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 Abstract   

The vital essence of evolutionary learning consists of information flows between 

the environment and the entities differentially surviving and reproducing therein.  

Gain or loss of information in individuals and populations due to evolutionary 

steps should be considered in evolutionary algorithm theory and practice. 

Information theory has rarely been applied to evolutionary computation – a 

lacuna that this dissertation addresses, with an emphasis on objectively and 

explicitly evaluating the ensemble models implicit in evolutionary learning. 

Information theoretic functionals can provide objective, justifiable, general, 

computable, commensurate measures of fitness and diversity. 

We identify information transmission channels implicit in evolutionary learning. 

We define information distance metrics and indices for ensembles. We extend 

Price‟s Theorem to non-random mating, give it an effective fitness interpretation 

and decompose it to show the key factors influencing heritability and evolvability. 

We argue that heritability and evolvability of our information theoretic indicators 

are high. We illustrate use of our indices for reproductive and survival selection. 

We develop algorithms to estimate information theoretic quantities on mixed 

continuous and discrete data via the empirical copula and information dimension. 

We extend statistical resampling. We present experimental and real world 

application results: chaotic time series prediction; parity; complex continuous 

functions; industrial process control; and small sample social science data. We 

formalize conjectures regarding evolutionary learning and information geometry. 
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1 Introduction 
Pluralitas non est ponenda sine necessitate. 

William of Ockham, circa 1320 

We consider the source with the maximum entropy subject to the 
statistical conditions we wish to retain.  The entropy of this source 
determines the channel capacity which is necessary and 
sufficient. 

Claude Shannon, 1948 [92] 

Information can tell us everything. It has all the answers. But they 
are answers to questions we have not asked, and which 
doubtless don't even arise. 

Jean Baudrillard, 1987 [9] 

1.1 Thesis 

By “evolutionary learning”, we mean both population learning by evolution (or 

evolutionary computation) and the evolution of individuals that learn1. The former 

is the overall scope of our inquiry and the latter is our primary focus. We leave 

the definition of “learning” to others, and say only that clearly it involves 

processing information, generally sensor signals and/or communication symbols, 

the domain of information theory. 

Information theory enables rigorous definition of metrics quantifying information 

flows, gains and losses, as well as other notions such as epistasis. It has been 

applied to machine learning (e.g. [80]), but rarely to evolutionary computation – a 

lacuna that this dissertation addresses, with an emphasis on explicitly evaluating 

and exploiting the ensemble models that are implicit in evolutionary learning. It is 

useful in all phases of evolutionary computation, from terminal and non-terminal 

set selection, through survival and reproductive selection, to objective evaluation 

of ensemble models as such at end-of-run. 

                                                
1 Most evolutionary algorithms are oriented towards optimization. Genetic Programming (GP) is oriented towards learning, and 
through the use of indirect encodings, can evolve individuals that develop and learn. GP is thus the canonical example of 
evolutionary learning used in our analytic and experimental work. 
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The vital essence of evolutionary learning consists of information flows between 

the natural or artificial environment and the entities differentially surviving and 

reproducing therein.  Gain or loss of information in individuals and populations 

due to evolutionary steps should be explicitly and objectively considered in 

evolutionary algorithm theory and practice. 

From our perspective, there are three fundamental desiderata – as evolution 

proceeds, the mutual information between the target and models should: 

► not decrease substantially in the population; 

► increase (concentrate) in the best individuals; and 

► distill from the inputs, leaving behind their excess entropies. 

We assert that biological evolution processes ensembles implicitly (e.g. 

populations of many individuals, each with a genotype of many chromosomes, 

each with many genes) but evolutionary computation practice typically flattens 

this to only a single level (populations). Ensemble processing may be important 

to the evolutionary process – 

There is no theoretical reason to expect evolutionary lineages to 
increase in complexity with time, and no empirical evidence that 
they do so. Nevertheless, eukaryotic cells are more complex than 
prokaryotic ones, animals and plants are more complex than 
protists, and so on. This increase in complexity may have been 
achieved as a result of a series of major evolutionary transitions. 
These involved changes in the way information is stored and 
transmitted. 

Eors Szathmary and John Maynard Smith, 1995 [101] 
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It also may be useful from a pragmatic engineering point of view – 

This paper proposes an evolutionary approach for the 
composition of solutions in an incremental way. The approach is 
based on the metaphor of transitions in complexity discussed in 
the context of evolutionary biology. Partially defined solutions 
interact and evolve into aggregations until a full solution for the 
problem at hand is found… In this model, we consider partially 
defined solutions that specify just an incomplete solution to the 
problem at hand. As a consequence, these partially defined 
solutions cannot hope to solve the complete problem unless they 
collaborate with each other. When beneficial collaborations are 
identified, a transition can occur, i.e., they are aggregated into a 
new (more complex) solution. 

Defaweux, Lenaerts, van Hemert and Parent, 2005 [34] 

We develop and illustrate application of information theoretic methods for 

objectively evaluating ensembles as such. This enables more sophisticated 

survival and reproductive selection. It also provides a new instrument for 

observing the dynamics of evolution2. 

The remainder of Chapter 1 provides motivation and other preliminaries. Chapter 

2 identifies information transmission channels implicit in evolutionary learning. 

Chapter 3 defines information theoretic measures for evaluating ensemble 

models. Chapter 4 develops algorithms for estimating these quantities and the 

confidence associated with those estimates. Chapter 5 applies these measures 

to evolutionary algorithm analysis, Chapter 6 applies them in computational 

experiments and Chapter 7 applies them to real data. Chapter 8 formalizes 

conjectures fundamental to evolutionary learning. Chapter 9 summarizes 

contributions of this work. 

                                                
2 This processing of ensembles has about it a feeling of compression, in both the computer science and thermodynamics senses, 
involving degrees of freedom, entropy and energy: this remains to be explored; this thesis may help provide a framework for such 
exploration. An early foray was [86]. 



 

4 
 

1.2 Motivation 

An important class of machine learning problems involves automatic construction 

of models of unknown (“black box”) processes with observed inputs and outputs. 

Our information theoretic approach was initially motivated by practical difficulties 

encountered in model construction by Genetic Programming (GP). GP symbolic 

regression applied to stochastic chaotic time series prediction should perform 

system identification with minimal preconceptions as to model form, producing 

not only predictions, but also parsimonious meaningful descriptions, capturing 

local and global characteristics of stochastic attractors, yielding insight into the 

hidden dynamics (see Appendices A: Background and B: Related Work). 

However, we encountered difficulties such as premature convergence (early loss 

of diversity) when attempting to learn the defining equation for the simplest 

known chaotic flow [98][97]: 

2( )x ax x x       (1) 

Figure 1 shows the time domain behavior of the observable, which appears to be 

roughly sinusoidal, but with jittering amplitude, frequency and phase. Figure 2 

shows the time domain behavior of the observable (displacement x) and its first 3 

derivatives (velocity x’, acceleration x” and jerk x”’) over a shorter period of time. 

Figure 3 shows the frequency domain spectral footprint of the observable as a 

decibel plot of a Fast Fourier Transform (FFT). Figure 4 shows the self mutual 

information versus lag; the total span is approximately twice the period. 
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Figure 5 unfolds the attractor in phase space; it is a 2-D perspective projection of 

a 3-D space in which the coordinates are successive elements of a lag vector. 

Figure 6 again unfolds the attractor in phase space; it is a 2-D perspective 

projection of a 3-D space in which the coordinates are the observable and its first 

and second differences (estimates of its first and second derivatives). The 

attractor is neither as simple as it appears on a first look nor as complex as it 

appears on a second look: it is a non-linearly warped Möbius strip; but some 

trajectories make the Möbius half-twist and others do not, and these different 

trajectories are interleaved at arbitrarily close spacings (exponential divergence 

from initially nearby points, a.k.a. sensitive dependence upon initial conditions). 

Due to deception and poor scaling, relatively high fitness individuals in early 

generations did not contain the building blocks needed to evolve correct solutions 

in later generations. A search for the underlying causes of these difficulties 

motivated application of information theory and reformulation of evolutionary 

objectives. For instance, commonly used fitness measures, such as root mean 

squared error (RMSE), often fail to reward individuals whose presence in the 

population is needed to explain substantial portions of the data variance. Fitness 

indicators must be developed that reward individuals for their potential 

incremental contributions to solution of the overall problem, perhaps by explicitly 

identifying building blocks suitable for recombination. 
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This motivates use of Mutual Information (MI) as a fitness indicator, conveying 

how much one item (a model in the GP population) reveals about another (the 

target data set). MI is invariant under transformations that can otherwise conceal 

an individual‟s potential contribution to solutions (Maarten Keijzer, private 

correspondence). MI is invariant to invertible transformations3 and degraded at 

most by a calculable and typically small amount by non-invertible 

transformations, so it is a promising candidate for identifying high fitness simple 

forms in early generations [56] that are likely to be good building blocks for later 

generations [31]. For an extended series of motivating examples see Chapter 5. 

Another failing of traditional indicators is an inability to objectively evaluate 

ensembles.  From a biological (or economic) perspective, highly fit teams of 

symbionts are likely to stick together; less fit teams are likely to break up and 

their former members disperse, possibly joining more effective teams.  

Individuals that do not become members of highly fit teams are unlikely to 

survive. Thus survival of biological individuals is promoted not only by individual 

fitness, but also by participation in a highly fit team; this in turn requires not only 

that the team have high fitness, but also that the individual be permitted to 

remain on the team, presumably due to a perception by other team members that 

the individual is making a significant contribution to team fitness, and not 

imposing an excessive energy or economic cost upon the team. 

                                                
3 This is easy to show by contradiction of the Data Processing Inequality. For a detailed treatment of this see [60]. 
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These biological notions have engineering utility: the value of an individual in an 

evolutionary learning context depends on its own quality as well as its 

contribution to ensemble quality.  Traditional evaluations of ensembles have 

been ad hoc, e.g. using voting, summing or weighted averaging of evaluations of 

the constituent individuals to characterize the ensemble. Information theoretic 

functionals, by contrast, can objectively and quantitatively evaluate ensemble 

models as such, without requiring knowledge of how the constituents might best 

be assembled into a single more complex model. 

Information theory is also applicable to other aspects of evolutionary algorithms. 

For instance, extant diversity indicators are often arbitrary, may reflect diversity 

irrelevant to solving the problem, and are typically incommensurate with fitness 

measures. By contrast – 

 Information theoretic functionals can provide objective, justifiable, general, 

computable, commensurate measures of fitness and diversity. 

 They can be used to guide input (terminal and/or non-terminal set), 

reproductive and survival selection. 

 They should be heritable across mutation and recombination, and can 

remain so as parental fitness increases. 

 They can be used to estimate potential improvement of the upper tail of a 

brood versus the more fit of their parents: evolvability, the sine qua non of 

evolutionary algorithm success. 
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1.3 Preliminaries 

This section presents the GP model learning context, our notation, and the 

standard definitions of some information theoretic functionals including entropy, 

mutual information, redundancy and synergy.  To clarify the approach, we focus 

on our initial test problem, the easiest we could identify that presents 

fundamental difficulties for automated model generators – Sprott‟s simplest 

chaotic flow, Equation (1) above. This is a “jerk equation” of which the general 

form is: 

( , , )x f x x x    
(2) 

Many systems cannot be described by such a single, higher order, Ordinary 

Differential Equation (ODE), but must be written as a system of coupled first 

order ODEs; systems of order o may also be rewritten in that same form: 

 

Writing 

 

and setting x = y, we can rewrite in the general form 

)(xfy   (5) 

into which problems of many types may be cast, so our approach is widely 

applicable. 
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Figure 7 illustrates a general jerk system. Figure 8 shows it in an alternate form, 

with direct feedback of higher order terms replaced by feedback of only the 

observable, passed through a chain of differentiators. Figure 9 generalizes to an 

arbitrary feedback system, where there may be multiple observables and/or state 

variables, as in Equation 3 above. Finally Figure 10 simplifies still further: to an 

open loop system, or to consideration of only the feedforward path of a feedback 

system; these correspond to Equation 5 above. Note that difficulties will arise in 

modeling a system such as that in Figure 8 due to the estimates of the 

derivatives being computed after the injection of observation noise. 

Solving problems of this form by GP involves a population of m functions fi 

regressed on n data points xj to approximate yj by zi,j: 

)(:]..1[:]..1[ jiijnjmi xfz   (6) 

The input X, target output Y and estimated output Zi data vectors comprise 

sample distributions: 

 

We consider functions fi to be model genotypes and output data sets Zi (given 

the input data set X) to be model phenotypes; the genotype–phenotype 

correspondence is in general many-to-one.4 

                                                
4 We defer consideration of generative and developmental systems, indirect encodings, morphogenesis, ontogenesis, etc., where 
different environmental influences on multiple instances of the same genotype can yield different phenotypes. 
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Assuming discrete distributions with v distinct values, Shannon‟s entropy is 

defined5 by6 

1
H( ) p( ) lg(p( ))

v

i ii
 Y y y  (8) 

Joint entropies of arbitrary numbers of terms are similarly defined.  Entropy 

quantifies the a priori uncertainty (information deficit) in a distribution7.  It is used 

to define the mutual information (MI) between distributions 

),H()H()H();I( jjj ZYZYZY   (9) 

where the distributions used to illustrate the definition are those of the output 

data sets of the target function and one of the candidate models, and H(Y,Zj) is 

their joint entropy, i.e., the entropy of their joint distribution.  The usual 

interpretation of mutual information is that it quantifies how much, on average, 

each of two random variables tells us about the other; here, how much the 

uncertainty in the target output is reduced by observing the model output, and 

vice versa.  MI is not defined for functions, only for distributions: we seek better 

indicators of the fitness of functions; we attribute fitness to a function, based on 

the MI of its output data set with that of the target function, applying both to the 

same input data set. 

                                                
5 For continuous distributions, differential entropy is defined instead.  It can be estimated as the limit of the sum of the discrete 
entropy of ever-finer quantizations of the continuous distribution and the log of the bin size.  It does not have all the properties we 
desire. With care, the definition given for discrete data may be applied to discretizations of a continuous distribution. 

6 We adopt the notational convention for logarithms in equations of log() for base 10 (common), ln() for base e (natural) and lg() for 
base 2; in the text, when we use the word “log”, either the base doesn‟t matter, or we mean 2. 
7 We calculate here the entropy of a sample distribution, possibly biased versus that of the hidden distribution from which our 
observed sample was drawn.  In future work we may correct for bias, but it is unimportant here; see Section 4.1 for a comment. 
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Considering subpopulations (including potential reproductive pairings in selection 

tournaments), we quantify the information about Y provided jointly by outputs Zj 

and Zk of two candidate models by their incremental mutual information or 

marginal redundancy: 

I( ; , ) H( ) H( , ) H( , , )j k j k j k  Y Z Z Y Z Z Y Z Z  (10) 

We quantify the redundancy of populations by the “total correlation”: 

 

The synergy-redundancy measure [26] or interaction information [69] is: 

);;I(

));I();((I(),;I();;S(

kj

kjkjkj

ZZY

ZYZYZZYZZY




 (12) 

which in the 3 variable case agrees with our preferred one of the proposed 

definitions of the multivariate mutual information8, except for the change in sign 

with an odd number of variables, as in the second line of Equation 12. 

Note that H(), I() and R() must all be positive or zero; but S() can be negative 

(redundancy exceeding synergy), positive (synergy exceeding redundancy) or 

zero (synergy and redundancy equal, of which a special case is independence 

when they are both zero). In some cases, the mutual information between the 

target and each model may be zero, but the two models may jointly explain the 

target completely due to their synergy. 

                                                
8 http://en.wikipedia.org/wiki/Multivariate_mutual_information 



 

12 
 

Example 1: The simplest example of maximal synergy XORs fair coins x1 and x2: 

2121 ),f( xxxxy   (13) 

Two simplistic candidate models are observations of each of the coins: 

22122

12111

),(f

),(f

xxxz

xxxz




 (14) 

The entropies of the target and the models are: 

1)H()H()H( 21  ZZY  (15) 

The pairwise MI values are: 

0);I();I();I( 2121  ZZZYZY  (16) 

Yet synergy of the two models enables them jointly to fully explain the target: 

1),;I( 21 ZZY  (17) 

An “information diagram” is a Venn diagram of entropies and mutual information, 

possibly including higher order MI (interaction information), where areas of 

overlap of 3 or more terms can be negative9. 

Figure 11 is an information diagram showing 2 models of an input/output 

relationship. In Figure 12, the corresponding areas are labeled not symbolically 

but rather with their numerical values from Example 1. The interaction 

information or synergy-redundancy measure S(Y;Z1;Z2) is positive (one bit), so 

the multivariate mutual information I(Y;Z1;Z2) is negative. 

                                                
9 http://en.wikipedia.org/wiki/Information_diagram 
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Intuitively we regard Venn diagram areas as positive, so information diagrams 

must be interpreted with great care. In some cases, there are both positive and 

negative contributions to an area corresponding to a multivariate mutual 

information, which may be net negative, net positive or net zero. 

Example 2. Each bit is an independent, unbiased, binary random variable, 

except that 3 of the bits are in a mutual exclusive OR relationship. These 3 bits 

introduce one bit of synergy in modeling any one of the 3 vectors containing one 

of these 3 bits by the other 2 vectors. There is also redundancy among the 3 

vectors as well as genuinely independent information. The equal quantities of 

synergetic and redundant information cancel (in this example exactly, but in real  

data perhaps approximately) in the calculation of the synergy-redundancy 

measure, giving the appearance of independence. 

0);;S(

4),;I(

2);I();I(

5);I(

5)H()H(

),,,,(

),,,,(

6)H(

),,,,,(

10)H(

),,,,,,,,,(

91011

23679

135710

4567811

01235678910

























kj

kj

kj

kj

k

j

bbb

bbbbb

bbbbb

bbbbbb

bbbbbbbbbb

ZZY

ZZY

ZYZY
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ZZ

z

z

Y

y
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x

 

 

Example 2 is illustrated in Figure 13. 
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In Figure 13, the tilde notation indicates that the bit is not contained in the vector 

corresponding to the surrounding H() region, but that a bit of entropy measure is 

assigned to this region, so the aggregated regions containing it that correspond 

to 2 and 3 term MI will have the correct total measure. Likewise the star notation 

on the bit with the negative sign in the central region of multivariate MI indicates 

that this one bit of negative entropy measure is needed to cancel each of the tilde 

marked bits in summing the 2 term MI in which each participates. 

Difficulties using information diagrams for multivariate mutual information 

motivated introduction [52] of “information graphs” (used later in this dissertation). 

The zero valued synergy-redundancy measure, seeming to indicate 

independence in cases that actually contain both synergy and redundancy, is 

troubling: it may necessitate, in future work, introduction of more sophisticated 

indicators of multivariate dependence; e.g. “total absolute correlation” as the sum 

of the magnitudes of all multivariate mutual information terms of the power set.  

The possibility of synergy is both a curse and a blessing. Building blocks cannot 

be identified if their fitness only becomes apparent when they are combined. 

However, when synergy between individuals in a population can be detected, it 

can be exploited to guide evolutionary steps: computing joint MI between the 

target and the constituents of an ensemble model enables evaluating that 

ensemble and estimating the potential of recombining its constituents. 

Equipped with the information theoretic tools laid out in Chapter 1, we now 

proceed, in Chapter 2, to identify the objects to which these tools can be applied. 
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2 Channels Implicit in Evolutionary Learning 

Information theory, in its primary application to communications engineering, 

generally considers transmission channels. Evolutionary computation and 

machine learning algorithms and the processes they are used to model are 

generally not considered in this context. However, it is possible to identify, in 

evolutionary learning, information sources, sinks and flows; the paths taken by 

flows to sinks from sources can be regarded as channels. 

The main question that is typically asked about a channel is, what is its capacity 

(the maximum rate at which information can be transmitted over it with arbitrarily 

low probability of error)? In the context of evolutionary computation, this question 

has been addressed by only two researchers ([107] and [108][109]). The former 

has identified many issues involved in estimating evolutionary channel capacity 

but has not published any results. The latter has published estimates of the 

channel capacity of evolution in two special cases. There are several different 

channels that one might consider. Here we identify and briefly discuss each of 

the major channels implicit in evolutionary learning. 

In this chapter, we identify channels implicit in evolutionary learning in 3 areas: 

Section 2.1, the environment; Section 2.2, the genome; and Section 2.3, from the 

environment to the genome. 
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2.1 Environment 

A central problem in evolutionary learning is the automatic generation, 

maintenance and exploitation of probably approximately correct, hybrid 

symbolic/numeric models of the world, the self and other agents, for prediction, 

what-if analysis and control. We focus on developing theory and techniques for 

evolving models of a single observed process in the learning agent‟s 

environment. The observed process is the composition of a hidden process and 

a measurement process; each can be analyzed as a channel as follows. 

2.1.1 Hidden Process 

We are often interested in modeling a real-world process where we cannot 

directly observe the internals of the process, nor all its inputs and outputs. This 

hidden process may be represented conceptually as: 

( )hidden hidden hiddeny f x  (18) 

This is purely conceptual, however: we can never know any of these three 

noumena, only their phenomena. Undeterred by this, however, we may reason 

about the corresponding information theoretic quantities H(Yhidden), H(Xhidden) and 

I(Yhidden;Xhidden) and their relationships with those we can actually measure. 

These all apply to a more general case, where the relationship is not functional, 

but described by joint, marginal and conditional probabilities p(x,y), p(x), p(y), 

p(x|y) and p(y|x). The role of function fhidden is in this case played by copula 

Chidden() over the marginals to yield the joint distribution per Skar‟s Theorem [93] 

(the „hidden‟ subscript dropped in the equation below for typographical clarity): 

, ( , ) ( ( ), ( ))F C F Fx y x yx y x y  (19) 
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2.1.2 Measurement Process 

Our knowledge of the hidden process is limited to what can be inferred from 

measurements of its inputs and outputs. The measurement of these quantities 

can be expressed as 

( , ) ( , )measured measured measure hidden hiddenx y f x y  (20) 

fhidden and fmeasure are unrelated: the former is a function between hidden input 

and output vectors, whereas the latter is a relationship between these hidden 

quantities and their measured values; we merely highlight the fact that both are 

processes through which information flows. Like fhidden, fmeasure may really not be 

a function but rather a copula, but we retain the functional notation for clarity in 

illustrating concepts. 

The measurement process typically will separate, at least approximately, as: 

( )

( )

measureX hidden

measureY hidden





x f x

y f y
 (21) 

where we have dropped the subscripts on the measured quantities, as these will 

be our principal objects of study henceforth. If measurement is also deterministic, 

the Data Processing Inequality guarantees that: 

H( ) H( )

H( ) H( )

I( ) I( )

hidden

hidden

hidden hidden







Y Y

X X

Y;X Y ;X

 
(22) 

However, if there is measurement noise, as will typically be the case, the first two 

inequalities may not hold. If measurement noise is correlated (e.g. when multiple 

sensors‟ readings are transmitted by parallel analog electrical transmission lines), 

the third inequality may not hold, and spurious relationships may be inferred. If 
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there is “leakage” of information between Xhidden and Y (directly, not via X) or 

between Yhidden and X (directly, not via Y), other inference problems may arise. 

Such difficulties can be quantified by generalizing our representation of the 

measurement relationships. 

As in the case of the hidden process, the relationships may not be functional; 

additionally, in the case of the measurement process, they also may not be 

separable; so we may instead represent them with the joint probability 

p(xhidden,yhidden,x,y), its various marginals and conditionals. 

This leads us to consider various joint, marginal and conditional entropy and MI 

terms, as depicted in the information diagram of Figure 14 and detailed below. 



 

19 
 

 H(Xhidden)  the entropy of the hidden inputs 

 H(Yhidden)  the entropy of the hidden outputs 

 H(Xhidden|Yhidden) the conditional entropy of the hidden inputs given the hidden outputs 

 H(Yhidden|Xhidden) the conditional entropy of the hidden outputs given the hidden inputs 

These last two quantify the extent to which the hidden inputs and outputs do not fix each 

other: even with perfect measurement, it may not be possible to infer fully deterministic 

pre- or post-dictive rules, as the hidden relationship may be at least partially stochastic. 

 I(Xhidden;Yhidden) the mutual information between the hidden inputs and hidden outputs 

This quantifies the strength of the hidden relationship and thus upper bounds the strength 

of any relationship that may be correctly inferred from measurements. 

 H(X)  the entropy of the measured inputs 

 H(Y)  the entropy of the measured outputs 

 H(Xhidden|X)  the conditional entropy of the hidden inputs given the measured inputs 

 H(Yhidden|Y)  the conditional entropy of the hidden outputs given the measured outputs 

These last two quantify the extent to which the measurements do not fully reflect the 

variation in the hidden variables – [unintentional]  filtering by the measurement process. 

 H(X|Xhidden)  the conditional entropy of the measured inputs given the hidden inputs 

 H(Y|Yhidden)  the conditional entropy of the measured outputs given the hidden outputs 

These last two quantify [unintentional]  noise injected by the measurement process 

 I(Xhidden;X)  the mutual information between the hidden inputs and measured inputs 

 I(Yhidden;Y)  the mutual information between the hidden outputs and measured outputs 

These last two quantify the strengths of the relationships between the hidden variables 

and their measurements and thus upper bound any justifiably inferred entropies. 

 H(X|Y)  the conditional entropy of the measured inputs given the measured outputs 

 H(Y|X)  the conditional entropy of the measured outputs given the measured inputs 

These last two quantify the extent to which the measured inputs and outputs do not fix 

each other; they represent unavoidable error in estimates of each based on the other. 

 I(X;Y)  the mutual information between the measured inputs and measured outputs 

This quantifies the strength of the measured relationship and thus upper bounds the 

strength of any relationship that may be justifiably inferred from the measurements. 

 I(Xhidden;Y|X)  conditional MI: hidden inputs & measured outputs given measured inputs 

 I(Y hidden;X|Y)  conditional MI: hidden outputs & measured inputs given measured outputs 

These last two are examples of the many subtle conditionals, here information ‘leakage’. 
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In some cases, the evolving learning agents may at least partially control the 

sensor design, transmission path between sensors and sensor signal processing 

system, and the plan for acquiring sensor readings (including “active learning”, 

e.g. [12]). In such cases, both the modeling process and the measurement 

process may be improved by evolution. Beyond merely listing the various 

conditional entropies etc., and pointing out this opportunity, we do not address 

the possibility of evolving the measurement processs in this dissertation. 

2.1.3 Observed Process 

We emphasize that the modeling process is concerned entirely with x, y, H(X), 

H(Y), I(Y;X) and the implicit function f: X->Y (or the more general relationship 

represented by the copula C()). While we hope to infer relationships among the 

hidden variables, the success of this enterprise is entirely dependent upon the 

fidelity of the measurement process; the modeling process can only infer 

relationships based upon the observed variables. The hidden function may be 

simpler or more complex than the observed one. Loss of information (i.e. 

intentional or unintentional filtering) may preclude inference of relationships that 

exist among the hidden variables. Correlated measurement noise may lead to 

inference of relationships that exist among the observed, but not the hidden, 

variables; if the correlated noise is large relative to the signals, these spurious 

relationships may dominate those we seek. To address these issues, we use the 

entropies of the previous section. 

The MI between inputs and outputs may be regarded as the entropy of yet 

another set of Random Variables (RVs): those common to input and output sets. 
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Example 3: Each bit is equally likely zero or one, independent of the others: 
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(23) 

This example cleanly partitions information into distinct sets of independent bits, 

some of which are exclusively in X, some exclusively in Y and some entirely in Z. 

Example 4: Couple 2 unbiased binary RVs so as to agree ~89% of the time: 

each RV has 1 bit of entropy; they share half a bit of MI; but that shared half bit 

cannot be isolated from either of the RVs: in this case it is impossible, even in 

principle, to partition the entropy as in the preceding example. 

Consider I(Yhidden;Xhidden) between hidden inputs and outputs to be H(Zhidden) of a 

nominal  intersection of the hidden input and output variable sets. Likewise 

consider I(Y;X) between observed inputs and outputs to be H(Z) of a nominal 

intersection of the observed input and output variable sets.10 We may use these 

new, synthetic entropies to identify yet another MI, that between the hidden and 

the observed input-output variable intersections, I(Zhidden;Z). As those variable 

intersections contain all the information that exists regarding the relationships 

between the corresponding inputs and outputs, this MI quantifies how well either 

of those relationships models the other. As we cannot know any of the quantities 

pertaining to the hidden variables, we cannot actually compute this; it just 

                                                
10 This is not as arbitrary as it appears: the MI is the negative of the differential entropy of the copula density. The first direct 
published statement of this that we find is in [32]. An explicit treatment is given in [67]. See also Section 4.2 of this thesis. 



 

22 
 

introduces a way of quantifying the similarity of two relationships and 

demonstrates the existence of bounds on how much we can know about the 

hidden relationship. Having thus warned the reader, we will henceforth concern 

ourselves only with the observed process represented as: 

)(
~
xfy   (24) 

The tilde above the function name highlights: the hidden process may not be 

deterministic; and even for a deterministic hidden process, there is usually 

measurement noise in observed outputs, precluding their deterministic 

computation from observed inputs. Thus we content ourselves with a 

deterministic model that is „ideal‟ in two important senses: 
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(25) 

First, the MI between the ideal model outputs and the observed outputs is a 

maximum over all deterministic models based only on the observed inputs, equal 

to that between the observed outputs and inputs, which is the best that can be 

achieved due to the Data Processing Inequality. The ideal model leaves no 

residual information unexploited (we will later say that it is fully sufficient). 

Second, among all models with the foregoing property, the ideal model entropy is 

a minimum, equal to the MI between the model outputs and the inputs, again 

equal to that between the observed outputs and inputs. The ideal model retains 

no excess input entropy; i.e. all its entropy is justified by its explanatory 

information (we will later say it is maximally efficient). 
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Z serves in the explanation of Y as a proxy for X, telling us all that X could. 

Likewise Z serves in the explanation of X as a proxy for Y, telling us all that Y 

could. Z is the ideal concise summary, not of Y or X, but of their relationship: the 

“information bottleneck” [103]; in the context of prediction the “causal states” [90]. 

 ~f (not really a function) denotes: filtering, from H(X), of H(X|Y) that tells us 

nothing about the observed outputs; a possibly nonlinear but nonetheless 

invertible coordinate transformation; and injection of H(Y|X) the entropy in 

observed outputs about which we can learn nothing from observed inputs.  

 Its conceptual inverse ~f-1 (also not a function) denotes: filtering, from 

H(Y), of H(Y|X) that tells us nothing about the observed inputs; an 

invertible transformation; and injection of H(X|Y) the entropy in observed 

inputs about which we can learn nothing from observed outputs. 

 f (a deterministic function) denotes: filtering, from H(X), of H(X|Z) that tells 

us nothing about the model outputs; an invertible transformation; and 

injection of H(Z|X) the entropy in model outputs about which we can learn 

nothing from observed inputs (a null operation, as f is deterministic). 

 Its conceptual inverse f-1 (not really a function) denotes: filtering, from 

H(Z), of H(Z|X) that tells us nothing about the observed inputs (a null 

operation, as f is deterministic); an invertible transformation; and injection 

of H(X|Z) the entropy in observed inputs about which we can learn nothing 

from model outputs. 
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These ideal modeling information flows are illustrated in Figure 15. Alas, the ideal 

model f may not be realizable. It is easy to find examples where no deterministic 

function of X will preserve, in its outputs Z, all of the information I(X;Y), while 

filtering all of the surplus input entropy H(X|Y). Likewise f-1 may not be realizable: 

preserving all the information I(X;Y) may not be compatible with filtering all the 

excess entropy H(Y|X). Example 4 above is one simple example of this problem; 

another follows. 

Example 5: 

1
( 0, 0) ( 1, 0) ( 1, 1)

3

H( ) H( ) 0.92

H( , ) 1.59

I( ; ) 0.25

2
H( | ) H( | )

3

p x y p x y p x y        

 





 

X Y

X Y

X Y

X Y Y X

 

In this simple case, no deterministic function of X will yield a Z with less entropy 

than X itself, while preserving all the information I(Y;X); neither will any 

deterministic function of Y yield a Z with less entropy than Y itself, again while 

preserving all the information I(Y;X). 

Later, we will introduce various distance metrics and fitness indicators. We would 

like to be able to objectively measure how close a candidate model is to the best 

possible realizable model. Unfortunately, it is not apparent a priori how to assess 

how good a model can be realized; the indicators that we have developed 

measure instead how close a candidate model is to the ideal model, which may 

not be realizable. 
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Restricting ourselves to deterministic true functions, we can at best perform 2 of 

the 3 steps described for each of the “functions” described above: the filtering of 

the undesired conditional entropy; and the coordinate transformation. Injection of 

the desired conditional entropy is not computable: certainly we could generate 

[pseudo] random numbers with the same average entropy value, or even the 

same distribution; however, while this would yield the right statistical distribution, 

it would actually degrade the mutual information, compared with what we had 

after the 2 feasible steps.11 

Illustrating this with Example 3: starting with X, f can filter out b7 and b6, but it 

cannot inject b1 and b0; at best, it can inject bits with the same conditional 

distribution given b5, b4, b3 and b2 (although in the given example, the distribution 

of b1 and b0 is not conditional upon them). Likewise, in the reverse direction, f-1 

can filter out b0 and b1 but cannot inject b6 and b7. Thus these functions, although 

they play inverse roles, are not functional inverses. 

So we introduce g to map from Y towards X, not via Z but rather via a newly 

introduced set of variables (or labels) W. Thus f and g  are deterministically 

computable but incomplete transformations in the forward and reverse directions, 

yielding proxies Z for X in estimating Y, and W for Y in estimating X, respectively. 

In some cases, Z and W may prove to be identical (as in Example 3), or 

equivalent (the possibly nonlinear but nonetheless invertible transformation step), 

                                                
11 When modeling a process that generates a time series, one may be interested primarily in making accurate short term point 
predictions, or in learning a predictor that when iterated many times yields an attractor with long term characteristics similar to those 
of the attractor reconstructed by lag space embedding the observed time series. The latter objective may require injecting random 
variation with conditional entropy H(Y|X) according to conditional probability p(y|x), as in [87]; but doing so will degrade performance 
against the former (incompatible) objective. 
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but in general they will be completely different: each may be regarded as a set of 

labels of conditional probability distributions as in Equation 25. Figure 16 

illustrates this scenario. Summarizing the important concepts from the above: 

 f may have little to do with ~f; 

 g will almost certainly be unlike ~f-1; 

 f may have even less to do with fhidden. 

 nonetheless, it is an upper bound (not tight) on what a permissible 

(deterministically computable) model can achieve 

Thus it will serve as our “ideal model” henceforth: a goal, better than which no 

model can do, and towards which we hope to direct an evolutionary algorithm. 

2.2 Genome 

Evolving models are evaluated on the basis of the behaviors (input-output 

mappings) of their phenotypes; however, they encode those behaviors in their 

genotypes. Individual genotypes and their aggregates (genomes of 

[sub]populations) thus contain information of critical interest to us. The flow of 

this information across generations can be measured using these same tools. 

The genetic operators of replication (without variation), mutation and 

recombination (crossover) can be analyzed as channels. In all cases, it is 

important to define carefully what information being transmitted through the 

channel is of interest: for instance, is our concern a precise sequence of base 

pairs (including introns) on a chromosome, or only the encoded protein that 

would be produced by gene expression (of the exons only)? 
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2.2.1 Replication 

With respect to an individual genotype that is replicated without error, replication 

is a perfect transmission channel: it carries all the information from the sender 

(source, parental genotype) to the receiver (sink, offspring genotype); also it 

introduces no new entropy. If all genotypes in a population are thus replicated, 

then the average MI between symbol sequences (loosely, chromosomes) at the 

source and sink is exactly equal to their average entropy. In such a case, the 

replication channel capacity is exactly equal to the source information rate. If 

some genotypes are copied more or fewer times than others (have different 

fitness in the population biology sense), then the replication channel capacity is 

less than the source rate: some information about the relative frequency of 

different genotypes is lost between the parental and the offspring generations. 

However, this is usually an effect, not of reproduction itself (replication), but 

rather of reproductive selection, which will be considered in the context of the 

environment -> genome channel. 

2.2.2 Mutation 

A genotypic copy error is analogous to a communications error. The error 

incidence frequency is indicative of the extent to which the source information 

rate exceeds the channel capacity: a mutation rate of zero maximizes the 

mutation channel capacity; the more mutations occur, the lower is the mutation 

channel capacity relative to the total size of the population genome 

communicated through it. The improbability of beneficial mutations is clear in this 

light: we instinctively recognize the very low likelihood that a bit error in the 
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channel will yield a received message of greater utility to the recipient than the 

transmitted message. 

Genetic repair operators correspond to Forward Error Correction (FEC) in 

communications systems. Like FEC, they depend upon redundant encodings: 

explicit, with legal and illegal code-words and minimum distance decoding; or 

implicit, with valid and invalid string syntax, and syntactic repairs of minimum edit 

(e.g. Damerau–Levenshtein) distance. 

Considering (rather than average distance between strings drawn from 

distributions) the distance between two specific strings, moves from Shannon 

entropy (H) based average Mutual Information to Kolmogorov complexity (K) 

based Mutual Algorithmic Information (MAI). The notion is conceptually similar, 

but with two inversely related key differences: the MAI is more universal and 

„exact‟ than average MI, in that it characterizes the strength of the relationship 

between any two specific strings (rather than the average strength of the 

relationship between strings drawn from their known respective distributions); but 

MI is computable and MAI is not (it often can be bounded but the bounds are 

typically loose).  MAI is defined as: 

),K()K()K();(I 212121K ssssss   (26) 

MAI measures the absolute proximity of two strings. It is complementary with 

their absolute distance (divergence, disparity), for which competing definitions 

exist [10][64]: 
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None of these absolute measures of proximity or distance are very useful in the 

present context, but normalized, they are potentially useful indices of similarity or 

dissimilarity. Perhaps surprisingly, the distance can be normalized such that it 

becomes a useful measure of relative dissimilarity, while retaining all the 

properties required of a distance metric, including in particular the triangle 

inequality (which is broken by several otherwise useful normalizations). Again 

there are competing definitions for Kolmogorov complexity based normalized 

information distance [10][64]: 
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While the cited authors prefer the latter (primed notation) definitions of raw 

distance (Equation 27) and normalized distance (dissimilarity, Equation 28), we 

prefer the former (unprimed notation) definitions (in both equations): 

 they directly correspond to Shannon entropy based raw and normalized 

phenotypic information distances that we will define in Chapter 3; 

 the Shannon divergences are true distances that satisfy the triangle 

inequality only if we use the definitions parallel to the former ones; and 

 reported empirical results (including [59]) using either definition show no 

significant difference in performance. 
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Here we have strayed from the communications engineering notion of a channel, 

where only Shannon entropy is used, not Kolmogorov complexity; but this 

departure is necessary, as we are interested not only in the distribution of 

different genotypes in a population considered as different messages (symbol 

sequences) but also in genetic operations on specific individuals (e.g., for Markov 

chain analysis). Also, distances between input and output strings (discussed here 

in a Kolmogorov sense) occur in communications theory (Shannon sense): e.g. 

the Hamming distance gives the number of bit errors in a message12. 

2.2.3 Recombination 

We limit discussion here to Genetic Algorithm (GA) crossover with fixed length, 

two parents and two complementary offspring. Several pairwise dissimilarities 

may be compared (denoting parental strings sp1, sp2 and offspring so1, so2): 
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(29) 

These measures enable comparison of the inter-offspring and inter-parental 

similarities, which offspring is more similar to which parent, etc. If the 

recombination is geometric [71], as is standard bit-wise GA crossover, the 

distance between complementary offspring will be exactly equal to that between 

their parents. By merely concatenating strings, the distance between the parents 

taken jointly and the offspring taken jointly may be represented as 

),(d 2121K oopp ssss  (30) 

                                                
12 Dividing this by the message length equals the empirical error rate, which is an estimate of the error probability, on which a lower 
bound is given by a function of the excess of the source rate over the channel capacity. 



 

31 
 

This distance is maximized by a crossover under which each offspring inherits 

half its genetic material from each of its parents (half uniform crossover HUX): 

this corresponds to any of the possible 90 degree rotations in the search space 

of the vector connecting the parents around its midpoint to yield the vector 

connecting the offspring; such a crossover is maximally explorative of the 

subspace spanned by the parents. 

From a Shannon perspective, an interesting question of interpretation arises: 

does maximizing such a distance minimize the recombination channel capacity 

(as the offspring are maximally different from their parents); or does it have no 

effect (as all the information contained in the parents was transmitted to the 

offspring without loss)? 

The answer depends upon the precise definitions and the objectives of the 

analysis. If the genotypes are regarded as mere bit strings with no semantics, 

then such a maximally recombinant channel has capacity equal to the source 

rate, as no bits have been lost; they merely have been re-arranged, as by a 

network of switches or multiplexors. On the other hand, if semantics are 

considered, then such maximal crossover is almost certain to be highly disruptive 

of substrings (including schemata), in which case we would consider it to have 

introduced many communications symbol errors and reduced channel capacity 

well below the source rate. Note the replacement of the phrase “bit error” with 

“symbol error”: a meaningful substring corresponds to a multi-bit symbol. 
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Very briefly we consider communications network coding. If each node in a 

network coding flow graph represents a single individual (or sub-population) 

existing at any time during the evolution of the population, and information flow 

proceeds from parents (individuals or sub-populations) to offspring (likewise) 

over time, then clearly it is possible that individuals existing later in time may 

receive information that has been passed down to them in a distributed fashion, 

with some bits coming down one ancestral line and other bits down other lines, to 

be assembled in the descendants in ways that may have non-linear effects (e.g., 

2 bits XORed in a communications net, or 2 recessive alleles appearing at the 

same locus in a diploid organism). This is the whole point of recombinative 

evolutionary algorithms. Whether the as yet immature mathematics of network 

coding can be applied usefully to analysis and design of evolutionary algorithms 

is an intriguing but so far unexplored possibility. 

2.3 From Environment to Genome 

In the canonical model of evolutionary algorithms, all information flow from the 

environment to the genome is transmitted through the mechanism of selection. 

This may not be true in all natural biological cases. Relative concentrations of 

various chemicals in the environment may favor the occurrence of particular 

mutations at the molecular level. Radiation may be more likely to break certain 

DNA bonds than others. Certain bacteria have higher mutation rates under 

environmental stress: whether this constitutes an information flow or merely an 

entropy flow is debatable. However, for our purposes, replication, mutation and 

recombination are purely genomic operators, not directly influenced by the 
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environment; whereas reproductive and survival selection may be influenced 

strongly, and are influenced strictly, by the interaction of the phenotype with its 

environment. 

2.3.1 Reproductive Selection 

Selection, from the current population, of that subset to serve as parents of the 

next generation, is used in evolutionary algorithms more often than is survival 

selection; unfortunately it is the more difficult to analyze as a channel, as it is 

always immediately followed by the confounding effects of the reproductive 

channel. We will address survival selection first, then extrapolate what we may to 

reproductive selection. 

2.3.2 Survival Selection 

Survival selection directly transfers information from the environment to the 

genome of the population. “Fitness proportionate selection”13 drives the 

frequency of incidence of a particular genotype to correspond roughly to the 

degree of success in that environment of phenotypes pursuing the particular 

survival and reproductive strategies encoded by that genotype. This can be 

viewed in terms of the amount of exergy (available energy) in the environment 

that is extracted from that environment and effectively utilized by those 

strategies, accounting for all reinforcement learning, survival and reproductive 

successes (e.g. finding food) and failures (e.g. being driven away from a potential 

mate by a competitor) in terms of increases and decreases in stored exergy 

                                                
13 This term is redundant under the population biologist‟s definition of fitness, as pointed out by Altenberg: “fitness proportionate 
selection sounds like velocity proportionate speed, temperature proportionate heat” etc.; “fitness is the measure of selection”; see 
http://dynamics.org/~altenber/TALKS/CEC2000/ 
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(embedded energy, emergy). Likewise it can be viewed in terms of the amount of 

information in the environment relevant to survival and reproduction that is 

extracted and effectively utilized by the species.14 Note that selection does not 

transfer information to an individual genotype, as (absent Lamarckian learning or 

somatic line mutation) an individual‟s genotype is fixed for its lifetime and thus 

unable to encode any information received through the selection channel. 

Example 6: Consider a Genetic Algorithm (GA) tackling a 5 bit, fully deceptive15, 

symmetric trap function based on the OneMax problem, with both the usual 

“fitness function”16 and a clairvoyant fitness function that counts the number of 

correct bits in an individual genotype. In the case of a canonical population, with 

roughly equal proportions of each of the 32 distinct possible genotypes, selection 

based on the clairvoyant fitness function removes the less fit members of the 

population: this increases the average fitness (proximity to correctness) of 

individuals in the population, but not the total fitness of the entire population (as 

entirely correct genotypes are already present);17 neither does it increase the 

fitness of any individual members of the population; survival selection only 

deletes from what is already present. 

                                                
14 See especially [39][40]. Note that organisms do not run on energy, but rather free energy (availability, exergy, negentropy); see 
also various writings of Boltzmann, Lotka, Odum and Schrodinger. 
15 See Section 5.2 for more on an information theoretic view of deception and [43]a treatment of deception as one of the core 
sources of problem difficulty in evolutionary algorithms. 
16 See Section 5.2 for a more complete discussion of fitness in both the population biology sense (reproductive sampling rate) and 
the engineering sense (solution quality), between which we carefully distinguish there. Here we use the term “fitness” loosely, with 
the meaning generally intended when the term is used in evolutionary computation. 
17 Assuming that individuals are evaluated separately, as is usually done in Genetic Algorithms; of course, if ensembles are 
evaluated, using for instance voting (in this case corresponding to majority logic decoding), then the total fitness of the population is 
increased by selection based on our clairvoyant fitness function. 
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In this sense, selection alone introduces no new information into such a 

population (where all genotypes are already represented)18, and neither can the 

genetic operators (crossover, mutation, etc.). 

In a very small population, where not all possible genotypes are represented, 

selection alone still cannot introduce new information, but the genetic operators 

can. Selection accelerates the rate at which the genetic operators can do so by 

refining the source material from which they start. Selection then causes that new 

information to increase its relative incidence in the population. 

With the usual fitness function (the count of bits set to one, except for the all ones 

string which has fitness zero and the all zeroes string which has the global 

maximum fitness of 5), the problem is fully deceptive: any hyperplane that divides 

the space of possible solutions in half, will yield an average fitness in the half 

containing the global maximum that is lower than the average fitness of the other 

half (which contains the global minimum). Thus selection based on the usual 

fitness function (constructed to demonstrate deception) will cause our clairvoyant 

fitness function to decrease. Our clairvoyant function is an information theoretic 

measure19, which decreases because the usual fitness function used for selection 

did not agree with the amount of correct information in an individual genotype. 

This illustrates that information has always been implicit in the notion of 

deception, and encourages us to search for fitness functions that do reflect the 

amount of correct information in genotypes. 

                                                
18 In another sense, it does: the relative frequencies of different genotypes in the population are shaped to reflect their 
correspondence with the correct solution. 
19 Admittedly, one that cannot be computed unless we already know the solution to the problem. 
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Example 7: Consider a Genetic Programming (GP) approach to identifying a 

hidden Boolean circuit with 2 inputs (x1,x2) and 2 outputs (y1,y2), with observables 

(other than the labeled outputs) including not only clean observations of the 

inputs but also noisy observations of the outputs (which our modeling system 

sees as merely additional unlabeled observables potentially useful in estimating 

outputs), and we try each observable as a model of each of the outputs. 
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 (31) 

Simplistic candidate models are the observables (where the w variables are 

noise, not directly observable alone, corrupting the redundant observations of the 

outputs by flipping bits approximately 10% of the time): 
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Information theoretic fitness functions have certain significant advantages (as we 

shall see later), but they are still subject to a form of deception: 
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(33) 

Here each noise corrupted output observation has greater MI with its 

corresponding output than does either clean input observation; yet those noise 

corrupted output observations can never be processed in any manner to yield 

100% correct outputs estimates, whereas the clean input observations can (if the 

hidden AND and OR functions are discovered by the GP system). 
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In this case, the deception could have been avoided by measuring the fitness not 

of individual expressions but rather of ensembles (a unique capability of 

information theoretic fitness functions that is one of their key advantages), but 

that is not always the case (as we also shall see later). 

Chapter 2 having identified information transmission channels implicit in 

evolutionary learning, Chapter 3 defines information theoretic measures for 

evaluating ensemble models. 
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3 Information Theoretic Evaluations of Ensembles 

This dissertation proposes a framework within which gains and losses of 

information can be addressed explicitly and objectively in evolutionary algorithm 

theory and practice, with three fundamental desiderata. 

 The first desideratum is that the aggregate information in the population 

that “explains” the target should not decrease as evolution progresses.  

Information theoretic functionals can measure the population‟s total useful 

information during an evolutionary algorithm run, to determine if indeed it 

is progressing rather than regressing. 

 The second desideratum is that this useful information should concentrate 

progressively in fewer individuals, evolving smaller ensemble (perhaps 

ultimately individual) models that capture all or most of the target behavior. 

Information theoretic functionals can measure this concentration. 

 The third and least obvious desideratum is that the information (in the 

population as a whole and in its best individuals) that does not contribute 

to modeling the target should decrease.  Such excess entropy is not 

merely inefficient: it contributes to error; it exactly corresponds to all error 

remaining in the models, once all the target variance has been 

explained.20 Information theoretic functionals can measure [reduction of] 

this excess entropy. 

                                                
20 Excess model entropy contributes just as does residual target entropy to error: in Figure 17 it does not matter whether the more 
complex waveform is a target with residual entropy (an unmodeled signal feature) or a model with excess entropy (ripple or ringing). 
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These heuristics can be applied analytically to the equations describing the 

population dynamics of evolutionary algorithms and empirically with numerical 

measurements during runs. 

The first application of the framework is to analysis of evolutionary algorithms, 

which we began in Chapter 2. 

The second application is to the identification and selection, from potentially large 

sets of observables, of those to be made available as genetic programming 

terminals.  This often is overlooked, but it is not trivial: we must pick the right set, 

from the power set of the observables, which grows exponentially with their 

number.  Information theoretic functionals can be used to quantify how much 

each observable, alone and in combination with others, reveals about the target.  

One potential heuristic would be to select for our terminal set the fewest 

observables that jointly tell us all about the target; another would be to select 

those that jointly tell us all about the target, with minimum joint entropy of the 

terminal data set.  Application specific heuristics can also be defined, for instance 

to facilitate human interpretation of evolved models. Input selection is the focus 

of Section 6.3 and Chapter 7. 

The third application is to the “main loop” of evolutionary computation: 

information theoretic functionals can provide justifiable, general, computable, 

commensurate indicators of fitness and diversity.  This is described in Chapter 5 

and Section 6.1.  These indicators can used to apply selection pressure to 

survival, reproduction or both, of individuals, pairs or larger groups.  The ability to 
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measure the joint fitness of pairs and groups is novel: previously, the best that 

could be done was to compute statistics on the individual fitnesses of the 

members of pairs or groups.  This relates directly to the next application. 

The fourth application of the framework is to ensemble modeling.  Recognizing 

that a population is an oversized ensemble model, we wish to reduce the size of 

the smallest ensemble required (to adequately model the target) that can be 

extracted from the population.  Again information theoretic functionals can be 

used: they can measure how much an ensemble tells us about the target, without 

requiring that we know how to compose the constituents of the ensemble into a 

single more complex model.  Whether the goal is a single or an ensemble model, 

the size of the smallest ensemble that explains a specified fraction of the target 

entropy, with no more than a specified limit on excess (non-explanatory) model 

entropy, tells us how far we are from that goal. This is the focus of Section 6.2. 

Information theoretic indicators of fitness and diversity have been developed.  

These indicators have been implemented in Mathematica as described in 

Chapter 4 and partially validated with numerical experiments. 

Why use mutual information to evaluate individual models? 

Commonly used fitness measures, such as mean squared error, often fail to 

reward individuals whose presence in the population is necessary to explain 

substantial portions of the data variance.  Diversity indicators are often arbitrary, 

may reflect diversity irrelevant to solving the problem, and are incommensurate 

with fitness measures. 
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By contract, information theoretic functionals are computable general indicators 

of fitness and diversity without these typical failings. The most obvious, and most 

commonly used, measures of individual fitness are mean (or sum) squared (or 

absolute) error.  Without loss of generality, we will consider MSE. 

Example 8. Given a target function 

f( )y x x   
(34) 

and a candidate model 

f ( )j jz x x   (35) 

MSE will be minimized (indeed, it will be zero). 

Example 9. Keeping the same model, but estimating target function 

f( )y x x    
(36) 

we now have a problem: MSE is enormous; yet our model is „close‟ structurally to 

the correct answer (“edit distance” [74] is short).  How can we reward this 

individual for its several desirable attributes? It contains the correct terminal x, 

raised to the correct power 1, and contains no spurious elements that fail to 

contribute to the solution or that contribute to error. 

The next obvious choice is correlation.  In Example 8 the correlation coefficient r 

is +1; in Example 9, it is -1, signifying that we have exactly the wrong answer, 

which guides us immediately to exactly the right answer (by considering not the 

signed correlation coefficient r but rather its absolute magnitude |r| or square r2). 
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Example 10. Keeping the same candidate model, but now estimating target 

2f( )y x x   (37) 

we again have a problem: correlation is exactly zero, seeming to signify that our 

model tells us nothing about the target.  Yet it does: it still contains the correct 

terminal x (albeit raised to the wrong power) and appears to contain no spurious 

elements that fail to contribute to the solution or that contribute to error. 

Using Mutual Information (MI) as our fitness indicator yields the desired behavior, 

as it generalizes correlation to arbitrary non-linear relationships. MI is invariant to 

invertible transformations21 and degraded at most by a calculable and typically 

small amount for most reasonable non-invertible transformations22, so it is 

effective at identifying high fitness simple forms in early generations [56] likely to 

be good building blocks for later generations [31]. 

Assuming 8 bit quantization23 and a uniform distribution of test cases in x, 
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(38) 

which shows that our model captures all the entropy in the target.  However, from 

this we can see that our model has excess entropy: the vestigial sign bit, which is 

information in the model that does not contribute to the solution, indeed it 

contributes to error. 

                                                
21 For discrete data, permutations; for continuous data, diffeomorphisms (embeddings) certainly and non-diffeomorphic 
homeomorphisms (which exist in dimensions exceeding 3), possibly; and in the terminology of Crutchfield (Section 3.1), recodings. 
22 The conditional entropy of the input to the transformation, given its output: H(X|X‟); the log (base 2) of the number of pre-images. 
23 To work this example exactly, use either: 7 bit magnitude and 1 bit sign, adding 1/2 the value of the Least Significant Bit (LSB) to 
the absolute magnitude; or 8 bit twos complement with a +0.5 LSB signed offset. 
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This generalizes to more complex non-linear relationships. An alternative 

approach is non-linear correlation, but that begs the question, to what order must 

we go to capture the dependencies? MI avoids having to answer that question by 

leaping over the infinite regress to capture dependencies at all orders. 

Why use mutual information to evaluate ensemble models? 

The lesser reason is that the benefits MI brings to individual models accrue also 

to ensembles. The greater reason is that MI can be calculated, not only between 

2 scalar Random Variables (RVs), but also between 2 vector valued RVs. Indeed 

it can be calculated among arbitrary numbers of arbitrary ensembles. This brings 

a novel and very important benefit: the ability to evaluate ensembles as such, 

without foreknowledge of how to assemble the multiple constituent sub-models 

into a single more complex model; and to do so objectively, without heuristics. 

When calculating MI of multiple items against a target, the items are regarded as 

joint observations, that can fix a more refined conditional probability density of 

the dependent variable than can any one of their constituent observations alone. 

Various generalizations and normalizations of MI enable consistent evaluations 

of several important characteristics of individual and ensemble models. 

In this Chapter, we introduce our selections and definitions for these: Section 3.1, 

proximity and distance; Section 3.2, dissimilarity, similarity and equivalence; 

Section 3.3, “sufficiency” and “efficiency” of models; Section 3.4, “necessity” and 

the Synergy-Redundancy Index (SRI); Section 3.5, model qualities considering 

inputs that may not fully determine outputs. 
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3.1 Proximity & Distance 

Shannon‟s entropy H is a measure24 of uncertainty in a Random Variable (RV) 

and his mutual information I is a measure of the proximity (closeness, nearness) 

of 2 RVs. This can be generalized if we consider them to be signed measures.25 

Proximity is a natural concept but its formalizations seem unnatural. A familiar 

complementary concept for which the mathematical formalizations are satisfying 

is distance. Given a set X, a function d: X×X→R satisfying 

0),d( yx  (39) 

),d(),d( xyyx   (40) 

0),d( xx  (41) 

is a distance. For it to be a metric we must also have 

yxyx  0),d(  (42) 

),d(),d(),d( zyyxzx   (43) 

The set X and distance d comprise a metric space (X,d). Many partial, pseudo, 

quasi, semi, etc. metrics and distances have been defined in various fields and a 

substantial body of mathematics deals with metric spaces and their 

generalizations [36]. To exploit these results we must identify or define distances 

appropriate for analysis of evolutionary computation. As we have chosen the 

information theoretic path, we follow Crutchfield [30]: X is a space in which are 

located “recoding-equivalence classes” of information sources26, between which 

the Shannon distance27 dS is the sum of the conditional entropies 

);I(),H()|H()|H(),(dS YXYXXYYXYX   (44) 

                                                
24 In the formal mathematical sense of the word “measure”, as shown in [30]. 
25 http://en.wikipedia.org/wiki/Information_theory_and_measure_theory appears to be the only “publication” on this. 
26 Equivalent under information preserving transformations: discrete permutations or continuous homeomorphisms. 
27 a.k.a. information metric, entropy metric, Crutchfield-Renyi metric. Cf. Kolmogorov distance in Section 2.2.2. 

http://en.wikipedia.org/wiki/Information_theory_and_measure_theory
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This distance is the sum of the uncertainty in X not resolved by observing Y plus 

the uncertainty in Y not resolved by observing X, so it measures not only what 

additional information is required, starting from complete knowledge of X, to 

completely know Y, but also what information in X must be „forgotten‟ (erased, 

deleted28) to know only Y. This formalizes concerns expressed in Section 2.1.3. 

This distance has advantages for evolutionary computation: clearly, for error to 

be minimized, residual entropy of the target given the model, and excess entropy 

of the model given the target, which both contribute to error, must both be 

minimized; and before one can usefully optimize the form of a model, first one 

must ensure it incorporates all and only the needed inputs.29 

Unfortunately, Shannon distance has no inherent sense of scale: is a distance of 

e.g. 2 bits large or small? This can be addressed by normalization as follows. 

3.2 Dissimilarity, Similarity & Equivalence 

The Shannon distance30 can be normalized in several useful ways. The Rajski 

distance, a metric, is normalized by joint entropy 
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  (45) 

A proof that this normalized distance (or dissimilarity) is indeed still a metric 

distance may be found in [59] which also discusses generalization from discrete 

                                                
28 Important especially in the context of quantum or reversible computing or more generally thermodynamics of computation. 
29 Once in a metric space, we essayed still further, attempting to apply geometry, but this has been one of the less productive 
activities of the research reported here. The intersection of information geometry and evolutionary computation has thus far been 
small [105][48][47][68] and has pursued the differential geometry approach of Amari [7]with which that of Crutchfield [30]has not yet 
been reconciled. We suspect that one of Crutchfield‟s spaces is a hypothesis subspace of one of Amari‟s spaces, fixed by 
parameter selection. Moraglio [71]has attempted unification of EAs in a geometric framework; however his work mostly has been in 
the genotypic space, whereas ours is primarily in the phenotypic space, and while most would agree that search performance is 
always a function of neighborhood structure, the relationship between these spaces remains conjectural. 
30 Its components, the conditional entropies, are Albert quasi-metrics; see [36]. 
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to continuous random variables. Note that the complement of this normalized 

distance (the rightmost quotient) is a similarity „metric‟ [64]. Whereas dissimilarity 

is normalized distance, similarity is normalized proximity, yielding a satisfying 

formalization of the latter. 

This dissimilarity provides a clear sense of scale: zero indicates equivalence with 

respect to information (maximum mutual dependence, like a correlation 

coefficient of magnitude one, but able to detect non-linear dependence of 

arbitrary order); and one indicates statistical independence (like a correlation 

coefficient of zero, but universally, rather than only for Gaussian variates). 

A distance or dissimilarity of zero, or a similarity of one, indicates equivalence. 

Radcliffe‟s forma analysis [81], a very promising but largely unexplored approach 

to analysis of EAs in general and ensemble (multiset [82]) EAs in particular, 

requires use of a predicate indicating membership in an equivalence class with 

respect to a basis set of equivalence relations. Such a predicate   can be 

defined as being false (0 valued) except when true as follows (but see the end of 

Section 5.5) 

0),(d1),( S  YXYX  (46) 

0),(DS  YX  (47) 

1
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YX
 (48) 

Similarity is a good overall measure of how well a model approximates a target, 

but by collapsing all types of divergence of the model from the target into a single 
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scalar value, it provides limited guidance to the evolutionary process. 

Decomposing it into meaningful components can provide more insight. 

3.3 Sufficiency and Efficiency 

With regard to information content of the target versus the model, there are two 

possible sources of error that an evaluator should penalize: 

 residual entropy in the target 

 excess entropy in the model 

The former is variance in the target data set that is not explained by the model.  

The latter is variance in the model that does not explain anything about the 

target. Normalizing by target entropy yields the sufficiency: 

)H(

);I(

Y

ZY j
 (49) 

This measures the fraction of target entropy captured by the model, thereby 

penalizing residual target entropy. Normalizing by model entropy yields the 

efficiency: 

)H(
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This measures the fraction of the model entropy that contributes to its 

explanation of the target, thereby penalizing excess model entropy.31,32 

                                                
31 These same expressions (but not our subsequent renormalizations of them) were previously introduced as the coefficients of 
constraint [29] or uncertainty coefficient [78]. 
32 In previously published work, we referred to the index (ratio) in Equation 49 as sufficiency and that in Equation 50 as necessity, in 
homage to Claude Elwood Shannon and William of Ockham. Subsequent discussions with early adopters of our methods suggested 
a change in nomenclature to make it agree better with current parlance: the index in Equation 50 we now call efficiency and we 
advance a new definition for necessity in Section 3.4. The names don‟t matter; the indices do. 
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3.4 Necessity and Synergy-Redundancy Index 

We now define necessity as marginal sufficiency: the sufficiency of a larger 

ensemble containing both a particular sub-ensemble and other components, 

minus the sufficiency of the larger ensemble with the particular sub-ensemble 

removed. This shows the contribution that the particular sub-ensemble makes to 

the larger ensemble, showing how indispensable is the information contained in 

the particular sub-ensemble to the sufficiency of the larger ensemble. 

We first introduce notation for ensembles. We use fm to represent an ensemble 

of m model functions and Zm to represent their outputs. Thus necessity of the 

sub-ensemble fm1 in the context of larger ensemble fm (comprising fm1 and fm2) is 
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The left hand side of Equation 51 is just the difference between sufficiency of the 

larger ensemble and that of the particular sub-ensemble, using Equation 49. The 

right hand side recognizes that they are normalized by the same target entropy. 

Combining the right hand side of Equation 51 with Equation 12 (the synergy-

redundancy measure) and normalizing not by the entire target entropy but by 

only that portion revealed by the mutual information of the larger ensemble with 

the target, yields a symmetric necessity, the Synergy-Redundancy Index33 
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33 That could equally well be called the Interaction Information Index, but we find no such name in the literature, despite McGill‟s 
definition of “interaction information” several decades prior to Chechik‟s use of the “synergy-redundancy measure” to define a 
“synergy-redundancy index” normalized by the sum of the pairwise MI terms rather than the joint MI as we do here. 
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The algebraic sign of this index is informative – 

 Negative indicates net redundancy in the information conveyed about the 

target Y by sub-ensembles fm1 and fm2; there might also be synergy, but it 

must be of lesser magnitude than the redundancy. 

 Positive indicates net synergy between those sub-ensembles; there might 

also be redundancy, but it must be of lesser magnitude than the synergy. 

 Zero can be due to true independence, where redundancy and synergy 

are each zero; or to merely the appearance of independence, where 

redundancy and synergy of equal non-zero magnitudes cancel. 

This index quantifies how much of the information conveyed by an ensemble 

about a target is due to interaction between its constituent sub-ensembles: that 

is, the degree to which the whole is greater or lesser than the sum of its parts. 

3.5 Model Qualities 

All the definitions in the preceding sections of this chapter are without regard to 

the system inputs. Sufficiency, for instance, is the mutual information between a 

model‟s outputs and the target system‟s outputs, normalized by the target 

system‟s outputs. This normalization is an attempt to show how well, relatively, a 

model is doing in its explanation of the target. However, this normalization is 

unfair. Deterministic models cannot convey more information about a system‟s 

outputs than do the model‟s inputs, which are (at most) the system‟s inputs. The 

Data Processing Inequality guarantees 
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))H(),min(H()I()I( YXXY;ZY;   
(53) 

Thus, to show how well a model is doing, relative to the best that it could possibly 

do, we renormalize many (not all) of the quantities previously introduced. 
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If one ensemble model is our ideal model (from Section 2.1.3, Equation 25) of the 

relationship between the system inputs and outputs, and the other ensemble has 

no excess entropy (or we modify Equation 58 to normalize not by total joint 

entropy but rather by joint MI only), the value of the expression in Equation 57 

reduces to half of that in Equation 58. The equations are consistent but for this 

factor of 2, which was inserted into Equation 57 to deal with the possibility of 

synergy that otherwise could cause this index to exceed unity. Synergy is 

possible between two non-ideal models, but impossible between any model and 

the ideal model (which already has all the information about the outputs available 

from the inputs). If allowing an index to range in [0,2] is acceptable, the 2 may be 

omitted from the denominator in Equation 57, rendering it fully consistent with 

Equation 58; this is our preference for cleaner generalization in Section 5.1.1. 
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An expression similar to Equation 59 can be formulated, quantifying the similarity 

of two ensemble models, but this is rarely of interest: we seek similarity to targets 

of models, in which quest dissimilarity to targets of models may sometimes be a 

useful metric; but among models we seek only diversity, for which dissimilarity is 

our metric, as will be discussed in Chapter 5. 

We may say that a model is “epsilon sufficient” if Equation 55 falls short of unity 

by no more than a specified epsilon magnitude; likewise for efficiency, etc. This 

can be used to relax the strict equivalence relations of Radcliffe (Equations 46 ff) 

and enables delta-epsilon treatment of generalization (Section 8.2). 

Having defined information theoretic measures for evaluating ensemble models, 

in Chapter 3, we now proceed, in Chapter 4, to develop algorithms for estimating 

these quantities and the confidence associated with those estimates. 
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4 Estimation of Information Theoretic Quantities 

To apply information theory in the practice of evolutionary computation, it is 

necessary to estimate, on sampled data, the numerical values of the quantities 

defined in the previous chapter. This process is likely to suffer from bias even 

with discrete data and has much worse potential problems with continuous data. 

Fortunately, we are rarely concerned with entropies as such, but rather with 

differences and ratios that can be arranged so that biases largely cancel. 

In Section 4.1, we briefly outline calculations for discrete data that come directly 

from the definitions of entropy and mutual information. In Section 4.2, we 

introduce  our novel copula based algorithm for continuous and mixed data. In 

Section 4.3, we justify significance testing with p-values from permutation tests. 

In Section 4.4, we handle small sample issues with confidence bounds from 

bootstrapping and introduce nested resampling. In Section 4.5 we address 

sweeping various parameters. 

4.1 Discrete Case: Straightforward Entropy Calculations 

Rather than using kernel based estimators that require (in our opinion generally 

unjustified) a priori assumptions about unknown distributions, we adopt the 

Maximum Likelihood Estimator. This generally underestimates entropies, 

overestimates low and underestimates high values of mutual information [76]. 

Unfortunately, this reduces the dynamic range and thus the selectivity of our 

indicators; fortunately, it is in a sense conservative, making us less likely to 

discard a weakly predictive variable. 
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Algorithms have been implemented in Wolfram Research, Inc. Mathematica, 

Version 8.0.  A source code fragment of one of the basic functionals follows. 

Source Code Fragment 1. 

mutualInformation [ x__List, ";" , y__List ] := ( H[x] + H[y] ) - H[x,y] ; 

H[x__List] in turn calls the built-in Mathematica function Entropy [ <k>, <list> ] 

that uses the empirical histogram to estimate the base k (in our work base 2 to 

give units of bits) entropy of an arbitrary list of objects: integers; category labels; 

even real (floating point) numbers. It may be appropriate to use this function on 

real numbers when a data set contains a small number of distinct low precision 

values, each of which is repeated a significant number of times; in other cases, 

where real values are high precision approximations of continuous data, so many 

distinct values are present and there are few repeats of each (repeats would be 

zero probability events if we had infinite precision), another approach is required. 

4.2 Continuous Data: Novel Copula Based Algorithm 

With discrete data, Shannon‟s entropy is well defined. For continuous data, it is 

not, so analogs have been defined, including “differential entropy”, which retains 

some of the useful characteristics of discrete entropy, but does not serve our 

purposes. With discrete data, state space partitions are crisp; with noisy 

continuous data, they are fuzzy. Algorithms for computing information dimension 

of continuous RVs, or analogs of discrete entropy or mutual information for 

continuous RVs, typically involve adaptive bin sizes, complicated bookkeeping 

and heuristics. To address these difficulties, a new algorithm was developed, 

based upon copulae and sparse arrays. 
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The copula of a set of RVs describes how their joint distribution would look if all 

their marginal distributions were uniform. The composition of the copula over the 

marginal distributions reconstructs the full joint distribution. The copula thus 

captures all the statistical dependencies among the RVs: it reflects all conditional 

probabilities after discounting prior probabilities.34 The divergence of the copula 

from a uniform multivariate distribution measures mutual dependence of the RVs. 

Negating the differential entropy of the copula density yields the MI (redundancy) 

and the related information dimension, the number of independent components 

that be required to span the given multivariate data set (which will be less than 

the total number of variables Dm if there are dependencies). 

As in [2], given the Dm dimensional cumulative distribution F(x), we may calculate 

its Dm marginals Fi(xi) and thence the multivariate copula density dC(x) 

corresponding to the copula C(x) by 


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In [2], MI is estimated from a parametric copula that approximately models the 

data. Again, to avoid a priori assumptions about unknown distributions, we prefer 

the direct approach based on the empirical multidimensional histogram.  

                                                
34 A machine learner may be tasked only with learning the input-output relationship, in which case the copula is the whole story, or it 
may be tasked also with learning the marginal distributions: an observation of one RV that makes a 1000:1 longshot on another RV 
10 times as likely still leaves a 100:1 longshot. 
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However, the significance of the copula lies in its non-uniformity and the data 

may have many observed dimensions: so in the histogram, many of the bins are 

likely to contain too few points for robust estimates of the joint and marginal 

densities; but if the data were transformed so that all the marginals were uniform, 

the multivariate copula density could be so estimated. 

A straightforward approach is to sort the Dm dimensional data set Dm times (once 

on each variable) and construct the Dm dimensional co-occurrence matrix; each 

bin initially will contain exactly zero or one data points. However, with N data 

points, this requires an array with N Dm elements. As multivariate dependencies 

can be inferred reliably only on large data sets, this would require infeasible 

storage capacity. Fortunately, there are only N non-zero elements, so sparse 

array techniques can be used, reducing memory requirements from O(N Dm) to 

O(N Dm). 

Computational cost of subsequent pyramidal summation of the sparse array is of 

the same order as that of sorting the data Dm times to initialize it, O(N lg(N) Dm). 

Note that Dm must be less than lg(N) or spurious dependencies will be detected35, 

so overall cost is O(N lg2(N). 

                                                
35 This refers not to the entire data set, but rather to any subset of its columns from which we estimate joint entropies; as 
evolutionary computation often uses ordinal rankings rather than absolute magnitudes, e.g. to resolve selection tournaments, and 
indeed has been shown in many cases to benefit from the use of order statistics, we often can limit D to 4. 
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Algorithm 1. 

function copula ( data: array [ N, d ] ): sparse array; 

zeroize N^d dimensional sparse arrays 

dataBinCounts, binFrequencies, binFreqsPrevious; 

lgNumberOfBins = ceiling( lg( N )); 

numberOfBins = 2 ^ lgNumberOfBins; 

for j = 1 to d do { 

sort data on column j; 

replace column j data values with their ordinal ranks }; 

for j = 1 to N do dataBinCounts[ data[j,1],...,data[j,d]] = 1; 

while lgNumberOfBins >= minLgNumberOfBins and not done do { 

binFreqsPrevious = binFrequencies; 

binFrequencies = dataBinCounts / N; 

estInfoDim = entropy( binFrequencies ) / lgNumberOfBins; 

done = we just passed 1st max of estInfoDim or its slope; 

lgNumberOfBins--;  

numberOfBins = 2 ^ lgNumberOfBins; 

contract by 1/2 the length of each dimension 

of dataBinCounts by summing counts 

from merged blocks of adjacent cells }; 

if not done 

then { warn "suspect results"; return binFrequencies } 

else return binFreqsPrevious 

We later modified the algorithm to construct the entire pyramid, all the way to the 

top level where the number of bins along each dimension is the minimum 2, 

rather than adaptively deciding when to halt36, because the heuristic proved 

unreliable without information from all levels. Once the whole pyramid is built, a 

heuristic is still used to select a level for subsequent use: starting at the 

pyramid‟s peak, we select the first minimum of the slope of the estimated 

information dimension37, or the lowest level at which the expected number of 

samples in each multidimensional bin exceeds one, whichever comes first. 

                                                
36 Obviously this increases computation and storage costs, but the impact is minimal due to pyramiding; it also simplifies the code. 
37 The estimated joint entropy divided by the log of the number of bins along each dimension estimates the information dimension. 
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On synthetic data sets to which we have applied the technique, where the 

dependencies are known, this usually yields a reasonable compromise between 

false negative and false positive detections of dependencies in the data. A similar 

heuristic still under investigation is to select the level that estimates the greatest 

relative redundancy: calculate a maximum possible estimated information 

dimension38; divide the actual currently estimated information dimension by that 

maximum; and select the level that minimizes that ratio. 

Once a level is selected, it is used as a probability mass function, and entropies 

are calculated in the straightforward manner, directly from the definition of the 

Shannon entropy, as if we had discrete data. Dimensions corresponding to RVs 

not of interest in any particular calculation are collapsed by summation. The 

scale of the estimated entropies and other information theoretic quantities 

derived therefrom is arbitrary, so we normalize them by other estimates from the 

same calculation39 to get indices (e.g. similarity, sufficiency). In turn we compare 

indices to yield relative ranks; the ranks are more stable than the values. 

Per Theorem 1 in [76], if we neither suffer excessively from repeated values, nor 

encounter near-perfect dependence, our empirical copula will contain at least a 

few sample points in each of its bins, so entropies calculated from it will converge 

to unbiased estimates. 

                                                
38 The maximum possible estimated information dimension at a given level of the pyramid is the lesser of: the log of the number of 
data points divided by the log of the number of bins per dimension; and the sum of the estimated information dimensions of each RV 
at that level. Absent repeats, each RV should have an information dimension of one, due to our use of equal frequency bins (data 
ranks) rather than equal width bins (data values) in the histogram. This is equivalent to forcing the differential entropy of each 
individual RV to zero (assuming that each has the maximum possible entropy) while letting the differential entropy of the entire 
vector of RVs go negative (due to dependencies among RVs). 
39 More precisely, from the same estimated copula density: the same level of the same pyramid of bins. It only has to be the same 
calculation if we allow the algorithm to adaptively choose the level of the pyramid: it might choose differently for different variables. 
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This algorithm has also been converted to use almost entirely integer arithmetic. 

This reduces storage requirements in most implementations, as integers are 

represented typically with 2 or 4 bytes, whereas floating point representations 

consume from 4 to 8 bytes or more. This may or may not reduce computation 

time, as some hardware has floating point acceleration from which integer math 

may not benefit. This may facilitate parallelization of the algorithm, especially 

using Field Programmable Gate Array (FPGA) hardware. In any event, it does 

reduce accumulated round-off errors. 

An intriguing possibility using the original floating point implementation is building 

the pyramid from a fuzzy co-occurrence matrix: where the initial atomic bins are 

populated, not exclusively with zeros and ones, but rather with fuzzy membership 

values, reflecting neighboring data point proximity in the original coordinates; this 

compromises between the “equal width bin” and “equal frequency bin” 

approaches to the histogram. Such an endeavor is justified by noting that the 

sorted ranks of near (in the original coordinate space) neighbors can easily be 

reversed by small (high probability) noise impulses adding to the originally lesser 

or subtracting from the originally greater coordinate value, but the ranks of more 

distant neighbors can only be affected by large (low probability) noise impulses. 

Investigation of this possibility is left for future work. 
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4.3 Significance Testing: p-Values from Permutation Tests 

One problem with the use of information theoretic measures of dependence 

rather than linear correlation is that the former are more likely to yield spuriously 

high values under independence, because there are exponentially many ways to 

construct an arbitrary lookup table with perfect non-linear dependence but only 

two ways to construct a lookup table with perfect correlation or anti-correlation. 

This can be seen easily by examples. 

Example 11. Assume we have 2 unbiased binary RVs. The smallest sample that 

can show either independence, perfect dependence or perfect anti-dependence 

is 22=4 points; there are 44=256 possible joint sequences at this minimum sample 

size. Under the null hypothesis of independence, each of these sequences is 

equally likely. In 60 of these (23%), one or both of the RVs will fail to display both 

its values, making it impossible to assess dependence (whether with information 

theoretic methods or with correlation). In 24 cases (9%), the „correct‟ (under the 

null hypothesis) similarity value of 0 will be estimated. In 48 cases (19%), an 

incorrect estimate of weak dependence (similarity .08) will be estimated; in 

another 96 cases (38%), an incorrect estimate of moderate dependence 

(similarity .21) will be estimated; and in 28 cases (11%), an incorrect estimate of 

perfect dependence (similarity 1.0) will be estimated. Even the least likely and 

most severely wrong answer is more likely than the right answer! 
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Example 12. Assume we have 2 continuous RVs (with infinite precision 

representations so that repeated values have zero probability). Again the 

smallest sample that can show a difference between independence and 

dependence of these RVs is 4 points. If we use not equal width but rather equal 

frequency bins (as in our Algorithm 1), then unlike the discrete case in Example 

11 above, our sample is forced to be balanced: there are (4!)2 possible temporal 

sequences, corresponding to 4! different arrangements with respect to the 

relative ordinal ranks of the 2 RVs, yielding only 3 distinct histograms; this 

corresponds to restricting attention to the 36 balanced of the 256 possible 

sequences in the discrete case (the previous example). „Correct‟ (under the null 

hypothesis) estimation of independence occurs in 2/3 of these sequences; 

incorrect estimation of perfect dependence (or anti-dependence, either way a 

similarity of 1.0) occurs in 1/3 of them: better than the discrete case, but a wrong 

answer is still half as likely as the right answer. See Tables 1.1, 1.2 and 1.3. 

In both the foregoing examples, the minimum number of bins per dimension and 

minimum number of points (for the total number of bins) makes spurious 

estimates of strong dependence likely, whether using information theoretic 

methods or linear correlation. As the number of dimensions increases, finding 

information theoretic dependence of one RV upon a non-linear combination of 

multiple other RVs becomes possible (and likely, even under independence); this 

is not possible with linear correlation. Even remaining at only 2 dimensions, as 

the number of bins per dimension increases, there is a corresponding factorial 

increase in the number of arbitrary lookup tables that [spuriously, under 
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independence] show perfect dependence using the information theoretic 

measures, whereas the number of lookup tables that [spuriously] show perfect 

dependence (or anti-dependence) using linear correlation remains only 2.  

Thus there is increasing “trigger-happiness” of the information theoretic 

techniques versus linear correlation as problems scale up. Information theoretic 

dependence statistics reveal no more than ordinary correlation with only 2 bins 

per each of 2 dimensions: it is only with larger numbers of bins that they reveal 

anything that we did not already know; yet with larger numbers of bins they 

become increasingly suspect. The first step in scaling up, from 2x2 to 3x3, is 

shown in the following example. 

Example 13. Extending either discrete Example 11 or continuous Example 12 to 

3 bins per each of 2 dimensions: under independence, 6 histograms spuriously 

show perfect information theoretic dependence, whereas only 2 of those also 

show spuriously perfect linear [anti] correlation. The number of sequences that 

yield each histogram is large and depends upon whether it is the discrete or 

continuous case; it has not been calculated here. See Tables 2.1 through 2.6. 

To combat (or at least quantify) this problem, tests of statistical significance are 

used. Often these tests are parametric and thus based upon a priori assumptions 

about underlying (and often not truly known) distributions. In keeping with our 

general philosophy that we know nothing that we cannot justifiably infer 

exclusively from the given data sample, we instead adopt a non-parametric 

approach based on resampling without replacement. 
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Randomly permuting each of the RVs, the marginal distributions are unchanged, 

but the joint distribution is destroyed: replaced with some large number of 

random synthetic joint distributions. This enables a distribution of a statistic under 

the null hypothesis to be calculated (if each possible permutation is sampled 

exactly once – an exact test) or estimated (if a large number of random 

resamples that does not exhaust an even larger space of permutations is used – 

an approximate test). This distribution can be used in various ways; we use it to 

calculate or estimate a p-value. The interpretation of a p-value is subtle: the 

probability that, under the null hypothesis (independence), a statistic will be 

estimated as having a value at least as extreme as the value actually estimated 

prior to permuting the RVs. 

In our work, we have not advanced the science of resampling, permutation tests, 

p-values, etc.; we have merely implemented and applied such techniques, after 

justifying the greater need for using them to assess the statistical significance of 

dependency strength estimates from information theoretic methods versus from 

linear correlation. 
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Source Code Fragment 2. f_ is a function that calculates a dependency strength 

statistic on x_ and y_. fPValue returns an approximate p-value of f_ on a 

sampleSize_ number of permutations of x_ and y_. Alternatively, if the length of 

x_ and y_ were short enough, the permutation space could be exhaustively 

enumerated to yield an exact p-value. 

fSample [f_, x_List, y_List, sampleSize_Integer:741 ] := 

Table[ 

f[ RandomSample[ x ],RandomSample[ y ] ], 

{sampleSize}]; 

 

fPValue [f_, x_List, y_List, sampleSize_Integer: 741 ] := 

Module[ {tmp}, 

tmp = DeleteCases[ N[ fSample[ f, x, y, sampleSize ] ], Indeterminate ]; 

      N[ 1 - (Position[ Ordering[ Prepend[ tmp, N[ f[ x, y ] ] ] ],1 ] [[1,1]] - 1) 

/ Length[ tmp ] ] ]; 

4.4 Small Samples: Confidence Bounds from Bootstrapping 

For error not to be dominated by bias due to small sample size, the number of 

data points N must greatly exceed the total number of bins m D, where m is the 

number of bins along each dimension and D is the number of dimensions. 

In a selection tournament involving individual RVs, the number of dimensions 

typically can be limited to 4. When considering not individual RVs but rather 

ensembles, even in a tournament involving only 3 or 4 ensembles, D can grow 

large, as it is the total number of RVs contained in all the ensembles in the 

tournament. Thus achieving N>>mD may become infeasible. 

One approach to estimating sample bias/variance effects and establishing 

confidence bounds around calculated statistics is bootstrapping, a resampling 

technique superficially similar to the permutation tests of the previous section. A 
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permutation test randomly resamples marginal distributions without replacement, 

bootstrapping randomly resamples the joint distribution with replacement. 

Again in our work, we have not advanced the practice of bootstrapping as such; 

we have merely implemented and applied it, as illustrated in the source code 

fragment below, after justifying the need to do so. 

Source Code Fragment 3. f_ is a function that calculates a dependency strength 

statistic on x_ and y_. fBootBounds returns two-sided boundFrac_ confidence 

bounds on f_ on a sampleSize_ number of resamples of { x_, y_ }. 

fBootStrap[ f_, x_List, y_List, sampleSize_Integer: 741 ] := 

Table[ 

Apply[ f, Transpose[ RandomChoice[ #, Length[ # ] ]&[ listJoin[ x, y ] ] ] ], 

{sampleSize} ]; 

 

fBootBounds[ f_, x_List, y_List, boundFrac_Real: 0.10, sampleSize_Integer: 741 ] := 

Module[ {tmp,pos}, 

tmp = Sort[ DeleteCases[ N[ fBootStrap[ f, x, y, sampleSize ] ], Indeterminate]]; 

      pos = Max[ 1, Floor[ boundFrac * Length[ tmp ] ] ]; 

      Extract[ Sort[ N[ fBootStrap[ f, x, y, sampleSize ] ] ], { { pos }, { -pos } } ] ]; 

We have made one novel application of the technique – bootstrapping not only 

the estimation of the statistic (e.g. sufficiency index), but also estimation of its 

corresponding p-value. In an outer loop, we bootstrap the rows of the sample 

matrix to obtain a large number of different synthetic random sample matrices 

and estimate the information theoretic dependence strength statistic on each. In 

an inner loop, we permute each column of the given (bootstrap synthesized) 

sample matrix to obtain a distribution on the statistic under independence (and 

from this distribution a p-value of the dependence strength statistic). The 

following source code fragment implements this novel nested resampling. 
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Source Code Fragment 4. f_ is a function that calculates a dependency strength 

statistic on x_ and y_. fBBPV returns two-sided BBFrac_ confidence bounds on 

an approximate p-value of f_ on a PVSampleSize_ number of permutations of 

the marginals of a BBSampleSize_ number of resamples of { x_, y_ }. 

fBBPV[ 

f_, x_List, y_List, 

BBFrac_Real: 0.10, BBSampleSize_Integer: 102, 

PVSampleSize_Integer: 102 ] := 

fBootBounds[ 

fPValue[ f, #1, #2, PVSampleSize ]&, 

x, y, BBFrac, BBSampleSize ]; 

Nested resampling, especially of information theoretic functionals, is 

computationally very costly. However, on various small sample data sets to 

which we have applied these indices (see especially Section 7.2), it appears to 

be necessary to assess confidence in the dependency strength estimates.40 

                                                
40 On-line searches have not yielded any published algorithms or analysis similar to this approach. Preliminary discussions with 
Prof. Kishan Mehrotra, who is familiar with the statistics literature, suggest that this nesting of bootstrapping and permutation testing 
appears to be novel. 
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4.5 Order, Scale and Lag 

The initial application of time series prediction can be approached using at least 

3 different representations: a lag vector of values of the observable; a vector 

comprising smoothed values of the observable and its first few differences for 

constructing a single higher order differential equation; or a vector of [arbitrary 

presumed] state variables for constructing a system of first order differential 

equations.41 In all approaches, the length of the vector must be chosen, whether 

manually by the user, or automatically by the modeling algorithm. 

In the case of a lag vector, its minimum length is given by the Takens embedding 

theorem as the least integer greater than twice the fractal dimension of the 

attractor that produced the time series. In the case of a vector of successive 

derivative estimates, it is the order of the differential equation, which will typically 

yield a vector shorter than the lag vector representation, but only for systems that 

can be so represented. In the case of a vector of state variables, it is the number 

of degrees of freedom of the system. If what we will generally refer to as the 

order of the system is a priori unknown, it will be necessary to scan the data at 

successively increasing orders until sufficient predictive information is found or 

concluded absent from the data set (or at least not feasibly extractable). 

                                                
41 These state variables must be computed from the observables. If definitions of the “true” state variables are not known, it may be 
possible to construct an over-complete vector of surrogate state variables using the methods of “compressive sensing”.  Essentially 
a lag vector would be multiplied by a random matrix of zeroes and ones where the rows are linearly independent and “random”. 
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The incidence of chaos, with increasing dimension, increases in continuous flows 

(starting at a minimum dimension of 3) but decreases in iterated discrete maps; 

the trends intersect at a dimension of 8 [96]. Generic modeling faces severe 

challenges implied by the Thom Classification Theorem if the dimension exceeds 

10. The number of data samples required for meaningful statistics on non-linear 

multivariate dependence, and the computational time to process them, both 

increase exponentially with dimension. For systems that can be represented as a 

single higher order ODE, a lag vector length of 8 is particularly convenient, as it 

can be processed with a computationally inexpensive Walsh transform to 

estimate the observable and its first few derivatives; a lag vector of length 8 is 

adequate for systems with dimensions up to 4. Thus for interesting practical 

problems, orders of 3 to 4 should be a fertile place for investigation. System 

order can be estimated as the least integer exceeding the calculated information 

dimension D1: but this may include noise as an additional dimension; and will 

depend upon the scale (level of the pyramid) at which D1 was calculated. 

The appropriate scale at which to calculate the information dimension (and the 

entropy, mutual information, etc.) is in general also a priori unknown. Our novel 

copula based algorithm has been used with a heuristic described above to select 

a pyramid level, but this heuristic is somewhat arbitrary and the algorithm itself is 

agnostic on this point. It also should be noted that there may not be a single most 

appropriate scale: in a multivariate data set, it is entirely possible to have 

coupling at multiple scales; e.g. at scale 2j variables x1 and x2 may be strongly 

coupled, while at scale 2k variables x2 and x3 may be strongly coupled. 
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Finally, related to both order and scale, the lag at which to look for dependence is 

in general also a priori unknown. By lag is meant the ΔT between successive 

elements of a lag vector in the case of uniform sampling, the ΔT between terms 

in the case of delay differential equations, etc. In the experiments reported in 

Section 6.1, the lag step size was selected to be that which yielded the first 

minimum of the mutual information, as the synthetic data could be generated at 

arbitrary step sizes. In the application reported in Section 7.1, as the real world 

data had been sampled at a fixed interval, dependence was plotted as a function 

of lag, and the lag times that maximized and minimized it for particular pairs of 

variables were among the findings of interest to the plant engineers. 

All the statistics used herein are averages over the entire data set. It is possible 

to calculate Pointwise Mutual Information (PMI) over subsets of the data and at 

various lags and scales. This may be helpful when the dependence structure is 

complex or spatiotemporally varying. Exploring this is left for future work. 

Having developed, in Chapter 4, algorithms for estimating information theoretic 

statistics, we now proceed, in Chapter 5, to illustrate their application to analysis 

of evolutionary algorithms. 
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5 Evolutionary Algorithm Analysis 

We will focus upon only a few first order considerations, and view them in the 

new (to the field of evolutionary computation) light of information theory. Most 

analysis starts with fitness: the topic is familiar and the notion is seemingly 

intuitive; but the term is almost universally misused, perhaps belying the actual 

depth to which the notion is understood. We will start instead in Section 5.1 with 

diversity: again a familiar topic, but one where we are less likely to be led astray 

by untrustworthy intuition. After considering diversity, endowed with whatever 

new perspectives that may give us, we will turn in Section 5.2 to fitness and the 

closely related topic of deception (generally considered the primary source of 

problem difficulty for EAs, or at least of “intra building block difficulty” [43]).  

Next we revisit one of the few quantitative theoretical results from natural biology, 

specifically population genetics, that has been applied to EAs: George Price‟s 

Selection and Covariance Theorem [79]. The Price Equation relates the 

correlation between trait value and fitness (reproductive sampling rate) with the 

changing preponderance of that trait in a population. Price originally assumed 

individual selection and non-random mating: but equipped with the novel ability, 

provided by our information theoretic metrics, to objectively measure the fitness 

of ensembles, we can predict population genetic dynamics under pair or other 

group selection. In Section 5.3, we extend his equation to non-random mating. In 

Section 5.4, we re-derive his original equation with a new interpretation for 

effective fitness. In Section 5.5, we reformulate his equation to identify terms 

quantifying fundamentally important attributes such as evolvability. 
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5.1 Diversity 

Diversity is the label for several related attributes of a population among which 

the EA community has failed to distinguish with different labels. The natural 

biology population genetics community asks more specific questions, such as: 

How many loci have multiple alleles present in the population? What fraction of 

the total number of loci is this? How many different alleles are present: for each 

locus; and total or average? What is the statistical distribution of alleles? The 

value of diversity in EAs derives from several factors, including the following: 

 To share limited resources, species may exploit different niches (e.g. 

multiple cognitive radio networks may select different spectral bands). 

 Environments may be non-stationary, so alleles that are sub-optimal 

during one time period may become optimal during a later period (and 

then still later become sub-optimal again, in cycles or random walks). 

 An evolutionary optimization algorithm may not have converged to a good 

solution and “building blocks” required to construct an as-yet-unknown 

good solution may be present only in species whose instances are not the 

most fit individuals in the current population. 

Several researchers in natural biological ecosystems and EAs have used entropy 

as a diversity measure [110]. Various refinements of entropy may be used to 

measure various specific kinds of diversity. We may consider the diversity of 

entire populations, sub-populations, or specific individuals with respect to others. 

We may consider genotypes, phenotypic structures or phenotypic behaviors. 
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5.1.1 Phenotypic diversity of populations 

In this dissertation, rather than phenotypic structural diversity, we address the 

more directly useful (for evolutionary learning of models) phenotypic behavioral 

diversity. Total information diversity, in entire populations, sub-populations, 

ensemble models, potential reproductive pairings, etc. is inversely related to 

redundancy (Equation 11, total correlation), which can be normalized as: 

 

If the normalized total correlation is one and each member of a population has 

the same amount of information (entropy), then each has exactly the same 

information.42  With a normalized total correlation of one and unequal model 

entropies, the model with the greatest entropy has all the information, of which 

each of the others has a subset.  From an information theoretic perspective, all 

maximal entropy models in such a population are equivalent; all but one could be 

discarded, along with all models of lesser entropy, with no information loss.  

However, different individuals might represent the same information in very 

different ways, yielding very different behavior from a RMSE perspective. 

A total correlation of zero indicates that each member of a population has 

information entirely distinct from that of every other member and combination of 

members.  For every pair or larger group of individuals, the mutual information is 

zero.  This apparent diversity is maximized by a population of random models, 

each conveying no information about any of the others, or about the target! 

                                                
42 Under, as always, a recoding (discrete permutation or continuous homeomorphism); in other words, the models are all in the 
same “recoding-equivalence class”; Crutchfield, op cit. 
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For NC()=0 given multiple individuals that convey information about the target, 

each must model a different target aspect.  Normalized total correlation can be 

minimized absent such unlikely non-overlap of the mutual information between 

models and a target: excess model entropy can mask a paucity of diversity in the 

information that different individuals convey about the target.  Instead we could 

calculate “relevant diversity” (as we did formerly) as 

 

which ranges from zero to one in the absence of synergy. In the presence of 

synergy, it is unbounded; indeed, if all the information about the target results 

from synergy, it involves division by zero. To avoid this problem and to capture 

the effects of synergy, we generalize the definition of total correlation, replacing 

entropy with mutual information to get model absolute total redundancy 

 

and normalizing to get model relative total redundancy 

 

These are the additive inverses of the synergy-redundancy measure (Equation 

12) and Synergy-Redundancy Index (SRI, Equation 52), generalized from 2 to an 

arbitrary number of models (as was implicit in the ensemble formulation of 

Equation 52). As we wish to measure not the inverse of diversity (redundancy) 

but rather diversity itself, we settle upon 
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Note that generalized SRI now ranges in [-(m-1),+1]. 

 A value of zero indicates that the information about the target provided by 

each of the models in the population is on average neither redundant nor 

synergetic with (i.e., seemingly independent of) the rest of the population. 

 A value of negative (m-1) indicates that all the models are entirely 

redundant (not in their total entropy, but in the information they convey 

about the target). 

 A value of positive one indicates that no individual model in the population 

conveys any information about the target, but that collectively they do 

convey information: this is not as unlikely as it seems (consider an 

ensemble comprising all the inputs to a parity circuit); the size and 

composition of the ensemble that conveys this information is not indicated. 

Generally speaking, the more positive (more likely, less negative) the SRI, the 

more phenotypic (behavioral, target relevant) information diversity. 

If an index that ranges in [0,1] is preferred, we may renormalize Equation 65 (as 

we did Equation 52 to get Equation 57) as 
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but this sacrifices the clear boundary between net redundant and net synergetic 

cases so our preference is for Equation 65. 

We may foreshadow discussion of fitness by noting that the joint MI term in the 

numerator and denominator of should rapidly converge to I(Y;X), so variation will 

come only from the summation in the numerator, which equals the number of 

models in the population times their average MI with the target. This relates 

diversity with fitness (a connection lacking from most previous indicators) but 

desensitizes this diversity indicator as the run progresses. 

Given the above noted problems, especially the confounding effects of 

redundancy and synergy, development of a fully satisfactory measure of diversity 

remains open. Nonetheless, total and target relevant phenotypic behavioral 

information diversity indicators are key contributions of this thesis. 

5.1.2 Phenotypic diversity of one entity with respect to another 

Assessing diversity of one entity (individual or ensemble) with respect to another 

can be accomplished using various indicators. For total information we may use 

dissimilarity (normalized information distance, Equation 45). For target relevant 

information we may use any of the following: necessity with respect to the target 

(Equation 51); necessity with respect to what the inputs reveal about the target 

(Equation 56); SRI (Equation 52); or the dissimilarity of Equation 57 (SRI shifted 

to be always positive and scaled to lie in [0,1]). As both versions of SRI are 

symmetric they are generally preferable to either version of necessity; but none 



 

75 
 

of these satisfy the triangle inequality so unfortunately we lack a true distance. 

We prefer to assess model diversity using SRI from Equation 52. 

5.1.3 Genotypic diversity 

Genotypic representation diversity may be measured by replacing, in the above 

phenotypic behavioral diversity indicators, the MI with the MAI (Equation 26), 

Shannon entropy H with Kolmogorov complexity K, DS with DK (Equation 28), etc. 

and applying the indicators to genotypic strings rather than model outputs. 

Distances should use the sum rather than the maximum of the conditional 

complexities and be normalized by the joint rather than the maximum of the 

complexities, as discussed in Chapter 2, for consistency between the phenotypic 

behavioral and genotypic representation diversity indicators; this is not merely 

aesthetically appealing but also important to the conjecture stated in Section 8.1. 

Theoretical analyses can use Kolmogorov complexity based measures; actual 

measurements and calculations must replace those non-computable quantities 

with appropriate surrogates, such as Normalized Compression Distance 

(NCD).[28] EAs should preserve diverse genetic material with reproductive 

potential. 

5.2 Fitness: Solution Quality, Reproductive Potential & 
Deception 

In population genetics, “fitness” is defined operationally, indeed almost 

tautologically, as reproductive success: the relative number or frequency of 

viable fertile offspring (of a particular individual, lineage, genotype or phenotype). 

In EAs, “fitness” often refers to some measure of solution quality, which is used 
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to drive the relative reproductive success by artificial selection. These two 

usages have been confounded at least since Sir Ronald Fisher used the term in 

1930 [38]. Even within one of these 2 major classes of meaning, there are 

differences in the details, e.g.: offspring in the immediate generation or over time; 

solution goodness to be maximized or badness/cost/error to be minimized; etc. 

[85] 

5.2.1 Solution quality of individual models 

It is pointless to search for an error minimizing representation of a model unless 

that model both captures most of the available information about the target 

provided by the inputs and discards most of the irrelevant entropy of the inputs. 

Thus our metric for the overall information theoretic solution quality of an 

individual fj in the population is the similarity of its outputs Zj to those Z of our 

ideal model f (Equation 25), equal to the complement of their dissimilarity (Rajski 

distance, Equation 45) 
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Extending this from an individual to an ensemble model yields Equation 59. 

There is little difference between an individual and an ensemble model in our 

formalism, as even individual models can have vector valued outputs, so the 

outputs of an ensemble model are the concatenation of several vectors, which 

just forms a longer vector, and there is no limit on model output vector length. 

A model can achieve a perfect score of one only by exactly explaining target 

variance: eliminating both residual target entropy and excess model entropy.  
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Like MSE, this indicator penalizes sources of error equally: it does not matter 

whether the target has fluctuations that the model does not reflect, or the model 

has jitter not found in the target; either error equally degrades indicated model 

fitness.  A model that fully explains target entropy (to the extent possible based 

on the inputs), but with the same amount of excess model entropy, scores 0.5; a 

model that has no excess entropy, but explains only half the target entropy, also 

scores 0.5; and a model that explains half the target entropy, and has a like 

amount of excess model entropy, scores 0.333. 

Definitions of information theoretic indices that objectively and justifiably evaluate 

ensemble models, without requiring foreknowledge of how the multiple 

constituent sub-models might be combined into a single more complex model, 

including the overall ensemble model quality expression of Equation 59 and its 

decomposition into sufficiency and efficiency, are key contributions of this thesis. 

5.2.2 Solution quality of populations 

As a population is an ensemble, its solution quality may be so calculated. One of 

its members may have higher or lower quality than the population as a whole: the 

member‟s contribution to population sufficiency must be non-negative, but the 

member may degrade population efficiency. Considering a population as a 

source from which to select one model to be used now (not as a pool of genetic 

material for further evolution in hopes of producing better solutions), such an 

ensemble evaluation is of questionable utility. Typically more relevant as a 

measure of overall population solution quality in this case would be the value of 
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Equation 59 on its best member; from an information theoretic viewpoint, that 

best member is the one that yields the highest value of Equation 59. 

Indeed, as both dS and DS are true distances, EA system performance with 

respect to improving solution quality can be measured in quasi-physical terms. 

E.g., using dS, the rate at which the population‟s best individual approaches the 

ideal model is a “velocity” in units of bits per generation or bits per second, or a 

“gas mileage” in units of bits per fitness evaluation or bits per joule expended in 

computation. Actual physical interpretations of these are left for future work. 

5.2.3 Reproductive potential of populations 

By “reproductive potential” we mean high fitness in a sense somewhere in 

between those cited at the beginning of this section: not necessarily a high 

solution quality, but containing material that, under the genetic operators, is likely 

to produce offspring with high solution quality; we want to be able to evaluate this 

inter alia so we can select high potential parents for reproduction. 

We may be tempted to treat an entire population as an ensemble and apply 

Equation 59. This is valid but generally misleading. At the end of an EA run, this 

index should reach or closely approach unity: however, that is a solution quality 

evaluation; reproductive potential is irrelevant at end of run. During an EA run, it 

is likely that preserving diverse genetic material likely to be needed later will 

require retaining (temporarily) substantial excess model entropy. 

Sufficiency is the statistic most relevant to reproductive potential of a population. 

It measures what fraction of the information about the target output available 
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from the inputs is [still] present in the population. That information is the most 

fundamental “building block” for constructing solutions in later generations. 

Necessity of a population is purely an efficiency consideration, to be applied with 

care: models containing the same information may represent it in different forms; 

this representation diversity may be needed (in addition to information diversity) 

in the context of a particular evolutionary system and problem (see Section 6.2). 

The population diversity index of Equation 65 is therefore important to assessing 

reproductive potential, as it shows to what extent information is distributed across 

different species in the population. High sufficiency indicates that the population 

contains most or all of the necessary building material; high diversity (low 

redundancy) indicates that the material consists of many relatively small blocks 

of various shapes that might be fitted together to construct the solution, rather 

than nearly indistinguishable large monoliths. The metaphor is accurate because 

multiple individuals cannot each contain a large share of the information without 

there being substantial overlap (much the same information in each). 

5.2.4 Reproductive potential of individuals 

We need means of evaluating a model‟s quality and its reproductive potential, in 

combination with another potential parent model specifically and in the context of 

the population generally. Several of the tools we have developed can be brought 

to bear on the problem. 
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First, if the model is an ensemble, with a high sufficiency but a low efficiency, 

then it has high potential under mutation, which could delete from the ensemble 

constituent sub-models of low necessity that only contribute excess entropy, or 

recombine constituent sub-models of high necessity to filter excess entropy. 

Example 14. If a target includes a bit that is the XOR of 2 input bits, and both of 

those input bits are present in an ensemble model, then the ensemble sufficiency 

will be high, the ensemble efficiency low and the necessity of each of the 2 sub-

models high. A GP ensemble mutation that combines those 2 sub-models with 

an XOR non-terminal node will retain all the sufficiency present in the parent 

ensemble while reducing ensemble entropy by one bit (thus improving ensemble 

efficiency); it will also reduce ensemble model cardinality by one sub-model. 

Second, in selection for sexual reproduction, 2 models can be evaluated as an 

ensemble. If the putative reproductive pairing has any objective values (e.g. 

sufficiency) better than either of the 2 constituent models, it has high potential. 

This possibility is explored informally in Example 15 and formally in Section 5.3. 

Example 15. If again a target contains a bit that is the XOR of 2 input bits, and 

one model contains only one of those 2 bits and another model contains only the 

other of those 2 bits, then neither of those input bits will contribute to the 

sufficiency of either of those models. However, evaluating the 2 models as an 

ensemble will reveal their joint sufficiency. Thus they would be evaluated as 

having high reproductive potential if paired with each other specifically. 
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Third, if a model is evaluated in the context of ensembles formed with several 

potential partners randomly selected from the population, and some reasonable 

statistic (e.g. median, mean, mean plus standard deviation) on the results of 

those ensemble evaluations is good, then the model would be evaluated as 

having high reproductive potential in the context of that population generally. This 

possibility, its inverse and their implications are explored formally in Section 5.4. 

There is no single universal tool for evaluating the reproductive potential of 

individuals for all purposes in all situations. However, the metrics and indices 

developed herein provide a general toolkit adaptable to many uses, and several 

of these indicators can be and have been used together in multiobjective EAs. 

Limiting ourselves to a single objective (for EAs with this restriction), there are 2 

attractive candidates for mating pair selection: SRI (Equation 52) or the overall 

model quality index (Equation 59). 

A high value of SRI for a pair of individuals strongly suggests that they should be 

mated: their synergistic elements may combine to yield higher MI with the target 

of a child than of either parent.  Absent a significantly positive SRI, selection bias 

against pairs with large negative SRI at least minimizes redundancy in mating 

pairs, corresponding to specialization and division of labor.  Use of indicators of 

pairing potential imitates volitional selection for mating or team formation, 

common in natural biology and human economic activity, but typically absent 

from evolutionary computation. SRI is attractive, but we argue that a better pair 

potential indicator for survival as well as reproductive selection is Equation 59: 
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 High SRI indicates that a pair is strong relative to its own members: however, 

those individual members might have been quite weak; high SRI does not tell 

us that the pair is any stronger than another pair. 

 SRI is clearly justifiable for reproductive selection; for survival selection it is 

less so. 

 Similarity to the ideal model is our chosen solution quality metric; using it also 

to evaluate reproductive potential of mating pairs is consistent, simple and 

presumably maximizes heritability of solution quality. 

 Similarity to the ideal model benefits from synergetic and not from redundant 

MI with the target contributed by pair members, so it implicitly incorporates 

the diversity that SRI measures, albeit with a lesser weight. 

For populations, the primary solution quality measure is sufficiency; for the 

constituent sub-models of an ensemble, necessity is primary but efficiency also 

matters. For ensemble models, these and other objectives are all important, 

suggesting true Pareto multi-objective optimization should be used with a vector 

of all the essential solution quality measures; otherwise the most important 

objectives in the vector can be collapsed into Equation 59. 

If Equation 59 were calculated for each subpopulation that could be formed from 

the current population, the ideal evolutionary step would be to select for survival 

all those individuals in the subpopulation with the highest aggregate similarity to 

the ideal model, then recombine, mutate, etc. and repeat.  However it is generally 
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infeasible to do this: the indicators developed herein are computationally costly, 

and geometrically so in the number of arguments to the functional.  Therefore, 

we do not suggest calculating functionals of more than 4 terms in EA main loops. 

In early stages of this work, we attempted to estimate even 3 term functionals 

with a heuristic. If it is known a priori that a particular problem involves no 

synergy, the following approach can be used to reduce computational costs. 

Low computational cost approximation of 3-term functionals43 

The basic elements in all these calculations are individual and joint entropies.  

H(Y) can be calculated once at the start of the run.  H(Zj) and H(Y,Zj) of each 

model can be calculated when the model is first generated and added to the 

population, and recalculated only if it is structurally modified or if its parameters 

are changed.  Only H(Zj,Zk) need be calculated during tournaments or other 

selection procedures; it then can be stored, in case it is needed again.  Given 

these 1- and 2-term entropies, the essential 3-term entropy can be bounded: 
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This may then be used to bound the key indicator: 
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43 This analysis should be renormalized by I(X;Y) vs H(Y), but that will only rescale it by a problem-specific constant. 
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The bounds developed tend to be wide, so for tournament selection, we can try a 

heuristic.  Absent the full 3-term functional, we do not know the target relevant 

diversity of two individuals.  Applying the principle of insufficient reason, we 

guess that the proportion of overlap between the mutual information that each 

has with the target is the same as the proportion of overlap between their 

entropies, equating the following ratios: 
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This can be rewritten as 

),I();;S( NN kjkj ZZZZY   (71) 

showing that our heuristic conservatively assumes no synergy. 

Note that we do not actually have either of the 3-term functionals above; we are 

assuming a relationship involving them, in order to estimate I ( Y; Zj, Zk ) as 
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If this estimate exceeds the bounds previously developed, we limit it.  We then 

use it to estimate the 3-term joint entropy, likewise limiting that to lie between its 

bounds.  Finally, we estimate NI ( Y; Zj, Zk ) for each pairing of individuals in a 

tournament.  Selection for reproduction (and survival) may then be performed, 
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based not just on the relative fitness of the individuals, but also on the estimated 

relative fitness of their potential combinations. 

Considering the individual and joint entropies of two models and a target, each 

region of which can contain zero or non-zero entropy, there are 128 qualitatively 

distinct cases.  Discarding trivial cases leaves 63.  Assigning 1 bit to each region 

of non-zero entropy, relative error of the estimated versus the exact value of 

NI(Y;Zj,Zk) ranges from +71% maximum to -36% minimum, with 16% RMS, 2% 

mean, 0% median and 0% mode (38 cases).  Absent synergy, the largest errors 

would degrade survival selection based on NI(), but not reproductive selection 

based on NS(). 

5.2.5 Deception 

In EAs, deception refers to misleading evaluations of reproductive potential. 

Reproductive potential of an individual is usually estimated as its solution quality, 

without regard to population context or likely effects of genetic operators. Efforts 

to define and exploit notions of “effective fitness” are notable exceptions [99] but 

they do not directly counteract deception. Example 6 is a classic fully deceptive 

maximization problem: any hyperplane that divides the space of possible 

solutions in half, will yield an average solution quality in the half containing the 

global maximum that is lower than the average solution quality of the other half 

(which contains the global minimum); thus rewarding high solution quality 

individuals with reproductive opportunities will cause lineages to climb a solution 

quality ramp and then fling themselves off a solution quality cliff. 
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As pointed out by Goldberg in [43], globally deceptive problems are uninteresting 

because they will defeat any reasonable search or optimization strategy, but 

large problems that contain small deceptive sub-problems actually arise in 

practice and “competent” EAs can be designed to solve them. The original 

motivation for our foray into information theory was to avoid the deception 

encountered on Sprott‟s simplest chaotic flow, where linear correlation of the 

dependent variable (jerk) with one of the observables (velocity) was strong (r2 = 

.4) but with the other 2 observables (displacement, acceleration) was extremely 

weak (r2 under 1E-9); yet all 3 observables were in fact required to express the 

defining equation (or any other equation that both approximately matched the 

data in the short term and when iterated long term reconstructed a chaotic 

attractor). MI was found to significantly outperform linear correlation and 

normalized root mean squared error (NRMSE) on this problem (see Section 6.1), 

avoiding that particular case of deception. 

Yet MI and the various metrics and indices we have derived from it are still 

subject to forms of deception. Example 7 illustrates information theoretic 

deception, where noise corrupted individual models that could never be 

processed or recombined in any way such as to predict the outputs 100% 

correctly were preferred over clean individual models that could be recombined 

to predict the outputs 100% correctly. In Example 7 this could be avoided by 

doing reproductive selection based on evaluations of the joint solution quality of 2 

potential parents taken as an ensemble (see Section 5.2.4 and Section 5.3). 

There are worse cases where ensemble evaluation does not avoid deception. 
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Example 16. Generate 2 input Gaussian RVs x0 and x1 with zero mean and unit 

variance. Generate 2 output variables y0 and y1 as the sum and difference of the 

input variables and rescale them by dividing by √2. Generate 2 more observables 

z0 and z1 by scaling the output variables by multiplying by 1.9, adding 2 

independent Gaussian noise sources with zero mean and variance 0.1 (one 

noise source to each output variable) and rescaling by again dividing by √2. 

Calculate the efficiency, sufficiency and similarity of x0 alone, x1 alone, the 

ensemble (x0, x1), z0 alone, z1 alone and the ensemble (z0, z1), all against y0 

alone, y1 alone and the ensemble (y0, y1). Observe that the individual noise 

corrupted output variables and their ensemble yield better values on all indices 

than the individual input variables and their ensemble, despite the fact that, by 

construction, y0 and y1 can be reconstructed 100% accurately from the latter but 

not from the former. See Table 3 for statistics on 4096 pseudo-random points. 

Obviously the deception in Example 16 is synthetic and could be avoided by 

increasing the noise variance. This realistic example shows that deception can 

still occur, even after evaluating ensembles rather than individual variables and 

also decomposing the overall information theoretic model quality index into its 

sufficiency and efficiency components. Deception is in this case related to 

another of Goldberg‟s core sources of problem difficulty, noise. It is unclear, in 

the context of the original motivating problem, how to distinguish deception from 

Goldberg‟s third core source of problem difficulty, poor scaling. While the 

information theoretic evaluators developed herein do have significant advantages 

over more traditional EA evaluators, they are not magic bullets. 
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5.3 Non-random mating extension of Price’s Theorem 

Price‟s Equation can be derived from Slatkin‟s transmission-selection recursion 

as applied to Holland‟s canonical model of genetic algorithms [50]; this assumes 

individual selection for reproduction and random mating.  We observe that if 

complementary individuals can be identified, they can be selected, not only for 

membership in ensemble models, but also for reproduction.  Given a 

measurement of the fitness of an ensemble as such, a 2-member ensemble may 

be regarded as a potential reproductive pairing; reproductive selection can be 

then performed on these, rather than on individuals, favoring complementary 

matings. EAs implicitly process ensembles; we explicitly address the population 

dynamics of ensembles, using information theoretic functionals to evaluate them. 

Price‟s Theorem can be extended to model the evolutionary population dynamics 

of ensembles under group selection with joint fitness (even if not separable as 

the product of the individual fitness of each parent).  The details will depend 

upon: whether group selection is applied to survival, reproduction or both; for 

each of those, whether it acts alone or together with individual selection; whether 

groups are limited to potential parental pairings or are more general; and whether 

mating is random or not.  Here we outline a proof for the simplest scenario: group 

selection applied to reproduction only, acting alone on potential parental pairings. 
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In [61] Price‟s original proof is followed, recast and simplified for use with GP, but 

still focusing on gene frequencies: 
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In [6] the theorem and its proof are generalized to changes, not only in gene 

frequencies, but in arbitrary measurement functions, and justified directly in terms 

of Slatkin‟s recursion and Holland‟s canonical model of GAs: 
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To apply Price‟s Equation to reproductive selection of potential parental pairings 

as such, we need merely replace, in Slatkin‟s recursion (74), the subexpression 

quantifying sampling frequencies of individual parents, with one quantifying 

sampling frequencies of parental pairings, which flows through to the conclusion: 
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This simple result is a key contribution of this thesis. 
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For it to be useful in GP, we need a solution quality indicator (fitness in the 

engineering sense) to drive the sampling rate (fitness in the population biology 

sense), as in Equation 78 below.  Here we claim an advantage for normalized 

joint mutual information of the potential parents with the target: it is a computable, 

general, justifiable measure of how much 2 individuals jointly provide about the 

target.  We use it here, but any other effective joint indicator could be substituted: 
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We use mutual information as the solution quality indicator and as the basis for 

reproductive sampling; choosing it as our measurement function we can analyze 

its change.  We estimate its expectation (79) in offspring of a potential parental 

pairing by its joint measurement on those potential parents.  In general the joint 

fitness (in either the engineering or population biology sense) does not factor as 

the product of the parental fitness values: joint solution quality may reflect 

synergy and/or redundancy; joint sampling may reflect non-random mating.  
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The question now becomes, how accurate is our estimator (Equation 79)? 

Equivalently, how strong is the covariance? In other words, how heritable is our 

joint indicator F(y,z), the overall model quality of the parents as an ensemble, 

from Equation 59? 

Heritability44 refers to strong correlation between parental and offspring fitness 

across the changes typically induced by genetic operators.  These changes must 

usually be small for heritability to be possible.  “Small” in the phenotypic space is 

measured in terms of change in the measurement function (phenotypic property 

of interest). “Small” in the genotypic space can be measured by “edit distance”: 

the minimum required number of applications of modification primitives by the 

genetic operators, starting from a parental form, to reach a child form. Correlation 

between the size of genotypic and corresponding phenotypic changes is one way 

of collapsing the question of search neighborhood structure to a scalar statistic, 

the complement of which is sometimes used as an indicator of problem difficulty. 

It is apparent that mutual information is heritable in various simple edits, where 

RMSE and correlation are not.  Changing additive or multiplicative constants 

changes RMSE, but is transparent to correlation and mutual information.  

Changing from an odd to an even power changes (and can altogether eliminate) 

correlation, but merely causes the loss of one bit or less of mutual information. 

Low RMSE implies high similarity (Equation 59), but the converse does not hold:  

members of recoding equivalence classes with respect to similarity can differ 

                                                
44 Narrow-sense: in biology, the fraction of the phenotypic variance that can be used to predict changes in population mean; see 
http://en.wikipedia.org/wiki/Heritability 

http://en.wikipedia.org/wiki/Heritability
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greatly with respect to RMSE.  Most transformations that alter RMSE and many 

that alter correlation are transparent to mutual information, which is preserved for 

discrete distributions by arbitrary permutations and for continuous distributions by 

embeddings; the only deterministic transformations that alter MI are topological 

foldings (especially infinitely repeated ones due to periodic functions). 

5.4 Effective fitness interpretation of Price’s Theorem 

It is instructive to consider defining individual fitness as the expectation of the 

fitness of all pairs of which the individual might be a member -- we recover the 

original equation, with a new interpretation: 
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The fitness of an individual may not be independent of the makeup of the 

population of which it is a member: if the value of the individual‟s solution quality 

(or any other measurement function applied to that individual in isolation) is high, 

but the rest of the population does not contain individuals that, when recombined 

with the given individual, are likely to produce offspring with comparably high or 

higher values, then the individual‟s effective fitness is low.  This relates to the 

concepts of “boosting” and “fitness sharing”. On the other hand, if the population 

does contain complementary individuals, then the effective fitness depends upon 

the population size, the relative frequencies of the particular and the 

complementary species, the effectiveness of the reproductive selection operator, 
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and any other deviations from panmixis (e.g. geographic isolation of demes), 

etc.: if the individual is likely to be mated with a complementary individual, 

effective fitness is high; if reproduction is mostly random, and only slightly biased 

by the joint fitness evaluation, it may not be. This affects the effective fitness of 

an individual genotypic line considered over multiple generations and the overall 

population‟s evolvability. 

5.5 Evolvability, Heritability, Respect, Assortment & 
Geometricity 

Evolvability 

Evolvability has been considered at least since Sewall Wright first introduced the 

metaphor of the fitness landscape or adaptive landscape45. However, a rigorous 

mathematical definition remains lacking today. The general notion is 

Evolvability is loosely defined as the capacity to evolve, 
alternatively the ability of an individual or population to generate fit 
variants... Thus evolvability is more closely allied with the 
potential for fitness than with fitness itself; two equal fitness 
individuals or populations can have very different evolvabilities... 
Typically, researchers use some definition of evolvability based 
on the offspring of current individuals or populations… the 
transmission function of all possible offspring from a parent to 
define a set of metrics of evolvability... It is often argued that there 
may be long-term trends for evolvability to increase... However, 
as evolvability is more directly related to fitness potential than 
fitness itself, long-term change cannot be due to straight fitness 
selection. Thus any trend towards change in evolvability can only 
be understood through some second order selection mechanism 
by which evolution tends to retain solutions that have a more 
evolvable genetic system. 

Smith, Husbands, Layzell and O‟Shea, 2002 [95] 

                                                
45 Wright used neither term, but simply “field” in [112]. 
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Most current EAs are nowhere near expressive enough for a second-order 

mechanism to increase evolvability46. In the absence of such a mechanism, as 

the average solution quality of a population increases, evolvability must inevitably 

decrease: while effective reproductive selection may improve the relative 

likelihood of producing improved offspring, the overwhelming preponderance of 

less over more fit possible genotypes will ultimately dominate47. 

In a plot of the cumulative distribution function of fitness, the area to the left of 

highly fit parents will greatly exceed that to the right. Altenberg [6] states that the 

upper tail of the fitness distribution must grow larger with an EA than with random 

search for the EA to be successful. 

We have already argued that similarity of an ensemble to the target is an 

indicator not only of solution quality (fitness in the engineering sense) but also of 

reproductive potential and therefore a good candidate for driving, in artificial 

selection, the reproductive sampling rate (fitness in the population biology 

sense). It is a priori reasonable that a joint evaluation of a characteristic of a set 

of parents would be more predictive of the characteristic in their offspring under 

recombination and mutation than the product of the values of that characteristic 

evaluated on each of the parents individually. This leads to several practical 

selection heuristics. 

Pair selection for reproduction as in Section 5.3, acting in the absence of genetic 

operators, will increase the preponderance of informative ensembles of size 2; 

                                                
46 A more optimistic view is [5]. 
47 Prof. Chilukuri Mohan has dubbed this (in unpublished  discussions) “the pressure of the prior”. 
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these are good candidates for recombination, especially if their SRI is high. This 

index may be used to bias selection in favor of pairs that are not just good teams 

but also likely good parents: those with the potential to produce offspring better 

(closer to individual sufficiency and/or efficiency) than themselves. 

If recombination produces offspring that are less efficient without being more 

sufficient, or less sufficient without being more efficient, than their parents, there 

appears to be no advantage to adding them to the population.  Brood selection 

has been promoted in [3] etc. 

Recombinations that trade sufficiency for efficiency or vice versa cannot be so 

easily evaluated, especially in isolation: one multiobjective heuristic is to maintain 

population sufficiency, try to achieve individual sub-model necessity and strive for 

similarity in ensemble models; ensembles evolved per this heuristic implement 

nonlinear Independent Components Analysis (ICA).  Neutral recombinations, like 

neutral mutations, may be needed along the evolutionary path; they do not affect 

information theoretic attributes but may improve representation diversity. 

Scrupulous attention to information theoretic considerations reduces the need for 

mutation.  If population sufficiency is maintained during selection, essential 

information is not lost; mutation is often needed to re-introduce such information 

that has been lost in evolutionary algorithms that do not guarantee preservation 

of population sufficiency.  Assuming that all individuals in the population 

contribute to its sufficiency, potential for useful mutation is indicated by an 
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individual‟s low efficiency.  Mutation can improve efficiency by discarding input 

entropy that does not contribute to modeling the target.  

In Section 6.1, a 3 element ensemble was required for sufficiency, using raw 

inputs. One of those elements was improved by squaring it, thereby discarding 

one bit of information (the sign): reducing its individual sufficiency (but not the 

ensemble sufficiency); and increasing its individual efficiency (and the ensemble 

efficiency); also increasing the ensemble overall solution quality.  The argument 

for brood selection applies here also. 

To justify these heuristics more rigorously, we return to Price‟s Equation. 
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We define the improvement of the expectation of the measurement function in 

the brood relative to the average of the parents as 

F( ) F( )
C( , ) ( , )

2
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x y x y
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and rewrite Equation 77 in terms of relative change to show the effects of the 

selection and genetic operators and their interaction as  
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relative change (84) 

pair selection (84.1) 

genetic variation (84.2) 

their interaction(84.3) 

in which we may identify the key factors affecting the essential requisites48 
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heritability (85.1) 

evolvability (85.2) 

either as averages over the space of possible evolutionary trajectories or 

stepwise as we proceed along one of those trajectories. Obviously this can be 

further generalized to an arbitrary number of parents in the selection function. 

This is a key contribution of this thesis. 

                                                
48 A less detailed treatment of this, under random mating, may be found in [77]. 
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In the case of “fitness proportionate selection”, where we set the sampling rate 

equal to the solution quality index (or other measurement function, as in Equation 

78), Equation 84 reduces to 
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relative change (86) 

pair selection (86.1) 

genetic variation (86.2) 

their interaction (86.3) 

The genetic operators are generally thought to be neutral, on average, with 

respect to any phenotypic attribute measurement function, so 
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The first term will be positive. The second term will be negative (on average, and 

at each step after evolution has significantly improved the measurement function 

beyond that of a randomly generated individual). Biologists expect a population 

that is large enough to avoid stochastic effects to eventually fixate, with selection 

exactly balancing genetic variation. EA users would like to hold off such 

convergence as long as possible, to achieve the maximum possible solution 

quality.  Minimizing the magnitude of the inevitably negative correlation 

coefficient between the fitness and its average “improvement” due to the genetic 
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operators will extend the duration of the phase in which the effect of selection 

dominates that of the mostly deleterious genetic variations. 

As in EA applications we care little about the mean of the population (except 

earlier in evolution, where we do not want good fitness individuals to be dragged 

back down in recombination with predominantly poor reproductive partners), it is 

more interesting to study the distribution of fitness than just its mean. One 

approach [6] is to define a local performance equation predicting growth in the 

population upper fitness tail. In that formulation, the key parameter limiting 

evolvability again is a correlation coefficient like that in Equation 85.2. 

Heritability 

Altenberg shows that “that there needs to be a correlation between 

complementary schemata of high fitness and the fitness distributions of their 

recombinant offspring in order for the GA to increase the chance of sampling 

fitter individuals” and states his intuition “that the best estimator for predicting the 

behavior of a GA is simply the approximation of the transmission function in the 

fitness domain, and that it is the rate of decay of evolvability as parents increase 

in fitness that is the critical feature of the transmission function for GA 

performance”. 

We agree: the neighborhood structure of the genotypic search space, evaluated 

in the phenotypic fitness space, is the beginning and end of the matter of EA 

performance. 
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Thus next we look to Radcliffe‟s forma analysis and Moraglio‟s geometricity to 

justify why information theoretic ensemble fitness indices should be more 

heritable than traditional fitness functions, and then in Sections 6.1 and 6.2 show 

empirical evidence on difficult problems that these indices remain heritable as 

population average fitness increases, thereby maintaining evolvability. 

Respect and Assortment 

In the context of Radcliffe‟s forma analysis, “respect” is defined formally. We may 

informally summarize that definition as: if both parents share a particular 

heritable attribute, all offspring of those parents (under recombination without 

mutation) must share it also. Likewise the formal definition of “assortment” may 

be informally summarized as: if one parent has a particular heritable attribute, 

and the other parent has another distinct heritable attribute, it must be possible 

(under recombination without mutation) to produce offspring with both attributes. 

Clearly respect and assortment are only compatible if the set of formae under 

consideration are separable; that is, one can establish an orthogonal or at least 

linearly independent basis for heritable attributes. If a genetic representation and 

set of genetic operators guarantee both respect and assortment, then they will 

provide the strong heritability and the genetic variability required for evolvability. 
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Geometricity 

In the context of Moraglio‟s attempted geometric unification of EAs, a crossover 

operator is considered geometric if it possesses certain formally defined 

properties, which we may informally summarize as: (a) it can produce only 

offspring lying along a shortest path (through genotypic search space) between 

the parents; and (b) it can produce at least one offspring lying along such a path. 

The former condition (a) is equivalent to Radcliffe‟s definition of respect. If the 

latter condition (b) is strengthened to require that the operator be able to produce 

offspring at all the feasible points lying along all such paths between given 

parents, it becomes equivalent to Radcliffe‟s definition of assortment. The linearly 

independent (preferably orthogonal) basis in Radcliffe‟s formalism corresponds to 

the genotypic search space coordinate system in Moraglio‟s. 

We touched upon Kolmogorov based metrics for genotypic analyses in Chapter 2 

but our emphasis throughout has been on Shannon based metrics for phenotypic 

evaluations; sometimes these satisfy Radcliffe‟s conditions and sometimes not. 
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Example 17. Observable inputs are independent unbiased binary RVs {x1, x2}. 

Observable outputs are {y1, y2 } where y1=x1 and y2=x2. A population of ensemble 

models includes {z1={x1}, z2={x2}, z3={x1,x2}, z4={}}. An orthogonal basis is the 

pair of sufficiency recoding-equivalence class membership indicator functions 

(predicates) { 1 =Floor(I(Y1;Z
m)/I(Y1;X

m)), 2 =Floor(I(Y2;Z
m)/I(Y2;X

m)) }. 

Recombination operators yield offspring that include all sub-models common to 

both parental ensembles plus a random subset of sub-models present in either. 

In this case: formae are separable; respect and assortment are compatible and 

guaranteed; recombination is geometric. 

Example 18. Extend the outputs to include y3=x1 XOR x2. Extend the basis to 

include 3 =Floor(I(Y3;Z
m)/I(Y3;X

m)): it is no longer orthogonal; it is still linearly 

independent but only to order 2. Model z1 is a member of the forma ( 1 =1, 

2 =<don‟t care>, 3 =0) and z2 is a member of ( 1 =<don‟t care>, 2 =1, 3 =0). 

Recombination of these models should be able to produce offspring that are 

members of the forma ( 1 =1, 2 =1, 3 =0): recombination can indeed produce 

model z3 but it is not a member of that forma; it is instead a member of ( 1 =1, 

2 =1, 3 =1) because knowing y1 and y2 causes one implicitly to know y3. In this 

case: formae are not separable; respect and assortment are not compatible; 

recombination is not geometric (in a Euclidean space). 

We do not believe Example 18 to be a demonstration of a deficiency of our 

indicators but rather of the fundamental difficulty of parity. Formae based on our 

indicators in this case are not separable because information about the outputs in 
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this case is not separable. Had we defined equivalence classes with respect to 

similarity (as in Equations 46 through 48), the problem would have been 

needlessly worse: zero dissimilarity to one output is intrinsically incompatible with 

simultaneous zero dissimilarity to another output (unless those 2 outputs have 

zero dissimilarity between them, in which case they are equivalent, effectively a 

single output). Equations 46 through 48 are too precise for use as a basis: that 

predicate indicates the recoding-equivalence classes of Crutchfield. 

Note that while we are concerned with equivalence classes with respect to 

information, whose members may differ with respect to RMSE, it is also possible 

to find equivalence classes with respect to RMSE, whose members may differ 

with respect to information. See Table 4. 

Ensemble Genetic Operator Respect of Information 

There are several ways to mutate an ensemble model. Mutating one or more of 

its sub-model expressions will generally not be respectful of information. 

Recombining 2 of its expressions, using typical GP crossover operators, often 

will behave as if it were respectful of information, but this is by no means 

guaranteed. Duplicating one of its expressions is respectful of information. 

Composing 2 of its expressions (attaching one as a leaf of another tree) may 

improve efficiency and/or necessity but will reduce sufficiency (absent duplicates 

of the original expressions), so it is not respectful. Inserting a new expression, 

randomly generated from the terminal and non-terminal sets, is not respectful. 

Deleting a unique expression is not respectful. Algebraic simplification of 

constituent expressions and deletion of equivalent expressions are respectful. 
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When respect of information is observed, Equation 88 will hold. Primed variables 

denote offspring and we have deviated from our previous notation by 

distinguishing ensemble models with subscripts and omitting the superscripts 

indicating ensemble cardinality. 
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Recombining ensemble models (regrouping but not modifying their sub-model 

expressions, as in Examples 17 and 18) is similar to Radcliffe‟s operator R3/RTR 

(Random Respectful Recombination / Random Transmitting Recombination), 

although the infinite universal set implicit in GP requires some modifications; it is 

respectful of phenotypic information, per Equation 89. 
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(89) 

Aggregation of additional non-redundant expressions into a child ensemble 

increases sufficiency. The raw mutual information of a child model with the target 

cannot exceed that of its parents jointly with the target; but the overall model 

quality of the child can exceed that of its parents, if the child has less excess 

entropy than the aggregate of its parents (as it often will). 
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Note that respect implies that redundancy raises the lower bound on the possible 

results of an unfavorable recombination, whereas synergy raises the upper 

bound on the possible results of a favorable one. Respect causes total MI 

between models to increase, which will likely increase their redundancy also, 

possibly leading to emergent speciation: an evolutionary mechanism for 

maximizing the likelihood of mating composable representations and minimizing 

the likelihood of mating non-composable representations that yield “monsters”. 

This is merely a conjecture!49 

From the above recounting, it is clear that respect of information is inconsistent 

over different genetic operations, especially when it is incompatible with the 

assortment needed for evolvability, but often respect is preserved, as required to 

maintain the heritability also needed for evolvability. 

We do not claim our indicators always will pick exactly the right pairings; only that 

they enable selection that maximizes overall reproductive potential by 

commensurately measuring solution quality and relevant diversity.  With their 

use, versus MSE or correlation, or together with MSE, high fitness building 

blocks are less likely to be lost, and more likely to be recombined. 

Encouraged by the analysis of Chapter 5, we next present, in Chapter 6, 

experimental evidence for heritability of MI and evolvability using it. 

                                                
49 Might it be another explanation for Lee Altenberg‟s “evolution of evolvability in GP”? 
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6 Experiments 

This Chapter supports our claims with evidence gathered on hard synthetic 

problems. In Section 6.1, we revisit the original motivating problem of chaotic 

time series prediction. In Section 6.2, we work what is in some sense the most 

difficult discrete problem, parity. In Section 6.3, we return to continuous data, 

benchmark problems for symbolic regression. 

6.1 Chaotic time series prediction 

We analyze the effects of early versions of our MI based indicators on GP 

regression of the jerk equation that initially motivated their development.  With a 

terminal set of 3 variables { x, x, x } and a non-terminal set of 4 basic arithmetic 

operators { +, -, *, / }, discarding duplicate expressions and those that reduce to 

constants (with neither variance for correlation nor entropy for mutual 

information), we form complete populations of 3 (one term), 27 (up to 2 term) and 

296 (up to 3 term) distinct expressions.  We apply them all to inputs X and 

compute their RMSE, correlation and mutual information with the target Y. 

Entropy and MI are calculated using the “equal width bin” method and MI is 

normalized in the “unfair” sufficiency approach, dividing it by target output 

entropy H(Y). To enable use of each of the 3 indicators to estimate pair potential 

consistently: we normalize MI as noted, and take the reciprocal of the sum of one 

plus RMSE; correlation is inherently normalized. 

6.1.1 Individual fitness (solution quality & reproductive potential) 

Consider the initial population of all the terminals as shown in Table 5. 

Normalized RMSE has significantly different values for each terminal, but all of 
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the same order of magnitude.  Correlation favors the first derivative over the 

others by several orders of magnitude.  NMI assigns similar fitness to each 

terminal.  We immediately see an advantage of NMI: the correct solution requires 

all the terminals. 

Next consider all the expressions of up to 2 terms as shown in Table 6. Quotient 

expressions were ranked poorly by all indicators, and have been dropped (here, 

and subsequently when we consider diversity).  NRMSE ranks the product of the 

derivatives as the highest fitness, by a significant margin over the second ranked 

expression; but this is not a part of the correct solution.  Correlation ranks the 

product of the observable and its first derivative as the highest fitness, by a 

significant margin over the second ranked expression.  This is not a part of the 

defining equation, but it is a term of an alternative equation yielding the same 

behavior to within a constant. NMI ties the second derivative and twice that term 

as highest fitness; twice the second derivative is a term of the correct formula, as 

accurately as it can be expressed without real-valued coefficients. 

Space permits tabulation and discussion of only a few of the expressions of up to 

3 terms.  Table 7 contains the top 5 rankings of each indicator, plus the top 10 

sorted on the sum of the rankings (indicator „consensus‟).  All indicators ranked 

highly at least some of the optimal sub-expressions, but none gave them top 

rankings. The two entries in bold are maximal length correct subexpressions that 

can be achieved in this third generation, but are not ranked highly by the 

indicators; the third expression of that form received the topmost ranking by 

consensus of the indicators, but was not in the top five of any of the individual 



 

109 
 

indicators.  NMI, which is a generalization of correlation, approximately agreed 

on rankings as often with NRMSE as it did with correlation, which is somewhat 

surprising.  Forms close to the correct formula were identified slightly more often 

by NMI than by NRMSE, both of which significantly outperformed correlation. 

6.1.2 Diversity 

To construct a diversity indicator from the fitness indicators of the previous 

subsection, the no-synergy (redundancy only) heuristic of Equation 71 was 

extended from NMI to correlation and normalized RMSE: this technique is 

admittedly suspect; but no alternative was apparent. Consider the initial 

population of all the terminals as shown in Table 8. Correlation ranks the first 

derivative better than either of the other terms by several orders of magnitude.  If 

selection pressure were exerted on the basis of correlation as a diversity 

indicator, the observable and/or its second derivative would be lost from the 

population, precluding evolution of the correct solution. 

Next we consider 2-term expressions as shown in Table 9. All indicators rank 

quotient expressions high on diversity; but these were ranked low on fitness by 

all indicators, so they are not shown in either table.  RMSE ranks 20th in 

diversity, correlation ranks 11th in diversity, and normalized mutual information 

ranks 12th in diversity, the expressions each respectively ranked fittest.  Thus 

with selection for diversity as well as fitness, both correlation and normalized 

mutual information are likely to preserve the individuals they ranked most fit; 

RMSE is not.  All indicators ranked the observable very poorly on diversity.  This 
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is perhaps inevitable, as all the other expressions are derived from it; but it is 

unfortunate, as the observable is one of the terms of the solution. 

6.1.3 Pairing & Pair Potentials 

The pairing potential (reproductive selection only) and pair potential (survival 

selection also, especially for ensemble models) were estimated, again using the 

heuristic of Equation 71, corresponding formulas based on NRMSE and 

correlation, and approximations of the full 3-term NMI and the normalized 

synergy.  The data tables are lengthy; hence only summary conclusions are 

given here.  The NMI heuristic outperformed correlation, but not NRMSE, in 

identifying high potential pairs; the 3-term NMI approximation, even with far fewer 

bins, did better.  SRI was a reasonably reliable indicator of when the heuristic 

would be an underestimate; in addition to pairing, it proved a very good indicator 

of pair, potential.  Synergy proved to be a critical aspect of the test problem. 

To evaluate the MI based indicators for use in reproductive selection operators in 

light of Price‟s Theorem, we wished to avoid the disruptive effects of particular 

genetic operators that could obscure the selective properties of the indicators, so 

they were not evaluated in the context of any given real GP system.  Instead, a 

non-disruptive trivial recombination operation was used: for each potential 

pairing, combine parent trees using each of the non-terminals; measure fitness of 

all offspring; compute mean and max fitness of the brood.  Correlation 

coefficients between 2nd generation parental indicators and 3rd generation 

offspring indicators were then calculated. 
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Correlation of mean fitness of the brood, with the fitness of either parent, was 

0.6; with the product of the fitnesses of the parents, 0.9.  Correlation of mean 

fitness of the brood, with the joint NMI between the parents and the target, was 

0.8 in the general population of 351 potential pairings; after dropping low fitness 

individuals from the breeding population, reducing it to 210 potential pairings, it 

still held at 0.3.  Correlation of improvement of the best of the brood versus the 

better of the parents, with the normalized synergy of the parents, was 0.2 in that 

breeding population; after also dropping pairings with low joint NMI against the 

target, reducing the breeding population to 140 potential pairings, it was 0.4. 

Dropping pairings with low synergy, of the 70 pairs remaining, 45 produced 

broods whose best members had fitness higher than the better of their parents.  

Of these, 13 had offspring better than any individual in the breeding population.  

Of these, 10 included at least one parent that was an optimal subexpression.  Of 

these, 4 pairs were composed of 2 optimal subexpressions.  Lastly, of these, 2 

sets of parents correctly paired 2 optimal subexpressions. 

These findings are strong evidence of effectiveness of information theoretic 

fitness and diversity indicators on this “easiest hard problem”: the simplest 

chaotic flow. 

6.2 4-parity using 2-MUXes 

Arbitrary logic functions may be synthesized using only multiplexers, each of 

which is controlled by a variable of the target function that selects between 2 

inputs, which can be only zero, one or the output of another 2-MUX.  

Evolutionary synthesis of 4-parity, using mutual information as a factor in the 
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fitness function, was reported in [4].  First we illustrate the application of 

information theory to ensemble selection in synthesis of 3-parity.   

Arranging the truth table by ones count as Table 10 shows the relationship to 

parity and the route to an optimal solution.  A basic stage can be defined, with 2 

inputs and 2 outputs; one stage per variable is required, arranged as a ladder 

with criss-crossed connections.  This requires re-use of stage outputs, which 

cannot be represented in a GP tree without Automatically Defined Functions [57], 

assignment or the like, so a simple GP representation will have redundant 

MUXes in the earlier stages, as shown in Figure 18. 

The same control variable is used on the left and right sides of the ladder at each 

stage; a different control variable is used at each stage of the ladder, each 

exactly once, in any order.  GP pseudo-code of a stage follows. 

Source Code Fragment 5. 

(<this-stage-control-variable>, 

  <previous-stage-ones-count-odd>, 

  <previous-stage-ones-count-even>) 

(<this-stage-control-variable>, 

  <previous-stage-ones-count-even>, 

  <previous-stage-ones-count-odd>) 

One of the optimal solutions is thus the genotype 

(x3,(x2,(x1,0,1),(x1,1,0)), (x2,(x1,1,0),(x1,0,1))) 
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which may be more conventionally represented as 

~x3(~x2x1+ x2~x1)+ x3(~x2~x1+ x2x1) 

and we will use this more familiar notation hereinafter. 

Information theoretic insights into evolutionary learning become apparent when 

we compute the basic functionals and indices, first on primitive, then on more 

complex, models. 
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All the information contained in the inputs must be combined synergistically to 

model the target: but individual models, each containing all the information from a 

single input, convey no information about the target; neither do pairwise 

ensembles; only with all 3 models is the population sufficient. One key point here 

is that an individual may safely be removed from the population only if doing so 

does not compromise population sufficiency.  Another is that an individual‟s 

necessity (contribution to population sufficiency) must be measured as such, not 

estimated on the basis of measured individual sufficiency. 

Next consider 2 more complex models of 3-parity: 
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Model j is correct in 7 of 8 cases, model k in none; yet the latter has a higher 

(indeed, a perfect) overall information theoretic solution quality index 

(complement of dissimilarity with the ideal model).  This is because the latter may 

be subjected to an (a priori unknown) invertible transformation (here, negation) to 

yield the correct answer in all cases. The model with the lowest information 

theoretic error may not exhibit the lowest error in the problem‟s native output 

variable space, until it is appropriately transformed, and the required 

transformation may be neither obvious nor simple (although it was in this 

example).  Given particular terminals, non-terminals and genetic operators, for 

evolvability, we may need multiple forms of a subexpression (here, a term and its 

negation), that is, representation diversity, despite the information redundancy. 

Finally consider the progression of an ensemble, from containing all the raw 

inputs, to containing only a single individual that perfectly models the target, at 

each step maintaining sufficiency and incrementally approaching efficiency, with 

composition (or trivial crossover) only: 

S 1 2 3

S 1 2 1 2 3

S 1 2 1 2 3

S 1 2 1 2 3 1 2 1 2 3

S 1 2 1 2 3 1 2 1 2 3

D ( ;{ , , }) 2.0 / 3.0
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Problem inputs usually will be jointly [epsilon] sufficient but severally insufficient, 

and both jointly and severally far from efficiency.  Assuming them to be so, the 

benefit of recombination is production of individuals that compose information 

provided by the inputs so as to enable formation of sufficient ensembles that 

gradually approach efficiency as evolution proceeds.  These ensembles should 

grow „smaller‟ during the evolutionary run: sometimes in terms of their joint 

entropy; sometimes in terms of the number of constituent individual models.  This 

insight should influence survival and reproductive selection strategies. 

While this example did not require mutation, it does show the benefit of neutral 

mutations.  Both original and negated forms of the inputs are required; mutation 

could easily have introduced the negation.  Although such a mutation would not 

be evaluated as neutral in terms of error, it would be in terms of information.  

Information theoretic fitness functions will regard far more mutations as neutral 

than will correlation or error based fitness functions: anything that preserves 

Crutchfield‟s “recoding-equivalence class” membership will not alter the fitness. 

Synthesis of parity is much harder than it may appear. The number of tree sizes 

k up to that required to implement m-parity is 2m-1. The number of structurally 

different trees at each size k is Ck = (2k)! / ( (k+1)! k! ). The number of different 

assignments of m control variables to k MUXes is mk. The number of different 

assignments of inputs in {0,1} to leaf MUXes is 2k+1. Thus a conservative 

estimate of search space size is 

112

1
2 

 k

k

k
m

k
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The number of correct solutions in that space is only sm = m * s2
m-1 where s0 = 1 

so the growth in the ratio of search space size to the number of solutions is a 

double exponential O( 2 ^ 2m ). With only 4 inputs it is over a billion billion to one. 

The search space is highly epistatic. With conventional fitness functions, the 

adaptive landscape is not smooth. 4-parity was the problem addressed in the 

work reported by Aguirre and Coello: we attempted to beat their performance, but 

were unable even to match it; we have some idea why our EA stalled on a 

neutral plateau short of the final solution, but we do not know why their EA did 

not encounter the same problem. 

We implemented a generational GP supporting uniform, truncation and rank 

proportional selection for reproduction and those same choices for survival. 

Fitness is multi-objective and the domination check is masked to regard any 

subset of the fitness vector: sufficiency, efficiency, overall information theoretic 

solution quality, inverse ensemble cardinality, correlation and inverse total 

ensemble size. The domination mask is dynamically set based on population 

fitness statistics to enable incremental evolution; for instance, to consider 

sufficiency only until the median individual is fully sufficient, then consider 

efficiency also. Expression recombination is performed by traditional GP subtree 

swapping. Expression mutation randomly makes one of the minimal moves in 

tree edit distance. Individuals are ensemble models represented as multisets with 

parameterized constraints on the maximum number of distinct expressions and 

the maximum number of copies of each expression. Ensemble recombination is 
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R3/RTR modified as described in Section 5.5. Ensemble mutation consists of 

randomly performing one of the operations listed in Section 5.5. 

In experiments thus far, information theoretic GP has rapidly aggregated the raw 

inputs to produce fully sufficient ensembles, then more slowly composed the 

constituent expressions to produce ensemble models of improving necessity. 

The system has surprised its designers by pursuing evolutionary trajectories that 

were not anticipated, but which, upon inspection, proved to be following the 

sequentially superior building block route as prescribed by the multi-objective 

information theoretic fitness function. 

For example, the system produced ensembles that expressed as {x1⊗x2, x3⊗x4} 

(100% sufficient and 50% efficient), appeared to stall, then replicated one of the 

constituent expressions and grafted the copy onto the other as a leaf, improving 

efficiency and escaping the plateau. 3 more steps exactly like that would lead to 

an optimal solution; however, their probabilities are very small. Our selection may 

be too neutral: when several low probability consecutive mutations are required, 

and each is evaluated as neutral, there is no fitness arrow leading along the path; 

in true Pareto multi-objective optimization, likelihood of one tournament entrant 

dominating another is exponentially small in the number of objectives. 

This is essentially a negative result: with similar numbers of fitness evaluations, 

we failed to achieve 4-parity, as Aguirre and Coello reported having done. 

However, we feel the problem is not in the use of information theoretic fitness but 
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rather in some other aspect of the mechanisms of our GP. We have not given up 

on this problem, but have temporarily set it aside in favor of some others.   

Despite not achieving 4-parity, analyzing the evolutionary trajectories that lead 

most of the way to it has yielded some insights. Gene duplication (expression 

duplication within an ensemble) has been found to be important, both to protect 

against gene deletion or disruption, and to prepare for subtree composition. 

Recoding also has been found to be important, both to provide composable 

representations and to transform model outputs into target coordinates. The 

fraction of target entropy explained only by synergy among inputs and the 

number of inputs that must be considered jointly to detect that synergy were 

found to be strong indicators of problem difficulty. 

6.3 Korns’ test functions 
 

While the application of information theoretic techniques to discrete problems is 

straightforward, several practical questions were raised regarding its application 

to continuous valued data sets. To answer these questions, we adopted a 

continuous valued data set synthesized for testing GP regression systems [55]. It 

is generated by several multiple-input functions applied to pseudo-random inputs. 

These functions pose severe difficulties for GP or other regression techniques: 

they depend more strongly upon non-linear than linear interactions among 

multiple inputs; and they have cyclic dependencies upon the inputs, including 

both smooth covariations and abrupt behavioral mode switches. 
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The first question we address is the ability of the information-theoretic approach 

to distinguish relevant inputs from irrelevant inputs. Hence, unlike [55], which 

regressed the function outputs against all of, and only, their actual inputs, we 

also generated additional pseudo-random variables (“red herrings”), not actually 

used as inputs. From [55], we chose the 5 input versions of the 3 hardest 

problems: 

 cyclic (y0) is difficult due to periodic but mostly smooth functions 

 mixed (y1) compounds the difficulty with periodic abrupt mode switches 

 ratio (y2) further compounds difficulties with division by periodic functions 
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As in [55], the log function is made safe by adding .000001 to the absolute value 

of its input. Also as in [55], observations of function outputs yk are corrupted by 

uniformly distributed gain noise with a default noise weight w of 20% according to 

),(1(ˆ wwrandyy kk   (97) 

We calculated various normalized MI terms involving the function outputs, actual 

inputs and spurious „inputs‟. As the scale of these indicators is an artifact of their 

calculation, affected by noise, computational precision and other factors, we 

regarded only relative rankings based on those values, not the absolute values 

themselves. We calculated how well those input selection rankings, and linear 

correlation based rankings, performed relative to ideal rankings. We applied 

several single input functions (cos, sin, mod) that „fold‟ the data (thereby 

destroying information) and again ranked expressions. 

In Tables 11 through 14, the total number of inputs per ensemble in the entropy 

calculation is m, the target function is f, the relative ranking performance score of 

correlation is r and the relative ranking performance score of sufficiency matching 

on n or more of the m inputs in the ensemble is sn. These scores are the average 

of the ordinal positions of correct sublists of inputs, subtracted from that average 

in a random ranking, normalized by that difference in an ideal ranking; that is, a 

score of 1 is ideal, 0 is random and -1 is exactly backwards. The first experiment 

was repeated 6 times with 216 points and 6 times with 220 points. Little variation 

was observed between runs. Results were averaged to yield the tables. 
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In our first experiment, 10 RVs x0 through x9 were generated, and the first 5 were 

used as inputs to each of the 3 functions. In [55], one million points were 

generated, with each RV uniformly distributed in [-50..+50]. Initially, to limit time 

and memory requirements, we generated only 216 points; to limit the information 

loss, in this reduced data set, due to the folding functions invoked (cos, sin, tan, 

mod, squaring), range of each RV was restricted to [-12.5..+12.5]. 

Single inputs are ranked using correlation and sufficiency in Table 11. Compared 

with linear correlation, information theoretic sufficiency worked slightly better on 

y1 (mixed), significantly better on y2 (ratio) and dramatically better on y0 (cyclic). 

The first experiment was repeated with 220 (just over one million) data samples in 

[-50..+50], limiting time and memory requirements by considering only single 

inputs and pairs rather than larger ensembles. The larger data set confirmed the 

results observed with the smaller, and improved average performance of both 

correlation and sufficiency, except correlation on y0 (cyclic), which it worsened. 

Single inputs are ranked using correlation and sufficiency in Table 12 and both 

single inputs and pairs are ranked using only sufficiency in Table 13. 

Returning attention to the original data set of 216 points, ensembles up to the 

correct size (5 inputs) and one size too large are ranked using only sufficiency in 

Table 14. Ranking variously sized input ensembles, sufficiency achieved on 

average more than 90%, and at the correct ensemble size (5) more than 99%, of 

ideal performance. 
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In the second experiment, again 10 RVs were generated, of which 5 were used 

as inputs to each function; but instead of using the same 5 the same way with 

each function, different assignments of variables to function inputs were made, 

as shown in Table 15. 2 RVs are „red herrings‟, not used as inputs to any of the 

functions; 2 RVs are used as inputs to all the functions; 3 RVs are each used as 

an input to only a single function; and 3 RVs are each used as an input to all but 

one of the functions. The data was generated this way to evaluate information 

theoretic indices as detectors of dependencies between unlabelled observables 

where input/output relationships are a priori unknown. 

Figures 19 and 20 are plots of sorted lists of logarithms of relative strengths of all 

pairwise linear correlations and information theoretic sufficiencies. They both 

exhibit distinct noise floors. We consider all strengths above their respective 

floors to be identified apparent dependencies. We compare correlation with 

sufficiency on the basis of their correct and incorrect identifications. 

On y1, correlation correctly identified 4 of 5 inputs, missing d6 (its x2). On y2, it 

had 2 false negatives, d4 (its x0) and d7b (x4); plus it had a false positive, d3. On 

y0, it failed to identify any inputs at all. Correlation also flagged the mutual 

dependency between y1 and y2. It showed one other spurious dependency, 

between d0b and d6. Overall it showed 10 dependencies above its noise floor, of 

which 8 were valid, out of 18 actual dependencies in the data. 

Sufficiency correctly identified all 5 inputs of all 3 functions, with no false 

negatives and no false positives. It flagged all 3 pairwise mutual dependencies of 
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the 3 functions. Sufficiency showed one spurious dependency, between d2 and 

d3; its apparent strength was barely above the noise floor, and less than that of 

all real dependencies. Overall it showed 19 dependencies above its noise floor, 

of which 18 were valid, those being all 18 actually present in the data. 

In the third experiment, RVs were generated as in the second, and to their set 

was added cos(d1), sin(d1), d1 mod 4, cos(d2), sin(d2), d2 mod 4, cos(d4), sin(d4) 

and d4 mod 4. These are functions that „fold‟ the inputs, thereby destroying 

information, applied to the 3 RVs that are each used in one test function only. A 

different 2 of these 9 terms appear in each of the 3 test functions. 

The increased number of dependencies degraded detection of relevant inputs by 

both correlation and sufficiency; this argues for input selection as a separate pre-

processing stage. On y1, correlation and sufficiency both found dependency on 

d2 mod 4, but only correlation on sin(d2). On y2, only sufficiency found 

dependency on d4 mod 4 and sin(d4). On y0, only sufficiency found dependency 

on cos(d1), and neither method on sin(d1). Altogether, correlation detected 2, and 

sufficiency detected 4, of the 6 dependencies of the test functions on the 

intermediate terms introduced in the third experiment. Sufficiency also had a 

false positive, an apparent dependency of sin(d4) on d7a. 

The foregoing experiments required calculation of many-dimensional copulae, 

which is computationally costly and degrades the sensitivity of the method, but is 

necessary for commensurate calculations of all the indices, to enable, for 

instance, fitness proportional selection. A less computationally costly and more 
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sensitive alternative, that is adequate for tournament selection, is to calculate a 

lower-dimensional copula for each comparison. For instance, if the strength of a 

putative dependency of y1 upon d0a is to be compared against that of y2 upon d7b, 

only those variables need be considered, in a 4-dimensional copula. 

In the fourth experiment, the 2 false inputs, 8 actual inputs and 3 outputs again 

were treated as 13 unlabelled observables. All their 78 pairwise potential 

dependencies were considered. Of the 3003 binary tournaments  possible 

between strengths of putative dependencies, only 1080 were considered: those 

between false and actual dependencies, treating this as a classification problem; 

relative strengths of 2 false or 2 actual dependencies were not compared. 

On these 1080 classifications, linear correlation was correct 644 times and 

incorrect 436 times, for an accuracy under 60%, corresponding to a performance 

score (relative to ideal vs random classifications, as in the relative ranking 

performance scores of the first experiment) under 0.20; whereas information 

theoretic sufficiency was correct 1059 times and incorrect 21 times, for an 

accuracy over 98%, corresponding to a performance score over 0.96. 

Another way of looking at these results is to consider, for each of the 78 

strengths, how many tournaments it would win and how many it would lose 

against the other 77, and using those statistics to rank them; this is the 

approximation of fitness proportional by binary tournament selection. Correlation 

correctly ranks 5 actual dependencies above its first false positive; it ranks the 

18th and last actual dependency in position 76 of 78; if the top 1/3 of its rankings 
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were selected, it would have 17 false positives and 9 false negatives. Sufficiency 

correctly ranks 14 actual dependencies above its first false positive; it ranks the 

18th and last actual dependency in a tie of positions 23 through 25 of 78; if the 

top 1/3 of its rankings were selected, it would have 8 false positives and 0 false 

negatives. 

The four experiments above were reported at GPTP-2008. Participants there, 

while satisfied that these results had favorably answered the question of 

applicability of information theoretic techniques to input selection, asked for more 

evidence of their applicability to fitness evaluation of intermediate forms (neither 

simple inputs nor final evolved models) during GP runs. Complex sub-

expressions of the defining equations, that are higher-order building blocks, 

requiring only a single additional layer of interconnection to correctly complete 

reconstruction of those equations, may be regarded as “penultimate forms”. For 

our test problems, these have been broken out as constituent top-level 

subexpressions in Equations 94 through 96. 

In a fifth experiment conducted after the workshop, for each of the 3 test 

problems, on 216 data points, an 11-dimensional copula (including all 5 raw 

inputs, all 5 penultimate forms and the target output), was calculated. For all 3 

test problems, the estimated sufficiency, efficiency and similarity against the 

target output, of the ensemble of all 5 penultimate forms, were stronger than the 

corresponding indices of the ensemble of all 5 raw inputs. 
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Likewise, in all cases but one, the weakest of the 5 sufficiencies of the 

penultimate forms was stronger than the strongest of the 5 sufficiencies of the 

raw inputs. The one exception was on mixed, where raw input x3 appeared to be 

a slightly stronger predictor of y1 than did penultimate form y1d. We “zoomed in” 

by calculating, on 218 data points, a 3-dimensional copula involving only those 3 

variables; this higher resolution measurement correctly ranked the penultimate 

form above the raw input on all 3 information theoretic indices. 

Those familiar with information theory may object that an increase in sufficiency 

of the ensemble of all 5 penultimate forms over that of the ensemble of all 5 raw 

inputs violates the Data Processing Inequality. In response we can only remind 

the reader that Shannon‟s entropy is defined only for discrete data, and that our 

estimated analog of it for continuous data is sensitive to the locations and widths 

of data bins relative to topological foldings of the data. This is harmful, in that 

intuitions learned using information theoretic techniques on discrete data cannot 

always be relied upon when working with continuous data; but it is also helpful, in 

that index values improve as topological foldings are discovered by the GP and 

reflected in the evolving genotypes. 

We conclude that information theoretic sufficiency of continuous valued data can 

indeed be calculated robustly and efficiently. On this test data, it outperformed 

linear correlation in ranking single inputs, approached ideal performance in 

ranking input ensembles, and exhibited a distinct and meaningful noise floor; 

thus it is an appropriate pre-processor for GP input selection. 
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Sufficiency also correctly identified (albeit with a couple of false negatives and a 

single false positive) simple expressions (derived from relevant inputs by filtering 

with single input, information destroying, topologically folding functions) that are 

basic building blocks for starting to regress the test problems; thus it is also an 

appropriate fitness function early in GP runs. It also correctly ranked “penultimate 

forms” above raw inputs, and ensembles of penultimate forms above ensembles 

of raw inputs; thus it also appears promising as a term for a multi-objective 

fitness function later in GP runs. 

Having presented some experimental evidence, on hard synthetic problems, of 

MI utility both early and late in EA runs, and MI heritability across genetic 

variation, Chapter 6 has supported the claim that MI enhances evolvability; next 

in Chapter 7 we present empirical evidence of MI utility for input selection on 

hard real world problems. 
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7 Applications 

A full-blown EA based upon the principles laid out herein has not yet been 

applied to real world problems; however, the information theoretic indices 

developed herein have been applied to input selection in such problems. This 

Chapter supports our claim that our indicators have utility with evidence gathered 

on real world problems. In Section 7.1, we describe findings of dependencies 

among industrial plant process variables. In Section 7.2, we relate findings of 

dependencies between international political leadership attributes and regime 

stability. In Section 7.3 we outline several diverse current applications. 

7.1 Industrial plant process variables 

At a complex industrial plant50 (with long material in-process times, material 

feedback loops, numerous sensors, many automatic control loops and human 

operators with manual override capabilities), an occasional minor process 

problem persisted, despite efforts to correct it. A data set was extracted from the 

plant information system, containing all the variables that were a priori thought 

potentially related: whether as advance warnings of the onset of a problem 

instance; or as usable in a control strategy to keep the process variable of 

interest in the desired range. In support of efforts by others at modeling the plant 

and developing such a strategy, the authors applied information theoretic 

techniques to identify dependencies and the time lags that maximize them. 

The data set spanned 4 months, sampled at 5 minute intervals; it included time 

stamps and the values of process variables, controller outputs, set points and 

                                                
50 Which must remain nameless, per the wishes of the plant management that provided the data we analyzed. 
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status flags. In the raw spreadsheet, there were over 32k rows and 78 columns. 

Many „variables‟ did not actually vary significantly during the period. Others 

clustered tightly at or near a small number of distinct values, with a single value 

appearing in over half of the samples. Although there might be dependencies 

involving these non- or minimally-varying variables (which might be identifiable in 

data from a longer or different period during which they varied more), to prevent 

conclusions being drawn in which there could be no statistical confidence, these 

variables were excluded from this analysis. 

To provide a baseline against which putative dependency strengths could be 

compared, 6 columns of uniformly distributed, computer generated, pseudo-

random numbers (“red herrings”) were inserted; this is computationally less 

expensive than the techniques of Sections 4.3 and 4.4, albeit less informative. 

The resulting 57 columns of data were processed using a version of the copula 

based algorithm of Section 4.2. 

The strength of the dependency of the process variable of interest on each other 

variable (sufficiency of the latter against the former) was estimated over a range 

of time leads and lags; their maximum values and the lags at which they peaked 

were recorded. As expected, the estimated sufficiencies of the “red herring” 

random variables were tightly clustered, weaker than those of all the actual 

process variables, and generally did not vary significantly with lag. Estimated 

sufficiency of an actual process variable over a wide sweep in lag is shown in 

Figure 21 and over a narrow sweep in lag is shown in Figure 22. Wide sense 

behavior appears to be approximately exponential decay, as expected for a 
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system with a finite number of parameters [11]. Narrow sense behavior appears 

to be decay plus random scatter; presumably the scatter is due to observational 

noise, and would decrease with larger numbers of samples, but this has not been 

confirmed. 

The sufficiency estimates of several variables exhibited apparently cyclical 

variations over lag, of multiple distinct periods: these are oscillations, not in the 

variables themselves, but in the strengths of the estimated dependencies of the 

process variable of interest upon them. The significance of these oscillations is 

unknown: but it is credible that the tightness of a physical coupling may vary 

periodically; and the plant engineers are already aware of the existence of long 

period oscillations. An example is shown in Figure 23. 

Basic statistics were calculated on the sufficiencies at their respective maxima. 

Those variables with estimated strengths exceeding the median were listed. 

Assuming real dependencies would have significant variation with lag, variables 

that lacked it were dropped. From sets of related variables, controller outputs 

were selected when present, yielding a list of 10 control strategy candidates. 

One of these was declared physically impossible by the plant engineers, given 

the existence of a control loop that should eliminate any such dependence. Upon 

inspection, it was found that this control loop was not functioning reliably; so the 

mere existence of an information theoretic dependency proved itself to be 

informative regarding an unlooked-for fault. 



 

132 
 

Pairs of variables were then considered. The joint sufficiencies of all pairs of 

process variables against the variable of interest were estimated, and compared 

against either of those variables taken jointly with a “red herring”. 2 red herrings 

jointly were estimated as over 50% sufficient to model the process variable of 

interest; this indicates that the sample data set is too small to reliably measure 

joint modeling sufficiency of larger ensembles. 5 pairs stood out. 

Unsurprisingly, most of the strong pairs included one of the stronger individuals, 

but the 5th strongest pair did not; synergy added to the moderate strengths of its 

constituents. It might have been expected that the pair comprised of the 2 

variables whose individual dependencies were strongest would have been 

among the strongest pairs: but those variables proved substantially redundant – 

their joint sufficiency was less than the sum of their individual sufficiencies; this 

relates to a common pitfall in feature selection. Feature selection is typically 

performed greedily: the single input, feature or model that provides the greatest 

information gain is added to the ensemble, iteratively until some stopping 

criterion is met; this procedure implicitly assumes independence of features, and 

is known to fail to identify ensembles of synergistically interacting features when 

one or more of those features provides little information absent the others. This 

could theoretically be avoided by evaluating the joint MI between the target and 

each ensemble in the power set of the inputs, but this is computationally 

infeasible in all but very small problems. A more feasible approach is to try 

ensembles of gradually increasing size, starting with singleton ensembles, but 

even this becomes quite costly if ensembles of more than a couple of inputs are 
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needed from a large set of observables. [52] make the seemingly reasonable 

suggestion “However, one can employ heuristics, for example, higher-order 

interactions are unlikely in the absence of lower-order interactions among the 

same attributes.” This is contradicted by the N-parity problem, where any 

ensemble of fewer than N inputs conveys no information. 

These calculations were all performed using the optimal lags determined in the 

univariate analysis; stronger joint dependencies might be discovered if lags of 

both variables were jointly scanned, but that would require much more CPU time. 

Joint sufficiency of 3 actual variables was not significantly higher than joint 

sufficiency of 3 red herrings (indeed, in many cases it was lower). This is 

because actual variables tend to be redundant, whereas pseudo-random 

numbers are (to a high order approximation) independent. With 3 random 

coordinates, each of which is binned into at least 32 bins (5 bits), a total of 32k 

bins (15 bits) are uniquely specified; as this data set has only about 32k points, 

this uniquely localizes each data point. The adaptive algorithm for calculating 

information dimension peaked at 64 bins in the investigation of dependency on 2 

variables jointly, and at 32 bins in the unsuccessful attempt involving 3 variables. 

Thus, to determine whether combinations of 3 or more variables are able to 

improve significantly upon the predictive modeling power of smaller ensembles, a 

larger data sample would be needed. 

Using the copula based algorithm of Section 5.2, the minimum number N of 

samples required, for a given level l of the pyramid to yield statistics with nonzero 
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noise margin, is easily calculated from the level of the pyramid (counting from the 

top l=1, and corresponding directly to the log base 2 of the number of bins along 

each dimension at that level) and the nominal dimension Dm of the measurement 

vector (number of dimensions of the sparse array at each level of the pyramid). 

3lglg  lDmN  (98) 

To find non-linear dependencies, it is necessary to go to at least the 2nd level of 

the pyramid l=2, and usually further down than that to find any fine structure. 

In consultation with the plant engineers, it was determined that outliers had 

dominated some of the dependency strength estimates, and that many of these 

outliers were due either to changes in the variety of product being processed 

(which involve changes to various controller set points throughout the mill) or to 

the plant going down (for planned maintenance or due to problems) and coming 

back up again. Several such periods were manually identified and a threshold 

value for one of the process variables was determined, such that if the measured 

value is below the threshold, it can be inferred with high confidence that the plant 

is down. Predicting down-time is of great importance to the mill: associated costs 

and other consequences can be minimized if operators are given adequate 

warning of an imminent event; and some down-times may be avoided if 

operators are alerted so they can intervene to correct a problem before it shuts 

the plant down. Plant down-time, especially unplanned, is expensive. 

Process variables were again surveyed: searching for any that exhibited strong 

information theoretic sufficiency against the continuous variable that, when 
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thresholded, served as a proxy for an explicit plant down-time indicator; then 

verifying discovered strong sufficiencies against the continuous variable, by 

calculating sufficiency against the corresponding discrete variable (the flag 

indicating the continuous value was below its threshold). 

This yielded two interesting results. First, the variable upon which the plant down-

time indicator proxy was found to be most strongly dependent, was one of those 

upon which the variable of interest in the process problem investigated 

previously, was most strongly dependent; this makes sense if a common cause 

can lead to that specific problem and/or plant down-time. Second, the time lag at 

which that variable exhibited its strongest coupling with plant down-time was 

verified as physically meaningful. 

Finding known relationships partially validated the information theoretic indices: 

failing to find these relationships would have constituted false negatives. Finding 

a previously unknown relationship (due to the failed control loop) and a 

previously unknown phenomenon (the oscillations in coupling strengths) also 

verified the real-world utility of the indices: they provided previously unknown 

useful information. 

7.2 International political leadership data 
 

In the context of the interdisciplinary Forecasting Change and Societal Threats 

(FORECAST) working group, the Moynihan Institute of Global Affairs at the 

Maxwell School of Citizenship and Public Affairs of Syracuse University provided 

a data set for analysis. The objective was to identify attributes of leadership that 
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make a regime crisis-prone. This information might be used to allocate assets, 

whether for intelligence gathering or efforts to stabilize or destabilize a regime. 

The data had already been analyzed using conventional statistics, which had 

found little of interest; it was hoped that non-linear dependencies might be found 

using the information theoretic techniques described hereinabove. 

In the raw spreadsheet, there were 121 rows and 37 columns. Some of the 

columns were labels rather than data variables and so were not analyzed. Some 

were aliases so for each set of differently named identical variables only one was 

analyzed. 7 rows had “no material” for most of the discrete categorical variables 

and 9 rows had “leadership in dispute” and therefore no entries for most of the 

discrete categorical variables; these were all omitted from the analysis. 

4 columns were absolute dates. The first was subtracted from each of the other 3 

to yield durations or relative offsets. This yielded quantitative, if not truly 

continuous, variables, which were inspected together with 2 other quantitative 

columns. Histograms showed clusters in 3 of the continuous variables; these 

may be discretized to analyze consistently with the discretes in future work. 

27 rows dealt with regimes still in power, for which certain entries are not 

applicable. For the “continuous” (quantitative variable) analysis, a special value 

was inserted in place of such missing data; more sophisticated techniques 

should be used in future work. For the discrete (categorical variable) analysis: 

first calculations were performed with those rows omitted; then calculations were 

repeated, including those rows, but omitting the columns with missing entries; 
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finally calculations were repeated, including those rows and substituting a special 

value for the missing entries; results of these 3 runs did not differ significantly. 

Pairs of discrete variables with strong dependencies were found. Some proved 

trivial: certain spreadsheet columns had been computed from other columns. 

Others appeared to be non-trivial and strong, but some had low statistical 

confidence, due to small samples and large alphabets (numbers of categories). 

Two variables whose dependence upon others is of interest are the reason a 

regime started and the reason that regime ended. 3 variables were identified that 

jointly reduced the uncertainty in the 2 variables of interest by over 2/3. This 

appeared to confirm a theory of one of the social scientists in the group. 

The integer encodings of categorical variables were exhaustively permuted: this 

does not affect entropy or MI; it was intended to identify alternative encodings in 

which linear correlation was strong. The dynamic ranges of correlation coefficient 

values for some pairs of variables using different encodings were dramatic; other 

relationships did not manifest as correlation regardless of encoding, so they are 

presumably more complex conditional distributions. The only a priori sensible 

relationship that was made manifest by permutation was correlation between the 

reasons a regime began and ended: “live by the sword, die by the sword”. 

The primary result of this effort was the development of the nested resampling 

technique for assessing statistical confidence described in Sections 4.3 and 4.4, 

which was necessitated by number of variables (25 discretes) being so large 

relative to the number of usable complete samples (78). This effort also led us to 
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visualization techniques [52] to present findings. Figure 24 is a simplified 

information diagram, showing high confidence, strong sufficiencies of variable 

pairs against the reason a regime ended. Nodes are labeled with the names of 

variables and the individual sufficiencies of the corresponding variables against 

the reason a regime ended. Edges are labeled with the joint sufficiencies of the 

variables on their endpoints against the reason a regime ended. 

information theoretic indices developed to guide input, survival, reproductive and 

final ensemble model selection in EAs, are good at least for the first of these 

purposes, on some real world data: they discovered not only suspected (political 

variable) and known (process variable) relationships (validating the indices), but 

also a previously unknown relationship (due to the failed control loop) and a 

previously unknown phenomenon (the oscillations in coupling strengths). 

7.3 Current applications 

Katya Vladislavleva Smits provided a Human Development Index (HDI) data set. 

Like the FORECAST international political leadership data set, it is social 

sciences data, with many issues. There are 147 variables but only 141 samples. 

Some variables are continuous, some are quantitative but discrete, others are 

categorical (class labels). Many nominally independent variables have trivial 

relationships (columns calculated from other columns per hypotheses). 

A goal is to predict future values of the HDI from current and past values of other 

variables. Vladislavleva is applying GP, specifically DataModeler (Kotancheck51), 

                                                
51 A commercial data analytics package, based on Pareto multiobjective ensemble model GP, written in Wolfram Mathematica by 
Mark Kotanchek, about to be released by evolved-analytics.com. 
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which provides inter alia powerful but essentially heuristics tools for input (GP 

terminal set) selection. The data is being analyzed on an information theoretic 

basis to objectively measure the total statistical dependence of HDI upon single 

and pairs of variables (there are too few samples to consider larger ensembles). 

Incorporation of our indicators into DataModeler has been discussed. 

Department of Defense Small Business Innovation Research (DOD SBIR) 

solicitation topic OSD10-L08 “Real-time Resource Allocation Co-Processor” 

solicited development of co-processing technology to optimize allocation of 

communication, computation and storage resources of and for mobile devices. 

Critical Technologies Inc. (CTI, this author‟s corporate affiliation) proposed an 

Agent Resource Grant Optimizing System (ARGOS) based in part on our 

Evolutionary Learning with Information Theoretic Evaluations of Ensembles 

(ELITE2, the name we have given to our information theoretic GP approach). The 

Office of the Secretary of Defense (OSD) accepted the proposal. Phase I was 

executed by CTI with assistance from a graduate student supported by the 

Syracuse University Center for Advanced Systems and Engineering (CASE). The 

project was managed technically by the Air Force Research Laboratory‟s 

Information Directorate (AFRL/RI) in Rome NY. A Phase II proposal has been 

submitted by a team of CTI, SU, AgileX LLC, iAppFusion and Virginia Tech. 

Department of Defense Small Business Technology Transfer (DOD STTR) 

solicitation topic AF10-BT09 “Dynamic Cross-layer Routing Using 

Cognitive Spectrum Allocation Techniques” solicited design and assessment of 

innovative methods to create adaptive cross-layer wireless networking protocols 
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to achieve network resiliency in contested RF spectra. A team of CTI and 

Syracuse University proposed a CYber Cross-Layer Optimizing Publish-

Subscribe (CYCLOPS) cognitive networking architecture based in part on 

ELITE2. The Air Force Office of Scientific Research (AFOSR) accepted the 

proposal. Phase I is being executed by the team and managed by AFRL/RI. 

One common theme of current applications is handling mixed case data sets in a 

manner that enables meaningful comparisons, e.g. of the dependence of a 

discrete variable upon another discrete and a continuous variable. Some need 

measures of the user-, use-, time- and situation-dependent utility of information. 

The HDI analysis and ARGOS and CYCLOPS contracts show that independent 

third parties have assessed our information theoretic approach as promising. 

Chapter 7 had nothing to do with EAs, but it did present evidence that the 

information theoretic indices developed to guide input, survival, reproductive and 

final ensemble model selection in EAs, are good at least for the first of these 

purposes, on some real world data: they discovered not only suspected (political 

variable) and known (process variable) relationships (validating the indices), but 

also a previously unknown relationship (due to the failed control loop) and a 

previously unknown phenomenon (the oscillations in coupling strengths). Next, in 

Chapter 8, we outline promising areas for closely related future work. 
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8 Future Work 

Closely related prior work is almost non-existent; what little we have found, we 

have cited above. Loosely related prior work is extensive and diverse; so much 

so that we have relegated discussion of related work as such to an appendix. 

Future work, in the sense of potential applications, is likewise diverse, so we do 

not address it. Future work, in the sense of theoretical development, is both 

easier to identify and fundamentally important, so a summary follows. 

In Section 8.1, we formalize a conjecture regarding heritability of information. In 

Section 8.2, we develop a conjecture regarding generalization of learned models. 

In Section 8.3, we propose an approach to maintaining evolvability dynamically. 

8.1 Heritability conjecture 
 

Fitness Distance Correlation (FDC, [53][106][45]) is widely accepted as a 

necessary but not a sufficient condition for a problem to be tractable to an EA; 

conversely, lack of FDC is accepted as a sufficient, but not a necessary, 

condition for EA problem hardness. FDC has limitations that are almost as well 

known as its benefits; in our opinion, these result primarily from it being 

calculated as an average over an entire landscape rather than differentially (or at 

least on scales small relative to any roughness in the landscape). We conjecture 

that FDC, generalized to correlate not phenotypic fitness with genotypic edit 

distance to a global optimum but rather phenotypic Rajski distance with 

genotypic Kolmogorov distance on arbitrarily small scales (directly characterizing 
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search neighborhood differential structure), is a universal measure of problem 

difficulty for evolutionary learning. 

For any other phenotypic fitness measure to guide an EA to an optimal (e.g. 

minimum MSE) solution, it must [indirectly] exploit mutual information between 

the available inputs and the target output, and must discard all model variation 

(entropy) that does not contribute to modeling the target output. This is directly 

measured by Shannon or Rajski distance between a model and the ideal model; 

but that retains the FDC weakness of traversing an entire fitness landscape. 

Zooming in on the local search neighborhood differential structure, we can use 

Shannon or Rajski distance between a model and an incrementally different 

(potentially better or worse) model; but this ignores the target input-output 

relationship. Replacing total with target relevant information distance, the SR 

measure or SRI gives us a divergence between arbitrary models that does reflect 

their usefulness in modeling the target relationship; but these are not true 

distances as they fail the triangle inequality, which is presumably important when 

evaluating how far 2 models are locally from each other and from the ideal model 

globally. Thus our conjecture has 2 problems: we have yet to identify a 

phenotypic Shannon information distance with all the required properties; and our 

genotypic Kolmogorov distance is not computable (although, e.g., Normalized 

Compression Distance (NCD) is). 
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Despite these difficulties we present several alternative formalizations of our 

conjecture. Each formalization may be regarded either as an absolute statement 

about the use of a particular set of genetic operators upon a particular data set 

that is either true or false, or as a property (with a corresponding predicate) that 

holds on some subset of the feasible points in the space of models accessible to 

the evolutionary system (again in the context of a particular data set). 
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(99) 
 
(100) 
 
(101) 

Equation 99 is trivially true when ε is sufficiently large. Equation 101 is also 

trivially true at the limit point (identical functions will have identical outputs) but 

may be too demanding as it approaches the limit. Equation 100 appears to be in 

a “sweet spot” between the other 2, but is formulated in terms of order statistics, 

which are less precise. Regarding any of these or similar formulations as 

properties, we may ask how well they hold in the evolutionary model space.  
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Continuing our conjecture, we assert – 

 The property must be generic or the problem is EA-hard. That is, at any 

point where the property does not hold, there must be another point, 

arbitrarily nearby, where the property does hold, or the EA will have points 

from which it can never get “on track” towards a solution. 

 The property must be likely or the problem is EA-hard. That is, the 

measure of all points in the space where the property does hold, must not 

vanish as a fraction of the total measure of all points in the space. 

Note that we make no assertions about when a problem is EA-easy: either 

condition failing is sufficient to make the problem hard; thus both conditions 

holding is necessary but not sufficient to make the problem easy. Note further 

that “hard” does not mean that an EA cannot quickly chance upon the globally 

optimum solution; it means that an EA cannot be relied upon to find that solution 

faster than random or enumerative search. 

Can we relax the first condition: allow there to be a set of points where the 

property does not hold, that also lack near neighbors where it holds, provided the 

measure of that set vanishes as a fraction of the total measure of feasible points 

in the space? Doing this seems to weaken the conclusion from absolute to being 

only in probability one; practically signifying populations might need to be large. 

The assertions above are qualitative. We may make them quantitative by 

modifying the second condition: a problem is hard to the extent that the measure 
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of the set of points where the property does not hold is large; under some formal 

assumptions, we may say that the problem difficulty is proportional to the 

probability of the property (e.g. Equation 100) not holding. 

All this may be considered in the whole evolutionary model space or in regions. 

There might be unfortunate regions within which the property does not hold, but 

other regions where it does, regions large or important enough for it still to be 

worthwhile to use an EA on the problem. In a multi-modal problem, individuals 

may fall in a basin of attraction of a local optimum, from which they may not 

escape to find the global optimum; we refer not only to that, but also to the 

possibility of trackless regions within which local optimization is doomed. 

Our conjecture is related to the information landscapes of [13]. 

The foregoing conjecture is essentially of heritability: small genotypic changes 

such as are likely under recombination of similar parents or mutation (by the 

particular genetic operators whose neighborhood structure we are characterizing) 

should lead to small phenotypic changes (as measured by information distance 

between input-output behaviors of the phenotypes, not by any particular output 

objective function nor by any consideration of the structures of the phenotypes). 

Evolvability requires moderate heritability: weak heritability is too explorative and 

degenerates into essentially random search; very strong heritability is too 

exploitative and degenerates into essentially local hill-climbing. 

In the proposal for this research, we suggested that a general proof of heritability 

of mutual information would be desirable. We now realize that heritability of MI is 
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a function of both the genetic operators and the particular optimization or learning 

problem to which they are being applied. The question is not “Is MI heritable?” in 

general but rather “How heritable is MI, under these operators, on this problem?” 

The answer to that more specific question is an indicator of the potential 

tractability of that problem using that set of operators: if MI heritability is weak or 

extremely strong, the problem will be hard for that EA; if it is moderate, the 

problem might be easy for that EA. 

8.2 Generalization conjecture 

In the Probably Approximately Correct (PAC) framework of Valiant and Haussler 

[49], the test data is required to be drawn from the same distribution as the 

training data.  This is unrealistic: generalization is required. 

Can the Rajski dissimilarity between a model and the ideal model, on the training 

set, be somehow updated with a distance (or divergence) between the copulae of 

the training and testing sets, to estimate performance on the testing set? 

The Rajski dissimilarity between a model and its ideal is the complement of our 

solution quality metric. It measures the performance (actually, the deficiency in 

performance, relative to ideal) of a model on a data set. Given a performance 

metric, it is desirable to be able to estimate its value on a testing set, from its 

value on its training set, together with some measure of the difference between 

the training and testing sets. Many such measures of difference between 

statistical distributions have been defined, and some are distances. 
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The notion is straightforward: if we know how far the training set is from the 

testing set, and we know how far a model is from ideal on the former, can we not 

calculate (or at least bound) how far the model will be from ideal on the latter? 

To calculate performance, in our information spaces, we would need not just 

scalar distances, but vector displacements: how far one recoding-equivalence 

class of information sources lies from another and in what direction. Our ideal 

model f is such a vector, pointing from the recoding-equivalence class of the 

input data set, with measure H(X), to the class of the input-output relationship, 

with measure H(Z)=I(X;Y), giving f a Shannon distance length of H(X|Z) =H(X|Y) 

in some as yet unspecified direction. Our model fj is also such a vector: its base 

is at the same point as the base of f; but its tip is at the class with measure H(Zj), 

giving it a Shannon distance length of H(X|Zj) in some other unspecified direction. 

In Figure 25, the vector between the tips of the f and fj vectors has Shannon 

distance length H(Z|Zj)+H(Zj|Z), which normalized by their joint entropy yields 

their Rajski dissimilarity, the complement of our performance metric; but again, in 

a direction that we do not yet know how to specify. If we did know how to specify 

direction, we would also know how to specify location of a point in information 

space, according to some coordinate system of basis vectors. Given that ability, 

not only within but also between data sets, we could form the new ideal model f‟ 

on the testing set, again place the bases of the vectors corresponding to our 

model and its (new) ideal at the same point (which can now be arbitrary, as all 

we want is their vector difference), and find the length of the vector between their 

tips. This, when normalized, would give us the Rajski dissimilarity between our 
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model and an ideal model on the testing set, the complement of which is our 

(estimate of) the performance of our trained model on the testing set. 

To merely bound (rather than exactly calculate) performance of the trained model 

on the testing set, we would need a metric distance between training and testing 

sets that is commensurate with the Rajski (or Shannon) distance, so that we can 

use the triangle inequality to give us the upper bound on Rajski dissimilarity 

(lower bound on performance) and the reverse triangle inequality to give us the 

lower bound on Rajski dissimilarity (upper bound on performance). The Jeffrey 

and Kullback-Leibler divergences initially appear to be candidates, as they are 

commensurate with Shannon distance, but the KL divergence is not symmetric 

(which may or may not be a problem for this application) and neither of these 

divergences satisfies the triangle inequality (which is clearly required). 

So for exact calculations of generalization performance, we need basis vectors, 

or for bounding performance, we need a metric distance between distributions 

that is commensurate with the Rajski dissimilarity or Shannon distance, but 

unfortunately we have as yet been able to identify neither of these. 

We did make a foray into development of basis vectors: starting with vectors, 

from an origin defined as knowledge of nothing (maximum uncertainty about all 

RVs), pointing to each of the RVs; and calculating projections of each onto each, 

which should correspond to their MI, using the Law of Cosines. We immediately 

found that RVs with no MI, although pairwise independent (geometrically 

perpendicular), if they have interaction information (redundancy or synergy when 
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considered jointly against another RV), are not fully orthogonal. This yields a 

geometry in which the length of the 3rd side of a triangle is given not by 

cbabac cos2
222
  (102) 

(where lengths are given as norms of vectors) but rather by 

cbabac cos  (103) 

which seems to corresponds to Manhattan (city block) distance, so there may be 

hope in some non-Euclidean space, with help from a better mathematician. 

We suspect it will be necessary to reconcile the information geometry of Amari, 

with the information geometry of Crutchfield, with the EA geometry of Moraglio, 

with the respect and assortment considerations of Radcliffe, to fully geometrize 

important EA considerations such as heritability, generalization and evolvability. 

8.3 Evolvability conjecture 

In on-line learning, we may consider all the past experiences from which the 

system has learned to constitute the “training set”, and the very next experience 

encountered to be the “testing set”, in the nomenclature of Section 8.2. Thus 

generalization performance of a trained and tested machine learning system 

corresponds to performance of on-line learning, optimization and search. 

Self-adaptive EAs tune their learning algorithms based on experience. The 

simplest example of this is the Covariance Matrix Adaptation Evolution Strategy 

[46], that updates its mutation operator to correspond with the experienced 

covariance between mutation steps and fitness function values. The idea is quite 

similar to the use of “momentum” in neural network learning rules, where weight 
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updates [51] may include: in addition to the primary term, intended to reduce the 

particular weight‟s contribution to the most recently experienced error; a 

secondary term, that is typically an exponential moving average of previous 

weight update steps, intended to keep the weight moving quickly in a direction 

that seems to correspond to the error gradient based on recent experiences. 

Evolvability depends, at least in part, on successful generalization, from what we 

have learned about the search neighborhoods of the past (both good and bad 

experiences with genetic operators), to deployment of genetic operators that will 

yield effective search neighborhood structures in the near future. 

A defeatist or lazy attitude towards this is to oversimplify the implications of the 

“No Free Lunch” theorems [111] to mean that the generalization performance of 

all algorithms is the same. A more constructive attitude is to recognize that the 

assumptions of NFL are rarely fully satisfied in practice and to exploit the extent 

to which the fitness landscape of a real problem has some smoothness or other 

somewhat consistent structure. 

The same difficulty is encountered in adaptive compression: Kolmogorov showed 

that most of the strings in the universe of all possible strings are incompressible; 

yet in the universe of strings that arise in practice, we compress many each day. 

Compressors typically build a dictionary based on sequences they have seen: 

when they encounter a novel sequence, they can‟t compress it very well; but 

after seeing it repeatedly, they conclude it is likely, and assign it a short proxy. 
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To maximize evolvability (and thus generalization and on-line performance), we 

wish to design evolutionary learning systems that self-adapt to maintain 

moderate heritability of information (balancing exploitation and exploration). The 

landscape metaphor offers us 2 heuristics. First, when we are on a flat plain, take 

long steps, and when we are on a rough surface, take small ones, as we wish to 

climb as rapidly as will not entail a large chance of falling off a cliff. Second, if we 

suddenly discover that someone has equipped us with 7 league boots, reduce 

the vigor with which we take each step, or if we have been hobbled, increase that 

vigor, to keep step length in accord with the first heuristic. These 2 heuristics are 

commonly muddled in an attempted direct mapping from genotype to fitness. 

The foregoing metaphor can be operationalized using the phenotypic behavioral 

and genotypic information distances defined previously. The first heuristic deals 

with the change in phenotypic solution quality resulting from changes in 

phenotypic behavior (and often structure); in terms of our metrics this is a slope 
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(104) 

where we evaluate this with 2 models in close proximity with each other, such as 

a parent and one of its offspring produced by mutation only (no recombination). 

The numerator is the absolute difference, between 2 models, in their respective 

dissimilarities to the ideal model; the denominator is the dissimilarity between the 

2 considered models. 
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The second heuristic deals with the change in phenotypic behavior (and often 

structure) resulting from changes in the genotype; this is also a slope 
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where again the evaluation should involve 2 models in relative proximity, and 

practical applications will need a computable metric such as NCD in place of DK. 

Of course it is possible to multiply these 2 ratios, canceling one term to yield 
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but this may lead to taking excessively large steps in regions of the search space 

where the solution quality changes slowly with respect to phenotypic behavior; 

we want our models to change relatively slowly, so that the population will 

contain models structurally similar enough to be compatible mates. 

We conjecture that evolvability of information would be dynamically maximized in 

a self-adaptive EA that used DS and an approximation to DK as follows. 

Based on recent measurements of the phenotypic solution quality change 

induced by phenotypic behavioral distance traversed, and the latter as a 

consequence of genotypic variational steps, adapt the genetic operators (or 

probabilities of applying particular ones, or step sizes passed to any that 

parameterize it) so that the likelihood of taking a given mutation step is inversely 

related to the phenotypic effects it is expected to have, and the most likely 

mutation steps are expected to have small but non-negligible phenotypic effects. 
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This procedure makes what we believe to be the weakest possible assumption 

about the adaptive landscape: that abrupt changes in its smoothness are rare. 

This final conjecture, while theoretically motivated, requires no further 

mathematical gymnastics. It could be experimentally validated by taking an 

existing evolutionary learning system that already self-adapts its step size, 

replacing its genotypic edit distance function with NCD, replacing its fitness 

function (solution quality measure) with DS(Z,Zj), and inserting an additional 

phenotypic behavioral distance measurement using DS(Zj,Zk). 
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9 Summary of Contributions 

This dissertation has made contributions in 3 clusters – indicators, algorithms, 

corollaries to Price‟s Theorem – summarized in the sections of this brief chapter. 

It has also made several contributions that lie outside those clusters. We have: 

► demonstrated how to adopt an information theoretic perspective on EC; 

► identified information transmission channels implicit in evolutionary learning; 

► introduced nested resampling to estimate confidence in small sample statistics; 

► defined a measure of total redundancy that generalizes total correlation; 

► applied information theory to analysis of diversity, fitness and deception in EAs; 

► presented evidence for heritability of information theoretic solution quality indices; 

► presented evidence for evolvability using such indices for selection in GP; 

► evaded deception and poor scaling on a chaotic time series prediction problem; 

► correctly selected relevant inputs on a complex continuous function benchmark; 

► discovered relationships in a high dimensional industrial process data set; 

► verified hypothesized relationships in a small sample political data set; 

► formalized conjectures regarding information distances in evolution. 

9.1 Indicators 

We have developed commensurate indicators of diversity and fitness (both 

solution quality and reproductive potential) that are computable, general, 

justifiable and objective. They reward individuals for their potential incremental 

contributions to solution of the overall problem, inter alia by identifying diverse, 

high fitness simple forms likely to be good building blocks. They are invariant 

under invertible transformations and only slightly degraded by most others. They 



 

155 
 

have avoided deception suffered by other fitness functions on a hard problem. 

They have the unique ability to objectively evaluate ensembles, without requiring 

foreknowledge of how the constituent sub-models might be composed into a 

single more complex model. This can be used to evaluate potential reproductive 

pairings not only severally but also jointly, enabling non-random mating to 

recombine synergetic material, dramatically increasing the likelihood of producing 

offspring of higher solution quality than the better of their parents; this is 

evolvability, the sine qua non of evolutionary computation. 

9.2  Algorithms 

We have developed accurate, memory- and time-efficient, parallelizable, robust 

algorithms for estimating entropy, mutual information and information dimension 

of mixed continuous (even with repeats) and discrete (even categorical) data. 

These use sparse arrays to represent the maximum likelihood estimate of the 

empirical copula density, which fully characterizes multivariate dependencies. 

9.3   Corollaries to Price’s Theorem 

We have extended Price‟s Theorem to non-random mating. We have 

reinterpreted it to estimate effective fitness of a genotype in the context of the 

population that will provide its mates. We have decomposed Price‟s Equation into 

terms that show the effects of selection, genetic variation and their interaction, 

and identified the key factors therein affecting heritability and evolvability. 

We have made significant progress Towards an Information Theoretic 

Framework for Evolutionary Learning. 
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Appendix A: Biographical/Philosophical Background 

This research is now focused on the application of information theory to 

evolutionary computation, especially machine learning of ensemble models, but it 

began as a foray into time series prediction.  It is most naturally explained in the 

context of that application, the difficulty of which motivated its development. 

The broad scientific objective is development and dissemination of understanding 

of evolution and intelligence and their interplay: how evolution can give rise to 

intelligence and consciousness; and how conscious action and design can then 

play important roles in subsequent evolution.  Narrowing the focus somewhat, 

the “missing link” between symbolic Artificial Intelligence and non-symbolic 

Computational Intelligence (including machine learning approaches based on 

evolutionary computation) appears to be the automatic generation, maintenance 

and exploitation of probably approximately correct, hybrid symbolic/numeric 

models of the world, the self and other agents, for prediction, what-if analysis and 

control.  Progress here would have both scientific importance and significant 

engineering applications (including the “sensor to symbol problem” in sensor 

signal processing and sensor networking). 

We narrowed the focus further, to development of theory and techniques for the 

automatic generation of predictive models of a single observed actor or process.  

For clarity of analysis and ease of testing, we sought the simplest world that 

retained important and interesting difficulties for modeling.  We chose time series 

emerging from “black boxes”, where the hidden systems are essentially 
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deterministically chaotic, but with stochastic elements entering into the dynamics, 

and noise corrupted observables. 

… we are struck by the variety of routes that lead people to study 
time series.  This subject, which has a rather dry reputation from a 
distance (we certainly thought that), lies at the heart of the 
scientific enterprise of building models from observations.  One of 
our goals was to help clarify how new time series techniques can 
be broadly applicable beyond the restricted domains within which 
they evolved (such as simple chaos experiments)… 

Gershenfeld and Weigend, 1994 [42] 

We desire techniques that produce parsimonious system descriptions, which 

provide insight into what the hidden dynamics might be.  As usual, we posit that 

the simplest model that fits the data is „best‟ (Akaike‟s Information Criterion [AIC], 

Schwarz‟s Information Criterion [SIC], Rissanen‟s Minimum Description Length 

[MDL], Wallace‟s Minimum Message Length [MML], Ockham‟s Razor, etc.) – but 

what “fits the data” depends upon what we assume to be signal versus noise.   

Our viewpoint is that the study of natural systems begins and 
ends with the specification of observables describing such a 
system, and a characterization of the manner in which these 
observables are linked… the concept of a model of a natural 
system N is a generalization of the concept of a subsystem of N… 
The central question surrounding the issue of model credibility is 
to ask to what extent „good‟ predictions can be made…  The 
answer is wrapped up in the way in which the natural system N is 
characterized by observables, the procedure by which 
observables are selected to form the subsystem, and the manner 
in which the subsystem is encoded into a formal mathematical 
system F which represents, or models, the phenomena of 
concern. 

J. Casti, 1992 [25] 

To generate a useful hybrid model, we must both discover its symbolic structure 

and optimize its numerical parameters.  To test that model, we must evaluate 

both its short-term point predictions and its long-term attractor characterizations. 
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If it can provide medium-term probability density function estimates conditional 

upon recent history, so much the better, although their evaluation may be 

difficult.  Conventional approaches to modeling (see Appendix B: Related Work) 

have failed to yield the desired combination of parsimonious symbolic 

representation and accurate numeric performance even on purely deterministic, 

much less on partially stochastic, chaotic time series.  Thus they are attractive 

candidates for prediction by a more general modeling technique inspired by the 

learning mechanisms found in natural evolutionary biology and neurobiology.  

Our approach integrates several methods.  Genetic Programming is used to 

discover the structure of differential equations that estimate the observable.  

Evolution Strategies are used to initialize the parameters of each „newborn‟ 

individual in the population.  Neural Network style learning is used to continue 

on-line optimization of those parameters.  Not central to the approach, but of 

interest, is the possibility of using joint time-frequency methods, such as 

wavelets, to facilitate the extraction of features useful in predictive modeling. 

We selected an initial test problem (Sprott‟s simplest chaotic flow).  We 

attempted to discover its defining equation using: our hybrid technique, 

implemented in Mathematica; a GECCO TinyGP contest entry[37], also 

implemented in Mathematica; and the Discipulus commercial package.  All 

yielded formulas that grossly approximated the observable, but none found the 

defining equation.  Indeed none found equations that, if iterated, would produce 

chaotic behavior.  While they may have been capable of short-term point 
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prediction, they could not reproduce long-term attractor properties, nor provide 

insight into the dynamics. 

In short, they did not yield the models we desire.  We investigated why not, and 

identified a form of deception in our initial test problem: of its several terminals, 

only one correlated (actually, strongly anti-correlated) with the target output; 

however, all terminals are found in the defining equation and make essential 

contributions to the behavior of the system.  Without a better indicator of fitness 

than time domain root mean squared error or the like, and without some means 

of preserving essential diversity (solution-relevant information) in the population, 

GP would converge prematurely to populations from which all but one of the 

necessary terminals were absent.  At this point, we could have simply replaced 

the error based fitness measure with one that exploited non-linear correlations; 

2nd order would have sufficed for this particular test problem.  However, instead, 

we chose to regard this as an opportunity to develop theory and techniques that 

can deal with dependencies of arbitrary order: we turned to information theory. 

Mutual information measures how much [the distribution of] one „random‟ 

variable tells us about [the distribution of] another.  This captures all 

dependencies, whether they manifest as linear correlation, or at higher orders.  

Gaussian RVs that are linearly uncorrelated are independent, but this does not 

hold for other distributions – a linear correlation coefficient of zero does not 

generally imply independence.  We developed indicators of fitness and diversity 

based on mutual information.  This led to discoveries relating redundancy, 

synergy and epistasis; to joint measurements of the fitness of groups, especially 
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potential parents, and thus to mate selection heuristics; and to multiobjective 

optimization using information theoretic functionals with various error measures. 

More significantly, our pragmatic application of information theoretic functionals 

to avoid the deception encountered in our initial test problem, led us to consider 

the general applicability of information theory to evolutionary computation.  

Systematically considering each phase of problem solving using evolutionary 

algorithms, we found that information theory can be applied profitably throughout. 

There are several perspectives from which evolutionary algorithms are analyzed.  

One can begin empirically or theoretically.  One can emphasize micro- or macro- 

aspects, such as genetic operators or population dynamics.  Fitness landscapes 

and deception are popular metaphors.  Information theory can provide a new 

perspective. 

In a natural environment, there are many resources available for exploitation by 

organisms (energy, raw materials, waste disposal sites, etc., all contributing to 

the vaguely hypothesized and debated quantity of „negentropy‟).  There are also 

many dangers.  Survival and reproductive selection pressures are complex. 

On the other hand, in an artificial environment, especially one designed for a 

clear engineering purpose (such as learning an input-output mapping, with 

clearly definable measures of solution quality), things can be made simpler.  

Selection pressure (whether applied to survival, reproduction or both) is designed 

to improve solution quality as measured in at least an upper tail of the population.  

Selection pressure is moderated to balance exploration (coarse sampling of 
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grossly undersampled regions of the search space) versus exploitation (fine 

sampling of regions deemed attractive based on information already acquired). 

The environment of a GP based learner of input-output mappings provides one 

essential „energy‟ resource that models in the population must exploit (if they are 

to survive and reproduce): the training data set.  The quantity of this resource 

that is available is the amount of information therein: Shannon‟s entropy H of the 

target output data set.  The quantity of this „energy‟ that is required by an 

„organism‟ to stabilize its pattern (to survive and reproduce at the maximum rate 

so that it comes to dominate the population) is the amount of information in the 

individual: Shannon‟s entropy H of the model output data set.  The foregoing 

applies implicitly to all evolutionary learning; applying it explicitly, we hope both to 

illuminate the evolutionary process and to solve hard problems. 

We also note in passing the existence of deep connections with the other domain 

in which a central role is played by entropy: the explanation of thermodynamics 

by Boltzmann and Gibbs, statistical mechanics.  Solving a problem is doing work: 

it consumes exergy (equivalent to information?) and increases entropy; solving a 

problem using EAs involves a population of individuals that might be treated as 

molecules of a gas, where their degrees of freedom (information dimensions) 

should lead, via statistical mechanics, to pressure, volume, temperature, etc. of 

the “grand canonical ensemble” that the population comprises. 
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Sources of problem difficulty must be analyzed in information theoretic terms, 

starting with the fundamental question: What are building blocks in information 

theoretic terms? Returning to the test problems and the GP attack on them…  

The hybrid learning system will be applied to a series of synthetic test problems 

of increasing difficulty: discrete and continuous, deterministic and stochastic, 

linear and nonlinear, periodic and chaotic, clean and noisy functions.  Ultimately, 

successful application to an empirical data set would prove its practical value; but 

that is not essential to validating our extension of EA theory. 

This approach is being developed specifically to predict, and understand the 

possible origins of, time series that have resisted prediction by other methods, 

but which are potentially predictable to some extent.  The most obvious sources 

of such data sets are processes that combine chaotic and stochastic dynamics.  

Chaotic dynamics are deterministic, but difficult to predict due to rapid divergence 

of nearby trajectories (sensitive dependence on initial conditions).  Stochastic 

dynamics are by definition non-deterministic, but still „predictable‟ in the sense of 

[conditional] probability density functions or distributions. 

Systems that combine both, confound techniques developed for each.  

Randomness that enters into system dynamics, versus mere noise corruption of 

the observable, defeats nonlinear dynamical systems time series embedding 

techniques.  Chaos allows for short-term predictions unachievable by statistical 

techniques, and introduces apparent nonstationarity that defeats them. 
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Non-invertible maps with one or more degrees of freedom, invertible maps with 

two or more degrees of freedom, and continuous time flows with three or more 

degrees of freedom, can exhibit chaos.  Many well-known chaotic systems, 

including some that model important real-world processes, are of these minimal 

orders.  Higher order systems are also of interest, but present greater modeling 

and prediction difficulties. 

The ideal initial test problem is the simplest system that exhibits all of the above 

characteristics.  It is simpler to evolve a tree than a forest, so a process 

described by a single higher order ODE is preferred to one described by a 

system of multiple first order ODEs.  Sprott has investigated and catalogued 

many simple chaotic systems, especially jerk equations[98], of which the simplest 

appears to be 

2( )x ax x x       (A-1) 

As the parameter a is reduced from 2.082, the system follows the common 

“period doubling route to chaos”.  From 2.0577 to 2.0168 there is the usual 

structure of bands of chaos interrupted by periodic cycles. 

To produce a test problem with the desired characteristics, these deterministic 

dynamics are made stochastic by „randomly‟ varying the parameter a over the 

entire period doubling and chaotic interval [ 2.0168 .. 2.082 ].  Experiments are 

being conducted on personal computers, where use of the nominally random 

numbers available within the environment would amount to self-deception.  
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Therefore initial experiments have been conducted using sinusoidal variation of 

the parameter: this still makes the process nonstationary in the short term (albeit 

both wide sense and cyclo-stationary), so the interesting problems can still be 

studied; better sources of random numbers have been identified [113][114] and 

will be inserted.  Another way of making the dynamics stochastic would be to add 

a random term r, not itself directly observable, into the formula for the 

observable: 

2( )x ax x x r        (A-2) 

We will also test with other chaotic jerk systems, including the WINDMI attractor: 

xx ax x e b        (A-3) 

[96] and the Moore-Spiegel oscillator: 

2( )x x T R Rx x Tx         (A-4) 

Chaotic systems can be extremely deceptive.  Fitness evaluations may require 

many iterations of candidate model equations, calculation of attractor 

dimensions, etc. as well as information measures.  Multiobjective methods thus 

involve fitness evaluations of widely varying costs.  Techniques are needed to 

decide, during the course of an evolutionary run, when evaluation of the more 

expensive objectives is justified in terms of information gain. 

Pending application of decision theoretic techniques, expensive fitness functions 

can be treated as constraints: rather than calculating them accurately, they can 
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be estimated quickly, and individuals with grossly bad performance penalized.  

Akaike‟s Information Criterion is often used to penalize model complexity, but 

would be redundant with normalizing indicators by total entropy. 

In addition to the evolutionary parameters that must always be selected when 

applying GP, there are additional design decisions involved in modeling an 

unknown system using differential (or difference) equations or when embedding 

an attractor.  Will a single higher order ODE, or several first order ODEs, be 

used? If the former, what order; if the latter, how many? What is the lag vector 

length? These all relate to various definitions of system dimensionality: the 

integer number of degrees of freedom in the configuration space (of the unknown 

equations of state describing the hidden dynamics); the (sometimes smaller) 

integer number of dimensions of the solution manifold; the (usually smaller, 

usually non-integer) dimension of the attractor; etc. [96] These are all, in general, 

unknown a priori.  The lag vector length is usually determined empirically by the 

method of false nearest neighbors.  The time delay step size between elements 

of that vector is usually determined empirically from the first minimum of the 

mutual information (a usage of that functional unrelated to that we make for EAs). 

While all of these are important in practice, they are not germane to our research.  

Therefore we evade them, by using synthetic data for which the correct answers 

to these questions are known.  We use chaotic jerk equations, the simplest flows 

that can exhibit chaos, so we need find only a single higher order ODE rather 

than multiple first order ODEs, and so that single ODE can be of minimum order.  
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We eschew Principal Components Analysis (Karhunen-Loeve transformation) of 

the data: while it removes linear correlations of the elements of the embedding 

vector, it is likely to obscure the non-linear relationships we seek to discover.  

Our technique is related to the generalization of PCA, not just to low degree 

nonlinearities, but to nonlinear Independent Components Analysis. 

A question that cannot be so easily evaded is that of overfitting.  We need to 

„clearn‟ the data: concurrently clean (de-noise) the data using a tentative model, 

and learn (discover, construct) the model from that data; but when do we stop? 

Any filtering must be strictly short length Finite Impulse Response, as long FIR or 

Infinite Impulse Response filtering will alter its dynamical structure. 

This is related to the need to withhold testing data from the training set.  The 

amount of data to be withheld depends upon the relative frequency of testing 

versus training events, and the length of GP runs.  A related issue is the 

distinction between testing of the parameter values to which an individual has 

trained, and testing of the structure of the individual: should different testing sets 

be used for short term point prediction tests and tests of the variants of attractors 

reconstructed by long term iteration of the model equations? 

Wolfram Research, Inc. publishes Mathematica, software that they describe as a 

“fully integrated environment for technical computing”.  It has substantial power 

applicable to the problem of nonlinear stochastic systems prediction and 

analysis, and is based upon a flexible and extensible programming language.  It 

has been considered for GP work by many, but actually used by few, because it 
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constantly strives to reduce expressions, interfering with their explicit 

maintenance and manipulation by GP systems and their programmers. [37][100] 

Its advantages appear to outweigh its disadvantages as a platform for our 

research, so the hybrid evolutionary system is being developed in Mathematica. 
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Appendix B: Related Work 

B-1. Statistical Techniques 

Approaches that assume partial predictability, partial randomness, stationarity, 

ergodicity and linearity have dominated statistical time series prediction efforts.  

Most techniques attempt to fit the data to models of various classes, most of 

which have been variations on the Auto Regressive Moving Average (ARMA) 

described by Box and Jenkins [14].  These work well within their domain of 

applicability, where their assumptions hold; but they break down quickly if applied 

outside that domain, even with seemingly minor violations of the assumptions. 

… if and only if the power spectrum is a useful characterization of 
the relevant features of a time series, an ARMA model will be a 
good choice for describing it.  This appealing simplicity can fail 
entirely for even simple nonlinearities if they lead to complicated 
power spectra (as they can).  Two time series can have very 
similar broadband spectra but can be generated from systems 
with very different properties, such as a linear system that is 
driven stochastically by external noise, and a deterministic (noise-
free) nonlinear system with a small number of degrees of 
freedom… Nonlinearities are essential for the production of 
„interesting‟ behavior in a deterministic system; the point here is 
that even simple nonlinearities suffice. 

Gershenfeld & Weigend, op cit [42] 

Traditional statistical approaches, which can model linear dynamics, even when 

almost entirely masked by noise, often fail utterly when confronted with nonlinear 

dynamics, even when completely noise-free.  Operating at shorter time scales, 

where noise corruption of the observables or stochastic dynamical components 

dominate, statistical techniques are still likely to be confounded by the apparent 

non-stationarity and consequent non-ergodicity introduced by nonlinearity.  

Nonlinear dynamics researchers have thus had to develop alternative methods. 
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B-2. Dynamical Systems Techniques 

Approaches that attempt to provide short term point predictions, long term 

attractor reconstructions and characterizations of invariant properties, assuming 

nonlinear but strictly deterministic underlying dynamics, have been developed 

over the last 30 years.  The practice of these techniques has no universally 

accepted name, but has been called „embedology‟ by some of its practitioners. 

The impact of the discovery of chaos lies in the realization that 
nonlinear systems with few degrees of freedom, while 
deterministic in principle, can create output signals that look 
complex, and mimic stochastic signals from the point of view of 
conventional time series analysis… The key fact is that short-term 
prediction is not ruled out for chaotic systems, if there are a 
reasonably low number of active degrees of freedom.  It is the 
ability to predict a short time ahead that is the basis of the new 
techniques… 

Ott, Sauer and Yorke, 1994 [75] 

These techniques, while remarkably successful in providing accurate, 

deterministic short term point predictions in some cases that had been intractable 

with previous techniques, also have limitations and weaknesses.  The models 

they produce typically: are not symbolic but rather numeric; are not global but 

rather consist of large numbers (thousands or more) of local submodels; and are 

linear, or at most low degree polynomial, despite arbitrary nonlinearities being 

their entire raison d’etre.  They suffer greatly from noisy observables. 



 

170 
 

Global models of the source of one‟s observations are in some 
sense the eventual goal of the analysis of any data set… The 
development of such global models is unlikely to proceed in an 
algorithmic sense… The very interesting theoretical work on 
signal separation has not been enormously successful in its 
application to its original goal: reduction of noise in observations 
of chaotic systems. 

H. Abarbanel, 1995 [1] 

B-3. Population Learning Techniques 

Statistical and dynamical systems techniques try to fit data to standard models.  

Some techniques use a single model, and the only flexibility is in its parameters; 

other techniques have a library of models, from which a selection is made, either 

by the user or by an algorithm.  Control systems engineers call this model 

selection process “system identification”.  For greater generality, some 

researchers have applied Genetic Programming, effectively using an infinite 

library of models; but this model space must be searched efficiently. 

Genetic Programming is well suited to the discovery or construction of useful and 

sometimes meaningful structure.  One classical means of describing a system is 

by a single, higher order, ordinary differential (or difference) equation (ODE).  

Another classical dynamics description is a system of several, first order, ODEs.  

A GP can evolve a tree representing a single ODE, or a forest representing a 

system of ODEs, providing the desired insight into the hidden system dynamics. 
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“Inducing equations based on theory and data is a time honoured 
technique in science. This is usually done manually... In this 
work… human induction of equations is compared with the use of 
genetic programming… The genetic programming induced 
equation was competitive with the best of the human-induced 
equations... Particularly important… was the possibility to (i) 
interpret the equation, and (ii) improve it using theoretically 
motivated considerations… the genetic programming engine was 
used as a hypothesis generator… answers are produced through 
automatic means, not as a black box, but as a tentative 
expression that can be used as a basis for analysis. This is 
potentially a much more useful result, as it shows that the 
symbolic nature of genetic programming can be used to build up 
knowledge in a problem domain.” 

Keijzer, Babovic, Baptist and Uthurburu, 2005 [54] 

Mutual information between the target and models (individual and ensemble) in 

the population can be used in all phases of solving a problem by GP.  It is well 

suited to the identification of explicit building blocks and combinations of building 

blocks with high potential to contribute to the solution.  Evolutionary algorithms 

that explicitly identify and recombine high fitness building blocks are claimed 

superior to those which process building blocks only implicitly [33].  Explicit 

learning of appropriate linkages between variables is also claimed beneficial [94]. 

It has recently been recognized that only a small fraction (generally the most fit) 

of the initial population contributes substantially to the final population [31].  It has 

also recently been recognized that the most fit members of the initial population 

tend to be small and simple [56]. 

Composing these findings, it is tempting to create an initial population of only the 

terminals themselves, or at most simple combinations thereof, which are likely to 

be the needed building blocks, and evolve successively more complex 
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combinations only from the most fit of the simple initial forms.  Such approaches 

have been proposed by others [25]. 

In place of random mating, various mate selection heuristics have been 

suggested [41].  Calculation of the joint mutual information with the target of a 

pair of potential parents is attractive as such a heuristic: offspring produced by 

recombination without mutation can do no better than the joint observation 

provided by their parents, except for reduction of excess model entropy; mutation 

induces variance about this, which would otherwise be an upper bound. 

Survival selection has also been studied [8]; joint mutual information provides an 

upper bound on the information that can be provided by an ensemble, without 

foreknowledge of how information from the different individuals in the ensemble 

might be combined.  In this context, multiobjective GP is appealing [84]. 

While GP is strong in discovering symbolic structures, it is weak in optimizing any 

numerical parameters that may need to be embedded in such structures for them 

to fit the data accurately.  This can be mitigated with another population learning 

technique, Evolution Strategies.  Another attractive aspect of ES is self-

adaptation of evolutionary process parameters. 

As foreshadowed (in Appendix A: Background), certain problems, including our 

initial test problem, exhibit deceptiveness of one form or another; this affects 

various evolutionary algorithms in different ways.  We argue that deception of an 

EA is always with respect to a given fitness function, and may cause more or less 

difficulty for an EA depending upon its effectiveness in preserving diversity.  
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Deception may be avoided by more „insightful‟ fitness functions and/or mitigated 

by more effective mechanisms for preserving diversity. 

The pitfall of current techniques that our innovations avoid is loss of essential 

information from the population.  Such loss is often due to deception of fitness 

functions that implicitly depend on linear correlation between targets and 

individuals in the population, or due to failure to preserve relevant diversity in the 

population.  Such loss is especially likely when that essential information is 

distributed across multiple individuals but not apparent in them individually, due 

to epistasis or synergy among them. 

B-4. Individual Learning Techniques 

Among biologically inspired machine learning techniques that are not population 

based, artificial Neural Networks dominate: in generality of problem-solving 

power; and in popularity with researchers, who have applied them often to time 

series prediction, with varying degrees of success.  Their great strength, relative 

to GP, is in numerical performance; but their great weakness is that, aside from a 

very few special purpose constructive methods, they are model-free estimators 

rather than explicit model builders.  Natural biology inspires a hybrid approach: 

exploit the synergy of phylogenetic (population) learning of structures with GP, 

and ontogenetic (individual) learning of parameters with neural networks. 

Individuals in a GP population are function trees, which in the NN literature would 

be called sparse high order networks; while standard NN learning rules cannot 

generally be applied, gradient descent or hill climbing of some sort can optimize 
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the parameters of those networks.  The adaptive individuals are likely to become 

trapped in local minima of the error function, but the evolving population is hoped 

to sample the fitness landscape sufficiently densely to locate a basin in which 

may be found a global optimum, providing the desired point prediction accuracy.  

Structural sampling of the model space can be performed using GP, and 

numerical sampling of the parameter space can be performed using ES to 

initialize and then NN style learning to further optimize the parameters. 

Many researchers have employed such hybrids; the most interesting efforts have 

explicitly evolved ensemble models [66].  A GP population is inherently an 

ensemble model, whether that is explicitly recognized not.  Recognition of the 

fact enables its exploitation: for group selection, to improve the fitness of an 

entire population as such, above and beyond improvements that result from 

individual selection of its members; and for use of a population, at any 

generation, to model all the various aspects of the target, even if the submodels 

of each of those aspects have not [yet] been recombined into a single NN. 

In more general machine learning theory, the Probably Approximately Correct 

framework [49] is widely used.  Its classical application is to state machine based 

learners of binary sequences.  It is appealing to apply it to GP, NNs, ensemble 

models, hybrid learners, etc., but it is unclear how, or how it might need to be 

extended, to do so. 
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B-5. Joint Time-Frequency Representations 

Pure time (frequency) domain approaches may miss features readily evident in 

the frequency (time) domain.  Thus, we planned to use wavelets to facilitate 

detection of features irrespective of their „native‟ domain.  We identified several 

ways to integrate wavelets with NN and GP techniques.  Our transforms were 

motivated by several conflicting objectives: 

 to mitigate the effects of measurement noise in the data; 

 to facilitate the discovery of hidden structure in the series; 

 to represent discovered relationships in a form amenable to interpretation. 

The literature is replete with applications of joint time-frequency representations 

to time series prediction.  However, we have tabled work in this area, as our 

research focus has shifted away from the time series prediction application 

(which, despite its practical importance, was for us always only a test problem), 

toward the application of information theory generally to evolutionary learning. 

B-6. Information Theoretic Indicators of Fitness 

Deception is an important aspect of evolutionary computation.  Our initial 

attempts at time series prediction with GP suffered from a particular form of 

deception: all terminals in the set selected for the test problem appear in the 

hidden defining equation, which we wish to discover; but only one of them 

correlates (actually, anti-correlates strongly) with the observable.  This led to 

rapid loss from the population of building blocks essential to evolution of the 

correct solution.  It was apparent that the deception was due to the implicit linear 



 

176 
 

correlation inherent in typical error measures; so mutual information was 

investigated, as it can capture arbitrary higher-order statistical relationships. 

Information theoretic functionals have been used as fitness functions, or 

components of fitness functions, by a few GP researchers.  In [4], a variant of 

normalized mutual information (different from our formulation only by a constant) 

was a factor in a formula that collapsed multiple objectives into a scalar fitness; 

superiority of normalized over raw mutual information, and of the GP using 

mutual information over prior GA results, were reported.  Despite the favorable 

reported results, the evolutionary computation community does not appear to be 

adopting mutual information broadly: we assume this is because no one has yet 

shown information theoretic approaches to be generally applicable to EAs; 

showing this has become a major goal of our work. 

B-7. Information Theoretic Indicators of Diversity 

Mutual information has also been used as a diversity indicator by a few 

evolutionary learning researchers.  In [66], fitness sharing was based on the 

concept of set covering and implemented by minimization of mutual information 

between NN models comprising ensembles: favorable results were reported; but 

note that what was being maximized here, we label as only apparent diversity, 

which may not all contribute to modeling the target. 

We find no evidence in the literature of recognition or exploitation of certain key 

insights regarding mutual information based indicators of fitness and diversity: 
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 they are justifiable, general, computable and commensurate 

 they enable measurement of relevant diversity 

 they enable joint estimation of the reproductive potential of groups 

Practical and theoretical exploitation of these insights is now our primary focus. 

B-8. Information Theory in Artificial & Natural NNs 

Information theory has been used more in machine and biological learning 

research outside the field of evolutionary computation.  The principle of maximum 

information preservation has been recognized in the design of self-organizing 

artificial NNs [65].  Neurobiologists have found that redundancy and synergy are 

both exploited in neural coding [26]. 

B-9. Information Theory in Natural Evolutionary Biology 

Numerous references to information theory can be found in the highly suspect 

literature of “intelligent design”, but few in that of evolution science.  In both, the 

usage is more philosophical and allegorical than rigorous or literal. 

“Environmental selection emerges as a result of a lack of 
sensitivity (low mutual information) between the genetic system 
and the environment.  Sexual selection, by contrast, emerges as 
a result of increased sensitivity (high mutual information) between 
members of the genetic system.” 

D. Brooks, 2001 [16] 

Whether this claim is intended to be mathematical or notional, its general 

accuracy, and its specific applicability to our work, are all as yet unclear.  

Likewise relevance to us of complexity theory and statistical mechanics, the other 

areas where entropy is considered, is unclear and not currently being pursued.  
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Lastly we must admit that much of the related work adopts simpler and less 

computationally costly approaches to modeling, which are often adequate.  Our 

information theoretic evolutionary learning approach is justified only by the labor 

costs of manually exploring complex data sets and defining explicit algorithms, 

and the lack of less expensive automated procedures with sufficient generality.
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Charts and Diagrams 

Table 1.1: Independence (384 sequences)

 y=-1 y=+1 ∑ 

x=-1 1 1 2 

x=+1 1 1 2 

∑ 2 2 4 

Tables 1.2 & 1.3: Perfect [anti]dependence (96 sequences each)

 
y=-1 y=+1 ∑ 

x=-1 2 0 2 

x=+1 0 2 2 

∑ 2 2 4 

 
y=-1 y=+1 ∑ 

x=-1 0 2 2 

x=+1 2 0 2 

∑ 2 2 4 

Tables 2.1 & 2.2: Perfect [non] linear dependence 

 
y=-1 y=0 y=1 ∑   

y=-1 y=0 y=1 ∑ 

x=-1 3 0 0 3  x=-1 0 0 3 3 

x=0 0 3 0 3  x=0 0 3 0 3 

x=+1 0 0 3 3  x=+1 3 0 0 3 

∑ 3 3 3 9  ∑ 3 3 3 9 

Tables 2.3 & 2.4: Perfect non-linear (only) dependence 

 
y=-1 y=0 y=1 ∑   

y=-1 y=0 y=1 ∑ 

x=-1 3 0 0 3  x=-1 0 3 0 3 

x=0 0 0 3 3  x=0 0 0 3 3 

x=+1 0 3 0 3  x=+1 3 0 0 3 

∑ 3 3 3 9  ∑ 3 3 3 9 

Tables 2.5 & 2.6: Perfect non-linear (only) dependence 

 
y=-1 y=0 y=1 ∑   

y=-1 y=0 y=1 ∑ 

x=-1 0 3 0 3  x=-1 0 0 3 3 

x=0 3 0 0 3  x=0 3 0 0 3 

x=+1 0 0 3 3  x=+1 0 3 0 3 

∑ 3 3 3 9  ∑ 3 3 3 9 
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Table 3: Statistics on Example 16 deceptive data 

  
similarity 

  
sufficiency 

  
efficiency 

 

 
y0 y1 (y0,y1) y0 y1 (y0,y1) y0 y1 (y0,y1) 

x0 
   

0.139 0.152 
    

x1 
   

0.145 0.158 
    

(x0,x1) 0.312 0.321 0.578 0.712 0.729 0.732 0.357 0.364 0.732 

z0 0.702 
  

0.825 
  

0.825 
  

z1 
 

0.714 
  

0.833 
  

0.833 
 

(z0,z1) 
  

0.722 
  

0.839 
  

0.839 

Table 4: Inequivalent information despite equal error 

x y z1 z2 e1 e2 

0 0 1 1 1 1 

1 1 2 2 1 1 

2 2 3 3 1 1 

3 3 0 0 -3 -3 

4 0 1 3 1 3 

5 1 2 0 1 -1 

6 2 3 1 1 -1 

7 3 0 2 -3 -1 

   
mean 0 0 

   
RMS 1.7320508 1.7320508 

   
dissimilarity 0 0.6666667 
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Table 5: Fitness indicators applied to 1-term expressions 
  NRMSE rank abs(r) rank NMI rank 

x'' 0.00378 1 0.00001 3 0.32918 1 

x' 0.00248 2 0.62345 1 0.28534 3 

x 0.00167 3 0.00002 2 0.29051 2 

Table 6: Fitness indicators applied to 2-term expressions 
  NRMSE rank abs(r) rank NMI rank 

x'*x'' 0.00474 1 0.52760 5 0.29225 9 

x''-x' 0.00377 3 0.50975 7 0.30890 5 

x'-x'' 0.00228 8 0.50975 7 0.30890 5 

x' 0.00248 5 0.62345 2 0.28534 15 

x-x' 0.00167 12 0.30025 10 0.31249 3 

x'-x 0.00144 14 0.30025 10 0.31249 3 

x*x' 0.00091 19 0.82145 1 0.30413 7 

x'' 0.00378 2 0.00001 25 0.32918 1 

2*x'' 0.00249 4 0.00001 25 0.32918 1 

2*x' 0.00157 13 0.62345 2 0.28534 15 

x'+x'' 0.00228 7 0.50975 6 0.28091 19 

x'^2 0.00226 9 0.57310 4 0.25740 21 

x''^2 0.00240 6 0.00001 27 0.29437 8 

x 0.00167 11 0.00002 20 0.29051 12 

x+x' 0.00144 15 0.30027 9 0.28020 20 

x+x'' 0.00194 10 0.00002 19 0.28439 18 

x^2 0.00032 21 0.05984 12 0.28811 14 

x''-x 0.00140 16 0.00002 22 0.29080 10 

x*x'' 0.00102 18 0.05452 13 0.28530 17 

x-x'' 0.00140 17 0.00002 22 0.29080 10 

2*x 0.00087 20 0.00002 20 0.29051 12 
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Table 7: Fitness indicators applied to 3-term expressions 
  NRMSE rank abs(r) rank NMI rank 

x'^2-x 0.0028 11 0.4885 49 0.3287 9 

2*x''-x' 0.0025 15 0.3610 60 0.3358 3 

x'*(x''-1) 0.0047 4 0.8159 12 0.2947 63 

x''-x' 0.0038 7 0.5097 47 0.3089 25 

x'-x'' 0.0023 19 0.5097 48 0.3089 26 

x-x'^2 0.0019 38 0.4885 50 0.3287 10 

x''-(x*x') 0.0013 73 0.8214 7 0.3105 20 

(x'-1)*x'' 0.0030 9 0.3474 63 0.3078 29 

(x'-x'')*x'' 0.0029 10 0.3833 55 0.3037 36 

x'-2*x'' 0.0019 40 0.3610 61 0.3358 4 

x'*x'' 0.0047 3 0.5276 40 0.2923 71 

-x' 0.0050 2 0.6234 28 0.2853 101 

x'*(x'-x) 0.0010 93 0.8692 1 0.3031 40 

x'*(x''-x) 0.0011 82 0.8542 3 0.2991 50 

(1-x)*x' 0.0017 47 0.8335 5 0.2894 86 

(1+x')*x'' 0.0053 1 0.5750 35 0.2800 120 

(x-x')*x' 0.0008 118 0.8692 2 0.3031 41 

x'*(x-x'') 0.0008 111 0.8542 4 0.2991 51 

x*x''-x' 0.0010 90 0.2213 81 0.3490 1 

x'-x*x'' 0.0010 95 0.2213 82 0.3490 2 

x'^2-x'' 0.0021 28 0.5110 44 0.2735 129 

x'' 0.0038 5 0.0000 287 0.3292 5 

x+2*x'' 0.0021 30 0.0000 258 0.2753 124 
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Table 8: Diversity indicators on 1-term expressions 
  NRMSE rank abs(r) rank NMI rank 

x'' 0.00237 2 0.39038 2 0.28729 1 

x' 0.00245 3 0.00005 1 0.31786 2 

x 0.00154 1 0.39040 3 0.32584 3 

Table 9: Diversity indicators on 2-term expressions 
  NRMSE rank abs(r) rank NMI rank 

x*x'' 0.00073 8 0.43379 17 0.26316 9 

x'*x'' 0.00140 20 0.17278 7 0.25024 8 

x*x' 0.00078 9 0.24939 11 0.28457 16 

x'^2 0.00128 13 0.24758 8 0.28368 15 

x''^2 0.00134 18 0.41493 16 0.22746 7 

2*x' 0.00129 16 0.24812 9 0.31197 22 

x+x' 0.00132 17 0.45985 20 0.26904 11 

x'+x'' 0.00158 24 0.39962 14 0.26600 10 

x^2 0.00027 7 0.47402 23 0.29705 19 

x'-x 0.00104 12 0.47178 21 0.29638 17 

x''-x' 0.00129 15 0.37171 12 0.31437 24 

2*x'' 0.00142 21 0.45822 18 0.27386 12 

x-x' 0.00128 14 0.47178 21 0.29638 17 

x+x'' 0.00157 23 0.40659 15 0.27894 14 

x'' 0.00163 26 0.45822 18 0.27386 12 

x''-x 0.00096 11 0.49553 26 0.30235 20 

x'-x'' 0.00154 22 0.37171 12 0.31437 24 

x' 0.00171 27 0.24812 9 0.31197 22 

2*x 0.00079 10 0.47654 24 0.32125 26 

x-x'' 0.00135 19 0.49553 26 0.30235 20 

x 0.00162 25 0.47654 24 0.32125 26 
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Table 10: Parity arranged by ones count 

x1 x2 x3 y 

0 0 0 0 

0 0 1 1 

0 1 0 1 

1 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 
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Table 11: Correlation vs 
sufficiency, 216 points 

m f r s1 

1 cyclic 0.56 0.97 

1 mixed 0.90 0.94 

1 ratio 0.64 1.00 

Table 12: Correlation vs 
sufficiency, 220 points 

m f r s1 

1 cyclic 0.45 1.00 

1 mixed 0.93 1.00 

1 ratio 0.85 1.00 

 

Table 13: Sufficiency of up to 2-ensembles, 220 points 

m f s1 s2 

1 cyclic 1.00 - 

1 mixed 1.00 - 

1 ratio 1.00 - 

2 cyclic 0.69 0.88 

2 mixed 0.69 0.86 

2 ratio 0.69 0.90 

Table 14: Sufficiency of up to 6-ensembles, 216 points 

m f s1 s2 s3 s4 s5 

1 cyclic 0.97 - - - - 

1 mixed 0.94 - - - - 

1 ratio 1.00 - - - - 

2 cyclic 0.66 0.83 - - - 

2 mixed 0.67 0.86 - - - 

2 ratio 0.69 0.90 - - - 

3 cyclic 0.62 0.79 0.92 - - 

3 mixed 0.61 0.76 0.87 - - 

3 ratio 0.63 0.81 0.93 - - 

4 cyclic 0.59 0.73 0.86 0.93 - 

4 mixed 0.58 0.70 0.82 0.92 - 

4 ratio 0.59 0.72 0.84 0.94 - 

5 cyclic 0.57 0.66 0.77 0.88 1.00 

5 mixed 0.57 0.66 0.77 0.87 0.99 

5 ratio 0.57 0.68 0.79 0.90 1.00 

6 cyclic 0.55 0.63 0.72 0.82 0.99 

6 mixed 0.55 0.63 0.72 0.82 0.97 

6 ratio 0.56 0.65 0.75 0.85 0.99 
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Table 15: Roles of unlabeled inputs 

datum y0 y1 y2 

d0a - - - 

d0b - - - 

d1 - - x0 

d2 - x0 - 

d3 - x1 x1 

d4 x0 - - 

d5 x1 - x2 

d6 x2 x2 - 

d7a x3 x3 x3 

d7b x4 x4 x4 
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Figure 1: Sprott’s chaotic jerk system: time domain 
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Figure 2: Sprott’s chaotic jerk system: time domain derivatives 



 

188 
 

 

100 200 300 400 500
f

70

60

50

40

30

20

10

dB

 

Figure 3: Sprott’s chaotic jerk system: frequency domain 
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Figure 4: Sprott’s chaotic jerk system: lag-self-MI 
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Figure 5: Sprott’s chaotic jerk system: lag space 
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Figure 6: Sprott’s chaotic jerk system: state space 
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Figure 7: Jerk system 
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Figure 8: Inverted jerk system 
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Figure 9: General feedback system 

 

 

 

 

 

 

Figure 10: Open loop or unobserved feedback process 
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Figure 11: Input, target output & 2 non-ideal models 
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Figure 12: Example 1: maximal synergy 
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Figure 13: Example 2: redundancy = - synergy (pseudo-
independence)
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Figure 14: Hidden vs observed process 
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Figure 15: Ideal modeling information flow 
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Figure 16: Forward and reverse modeling 
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Figure 17: Error due to residual target or excess model entropy 
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Figure 18: Parity constructed from multiplexors 
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Figure 19: Sorted logarithms of correlations 

 

Figure 20: Sorted logarithms of sufficiencies 
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Figure 21: Sufficiency vs lag, wide sweep 

 

Figure 22: Sufficiency vs lag, narrow sweep 

 

Figure 23: Sufficiency vs lag, multi-period cycles 
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Figure 24: Information graph of political variables 

 

 

 

 

 

 

 

 

 

Figure 25: Functions as vectors in information space 
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