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Abstract

Motivated by the 1/Nc expansion, we present a simple model of ππ scattering as

a sum of a current-algebra contact term and resonant pole exchanges. The model

preserves crossing symmetry as well as unitarity up to 1.2 GeV . Key features include

chiral dynamics, vector meson dominance, a broad low energy scalar (σ) meson and

a Ramsauer-Townsend mechanism for the understanding of the 980 MeV region. We

discuss in detail the regularization (corresponding to rescattering effects) necessary to

make all these nice features work.
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1 Introduction

Historically, the analysis of ππ scattering has been considered an important test of our under-

standing of strong interaction physics (QCD, now) at low energies. It is commonly accepted

that the key feature is the approximate spontaneous breaking of chiral symmetry. Of course,

the kinematical requirements of unitarity and crossing symmetry should be respected. The

chiral perturbation scheme [1], which improves the tree Lagrangian approach by including

loop corrections and counterterms, can provide a description of the scattering up to the

energy region slightly above threshold (400− 500 MeV ).

In order to describe the scattering up to energies beyond this region (say to around

1 GeV ) it is clear that the effects of particles lying in this region must be included and some

new principle invoked. A plausible hint comes from the large Nc approximation to QCD,

in which the leading order scattering amplitudes consist of just tree diagrams containing

resonance exchanges as well as possible contact diagrams [2]. The method suggests that an

infinite number of resonances are required and also a connection with some kind of string

theory [3].

Some encouraging features were previously found in an approach which truncated the

particles appearing in the effective Lagrangian to those with masses up to an energy slightly

greater than the range of interest. This seems reasonable phenomenologically and is what

one usually does in setting up an effective Lagrangian. The most famous example is the

chiral Lagrangian of only pions. In Ref. [4] this Lagrangian provided, as a starting point,

a contact term which described the threshold region. However the usual observation was

made that the real part of the I = 0, J = 0 partial wave amplitude quite soon violated the

unitarity bound |R0
0| ≤ 1/2 rather severely. The inclusion of the contribution coming from

the ρ meson exchange was observed to greatly improve, although not completely solve, this

problem. These results are shown explicitly in Fig. 1 and provide some encouragement for

the possible success of a truncation scheme.

In Ref. [4], it was observed that the inclusion of resonances up till and including the

p-wave region enabled one to construct an amplitude which satisfied the unitarity bounds

up to about 1.3 GeV . It was assumed that, above this point, new resonances would come
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Figure 1: Predicted curves for R0
0. The solid line which shows the current algebra

+ ρ result for R0
0 is much closer to the unitarity bound of 0.5 than the dashed

line which shows the current algebra result alone.
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in to preserve unitarity. This hypothesis was called local cancellation. The model produced

a reasonable looking I = J = 0 phase shift up to about 800 MeV . In this paper we will

attempt to describe and carefully compare with experiment the interesting physics lying

between 800 and 1200 MeV in this truncated 1/Nc inspired framework. Specifically we will

be concerned with the proper inclusion of the f0(980) scalar resonance as well as the opening

of the KK channel. We find that a simple reasonable description of the f0(980) region is

obtained when the interplay of this resonance with its background is taken into account. In

this approach the background amplitude is predicted by the model itself. In the region just

above the KK threshold we notice the feature analogous to the elastic case that the severe

unitarity violation of the inelastic ππ → KK amplitude is damped by the inclusion of vector

meson and scalar meson exchange diagrams.

Of course, it would be wonderful if one could simply add the various contributions to the

tree level amplitude and find a good match to experiment. This is not possible for a variety

of reasons, which are discussed in Section 2. The needed regularizations are introduced there.

Section 3 gives a brief overview of the model and reviews the important role of a broad scalar

meson in the low energy (< 800 MeV ) region. Section 4 contains a discussion of various

aspects of the 1 GeV region. The characteristic feature - a type of Ramsauer-Townsend

effect resulting from the interplay of the f0(980) resonance with the predicted background

- is outlined in section 4.1 and treated in more detail in 4.2. In section 4.3 it is shown

that the introduction of the next group of resonances, located in the 1300 MeV region, does

not make major changes in the ππ scattering below 1200 MeV (the changes are essentially

absorbed in small changes of the parameters of the broad low energy scalar). In section

4.4 it is demonstrated that the phenomenological introduction of inelastic effects associated

with the opening of the KK channel does not make a significant change in our picture of

ππ → ππ below 1200 MeV . Section 4.5 contains a presentation of the I = J = 0 phase

shift obtained by combining our predicted real part with unitarity. In section 5 we discuss

the inelastic ππ → KK channel and show that here also the resonance exchanges damp

the unitarity bound violation due to the contact term. Section 6 contains the summary

and further discussion. Finally, Appendices A, B and C give details on, respectively, the

scattering kinematics, the chiral Lagrangian and the unregularized amplitudes.
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2 Difficulties of the Approach

In the large Nc picture the leading amplitude (of order 1/Nc) is a sum of polynomial contact

terms and tree type resonance exchanges. Furthermore the resonances should be of the simple

qq type; glueball and multi-quark meson resonances are suppressed. In our phenomenological

model there is no way of knowing a priori whether a given experimental state is actually of

qq type. For definiteness we will keep all relevant resonances even though the status of a

low lying scalar resonance like the f0(980) has been considered especially controversial [5]. If

such resonances turn out in the future to be not of qq type, their tree contributions would be

of higher order than 1/Nc. In this event the amplitude would still of course satisfy crossing

symmetry.

The most problematic feature involved in comparing the leading 1/Nc amplitude with

experiment is that it does not satisfy unitarity. In fact, resonance poles like

1

M2 − s
(2.1)

will yield a purely real amplitude, except at the singularity, where they will diverge and

drastically violate the unitarity bound. Thus in order to compare the 1/Nc amplitude with

experiment we must regularize the denominators in some way. The usual method, as em-

ployed in Ref. [4], is to regularize the propagator so that the resulting partial wave amplitude

has the locally unitary form
MΓ

M2 − s− iMΓ
. (2.2)

This is only valid for a narrow resonance in a region where the background is negligible. Note

that the −iMΓ is strictly speaking a higher order in 1/Nc effect.

For a very broad resonance there is no guarantee that such a form is correct. Actually, in

Ref. [4] it was found necessary to include a rather broad low lying scalar resonance (denoted

σ(550)) to avoid violating the unitarity bound. A suitable form turned out to be of the type

MG

M2 − s− iMG′
, (2.3)

where G is not equal to the parameter G′ which was introduced to regularize the propagator.

Here G is the quantity related to the squared coupling constant.
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Even if the resonance is narrow, the effect of the background may be rather important.

This seems to be true for the case of the f0(980). Demanding local unitarity in this case

yields a partial wave amplitude of the well known form [6]:

e2iδMΓ

M2 − s− iMΓ
+ eiδ sin δ , (2.4)

where δ is a background phase (assumed to be slowly varying). We will adopt a point of

view in which this form is regarded as a kind of regularization of our model. Of course, non

zero δ represents a rescattering effect which is of higher order in 1/Nc. The quantity e2iδ,

taking δ = constant, can be incorporated into the squared coupling constant connecting the

resonance to two pions. In this way, crossing symmetry can be preserved. From its origin,

it is clear that the complex residue does not signify the existence of a ghost particle. The

non-pole background term in eq. (2.4) and hence δ is to be predicted by the other pieces in

the effective Lagrangian.

Another point which must be addressed in comparing the leading 1/Nc amplitude with

experiment is that it is purely real away from the singularities. The regularizations mentioned

above do introduce some imaginary pieces but these are clearly more model dependent. Thus

it seems reasonable to compare the real part of our predicted amplitude with the real part

of the experimental amplitude. Note that the difficulties mentioned above arise only for the

direct channel poles; the crossed channel poles and contact terms will give purely real finite

contributions.

It should be noted that if we predict the real part of the amplitude, the imaginary part

can always be recovered by assuming elastic unitarity (which is likely to be a reasonable

approximation up to about 1 GeV ). Specializing eq. (A.6) in Appendix A to the ππ channel

we have for the imaginary piece II
l of the I, l partial wave amplitude

II
l =

1

2

[
1±

√
ηI

l
2 − 4RI

l
2
]

, (2.5)

where ηI
l is the elasticity parameter. Obviously this formula is only meaningful if the real

part obeys the bound

|RI
l | ≤

ηI
l

2
. (2.6)

The main difficulty one has to overcome in obtaining a unitary amplitude by the present

method is the satisfaction of this bound. Therefore, one sees that making regularizations like

5



IG(JPC) M(MeV ) Γtot(MeV ) Br(2π)%

σ(550) 0+(0++) 559 370 −
ρ(770) 1+(1−−) 769.9 151.2 100

f0(980) 0+(0++) 980 40−400 78.1

f2(1270) 0+(2++) 1275 185 84.9

f0(1300) 0+(0++) 1000-1500 150−400 93.6

ρ(1450) 1+(1−−) 1465 310 seen

Table 1: Resonances included in the ππ → ππ channel as listed in the PDG.

Note that the σ is not present in the PDG and is not being described exactly

as a Breit-Wigner shape; we listed the fitted parameters shown in column 1 of

Table 2 where G′ is the analog of the Breit-Wigner width.

eqs. (2.2) and (2.4) which provide unitarity in the immediate region of a narrow resonance

is not at all tantamount to unitarizing the model by hand. One might glance again at Fig. 1

for emphasis of this point.

To summarize this discussion, we will proceed by comparing the real part of a suitably

regularized tree amplitude computed from a chiral Lagrangian of pseudoscalar mesons and

resonances with the real part of the experimental amplitude deduced from the standard

phase shift analysis.

3 Overview and Low Energy Region

The amplitude will be constructed from the non-linear chiral Lagrangian briefly summarized

in Appendix B. To start with, we shall neglect the existence of the K mesons. Then the

form of the unregularized amplitude is identical to the one presented in Ref. [4]. The neutral

resonances which can contribute have the quantum numbers JPC = 0++, 1−−, and 2++. We

show in Table 1 the specific ones which are included, together with their masses and widths,

when available from the Particle Data Group (PDG) [7] listings.

Essentially there are only three arbitrary parameters in the whole model, these correspond

to the three unknowns in the description of a broad scalar resonance given by eq. (2.3) . We

will include only the minimal two derivative chiral contact interaction contained in eq. (B.7)

6



of Appendix B. Clearly, higher derivative contact interaction may also be included (see, for

example, sec. III.E of Ref. [4]).

As shown in Fig. 1, although the introduction of the ρ dramatically improves unitarity

up to about 2 GeV , R0
0 violates unitarity to a lesser extent starting around 500 MeV . (As

noted in Ref. [4], the I = J = 0 channel is the only troublesome one.) To completely restore

unitarity in the present framework it is necessary to include a low mass broad scalar state

which has historically been denoted as the σ. It seems helpful to recall the contribution of

such a particle to the real part of the amplitude component A(s, t, u) defined in eq. (A.8):

ReAσ(s, t, u) = Re
32π

3H

G

M3
σ

(s− 2m2
π)2 (M2

σ − s) + iMσG
′

(s−M2
σ)2 + M2

σG′2
, (3.1)

where

H =

(
1− 4

m2
π

M2
σ

) 1

2
(

1− 2
m2

π

M2
σ

)2

≈ 1 , (3.2)

and G is related to the coupling constant γ0 defined in eq. (B.11) by

G = γ2
0

3HM3
σ

64π
. (3.3)

Note that the factor (s − 2m2
π)2 is due to the derivative-type coupling required for chiral

symmetry in eq. (B.11). The total amplitude will be crossing symmetric since A(s, t, u)

and A(u, t, s) in eq. (A.8) are obtained by performing the indicated permutations. G′ is a

parameter which we introduce to regularize the propagator. It can be called a width, but it

turns out to be rather large so that, after the ρ and π contributions are taken into account,

the partial wave amplitude R0
0 does not clearly display the characteristic resonant behavior.

In the most general situation one might imagine that G could become complex as in eq. (2.4)

due to higher order in 1/Nc corrections. It should be noted, however, that eq. (2.4) expresses

nothing more than the assumption of unitarity for a narrow resonance and hence should not

really be applied to the present broad case. A reasonable fit was found in Ref. [4] for G

purely real, but not equal to G′. By the use of eq. (2.5), unitarity is in fact locally satisfied.

A best overall fit is obtained with the parameter choices; Mσ = 559 MeV , G/G′ = 0.29

and G′ = 370 MeV . These have been slightly fine-tuned from the values in Ref. [4] in order

to obtain a better fit in the 1 GeV region. The result for the real part R0
0 due to the inclusion

of the σ contribution along with the π and ρ contributions is shown in Fig. 2. It is seen that

7
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Figure 2: The solid line is the current algebra + ρ + σ result for R0
0. The

experimental points, in this and suceeding figures, are extracted from the phase

shifts using eq. (A.6) and actually correspond to R0
0/η

0
0. (2) are extracted from

the data of Ref. [8] while (△) are extracted from the data of Ref. [9]. The

predicted R0
0 is small around the 1 GeV region.
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the unitarity bound is satisfied and there is a reasonable agreement with the experimental

points [8, 9] up to about 800 MeV . Beyond this point the effects of other resonances (mainly

the f0(980)) are required. From eqs. (3.1), (A.9) and (A.11) we see that the contribution

of σ to R0
0 turns negative when s > M2

σ . This is the mechanism which leads to satisfaction

of the unitarity bound (c.f. Fig. 1). For s < M2
σ one gets a positive contribution to R0

0.

This is helpful to push the predicted curve upwards and closer to the experimental results in

this region, as shown in Fig. 3. The four-derivative contribution in the chiral perturbation

  
R

o
o

s     (GeV)

Figure 3: A blowup of the low energy region. The solid line is the current

algebra + ρ contribution to R0
0. The dashed line includes the σ and has the effect

of turning the curve down to avoid unitarity violation while boosting it at lower

energies.

theory approach performs the same function; however it does not change sign and hence

does not satisfy the unitarity bound above the 450 MeV region [10].
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4 The 1 GeV Region

4.1 The main point

Reference to Fig. 2 shows that the experimental data for R0
0 lie considerably lower than the

π + ρ + σ contribution between 0.9 and 1.0 GeV and then quickly reverse sign above this

point. We will now see that this distinctive shape is almost completely explained by the

inclusion of the relatively narrow scalar resonance f0(980) in a suitable manner. One can

understand what is going on very simply by starting from the real part of eq. (2.4):

MΓ
(M2 − s) cos(2δ)−MΓ sin(2δ)

(M2 − s)2 + M2Γ2
+

1

2
sin(2δ) . (4.1)

This expresses nothing more than the restriction of local unitarity in the case of a narrow

resonance in the presence of a background. We have seen that the difficulty of comparing the

tree level 1/Nc amplitude to experiment is enhanced in the neighborhood of a direct channel

pole. Hence it is probably most reliable to identify the background term
1

2
sin(2δ) with our

prediction for R0
0. In the region of interest, Fig. 2 shows that R0

0 is very small so that one

expects, δ to be roughly 90◦ (assuming a monotonically increasing phase shift). Hence the

first, pole term is approximately

− (M2 − s)MΓ

(M2 − s)2 + M2Γ2
, (4.2)

which contains a crucial reversal of sign compared to the real part of eq. (2.2). Thus, just

below the resonance there is a sudden negative contribution which jumps to a positive one

above the resonance. This is clearly exactly what is needed to bring experiment and theory

into agreement up till about 1.2 GeV , as is shown in Fig. 4. The actual amplitude used for

this calculation properly contains the effects of the pions’ derivative coupling to the f0(980)

as in eq. (3.1).

It is interesting to contrast this picture with Fig. 10 in Ref. [4]. There the interaction

with the background was not taken into account and there was no reversal of sign. Thus,

although the unitarity bound was obeyed, the experimental phase shifts could only be prop-

erly predicted up to about 0.8 GeV . If the f0(980) contribution in that Fig. 10 is flipped in

sign it is seen to agree with the present Fig. 4.

10
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Figure 4: (a): The solid line is the current algebra + ρ + σ + f0(980) result

for R0
0 obtained by assuming column 1 in Table 2 for the σ and f0(980) param-

eters (Br(f0(980) → 2π) = 100%). (b): The solid line is the current algebra

+ ρ + σ + f0(980) result for R0
0 obtained by assuming column 2 in Table 2

(Br(f0(980)→ 2π) = 78.1%) .

The above mechanism, which leads to a sharp dip in the I = J = 0 partial wave con-

tribution to the ππ-scattering cross section, can be identified with the very old Ramsauer-

Townsend effect [11] which concerned the scattering of 0.7 eV electrons on rare gas atoms.

The dip occurs because the background phase of π/2 causes the phase shift to go through π

(rather than π/2) at the resonance position. (Of, course, the cross section is proportional to
∑

I,J(2J +1) sin2(δJ
I ).) This simple mechanism seems to be all that is required to understand

the main feature of ππ scattering in the 1 GeV region.

4.2 Detailed analysis

Here we will compare with experimental data, the real part of the I = J = 0 partial wave

amplitude which results from our crossing symmetric model. First we will consider the sum

of the contributions of the current algebra, ρ-meson, σ and f0(980) pieces. Then we will add

pieces corresponding to the next group of resonances; namely, the f2(1270), the ρ(1450) and

the f0(1300). In this section we will continue to neglect the KK channel.

11



The current algebra plus ρ contribution to the quantity A(s, t, u) defined in eq. (A.8) is§

Aca+ρ(s, t, u) = 2
s−m2

π

F 2
π

+
g2

ρππ

2m2
ρ

(4m2
π − 3s) +

− g2
ρππ

2

[
u− s

(m2
ρ − t)− imρΓρθ(t− 4m2

π)

+
t− s

(m2
ρ − u)− imρΓρθ(u− 4m2

π)

]
. (4.3)

Note that for the I = J = 0 channel this will yield a purely real contribution to the partial

wave amplitude. The contribution of the low lying σ meson was given in eq. (3.1). For the

important f0(980) piece we have

ReAf0(980)(s, t, u) = Re

[
γ2

f0ππe2iδ(s− 2m2
π)2

m2
f0
− s− imf0

Γtot(f0)θ(s− 4m2
π)

]
, (4.4)

where δ is a background phase parameter and the real coupling constant γf0ππ is related to

the f0(980)→ ππ width by

Γ(f0(980)→ ππ) =
3

32π

γ2
f0ππ

mf0

√√√√1− 4m2
π

m2
f0

. (4.5)

We will not consider δ to be a new parameter but shall predict it as

1

2
sin(2δ) ≡ R̃0

0(s = m2
f0

) , (4.6)

where R̃0
0 is computed as the sum of the current algebra, ρ, and sigma pieces. Since the

KK channel is being neglected, one might want to set the regularization parameter Γtot(f0)

in the denominator to Γ(f0(980) → ππ). We shall try both this possibility as well as the

experimental one
Γ(f0(980)→ ππ)

Γtot(f0)
≈ 78.1%.

A best fit of our parameters to the experimental data results in the curves shown in

Fig. 4 for both choices of branching ratio. Only the three parameters G/G′, G′ and Mσ

are essentially free. The others are restricted by experiment. Unfortunately the total width

Γtot(f0) has a large uncertainty; it is claimed by the PDG to lie in the 40− 400 MeV range.

Hence this is effectively a new parameter. In addition we have considered the precise value

of mf0
to be a parameter for fitting purposes. The parameter values for each fit are given in

§We introduced the step function θ(s− 4m2

π) in the propagator and have checked that its inclusion does

not make much difference in the results.
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With Next Group No ρ(1450)

BR(f0(980) → 2π)% 100 78.1 78.1 78.1 100 78.1 78.1 78.1 100

η0
0 1 1 0.8 0.6 1 1 0.8 0.6 1

Mf0(980) (MeV ) 987 989 990 993 991 992 993 998 992

Γtot (MeV ) 64.6 77.1 75.9 76.8 66.7 77.2 78.0 84.0 64.6

Mσ (MeV ) 559 557 557 556 537 537 535 533 525

G′ (MeV ) 370 371 380 395 422 412 426 451 467

G/G′ 0.290 0.294 0.294 0.294 0.270 0.277 0.275 0.270 0.263

δ (deg.) 85.2 86.4 87.6 89.6 89.2 89.7 91.3 94.4 90.4

χ2 2.0 2.8 2.7 3.1 2.4 3.2 3.2 3.4 2.5

Table 2: Fitted parameters for different cases of interest.

Table 2 together with the χ2 values. It is clear that the fits are good and that the parameters

are stable against variation of the branching ratio. The predicted background phase is seen

to be close to 90◦ in both cases. Note that the fitted width of the f0(980) is near the low

end of the experimental range. The low lying sigma has a mass of around 560 MeV and a

width of about 370 MeV . As explained in section 3, we are not using exactly a conventional

Breit-Wigner type form for this very broad resonance. The numbers characterizing it do

however seem reasonably consistent with other determinations [5, 12, 13].

4.3 Effect of the next group of resonances

Going up in energy we encounter JPC = 2++, 0++ and 1−− resonances in the 1300 MeV

region. The properties of the 2++ state f2(1270) are very well established. For the others

there is more uncertainty but the PDG lists the f0(1300) and ρ(1450) as established states.

However the mass of the f0(1300) can apparently lie anywhere in the 1000 − 1500 MeV

range. In Ref. [4] it was noted that the contributions of these next group particles tended to

cancel among themselves. Thus we do not expect their inclusion to significantly change the

previous results in the range of interest up to about 1.2 GeV .

In Fig. 5 we display the contribution of the next group particles by themselves to R0
0. (The

amplitudes are summarized in Appendix C). The dashed curve is essentially a reproduction

13
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Figure 5: Contribution from the next group of resonances; the solid curve is

obtained with the reverse sign of the f0(1300) piece.

of Fig. 6 of Ref. [4]. The somewhat positive net contribution of these resonances to R0
0 is

compensated by readjustment of the parameters describing the low lying sigma. It may be

interesting to include the effect of the background phase for the f0(1300) as we have just

seen that it was very important for the proper understanding of the f0(980). To test this

possibility we reversed the sign of the f0(1300) contribution and show the result as the solid

curve in Fig. 5. This sign reversal is reasonable since our model suggests a background phase

of about 270◦ in the vicinity of the f0(1300). It can be seen that there is now a significantly

greater cancellation of the next group particles among themselves up to about 1.2 GeV . The

resulting total fits are shown in Fig. 6 for both 100% and 78.1% assumed f0(980) → ππ

branching ratios and the parameters associated with the fits are shown in Table 2. It is clear

that the fitted parameters and results up to about 1.2 GeV are very similar to the cases when

the next group was absent. Above this region, there is now, however, a positive bump in R0
0

at around 1.3 GeV . This could be pushed further up by choosing a higher mass (within the

allowable experimental range) for the f0(1300). Resonances in the 1500 MeV region, which

have not been taken into account here, would presumably also have an important effect in

14
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Figure 6: Prediction for R0
0 with the next group of resonances. (a) assumes

(column 5 in Table 2) (BR(f0(980) → 2π) = 100%) while (b) assumes (column

6) (BR(f0(980)→ 2π) = 78.1%).

the region above 1.2 GeV . Clearly, there is not much sense, at the present stage, in trying

to produce a fit above 1.2 GeV .

The analysis above assumed that the ρ(1450) decays predominantly into two pions since

the PDG listing does not give any specific numbers. On the other hand the K∗(1410), which

presumably is in the same SU(3) multiplet as the ρ(1450), has only a 7% branching ratio into

Kπ. Thus it is possible that ρ(1450) actually has a small coupling to ππ. To test this out we

redid the calculation with the complete neglect of the ρ(1450) contribution. The resulting fit

is shown in the last column of Table 2 and it is seen to leave the other parameters essentially

unchanged.

It thus seems that the results are consistent with the hypothesis of local cancellation,

wherein the physics up to a certain energy E is described by including only those resonances

up to slightly more than E and it is furthermore hypothesized that the individual particles

cancel in such a way that unitarity is maintained.
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4.4 Effects of inelasticity

Up to now we have completely neglected the effects of coupled inelastic channels. Of course

the 4π channel opens at 540 MeV , the 6π channel opens at 810 MeV and, probably most

significantly, the KK channel opens at 990 MeV . We have seen that a nice undestanding of

the ππ elastic channel up to about 1.2 GeV can be gotten with complete disregard of inelastic

effects. Nevertheless it is interesting to see how our results would change if experimental data

on the elasticity parameter η0
0 are folded into the analysis. Figure 7 illustrates the results for

  

o
oη

s      (GeV)

Figure 7: An experimental determination of η0
0 =

√
1− 4|T 0

12,0|2 [14].

η0
0(s) obtained from an experimental analysis [14] of ππ → KK scattering. For simplicity, we

approximated the data by a constant value η0
0 = 0.8 above the KK threshold. Figure 8(a)

shows the effect of this choice on R0
0(s) computed without the inclusion of the next group

of resonances, while Fig. 8(b) shows the effect when the next group is included. Comparing

with Fig. 4(b) and 6(b), we see that setting η0
0 = 0.8 has not made any substantial change.

The parameters of the fit are shown in Table 2 as are the parameters for an alternative fit

with η0
0 = 0.6. The latter choice leads to a worse fit for R0

0.

We conclude that inelastic effects are not very important for understanding the main
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Figure 8: Predictions with phenomenological treatment of inelasticity (η0
0 = 0.8)

above KK threshold. (a): without next group. (b): with next group.

features of ππ scattering up to about 1.2 GeV . However, we will discuss the calculation of

η0
0(s) from our model in section 5.

4.5 Phase shift

Strictly speaking our initial assumption only entitles us to compare, as we have already done,

the real part of the predicted amplitude with the real part of the amplitude deduced from

experiment. Since the predicted R0
0(s) up to 1.2 GeV satisfies the unitarity bound (within

the fitting error) we can calculate the imaginary part I0
0 (s), and hence the phase shift δ0

0(s)

on the assumption that full unitarity holds. This is implemented by substituting R0
0(s) into

eq. (2.5) and resolving the discrete sign ambiguities by demanding that δ0
0(s) be continuous

and monotonically increasing (to agree with experiment). It is also necessary to know η0
0(s)

for this purpose; we will be content with the approximations above which seem sufficient for

understanding the main features of ππ scattering up to 1.2 GeV .

In this procedure there is a practical subtlety already discussed at the end of section

IV of Ref. [4]. In order for δ0
0(s) to increase monotonically it is necessary that the sign in

front of the square root in eq. (2.5) change. This can lead to a discontinuity unless 2|R0
0(s)|

precisely reaches η0
0(s). However the phase shift is rather sensitive to small deviations from

17



this exact matching. Since the fitting procedure does not enforce that |R0
0(s)| go precisely to

η0
0(s)/2 ≈ 0.5, this results in some small discontinuities. (These could be avoided by trying

to fit the phase shift directly.)

Figure 9 shows the phase shift δ0
0(s) estimated in this manner for parameters in the first

  

o
oδ

s      (GeV)

Figure 9: Estimated phase shift using the predicted real part and unitarity rela-

tion.

column of Table 2. As expected, the agreement is reasonable. A very similar estimate is

obtained when (column 3 of Table 2) η0
0 is taken to be 0.8 while considering the ππ branching

ratio of f0(980) to be its experimental value of 78.1%. It appears that these two parameter

changes are compensating each other so that one may again conclude that the turning on

of the KK channel really does not have a major effect. When the next group of resonances

is included (column 7 of Table 2) the estimated δ0
0(s) is very similar up to about 1.2 GeV .

Beyond this point it is actually somewhat worse, as we would expect by comparing Fig. 8(b)

with Fig. 8(a).
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5 ππ → KK Channel

We have seen that ππ → ππ scattering can be understood up to about 1.2 GeV with

the neglect of this inelastic channel. In particular, a phenomenological description of the

inelasticity did not change the overall picture. However we would like to begin to explore

the predictions of the present model for this channel also. The whole coupled channel

problem is a very complicated one so we will be satisfied here to check that the procedure

followed for the ππ elastic channel can lead to an inelastic amplitude which also satisfies the

unitarity bounds. Specifically we will confine our attention to the real part of the I = J = 0

ππ → KK amplitude, R0
12;0 defined in eq. (A.11).

In exact analogy to the ππ → ππ case we first consider the contribution of the contact

plus the K∗(892) plus the σ(550) terms. It is necessary to know the coupling strength of the

σ to KK, defined by the effective Lagrangian piece

− γσKK

2
σ∂µK∂µK . (5.1)

If the σ is ideally mixed and there is no OZI rule violating piece we would have γσKK = γ0

as defined in eq. (B.11). For definiteness, we shall adopt this standard mixing assumption.

The appropriate amplitudes are listed in Appendix C. Figure 10 shows the plots of R0
12;0 for

the current algebra part alone, the current algebra plus K∗ and the current algebra plus K∗

plus σ parts. Notice that unitarity requires

|R0
12;0| ≤

√
1− η0

0
2

2
≤ 1

2
. (5.2)

The current algebra result already clearly violates this bound at 1.05 GeV . As before, this is

improved by the K∗ vector meson exchange contribution and further improved by the very

important tail of the σ contribution. The sum of all three shows a structure similar to the

corresponding Fig. 2 in the ππ → ππ case. The unitarity bound is not violated until about

1.55 GeV .

Next, let us consider the contribution of the f0(980) which, since the resonance straddles

the threshold, is expected to be important. We need to know the effective coupling constant

of the f0 to ππ and to KK. As we saw in eq. (4.4), and the subsequent discussion, the
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Figure 10: Contributions to ππ → KK (R0
12;0). The solid line shows the current

algebra result; the dashed line represents the inclusion of K∗(892); the dotted

line includes the σ(550) too.
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effective ππ coupling should be taken as γf0ππei π

2 . Experimentally, only the branching ratios

for f0(980)→ ππ and f0(980)→ KK are accurately known. We will adopt for definiteness

the value of γf0ππ corresponding to the fit in the third column of Table 2 (Γtot(f0(980)) =

76 MeV ). It is more difficult to estimate the f0(980)→ KK effective coupling constant since

the central value of the resonance may actually lie below the threshold. By taking account ¶

of the finite width of the f0(980) we get the rough estimate |γf0KK| = 10 GeV −1 ≈ 4|γf0ππ|
for the choice in the third column, Mf0(980) = 990 MeV . Of course, this estimate is very

sensitive to the exact value used for Mf0(980). It seems reasonable to take γf0KK to be purely

real. The results of including the f0(980) contribution, for both sign choices of γf0KK , are

shown in Fig. 11. The unitarity bounds are satisfied for the positive sign of γf0KK but

slightly violated for the negative sign choice.

Finally, let us consider the contributions to ππ → KK from the members of the multiplets

containing the next group of particles. There will be a crossed channel contribution from

the strange excited vector meson K∗(1410). However it will be very small since K∗(1410)

predominately couples to K∗π and has only a 7% branching ratio to Kπ. In addition there

will be a crossed channel scalar K∗
0 (1430) diagram as well as a direct channel scalar f0(1300)

diagram contributing to ππ → KK. The f0(1300) piece is small because f0(1300) has a very

small branching ratio to KK. Furthermore the K∗
0(1430) piece turns out also to be small;

we have seen that the crossed channel scalar gave a negligible contribution to ππ → ππ.

The dominant next group diagrams involve the tensor mesons. Near threshold, the crossed

channel K∗
2(1430) diagram is the essential one since the direct channel f2(1270) contribution

for the J = 0 partial wave is suppressed by a spin-2 projection operator. Above 1270 MeV

¶With Γtot(f0(980)) = 76 MeV we would have Γ(f0(980)→ KK)) = 16.6 MeV . Then γ
f0KK

is estimated

from the formula:

16.6 MeV = |γ
f0KK

|2
∫ ∞

2mk

ρ(M)|A(f0(M)→ KK)|2Φ(M) dM ,

where A(f0(M)→ KK) is the reduced amplitude for an f0 of mass M to decay to KK, Φ(M) is the phase

space factor and ρ(M) is the weighting function given by

ρ(M) =

√
2

π

1

Γtot

exp

{
−2

[
(M −M0)

2

Γ2
tot

]}
.

Here, M0 is the central mass value of the f0(980).
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Figure 11: Effect of f0(980) on ππ → KK. The solid curve corresponds to a

negative γf0KK and the dashed one to a positive sign.

the f2(1270) contribution becomes increasingly important although it has the opposite sign to

the crossed channel tensor piece. Figure 12 shows the net prediction for R0
12;0 obtained with

the inclusion of the main next group contributions from the K∗
2(1430) and f2(1270). Both

assumed signs for γf0KK are shown and other parameters correspond to column 3 of Table

2. Clearly there is an appreciable effect. Figure 13 shows the magnitude of |R0
12;0| together

with one experimental determination [14] of |T 0
12;0| =

√
(R0

12;0)
2 + (I0

12;0)
2. The positive sign

of γf0KK is favored but, considering the uncertainty in |γf0KK | among other things, we shall

not insist on this. It seems to us that the main conclusion is that the unitarity bound can

be satisfied in the energy range of interest.

6 Summary and Discussion

We have obtained a simple approximate analytic form for the real part of the ππ scattering

amplitude in the energy range from threshold to about 1.2 GeV . It satisfies both crossing

symmetry and (more non-trivially) unitarity in this range. Inspired by the leading 1/Nc
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Figure 12: Effects on ππ → KK due to the next group of resonances for the two

different sign choices in Fig. 11.

  

s      (GeV)

 R12;o
o

Figure 13: |R0
12;0| together with one experimental determination [14] of |T 0

12;0| =√
(R0

12;0)
2 + (I0

12;0)
2. Signs for γf0KK as in Fig. 11
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approximation, we have written the amplitude as the sum of a contact term and poles.

Of course the leading 1/Nc amplitude can not be directly compared with experiment since

it is purely real (away from the direct channel poles) and diverges at the pole positions.

Furthermore, an infinite number of poles, and higher derivative interactions are in principle

needed. To overcome these problems we have employed the following procedure.

a. We specialized to predicting the real part of the amplitude.

b. We postulated that including only resonances from threshold to slightly more than

the maximum energy of interest is sufficient. We have seen that this local cancellation

appears stable under the addition of resonances in the 1300 MeV range. Beyond this

range we would expect still higher resonances to add in such a way so as to enforce

unitarity at still higher energies.

c. In the effective interaction Lagrangian we included only terms with the minimal number

of derivatives consistent with the assumed chiral symmetry.

d. The most subtle aspect concerns the method for regularizing the divergences at the

direct channel resonance poles. In the simplest case of a single resonance dominating

a particular channel (e.g. the ρ meson) it is sufficient to add the standard width term

to the denominator (e.g. the real part of eq. (2.2)). For an extremely broad resonance

(like a needed low energy scalar isosinglet) the concept of width is not so clear and

we employed the slight modification of the Breit-Wigner amplitude given in eq. (2.3).

Finally, for a relatively narrow resonance in the presence of a non-negligible background

we employed the regularization given in eq. (2.4) which includes the background phase.

Self-consistency is assured by requiring that the background phase should be predicted

by the model itself.

All the regularizations introduced above are formally of higher than leading order in the

1/Nc expansion (i.e. of order 1/N2
c and higher) and correspond physically to rescattering

effects. In the case of non-negligible background phase, there is an interesting difference from

the usual tree-level treatment of pole diagrams. The effective squared coupling constant,

g2
Rππ of such a resonance to two pions, is then not necessarily real positive. Since this
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regularization is interpreted as a rescattering effect it does not mean that ghost fields are

present in the theory. This formulation maintains crossing symmetry which is typically lost

when a unitarization method is employed.

In this analysis, the most non-trivial point is the satisfaction of the unitarity bound for

the predicted real part of the partial wave amlitude,

|RI
l | ≤

ηI
l

2
, (6.1)

where ηI
l < 1 is the elasticity parameter. The well known difficulty concerns R0

0. If ηI
l (s) is

known or calculated the imaginary part II
l (s) can be obtained, up to discrete ambiguities,

by eq. (2.5).

The picture of ππ scattering in the threshold to slightly more than 1 GeV range which

emerges from this model has four parts. Very near threshold the current algebra contact term

approximates R0
0(s) very well. The imaginary part I0

0 (s), which is formally of order 1/N2
c

can be obtained from unitarity directly using eq. (2.5) or, equivalently, by chiral perturbtion

theory. At somewhat higher energies the most prominent feature is the ρ meson pole in the

I = J = 1 channel. The crossed channel ρ exchange is also extremely important in taming

the elastic unitarity violation associated with the current algebra contact term (Fig. 1).

Even with the ρ present, Fig. 1 shows that unitarity is still violated, though much less

drastically. This problem is overcome by introducing a low mass ≈ 550 MeV , extremely

broad sigma meson. It also has another desirable feature: R0
0(s) is boosted (see Fig. 3) closer

to experiment in the 400−500 MeV range. The three parameters characterizing this particle

are essentially the only unknowns in the model and were determined by making a best fit.

In the 1 GeV region it seems clear that the f0(980) resonance, interacting with the predicted

background in the manner of the Ramsauer-Townsend effect, dominates the structure of the

I = J = 0 phase shift. The inelasticity associated with the opening of the KK threshold has

a relatively small effect. However we also presented a preliminary calculation which shows

that the present approach satisfies the unitarity bounds in the inelastic ππ → KK channel.

Other recent works [5, 12, 13, 15, 16] which approach the problem in different ways,

also contain a low mass broad sigma. The question of whether the lighter scalar mesons

are of qq type or meson-meson type has also been discussed [5, 12, 13]. In our model it
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is difficult to decide this issue. Of course, it is not a clean question from a field theoretic

standpoint. This question is important for understanding whether the contributions of such

resonances are formally leading in the 1/Nc expansion. We are postponing the answer as

well as the answer to how to derive the rescattering effects that were used to regularize the

amplitude near the direct channel poles as higher order in 1/Nc corrections. Presumably, the

rescattering effects could some day be calculated as loop corrections with a (very complicated)

effective Wilsonian action. This would be a generalization of the chiral perturbation scheme

of pions. Another aspect of the 1/Nc picture concerns the infinite number of resonances

which are expected to contribute already at leading order. One may hope that the idea of

local cancellation will help in the development of a simple picture at high energies which

might get patched together with the present one. Is the simple high energy theory a kind of

string model ?

From a practical standpoint (without worrying about all the theoretical issues involved in

making a comparison with the 1/Nc expansion) we have demonstrated that it is possible to

understand ππ scattering up to the 1 GeV region by shoehorning together poles and contact

term contributions employing a suitable regularization procedure. It seems likely that any

crossing symmetric approximation will have a similar form. This is in the spirit of mean field

theories.
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Appendix A

Scattering kinematics

The general partial wave scattering matrix for the multi channel case can be written as:

Sab = δab + 2iTab . (A.1)

For simplicity, the diagonal isospin and angular momentum labels have not been indicated.

By requiring the unitarity condition S†S = 1 one deduces for the two channel case the

following relations:

Im(T11) = |T11|2 + |T21|2 ,

Im(T22) = |T22|2 + |T12|2 , (A.2)

Im(T12) = T ∗
11 T12 + T ∗

12T22 ,

where T12 = T21. In the present case we will identify 1 as the ππ channel and 2 as the KK

channel. In order to get the relations between the relative phase shifts and the amplitude

we need to consider the following parameterization of the scattering amplitude:

S =

(
η e2iδπ ±i

√
1− η2 eiδπK

±i
√

1− η2 eiδπK η e2iδK

)
, (A.3)

where δπK = δπ + δK and 0 < η < 1 is the elasticity parameter. By comparing eq. (A.3) and

eq. (A.1) one can easily deduce:

η2 = 1− 4|T12|2 . (A.4)

Analogously, for Taa we have:

T I
aa;l(s) =

(ηI
l (s) e2iδI

a;l
(s) − 1)

2i
, (A.5)

where l and I label the angular momentum and isospin, respectively. Extracting the real

and imaginary parts via

RI
aa;l =

ηI
l sin(2δI

a;l)

2
,

II
aa;l =

1− ηI
l cos(2δI

a;l)

2
(A.6)
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leads to the very important bounds

|RI
aa;l| ≤

1

2
, 0 ≤ II

aa;l ≤ 1 . (A.7)

The unitarity also requires |T I
12;l| < 1/2 .

Now we relate these partial wave amplitudes to the invariant amplitudes. The invariant

amplitude for πi(p1) + πj(p2)→ πk(p3) + πl(p4) is decomposed as:

δijδklA(s, t, u) + δikδjlA(t, s, u) + δilδjkA(u, t, s) , (A.8)

where s, t and u are the usual Mandelstam variables. Note that the phase of eq. (A.8)

corresponds to simply taking the matrix element of the Lagrangian density of a four point

contact interaction. Projecting out amplitudes of definite isospin yields:

T 0
11(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s) ,

T 1
11(s, t, u) = A(t, s, u)−A(u, t, s) ,

T 2
11(s, t, u) = A(t, s, u) + A(u, t, s) . (A.9)

The needed I = 0 ππ → KK amplitude can be gotten as:

T 0
12(s, t, u) = −

√
6A(π0(p1)π

0(p2), K
+(p3)K

−(p4)) . (A.10)

We then define the partial wave isospin amplitudes according to the following formula:

T I
ab;l(s) ≡

1

2

√
ρaρb

∫ 1

−1
d cos θPl(cos θ)T I

ab(s, t, u) , (A.11)

where θ is the scattering angle and

ρa =
1

S 16π

√
s− 4m2

π

s
θ(s− 4m2

a) . (A.12)

S is a symmetry factor which is 2 for identical particles (ππ case) and 1 for distinguishable

particles (KK case).
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Appendix B

Chiral Lagrangian

In the low energy physics of hadrons, it is important to take account of the spontaneous

chiral symmetry breaking structure. We start here with the U(3)L×U(3)R / U(3)V non-linear

realization of chiral symmetry. The basic quantity is a 3 × 3 matrix U , which transforms as

U → ULUU
†
R , (B.1)

where UL,R ∈ U(3)L,R. This U is parameterized by the pseudoscalar φ as

U = ξ2 , ξ = e2iφ/Fπ , (B.2)

where Fπ is a pion decay constant. Under the chiral transformation eq. (B.1), ξ transforms

non-linearly:

ξ → UL ξ K†(φ, UL, UR) = K(φ, UL, UR) ξ U
†
R . (B.3)

The vector meson nonet ρµ is introduced as a gauge field [17] which transforms as

ρµ → KρµK† +
i

g̃
K∂µK

† , (B.4)

where g̃ is a gauge coupling constant. (For an alternative approach see, for a review, Ref. [18].)

It is convenient to define

pµ =
i

2

(
ξ∂µξ
† − ξ†∂µξ

)
,

vµ =
i

2

(
ξ∂µξ
† + ξ†∂µξ

)
, (B.5)

which transform as

pµ → KpµK
† ,

vµ → KvµK† + iK∂µK† . (B.6)

Using the above quantities we construct the chiral Lagrangian including both pseudoscalar

and vector mesons:

L = −1

2
m2

vTr
[
(g̃ρµ − vµ)

2
]
− F 2

π

2
Tr [pµpµ]− 1

4
Tr [Fµν(ρ)Fµν(ρ)] , (B.7)
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where Fµν = ∂µρν − ∂νρµ − ig̃[ρµ, ρν ] is a gauge field strength of vector mesons.

In the real world chiral symmetry is explicitly broken by the quark mass term −m̂qMq,

where m̂ ≡ (mu + md)/2, andM is the dimension-less matrix:

M =




1 + y

1− y

x


 . (B.8)

Here x and y are the quark mass ratios:

x =
ms

m̂
, y =

1

2

(
md −mu

m̂

)
. (B.9)

These quark masses lead to mass terms for pseudoscalar mesons. Moreover, in considering

the processes related to the kaon, (in this paper we will consider ππ → KK scattering

amplitude.) we need to take account of the large splitting of the s quark mass from the u

and d quark masses. These effects are included as SU(3) symmetry breaking terms in the

above Lagrangian, which are summarized, for example, in Refs. [19, 20]. Here we write the

lowest order pseudoscalar mass term only:

Lφ−mass = δ′Tr
[
MU† +M†U

]
, (B.10)

where δ′ is an arbitrary constant.

We next introduce higher resonances into our Lagrangian. First, we write the interaction

between the scalar nonet field S and pseudoscalar mesons. Under the chiral transformation,

this S transforms as S → KSK†. A possible form which includes the minimum number of

derivatives is proportional to Tr [Spµpµ] . The coupling of a physical isosinglet field to two

pions is then described by

Lσ = − γ0√
2

σ ∂µ~π · ∂µ~π . (B.11)

Here we should note that the chiral symmetry requires derivative-type interactions between

scalar fields and pseudoscalar mesons. Second, we represent the tensor nonet field by Tµν

(satisfying Tµν = Tνµ, and Tµµ = 0.), which transforms as Tµν → KTµνK
†. The interaction

term is given by

LT = −γ2F
2
πTr [Tµνpµpν ] . (B.12)

The heavier vector resonances such as ρ(1450) can be introduced in the same way as ρ in

eq. (B.7).
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Appendix C

Unregularized amplitudes

Amplitudes for the ππ → ππ channel

The current algebra contribution to A(s, t, u) is

Aca(s, t, u) = 2
(s−m2

π)

F 2
π

. (C.1)

The amplitude for the vectors can be expressed in the following form

Aρ(s, t, u) = −g2
ρππ

2m2
ρ

[
t(u− s)

m2
ρ − t

+
u(t− s)

m2
ρ − u

]
, (C.2)

where gρππ is the coupling of the vector to two pions.

For the scalar particle we deduce

Af0
(s, t, u) =

γ2
0

2

(s− 2m2
π)

2

m2
f0
− s

. (C.3)

To calculate the tensor exchange diagram we need the spin 2 propagator [21]

−i

m2
f2

+ q2

[
1

2
(θµ1ν1

θµ2ν2
+ θµ1ν2

θµ2ν1
)− 1

3
θµ1µ2

θν1ν2

]
, (C.4)

where

θµν = δµν +
qµqν

m2
f2

. (C.5)

A straightforward computation then yields the f2 contribution to the ππ scattering ampli-

tude:

Af2
(s, t, u) =

γ2
2

2(m2
f2
− s)

(
−16

3
m4

π +
10

3
m2

πs−
1

3
s2 +

1

2
(t2 + u2)

−2

3

m2
πs2

m2
f2

− s3

6m2
f2

+
s4

6m4
f2

)
. (C.6)

Amplitudes for π0π0 → K+K−

Current algebra amplitude:

Aca(π
0π0, K+K−) =

s

2F 2
π

. (C.7)
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Vector meson contribution:

AV ector(π
0π0, K+K−) =

g2
K∗Kπ

8m2
K∗

[
t(s− u)

m2
K∗ − t

+
u(s− t)

m2
K∗ − u

+ (m2
k −m2

π)2

(
1

m2
K∗ − t

+
1

m2
K∗ − u

)]
. (C.8)

Direct channel contribution for the scalar:

Af0
(π0π0, K+K−) =

1

4
γf0ππγf0KK

(s− 2m2
π)(s− 2m2

k)

m2
f0
− s

. (C.9)

Cross channel contribution for the scalar:

AK∗

0
(π0π0, K+K−) =

γ2
K∗

0
Kπ

8



(m2
K + m2

π − t)2

m2
K∗

0
− t

+
(m2

K + m2
π − u)2

m2
K∗

0
− u



 . (C.10)

Direct channel tensor contribution:

Af2
(π0π0, K+K−) =

γ2ππγ2KK

2(m2
f2
− s)




(

s2

4m2
f2

+
t

2
− (m2

π + m2
K)

2

)2

+

(
s2

4m2
f2

+
u

2
− (m2

π + m2
K)

2

)2

− 2

3

(
s2

4m2
f2

− s

2
+ m2

π

)(
s2

4m2
f2

− s

2
+ m2

K

)]
. (C.11)

Cross channel tensor contribution:

AK∗

2
(π0π0, K+K−) =

γ2
2Kπ

16(m2
K∗

2
− t)







(2m2
π − s)− 1

2m2
K∗

2

(m2
π −m2

K + t)2





×


(2m2
K − s)− 1

2m2
K∗

2

(m2
K −m2

π + t)2





+


(u−m2

π −m2
K) +

1

2m2
K∗

2

(t2 − (m2
K −m2

π)2)




2

− 2

3


(t−m2

π −m2
K)− 1

2m2
K∗

2

(t2 − (m2
K −m2

π)2)




2





+ (t←→ u) . (C.12)
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