5-2015

Thick matters: De-optimizing Infrastructural Redundancies, Pt. 1

Marco Ravini

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Part of the Architecture Commons

Recommended Citation
https://surface.syr.edu/architecture_theses/309

This Thesis is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Closed system design methodologies have produced infrastructures that anticipate only a single lifetime use. This approach has burdened many urban areas with defective infrastructures in need of perpetual modification and repair. Rather than continue to over-engineer these vital frameworks to resist the inevitable failure of individual components, the next generation of public infrastructure needs to exceed its technical specifications and seek ways to create spatial reciprocity among systems.

This thesis calls for a renewed understanding of redundancy in order to strategically infuse infrastructure with public agency and diverse utility. Such an approach has the potential to yield greater systemic outputs and a more productive lifespan, allowing future infrastructures to be positioned both as a collective good and a resilient service.

Infrastructures are inextricably linked to the development of cities and the delivery of improved living standards. These ideals are embedded within the typology of the bridge – a structure critical to the efficacy of transportation networks. Optimized to facilitate the continuous flow of people and goods, the present state of Bridges forecasts a future of urban dysfunction. Over the last decade, bridges in the United States have become a significant feature in the growing crisis of public infrastructure. Built during the post-war era when the growth of transportation networks was less of an expansion and more of an explosion, many bridges have now exceeded their 50-year lifespan.

Via the prototyping and design of a new Liberty Bridge in Pittsburgh, Pennsylvania, this thesis aims to demonstrate how infrastructural thickening might enable the next generation of public works to perform as resilient systems rather than standalone structures.

Infrastructural Thickening is the term I propose to describe a strategy that aims to modify the spatial, systemic and experiential utility of infrastructure – a strategy that works towards shifting the understanding of infrastructure from line to volume. This shift is achieved by virtue of de-optimization, a design technique that seeks to augment engineered specifications into scenarios for inhabitation, participation and added value.

In pursuit of infrastructural thickening, this thesis explores relationships between structure, space and form as a means to generate redundancies that have the capacity to address issues beyond the bridge’s physical footprint. Topics such as storm water run-off, waste management, and public space are central to the design agenda. In response to these urgent issues, a system of structural cones is deployed that mediate flows of water, cars and people into a unified, heterogeneous interface.

This thesis envisions the next generation of infrastructure as thick matter – a new public territory that provides people the opportunity to engage and participate in mutually productive dialogues with issues of urban, spatial and environmental urgency.
We are engaged in a critical and urgent conversation.

A bridge is an object, a key element in a transportation system, not a standalone structure. It controls the capacity of the system (type, weight, and volume). If the bridge fails, the system fails. Bridges are a technology both for mobility within the interior of cities and also for the modern city’s expansion, its reach deep into rural nodes. Flow of vectors (people and cars) and processes (mobility) purpose is to facilitate the continuous two between nodes.

The bridge is a constructed from a repetitive assembly of structural components. Its primary linear surface is planar interlace of structural components. The bridge is the highest cost per mile of the system (after tunnels). Due to excavation costs, tunnels are the most expensive type of infrastructure.

Could a bridge go beyond its physical footprint and address issues that have urban, ecological and spatial implications?
MECHANIZING THE PIER

1. Collecting Stormwater
2. Clarifying
3. Treatment Plant
4. Reprocessing
5. Reuse
6. Urban Spectacle
7. Water Plaza
8. Visitor's Center
9. Release / Absorption
Since a bridge is fundamentally an aggregate of structural modules, how can we utilize structure to maximize surface porosity and also facilitate rainwater flow?

EXISTING

Horizontal aggregation of vertical elements

PROPOSED

Maximizes Surface Porosity, Minimizes Structural Footprint

(Mimics existing trabeated pier spacing)

OPTION 1

Utilizes existing spacing of vertical superstructure to capture, convey, store, filter and release rainwater run-off

Minimizes the existing trabeated pier spacing

Increases Surface Porosity BUT forces the Structural footprint to Increase

(Maintains some horizontality for vehicular and people)

OPTION 2
The structure is no longer distinguished by its basic subdivisions. Instead, through the process of infrastructural thickening, the bridge begins to express a whole-to-whole relationship; a fine grained structural lattice that enables people, water and cars to participate in the issue of volume.

If water is the space for water, where do cars and people emerge?

Linear Volume
Vertical aggregation of horizontal planes allows for infrastructure to shift from a line to a volume.

Unified Interface
Multiplicity of horizontal planes allows for various flows to weave and traverse both in plan and in section.

Composite Structure
Merging cones with horizontal structure

Structural Gradation (x, y, z)
Add structure where needed, remove where not needed
Water Generator

STRUCTURE, POROSITY and FLOWS

The Pier: Grid Manipulations

Filter / Absorption Coupling Processes
(Water tank + Bio filtration swale)

Circulation Core + Water Cistern

Water Tank

Pier Types

Nutri Generator

Graziolation Core + Water Cycles

Fenestra

Nutri Tank

Filter / Microplant
URBAN STRATEGY: Expanding the bridge’s physical + virtual footprint

LESSONS LEARNED FROM WATER TOWERS

Store

Release/ Re-Use

Current

Proposed

1. The site of old 28-acre Mellon Area has been proposed to be transformed into a mixed-use development. Utilizing the elevation of the site, rainwater run-off could be channeled to the bridge for collection and processing.

2. This convergence of highway ramps is bounded between Duquesne University and the Downtown area. Further accumulation of rainwater can be guided to the bridge structure for storing and processing.

3. This underutilized and crucial public space nestled between the Municipal Courthouse and the county jail has the potential to assume part of the systemic logic of the bridge. Water based activities and habitats can be introduced in order to create a more productive space for public engagement.

4. The 14-acre “East Parcel” of Station Square is proposed to be transformed into a mixed-use residential and office development. Utilizing the elevation of the Mt. Washington neighborhood

5. Housing the headquarters for Friends of the River and Just Harvest, The Terminal Warehouse next to the bridge sets the tone for the kinds of activities that could complement these partner/transformative organizations (i.e., urban agriculture, water plaza, a visitors center etc)

6. Utilizing the 485’ elevation of Mt. Washington, rainwater run-off can converge on the bridge where it can be stored, processed, re-used and/or released.