown in Fig. 5.4 (d) for simplicity.
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Figure 5.4: Illustration of the quantization process in the CF domain: (a) CF of zn;
(b) CF of qn, the sinc function; (c) CF of zn + wn; (d) repitition of CF of zn + wn;
the CF of the quantized variable is given by the summation of these repititions.

Theorem 5.1. (Widrow’s Quantization Theorem I)

If the CF of the input variable Zn is bandlimited so that

φZn(v) = 0, |v| > π

qn
, (5.19)

then the different lobes in φUn(v) do not overlap, and in principle, the orignal PDF

pn(zn) (before quantization) can be recovered from the PDF of Un.
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When φZn(v) = 0 for |v| > 2π
qn

so that the derivatives of φUn(v) computed at

v = 0 are not affected due to the overlap of CF lobes, then the moments of Zn can

be recovered from those of Un. This is Widrow’s second theorem:

Theorem 5.2. (Widrow’s Quantization Theorem II)

If the CF of Zn is bandlimited so that

φZn(v) = 0, |v| > 2π

qn
, (5.20)

then the moments of Zn can be derived from the moments of Un.

In the following, it is assumed that Theorem 5.1 (and hence Theorem 5.2) holds,

and derive a fusion rule based on the PQN model.

5.3.2 Fusion Rule Based on the Pseudo-Quantization Noise

Model

As discussed previously, the high complexity in computing the mGLRT statistic for

quantized observations stems from the need for computing multi-dimensional inte-

grals. We propose to simplify the fusion process by adding controlled noise to the

observations received at the fusion center. The system is shown in Fig. 5.5. An exter-

nally generated noise, dn, with PDF pDn(dn) is added to the quantized observations

from each sensor n before fusing them for making a global decision. Denote the new

observations by yn = un + dn whose CF is given by

φYn(v) = φUn(v) · φDn(v). (5.21)

One can choose the noise source with a bandlimited CF to filter out the replicas in

φUn(v). This is analogous to low pass filtering in signal processing. We, therefore,

call the noise Dn, the LPF-noise. As shown in Fig. 5.4 (d), an ideal noise source
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Figure 5.5: A controlled noise dn is added at the output of each sensor n. The
approach, although suboptimal, greatly simplifies the fusion rule by avoiding the need
to compute multidimensional integrals. The method can be considerably accurate
so long as Widrow’s quantization Theorem I is satisfied and noise is appropriately
designed.

would be one with a rectangular CF in the pass-band, − π
qn

≤ v ≤ π
qn
, (also see Fig.

5.6). However, a rectangular function in the CF domain corresponds to a PDF whose

shape corresponds to a sinc function, an invalid PDF. Note that this is similar to the

non-realizability of an ideal low pass filter in signal processing. One needs to carefully

design Dn so that it causes minimal distortion while transforming a discrete-valued

random variable, Un, into a continuous variable, Yn. As long as the input variable Zn

satisfies Widrow’s first quantization theorem (Theorem 5.1) under both H1 and H0,

we have,

Yn = Zn +Wn +Dn. (5.22)
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Thus, under hypothesis H1, the PDF of data, ynl, at time instant l is

pYn (ynl;ψn, H1) = pZn(ynl;H1) ⋆ pWn
(ynl) ⋆ pDn(ynl) (5.23)

= fn(ynl;ψn) ⋆ pWn
(ynl) ⋆ pDn(ynl). (5.24)

Using a copula density (say) k1(·;ψd) ∈ Ak to estimate the dependence structure

between sensor observations, the joint PDF of the data yl = (y1l, y2l) can now be

approximated as

p̂Y(y1l, y2l;ψ,H1) =

{
2∏

n=1

pYn (ynl;ψn, H1)

}

k1 {FY1 (y1l;ψ1) , FY2 (y2l;ψ2) ;ψd}

(5.25)

where

FYn(y) =

∫ y

−∞

pYn(t;ψn, H1)dt (5.26)

denotes the CDF of Yn under H1.

Similarly, the joint PDF of the data under H0 can be approximated as

p̂Y(y1l, y2l;λ,H0) =

{
2∏

n=1

pYn (ynl;λn, H0)

}

k0 {GY1 (y1l;λ1) , GY2 (y2l;λ2) ;λd} ,

(5.27)

where

pYn (ynl;λn, H0) = pZn(ynl;H0) ⋆ pWn
(ynl) ⋆ pDn(ynl) (5.28)

= gn(ynl;λn) ⋆ pWn
(ynl) ⋆ pDn(ynl), (5.29)

k0(·;λd) ∈ Ak is the copula density used to estimate the dependence structure of

sensor observations under H0, and

GYn(y) =

∫ y

−∞

pYn(t;λn, H0)dt (5.30)
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denotes the CDF of Yn when the underlying hypothesis is H0.

With Eqs. (5.25) and (5.27), it is now straightforward to derive the mGLRT

T pqn
k (y) = log

max
k1(·)∈Ak,Ψ

L∏

l=1

pY (y1l, y2l;ψ,H1)

max
k0(·)∈Ak,Λ

L∏

l=1

pY (y1l, y2l;λ,H0)

H1

≷
H0

η. (5.31)

The test derived above involves continuous-valued variables and thus does not involve

computation of multidimensional integrals. This greatly simplifies the test. The re-

duced complexity is, however, at the expense of decreased signal-to-noise ratio due to

the injection of noise dn at the fusion center. The addition of external noise facilitates

filtering out the baseband φZn+Wn
(v) from the received quantized observations φUn(v).

This noise should be designed so that it destroys as little information as possible while

filtering the required signal.

When the conditions of Theorem 4.1 hold, it is clear that 2T pqn
k (y;H0) converges

asymptotically (L → ∞) to a chi-squared distribution with ν = a − b degrees of

freedom. Thus, the probability of false alarm, P Y
F , is

P Y
F = Pr (2T pqn(·) > 2η;H0)

L→∞
= Qχ2

a−b
(2η) . (5.32)

One can thus obtain the threshold η so that P Y
F is constrained to the desired level

α ∈ (0, 1) as in Eq. (5.12). Note that the distribution of 2T pqn(y;H0) depends only

on the dimensions of the parameter spaces under H1 and H0. Thus, the false alarm

probability (corresponding to a test threshold η) does not change due to quantization

of the local measurements. However, quantization does cause a loss of detection power

as we show in the following section.
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5.3.3 Loss in the Detection Power due to Quantization: PQN

Model-Based Analysis

Given that, (a) the signal is weak, i.e., pY(y1, y2;H1) ≈ pY(y1, y2;H0), (b) the MLE

attains its asymptotic PDF, and (c) the composite hypothesis test can be recast as a

test of parameters, the PDF of 2T pqn(y;H1) converges asymptotically to a noncentral

chisquared distribution [61, p. 205]. For example, when the PDF under H0 is com-

pletely known (b = 0) and is nested in pY(y1, y2;H1), and one of the copula densities

in the set Ak corresponds to the true dependence structure under H1, we have

2 T pqn(y;H1)  χ2
a(ξY ), (5.33)

where ‘ ’ in the above equation denotes the convergence in distribution. The non-

centrality parameter ξY is

ξY = (ψ − λ)T FY (λ;q) (ψ − λ) , (5.34)

where we explicitly note the dependence of the Fisher information matrix, FY (·;q),

on the quantization steps q = (q1, q2, . . . , qN). Also, ψ in Eq. (5.34), denotes the true

value of the parameters under H1.

From Eqs. (5.33) and (5.34),

P Y
D = Qa

2

(√

ξY ,
√
η
)

, (5.35)

where P Y
D denotes the detection power of the PQN model-based test, and QM (·) is

the Marcum-Q function. The detector threshold η in Eq. (5.35) is set to constrain

P Y
F to a desired value α ∈ (0, 1) using Eq. (5.12) with b set to zero. Note that the

detection probability is directly proportional to the non-centrality parameter, and

hence the Fisher information evaluated at λ, the parameter under H0. Using the
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Fisher information inequality [31, Theorem 13], one can show that

FY (λ) ≤ FZ(λ), (5.36)

where FZ(λ) is the Fisher information corresponding to the case when observations

are transmitted to the fusion center without quantization. Thus, the detection prob-

ability, PD, for the analog transmission case is higher than P
Y
D by the quantity P loss

D ,

where

P loss
D (q) = PD − P Y

D (q)

= Qa
2

(√

ξ,
√
η
)

−Qa
2

(√

ξY (q),
√
η
)

. (5.37)

where

ξ = (ψ − λ)T FZ(λ) (ψ − λ) . (5.38)

Strictly speaking, P loss
D (q) derived above, is an upper bound on the loss in the detec-

tion rate due to quantization. This is because the quantity also includes the effects

of external noise.

Next, we present a numerical illustration.

5.4 An Illustrative Example

We consider the following hypothesis testing problem:

H0 : Z1, Z2 ∼ N (0, 0, 10, 10, 0)

H1 : Z1, Z2 ∼ N (1, 1, 10, 10, 0.2) (5.39)
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where,

N (µ1, µ2, σ1, σ2, ρ) :=
1

2π(1− ρ2)σ1σ2

· exp
(

−1
2(1− ρ2)

[(
z1 − µ1

σ1

)2

−

2ρ

(
z1 − µ1

σ1

)(
z1 − µ1

σ1

)

+

(
z2 − µ2

σ2

)2
])

,

(5.40)

is the usual bivariate Gaussian density function. We assume, without loss of general-

ity, that the PDF under H0 is completely known and so are the variance parameters

σ2
1 and σ

2
2 under both H0 and H1. The observations, {z1l, z2l}Ll=1, at the two local

sensors are passed through uniform scalar quantizers before their transmission to the

fusion center. Thus, the fusion center has access only to the quantized measurements,

u = {u1l, u2l}Ll=1, to make a global decision in favor of one of the two hypotheses. The

GLRT based fusion rule for this problem is the same as the one derived in Eq.(5.10),

with the joint probabilities,

P̂ ∗i1,i2 (µ1, µ2, ρ) = CNρ
{
ΦNµ1,10 (i1q1) ,Φ

N
µ2,10

(i2q2)
}
−

CNρ
{
ΦNµ1,10 ((i1 − 1)q1) ,Φ

N
µ2,10

((i2 − 1)q2)
}

(5.41)

and

Q̂∗i1,i2 = ΦN0,10 (i1q1) · ΦN0,10 (i2q2)− ΦN0,10 ((i1 − 1)q1) · ΦN0,10 ((i2 − 1)q2) , (5.42)

where CNρ (·) is a Gaussian copula with correlation coefficient ρ, and ΦNµ,σ2 is a uni-

variate Gaussian CDF with mean µ and variance σ2.

An alternative suboptimal but computationally efficient test was derived in Section

5.3.2 based on Widrow’s PQN model for quantization. We evaluate its performance

using the Gauss-Gauss example presented here. It is important to point out that
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Figure 5.6: ’Filtering’ the quantized signal with LPF-noise. The quantization step
size, q1, is set to 0.3σ1: (a) CF of z1; (b) CF of z1 + w1; (c) CF of u1; (d) CF of the
external LPF-noise, dn; (e) CF of yn = zn + wn + dn.

although the Gaussian CF is not perfectly bandlimited, a property necessary for

applying of the PQN based fusion rule, they are very close to being bandlimited for

all practical purposes.2 Fig. 5.6 shows the PQN processing in the CF domain with the

quantization step size set to one-tenth of the input standard deviation, i.e., q1 = 0.3σ1.

The CF of the input z1 is shown in Fig. 5.6(a). Addition of the quantization noise w1

is equivalent to multiplication of φZ1
(v) (shown in Fig. 5.6(a)) with a sinc function,

sinc
(
q1v
2

)
. The resultant CF, φZ1+W1

(v), is shown in Fig. 5.6(b). This CF is repeated

2As discussed in Section 5.3.2 the PQN model based fusion rule assumes that the input signals,
{zn}Nn=1

, satisfy Widrow’s first quantization theorem (Theorem 5.1).
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and summed in Fig. 5.6(c) which represents the CF of the quantized signal, u1 (see

Eq. (5.17)). The CF of the LPF-noise, D1, a standard Gaussian distributed variable

in this example, is shown in Fig. 5.6(d). It is clear that multiplication of φU1
(v) with

φD1
(v) which is equivalent to addition of random variables, d1 and z1+w1, filters the

signal so that only the main lobe (v = 0) of the input signal is retained (Fig. 5.6(e)).

Since the LPF-noise is different from an ideal one with a rectangular CF, the signal,

zn + wn, undergoes some distortion while being ‘filtered’. However, this distortion is

almost imperceptible as evident from Fig. 5.6(e).

The PDF of the transformed variable, Yn = Zn +Wn +Dn, under the hypothesis

H1 is given by

pYn(yn;µn, H1) = pZn+Dn(yn) ⋆ pWn
(yn) (5.43)

= N
(
µn, σ

2
n + σ2

dn

)
⋆ U

(

−qn
2
,
qn
2

)

(5.44)

=
1

qn

[

ΦNµ,11

(

yn +
qn
2

)

− ΦNµ,11

(

yn −
qn
2

)]

(5.45)

Similarly, under H0, we have

pYn(yn, H0) = pZn+Dn(yn) ⋆ pWn
(yn) (5.46)

= N
(
0, σ2

n + σ2
dn

)
⋆ U

(

−qn
2
,
qn
2

)

(5.47)

=
1

qn

[

ΦN0,11

(

yn +
qn
2

)

− ΦN0,11

(

yn −
qn
2

)]

(5.48)

Having derived the marginal PDFs above, we now approximate the joint PDFs

under both hypotheses using copula functions, and subsequently derive the PQN

model based fusion rule using Eq. (5.31). For the sake of simplicity, we use the

Gaussian and product copula densities to approximate the joint distributions under

H1 and H0 respectively. Note that the transformed observations under H0 are truly

independent, and thus the conditions of Theorem 4.1 hold. That is, the distribution
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Figure 5.7: System probability of false alarm vs. Detector threshold. The figure
shows that PF does not vary across different quantization levels, 0.3σ and 0.6σ.

of the PQN model based test statistic converges asymptotically to a chi-squared

distribution with 3 degrees of freedom for the example considered here. Thus, PF =

Qχ2

3
(2η). Fig. 5.7 shows a plot of this theoretical PF along with simulated false

alarm values obtained using 10,000 Monte-carlo trials with L set to 30 samples. A

good match between the theoretical and simulation PF values across the two different

quantization step sizes is evident from the figure. The ROC curves are shown in

Fig. 5.8. It is evident from the figure that the performance of the PQN based fusion

rule is very close to the analog transmission case which serves as an upper bound on

detection performance. It can thus be concluded that the PQN model based fusion

rule provides a good approximation to the copula based decision fusion rule derived

in Section 5.2 while also being computationally efficient.
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Figure 5.8: Monte Carlo based Receiver Operating Characteristics: Performance of
the PQN model based fusion rule is very close to the analog transmission case. The
PQN model based fusion rule is, thus, a good and computationally efficient approxi-
mation to the exact fusion rule derived in Section 5.2.

5.5 Summary

In this chapter, the problem of fusing correlated sensor decisions for the detection of

a random event was considered. Sensor observations (or features extracted thereof)

were first quantized using uniform multilevel quantizers before their transmission to

the fusion center. Inter-modal dependence was assumed to be unknown and was

approximated using copula functions. A GLRT based decision fusion algorithm that

can fuse both hard and soft local decisions was derived. The important problem of

selecting the best copula was embedded in the GLRT formulation. It was noted that

the derived copula-based fusion algorithm becomes computationally expensive as the
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number of sensors and/or number of quantization levels increases. A novel approach

based on Widrow’s additive quantization noise model was developed which requires

deliberate injection of an external noise at the receiver before fusion. The addition of

external noise at the fusion center effectively ‘filters’ the baseband CFs by rejecting

the repititive CF lobes that arise due to quantization. Since this process is analogous

to low pass filtering (LPF) in signal processing, we term this noise, the LPF-noise.

As an illustrative example, a Gauss-Gauss detection problem was presented. Gaus-

sian noise sources were used to generate LPF-noise at the fusion center, and results

for two different quantization step sizes were obtained. Our results show that the

PQN model based fusion can be considerably accurate provided the CF of the input

signals are bandlimited and Widrow’s first quantization theorem is satisfied. The key

to the success of the PQN model based fusion is the choice of the external noise source

used for filtering the baseband CF. Design of a noise source that introduces minimal

distortion while filtering is a topic of future research.
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Chapter 6

Quantification of Neural Synchrony

Using Copulas

A parametric copula-based framework for general hypothesis testing problems was

developed in the previous chapters. Our focus, in these chapters, was to exploit the

spatial dependence structure between the heterogeneous sensor observations while

assuming temporal independence. In this chapter, we relax the assumption of statis-

tical independence in time. As a specific application, we study the phenomenon of

synchronization between multiple simultaneously recorded electroencephalographic

(EEG) signals. Synchrony between the multiple EEG channels is known to be a

key feature suggestive of many neurophysiological diseases. For example, a decrease

in synchrony among the different channels is indicative of Alzheimer’s disease (AD),

while an enhanced synchronization is known to be related to epileptic seizures [26,80].

In this chapter, we consider the problem of detecting the onset of AD.

AD is the most common form of dementia, which causes problems with memory,

thinking and behavior. It is a degenerative disease that slowly worsens over time. It

is the sixth leading cause of death in the United States as reported by Alzheimer’s

Asssociation [1]. Deaths due to AD have increased by as much as 47.1% between
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the years 2000-2006. While there are no current treatments that can entirely stop

Alzheimers from progressing, medications are available that could slow the worsening

of dementia thus improving the quality of life for those with the disease and also their

caregivers. Medication for AD is most effective when applied at an early stage. It is,

therefore, important to develop methods for early diagnosis of AD.

Many studies have reported that AD causes a decreased inter-channel depen-

dence when compared to their age-matched control subjects. EEG signals from pa-

tients suffering from AD exhibit reduced coherence (See [55, 102] for an in-depth

review). Several measures have been proposed for EEG synchrony quantification

( [14, 26, 60, 78, 93, 102] provide recent reviews on EEG synchrony measures). How-

ever, reliable detection of AD remains to be a difficult problem especially for patients

in the pre-symptomatic phase (also known as Mild Cognitive Impairment (MCI)).

This poses severe limitations in the diagnosis of early stage AD. While some mea-

sures such as correlation coefficient, corr-entropy, coefficient, coh-entropy and mutual

information are bivariate, and thus applicable to only a pair of channels, measures

such as Granger causality, although multivariate, fail to account for nonlinear inter-

dependencies. Thus, the problem of quantifying dependence or synchrony between

multiple time series remains difficult especially for biomedical signals such as EEG

that are known to exhibit nonlinear and non-Gaussian statistics.

In this chapter, a novel copula based approach is proposed based on copula theory

for quantifying synchrony between multiple EEG channels. As discussed in Chapter

2, copula functions are good candidates for modeling complex statistical dependencies

and play an important role in characterizing multivariate statistical dependence. The

copula derived synchrony measures are then used as features to distinguish MCI

patients from control subjects. Following the same approach as in [26], we evaluate

the classification performance using the leave-one-out cross validation procedure using
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the dataset collected at the RIKEN Brain Science Institute, Japan. This is the same

dataset that was used in [26].

The rest of the chapter is structured as follows. In Section 6.1, we provide a brief

review of two multivariate synchrony measures, the Granger causality and stochastic

event synchrony (SES), that are used in conjunction with the copula derived features

for classification. Application of copula theory for neural synchrony quantification

is discussed in Section 6.2. Two commonly used copula models, the multivariate

Gaussian and the Student’s t copula functions are analyzed. In Section 6.3, the

synchrony measures are applied to the EEG dataset for the purpose of diagnosing

MCI; we describe the dataset, and present the classification results. The chapter is

summarized in Section 6.4.

6.1 Synchrony Measures: A Review

As discussed above, a considerable amount of research has been recently devoted to

detecting fluctuations in EEG synchrony, and a number of measures have been pro-

posed for this purpose. A detailed study of these measures for early diagnosis of AD

was recently undertaken by Dauwels et al. [26]. The authors report that, out of the

several dependence measures such as, (a) correlation coefficient and its analogues in

frequency and time-frequency domain, (b) several Granger causality measures, (c)

phase synchrony, (d) state space based synchrony, (e) information theoretic interde-

pendence measures, and (f) stochastic event synchrony (SES), only two measures, the

Granger causality (specifically, the full frequency directed transfer function discussed

below) and SES, showed statistically significant differences between the MCI and the

control subjects. Using discriminant analysis (DA) with Granger causality and SES

measures as features, the authors obtained a classification accuracy of about 83%

through the leave-one-out cross validation procedure. Our goal, in this chapter, is
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to see if the classiication accuracy can be improved further by augmenting the two

measures with the copula derived synchrony measures.

We now briefly review the Granger causality and SES measures.

6.1.1 Granger Causality

Granger causality refers to a family of synchrony measures that are derived from linear

stochastic models of time series. Let z1(l), z2(l), . . . , zN(l) denote measurements from

N different channels where l is the time index. Assume, without loss of generality, that

the signals have zero mean and unit variance, and consider the following multivariate

autoregressive (MVAR) model,

z̄(l) =

p
∑

m=1

A(j)z̄(l −m) + ē(l), (6.1)

where z̄(l) = (z1(l), . . . , zN(l))
T , p is the model order, the model coefficients A(j) are

N × N matrices and e(l) is a zero-mean Gaussian random vector of size N . Thus,

each signal zn(l) is assumed to linearly depend on its own ‘p’ past values, and the ‘p’

past values of the other signals, zj(l), j = 1, . . . , N and j 6= n. The above model, Eq.

(6.1), can also be cast as

ē(l) =

p
∑

m=0

Ã(j)z̄(l −m), (6.2)

where Ã(0) = I (identity matrix) and Ã(j) = −A(j) for j > 0 . Transforming Eq.

(6.2) into the frequency domain, one obtains

Z(f) = Ã−1(f)E(f) = H(f)E(f), (6.3)
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where ‘f’ is the frequency variable. The power spectrum matrix of the signal z̄(l) is

then

S(f) = E
[
Z(f)Z†(f)

]
= H(f)VH†(f), (6.4)

where V is the covariance matrix of ē(l) and Z†(f) is the hermitian conjugate of Z(f).

Granger causality measures such as partial coherence (PC), directed transfer function

(DTF), full frequency directed transfer function (ffDTF), partial directed coherence

(PDC) and others can be defined in terms of the matrices, A,H and S. In this work,

we have used the ffDTF, F 2
ij(f), where

F 2
ij(f) =

|Hij(f)|2
∑

f
∑N

k=1|Hij(f)|2
∈ [0, 1] (6.5)

quantifies the fraction of inflow to channel i stemming from channel j.

6.1.2 Stochastic Event Synchrony

Stochastic event synchrony refers to a recently developed family of measures that

quantifies similarity between point processes [27–29]. Time-frequency transforms of

each signal are first approximated as a sum of half-ellipsoid basis functions referred

to as “bumps”. For example, Fig. 6.1 shows the bump model corresponding to an

EEG signal. Each bump may be considered as an event on the time-frequency plane,

and the resulting bump model may be considered as a two-dimensional point process

(event sequence). Only those “bumps” with energy larger than a preset threshold

are retained in the bump models of each signal, which are then aligned to quantify

the coincidence between the signals. For example, Fig. 6.2 shows a schematic for

two bump models, (say) E and E
′

. The more the overlap between the bump models,

‘stronger’ is the dependence between the two signals.

114



(a) EEG signal in the time-frequency domain. (b) Bump model of the EEG signal.

Figure 6.1: Bump modeling

Figure 6.2: Bump matching of two event sequences, E and E
′

. The pairs in the
dashed square box show coincident bumps.

The alignment of the bump models is posed as a statistical inference problem.

The goal is to estimate the parameter θ = (ρSES, δt, δf , st, sf ), where

• ρSES: fraction of non-coincident bumps

• δt and δf : average time and frequency offsets between coincident bumps

• st and sf : variance of the time and frequency offsets.

Details of the underlying generative model p(E,E
′

, θ), and an iterative algorithm that

results in the maximum a posteriori (MAP) estimate, θ̂, can be found in [28,29].
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6.2 Copula based Synchrony Measure

In the context of time series modeling, copulas have been utilized to character-

ize both, (a) the temporal dependence, i.e., by considering the conditional PDF

f (zn(l)|zn(l − 1), . . . , zn(l − p)) (p is the model order), and (b) the multivariate de-

pendence across multiple time series {z1(l), z2(l), . . . zN(l)} conditioned on some past

information set F(l−1) [21,77]. They have been used intensively in modeling financial

time series data (e.g., [42, 83]).

In this paper, we consider the application of copulas to measure EEG syn-

chrony. Specifically, we use copulas to estimate the d−dimensional joint PDF

f
(

{z1(l)}l(l−p), . . . , {zN(l)}l(l−p)
)

where d = N · (p+1). Now, as discussed in Chapter

2, Sklar’s theorem proves the existence of a copula density c(·) for any multivariate

PDF with continuous marginals so that it can be expressed as in Eq. (2.6). However,

identifying the true underlying copula density is difficult in most practical scenarios.

We, therefore, select a copula density (say k(·)) a priori and fit the desired marginals

(if known). In this chapter, we explore the use of the Gaussian and Student’s t

copula functions.

The d-dimensional Gaussian copula density is given as

kg(u1, . . . , ud) =
φR(Φ

−1(u1), . . . ,Φ
−1(ud))

φ(Φ−1(u1)) · · ·φ(Φ−1(ud))
, (6.6)

where the index R refers to the correlation matrix,and ui = Fi(zi) ∼ U(0, 1) (uniform

distribution). Φ and φ are standard Gaussian CDF and PDF respectively. Like other

copulas, it provides the flexibility of having disparate marginals.

The t-copula density is given as,

kt(u1, . . . , ud) =
fν,R(t

−1
ν (u1), . . . , t

−1
ν (ud))

∏d
i=1 fν(t

−1
ν (ui))

, (6.7)
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where fν,R(·) and tν(·) are the standard t−joint density and CDF with ν degrees of

freedom respectively. Thus, in addition to the correlation matrix R, the t-copula

is also parameterized by ν - the degrees of freedom in Eq. (6.7), which is directly

related to the so called tail dependence or the joint probability of extreme events [30].

For example, in the case of a bivariate random vector (X1, X2), the tail dependence

measures the nature of c(F1(x1), F2(x2)) in the upper-right and lower-left quadrants

of I2 - the unit square [70]. It is quantified by the upper and lower tail dependence

coefficients λu and λl defined as

λu = lim
q→1

P (X2 > F−12 (q)|X1 > F−11 (q)) (6.8)

λl = lim
q→0

P (X2 ≤ F−12 (q)|X1 ≤ F−11 (q)) (6.9)

provided the limits exist.

For the t-copula density, the upper and lower tail dependence coefficients are equal

and can be derived as [70],

λu = λl = 2tν+1

(

−
√

(ν + 1)

√
1− ρ√
1 + ρ

)

= λ. (6.10)

Thus, ν is inversely proportional to the tail dependence; the number of degrees of

freedom ν decreases with increasing tail dependency λ. Further, as ν → ∞, the

t-copula approaches the Gaussian copula.

Now, given the measurements, we use the canonical maximum likelihood (CML)

approach to infer the parameters of the copula density (ν for the t-copula and R for

both the t and Gaussian copula densities); the approach allows us to estimate the

copula parameters without any assumptions on the parametric forms of the marginal

distributions (see Section 2.2.2). The entries of the correlation matrix R quantify

the coupling between different signals and can be used to define synchrony measures.
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Moreover, we suggest the use of multi-information [94] as a global synchrony measure

to summarize the dependence structure in a single number.

Multi-information ‘I(·)’ between d random variables X1, . . . , Xd is given as

I(X1; · · · ;Xd) =

∫

f(x1, . . . , xd) log
f(x1, . . . , xd)

d∏

i=1

f(xi)

dx1 · · · dxd

=

∫

f(x1, . . . , xd) log
fp(x)c(F1(x1), . . . , Fd(xd))

fp(x)
dx1 · · · dxd

(6.11)

= Ef log c(F1(x1), . . . , Fd(xd)), (6.12)

where I(·) ≥ 0. It is zero when variables are statistically independent. However, note

that it is impossible to compute Eq. (6.12) since the true joint PDF f(·) and hence

the copula c(·) is unknown. We approximate the integral over f(·) in Eqs. (6.11) and

(6.12) by a sample expectation, and replace the true copula c(·) by a trial copula k(·)

chosen a priori, e.g., Gaussian or t-copula, leading to the following expression:

Ik(·) =
1

L

∑

l

log k(F̂1(x1l), · · · , F̂d(xdl)), (6.13)

where

F̂n(a) =
1

L

L∑

l=1

I(znl ≤ a). (6.14)

I(E) in (6.14) indicates the occurrence of event E , and L denotes the sample size.

Thus, for N = 2 and the model order p = 2, multi-information is estimated as

Ik(·) =
1

L

∑

l

log k
(

F̂1(z1(l)), F̂1(z1(l − 1)), F̂2(z2(l)), F̂2(z2(l − 1))
)

. (6.15)
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As discussed in the preceeding chapters, application of an arbitrary copula density

k(·) ( 6= c(·)) introduces model mismatch errors, and the performance of a copula

based algorithm is thus highly dependent on the choice of k(·). This error can be

quantified using the KL divergence, D(f, fk) as discussed in Chapter 3. As shown in

Section 3.2.1, higher the value of Ik(·), smaller is the mismatch error (in terms of KL

divergence).

6.3 Early Diagnosis of Alzheimer’s Disease

In this section, we describe the EEG data in brief and also address the issue of

selecting the copula that best fits the data.

6.3.1 EEG Data

Silver (Ag/AgCl) electrodes (disks of diameter 8mm) were placed on 21 sites according

to 10-20 international system, with the reference electrode on the right ear-lobe. EEG

were obtained with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at the rate of 200

samples per second. The acquired data was then band pass filtered (4 Hz - 30 Hz)

using a third-order Butterworth filter. A common reference (right ear-lobe) was used

for data analysis.

The subjects comprised two study groups. The first was a group with 25 patients

diagnosed as suffering from MCI when the EEG recordings were carried out. Later

on, they all developed mild AD. The criteria for inclusion into the MCI group were

a mini mental state exam (MMSE) score = 24, though the average score in the MCI

group was 26 (standard deviation 1.8). The second group known as the control set

consisted of 56 age-matched, healthy subjects who had no memory or other cognitive

impairments. The average MMSE of this control group was 28.5 (standard deviation

1.6). The ages of the two groups were 71.9 ± 10.2 and 71.7 ± 8.3, respectively.
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Figure 6.3: Clustering of the 21 EEG channels into 5 zones indicated by the colors
and dashed lines, (1) frontal, (2) left temporal, (3) central, (4) right temporal, and
(5) occipital

All recording sessions were conducted with the subjects in an awake but resting

state with eyes closed. A 5-minute long EEG was recorded. Only those subjects were

retained in the analysis whose EEG recordings showed maximum artifact-free data.

Based on this requirement, the number of subjects in the two groups described above

was further reduced to 22 and 38, respectively. From each subject, one artifact-free

EEG segment of 20s was analyzed (for each of the 21 channels).

6.3.2 Computation of EEG Synchrony

In order to reduce the dimensionality of the problem, the 21 EEG channels are clus-

tered into five groups and the signals in each group are averaged, thus obtaining five

spatially averaged EEG signals per subject. The five groups correspond to frontal,

left temporal, central, right temporal and occipital regions (see Fig.6.3). The copula

based synchrony measures (R, ν and Ik(·)) are obtained using the spatially averaged

signals (i.e., N = 5).
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We follow the procedure outlined in [26] for computing the Granger causality

(ffDTF) and the SES measures. An average ffDTF measure, F̄ , is obtained by first

averaging over all (integer) frequencies within the frequency band of 4 to 30 Hz, and

then across the 10 pairs of spatially averaged channels. That is,

F̄ =
5∑

i=1

5∑

j>i




1

27

30∑

f=4

Fij(f)



 (6.16)

In order to obtain the SES measure, bump models for all the 21 EEG channels

are first obtained. A bump model for each of the five regions are then obtained by

means of the aggregation algorithm described in [107]. SES parameters for all pairs

of regions are then computed, which are finally averaged over all the region pairs.

Thus, one set of average SES parameters are obtained per subject.

Further, since spontaneous EEG are known to be highly non-stationary, it may

not be meaningful to estimate the copula synchrony and Granger causality measures

using the entire duration of EEG signals (20 seconds). Therefore, we divide the EEG

signals into small segments or frames, each of length L samples. We consider several

frame lengths in our analysis (L = 1 sec, 2 sec, 4 sec, 10 s). The Granger causality

and the copula synchrony measures are obtained by averaging over all the frames.

Computation of the SES parameter does not require such division of EEG signals

into smaller segments and subsequent averaging of the computed values since it is

applicable to non-stationary signals [26].

Next, we discuss the important issue of selecting a copula function.

6.3.3 Copula Selection

As discussed earlier, the performance of a copula based algorithm is highly dependent

on the choice of k(·) used to model the dependence structure between multiple signals.
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(a) Normalized histogram of ν estimated using data from subjects with mild cognitive im-
pairement (MCI)

(b) Normalized histogram of ν estimated using data from age-matched control subjects

Figure 6.4: Normalized histogram of estimates of degress of freedom (ν) computed
for different model orders and frame lengths (L)

Our analysis, in this section, indicates that the t-copula is more suitable than the

Gaussian copula for EEG synchrony quantification. We provide the details below.

Figure 6.4 shows the normalized histogram of ν, estimated from the spatially

averaged EEG data for model orders one and two (M1 and M2) and for different

frame lengths (L). Histograms for both, the control subjects and the patients with

MCI, are shown. (See [18] for extension of the definition and analysis of ν to the

multivariate t-copula).

It is evident from Fig. 6.4 that an appreciable number of frames exhibit tail

dependence, i.e., they have smaller values of ν (See Eq. (6.10)). For example, about

75 % of the total frames from the control subjects have ν < 50 when model order,

p, and the frame length, L, are set to 2 and 2000 respectively (M2 L2000). The
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Figure 6.5: Difference of multi-information estimates based on the t and Gaussian
copula functions.

Gaussian copula with zero upper and lower tail dependence will be unable to capture

this characteristic of the EEG data. It is important to note that the t-copula will

also be able to characterize the Gaussian-like behavior of certain frames with larger

values of ν as it nests the Gaussian copula (i.e., it approaches the Gaussian copula

as ν →∞).

Next, we estimate multi-information for each frame by approximating Ef log k(·)

by Eq. (6.13). We then average over all frames to obtain estimates of I(·) using both

the Gaussian copula (Ig(·)) and the t-copula (It(·)) functions. We plot in Fig. 6.5,

the difference, δ, between the two estimates, It(·) and Ig(·), of multi-information for

ten patients. It is clear from Fig. 6.5, that δ is always positive, i.e., It(·) ≥ Ig(·)

for any choice of the model order and frame length. Thus, the t-copula provides a

better estimate (in the KL divergence sense) of the true joint PDF than the Gaussian

copula density (see Section 3.2.1). Though results for only ten patients are presented

here, we observed that the non-negativity of δ was true for all patients. In fact the
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t-copula was a better fit for every frame as well (i.e., δ ≥ 0 for every frame). Similar

results were obtained for all patients in the control set.

6.3.4 Classification Results

In the above sections, we discussed the copula approach to jointly model multiple

EEG signals. Having learnt the copula parameters from data, we now proceed to

the task of distinguishing MCI patients from the age-matched control subjects. In

order to compare our results with [26], we use the same classification method - the

linear and quadratic discriminant analysis with leave-one-out cross validation as used

in [26].

For each frame of length ‘L’ samples, we first compute µl, the mean of the absolute

values of all entries of the correlation matrix R estimated using CML. Two features,

µ̄ρ and σ̄ρ, are then obtained by computing the average and standard deviation of µl

over all frames. Estimates for the multi-information Îh and the number of degrees of

freedom ν are also obtained in the similar way (i.e., by averaging over all the frames).

Table 6.1 shows the leave-one-out classification rate for different features obtained

with optimal parameter settings (model order and frame length). Classification

rates obtained using the Gaussian copula are also included. Results in rows 1, 2

and 3 of Table 6.1 have been reported in [26] and correspond to the stochastic event

synchrony measure (ρSES), the full frequency directed transfer function (ffDTF) - a

Granger causality measure [60], and the combination of both respectively. It can be

seen that using copula measures (both Gaussian and Student’s t) in conjunction with

ρSES and ffDTF improves the classification rate to 85%. Several existing synchrony

measures were considered in [26] and the authors observed no improvement beyond

83.3%.

Next, we compare the Gaussian copula and the t-copula models (e.g., classification

rates obtained using (ρSES,ffDTF, Ig(·)) vs. that using (ρSES,ffDTF, It(·))). It can
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Table 6.1: Classification rates using linear and quadratic dis-
criminant analysis with leave-one-out cross validation

Features Linear Quadratic Copula Features

ρSES 70.0% 70.0% -

ffDTF 68.3% 75.0% -

ρSES, ffDTF 83.3% 83.3% -

ρSES, ffDTF, hg(·) 85.0% 80.0% σ̄ρ

85.0% 81.7% µ̄ρ

83.3% 80.0% Îg(·)

ρSES, ffDTF, ht(·) 85.0% 81.67% σ̄ρ

85.0% 83.30% µ̄ρ

83.3% 81.67% Ît(·)

85.0% 85.0% ν

be seen that the performance of the t-copula feature set is never lower than that of the

Gaussian copula density. This is probably because the t-copula nests the Gaussian

copula as discussed in Section 6.3.3.

6.4 Summary

In this chapter, the problem of quantifying synchrony between multiple EEG chan-

nels was considered. Several measures stemming from various fields such as physics,

information theory, statistics and signal processing have been proposed in the past

for this purpose. While some of these measures are bivariate, the remaining ones,

although multivariate, fail to account for nonlinear interdependencies. As we have

shown in this chapter, the approach based on copula theory addresses both these

limitations. Two commonly used copula models, the multivariate Gaussian and the
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Student’s t copula functions were analyzed, and the important issue of selecting the

copula that best fits the data was also discussed. Both these copula functions provide

the flexibility of having disparate distributions for the individual EEG channels. We

estimate the marginals using the empirical distribution functions, thus avoiding the

need for making any assumptions regarding their parametric forms.

Application of the copula derived synchrony measures for distinguishing MCI pa-

tients from the age-matched control subjects has also been investigated. Our results

show that the copula based features when used in conjunction with other synchrony

measures help enhance the detection of AD onset. Our results prove the feasibility of

the copula approach. More general multivariate copula functions not limited to the

correlation matrix for dependence characterization will be investigated in the future.
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Chapter 7

Conclusion

In this dissertation, a general parametric framework for processing signals of disparate

and statistically dependent modalities has been developed. Modeling heterogeneous

signals is a complex problem. For example, while it is intuitive that human speech is

correlated with the lip movements, it is not immediately clear how these signals, that

belong to completely different ‘domains’, could be modeled. The lack of adequate

models for heterogeneous signals is, in fact, one of the main reasons limiting the

development of multimodal signal processing algorithms. The modeling issues and

challenges involved have been discussed in detail in Chapter 2, and a solution based

on the statistical theory of copulas has been proposed. We show how copula functions

possess all the ingredients necessary for modeling the joint statistics of heterogeneous

data. The important problem of selecting the best copula for binary hypothesis testing

and classification problems has been addressed. Copula selection methods for both,

(a) the training-testing paradigm, when one has access to a training set so that models

could be learned prior to system deployment, and, (b) when models have to be learned

in real-time, have been developed. An important advantage of the proposed copula

based approach is that no assumptions on the source of heterogeneity are necessary;

the same machinery holds for fusion of multiple modalities, samples, algorithms or

127



multiple classifiers. The biometrics example presented in Chapter 3 is an illustration

of multi-algorithm fusion, while the footstep detection example considered in Chapter

4 fuses acoustic and seismic features derived from signals of disparate modalities.

The framework has also been extended to the case when the local heterogeneous

measurements are quantized before their transmission to the fusion center. The local

quantizers were assumed to be uniform multibit quantizers and a GLRT based rule for

fusing correlated soft decisions was derived. A novel suboptimal but computationally

efficient fusion rule has also been developed that involves deliberately contaminating

the quantized observations with controlled noise at the fusion center. Addition of

noise at the fusion center helps to linearize the highly nonlinear quantization process

thus resulting in significant computational savings. It has been demonstrated that

the performance of the suboptimal fusion rule is very close to that of the optimal test

when the characteristic functions of the input signals is bandlimited.

The ability of copulas to characterize nonlinear dependencies was further exploited

to address problems in medical diagnosis. Specifically, a novel copula based method

for quantifying neural synchrony has been developed. It has been demonstrated

that the copula derived synchrony measures when used in conjunction with Granger

causality and stochastic event synchrony helps in the early diagnosis of Alzheimer’s

disease.

7.1 Future Research Directions

We now present some future research directions.

• Dynamic Dependence: The role of copulas in heterogeneous signal processing

was investigated in this dissertation. However, it was assumed that the signals

were stationary. Application of copulas for dynamic systems where the signal
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statistics as well as the spatio-temporal dependence between sensor observations

evolves with time needs to be investigated.

• Combination of multiple copula densities: Different copula functions exhibit

different behavior and a combination of multiple copula functions may better

characterize dependence between several modalities than just using a single

copula function. It would be interesting to explore this multi-model approach

in detail.

Several interesting extensions are possible on the basis of the results obtained in

Chapter 5.

• Non-uniform Quantization: A copula-based test statistic to fuse correlated

multibit local sensors’ decisions was derived in this chapter assuming that the

local sensor observations underwent uniform quantization before their transmis-

sion to the fusion center. It would be interesting to extend this formulation to

the case when the quantizers are non-uniform. The implications of non-uniform

quantization on the design of the PQN model-based suboptimal fusion rule

could also be explored.

• Design of LPF-noise: It is necessary to use a noise source that causes minimal

distortion while filtering out the repetitive CF lobes. A formal procedure needs

to be developed for this purpose.

• Stochastic Resonance and LPF-noise effect: It has been shown that the de-

tection performance of a distributed detection system can be enhanced by the

addition of controlled noise at the local sensors. It may be interesting to ex-

plore the effect of LPF-noise in conjunction with the SR phenomenon. Could

this result in performance enhancement in addition to reducing the system com-

putational complexity? This question needs to be investigated.
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Our results in Chapter 6 proved the feasibility of the copula approach for quanti-

fying synchrony between multiple biomedical signals. However, our study was limited

to the Gaussian and the Students t copula functions. It would be interesting to con-

sider copula models belonging to more generalized families. The vine copulas [65]

are known to be flexible graphical models of dependence, and can be built up using

a cascade of bivariate copulas. Their use for early diagnosis of neurophysiological

disorders such as Alzheimers disease needs to be investigated.
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Appendix A

Optimal Likelihood Ratio Test For

Example 3.1

We first derive f(z1, z2, z3), the joint PDF of the observations under hypothesis H1.

The PDFs of the auxiliary random variables, W1 and W2, are

pW1
(w1) =

1√
πλ1

exp

(

− 1

λ1
w2

1

)

, −∞ < w1 <∞, (A.1)

and

pW2
(w2) =

1

λa11 Γ(a1)
wa1−12 exp

(

−w2

a1

)

, 0 < w2 <∞, (A.2)

respectively, where λ1 = 2σ2
1 denotes the twice of the variance of W1. We define

another random variable, W , which follows a Gaussian distribution with zero mean

and variance σ2
1 (W ∼ N (0, σ2

1)), and consider the following functions,

z1 = g1(w,w1, w2) = w, −∞ < z1 <∞, (A.3)

z2 = g2(w,w1, w2) = w2 + w2
1, 0 < z21 < z2 <∞, (A.4)

z3 = g3(w,w1, w2) =
w2

w2 + w2 + w2
1

, 0 < z3 < 1. (A.5)
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It is easy to verify that the variables, Z1, Z2 and Z3, follow Gaussian, exponential

and Beta distribution. Our goal, here, is to derive the joint PDF, f (z1, z2, z3) =

pZ1,Z2,Z3
(z1, z2, z3;H1).

Using the Jacobian method of transformation [16, p. 185], the joint PDF of the

transformed variables is given as,

f(z1, z2, z3) = pW,W1,W2
(h1(z1, z2, z3), h2(z1, z2, z3), h3(z1, z2, z3)) |J | (A.6)

= pW (h1(z1, z2, z3)) pW1
(h2(z1, z2, z3)) pW2

(h3(z1, z2, z3)) |J |,

(A.7)

where, the inverse mappings are

w = h1 (z1, z2, z3) = z1 (A.8)

w1 = h2 (z1, z2, z3) =
√

z2 − z21 (A.9)

w2 = h3 (z1, z2, z3) =
z2z3
1− z3

(A.10)

and, the Jacobian, J , is

J =









∂w
∂z1

∂w
∂z2

∂w
∂z3

∂w1

∂z1

∂w1

∂z2

∂w1

∂z3

∂w2

∂z1

∂w2

∂z2

∂w2

∂z3









=









1 0 0

∂w1

∂z1
1
2
(z2 − z21)

− 1

2 0

∂w2

∂z1

∂w2

∂z2

z2
(1−z3)2









(A.11)

=
1

2

z2
√

z2 − z21(1− z3)2
. (A.12)
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Using Eqs. (A.8), (A.9), (A.10) and (A.12), in Eq. (A.6), and after some algebraic

steps, we have,

f(z1, z2, z3) =
1

2πΓ(a1)λ
1+a1
1

za12 z
a1−1
3

√

z2 − z21 (1− z3)
1+a1

exp

(

− z2
λ1 (1− z3)

)

,

(A.13)

−∞ < z1 <∞, 0 < z21 < z2 <∞ and 0 < z3 < 1.

Observations, z1, z2 and z3, have the following distributions under H0,

Z1 ∼ N (0, σ2
0), Z2 ∼ exponential(λ0), Z3 ∼ beta(a0, b0 = 1). (A.14)

Further, they are statistically independent. Therefore, their joint PDF is

g(z1, z2, z3) =
3∏

n=1

g(zn) (A.15)

=
1

√

2πσ2
0

exp

(

− z21
2σ2

0

)

· 1
λ0

exp

(

− z2
λ0

)

·

Γ(a0 + b0)

Γ(a0)Γ(b0)
za0−13 (1− z3)

b0−1

=
1

√

2πσ2
0

a0
λ0
za0−13 exp

(

−
(
z21
2σ2

0

+
z2
λ0

))

, (A.16)

−∞ < z1 <∞, 0 < z2 <∞, and 0 < z3 < 1.
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With (A.13) and (A.15), the LRT statistic can be obtained as,

TLR =

L∏

l=1

f(z1l, z2l, z3l)

L∏

l=1

g(z1l, z2l, z3l)

=

L∏

l=1

za12l z
a1−1
3l (1− z3l)

−(1+a1)

2πΓ(a1)λ
1+a1
1

√

z2l − z21l
exp

(

− z2l
λ1 (1− z3l)

)

L∏

l=1

1
√

2πσ2
0

a0
λ0
za0−13l exp

(

−
(
z21l
2σ2

0

+
z2l
λ0

)) I(z2 > z21), (A.17)

where, I(E) is an indicator of event E , included to ensure the support, 0 < z21 < z2 < ∞,

for the variable Z2 under H1.
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