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ABSTRACT

A generalization of the e�ective meson Lagrangian possessing the heavy quark symmetry to

�nite meson masses is employed to study the meson mass dependence of the spectrum of S{

and P wave baryons containing one heavy quark or anti-quark. These baryons are described

as respectively heavy mesons or anti-mesons bound in the background of a soliton, which

is constructed from light mesons. No further approximation is made to solve the bound

state equation. For special cases it is shown that the boundary conditions, which have to

be satis�ed by the bound state wave{functions and stem from the interaction with the light

mesons, may impose additional constraints on the existence of bound states when �nite

masses are assumed. Two types of models supporting soliton solutions for the light mesons

are considered: the Skyrme model of pseudoscalars only as well as an extension containing

also light vector mesons. It is shown that only the Skyrmemodel with vector mesons provides

a reasonable description of both light and heavy baryons. Kinematical corrections to the

bound state equations are included in the discussion.
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1. Introduction

There has been a good deal of recent interest in the study of the heavy baryons in the

bound state picture [1, 2] with the assumption of heavy quark spin symmetry [3]. Many

aspects of this interesting but technically involved problem have been treated by various

groups [4]{[8]

The baryons under study have the schematic quark structure qqQ, where q stands for a

light quark and Q for a heavy quark. In the given approach they are realized as heavy mesons

(�qQ) bound to light baryons (qqq). The light baryons are treated as soliton excitations of a

light meson Lagrangian. Then a piece is added to the chiral Lagrangian in order to describe

the heavy mesons and their interactions with the light ones. The bound state equation is

the equation of motion of the heavy meson �eld in the background �eld of the light soliton.

This turns out to involve several coupled di�erential equations but, in the in�nite meson

mass, M !1 limit it simpli�es enormously [9] to the evaluation of the matrix elements of

an operator of the form a1I + b�

i

�

i

in a suitable space. This simple result requires not only

M !1 but also that the light baryon mass be formally in�nite.

The interest of this simple result attaches to the fact that it holds for a very large class of

models in the combined large N

c

and large M limit. However it is very desirable for the sake

of comparison with experiment to understand the corrections due to using �nite heavy meson

mass and �nite light baryon mass. For example, the orbitally excited heavy baryon states

turn out unrealistically to be degenerate with the ground state in the simple limit. Of course

once one goes away from the symmetry limit there are many options. In the present paper

we shall deal with the simplest generalization of the heavy meson Lagrangian to �nite heavy

meson masses and shall solve the coupled di�erential equations exactly (numerically) for the

states of interest. It turns out that the resulting equations are exactly of the same structure

as the homogeneous part of those which arose in the \K-cranking" treatment [11, 12] of the

SU(3) Skyrme model with (light) vector mesons so that existing technology may be used.

Previously [9] it was shown how the coupled di�erential equations could be approximated

by a single Schr�odinger like equation. This suggested that the e�ect of �nite light baryon

mass could be estimated by replacing the heavy meson mass in this equation by the reduced

mass. The conclusions of that approximate analysis were �rst that each of the �nite heavy

meson mass and �nite light baryon mass corrections were very important and second that it

was just about impossible to understand the existing experimental data with a light meson

Lagrangian containing only pseudoscalar �elds. It seemed that the latter problem could be

solved if the Lagrangian also contained light vector mesons. Earlier [7] the coupled equations

had been solved for the ground state using the light pseudoscalar only Lagrangian and

approximating the time component of the heavy vector �eld by its leading order in 1=M piece.

Later this approximation has been shown to be justi�ed in that model [10]. The present

analysis uses a di�erent method in which it is unnecessary to make that approximation.

We con�rm here that the light vector mesons seem to be very important to understand

the existing experimental data. After �tting an unknown light vector-heavy meson coupling

parameter to the binding energy of the �

b

(5641) baryon we are able to successfully predict

the binding energy of the �

c

(2285) baryon as well as that of a recently observed [13] candidate

for its �rst orbital excitation [14]. Furthermore we �nd that the approximate Schr�odinger

like equation mentioned above is accurate for the ground state but not reliable for the excited
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heavy baryon state in the charm sector. It seems useful to understand the accuracy of this

equation when one recognizes that the parameters of the light -heavy meson interactions are

still not conclusively established and that the light soliton models themselves may require

important corrections [15]. An initial understanding of the results of changes or of extensions

of the model may be more simply obtained with the Schr�odinger like equation.

Amusingly, we �nd that the present model, including light vector mesons, appears to

give quite a reasonable account of the \ordinary" hyperon binding energies.

We also investigate the so-called pentaquark states [8] in the present model. These are

postulated states of the form qqqq

�

Q. In the present approach they arise as negative energy

bound states of the heavy meson (�qQ) in the background soliton �eld. We note that in the

simple limit it is easier to work with their anti-particles which correspond to positive energy

bound states of the heavy meson in the anti-soliton �eld. In any event it turns out that

these states, which are slightly bound in the simple limit, become unbound in the model

with light vectors both in the charm and bottom sectors.

In connection with our investigation of the penta states we found the interesting feature

that a certain state which was bound in the in�nite M limit did not satisfy the appropriate

boundary conditions near r = 0 for any �nite value, no matter how large, of M . Thus

it appears that the large M limit and the r ! 0 limit (which is needed for obtaining the

standard heavy limit results) do not necessarily commute with each other.

This paper is organized as follows. Section 2 contains a brief summary of the underlying

chiral Lagrangian including light vector mesons. It also gives the ansatz for the light soliton

and for the bound heavy mesons in the P-wave and S-wave orbital states. The latter are

suitable for describing, respectively, the ground state baryon and its �rst orbitally excited

state as well as the low lying penta quark states. In section 3 we obtain, from symmetry

considerations, the wave{functions and binding energies of the above mentioned states in

the heavy spin symmetry limit. In section 4 we discuss the boundary conditions at large

and small r of the coupled di�erential equations (using, for simplicity, the model in which

the light vector mesons are not present). The fact that the M !1 and the r ! 0 do not

necessarily commute is illustrated. In section 5 the detailed behavior of the wave{functions

and binding energies of the low lying states is discussed for the model without light vectors.

This is generalized to the model including light vectors in section 6. The behavior of the

model as a function of an important parameter describing the heavy meson-omega meson

coupling constant is treated. In section 7 the kinematical e�ects of �nite light baryon mass

are estimated and our �nal numerical predictions are presented. It should be noted that

the di�erential equations themselves, their large M limits and the method of solution are

explicitly given in Appendix A. Section 8 contains a summary and discusses directions for

further work.

2. Description of the Model

Following the bound state picture we regard the heavy baryon as a bound state of a heavy

meson in the background �eld of a Skyrmion. In turn, the Skyrmion corresponds to a light

baryon which arises as a soliton excitation of an e�ective Lagrangian constructed from the

light pseudoscalar and light vector meson �elds. For the sector of the model describing the

light pseudoscalar and vector mesons we adopt the chirally invariant Lagrangian discussed
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in detail in the literature [16, 17]. This Lagrangian can be decomposed into a normal parity

part

L

S

= f

2

�

tr [p

�

p

�

] +

m

2

�

f

2

�

2

tr

�

U + U

y

� 2

�

�

1

2

tr [F

��

(�)F

��

(�)] +m

2

V

tr [R

�

R

�

] (2.1)

and a part which contains the Levi-Cevita tensor, �

����

. The action for the latter is most

conveniently displayed using di�erential forms p = p

�

dx

�

, etc.

�

an

=

2N

c

15�

2

Z

Tr(p

5

)

+

Z

Tr

�

4i

3

(

1

+

3

2



2

)Rp

3

�

g

2



2

F (�)(pR�Rp) � 2ig

2

(

2

+ 2

3

)R

3

p

�

: (2.2)

In eqs (2.1) and (2.2) we have introduced the abbreviations

p

�

=

i

2

�

�@

�

�

y

� �

y

@

�

�

�

and v

�

=

i

2

�

�@

�

�

y

+ �

y

@

�

�

�

(2.3)

for the pseudovector and vector currents of the light pseudoscalar �elds. Furthermore � refers

to a square root of the chiral �eld, i.e. U = �

2

. Finally F

��

(�) = @

�

�

�

� @

�

�

�

� ig [�

�

; �

�

]

denotes the �eld tensor associated with the vector mesons � and !, which are incorporated

via �

�

=

�

!

�

1I + �

a

�

�

a

�

=2 in the two avor reduction. R

�

= �

�

� v

�

=g transforms simply

under chiral transformations. The parameters g; 

1

; etc. can be determined (or at least

constrained) from the study of decays of the light vector mesons such as �! 2� or ! ! 3�.

For details we refer to ref. [17]. The action for the light degrees of freedom (

R

L

S

+ �

an

)

contains static soliton solutions. The appropriate ans�atze are

�(r) = exp

�

i

2

^
r � �F (r)

�

; !

0

(r) =

!(r)

g

�

i;a

(r) =

G(r)

gr

�

ija

r̂

j

(2.4)

while all other �eld components vanish. These solutions have widely been employed to

investigate static properties of the light baryons; see [18] for reviews.

We next require the part of the action which describes the chirally invariant coupling of

the light pseudoscalar and vector mesons to their counterparts containing one heavy quark.

In a suitable in�nite heavy mass limit this part of the action has the additional heavy spin

symmetry and the leading term in a 1=M expansion is unique { see for example eq.(3.24)

of ref. [19]. A minimal extension to �nite M of this action is given in eq.(3.25) of ref. [19]

which we write out as:

L

H

= D

�

P (D

�

P )

y

�

1

2

Q

��

(Q

��

)

y

�M

2

PP

y

+M

�2

Q

�

Q

�y

+2iMd

�

Pp

�

Q

�y

�Q

�

p

�

P

y

�

�

d

2

�

����

�

Q

��

p

�

Q

y

�

+Q

�

p

�

(Q

��

)

y

�

(2.5)

�

2

p

2icM

m

V

�

2Q

�

F

��

(�)Q

y

�

+

i

M

�

����

�

D

�

PF

��

(�)Q

y

�

+Q

�

F

��

(�) (D

�

P )

y

��

:

Here we have allowed the mass M of the heavy pseudoscalar meson P to di�er from the

mass M

�

of the heavy vector meson Q

�

. Note that the heavy mesons are conventionally
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de�ned as row vectors in isospin space. The covariant derivative introduces the additional

parameter �:

D

�

P

y

= (@

�

� i�g�

�

� i (1� �) v

�

)P

y

= (@

�

� iv

�

� ig�R

�

)P

y

(2.6)

for example, while the covariant �eld tensor of the heavy vector meson is de�ned as

(Q

��

)

y

= D

�

Q

y

�

�D

�

Q

y

�

: (2.7)

It should be stressed that the assumption of in�nitely large masses for the heavy mesons has

not been made in (2.5). The coupling constants d; c and � which appear have still not been

very accurately determined. In particular there is no direct experimental evidence for the

value of �, which would be unity if a possible de�nition of light vector meson dominance for

the electromagnetic form factors of the heavy mesons were to be adopted (see ref.[20]). We

shall consider � as a parameter here. The other parameters in (2.5) will be taken to be:

d = 0:53 c = 1:60

M = 1865MeV M

�

= 2007MeV D�meson

M = 5279MeV M

�

= 5325MeV B�meson: (2.8)

>From studies [1] in the bound state approach to the SU(3) Skyrme model we expect the

ground state heavy baryon when the heavy meson is bound in an orbital P-wave while the

�rst excited state is expected when the heavy meson is bound in an orbital S-wave. The

apparent reversal from the usual expectation is due to the spin-isospin mixing in the Skyrme

approach. In the context of the heavy quark symmetry it is, of course, necessary to also

include the heavy vector meson �elds. The corresponding ansatz for the P{wave

P

y

=

�(r)

p

4�

^
r � ��e

i�t

; Q

y

0

=

	

0

(r)

p

4�

�e

i�t

;

Q

y

i

=

1

p

4�

�

i	

1

(r)r̂

i

+

1

2

	

2

(r)�

ijk

r̂

j

�

k

�

�e

i�t

(2.9)

de�nes four radial functions. � represents a constant (iso) spinor. Hence P

y

and Q

y

�

represent

isospinors. As a matter of fact these ans�atze are identical to those used to compute induced

strange �elds in the framework of the collective approach to the Skyrme model with vector

mesons [11, 12]. In that case � parametrizes the angular velocities for rotations into strange

directions. It should be noted that apart from � the ans�atze (2.9) carry zero grand spin and

negative parity. The former is de�ned as the vector sum of total spin and isospin. As � has

to be interpreted as an isospinor, the total grand spin of the ansatz (2.9) is 1=2. Since the

heavy mesons carry negative parity the resulting heavy baryon will have positive parity. For

the ans�atze in the S{wave channel

P

y

=

�(r)

p

4�

�e

i�t

; Q

y

0

=

	

0

(r)

p

4�

^
r � ��e

i�t

;

Q

y

i

=

i

p

4�

[	

1

(r)
^
r � � r̂

i

+	

2

(r)r� � @

i

^
r]�e

i�t

(2.10)
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the grand spin is still 1=2 while the parity is positive. Thus the resulting excited heavy baryon

has negative parity. The phase conventions in (2.9, 2.10) guarantee real radial functions. It

should be remarked that we actually are considering conjugate heavy meson �elds. Hence

the exponential reads e

i�t

rather than e

�i�t

. In earlier treatments, the time component of the

heavy vector �eld Q

0

had been eliminated using the heavy quark approximation

Q

0

�

1

M

�2

D

i

_

Q

i

= O

�

1

M

�

�

: (2.11)

For the current investigation we will not need to make this approximation. The bound state

equations may be obtained by substituting these ansatze in (2.5). After some computation

this yields e�ective Lagrange densities for the radial functions �;	

0

;	

1

and 	

2

.These are

displayed in appendix A for both the S{ and P wave channels. The leading pieces in the

limit M = M

�

!1 are also presented in this appendix. Furthermore the method used to

solve the bound state equations for �nite masses is described.

3. Bound States in the Heavy Mass Limit

Before discussing the exact solutions to the bound state equations emerging from (2.5)

for the S{ and P wave heavy mesons it is illuminating to review the results associated with

the heavy mass limit, i.e. M !1 and M

�

!1. In that limit the wave{functions receive

their only support at the origin r = 0. Hence the binding energy is given by the negative

of the potential for the heavy mesons at the origin. Since this potential is generated by the

static soliton the binding energy is extracted from the light meson pro�les F;G and ! at

r = 0. For this purpose one substitutes the expansions

F (r) � �� + F

0

(0)r + : : : ; G(r) � �2 +

G

00

(0)

2

r

2

+ : : : and !(r) � !(0) + : : : (3.1)

of the pro�le functions for the light mesons into eqs (A.4) and (A.2). Note that G and !

have been rede�ned compared to [9] ; see Appendix B. The binding energy is de�ned by

�

B

= M �j�j, i.e. M

2

� �

2

� 2M�

B

. Here � represents the value of the energy which leads to

a regular solution of the bound state equations corresponding to (A.2) and (A.4). In what

follows we will refer to this value of � as the bound state energy. For the P wave the binding

energy in the large M limit results in [9]

�

B

=

3

2

dF

0

(0)�

3

p

2c

gm

V

G

00

(0) +

�

2

!(0): (3.2)

Simultaneously the radial functions in (2.9) are related via

	

1

= ��; 	

2

= �2� (P� wave): (3.3)

For the S wave the same binding energy (3.2) is obtained in the large M limit, however, in

this case the radial functions in (2.10) are related via

	

1

= ��; 	

2

= � (S� wave): (3.4)
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The reason the binding energies are identical in the two channels is that the modi�cations

arising in the di�erential equations when going from the P{ to the S wave are subleading

in the limit M;M

�

! 1. Nevertheless, there may be signi�cant di�erences in the binding

energies of the S and P wave mesons when the masses are kept �nite. The reason is that,

due to the centrifugal barrier, the corresponding wave{functions are substantially di�erent

at r � 0. We will see later that the P wave state is the ground state of the heavy baryon that

results from the binding, while the S wave state is interpreted as the �rst radially excited

state. We have already argued above that the vicinity of r � 0 determines the binding

energy. It will, of course, be of great interest to see how well the relations (3.2){(3.4) are

satis�ed when �nite masses are assumed. Technically speaking, the question is whether or

not the limits M = M

�

!1 and r ! 0 commute.

In the limitM = M

�

!1 the structure of the wave{functions based on their symmetries

has been worked out in ref. [9]. >From that scheme one may extract relations like (3.3) and

(3.4) for other channels as well. The starting point is the heavy meson �eld H, which

combines the heavy pseudoscalar and vector meson �elds moving with a �xed four{velocity

V

�

H

a

=

1

2

(1 + 

�

V

�

) (i

5

P

0a

+ 

�

Q

0a

�

) ;

�

H = 

0

H

y



0

: (3.5)

This parametrization makes the SU(2) spin symmetry transparent. The superscript a labels

the light avor content. In the rest frame H may be decomposed as

�

H

a

=

�

0 0

�

H

a

lh

0

�

; (l; h = 1; 2): (3.6)

The spatial representation of the heavy meson wave{function

�

H

a

lh

has been discussed in ref.

[9] and reads

a

�

H

a

lh

=

u(r)

p

2M

(
^
r � � )

ad

�

	

dl

(g; g

3

)�

0

h

: (3.7)

The radial part, u(r), needs no speci�cation other than that it be strongly peaked

b

in the

vicinity of r = 0. Here g denotes the eigenvalue of the light grand spin g = I +L+ S

0

and

g

3

its projection. In this de�nition I;L and S

0

label the isospin, orbital angular momentum

and spin of the light quark inside the heavy meson. The wave{functions

�

	

dl

are most

conveniently constructed by introducing the intermediate vector sum K = I+S

0

possessing

the eigenfunctions �

dl

(k; k

3

), which represent the product representation of spin and isospin

1=2 objects [9]. Then the eigenfunctions of g are decomposed as

�

	

dl

(g; g

3

;
^
r; k) =

X

r

3

k

3

C

gg

3

rr

3

;kk

3

Y

rr

3

(
^
r) �

dl

(k; k

3

): (3.8)

Here C

gg

3

rr

3

;kk

3

is the Clebsch{Gordon coe�cient associated with the coupling of r and k to g.

Furthermore Y

rr

3

(
^
r) denotes a spherical harmonic function, i.e. an eigenfunction of L

2

and

a

Repeated indices are summed over.

b

In the heavy limit u

2

(r) may be considered as a �(r){type function or derivatives thereof.
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L

3

with eigenvalues r(r + 1) and r

3

, respectively. The spinors are related to those in (2.9)

and (2.10) by �

lh

�

0

h

= �

l

.

In the rest frame the pseudoscalar and vector parts are �nally extracted via

P

0ay

= e

�i�t

P

ay

=

i

2

�

H

a

ll

and Q

0ay

i

= e

�i�t

Q

ay

i

= �

1

2

(�

i

)

hl

�

H

a

lh

: (3.9)

Remember that in the heavy limit Q

a

0

= 0, cf. eq (2.11). In order to obtain states with good

grand spin eigenvalues (as the ans�atze (2.9) and (2.10)) one furthermore has to couple the

spin S

00

of the heavy quark according to G = g + S

00

.

It is then straightforward to verify that the relation (3.3), which was obtained by solving

the bound state equation in the heavy mass limit, corresponds to the state with the quantum

numbers g = r = k = 0 while (3.4) is associated to the state

c

with g = r = 1 and k = 0.

3.1. Pentaquark States

In addition to these bound states in the k = 0 channel, which carry positive energy

eigenvalues, solutions with G = 1=2 exist in the k = 1 channel possessing, however, negative

energy eigenvalues, the so{called pentaquark states [8]. These solutions describe an anti-

heavy meson bound to the Skyrmion and correspond to (qqqq

�

Q) states in the quark model.

In the limit M = M

�

!1 their binding energy is given by

�

(p)

B

=

1

2

dF

0

(0) +

p

2c

gm

V

G

00

(0) +

�

2

!(0): (3.10)

In the heavy limit there are four degenerate negative energy eigenstates with G = 1=2. We

list the quantum numbers of these states as well as the resulting relations between the radial

functions �;	

1

and 	

2

.

1: g = 0; r = 1 : � = 	

1

= 	

2

(S� wave);

2: g = 1; r = 1 : � = �	

1

; 	

2

= 0 (S�wave);

3: g = 1; r = 0 : � = �3	

1

= �3	

2

=2 (P� wave);

4: g = 1; r = 2 : � = 0; 	

1

= �	

2

(P� wave): (3.11)

According to the above described scheme these four states may couple to k = 1 states

because K = g+(�L). It should be noted that the relations (3.11) for the heavy limit have

to be supplemented by 	

0

= 0.

Actually there is another way to look at the penta quark states. One may consider these

states as the particle conjugated system of heavy mesons being bound to light anti{solitons.

This anti{soliton is related to the soliton by [21]

F (r)!�F (r); G(r) ! G(r) and !(r)!�!(r): (3.12)

c

Using (3.7)-(3.9) for the g = r = 1; k = 0 state yields P

0y

= B
^
r(
^
r � �)� and Q

0y

i

= �iB
^
r(r̂

i

� i�

ijk

r̂

j

�

k

)�

where B is a constant. We note that the overall factor
^
r corresponds to the fact that g = 1. We couple

these �elds to G = 1=2 by replacing � ! �� and dotting it into the overall
^
r.This gives P

0y

= B�;Q

0y

i

=

�iB(2r̂

i

^
r � � � �

i

)� which may be compared with (2.10).
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For the heavy meson �elds the e�ect of G{conjugation on the radial �elds is

�(r) !��(r); 	

0

(r)!�	

0

(r) and 	

i

(r)! 	

i

(r) (3.13)

up to an overall sign. It can easily be veri�ed that the Lagrangians (A.1) and (A.3) are

invariant under the combined transformations (3.12,3.13) when in addition the sign of the

bound state energy (�) is reversed. This, however, just represents the transformation from

a bound meson to a bound anti{meson and vice versa. The consideration of the particle

conjugation on the penta quarks is useful since it allows one to apply the expression

M � � =

h

3 � 2k

2

i

(

d

2

F

0

(0)�

p

2c

gm

V

G

00

(0)

)

+

�

2

!(0) (3.14)

found in ref. [9] for the bound state energy of the meson (� > 0) to that of anti{mesons as

well. Here k refers to the eigenvalue ofK. Clearly the application of the particle conjugation

prescription to (3.14) (that is, setting �! ��; F ! �F;G! G;! ! �!) results in (3.10)

for k = 1. Due to its isoscalar character the ! �eld contributes in the same way to the

binding energies of both k = 0 and k = 1 states. Note that (3.13) shows there is a reversal

of the sign of � with respect to the 	

i

when conjugating the heavy limit wave functions

obtained from (3.7)-(3.9).

4. Boundary conditions

In this section we will examine the compatibility of the heavy quark relations found in

the preceding section with the boundary conditions resulting from the bound state equa-

tions. This is interesting because the heavy quark relations are determined from the small

r{behavior without respect to the associated boundary conditions. As the heavy quark rela-

tions originate from purely geometrical considerations the boundary conditions may impose

additional conditions on the wave-functions related to the dynamics of the system. For sim-

plicity we will omit the light vector mesons � and ! (Their e�ects will be included in section

6.). We then get the Skyrme model [22] as the one which supports the soliton for the light

pseudoscalars:

L

Sk

= f

2

�

tr (p

�

p

�

) +

m

2

�

f

2

�

2

tr

�

U + U

y

� 2

�

+

1

2g

2

tr ([p

�

; p

�

] [p

�

; p

�

]) ; (4.1)

where, for simplicity, we have adopted the static limit for the � meson, which determines the

coe�cient of the fourth order stabilizing term. In this model the heavy limit bound state

energies are obtained from eqs (3.2) and (3.10) by taking c = � = 0.

In order to construct the bound state solutions it is useful to study the di�erential

equations stemming from (A.1) and (A.3) for the boundaries r ! 1 and r � 0. In the

former case the soliton disappears and the di�erential equations reduce to Klein{Gordan

(for P ) and Proca (for Q

�

) equations in the S{ and P wave channels, respectively. This

implies that at large r the heavy meson pro�les decay like

� � exp

�

�

p

M

2

� �

2

r

�

; 	

�

� exp

�

�

p

M

�2

� �

2

r

�

: (4.2)
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For r � 0 the situation is more complicated since, due to the presence of the soliton,

R

�

� �2 � (F

0

(0)r)

2

=2 and the roles of S{ and P waves are exchanged. Furthermore one

should note that for large but �nite M and M

�

there is always a vicinity of the origin

with 1=r � M;M

�

. It is especially illuminating to explore the constraint for 	

1

, the

radial component of the heavy vector meson, in this region because it provides access to the

relations between �;	

1

and 	

2

without solving a complicated di�erential equation. For the

S wave we obtain for the dominant piece in the vicinity of the origin (again we ignore the

time component of the vector �eld)

0 = 2

�

M

�2

� �

2

�

	

1

+

1

r

2

(R

�

+ 2)

2

	

1

�

2

r

2

(R

�

+ 2)	

2

�

4d

r

� sinF	

2

+ 2MdF

0

� + : : :

� 2

�

M

�2

� �

2

�

	

1

+ F

02

(0)	

2

+ 4d�F

0

(0)	

2

+ 2MdF

0

(0)� : (4.3)

Two observations can be made from this constraint. First we notice that the additional term

F

02

(0)	

2

may be ignored in the large M limit. Second the remainder is compatible with the

relations (3.2, 3.4) for the bound heavy mesons as well as the relations (3.10, 3.11) for the

penta quark states. Note that in the latter case � � �M . Thus we conclude that in the S

wave channel the small r behavior is in agreement with the large M limit. In particular one

cannot deduce additional conditions on the wave{functions from the study of the vicinity of

the origin. The situation is di�erent in the P wave channel. Here the leading contribution

to the constraint for 	

1

at r � 0 is found to be

0 =

R

�

r

2

[R

�

	

1

+	

2

+ r	

0

2

] + 2

�

M

�2

� �

2

�

	

1

+ 2MdF

0

� +

2d

r

� sinF	

2

+ : : :

�

2

r

2

[2	

1

�	

2

� r	

0

2

] +

F

02

(0)

2

[8	

1

�	

2

� r	

0

2

]

+2

�

M

�2

� �

2

�

	

1

+ 2dF

0

(0) (M� � �	

2

) : (4.4)

Evidently the heavy quark limit results discussed in the previous chapter agree with (4.4)

only when the wave{functions behave such that

2	

1

�	

2

� r	

0

2

= O

�

r

2

�	

i

�

for r � 0 (4.5)

i.e. the small r behavior imposes an additional condition which in general may not be

compatible with the heavy quark limit. Stated otherwise: The limits M ! 1 and r ! 0

do not necessarily commute. The question arises whether this additional constraint can

be accommodated by the wave{functions obtained from the \geometrical" considerations

studied above in the heavy quark limit. One possible solution to (4.5) is represented by the

small r behavior

�(r) = �(0) +O

�

r

2

�

; 	

1

(r) = ��(0) +O

�

r

2

�

and 	

2

(r) = �2�(0) +O

�

r

2

�

: (4.6)

Of course, �(0) 6= 0 just originates from the above mentioned fact that due to the presence

of the soliton the P wave ansatz exhibits an S wave behavior at the origin. Obviously the
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Table 5.1: The bound state energies of the states explored in the previous chapters. Displayed

are the lowest radial excitations in each channel only. The data in parentheses in the k =0

channel refer to the results obtained using the approximate bound state equation (A.9).

k = 0 �

B

(MeV) k = 1 �

(p)

B

(MeV)

heavy limit 1016 339

M(GeV) M

�

(GeV) g = 0; r = 0 g = 1; r = 1 g = 0; r = 1 g = 1; r = 1 g = 1; r = 0

50.0 50.0 869 (866) 769 (782) 169 231 260

40.0 40.0 853 (850) 743 (758) 153 220 252

30.0 30.0 831 (828) 706 (725) 130 206 241

20.0 20.0 796 (790) 646 (674) 96 183 222

10.0 10.0 721 (709) 519 (570) 35 136 182

5.279 5.325 595 (608) 338 (457) | 71 118

1.865 2.007 314 (353) 29 (239) | | |

solution (4.6) is compatible with the heavy quark results (3.3) and the g = 1; r = 0 state in

(3.11). The relation (4.5) can also be satis�ed by the g = 1; r = 2 state in (3.11) when

	

1

(r) =

const:

r

3

+ : : : and 	

2

(r) = �

const:

r

3

+ : : : ; (4.7)

while � vanishes. On the other hand this solution is highly singular at the origin and should

be discarded because it is apparently not normalizable

a

. We therefore conclude that the

bound penta quark state with g = 1; r = 2 and coupled

b

to G = 1=2 is forbidden by the

dynamics of the system, although the geometry of the heavy quark limit indicates that this

state may exist. However, as we are interested in �nite (but large) masses, the solutions

to the bound state equations always have to satisfy the appropriate boundary conditions at

r = 0.

5. Numerical Results for Finite Heavy Meson Masses

In this section we will investigate the behavior of the bound heavy mesons when going

from the largeM limit to the realistic valuesM =5.279GeV (1.865GeV) and M

�

=5.325GeV

(2.007GeV) in theB(D) meson system. It will be of special interest whether or not the bound

penta quark states discussed in the previous sections persist in the realistic cases. Again we

will restrict ourselves to the Skyrme model for the light sector. In this case we arbitrarily

choose the Skyrme coupling constant so that the P wave binding energy (3.2) in the heavy

limit coincides with the value obtained in the model including light vector mesons as well

(cf. Sect. 6). This procedure yields g = 6:45. We will consider the pion decay constant,

f

�

to have its experimental value. Kinematic corrections due to the �nite nucleon mass will

not yet be included.

a

To make this argument more precise we would have to furnish a suitable metric.

b

Further investigation is required for the case when the g = 1; r = 2 state is coupled to G = 3=2.
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In the caseM 6= M

�

we de�ne the binding energy with respect toM . Our main numerical

results are summarized in table 5.1. We observe that the heavy limit results for the binding

energies are only slowly approached as the masses increase. Even for M = 50 GeV the

in�nite M approximation is not good in this respect. For realistic masses we �nd that the

g = 0; r = 1 penta quark state becomes unbound in the B{meson system while the two other

allowed penta quark states remain bound. Turning to the D{meson system all these penta

states get shifted into the continuum.

In ref. [9] an approximate bound state equation was derived by substituting the relations

(3.4) and (3.3) into the associated equations of motion for �. In the appendix this approach is

repeated for the case when the light vector mesons are also present, yielding the approximate

bound state equation (A.9). Clearly this approximation provides excellent agreement with

the exact result in the case of the P wave. Even for masses as small as in the D{meson system

it represents a useful guideline. For the S wave the solution to (A.9) can be considered as

an estimate for the upper bound for the binding energy but for masses as small as in the

D{meson sector this approximation fails.

Next let us examine the radial wave{functions for the states under study. We observe

from �gure 5.1 that atM = 50 GeV, in contrast to the binding energy predictions, the heavy

limit relations (3.3) and (3.4) for the wave{functions are remarkably well satis�ed. Also the

time component of the vector meson �eld is signi�cantly reduced as compared to the other

radial functions. Figure 5.2 shows that the heavy limit relation for the g = 1; r = 1 penta

quark state is also well reproduced. This is in contrast to the situation for the g = 0; r = 1

state ( see the �rst relation in eq (3.11)). There, at the maximum � is almost twice as

large as 	

2

. Furthermore 	 develops a node at larger distances while neither 	

1

nor 	

2

do.

As can be seen from �gure 5.3 the P wave penta quark state with the quantum numbers

g = 1; r = 0 satis�es the associated relation in eq (3.11) only in the vicinity of the origin.

Turning now to realistic values for the masses of the heavy mesons �gure 5.4 shows that this

pattern persists and that the bound mesons reasonably well satisfy the heavy limit relations

(3.3) and (3.4), although at least for the S wave the time component of the vector meson

becomes quite pronounced. Again the heavy limit relations for the bound penta quark states

are only approximately satis�ed, cf. �gure 5.5.

We should also mention that for realistic masses the relation (2.11) is satis�ed at the 5%

level for the S wave. For the P wave the discrepancy is larger; however, in the physically

relevant region both sides of that equation turn out to be about three orders of magnitude

smaller than the amplitudes of the other radial functions. Hence we conclude that (2.11)

represents a justi�able approximation.

In the above computations we have �xed the Skyrme coupling constant by requiring the

same heavy limit binding energy �

B

= 1016 MeV as we get for the vector mesons (see Sect.

6). This yields g = 6:45. Then the binding energies in the realistic cases are predicted to be

too small. Alternatively one may demand the experimental value (780 MeV) for the binding

of �

b

. Then we obtain a value as large as g = 9:50. For this value the binding energy of

the �

c

is found to be 370 MeV which underestimates the experimental value (630 MeV)

by almost a factor of two. In any event the pseudoscalar soliton with g = 9:50 has to be

abandoned because it describes the properties of the light baryons very badly. For example,

the mass di�erence between the � resonance and the nucleon is obtained to be 2.67 GeV!

12



Figure 5.1: The pro�les for the lowest radial excitations of the bound heavy P (left panel)

and S (right panel) wave mesons in the case M = M

�

= 50GeV. The normalization of the

wave{functions is chosen arbitrarily.
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Figure 5.2: The pro�les for the lowest bound heavy S wave anti{mesons in the case M =

M

�

= 50GeV. Left panel: g = 1; r = 1, right panel: g = 0; r = 1. The normalization is

chosen arbitrarily.
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Figure 5.3: The pro�les for the lowest radial excitation of the bound heavy P wave anti{

meson in the case M = M

�

= 50GeV. The normalization is chosen arbitrarily.
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Figure 5.4: The pro�les for the lowest radial excitations of the bound heavy P (left panel)

and S (right panel) wave mesons in the case M = 5:279GeV and M

�

= 5:325GeV. The

normalization of the wave{functions is chosen arbitrarily.
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Figure 5.5: Same as �gure 5.4 for the bound heavy anti{mesons.
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As a reminder we note that for g = 6:45 this di�erence comes out to be 905 MeV which also

is far too large. Fixing g from the experimental value (293 MeV) for this mass di�erence

yields g = 4:30. The associated results for the binding energies of the �

b

(443 MeV) and �

c

(244 MeV) baryons are far too small.

6. Including Light Vector Mesons

We have just seen that it is very di�cult to achieve a consistent picture of both the light

and heavy sectors in the model where the soliton is supported by the pseudoscalars only.

This motivates the inclusion of light vector mesons, especially since we then have one more

undetermined parameter in the heavy sector (�), which can be employed to �x the binding

energy of �

b

while keeping the parameters in the light sector untouched. However, as soon

as we include the vector mesons we encounter the problem that for � 6= 0 the coe�cient f

1

in the e�ective bound state Lagrangian(A.5) may develop a node, i.e.

M

2

�

�

��

�

2

!

�

2

(6.1)

may change its sign in between r = 0 and r !1. This in turn causes the Lagrangian (A.6)

to become singular. Since we have !(r) � 0 this problem occurs for the bound heavy mesons

(� > 0) when � < 0 and for the bound anti-heavy mesons (� < 0) when � > 0. In the former

case the binding energy is large enough so that the singularity fortunately does not appear

in the considered range � � �1. In the latter case, however, numerical instabilities occur

for � � 1. In order to avoid this numerical problem we will omit the discussion of penta

quark states for sets of parameters which lead to nodes of (6.1).

In table 6.1 the dependence of the binding energies in the S and P wave channels on �

are displayed. The parameters for the light sector of the model

g = 5:57; m

V

= 773MeV



1

= 0:3; 

2

= 1:8; 

3

= 1:2; (6.2)

have been taken from ref. [11]. These were determined to provide a best �t to the mass

di�erences of the low{lying

1

2

+

and

3

2

+

light baryons, allowing variation only for those param-

eters which could not be determined from the light meson sector [17]. Furthermore various

static properties have been reasonably well described using these parameters [12].

Again we observe that in the P-wave case the approximation (A.9) is very good while in

the S wave channel the corresponding solution overestimates the exact binding energy. In

this respect the behavior of the model is similar to the one without light vector mesons.

We remark that for � � 0 numerically stable penta quark solutions in both S and P wave

channels are observed. However, these carry binding energies no larger than about 50MeV

and hence may well disappear upon modi�cation of the model. The vanishing binding of

the penta{quarks for � � 0 has already been conjectured in ref. [9] from the fact that

d

2

F

0

(0) +

p

2c

gm

V

G

00

(0) in eq (3.10) deviates only slightly from zero for the parameters (6.2).

Of course, the number of bound radial excitations also depends on �. Our predictions

for the binding energies of these radial excitations are shown in table 6.2.
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Table 6.1: The dependence of the binding energy on the undetermined parameter �. Data

are given in MeV. In the heavy sector we have adopted the parameters (2.8) for the B{

meson. The data in parentheses refer to the results obtained using the approximate bound

state equation (A.9).

� P wave S wave

-1.00 1035 (1036) 847 (900)

-0.75 972 (976) 791 (843)

-0.50 910 (916) 735 (785)

-0.25 848 (857) 679 (729)

0.00 786 (797) 624 (672)

0.25 725 (738) 569 (617)

0.50 664 (679) 515 (562)

0.75 604 (621) 462 (507)

1.00 544 (563) 410 (454)

Table 6.2: The binding energies (in MeV) of the ground state and radial excitations as

functions of � for the S{ and P wave channels. Again the parameters for the B{meson (2.8)

have been used to illustrate this dependence.

� = �0:5 � = 0:0 � = 0:5

P{wave S{wave P{wave S{wave P{wave S{wave

910 735 786 624 664 515

568 428 472 344 379 264

299 196 229 139 165 88

109 45 66 18 30 |

34 27 | | | |
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Let us adjust � so that the binding energy of the P wave baryon �

b

is reproduced, i.e.

�

�

b

= 780 MeV. From table 6.2 we observe that this yields � � 0; the exact value reads

� = 0:03. As a prediction we then �nd �

�

c

= 536 MeV which is somewhat smaller than the

experimental value 630 MeV but certainly an improvement compared to the pseudoscalar

soliton. The resulting wave{functions are displayed in �gure 6.1. In the bottom sector we

then �nd a penta quark state which is bound by 18 MeV. No bound penta quark state is

observed in the charm sector.

In the S wave channel we observe bound states with binding energies 301 MeV and 617

MeV in the charm and bottom sectors, respectively. Again a penta quark state is found only

in the bottom sector. This state is bound by 19 MeV.

Since the observed penta quark states are only very weakly bound it is suggestive that

these states might disappear once kinematical corrections due to the �nite mass of the soliton

are incorporated. These corrections will be the subject of the next section.

7. Estimate of Kinematical Corrections

Following ref. [9] we attempt to estimate the corrections related to the �niteness of the

soliton mass by substituting for M and M

�

the reduced mass (�) of the soliton and the

heavy meson under consideration into the bound state equations associated with (A.1) and

(A.3). For the parameters (6.2) the mass of the soliton turns out to be 1631 MeV

a

. This

leads to the reduced masses

�

b

= 1246MeV; �

�

b

= 1248MeV;

�

c

= 870MeV; �

�

c

= 900MeV: (7.1)

Clearly this estimate of the kinematical corrections provides a major change of the parame-

ters.

We �rst note that within the model of pseudoscalars only, the resulting binding energies

for the P wave states are 326 MeV and 211 MeV in the B{meson and D{meson sectors,

respectively. Here we have again used g = 6:45. These numbers are signi�cantly smaller

than the experimental data. Adopting g = 4:30, which gives the correct nucleon{� mass

di�erence, leads to even smaller binding energies. Moreover, in the S wave channel we do

not observe any bound states in either the B{meson or in the D{meson sector.

When vector mesons are included we can again make use of the a priori undetermined

parameter, which we �x by reproducing the binding energy of �

b

for (7.1). This yields

� = �0:97. In the S wave channel we then observe a bound state with �

B

= 420 MeV.

More importantly, the binding energy of the charmed baryon is obtained to be 638 MeV, in

remarkably good agreement with the experimental value. Clearly, �tting just one parameter

in the vector meson model provides a nice overall agreement with the experimental spectrum

of the heavy baryons. The resulting wave{functions are displayed in �gure 7.1. Although the

masses assumed for the heavy mesons (7.1) are quite small the heavy limit relations (3.3) are

still approximately satis�ed. An S wave state carrying a binding energy of 256 MeV is also

obtained in the D{meson sector. This result suggests identifying this state with the recently

a

Quantum corrections [15] will reduce this value so that a reasonable description of the nucleon mass is

obtained. These corrections are formally subleading in 1=N

C

.
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Figure 6.1: The wave{functions for the bound mesons in the bottom (left) and charm (right)

sectors.
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Figure 7.1: The wave{functions for the bound mesons in the bottom (left) and charm (right)

sectors in the reduced mass approximation for the kinematical corrections.
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Table 7.1: The bound state energies with kinematic corrections taken into account. Displayed

are the lowest radial excitations in each channel only, as well as the known experimental data.

c baryons b baryons

P Wave:

�

B

; MeV

Expt., MeV

638

630

780 (�t)

780

S Wave:

�

B

; MeV

Expt., MeV

256

320

420

?

discovered �

0

c

, which is supposed to be bound by approximately 320 MeV. These results

are summarized in table 7.1. We also remark that the number of radial excitations is quite

limited in this case. For example, we observe the �rst excited P wave state in the B{system

just 184 MeV below the threshold. We will not further pursue these radial excitations since

(as indicated after (6.1)) states with such low binding energies are troublesome numerically.

As a further consequence of the small value for � no bound penta quark states are

observed.

Finally it is worthwhile to note that employing the above described procedure for the

kaons, i.e. substituting �

K

= 380 MeV and �

�

K

= 572 MeV while keeping � = �0:97, leads

to a binding energy of 233 MeV for the P wave. Although the heavy quark symmetry is

certainly not valid for the kaons this result compares favorably with the isospin weighted

average binding energies of the � and � hyperons (261 MeV). Without the kinematical

corrections we would �nd a very loosely bound P wave kaon. The reason is that we then

need to choose a value for � which is close to zero.

8. Summary

In this paper we have considered baryons containing one heavy quark or anti-quark as

respectively bound states of heavy mesons or anti-mesons in the background of a soliton,

which is constructed from light pseudoscalar and vector mesons. To describe the coupling

between the heavy and light mesons we have employed the simplest generalization of the

heavy spin symmetric e�ective interaction to �nite masses. No further approximations asso-

ciated with the heavy mass limit have been made. We have restricted our investigations to

the physically interesting cases of S{ and P wave heavy mesons. Special emphasis has been

put on studying the behavior of the binding energies and the bound state wave{functions

when going from the heavy mass limit to physically realistic masses. We have observed

that the heavy limit result for the binding energy is actually approached very slowly when

increasing the heavy meson mass. For the empirical meson masses the heavy limit result

overestimates the exact solution to the bound state equation by a factor of two (three) in

the B(D) meson system. Furthermore the degeneracy between the binding energies in the

S{ and P wave channels is removed. In the case of the antimeson �elds (related to the

penta quark baryons q

4

�

Q) we have observed the interesting feature that a state, which in

the geometrical coupling scheme of the heavy symmetry theory is predicted to be bound,

is prohibited by the dynamics. Technically this is caused by the non{commutativity of the

limits M !1 and r ! 0. Hence this state does not exist even for large but �nite masses.
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Turning to realistic meson masses, the binding energy of the allowed S{ and P wave penta

quark states decreases leaving these states unbound in the D meson system.

Although the binding energy deviates signi�cantly from the heavy limit result we noted

that in the course of going to realistic masses the P wave radial functions reasonably well

satisfy the heavy limit relations. As a consequence the approximative bound state equation

obtained by substituting these relations for the heavy vector meson �elds in the di�erential

equation for the heavy pseudoscalar �eld provides a binding energy close to the exact result.

This approximation may be a useful simpli�cation in other more complicated models [23].

We found that it was not possible to obtain a reasonable description of the properties of

both the light and heavy baryons when the Skyrme model is employed for the light soliton

sector

a

. This made mandatory the incorporation of light vector mesons. Although that

brings into the game one more parameter, describing the coupling of the isoscalar ! meson

to the heavy meson �elds, we observed the satisfying feature that adjusting this parameter

to the binding energy of the lowest baryon containing a heavy bottom quark leads to a

reasonable agreement with the data available for other baryons with a heavy quark. This

picture holds when kinematical corrections are approximated by substituting the reduced

masses in the bound state equations. In that case not only the penta quarks in the S wave

channel but also those in the P wave channel become unbound. Furthermore the number of

radially excited bound states is reduced. In any event, the kinematical corrections require

more thorough investigation.

In this paper we neglected the relatively small splitting between heavy baryons of isospin

zero and one. The baryons constructed so far carry neither good spin nor isospin quantum

numbers. The construction of such states will make it possible to computate this splitting. In

order to generate these states collective coordinates A(t) describing the isospace orientation

have to be introduced. Specifying the spinor in Fourier space

�(�) = (�

1

(�) ; �

2

(�)) (8.1)

the coupling between the collective rotations and the bound state assumes the form

Z

dtL


 ;�

= �

1

2

Z

d�

2�

c

h

(�)

0

@

2

X

i;j=1

�

�

i

(�)�

ij

�

j

(�)

1

A

�
 (8.2)

with 
 = �itr (�A

_

A) being the angular velocity of the iso{rotations. The coupling coef-

�cient c

h

(�) is bilinear in the radial wave{functions � and 	

�

. The subscript h has been

attached to denote the heavy avor under consideration. In order to compute c

h

(�) the

wave{functions should be normalized to carry a unit heavy avor quantum number. Finally

the hyper�ne splitting will be given by

M

�

h

�M

�

h

=

1� c

h

(�

B

)

�

2

(8.3)

where �

2

refers to the moment of inertia corresponding to the isorotation A. Upon canonical

quantization of �

i

(�) the bound state (with energy �

B

) is projected out from the Fock space

a

Parameters should be �t from the meson sector as far as possible.
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of meson uctuations. It will be very interesting to pursue this path although in the model

including light vector mesons further complications arise because �eld components, which

vanish classically, get induced by this collective rotation [18]. It may also be interesting

to examine the e�ect of translational collective coordinates on the kinematical corrections

associated with �nite light baryon mass.
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Appendix A: The Lagrangian for the S{ and P{wave heavy mesons

In this appendix we present the Lagrangian density for the ans�atze (2.9) and (2.10) of

the bound heavy mesons. Due to parity invariance these two channels decouple. We also

add some analytical results for the limit of large meson masses.

Substituting (2.10) in (2.5) gives for the S wave channel
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Here a prime indicates a derivative with respect to the radial coordinate r. Furthermore the

abbreviation R

�

= cosF � 1 + � (1 +G � cosF ) has been introduced. It should be noted

that we have omitted the overall factor �

y

�.
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In the limit M = M

�

!1 the leading contribution is obtained to be
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Note that the energy eigenvalue � is of the order M hence the �rst term in (A.2) is also of

this order. We have additionally used the fact that 	

0

may be omitted in the heavy limit,

cf. eq (2.11). Performing the expansion (3.1) leads to the binding energies (3.2) and (3.10)

together with the corresponding relations for the wave{functions (3.4) and (3.11) for bound

S wave mesons and anti{mesons, respectively.

For the P wave channel one obtains upon substitution of the ansatz (2.9)
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Also for the P wave we display the leading term in the limit M = M
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Again the expansion (3.1) provides the results for the bound (anti{) mesons in the P wave

channel, which are discussed in chapter 3.

The Euler{Lagrange equations associated with (A.1) and (A.3) are integrated using the

method described in appendix A for ref. [12]. Technically a problem arises because the

equation of motion for 	

1

is a constraint rather than a second order di�erential equation as

in the case of the other �elds. Hence 	

1

is not a dynamical degree of freedom and has to be

eliminated in terms of the other �elds. This can be achieved by formally writing
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where �

i

refer to any of �;	

0

and 	

2

. The coe�cient functions a

i

etc. have to be identi�ed

from (A.1) and (A.3). Note that there are no terms linear in the meson �elds. This is in

contrast to the exploration of the induced kaon (and K

�

) components of ref. [12]. The

elimination of 	
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This equation also shows that singularities may appear when f

1

= 0, cf Sect. 6. Noting now

that
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the di�erential equations resulting from (A.6) may be integrated by standard numerical

techniques. In general no regular solution exists for an arbitrary value of the energy �. For

the purpose of obtaining the regular solution � is treated as a parameter. The value yielding

this solution is identi�ed as the bound state energy.

Finally we would like to incorporate the light vector mesons into the approximate bound

state equation studied in ref.[9]. This bound state equation is derived in two steps. First

the equations of motion for � are approximated by the leading contributions in the limit

M = M

�

!1. In the second step the heavy limit relations (3.4) and (3.3) are substituted

into these equations. This procedure results in
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Here l

e�

= 1; 0 refers to the S{ and P waves, respectively. Once again we remind the reader

that the presence of the soliton exchanges the behaviors of the S{ and P wave{functions near
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r � 0. It should also be noted that the expansions (3.1) lead in a straightforward manner to

the binding energies (3.2) in the heavy limit. Similarly the penta quark bound state energy

(3.10) is obtained by assuming the relations (3.11) in the second step of the above described

procedure.

Appendix B: Conventions

In order to agree with the conventions of refs. [6, 9] we should make the following

replacements for the quantities in the present paper:

f

�

! F

�

=

p

2;

�

�

!

1

p

2

�

�

;

g !

p

2~g;

G(r)! �G(r);

!(r) !�

p

2~g!(r): (B.1)
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