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Abstract

Correlation is often present among observations in a distributed system. This the-

sis deals with various design issues when correlated data are observed at distributed

terminals, including: communicating correlated sources over interference channels,

characterizing the common information among dependent random variables, and test-

ing the presence of dependence among observations.

It is well known that separated source and channel coding is optimal for point-to-

point communication. However, this is not the case for multi-terminal communica-

tions. In this thesis, we study the problem of communicating correlated sources over

interference channels (IC), for both the lossless and the lossy case. For lossless case,

a sufficient condition is found using the technique of random source partition and

correlation preserving codeword generation. The sufficient condition reduces to the

Han-Kobayashi achievable rate region for IC with independent observations. More-

over, the proposed coding scheme is optimal for transmitting a special correlated

sources over a class of deterministic interference channels. We then study the general

case of lossy transmission of two correlated sources over a two-user discrete memo-

ryless interference channel (DMIC). An achievable distortion region is obtained and

Gaussian examples are studied.

The second topic is the generalization of Wyner’s definition of common informa-

tion of a pair of random variables to that of N random variables. Coding theorems are

obtained to show that the same operational meanings for the common information of

two random variables apply to that of N random variables. We establish a monotone

property of Wyner’s common information which is in contrast to other notions of

the common information, specifically Shannon’s mutual information and Gács and

Körner’s common randomness. Later, we extend Wyner’s common information to

that of continuous random variables and provide an operational meaning using the

Gray-Wyner network with lossy source coding. We show that Wyner’s common in-

formation equals the smallest common message rate when the total rate is arbitrarily

close to the rate-distortion function with joint decoding.

Finally, we consider the problem of distributed test of statistical independence

under communication constraints. Focusing on the Gaussian case because of its

tractability, we study in this thesis the characteristics of optimal scalar quantizers

for distributed test of independence where the optimality is both in the finite sample

regime and in the asymptotic regime.
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Chapter 1

Introduction

Shannon, in his landmark work [1] in 1948, showed that for point-to-point communi-

cation, separated source and channel coding incurs no loss of optimality in terms of

reliable transmission. This result has important practical applications. Traditional

communication systems follow exactly such an approach by separately and indepen-

dently designing source codes and channel codes. The combination of the two will

achieve the same optimality as designing the system considering the source and chan-

nel coding together.

However, today’s communication systems are usually distributed, i.e., they consist

of multiple transmitters and multiple receivers. Typical multiuser channels includes

multiple access channels (MAC), broadcast channels (BC) and interference channels

(IC). A MAC models the situation where several transmitters compete for a common

communication medium and send individual information to one central node, while

in a BC, one central transmitter node broadcast independent information to different

users. An IC, on the other hand, models the situation where all transmitters and

receivers are distributed.

It has been shown in the literature that separated source and channel coding

fails to achieve optimality for multiuser communication systems. Cover, El-Gamal,

and Salehi first studied the problem of communicating discrete correlated sources

over a MAC [2], and gave a concrete example showing that separated source and

channel coding scheme is strictly suboptimal. Han and Costa [3] studied the problem

of communicating arbitrarily correlated sources over a discrete memoryless BC and

also provided an example showing that the separated scheme is strictly suboptimal

for broadcast channels. Recent results on sending correlated Gaussian sources over a

Gaussian MAC in [4] proposed joint source and channel coding schemes that uniformly
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outperform separated source and channel coding. All of these works imply that a new

communication framework is needed for communication over multi-terminal networks,

that is, the joint design of source and channel coding. This motivates the study of

the first topic of this thesis, namely communicating correlated sources over multiuser

channels.

Our primary focus is on interference channels. Due to the decentralized transceiver

structure, communication between one sender and its corresponding receiver will

cause interference to the communication between other senders and their correspond-

ing receivers. The capacity region of a two user interference channel, where two

independent sources are transmitted through a two user interference channel, has

been a long standing problem. The first information-theoretic study of this problem

dates back to Shannon [5], and extensive research has since been carried out by many

authors [6,7,8,9,10,11,12,13,14,16,17,18]. Unfortunately, the problem of characteriz-

ing the capacity region of interference channels remains open except for some special

cases, such as ICs with strong and very strong interference [7, 11, 13], and a class of

deterministic interference channel [14]. So far, the best known achievable region is

due to Han and Kobayashi [12], which includes all the cases where the capacity region

is known as special cases.

In this thesis, we study the transmission of two arbitrarily correlated sources

over a two-user interference channel. We aim to provide a better understanding

on the fundamental performance limits and what is the optimal way in designing

source channel matching code utilizing the dependence structure of the sources. Both

lossless and lossy cases are studied, i.e., the receivers need to recover their sources

with arbitrarily small probability of errors or within certain distortion constraints.

The special case of Gaussian sources over Gaussian ICs is also studied.

For arbitrarily correlated sources, the notion of common information arises natu-

rally. In the case that two correlated random variables X and Y can be decomposed

as X = (X
′

, K) and Y = (Y
′

, K) such that X
′

, Y
′

, K are mutually independent, the

common information between X and Y is clearly H(K), where H is the Shannon

entropy function. For general sources, measuring the common information is not an

easy task. Indeed, characterizing the common information of dependent random vari-

ables has been a topic of research interest in the past decades [56,57,58,59,60] and our

focus is on Wyner’s common information. However, Wyner’s common information

was originally proposed for two random variables with finite alphabet. Our focus in

this part of the thesis is to generalize this classical notion of common information. In
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particular, we provide a generalized Wyner’s common information for N arbitrarily

distributed random variables, as well as its extension to continuous random variables.

Test of statistical independence between random variables X and Y has been a

classical inference problem [74] and has found a wide range of applications, e.g., in im-

age processing [75], economics [76]. The emerging wireless sensor networks bring new

dimensions and challenges to this classical problem as the data are no longer centrally

available. Dependence detection in distributed systems is often the first and crucial

step in event detection/identification; thus its relevance in various sensor network

applications is quite evident. In the centralized case where X and Y sequences are

available, this statistical inference problem can be solved straightforwardly by apply-

ing some standard statistical inference frameworks [77]. The problem becomes much

more interesting and complicated when X and Y are not directly available; instead,

compressed versions of X and Y subject to some rate constraints are used for the test

of independence. Focusing on the Gaussian case because of its tractability, we study

in this thesis the characteristics of optimal scalar quantizers for distributed test of

independence where the optimality is in the sense of optimizing the error exponent.

We also discuss the optimal quantizer properties for the finite sample regime, i.e.,

that of directly minimizing the error probability.

In the following, we provide some background knowledge related to this thesis.

We start with some primer on interference channels. This is followed by a comprehen-

sive overview of the state of art on communicating correlated sources over multiuser

channels. The notion of common information as well as the problem of hypothesis

testing with communication constraint are introduced later. We conclude this section

by giving an outline of this thesis.

1.1 Discrete memoryless interference channels

The interference channel consists of several transmitters and receivers, where each

transmitter sends information to its intended receiver while causing interference to

all other receivers. A two user discrete memoryless interference channel (DMIC) can

be denoted as {X1,X2,Y1,Y2, p(y1y2|x1x2)}, where X1, X2 are the channel inputs,

Y1, Y2 are the channel outputs and p(y1y2|x1x2) is the channel transition probability.

The model is shown in Fig. 1.1.

The capacity region for the general DMIC is still unknown. The best known

achievable region is due to Han and Kobayashi [12] by using superposition coding

3
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Ŵ1

Ŵ2

Figure 1.1: A two user DMIC.

and joint decoding. A simplified version of the Han and Kobayashi (HK) region was

given by Chong et al [18], repeated below.

Proposition 1 (Chong et al [18, Theorem 2]) Let P be the set of probability dis-

tributions that factor as P (q, w1, w2, x1, x2) = p(q)p(w1|q)p(w2|q)p(x1|w1q)p(x2|w2q).

Then the rate pair (R1, R2) is achievable for a discrete memoryless interference chan-

nel p(y1y2|x1x2), if the following conditions are satisfied:

R1 < I(X1;Y1|QW2), (1.1)

R2 < I(X2;Y2|QW1), (1.2)

R1 +R2 < I(X1;Y1|QW1W2) + I(W1X2;Y2|Q), (1.3)

R1 +R2 < I(X2;Y2|QW1W2) + I(W2X1;Y1|Q), (1.4)

R1 +R2 < I(W2X1;Y1|QW1) + I(W1X2;Y2|QW2), (1.5)

2R1 +R2 < I(X1;Y1|QW1W2) +

I(W2X1;Y1|Q) + I(W1X2;Y2|QW2), (1.6)

R1 + 2R2 < I(X2;Y2|QW1W2) +

I(W1X2;Y2|Q) + I(W2X1;Y1|QW1). (1.7)

1.2 Communicating correlated sources over MAC

Communicating correlated sources over multi-terminal networks have been a topic of

research interest in the past decades. Slepian and Wolf [19] studied the problem of

communicating correlated information over a two-user multiple access channel where

the correlation is of a special structure in the form of three independent sources, with

4



one of them observed by both encoders while each of the other two observed only

at individual encoders. Later, Cover, El Gamal, and Salehi studied the problem of

communicating discrete correlated sources over a multiple access channel (MAC) [2],

where the correlation structure can be arbitrary. A sufficient condition was obtained

for the lossless transmission of such correlated source pair over a multiple access

channel.

Proposition 2 ( [2, Theorem 1]) A source pair (Sn, T n) ∼ ∏n
i=1 p(si, ti) can be sent

with arbitrarily small probability of error over a discrete memoryless multiple access

channel p(y|x1, x2) if

H(S|T ) < I(X1;Y |X2TW ), (1.8)

H(T |S) < I(X2;Y |X1SW ), (1.9)

H(ST |K) < I(X1X2;Y |KW ), (1.10)

H(ST ) < I(X1X2;Y ), (1.11)

where

p(s, t, w, x1, x2, y) = p(w)p(s, t)p(x1|sw)p(x2|tw)p(y|x1x2), (1.12)

and K = f(S) = g(T ) is the common part of two variables (S, T ), in the sense of

Gács, Körner [23] and Witsenhausen [58].

The key technique in deriving the sufficient condition is the correlation preserv-

ing codeword generation. For fixed distribution p(w), p(x1|w, s), p(x2|w, t), indepen-

dently generate one codeword wn(kn) ∼ ∏n
i=1 p(wi) for each kn ∈ Kn that carries

the information of the common part. Next, for each source sequence sn ∈ Sn, find

the corresponding kn = f(sn) = (f(s1), f(s2), · · · , f(sn)) and independently gener-

ate one codeword xn1 ∼ ∏n
i=1 p(x1i|si, wi). The codeword xn2 is similarly generated.

Therefore the correlation between the source pair induces correlation in the generated

codewords, the so-called correlation preserving codeword generation. To transmit sn,

encoder 1 sends the corresponding codeword xn1 . Similarly encoder 2 sends the corre-

sponding codeword xn2 for the given source sequence tn ∈ T n. The decoder uses joint

typicality decoding: upon receiving yn, the decoder finds a unique pair of (sn, tn) such

that (sn, tn, kn, wn, xn1 , x
n
2 , y

n) ∈ T nǫ (STKWX1X2Y ).

This sufficient condition includes various known capacity results as its special

cases. These include the capacity region for a MAC [20, 21]; distributed lossless

source coding, i.e., the Slepian-Wolf coding [22]; cooperative multiple access channel
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capacity; and the correlated source multiple access channel capacity region of Slepian

and Wolf [19]. The key technique used in [2], aside from making use of the so-called

common part of correlated random variables (in the sense of Gács, Körner [23] and

Witsenhausen [58]), is the correlation preserving codeword generation. By generating

codewords that depend, probabilistically, on the source sequences, the correlation

between the sources induces correlation in the generated codewords. In addition, a

simple example was given to show that the separation approach which concatenates

a Slepian-Wolf code [22] and the optimal channel code for MAC [20, 21] is strictly

suboptimal.

1.3 Communicating correlated sources over BC

Han and Costa [3] studied the problem of communicating arbitrarily correlated sources

over a discrete memoryless BC and obtained the following sufficient condition for the

lossless transmission of such correlated sources over a BC.

Proposition 3 (Han and Costa [3], with correction by Kramer and Nair [25]) A

source pair (Sn, T n) ∼ ∏n
i=1 p(si, ti) can be sent with arbitrarily small probability of

error over a discrete memoryless broadcast channel p(y1y2|x) if there exist auxiliary

random variables W,U, V satisfying the Markov chain property ST →WUV → X →
Y1Y2 such that

H(S) < I(SWU ;Y1) − I(T ;WU |S), (1.13)

H(T ) < I(TWV ;Y2) − I(S;WV |T ), (1.14)

H(ST ) < min{I(W ;Y1), I(W ;Y2)} + I(SU ;Y1|W ), (1.15)

+I(TV ;Y2|W ) − I(SU ;TV |W ), (1.16)

H(ST ) < I(SWU ;Y1) + I(TWV ;Y2) − I(SU ;TV |W ) − I(ST ;W ). (1.17)

The sufficient condition derived in [3] (with correction by Kramer and Nair [25])

recovers the Marton region for broadcast channels with independent messages [26,

Theorem 2]. In [27], Minero and Kim proposed an alternative coding scheme and the

obtained region was shown to be equivalent to that of Han and Costa. It was pointed

out in [27] that the common part does not play a role for the broadcast channel case

which is consistent with engineering intuition because of the centralized transmitter.

We comment here that the same coding scheme proposed by Han and Costa can also

6



be easily modified to obtain the same region without the use of the common part, as

to be elaborated in chapter 2.

Notice that the above conditions in Proposition 3, due to Minero and Kim [27],

are slightly different from the original expressions in [3]. The original expressions

in [3] involve the common part K although the region was shown to be equivalent to

that specified in Proposition 2 [27].

The key technique in Han and Coast’s coding scheme that is of particular use to

our problem is random source partition, which reminisces superposition coding for

the channel coding problem. Specifically, source sequences sn ∈ Sn, tn ∈ T n are

randomly placed into 2nr1 and 2nr2 cells, respectively. The cell indices for sn and

tn, denoted by α and β, respectively, play the role as the common information to

be decoded by both receivers. The coding scheme is sketched as follows: fix distri-

bution p(w), p(u|w, s), and p(v|w, t). For each α, β and kn, independently generate

2nρ0 codewords wn(α, β, kn) ∼ ∏n
i=1 p(wi). Next, for each pair of (sn, wn), indepen-

dently generate 2nρ1 codewords un(sn, wn) ∼ ∏n
i=1 p(ui|si, wi), and 2nρ2 codewords

vn(tn, wn) ∼ ∏n
i=1 p(vi|ti, wi). For each pair of source sequences (sn, tn), the encoder

will choose a triple (wn, un, vn) such that (sn, tn, kn, wn, un, vn) ∈ T nǫ (STKWUV ),

which is ensured with high probability by properly chosen ρ1, ρ2 and ρ3. The two

decoders use joint typicality decoding, that is, decoder Y1 finds a unique sequence sn

such that (sn, kn, wn, un, yn1 ) ∈ T nǫ (SKWUY1). Similarly, decoder Y2 finds a unique

sequence tn such that (tn, kn, wn, vn, yn2 ) ∈ T nǫ (TKWV Y2).

In [27], Minero and Kim proposed an alternative, and conceptually simple, coding

scheme. The obtained region does not involve the common part K of the two vari-

ables (S, T ), but was shown to be equivalent to that of Han and Costa, thus yielding

the intuitive explanation that the common part does not play a role for the broad-

cast channel case because of the centralized transmitter. Indeed, the same coding

scheme proposed by Han and Costa can also be easily modified to obtain the same

region without the use of the common part. For the encoding scheme in [3], sketched

above, if we remove the part related to the common variable K, in both the encoding

and decoding processes, straightforward error probability analysis leads to the same

sufficient condition as in Proposition 3.
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1.4 Wyner’s common information for two random

variables

Consider a pair of dependent random variables X and Y with joint distribution

P (x, y). Characterizing the common information between X and Y has been a topic

of research interest in the past decades [56, 57, 58, 59, 60]. There have been three

classical notions reported in the literature.

Shannon’s [1] mutual information I(X;Y )

Shannon’s mutual information measures how much uncertainty can be reduced

with respect to one random variable by observation the other random variable. In

the case that X and Y are independent, mutual information I(X;Y ) = 0, indicating

that observing one variable X does not give any information about Y and vice versa.

Shannon’s mutual information carries operational meanings that are instrumental in

laying the foundation for information theory.

Gács and Körner’s [56] common randomness K(X, Y )

Consider a pair of independent and identically distributed random sequences

Xn, Y n with each pair (Xi, Yi) ∼ P (x, y). These two sequences are observed re-

spectively by two nodes, which attempt to map the sequences to a common message

set W. Specifically, let fn and gn be such mappings, i.e.,

fn : X n → W,

gn : Yn → W.

Define ǫn = Pr(W1 6= W2) where W1 = fn(X
n) and W2 = gn(Y

n). Gács and Körner’s

common randomness is defined as

K(X, Y ) = lim
n→∞,ǫn→0

sup
1

n
H(W1).

Gács and Körner’s common randomness has found extensive applications in cryptog-

raphy, i.e., for key generation [63,61,62]. On the other hand, the common randomness

notion is rather restrictive as it equals 0 in most cases except for the following special

case (or random variable pairs that can be converted to such distributions through

relabeling of realizations, i.e., permutation of joint distribution matrix). Let X and

Y be X = (X ′, V ) and Y = (Y ′, V ), respectively, where X ′, Y ′, V are independent.

Clearly, the common part between X and Y is V and it follows thatK(X;Y ) = H(V ).

Note that for this example I(X;Y ) = K(X;Y ) = H(V ).
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Wyner’s [59] common information C(X, Y )

Wyner’s common information is defined as

C(X, Y ) = min
X→W→Y

I(XY ;W ). (1.18)

Thus the hidden (or auxiliary) variable W induces a Markov chain X −W − Y , or,

equivalently, a conditional independence structure of X, Y being independent given

W . Wyner gave two operational meanings for the above definition. The first approach

is shown in Fig. 1.2. The encoder observes a pair of sequences (Xn, Y n), and maps

them to three messages W0,W1,W2, taking values in alphabets of respective sizes

2nR0, 2nR1 , 2nR2. Decoder 1, upon receiving (W0,W1), needs to reproduce Xn reliably

while decoder 2, upon receiving (W0,W2), needs to reproduce Y n reliably. Let C1 be

the infimum of all admissible R0 for the system in Fig. 1 such that the total rate

R0 +R1 +R2 ≈ H(X, Y ).

The second approach is shown in Fig. 1.3. A common input W , uniformly dis-

tributed on W = {1, · · · , 2nR0} is given to two separate processors which are otherwise

independent of each other. These processors (random variable generators) generating

independent and identically distributed sequences according to q1(X|W ) and q2(Y |W )

respectively. The output sequences of the two processors are denoted by X̃n and Ỹ n

respectively. Thus the joint distribution of the output sequences is,

Q(X̃n, Ỹ n) =
∑

w∈W

1

W q1(X
n|W )q2(Y

n|W ). (1.19)

Define C2 of (X, Y ) to be infimum of rate R0 for the common input such that

q(X̃n, Ỹ n) close to p(Xn, Y n), where the closeness is defined using the average di-

vergence of the two distributions

Dn(P,Q) =
1

n

∑

xn∈Xn,yn∈Yn

P (xn, yn) log
P (xn, yn)

Q(xn, yn)
. (1.20)

Wyner proved that

C1 = C2 = C(X, Y ). (1.21)

It was observed in [59] that

K(X, Y ) ≤ I(X;Y ) ≤ C(X, Y ). (1.22)

Wyner [59] and Witsenhausen [60] also provide several examples on how to calculate

the common information C(X, Y ). For the example of X = (X ′, V ) and Y = (Y ′, V )

with (X ′, Y ′, V ) mutually independent, C(X, Y ) = I(X;Y ) = K(X, Y ) = H(V ).

9



Xn, Y n
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Figure 1.2: Source coding over a simple network.

W

Processor 1

Processor 2

X̃n

Ỹ n

Figure 1.3: Random variable generators.

1.5 Hypothesis testing with communication con-

straints

Consider the classical hypothesis testing problem, H0 : X ∼ P (X) against H1 : X ∼
Q(X). Suppose that a length n sequence xn = (x1, x2, · · · , xn) is emitted from a

source that is assumed to have a probability distribution of
∏n

i=1 P (xi) under H0 and
∏n

i=1Q(xi) under H1 . By fully observing the data xn, the statistician attempts to

decide, which hypothesis of H0 or H1 is true. It is easy to show that any reasonable

test will lead to a diminishing error probability as n grows to infinity. Thus a sensible

criterion is the speed with which the error probability approaches zero, i.e., the error
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exponent characterization. Under the Neyman-Pearson criterion, Stein’s lemma [35,

Theorem 12.8.1] gives us the best error exponent of second kind of error βn, under the

condition that the first kind of error probability αn ≤ ǫ for a prescribed 0 < ǫ < 1.

On the other hand, in some cases, such as in resource constrained sensor network,

it is expensive to transmit all the sampling data to the central processor. Instead,

local sensors encode the data xn and transmit its encoded version f(xn) with rate

constraint R (data compression). It is trivial to see that the introduction of such

a rate constraint adds no new aspects in such a simple hypothesis testing problem,

because even one bit (local sensor sends the binary decision to the central processor)

is sufficient for the statistician to attain the same optimal decision as that attained

with the full knowledge of xn.

Things will change dramatically, however, if we consider the distributed bivari-

ate hypothesis testing H0 : XY against H1 : X̄Ȳ , i.e., xn from Xn(X̄n) and yn

from Y n(Ȳ n) are communicated with rate constraints R1 and R2, separately, at re-

mote sites. The distributed behavior in this framework makes the problem extremely

involved. Characterizing optimal error exponents for dependence test with commu-

nication constraints was first considered by Ahlswede and Csiszár [78]. In particular,

for the special case of test of independence problem with one sided data compression,

i.e., R2 = ∞, a single letter characterization of the optimal error exponent was ob-

tained in [78]. An overview of related work can be found in [80] and the references

therein.

We now formally state the problem as follows.

Consider the bivariate hypothesis testing problem:

H0 : XY ∼ P (XY ), (1.23)

H1 : XY ∼ Q(XY ). (1.24)

We will denote H0 : XY and H1 : X̄Ȳ for continence.

The data sequences xn = (x1, x2, · · · , xn) and yn = (y1, y2, · · · , yn) are communi-

cated by two separate encoders:

φ1 : X n → µ1 = {1, 2, · · · ,M1}, (1.25)

φ2 : Yn → µ2 = {1, 2, · · · ,M2}, (1.26)

with rates R1 and R2 defined in the sense that, for any fixed η > 0,

1

n
logM1 ≤ R1 + η, (1.27)

11



1

n
logM2 ≤ R2 + η. (1.28)

The decoder ψ : µ1 × µ2 → {H0, H1}, observes outputs (φ1(x
n), φ2(y

n)) from two

encoders φ1 and φ2 and decide which of the two hypothesis H0 and H1 is true. That

is, the decoder declares that H0 is true if ψ = H0, and that H1 is true if ψ = H1.

The acceptance region An is defined as

An = {(xn, yn) ∈ X n × Yn : ψ(φ1(x
n), φ2(y

n)) = H0} (1.29)

The first kind of error is defined as

αn = Pr(XnY n ∈ Ac
n), (1.30)

and the probability of second kind of error is defined as

βn = Pr(X̄nȲ n ∈ An). (1.31)

With these notations, the hypothesis testing problem is formulated as follows. For

any fixed 0 < ǫ < 1, impose the condition αn ≤ ǫ, and define

βn(R1, R2, η, ǫ) = min
φ1,φ2,ψ

βn (1.32)

Further, define

θ(R1, R2, η, ǫ) = lim inf
n→∞

(
1

n
log βn(R1, R2, η, ǫ)) (1.33)

θ(R1, R2, ǫ) = lim
η→0

θ(R1, R2, η, ǫ) (1.34)

where, θ(R1, R2, ǫ) is the error exponent for the hypothesis testing of H0 against H1.

The goal is to characterize θ(R1, R2, ǫ) for different R1 and R2.

One important special case is when yn is fully available at the decoder side, i.e.,

R2 ≥ log |Y|. In this case, we set

θ(R, ǫ) = θ(R1, log |Y|, ǫ) (1.35)

For this general two sided hypothesis testing problem, we have the following propo-

sition due to Han [79].

Proposition 4 ( [79, Theorem 6]) Define two sets of finite-value taking auxiliary

random variables:

L1(R1, R2) = {UV : I(U ;X) ≤ R1, I(V ;Y ) ≤ R2 and U → X → Y → V }
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(1.36)

L2(UV ) = {ŨX̃Ỹ Ṽ : p(ŨX̃) = p(UX), p(Ṽ Ỹ ) = p(V Y ), p(Ũ Ṽ ) = p(UV )}
(1.37)

and let Ū , V̄ be the random variables such that p(Ū |X̄) = p(U |X) and p(V̄ |Ȳ ) =

p(V |Y ). Further more, define

θL(R1, R2) = sup
UV ∈L1(R1,R2)

min
ŨX̃Ỹ Ṽ ∈L2(UV )

D(ŨX̃Ỹ Ṽ ||ŪX̄Ȳ V̄ ) (1.38)

Then we have the following result. Let θ(R1, R2, ǫ) be the error exponent for the

hypothesis testing of H0 against H1. Then, for any R1 ≥ 0, R2 ≥ 0 and 0 < ǫ < 1.

θ(R1, R2, ǫ) ≥ θL(R1, R2). (1.39)

In the case of test of independent, we have the following corollary.

Corollary 1 ( [79, Corollary 6]) Consider the case where p(X̄) = p(X), p(Ȳ ) =

p(Y ), and X̄, Ȳ are independent. Then, for R1 ≥ 0, R2 ≥ 0 and 0 < ǫ < 1,

θ(R1, R2, ǫ) ≥ max
U∈L1(R1,R2)

I(U ;V ) (1.40)

1.6 Outline of the thesis

This thesis attempts to make progress toward a better understanding of various is-

sues related to correlated sources in distributed systems, including: how to exploit

correlation structure to facilitate transmission of correlated sources over interference

channels, how to characterize the common information of random variables that car-

ries meaningful operational interpretation, and how to detect the presence of data

dependence in a distributed network.

This thesis intends to make progress to have a better understanding of commu-

nicating correlated sources over multi-terminal channels, as well as to have a better

understanding of the dependence structure in correlated sources.

In Chapter 2, communicating arbitrarily correlated sources over interference chan-

nels is considered. A sufficient condition is found for the lossless transmission of a pair

of correlated sources over a discrete memoryless interference channel. With indepen-

dent sources, the sufficient condition reduces to the Han-Kobayashi achievable rate

region for the interference channel. For a special correlation structure (in the sense
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of Slepian-Wolf, 1973), the proposed region reduces to the known achievable region

for interference channels with common information. A simple example is given to

show that the separation approach, with Slepian-Wolf encoding followed by optimal

channel coding, is strictly suboptimal.

In Chapter 3, we consider the transmission of two correlated Gaussian sources over

a two-user Gaussian ZIC. To facilitate our study, we first investigate Gaussian multiple

access channels with correlated Gaussian sources and single distortion constraint at

the receiver. Lower bounds on the distortion as well as several achievable schemes

are proposed. In particular, hybrid digital analog transmission is proposed whose

achievable region is resolved through coupling it with the quadratic Gaussian CEO

problem. These lower bounds and achievable schemes are then applied to the source

channel communication over Gaussian ZIC.

In Chapter 4, we consider lossy transmission of two correlated sources over a

two-user discrete memoryless interference channel (DMIC). An achievable distortion

region is obtained and it is shown that it includes Salehi and Kurtas’s result [28] on

lossless transmission of correlated sources over a DMIC as a special case. Sending

correlated Gaussian sources over a Gaussian interference channel is also studied, and

several achievable schemes as well as lower bounds are proposed.

Chapter 5 generalizes Wyner’s definition of common information of a pair of ran-

dom variables to that of N random variables. We prove coding theorems that show

the same operational meanings for the common information of two random variables

generalize to that of N random variables. As a byproduct of our proof, we show that

the Gray-Wyner source coding network can be generalized to N source squences with

N decoders. We also establish a monotone property of Wyner’s common information

which is in contrast to other notions of the common information, specifically Shan-

non’s mutual information and Gács and Körner’s common randomness. Examples

about the computation of Wyner’s common information of N random variables are

also given.

In Chapter 6, Wyner’s common information is generalized for continuous random

variables. We provide an operational meaning for such generalization using the Gray-

Wyner network with lossy source coding. Specifically, a Gray-Wyner network consists

of one encoder and two decoders. A sequence of independent copies of a pair of

random variables (X, Y ) ∼ p(x, y) is encoded into three messages, one of them is

a common input to both decoders. The two decoders attempt to reconstruct the

two sequences respectively subject to individual distortion constraints. We show
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that Wyner’s common information equals the smallest common message rate when

the total rate is arbitrarily close to the rate-distortion function with joint decoding.

A surprising observation is that such equality holds independent of the values of

distortion constraints as long as the distortions are less than certain thresholds. An

interpretation for such thresholds is given for the symmetric case.

In Chapter 7, we consider the problem of distributed test of statistical indepen-

dence under communication constraints. While independence test is frequently en-

countered in various applications, distributed independence test is particularly useful

for events detection in sensor networks: data correlation often occurs among sensor

observations in the presence of a target. Focusing on the Gaussian case because of its

tractability, we study in this chapter the characteristics of optimal scalar quantizers

for distributed test of independence where the optimality is in the sense of optimizing

the error exponent. We also discuss the optimal quantizer properties for the finite

sample regime, i.e., that of directly minimizing the error probability.

We conclude the thesis in Chapter 8 by summarizing the major contributions as

well as possible directions for future work.
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Chapter 2

Interference Channels With

Arbitrarily Correlated Sources:

The Lossless Case

Communicating correlated sources over interference channels has previously been

studied by Salehi and Kurtas [28]. However, the obtained rate region, derived by

largely following the coding scheme for MAC [2,29] does not reduce to the well known

Han and Kobayashi (HK) region for interference channels [12] when the sources are

independent. The HK region, originally proposed in 1981 [12] and recently simplified

by Chong et al [18], remains to be the largest achievable rate region for interference

channels with independent messages. In addition, there is no definitive answer to

the question of whether the separation approach is strictly suboptimal, even though

intuition suggests that this is likely the case.

In this chapter, we derive a sufficient condition for lossless transmission of a pair of

arbitrarily correlated sources over a discrete memoryless interference channel (DMIC).

The coding scheme takes advantage of the common part of the random source pair,

if it exists. Moreover, it utilizes the correlation preserving technique for the multiple

access channel [2] and the random source partition for the broadcast channel [3]. We

show that the proposed region includes the HK region as its special case. In addi-

tion, for a special correlation structure (in the sense of Slepian-Wolf, 1973 [19]), the

proposed region coincides with the known achievable region for interference channels

with common information [30,31,32]. Finally, the proposed coding scheme is shown to

be optimal for transmitting such set of correlated sources over a class of deterministic

interference channels studied by El Gamal and Costa [14].
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Figure 2.1: Interference channels with correlated sources.

The rest of this chapter is organized as follows. Section 2.1 gives the problem

formulation and introduces some previous results related to this work. The main

result as well as its implications are presented in Section 2.2. Section 2.3 concludes

this chapter.

2.1 Problem statement

The model studied in this chapter is shown in Fig. 2.1. The source sequences (Sn, T n)

are arbitrarily correlated discrete memoryless sources, generated independently ac-

cording to:

p(sn, tn) =
n
∏

i=1

p(si, ti). (2.1)

This pair of source sequences Sn and T n are to be transmitted losslessly over a two

user DMIC defined by the transition probability p(y1y2|x1x2), where X1, X2 are the

channel inputs and Y1, Y2 are the channel outputs.

A length n source channel block code for the channel consists of two encoder

mappings:

ψ1 : Sn → X n
1 , (2.2)

ψ2 : T n → X n
2 , (2.3)

and two decoder mappings:

φ1 : Yn
1 → Sn, (2.4)

φ2 : Yn
2 → T n. (2.5)
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The probability of error at decoders 1 and 2 are defined as

Pe1 =
∑

sn∈Sn

p(sn)Pr{sn 6= φ1(y
n
1 )|Sn = sn}, (2.6)

Pe2 =
∑

tn∈T n

p(tn)Pr{tn 6= φ2(y
n
2 )|T n = tn}. (2.7)

Definition 1 The source (S, T ) ∼∏n
i=1 p(si, ti) is said to be admissible for the inter-

ference channel p(y1y2|x1x2) if for any ǫ ∈ (0, 1) and sufficiently large n, there exist

a sequence of block codes (ψ1, ψ2, φ1, φ2) such that

max{Pe1, Pe2} ≤ ǫ. (2.8)

The goal is to find a sufficient condition for a source pair (S, T ) to be admissible

for a given DMIC.

2.2 A sufficient condition

We begin with a quick review of the HK achievable rate region for interference chan-

nels with independent messages. The major ingredients in the coding scheme for the

HK region are rate splitting and joint decoding. Specifically, user i, i = 1, 2, splits the

message Mi into two parts, common message Mi0 and private messageMi1. Therefore,

|Mi| = |Mi0|×|Mi1| where | · | denotes the cardinality of a set. The common message

needs to be decoded by both decoders and the private message is only intended for its

own receiver. This rate splitting can be implemented using sequential superposition

encoding as described in [18]. Let Rij = 1
n

log |Mij|, i = 1, 2 and j = 0, 1. First

generate 2nRi0 auxiliary codewords wni , which carry the information of common mes-

sage Mi0. Next, for each W n
i , generate 2nRi1 codewords xni superimposed on top of

wni , which carry the information of the private message Mi1. Each decoder jointly de-

codes both common messages and its own private message, i.e., decoder 1 finds unique

codewords wn1 , wn2 and xn1 such that (wn1 , w
n
2 , x

n
1 , y

n
1 ) ∈ T nǫ (W1W2X1Y1), and decoder

2 finds unique codewords wn1 , w
n
2 and xn2 such that (wn1 , w

n
2 , x

n
2 , y

n
2 ) ∈ T nǫ (W1W2X2Y2).

Consider now the model of interest in the present chapter, i.e., DMIC with corre-

lated sources. Let us first disregard the common part K between the source variables

S and T . We start with Han and Costa’s random source partition: the sequences

sn ∈ Sn and tn ∈ T n are randomly placed respectively into 2nr1 and 2nr2 cells. This

source partition is tantamount to rate splitting in the channel coding problem: the
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α β
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xn1 (sn, wn1 , w
n
0 ) xn2 (tn, wn2 , w

n
0 )

Figure 2.2: Coding structure for IC with correlated sources

cell index associated with a given sequence plays the role of common information and

the index of the source within the cell the private information. This is then followed

by superposition coding [18]. First generate an auxiliary codeword wni for each cell

index. The codeword xni is then generated to be superimposed on top of wni that

also carries the source index within the cell. Different from [18] is that the codeword

xni is statistically dependent on the input source, thereby preserving the correlation

contained in the original source pair. The common part K, if it exists, is then put

back in the encoding process by generating an auxiliary codeword wn0 . This codeword,

known to both encoders, will be used in generating all the other codewords through

a superposition code structure. This encoding process is illustrated in Fig. 2.2.

For decoders, joint typicality decoding is used at both decoders. That is, decoder

1 finds a unique sn such that (sn, kn, wn0 , w
n
1 , x

n
1 , w

n
2 , y

n
1 ) ∈ T ǫn(SKW0W1X1W2Y1), and

decoder 2 finds a unique tn such that (tn, kn, wn0 , w
n
2 , x

n
2 , w

n
1 , y

n
2 ) ∈ T ǫn(TKW0W2X2W1Y2).

The above coding scheme leads to the following sufficient condition for lossless trans-

mission of a correlated source pair over a DMIC.

Theorem 1 A source pair (S, T ) ∼ p(s, t) is admissible for a discrete memoryless

interference channel p(y1y2|x1x2) if there exist auxiliary random variables W0,W1,W2
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with joint distribution of all the variables factoring as:

p(s, t, w0, w1, w2, x1, x2) = p(s, t)p(w0)p(w1|w0)p(w2|w0)p(x1|sw1w0)p(x2|tw2w0),

(2.9)

and that the following conditions are satisfied:

H(S|K) < I(SX1;Y1|W0W2K), (2.10)

H(T |K) < I(TX2;Y2|W0W1K), (2.11)

H(S) < I(W0W2SX1;Y1), (2.12)

H(T ) < I(W0W1TX2;Y2), (2.13)

H(S|K) +H(T |K) < I(SX1;Y1|W0W1W2K) + I(W1TX2;Y2|W0K),

(2.14)

H(S|K) +H(T |K) < I(TX2;Y2|W0W1W2K) + I(W2SX1;Y1|W0K),

(2.15)

H(S|K) +H(T |K) < I(SW2X1;Y1|W0W1K) + I(TW1X2;Y2|W0W2K),

(2.16)

H(S|K) +H(T ) < I(W0W1TX2;Y2) + I(SX1;Y1|W0W1W2K), (2.17)

H(S) +H(T |K) < I(W0W2SX1;Y1) + I(TX2;Y2|W0W1W2K), (2.18)

2H(S|K) +H(T |K) < I(SX1;Y1|W0W1W2K) + I(SW2X1;Y1|W0K)

+I(TW1X2;Y2|W0W2K), (2.19)

H(S|K) + 2H(T |K) < I(TX2;Y2|W0W1W2K) + I(TW1X2;Y2|W0K)

+I(SW2X1;Y1|W0W1K), (2.20)

H(S) +H(S|K) +H(T |K) < I(SX1;Y1|W0W1W2K) + I(W0W2SX1;Y1)

+I(TW1X2;Y2|W0W2K), (2.21)

H(T ) +H(S|K) +H(T |K) < I(TX2;Y2|W0W1W2K) + I(W0W1TX2;Y2)

+I(SW2X1;Y1|W0W1K), (2.22)

where K = f(S) = g(T ) is the common part of S and T in the sense of Gács,

Körner [23] and Witsenhausen [58].

The proof of Theorem 1 is given in Appendix A.

Remark 1: Separate source and channel coding is known to be strictly suboptimal

for transmitting correlated sources over multiple access channels [2] and broadcast

channels [3]. The same statement can be made for transmitting correlated sources
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over interference channels. Consider the special case of transmitting the triangular

source (S, T ) as in [2] with the joint distribution p(s, t) given by

p(s = 0, t = 0) = p(s = 1, t = 0) = p(s = 1, t = 1) =
1

3
, (2.23)

over an interference channel defined by Y1 = X1 and Y2 = X1 + X2, where X1 =

X2 = Y1 = {0, 1} and Y2 = {0, 1, 2}. Notice that this is a special case of one sided

deterministic interference channels studied in [14], where the sum rate capacity is

given by

R1 +R2 ≤ max
p(x1)p(x2)

H(Y2) = 1.5. (2.24)

For the source pair, H(S, T ) = log2 3 = 1.58 bits, therefore, lossless transmission

is not attainable by a simple concatenation of the Slepian-Wolf code followed by an

optimal channel code. However, it can be easily checked that a trivial way to reliably

transmit this source is to choose X1 = S and X2 = T , which results in zero error

probability at both receivers. This example shows that separate source and channel

coding is strictly suboptimal. In fact, the source and channel in this example are

perfectly matched when choosing X1 = S and X2 = T in the sense that H(S|Y1) = 0

and H(S, T |Y2) = 0. More specifically, given Y1 = y1 there is no uncertainty of S

and given Y2 = y2, the only ambiguity of T when y2 = 1 is removed by considering

the structure of the sources. We comment here that one can easily check that this

special case is included in Theorem 1 by letting K = W0 = W1 = W2 = φ, X1 = S,

and X2 = T .

The detailed proof of Theorem 1 is given in Section A. We now discuss some

implications of Theorem 1.

2.2.1 Reduce to Han and Kobayashi’s region on interference

channels

Corollary 2 If there is no common part for the source pair (S, T ), i.e., K = ∅,
let W0 = Q be the time sharing variable. Theorem 1 yields the following sufficient

condition for lossless transmission of (S, T ) over a discrete memoryless interference

channel.

H(S) < I(SX1;Y1|QW2), (2.25)

H(T ) < I(TX2;Y2|QW1), (2.26)
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H(S) +H(T ) < I(SX1;Y1|QW1W2) + I(W1TX2;Y2|Q), (2.27)

H(S) +H(T ) < I(TX2;Y2|QW1W2) + I(W2SX1;Y1|Q), (2.28)

H(S) +H(T ) < I(SW2X1;Y1|QW1) + I(TW1X2;Y2|QW2), (2.29)

2H(S) +H(T ) < I(SX1;Y1|QW1W2) + I(SW2X1;Y1|Q)

+I(TW1X2;Y2|QW2), (2.30)

H(S) + 2H(T ) < I(TX2;Y2|QW1W2) + I(TW1X2;Y2|Q)

+I(SW2X1;Y1|QW1), (2.31)

where W1,W2 are auxiliary random variables such that the joint distribution of all

variables can be factored as

p(s, t, q, w1, w2, x1, x2) = p(s, t)p(q)p(w1|q)p(w2|q)p(x1|sw1q)p(x2|tw2q). (2.32)

The fact that Theorem 1 includes the HK region as its special case comes directly

from Corollary 2. If S and T are independent, choose the joint distribution as

p(s, t, q, w1, w2, x1, x2) = p(s)p(t)p(q)p(w1|q)p(w2|q)p(x1|w1q)p(x2|w2q), (2.33)

and let R1 = H(S) and R2 = H(T ). Corollary 2 yields an achievable region for the

interference channel which coincides with that described in Proposition 1.

2.2.2 Reduce to Jiang et al and Cao et al’s region on inter-

ference channels with common information

Consider now another special case where the source has a special correlation structure

similar to that of [19].

Corollary 3 Suppose that the source (S, T ) can be decomposed into three parts: S =

(S ′, K) and T = (T ′, K) where S ′, T ′, K are independent random variables. Choose

the joint distribution

p(s, t, w0, w1, w2, x1, x2) = p(s′)p(t′)p(k)p(w0)p(w1|w0)p(w2|w0)p(x1|w0w1)p(x2|w0w2),

(2.34)

where s = (s′, k) and t = (t′, k). Theorem 1 gives the following sufficient condition

for lossless transmission of the source pair (S, T ).

H(S ′) < I(X1;Y1|W0W2), (2.35)
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H(T ′) ≤ I(X2;Y2|W0W1), (2.36)

H(K) +H(S ′) < I(W0W2X1;Y1), (2.37)

H(K) +H(T ′) < I(W0W1X2;Y2), (2.38)

H(S ′) +H(T ′) < I(X1;Y1|W0W1W2) + I(W1X2;Y2|W0), (2.39)

H(S ′) +H(T ′) < I(X2;Y2|W0W1W2) + I(W2X1;Y1|W0), (2.40)

H(S ′) +H(T ′) < I(W2X1;Y1|W0W1) + I(W1X2;Y2|W0W2), (2.41)

H(K) +H(S ′) +H(T ′) < I(W0W1X2;Y2) + I(X1;Y1|W0W1W2), (2.42)

H(K) +H(S ′) +H(T ′) < I(W0W2X1;Y1) + I(X2;Y2|W0W1W2), (2.43)

2H(S ′) +H(T ′) < I(X1;Y1|W0W1W2) + I(W2X1;Y1|W0)

+I(W1X2;Y2|W0W2), (2.44)

H(S ′) + 2H(T ′) < I(X2;Y2|W0W1W2) + I(W1X2;Y2|W0)

+I(W2X1;Y1|W0W1), (2.45)

H(K) + 2H(S ′) +H(T ′) < I(X1;Y1|W0W1W2) + I(W0W2X1;Y1)

+I(W1X2;Y2|W0W2), (2.46)

H(K) +H(S ′) + 2H(T ′) < I(X2;Y2|W0W1W2) + I(W0W1X2;Y2)

+I(W2X1;Y1|W0W1). (2.47)

Corollary 3 can be used to establish that the sufficient condition includes that of

[30, 31, 32] as its special case. Specifically, define R0 = H(K), R1 = H(S ′) and

R2 = H(T ′), the sufficient condition reduces to the rate region of interference channels

with common information obtained in [30,31,32]. Moreover, Corollary 3 can be used

to establish a necessary and sufficient condition for transmitting the above class of

correlated sources over a class of deterministic interference channels.

2.2.3 A necessary and sufficient condition for a class of de-

terministic interference channels

Consider the class of deterministic interference channel defined in [14] (see figure 2.3).

The definitions of length n block code (ψ1, ψ2, φ1, φ2) and admissible sources remain

the same as in (2.2)-(6). The difference lies in the channel model, which is given by

the following deterministic functions:

V1 = g1(X1), (2.48)

V2 = g2(X2), (2.49)
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Figure 2.3: A class of deterministic interference channel with correlated sources.

Y1 = γ1(X1, V2), (2.50)

Y2 = γ2(X2, V1), (2.51)

where V1 and V2 represent the interference signals caused by transmitter 1 and 2, and

g1, g2, γ1, γ2 are deterministic functions. Furthermore, we assume that there exist two

deterministic functions,

V2 = h1(Y1, X1), (2.52)

V1 = h2(Y2, X2). (2.53)

As pointed out in [32], conditions (2.52) and (2.53) are more general than conditions

H(Y1|X1) = H(V2) and H(Y2|X2) = H(V1) as used in [14]. We denote this class of

deterministic interference channel as Cd. Let Pd denote the set of joint distributions

p(·) that factor as

p(q, x1, x2) = p(q)p(x1|q)(x2|q), (2.54)

where q is the realization of an auxiliary random variable Q defined over a finite set

Q. We have the following theorem.

Theorem 2 The necessary and sufficient condition for transmitting the correlated

sources S = (S
′

, K) and T = (T
′

, K) with S
′

, T
′

, K being independent through the

channel Cd is the following,

H(S
′

) ≤ H(Y1|V2Q), (2.55)
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H(T
′

) ≤ H(Y2|V1Q), (2.56)

H(K) +H(S
′

) ≤ H(Y1), (2.57)

H(K) +H(T
′

) ≤ H(Y2), (2.58)

H(S
′

) +H(T
′

) ≤ H(Y1|V1Q) +H(Y2|V2Q), (2.59)

H(S
′

) +H(T
′

) ≤ H(Y1|Q) +H(Y2|V1V2Q), (2.60)

H(S
′

) +H(T
′

) ≤ H(Y2|Q) +H(Y1|V1V2Q), (2.61)

H(K) +H(S
′

) +H(T
′

) ≤ H(Y1) +H(Y2|V1V2Q), (2.62)

H(K) +H(S
′

) +H(T
′

) ≤ H(Y2) +H(Y1|V1V2Q), (2.63)

2H(S
′

) +H(T
′

) ≤ H(Y1|Q) +H(Y1|V1V2Q) +H(Y2|V2Q), (2.64)

2H(T
′

) +H(S
′

) ≤ H(Y2|Q) +H(Y2|V1V2Q) +H(Y1|V1Q), (2.65)

H(K) + 2H(S
′

) +H(T
′

) ≤ H(Y1) +H(Y1|V1V2Q) +H(Y2|V2Q), (2.66)

H(K) + 2H(S
′

) +H(T
′

) ≤ H(Y2) +H(Y2|V1V2Q) +H(Y1|V1Q) (2.67)

for some fixed joint distribution p(·) ∈ Pd.

The proof of Theorem 2 is given in Appendix B.

Remark 3: Theorem 2 includes [32, Theorem 4] as its special case. Specifically,

define R0 = H(K), R1 = H(S ′) and R2 = H(T ′), the necessary and sufficient con-

dition reduces to the capacity region of a class of deterministic interference channels

with common information obtained in [32, Theorem 4].

2.3 Conclusion

In this chapter, we studied the problem of communicating arbitrarily correlated

sources over a discrete memoryless interference channel. Using the techniques of

correlation preserving coding and random source partition, a sufficient condition was

derived for lossless transmission of correlated sources over interference channels. The

proposed region includes the Han and Kobayashi achievable rate region for interfer-

ence channels with independent messages as its special case. Furthermore, it includes

the known rate region for interference channels with common information as its spe-

cial case when the source correlation is in the sense of [19]. Finally, the proposed

coding scheme is shown to be optimal for transmitting the set of correlated sources

as in [19] over a class of deterministic interference channels [14].

25



Chapter 3

Communicating Correlated

Gaussian Sources over Gaussian Z

Interference Channels

In this chapter, we consider primarily communicating a bivariate Gaussian source over

a two-user Gaussian interference channel. Each receiver is interested in one of the two

Gaussian sources and we study the admissible distortion region of this source channel

communication problem. We focus on the simple case of a Gaussian Z interference

channel (ZIC) where interference is only one-sided. As illustrated in Fig. 3.1, Two

source sequences, Sn1 and Sn2 , are available respectively at the two transmitters, and

each receiver is interested in recovering the source at its own transmitter. The source

sequences are assumed to be independent and identically distributed (i.i.d.) zero

mean bivariate Gaussian random variables with covariance matrix

KS1S2 =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

(3.1)

where ρ ∈ [0, 1], and 0 < σi <∞, i = 1, 2. Notice that restricting ρ to be non-negative

does not lose any generality as the transmitter can always multiply the source by −1

if ρ < 0.

The results for the source channel communication over a ZIC in this chapter

are built on detailed studies of a simpler model: communicating bivariate Gaussian

sources over a Gaussian multiple access channel (GMAC) with a single distortion

constraint at the receiver. The model is illustrated in Fig. 3.2 where the receiver

is only interested in recovering Sn1 from the received sequence Y n with a distortion
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Figure 3.1: Gaussian ZIC with correlated Gaussian sources.

constraint D. Clearly, transmitter 2, in encoding Sn2 , should facilitate the estimate of

Sn1 at the receiver. For example, if ρ = 0, it can be easily shown that the optimal

scheme is to keep transmitter 2 silent while transmitter 1 uses optimal point-to-

point source channel coding. In this case, transmitter 2 plays the role of “unwanted

interference” and transmitter 1 can use either analog (since source and channel match)

or digital (separation) transmission to achieve the optimum distortion. On the other

hand, if ρ = 1, it can be shown that the optimal transmission is that both transmitters

use uncoded transmission, i.e., amplify their source sequences with full power. For ρ

between 0 and 1, the problem is interesting and remains largely open. This particular

model can be viewed as a lossy extension of the model studied by Ahlswede and

Han [29], where they studied the problem of lossless transmission of correlated source

through a multiple access channel with a single distortion constraint.

Sn1

Sn2

Enc1

Enc2

Xn
1

Xn
2

+
Y n

Zn

Dec

Ŝn1

D

Figure 3.2: GMAC with a single distortion constraint.

27



Sending correlated source over a multiple access channel was first studied in [2],

which lossless transmission of an i.i.d. correlated discrete memoryless source over a

discrete memoryless multiple access channel. The lossy extension of this model was

studied in [28], where an inner bound for the set of achievable distortions is given.

Sending a correlated Gaussian source over a GMAC was recently studied in [33, 4],

where the authors proposed several necessary conditions and sufficient conditions and

showed that below certain signal to noise ratio (SNR) threshold, uncoded transmis-

sion is optimal for the symmetric case. Lossless transmission of i.i.d. correlated

sources over some multi-user channels was also considered in [34], in which receivers

have access to correlated source side information and various separation results were

obtained.

Our GMAC channel with a single distortion constraint can be viewed as a special

case of [33]. However, directly extracting the result out of [33,4] is not sufficient as the

model in [33,4] is more general and does not take into account the special structure of

having only the single constraint. For example, the lower bound obtained by removing

the distortion constraint on source 2 is quite loose in general. More importantly, the

optimality of uncoded transmission for the GMAC under certain SNR regime does

not directly apply to our model because of the difference in the distortion constraint.

In this chapter, for communicating correlated Gaussian sources over a GMAC

with a single distortion constraint, we compare three different transmission schemes,

namely uncoded, digital (i.e., separation), and hybrid digital analog (HDA). For the

last case, the achievable distortion is obtained via coupling the problem with the

quadratic Gaussian CEO problem. The obtained achievable distortions are compared

against lower bounds for the distortion. The results naturally extend to the source

channel communication over a ZIC and we derive inner and outer bounds for the

distortion region.

The rest of the chapter is organized as follows. In section 3.1, we consider the

problem of sending a bivariate Gaussian source over a GMAC channel with a single

distortion constraint. In section 3.2, we extend our model to Gaussian ZIC channels.

We conclude in section 3.3, where we give a sufficient condition for sending a correlated

source over a general Z interference channel.
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3.1 Gaussian multiple access channels with single

distortion constraint

3.1.1 System model

Consider a length-n sequence of i.i.d. zero mean bivariate Gaussian random source

(S1j , S2j), j = 1, · · · , n, with covariance matrix (3.1), with Sni available at transmitter

i, i = 1, 2, as illustrated in Fig. 3.2. The codeword length is also n, hence, there is

no bandwidth mismatch in our model. The encoders are a set of mappings fi : Sni →
Xn
i (Sni ) = f(Sni ), i = 1, 2, and are subject to individual power constraints:

1

n

n
∑

j=1

EX2
ij(S

n
i ) ≤ Pi, j = 1, 2 (3.2)

where Xn
i = [Xi1, · · · , Xin] is the codeword for the ith transmitter, and E denotes

the expectation. The channel output of the GMAC is

Y n = Xn
1 +Xn

2 + Zn (3.3)

where Zn ∼ N (0, NIn) is a Gaussian noise sequence and In is the n × n identity

matrix. The decoder map is φ(Y n) = Ŝn1 which is an estimate of the sequence Sn1 .

As usual, we use squared distortion hence the average distortion is the mean squared

error (MSE),

D1n ,
1

n

n
∑

j=1

E(S1j − Ŝ1j)
2.

Definition 2 A distortion D is said to be achievable if there exists a sequence of

(Xn
1 , X

n
2 , n) codes and a decoding map φ(Y n) such that ,

lim
n→∞

1

n

n
∑

j=1

E(S1j − Ŝ1j)
2 ≤ D. (3.4)

We are interested in finding the minimum achievable D.

3.1.2 Lower and upper bound on the distortion constraint

We first give a lower bound on the distortion.

29



Theorem 3 Any achievable distortion D should satisfy

D ≥ max{Dl1, Dl2} (3.5)

where

Dl1 = σ2 N

P1 + P2 + 2ρ
√
P1P2 +N

(3.6)

Dl2 = σ2 (1 − ρ2)N

P1 +N
(3.7)

The bound Dl1 is the cut-set bound and can be proved using Witsenhausen’s Lemma

[58]. It can also be directly obtained from [33, 4] by specializing D2 = σ2 in their

result.

To prove D2l, by the rate distortion theory [35], we have,

n

2
log

σ2

D1

≤ I(Sn1 ; Ŝn1 ) (3.8)

We next upper bound the RHS of (3.8) by giving Sn2 as the side information to the

receiver.

I(Sn1 ; Ŝn1 )

≤ I(Sn1 ;Y n)

≤ I(Sn1 ;Sn2Y
n)

= I(Sn1 ;Sn2 ) + I(Sn1 ;Y n|Sn2 )

=
n

2
log

1

1 − ρ2
+ h(Y n|Sn2 ) − h(Y n|Sn1Sn2 )

=
n

2
log

1

1 − ρ2
+ h(Y n|Sn2Xn

2 ) − h(Y n|Xn
1X

n
2 )

=
n

2
log

1

1 − ρ2
+ h(Xn

1 + Zn|Sn2Xn
2 ) − h(Zn)

≤ n

2
log

1

1 − ρ2
+ h(Xn

1 + Zn) − h(Zn)

≤ n

2
log

1

1 − ρ2
+
n

2
log V ar(X1i + Zi) − h(Zn)

≤ n

2
log

1

1 − ρ2
+
n

2
log

P1 +N

N

=
n

2
log

P1 +N

(1 − ρ2)N
(3.9)

Combining (3.9) and (3.8), we complete the proof. 2
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Remark 1: The bound Dl1 is tight when ρ = 1. In this case, the lower bound is

trivially achieved by the uncoded transmission, i.e., choosing Xn
i =

√

Pi

σ2S
n
i , i = 1, 2,

which gives the received signal Y n =
√

P1

σ2S
n
1 +

√

P2

σ2S
n
2 + Zn. The minimum MSE

(MMSE) at the receiver can be trivially shown to be D1n = σ2 N
P1+P2+2

√
P1P2+N

, using

standard estimation theory.

Remark 2: The bound Dl2 is tight when ρ = 0. In this case, the lower bound

is trivially achieved by keeping transmitter 2 quiet and using an optimum source

channel code for transmitter 1. Notice that transmitter 1 can either implement a sep-

aration approach (i.e., a vector quantization followed by channel coding) or uncoded

transmission. For the latter choice, we set, Xn
1 =

√

P1

σ2S
n
1 and Xn

2 = 0; the receiver

can thus achieve the MMSE D = σ2 N
P1+N

, which coincides with the lower bound Dl2

when ρ = 0.

Remark 3: As shown in Fig. 3.3, Dl1 is tighter than Dl2 for large ρ while Dl2

dominates Dl1 for small ρ and for high signal to noise ratio (SNR). In addition to the
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Figure 3.3: Comparison of Dl1 and Dl2 as a function of ρ for P1 = P2 = 10, σ =

1, N = 1.

above lower bound, we have the following achievable distortion.

Theorem 4 For a GMAC with a single distortion constraint, the following distortion

is achievable.

D = min{Du, Ds}
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where

Du = min
β∈[0,1]

σ2 βP2(1 − ρ2) +N

P1 + βP2 + 2
√
βP1P2ρ+N

(3.10)

Ds = σ2P1 + P2(1 − ρ2) +N

P1 + P2 +N

N

P1 +N
(3.11)

The two achievable distortions correspond to respectively the uncoded transmis-

sion and separation approach, which we describe in details below.

Uncoded transmission

We have already shown that uncoded transmission is optimal when ρ = 0 and

ρ = 1. One nice property of the uncoded transmission is that the codewords preserve

the correlation of the source components. It is well known that uncoded transmission

is optimal for a Gaussian source transmitted through an additive white Gaussian noise

(AWGN) channel [36]. Gastpar in [37] generalized this optimality to a symmetric

Gaussian sensor network, where noisy versions of a Gaussian source are sent to a

fusion center through a GMAC with symmetric parameters. It has also been shown

recently that the uncoded transmission is optimal for Gaussian broadcast channel with

correlated Gaussian sources [38] and for GMAC channel with correlated Gaussian

sources [33, 4] under certain SNR constraints.

For the uncoded transmission, the transmitted signals at encoders 1 and 2 are

respectively

X1j(α) =

√

αP1

σ2
S1,j (3.12)

X2j(β) =

√

βP2

σ2
S2,j (3.13)

where j = 1, 2, · · · , n and α, β ∈ [0, 1]. The receiver implements a MMSE estimator

using the received signal:

Y n =

√

αP1

σ2
Sn1 +

√

βP2

σ2
Sn2 + Zn. (3.14)

The MMSE corresponding to a given (α, β) can be shown to be, using standard

estimation theory,

Du(α, β) = σ2 βP2(1 − ρ2) +N

αP1 + βP2 + 2
√
αβP1P2ρ+N

(3.15)

Clearly, Du(α, β) is monotone decreasing in α, i.e., transmitter 1 should always use

full power. This leads to the achievable distortion Du in (3.10).
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Separation approach

For the separation approach, the encoders construct codewords whose rates are

subject to the GMAC capacity constraint. Here, we can directly use Oohama’s result

for the Gaussian multi-terminal source coding problem with a single distortion con-

straint [41], i.e., D2 = σ2 . The rate distortion region is characterized in the following

lemma.

Lemma 1 For the two terminal source coding problem with a single distortion con-

straint, the optimal rate distortion region is given as follows:

R1 ≥
1

2
log

[

σ2

D1
(1 − ρ2 + ρ22−2R2)

]

(3.16)

The remaining problem is to find suitable (R1, R2) pair that falls into the capacity

region of the GMAC. We note that the capacity region for GMAC with correlated

message is still an open problem. We will hence choose an achievable, possibly sub-

optimal, rate pair:

(R1, R2) =

(

1

2
log (1 +

P1

N
),

1

2
log (1 +

P2

P1 +N
)

)

.

Together with (3.16), we can get the desired distortion Ds as in (3.11) for the sepa-

ration scheme.

Remark 4: Both uncoded and separation schemes are tight at ρ = 0. The uncoded

scheme is also tight for the other extreme ρ = 1. In general, the uncoded scheme is

better when ρ is close to 1 while the separation approach has a smaller distortion for

small ρ values.

Remark 5: A close examination of the uncoded transmission also motivates a

hybrid approach. From (3.10), one can easily arrive at the conclusion that β = 0

for ρ less than a certain threshold ρ∗ which is a function of SNR. For example,

if P1 = P2 = 10, and N = 1, then ρ∗ ≈ 0.42. As such, even if there is still

significant correlation between S1 and S2, transmitter 2 remains silent, reducing the

system to a simple point-to-point source channel communication system. However,

it is conceivable that if one resorts to digital transmission at transmitter 2, as long

as the rate is below a certain rate constraint, the receiver can always decode the

codeword reliably and subsequently subtract the codeword to recover the signal of

the corresponding point-to-point channel model. Thus the decoded codeword from

transmitter 2 serves as side information which may strictly improve upon the uncoded
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transmission for those ρ < ρ∗. We note that the HDA approach has been used when

there is bandwidth mismatch in the source channel transmission system [42,43,44,45].

Specifically, by restricting transmitter 1 to analog transmission, transmitter 2 may

encode at a rate R2 ≤ 1
2
log (1 + P2

P1+N
) to ensure its reliable decoding at the receiver.

The receiver will estimate Sn1 based on both the analog signal
√

P1

σ2S
n
1 + Zn and the

digital message from encoder 2. To explicitly compute the achievable distortion of the

hybrid scheme, we couple it with the quadratic Gaussian CEO problem through the

following decomposition. For correlated Gaussian sources (S1, S2) with a correlation

coefficient ρ, S2 is statistically equivalent to

S2 = ρS1 +W (3.17)

where W ∼ N (0, (1 − ρ2)σ2) is independent of S1. Hence, our original problem can

now be reduced to a quadratic Gaussian CEO problem, whose rate distortion region

was resolved in [46,47]. The equivalent CEO problem is illustrated in Fig. 3.4, where

Z̃n ∼ N (0, N
P1/σ2 In) and W̃ n ∼ N (0, 1−ρ2

ρ2
σ2In), and In is the n × n identity matrix.

For the present problem, since Sn1 + Z̃n is available at the receiver, this corresponds

to R1 = ∞ and R2 = 1
2
log (1 + P2

P1+N
).

Sn1

Z̃n

W̃ n

+

+ Enc1

Enc2

nR1

nR2

Y n

Dec Ŝn1

Figure 3.4: HDA scheme and its CEO representation.

The distortion D achieved by the HDA scheme is

Dh = σ2N
(P1 + P2)(1 − ρ2) +N

(P1 + P2 +N)(P1(1 − ρ2) +N)
(3.18)

Note that by coupling the problem to a quadratic Gaussian CEO problem, the HDA

is in fact a special case of the separation approach. Indeed, it is straightforward to

show that Dh is no smaller than that achieved by the separation approach, c.f. (3.11).

We also want to point out that the Gaussian CEO problem via a GMAC with encoder
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cooperation was studied recently in [48], where separation and uncoded transmission

are considered. Our hybrid scheme can be viewed as a combination of the two coding

schemes.

3.1.3 Comparison

We can compare the performance of the above achievable schemes together with

the proposed lower bounds. Fig. 3.5 is the plot of various distortion bounds as a

function of SNR. We choose σ = 1, ρ = 0.5 and P1 = P2. Fig. 3.6 plots the achievable

distortions and lower bounds as a function of ρ for σ = 1 and P1 = 20, P2 = 20, N = 1.

As we can see from Fig. 3.5 and Fig. 3.6, uncoded transmission is better than the

others in the low SNR regime. For the high SNR regime, separation is the best.
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Figure 3.5: Comparison of Du, Ds and Dh together with two lower bounds Dl1 and

Dl2 as a function of P
N

for σ = 1, ρ = 0.5, for simplicity, we assume P1 = P2.
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Figure 3.6: Comparison of Du, Ds and Dh together with two lower bounds Dl1 and

Dl2 as a function of ρ for σ = 1 and P1 = 20, P2 = 20, N = 1.

3.2 Gaussian Z Interference Channel With Corre-

lated Gaussian sources

3.2.1 System Model

We now consider the problem of sending correlated Gaussian sources through a Gaus-

sian Z interference channel. The problem is illustrated in Fig. 3.1 where the source

statistics are the same as that defined in section II. Receivers 1 and 2 attempt to

recover Sn1 and Sn2 respectively with as small distortions as possible. The Gaussian Z

interference channel is defined as follows:

Y n
1 = c11X

n
1 + Zn

1 ; (3.19)

Y n
2 = c12X

n
1 + c22X

n
2 + Zn

2 ; (3.20)

where Zn
i ∼ N (0, InNi), i = 1, 2 and In is the n × n identity matrix, and c11, c12, c22

are nonnegative channel parameters. We assume without loss of any generality N1 =

N2 = N , since one can always scale the channel output. On the other hand, we

do not assume Gaussian interference channels in standard form due to the power

constraint: while standardization preserves capacity region by changing the power

constraint, it does not necessarily preserve the distortion region for the source channel

communication problem.
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The encoder mappings are fi : Sni → Xn
i (Sni ) = f(Sni ), i = 1, 2, subject to an

individual power constraint as in (3.2). The decoder maps at the two receivers are

φ1(Y
n
1 ) = Ŝn1 and φ2(Y

n
2 ) = Ŝn2 . Again, squared error distortion is used in each

receiver.

Definition 3 A distortion pair (D1, D2) is said to be achievable if there exists a

sequence of (Xn
1 , X

n
2 , n) codes and two decoding mapping functions φ1(Y

n
1 ) and φ2(Y

n
2 )

such that the MSEs for the source estimation satisfy

lim
n→∞

1

n

n
∑

j=1

E(Sij − Ŝij)
2 ≤ Di i = 1, 2 (3.21)

The distortion region D is the convex closure of all achievable distortion pairs.

In addition, we define

D1min = f(D1) = min{D1 : (D1, D2) ∈ D}
D2min = g(D2) = min{D2 : (D1, D2) ∈ D}

and we then defineD∗
1 = min{D1 : (D1, D2min) ∈ D} andD∗

2 = min{D1 : (D1min, D2) ∈
D}. Therefore, (D1min, D

∗
2) and (D∗

1, D2min) are the two corner points of the distortion

region.

3.2.2 Inner and upper bounds on the achievable distortion

region

An inner bound for the distortion region D can be obtained by directly borrowing the

result from Theorem 3.

Theorem 5 For the Gaussian ZIC with correlated Gaussian source, the distortion

region should always satisfy

D1 ≥ σ2 N

c211P1 +N
(3.22)

D2 ≥ σ2 N

c212P1 + c222P2 + 2c12c22
√
P1P2ρ+N

(3.23)

D2 ≥ σ2 (1 − ρ2)N

c222P2 +N
(3.24)

For the achievable region, we consider first the uncoded transmission.
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Theorem 6 For the Gaussian ZIC with correlated Gaussian source, the uncoded

transmission can achieve the following region:

D1 ≥ σ2 N

c211αP1 +N
(3.25)

D2 ≥ σ2 c212αP1(1 − ρ2) +N

c212αP1 + c222βP2 + 2c12c22ρ
√
αβP1P2 +N

(3.26)

for all α, β ∈ [0, 1].

We next consider two extreme cases: ρ = 1 and ρ = 0, and we have the following

two propositions.

Proposition 5 For the ZIC with correlated Gaussian source, if the correlation coef-

ficient ρ = 1, then uncoded transmission is optimal and the optimal distortion region

is given as follows.

D1 ≥ σ2 N

c211P1 +N
(3.27)

D2 ≥ σ2 N

c212P1 + c222P2 + 2c12c22
√
P1P2 +N

(3.28)

This can be established from the fact that the inner bound in Theorem 5 and the

outer bound in Theorem 6 match when ρ = 1.

Proposition 6 For the Gaussian ZIC with correlated Gaussian source, if the correla-

tion coefficient ρ = 0 and the channel parameters c11 ≥ c12, then uncoded transmission

can achieve the following corner point of the distortion region:

D1min = σ2 N

c211P1 +N
(3.29)

D∗
2 = σ2 c212P1 +N

c212P1 + c222P2 +N
(3.30)

Proof: This corner point can be achieved by uncoded transmission from Theorem

6. For the lower bound, we note that D1min is obvious. To prove a lower bound for

D∗
2, we need the following bound.

n

2
log

σ2

D1n
+
n

2
log

σ2

D2n

≤ I(Sn1 ;Y n
1 ) + I(Sn2 ;Y n

2 ) (3.31)
(a)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 ) (3.32)
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(b)

≤ n

2
log

c211P1 +N

N
+
n

2
log

c212P1 + c222P2 +N

c212P1 +N
(3.33)

where (a) follows from the data processing inequality, i.e., Sn2 → Xn
2 → Y n

2 is a

Markov chain when ρ = 0, (b) is from the sum rate capacity of the Gaussian ZIC

with weak interference [17, 49]. Hence,

σ4

D1nD2n

≤ c211P1 +N

N
· c

2
12P1 + c222P2 +N

c212P1 +N
(3.34)

Substitute D1min = σ2 N
c211P1+N

into (3.34), we get

D∗
2 ≥ σ2 c212P1 +N

c212P1 + c222P2 +N
(3.35)

Remark 6: In the case of ρ = 0, and by constraining D2n = D2min, uncoded

scheme can only achieve a corner point (σ2, D2min), where D2min = σ2 N2

c222P2+N2
. This

is because in order to achieve D2min at decoder 2, transmitter 1 needs to shut down

its transmission as discussed in the previous section, i.e., the uncoded transmission

for the GMAC. This, however, can be improved by a hybrid transmission scheme.

In this case, transmitter 1 can always transmit a coded message with a rate R1 =
1
2
log (1 +

c212P1

c222P2+N2
), so that decoder 2 can always decode it first. Transmitter 2 can use

a simple uncoded transmission for Sn2 . Hence, we can achieve the following distortion

pair:

D1h = 2−2R1 = σ2 c222P2 +N2

c212P1 + c222P2 +N2

(3.36)

D2min = σ2 N2

c222P2 +N2
(3.37)

We note that one can also use the separation approach to attain the same distortion

pair.

We can also obtain a lower bound for D∗
1 for the case c11 ≥ c12, i.e., ZIC with

weak interference. Notice that (3.34) still holds in this case, thus,

D∗
1 ≥ σ2

( c222P2 +N

c212P1 + c222P2 +N

)(c212P1 +N)

(c211P1 +N)
(3.38)

This lower bound on D∗
1 matches the achievable D1h if and only if c12 = c11, which

corresponds to the transition point to Gaussian ZIC with strong interference.
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3.3 Conclusion and Discussions

In this chapter, we studied the problem of sending correlated Gaussian sources over

Gaussian Z interference channels. We first considered communicating Gaussian courses

over Gaussian multiple access channels with a single distortion constraint. Lower

bounds and several achievable schemes were proposed. These bounds were applied

to the Gaussian Z interference channel model for which we provided an inner bound

and an achievable region obtained by uncoded transmission. For the extreme case

of ρ = 1, uncoded scheme is optimal. For ρ = 0, uncoded transmission can achieve

a corner point of the distortion region if the channel parameter c11 ≥ c12. We also

give a sufficient condition for sending a correlated source over a general Z interference

channel.

One can also consider the problem of communicating discrete correlated sources

over discrete memoryless Z interference channels, defined as

ω(yn1y
n
2 |xn1xn2 ) =

n
∏

i=1

p(y1i|x1i)p(y2i|x1ix2i). (3.39)

Following similar coding scheme as that of [29], we can obtain the following suf-

ficient condition for lossy transmission with a given distortion constraint. Extension

and evaluation of this sufficient condition for the Gaussian case will be reported in

the next chapter.

Theorem 7 For any correlated source (sn1 , s
n
2) ∼

∏n
i=1 p(s1i, s2i) and a discrete mem-

oryless Z interference channel ω(y1y2|x1x2) as defined above, if there exists auxiliary

random variables Q,W1,W2, U , such that the joint distribution of (s1, s2, q, w1, w2, u, x1, x2)

can be expanded as

p(s1s2)p(q)p(w1|s1q)p(w2|s2q)p(u|w1q)p(x1|uw1q)p(x2|w2q) (3.40)

and the following conditions are satisfied:

I(W1;S1|Q) − I(W1;U |Q) < I(W1X1;Y1|UQ) (3.41)

I(W1;S1|Q) < I(W1X1;Y |Q) (3.42)

I(W2;S2|UQ) < I(W2X2;Y2|UQ) (3.43)

I(W2;S2|UQ) + I(W1;U |Q) < I(W2U1X2;Y2|Q) (3.44)

and

E[(S1 − E(S1|W1, U))2] ≤ D1, (3.45)
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E[(S2 − E(S2|W2, U))2] ≤ D2, (3.46)

then (D1, D2) ∈ D.
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Chapter 4

Communicating Correlated

Sources Over Interference

Channels: The Lossy Case

We consider in this chapter the problem of lossy transmission of a pair of correlated

sources over a two-user discrete memoryless interference channel (DMIC). The model

is shown in Fig. 4.1. The source sequences (sn1 , s
n
2) ∈ (Sn1 ,Sn2 ), where S1 and S2 are

finite, generated according to

p(sn1 , s
n
2) =

n
∏

i=1

p(s1i, s2i). (4.1)

This pair of arbitrarily correlated source sequences are to be transmitted through a

two user DMIC defined by

p(yn1 y
n
2 |xn1xn2 ) =

n
∏

i=1

p(y1y2|x1x2), (4.2)

where X1, X2 are the channel inputs and Y1, Y2 are the channel outputs. Receivers 1

and 2 try to recover the source sequences Sn1 and Sn2 , respectively, subject to individual

distortion constraints.

We are interested in characterizing the achievable distortion region for such lossy

transmission.

Communicating correlated sources over multi-terminal channels have been a topic

of research interest in the past decades. Cover, El-Gamal, and Salehi [2] first studied

lossless transmission of arbitrarily correlated sources over a multiple access channel
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Figure 4.1: Lossy transmission of correlated sources over a DMIC.

(MAC). A sufficient condition was given for reliable transmission of a correlated

source pair that includes various known capacity results as its special cases. The

lossy counterpart of this problem was first studied by Salehi in [50], and the problem

of sending a correlated Gaussian sources over a Gaussian MAC has been studied

recently in [33, 51, 4]. Lossless transmission of arbitrarily correlated sources over a

broadcast channel (BC) was studied by Han and Costa [3](with correction by Kramer

and Nair [25]) and Minero and Kim [27]. Bross et al [38]studied the problem of

sending correlated Gaussian sources over a Gaussian BC, and this problem was further

investigated in [52, 53].

Lossless transmission of correlated sources over interference channels has previ-

ously been studied in [28] and chapter 2, where different coding schemes were pro-

posed. The sufficient condition in chapter 2 includes the Han and Kobayashi re-

gion [12] when the sources are independent. In addition, it was shown in chapter 2

that separate source and channel coding is strictly sub-optimal. The lossy counter-

part was initially studied in chapter 3 by considering the special case of transmitting

correlated Gaussian sources over a Gaussian Z interference (GZIC).

In this Chapter, we derive a sufficient condition for lossy transmission with a

prescribed distortion constraint of a pair of arbitrarily correlated discrete memoryless

sources over a DMIC. The special case of sending correlated Gaussian sources over

a Gaussian interference channel (GIC) is also studied. Several achievable schemes as

well as lower bounds for the distortion regions are proposed.

The rest of this Chapter is organized as follows. Section gives the problem formu-

lation and the main results. Section considers the Gaussian case. Finally, we conclude

this chapter in section .
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4.1 Arbitrarily correlated sources: the general case

For lossy transmission of correlated sources (Sn1 , S
n
2 ) generated according to (4.1) over

a DMIC defined in (4.2), a length n joint source channel code consists of two encoder

mappings, for i = 1, 2,

fi : Sni → X n
i , (4.3)

two decoder mappings:

φi : Yn
i → Ŝni , (4.4)

and distortion measure functions:

di : Si × Si → R+. (4.5)

Note that the codeword length is assumed to be the same as the source sequence

length, hence, there is no bandwidth mismatch issue in the present study.

Definition 4 A distortion pair (D1, D2) is said to be achievable for transmitting the

source (Sn1 , S
n
2 ) through the DMIC p(y1y2|x1x2), if for any ǫ > 0 and sufficiently large

n, there exist a sequence of block codes (f1, f2, φ1, φ2), such that, for i = 1, 2

1

n

n
∑

j=1

E[di(Si, Ŝi)] ≤ Di + ǫ. (4.6)

The achievable distortion region D is the union of all achievable distortion pairs.

4.1.1 Sufficient conditions: a joint source-channel coding ap-

proach

Theorem 8 For transmitting sources (sn1 , s
n
2 ) ∼∏n

i=1 p(s1i, s2i) over the DMIC p(y1y2|x1x2),

a distortion pair (D1, D2) is achievable if there exist auxiliary random variablesW1,W2, U1, U2

with joint distribution of all the variables factoring as:

p(s1, s2, q, w1, w2, u1, u2, x1, x2) = p(s1, s2)p(q)p(w1|s1q)p(u1|s1q)p(w2|s2q)p(u2|s2q)

·p(x1|w1u1q)p(x2|w2u2q), (4.7)

and functions, for i = 1, 2,

φi : Wi × Ui × U(3−i) → Ŝi, (4.8)
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such that,

I(W1;S1|U1U2Q) < I(W1X1;Y1|U1U2Q), (4.9)

I(W1U1;S1|U2Q) < I(W1U1X1;Y1|U2Q), (4.10)

I(W1;S1|U1U2Q) < I(W1U2X1;Y1|U1Q)

−I(U2;S2|U1Q), (4.11)

I(W1U1;S1|U2Q) < I(W1U1U2X1;Y1|Q)

−I(U2;S2|Q), (4.12)

I(W2;S2|U1U2Q) < I(W2X2;Y2|U1U2Q), (4.13)

I(W2U2;S2|U1Q) < I(W2U2X2;Y2|U1Q), (4.14)

I(W2;S2|U1U2Q) < I(W2U1X2;Y2|U2Q)

−I(U1;S1|U2Q), (4.15)

I(W2U2;S2|U1Q) < I(W2U1U2X2;Y2|Q)

−I(U1;S1|Q), (4.16)

and D1 and D2 are given by

Di = E[di(Si, φi(WiUiU(3−i)))]. (4.17)

Remark: Theorem 8 gives a sufficient condition for lossy transmission of correlated

sources (Sn1 , S
n
2 ) over the DMIC p(y1y2|x1x2) with a distortion constraint (D1, D2).

The coding scheme is a natural extension of the lossless case studied by Salehi and

Kurtas [28]. The difference is that, before transmitting the source through the chan-

nel, the encoders first vector quantize the source Sn1 and Sn2 into W n
1 and W n

2 , respec-

tively, and then implement a lossless joint source channel coding through the channel

by treating (W n
1 ,W

n
2 ) as the new source.

For the joint source channel coding part, we choose Salehi and Kurtas’s [28] cod-

ing scheme for its simplicity. That is, for each source sequence sn1 , encoder 1 chooses

a covering un1 to represent the partial information embedded in sn1 , and then choose a

codeword xn1 according to p(xn1 |wn1 , un1) =
∏n

j=1 p(x1j |w1ju1j), where wn1 is the quan-

tized version of the source sequence sn1 . Similarly, for each source sequence sn2 , encoder

2 chooses a covering un2 to represent the partial information embedded in sn2 , and then

choose a codeword xn2 according to p(xn2 |wn2 , un2) =
∏n

j=1 p(x2j |w2ju2j). Here, un1 and

un2 can be viewed as the partial information that needs to be decoded at both de-

coders for the purpose of cooperation. We also remark that, here un1 and un2 represent
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information directly from the source sn1 and sn2 , respectively, other than by represent-

ing information embedded in their quantized versions wn1 and wn2 . At the decoder

side, decoder i needs to recover the codewords (wni , u
n
i , u

n
(3−i)) for i = 1, 2. For the

distortion part, upon correct decoding, decoder i estimates the original sni based on

(wni , u
n
i , u

n
(3−i)), that is, ŝij = φi(wij, uij, u(3−i)j).

One may choose our coding scheme proposed in Chapter 2 for the joint source

channel coding part, that is, random source partition followed by a correlation pre-

serving coding. While this coding scheme reduces to the Han and Kobayashi [12]

region for DMIC with independent messages, the use of random source partition

makes the analysis much more complex for lossy transmission case.

The detailed proof of Theorem 8 is given in Appendix C. In the following, we

discuss two special cases of Theorem 8.

When specializing our result to the lossless case, i.e., D1 = D2 = 0, we get

the following sufficient conditions for the lossless transmission of correlated sources

(sn1 , s
n
2) over the DMIC p(y1y2|x1x2).

Proposition 7 A source pair (sn1 , s
n
2 ) ∼ ∏n

j=1 p(s1j, s2j) can be reliably transmitted

through a DMIC p(y1y2|x1x2), if

H(S1|U1U2Q) < I(S1X1;Y1|U1U2Q),

H(S1|U2Q) < I(S1X1;Y1|U2Q),

H(S1|U1U2Q) + I(S2;U2|U1Q) < I(S1U2X1;Y1|U1Q),

H(S1|U2Q) + I(S2;U2|Q) < I(S1U2X1;Y1|Q),

H(S2|U1U2Q) < I(S2X2;Y2|U1U2Q),

H(S2|U1Q) < I(S2X2;Y2|U1Q),

H(S2|U1U2Q) + I(S1;U1|U2Q) < I(S2U1X2;Y2|U2Q),

H(S2|U1Q) + I(S1;U1|Q) < I(S2U1X2;Y2|Q).

Proposition 7 follows by setting W1 = S1 and W2 = S2 in Theorem 8. It is not

surprising that the conditions in Proposition 7 coincide with Salehi and Kurtas’s

result [28] for the lossless transmission of correlated sources over DMIC.

When specializing our result to the discrete memoryless Z interference channel

(DMZIC) case, defined by p(y1y2|x1x2) = p(y1|x1)p(y2|x1x2), i.e., there is no com-

munication link between encoder 2 and receiver 1, we get the following achievable

distortion region.

46



Proposition 8 For any correlated sources (sn1 , s
n
2 ) ∼∏n

j=1 p(s1j, s2j), and a DMZIC

p(y1y2|x1x2) = p(y1|x1)p(y2|x1x2), a distortion pair (D1, D2) is achievable if

I(W1;S1|U1Q) < I(W1X1;Y1|U1Q),

I(W1U1;S1|Q) < I(W1U1X1;Y |Q),

I(W2;S2|U1Q) < I(W2X2;Y2|U1Q),

I(W2;S2|U1Q) + I(S1;U1|Q) < I(W2U1X2;Y2|Q),

and Di for i = 1, 2, are given by

Di = E[di(Si, φi(WiU1))]. (4.18)

Proposition 8 is obtained by setting U2 = ∅ in Theorem 8. The conditions in

Proposition 8 is slightly different from Theorem 7. The difference is that, in Theorem

7, the auxiliary random variables W1,W2, U1 satisfy the Markov chain W2 → S2 →
S1 → W1 → U1, where in this chapter, they satisfy the Markov chain W2 → S2 →
S1 → (W1, U1) and W1 → S1 → U1. This also implies a slight difference between

the two coding schemes. In Theorem 7, Un
1 is generated based on W n

1 only, i.e., Un
1

carries the partial information embedded in W n
1 . In the present chapter, as remarked

before, Un
1 represents the information embedded in the original source Sn1 . We believe

that the latter one is a more natural scheme.

4.2 The Gaussian special case

In this section, we examine the problem of sending correlated Gaussian sources over

a GIC.

Consider a pair of Gaussian random sources (Sn1 , S
n
2 ), independent and identically

distributed (i.i.d.) generated according to a zero mean bivariate Gaussian distribu-

tion. The covariance matrix of (S1, S2) is given by

KS1S2 =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

, (4.19)

where ρ ∈ [−1, 1], and 0 < σi < ∞, i = 1, 2. The source sequences are to be

transmitted over a Gaussian interference channel defined by

Y n
1 = c11X

n
1 + c12X

n
2 + Zn

1 , (4.20)
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Y n
2 = c21X

n
1 + c22X

n
2 + Zn

2 , (4.21)

where X1, X2 are the channel input and Y1, Y2 are the output, and Zn
i ∼ N (0, NiIn),

i = 1, 2, are i.i.d. Gaussian noise sequences and In is the n× n identity matrix.

The realization Sn1 is available at encoder 1 and Sn2 available at encoder 2. The en-

coders choose a sequence of codewords Xn
i , i = 1, 2, based on Sn1 and Sn2 , respectively.

The encoding is subject to individual power constraints, for i = 1, 2,

1

n

n
∑

j=1

EX2
ij(S

n
i ) ≤ Pi. (4.22)

The decoding maps are the same as defined before, and the corresponding distortion

is measured by mean squared error (MSE), defined as, for i = 1, 2,

Din ,
1

n

n
∑

j=1

E(Sij − Ŝij)
2. (4.23)

Without loss of generality [33], we assume that two source components have equal

variance (σ1 = σ2 = σ) and have a non-negative correlation coefficient (ρ ∈ [0, 1]). We

also assume that c11 = c22 = 1, since decoders can always scale their channel output.

For simplicity, we only consider symmetric GIC with equal power constraints, i.e.,

c12 = c21 = a, P1 = P2 = P and N1 = N2 = N , and we are interested in characterizing

the achievable distortion region, i.e., D =
⋃

(D1, D2), where the union is taken over

all achievable distortion pairs.

4.2.1 Lower and upper bounds on the achievable distortion

region

Before discussing the achievable schemes, we introduce a simple lower bound ( cut

set bound ) for the distortion region.

Theorem 9 A necessary condition for (D1, D2) ∈ D is that

D1 ≥ σ2 N

(1 + 2aρ+ a2)P +N
, (4.24)

D2 ≥ σ2 N

(1 + 2aρ+ a2)P +N
. (4.25)

Proof: By the rate distortion theory [35, Theorem 13.3.2], we have

I(Sn, Ŝn) ≥ n

2
log

σ2

D1
(4.26)
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We next want to upper bound I(Sn, Ŝn). Notice that Sn → Y n
1 → Ŝn forms a Markov

chain, we get,

I(Sn; Ŝn) ≤ I(Sn;Y n
1 ) (4.27)

≤ I(SnXn
1X

n
2 ;Y n

1 ) (4.28)

= H(Y n
1 ) −H(Y n

1 |Xn
1X

n
2 ) (4.29)

≤ n

2
log

(1 + 2aρ+ a2)P +N

N
(4.30)

where the last step uses the fact that EX1iX2i√
EX2

1i

√
EX2

2i

≤ ρ, i = 1, 2, · · · , n, by Witsen-

hausen’s lemma [58]. Combining (4.26) and (4.30), we get lower bound (4.24), lower

bound (4.25) can be obtained similarly.2

For the achievability part, the achievable distortion region obtained in Theorem

8 still applies to the Gaussian case. However, the evaluation of this region is hard in

general, since we do not know the optimal choices of the auxiliary random variables

(W1,W2, U1, U2). In the following, we give a sufficient condition which can be viewed

as a special case of Theorem 8.

Proposition 9 For transmitting correlated Gaussian source over Gaussian interfer-

ence channels, a distortion pair (D1, D2) is achievable if

I(W1;S|W2) < I(W1X1;Y1|W2)

I(W2;T |W1) < I(W2X1;Y1|W1)

I(W1;S|W2) + I(W2;T ) < I(W1W2X1;Y1)

I(W2;T |W1) < I(W2X2;Y2|W1)

I(W1;S|W2) < I(W1X2;Y2|W2)

I(W2;T |W1) + I(W1;S) < I(W1W2X2;Y2) (4.31)

and Di for i = 1, 2, are given by

Di = E[di(Si, φi(Wi))]. (4.32)

The Proposition is proved by setting U1 = W1, U2 = W2 and Q = ∅ in Theorem 8.

To further calculate the bound, we study two special regimes of the GIC, the strong

interference regime (a ≥ 1) and the noisy interference regime (2
√
a(aP + 1) ≤ 1).
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4.2.2 The strong interference regime

In this regime, the capacity region of GIC with independent messages is that of a

compound MAC [16], and for our symmetric GIC case, is given by

R1 ≤ 1

2
log (1 +

P

N
), (4.33)

R2 ≤ 1

2
log (1 +

P

N
), (4.34)

R1 +R2 ≤ 1

2
log (1 +

P + a2P

N
). (4.35)

For sending correlated Gaussian sources over this GIC, by directly evaluating the

sufficient conditions in Theorem 8, we get the following achievable distortion region.

Corollary 4 For sending correlated Gaussian sources over a symmetric GIC with

a ≥ 1, a distortion pair (D1, D2) is achievable if there exist rates R1 > 0 and R2 > 0

such that the following conditions hold

Ri <
1

2
log

(1 − ρ̃2)P +N

(1 − ρ̃2)N
, (4.36)

R1 +R2 <
1

2
log

(1 + 2aρ̃+ a2)P +N

(1 − ρ̃2)N
, (4.37)

Di > σ22−2Ri
1 − (1 − 2−2R(3−i))ρ2

1 − ρ̃2
, (4.38)

where i = 1, 2 and ρ̃ =
√

1 − 2−2R1

√
1 − 2−2R2ρ.

Sketch of proof: Corollary 4 follows directly from Proposition 9. To evaluate the

bound in Proposition 9, we further choose the test channels W1 = c1S + ZW1 and

W2 = c2T + ZW2, where ci =
√

1 − 2−2Ri , ZWi
∼ N (0, 2−2Ri), i = 1, 2, and R1 and

R2 are the quantization rates. By choosing the encoding function as Xij =
√

P
σ2Wij ,

i = 1, 2 and j = 1, 2, · · · , n, and implement a MMSE estimator at both decoder

(hence, D1 = Var(S|W1W2) and D2 = Var(T |W1W2)), we get the conditions as in

Corollary 4. 2

Remark: In the evaluation part, the choices of test channels and encoding schemes

are exactly the same as the vector quantizer scheme introduced by Lapidoth and

Tinguely [33,4] for the problem of sending correlated Gaussian sources over a Gaussian

MAC. It is not surprising that the conditions obtained here are similar to theirs as

in the regime a ≥ 1, we use the IC as a compound MAC by setting Ui = Wi, i = 1, 2

in the evaluation.
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If only symmetric distortion is considered, i.e., D1 = D2 = D, we get the following

proposition.

Proposition 10 A symmetric distortion D is achievable if there exists some R > 0

such that

R <
1

2
log

(1 − ρ̃2)P +N

(1 − ρ̃2)N
, (4.39)

2R <
1

2
log

(1 + 2aρ̃+ a2)P +N

(1 − ρ̃2)N
, (4.40)

D = σ22−2R 1 − (1 − 2−2R)ρ2

1 − ρ̃2
, (4.41)

where ρ̃ = (1 − 2−2R)ρ.

To compare the performance, we consider two alternative coding schemes: un-

coded transmission and the separation approach.

Uncoded transmission: by choosing Xij =
√

P
σ2Sij, for i = 1, 2 and j = 1, 2, · · · , n,

and implementing a minimum mean squared error (MMSE) estimation at both de-

coders, we get the following achievable distortion for the uncoded scheme

D1 = D2 = Du = σ2 a2(1 − ρ2)P +N

(1 + 2aρ+ a2)P +N
. (4.42)

Separation: For the channel coding part, the capacity region is given by (4.33-

4.35). For the symmetric case, we choose1

R1 = R2 = R =
1

4
log (1 +

(1 + a2)P

N
). (4.43)

For the source coding part, since in the strong interference channel regime, the two

decoders can decode both users’ messages, it is reasonable to implement an optimal

quadratic Gaussian two-terminal source coding scheme given by [54]. In the case of

R1 = R2 = R, the distortion region in [54] reduces to

D =
√

2−4R(1 − ρ2) + ρ22−8R. (4.44)

Together with (4.43), we get the following achievable distortion for the separation

scheme

Ds =

√

N [(1 + a2)P (1 − ρ2) +N ]

(1 + a2)P +N
. (4.45)

1Assuming without loss of generality, constraint (4.35) is active, i.e., a2 ≤ P + N .
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We remark here that, in the case of a = 1, the received signals Y n
1 and Y n

2 are

statistically the same, hence, the lower bound [33, Corollary 1] developed by Lapidoth

and Tinguely for the Gaussian MAC case is still valid for our problem. We have the

following proposition.

Proposition 11 For a = 1, a necessary condition for (D,D) ∈ D is that

D ≥ σ2P (1 − ρ2) +N

2P (1 + ρ) +N
if

P

N
≤ ρ

1 − ρ2
, (4.46)

D ≥ σ2

√

(1 − ρ2)N

2P (1 + ρ) +N
if

P

N
>

ρ

1 − ρ2
. (4.47)

4.2.3 The noisy interference regime

In the noisy interference regime, the analysis follows similarly as above, and we only

summarize the results below.

Proposition 12 In the symmetric setting with 2
√
a(aP + 1) ≤ 1, a symmetric dis-

tortion D is achievable if there exists rate R > 0 such that

R <
1

2
log (1 +

(1 + aρ̃)2P

a2(1 − ρ̃2)P +N
), (4.48)

D = σ22−2R, (4.49)

where ρ̃ = (1 − 2−2R)ρ.

Corollary 5 In the symmetric setting with 2
√
a(aP + 1) ≤ 1, uncoded transmission

and separation scheme can achieve respectively

Du = σ2 a2(1 − ρ2)P +N

(1 + 2aρ+ a2)P +N
(4.50)

Ds = σ22−2R = σ2 a2P +N

(1 + a2)P +N
(4.51)

4.2.4 Numerical examples

Fig.4.2 shows the performance of different achievable schemes for a = 1. From the

figure, uncoded scheme is optimal when P
N

is less than a certain threshold, which

coincides with the observation in [33]. In general, uncoded scheme is the best for low

SNR, while joint source and channel coding scheme outperforms others for high SNR.
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Another observation is that, joint source and channel coding uniformly outperforms

separation scheme for all SNR. We also observe that the distortion attained with the

uncoded scheme will not converge to 0 as SNR increases, while that of the joint source

channel coding and separation schemes converge to 0. Similar observations can be

made for a=2, as shown in Fig.4.3. For the noisy interference regime, the performance

is shown in Fig.4.4. In this case, uncoded transmission uniformly beats all others for

all SNR. The joint source channel coding described above, although utilizing the rate

gain from the correlation between codewords, does not make use of the correlation

at the final estimation stage. This also implies that the choice of auxiliary random

variables is not optimal.

4.3 Summary

In this chapter, we studied lossy transmission of two correlated sources over a two-

user DMIC. An achievable distortion region was proposed and it was shown to include

Salehi and Kurtas’s result on lossless transmission of correlated sources over DMIC

as a special case. The Gaussian case was also studied. A lower bound and several

achievable schemes including uncoded transmission, the separation approach, and

joint source channel coding were introduced. It was shown that in the strong inter-

ference regime, uncoded transmission is the best at low SNR while the joint source

channel coding outperforms others at high SNR. In addition, the joint source channel

coding scheme uniformly outperforms the separation scheme for all SNR. In the noisy

interference regime, uncoded transmission outperforms others for all SNR range. The

joint source channel coding scheme introduced in section 4.2 is only a special case of

our main result. The optimal choice of auxiliary random variables is still unknown.

Possible improvement can be made by considering the superposition approach pro-

posed in [55, 4]. Moreover, the lower bound in Theorem 9 is loose in general.
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Figure 4.2: Comparison of different achievable schemes for a=1, where lower bound

1 is by Proposition 11 and lower bound 2 is from Theorem 9.
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Figure 4.3: Comparison of different achievable schemes for a=2, where the lower

bound is from Theorem 9.
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Figure 4.4: Comparison of different achievable schemes for a=0.1.
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Chapter 5

The Common Information of N

Dependent Random Variables

We briefly introduced the three classic measure of common information in the in-

troduction part of this thesis. They are Shannon’s mutual information, Gács and

Körner’s common randomness and Wyner’s common information. However, all these

three notions of common information were originally proposed for two random vari-

ables case.

Generalizing of mutual information to N random variables was first reported

in [64]. The generalization comes from the observation that for a pair of random

variables, Shannon’s information measures is consistent with the Venn diagram for

set operation and a comprehensive treatment was available in [65, 66]. Gács and

Körner’s common randomness was recently generalized to multiple random variables

by Tyagi, Narayan and Gupta in [67], which extends the encoding process in the

definition of common randomness to that of N terminals.

In this chapter, we generalize Wyner’s common information of a pair of random

variables to that of N dependent variables. We show that the operational meaning

defined in both approaches are still valid. Moreover, we establish some monotone

property of such generalization which contrast to the notion of ‘common’ informa-

tion. Specifically, we show that the common information does not decrease as the

number of variables increases while keeping the same marginal distribution. This is

different from the other two notions of common information. Examples on evalu-

ating C(X1, X2, · · · , XN) are given for circularly symmetric binary sources and the

asymptotic results are also studied.

The rest of this chapter is organized as follows. Section 5.1 gives the problem for-
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mulation and main results. Section 5.2 gives some examples and discussions. Section

5.3 concludes the chapter.

5.1 Common information of N random variables

Let X1, X2, · · · , XN be random variables that take values on the finite alphabet sets

X1,X2, · · · ,XN with joint distribution P (x1, x2, · · · , xN). A length-n source sequence

(xn1 , x
n
2 , · · · , xnN) is distributed according to

P (n)(xn1 , x
n
2 , · · · , xnN) =

n
∏

i=1

P (x1i, x2i, · · · , xNi). (5.1)

Our generalization of Wyner’s common information is to define a similar measure

for N random variables by preserving the conditional independence structure through

the introduction of an auxiliary random variable. Specifically, we define

C(X1, X2, · · · , XN) , inf I(X1, X2, · · · , XN ;W ), (5.2)

where the infimum is taken over all the joint distributions of (X1, X2, · · · , XN ,W )

such that

∑

w

P (x1, x2, · · · , xn, w) = P (x1, x2, · · · , xN), (5.3)

P (x1, ..., xn|w) =
n
∏

i=1

P (xi|w). (5.4)

Thus the marginal distribution of (X1, X2, · · · , XN) is P (x1, x2, · · · , xN ) and (X1, · · · , XN)

are conditionally independent given W .

We now give two interpretation for the common information C of N dependent

random variables.

5.1.1 A Gray-Wyner source coding network interpretation

For the Gray-Wyner source coding network, we start with the definition of encoder-

decoders.

Definition 5 A (n,M0,M1, · · · ,MN) code consists of the following:
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• An encoder mapping

f : X n
1 × X n

2 × · · · × X n
N → M0 ×M1 × · · · ×MN ,

where Mi = {1, 2, · · · , 2nRi}.

• N decoders gi, for i = 1, 2, · · · , N ,

gi : Mi ×M0 → X n
i . (5.5)

The probability of error is defined as

P (n)
e = Pr{(X̂n

1 X̂
n
2 · · · X̂n

N ) 6= (Xn
1 , X

n
2 , · · · , Xn

N)}, (5.6)

where X̂n
i = gi(Mi,M0) for i = 1, · · · , N .

Definition 6 A number R0 is said to be achievable if for any ǫ > 0, we can find an

n sufficiently large such that there exists a (n,M0,M1, · · · ,MN) code with

M0 ≤ 2nR0 (5.7)

P (n)
e ≤ ǫ, (5.8)

1

n

N
∑

i=0

logMi ≤ H(X1, X2, · · · , XN) + ǫ. (5.9)

As with the case for two random variables, C1 is defined as the infimum of all achiev-

able R0.

5.1.2 A random variable generator interpretation

For the second approach of approximating joint distribution, we again start with the

following definition.

Definition 7 An (n,M,∆) generator consists of the following:

• a message set W ∈ {1, 2, · · · , 2nR};

• for all w ∈ W and N conditional probability distributions q
(n)
i (xni |w), for i =

1, 2, · · · , N , define the probability distribution on X n
1 ×X n

2 × · · · × X n
N

Q(n)(Xn
1 , X

n
2 , · · · , Xn

N) =
∑

w∈W

1

M
N
∏

i=1

q
(n)
i (xni |w). (5.10)
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Thus the N processors serve as random number generators each generating indepen-

dent and identically distributed (i.i.d.) sequence X̂n
i according to q(xi|w) and the

output of the processors follow joint distribution defined in (5.1). Let

∆ = Dn(P
(n);Q(n)) =

1

n

∑

xn
i ∈Xn

i ,i=1,2,··· ,N
P (n) log

P (n)

Q(n)
, (5.11)

where P (n) and Q(n) are defined as in (5.1) and (5.10) respectively.

Definition 8 A number R is said to be achievable if for all ǫ > 0, we can find an

n sufficiently large such that there exists a (n,M,∆) generator with M ≤ 2nR and

∆ ≤ ǫ.

We define C2 as the infimum of all achievable R.

5.1.3 Main results: C1 = C2 = C

The main result of this chapter is the following Theorem.

Theorem 10

C1 = C2 = C(X1, X2, · · · , XN). (5.12)

Thus both C1 and C2 admit single letter characterization which coincides with C(X1, · · · , XN).

The proof of Theorem 10 is given in Appendix D

5.2 Examples and discussions

5.2.1 The monotone property of common information C

We start with the following example. Let X = (X
′

, U, V ), Y = (Y
′

, V,W ) and Z =

(Z
′

,W, U) where the random variables X
′

, Y
′

, Z
′

, U, V,W are mutually independent.

It is easy to show that for this example

I(X;Y ;Z) = K(X, Y, Z) = 0,

whereas

C(X, Y, Z) = H(UVW ).

On the other hand,

C(X, Y ) = H(V ),
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C(X,Z) = H(U),

C(Y, Z) = H(W ).

What is interesting is that the inclusion of an additional variable increases the

common information. This is somewhat surprising: if the information is common it

ought to be non-increasing when more random variables are included. Indeed, we can

prove the following general result:

Lemma 2 Let (X1, · · · , XN) ∼ p(x1, · · · , xN). For any two sets A,B that satisfy

A ⊆ B ⊆ N = {1, 2, · · · , N},

C(XA) ≤ C(XB), (5.13)

where XA = {Xi, i ∈ A} and XB = {Xi, i ∈ B}.

Proof: Let W ′ be the W that achieves C(XB), i.e., I(W ′;XB) = inf I(W ;XB). But

A ⊆ B, thus XB conditionally independent given W ′ implies that XA is conditionally

independent given W ′. Thus

I(XB;W ′) ≥ I(XA;W ′)

≥ inf I(XA;W )

where the infimum is taken over all W such that XA is independent given W .

This monotone property perhaps suggests that the name common information,

while meaningful for pair of variables, no longer suits the generalization toN variables.

We comment here that Gács and Körner’s common randomness follows a different

monotone property

K(XA) ≥ K(XB)

while there is no definitive inequality relationship for mutual information.

As a consequence, we have for any N random variables

C(X1, X2, · · · , XN) ≥ K(X1, X2, · · · , XN).

We now examine another example in which Wyner’s common information in-

creases as the number of the observations increases. Moreover the common infor-

mation eventually converges and the asymptote suggests that the notion of common

information may have potential application in certain inference problem.
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5.2.2 Circularly symmetric binary sources

We now examine another example in which Wyner’s common information increases

as the number of the observations increases. Moreover the common information even-

tually converges and the asymptote suggests that the notion of common information

may have potential application in certain inference problem.

Consider first the example of three binary random variables X1, X2, X3 with joint

distribution

P (x1, x2, x3) =

{

1
2
− 3

4
a0 if x1 = x2 = x3

1
4
a0 otherwise

(5.14)

where the parameter a0 satisfies 0 ≤ a0 ≤ 1
2
.

It can be easily verified that

Pr{Xi = 0} =
1

2
, (5.15)

for i = 1, 2, 3 and that for 1 ≤ i, j ≤ 3, i 6= j,

Pr(Xi = xi, Xj = xj) =
1

2
(1 − a0)δxi,xj

+
1

2
a0(1 − δxi,xj

), (5.16)

where δa,b = 1 if a = b and 0 otherwise.

Thus, each pair of (Xi, Xj), i 6= j, can be viewed as a doubly symmetric binary

source as defined in [59]. We refer to this set of exchangeable binary sources circularly

symmetric binary source. For such circularly symmetric binary source (X1, X2, X3)

with joint distribution given in (5.14) and random variables (X1, X2, X3,W ) that

satisfy (5.3) and (5.4), we have the following lemma.

Lemma 3

H(X1|W ) +H(X2|W ) +H(X3|W ) ≤ 3h(a1), (5.17)

where a1 = 1
2
− 1

2
(1 − 2a0)

1
2 .

This lemma is a direct consequence of Wyner’s result on doubly symmetric binary

source [59]. Therefore, we have,

I(X1X2X3;W )

= H(X1X2X3) −H(X1X2X3|W ),
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W

X1 X2
XN· · ·

Figure 5.1: A simple Bayesian graph model.

= H(X1X2X3) −
3
∑

i=1

H(Xi|W ),

≥ H(X1X2X3) − 3h(a1),

= 1 + h(a0) + a0 + (1 − a0)h

(

a0

2(1 − a0)

)

− 2h(a1),

(5.18)

This lower bound can indeed be achieved by choosing the following random variables.

Let W be a random variable with pW (0) = pW (1) = 1/2, i.e., a Bernoulli(1/2)

random variable. Let each Xi be the output of a binary symmetric channel (BSC)

with crossover probability a1 with W as input. The channels share the common

input W but are otherwise independent of each other. This is illustrated in the

simple Bayesian graph model in Fig. 5.1 with N = 3 where each link represents a

BSC with crossover probability a1.

Thus, the common information of this circularly symmetric binary source is,

C(X1, X2, X3) = 1 + a0 + h(a0) +

(1 − a0)h

(

a0

2(1 − a0)

)

− 3h(a1),

(5.19)

Notice that any pair of (Xi, Xj) is a doubly symmetric binary source [59], therefore,

C(X, Y ) = 1 + h(a0) − 2h(a1).
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Figure 5.2: Comparison of common information.

It is straightforward to check that

C(X, Y, Z) > C(X, Y )

when 0 < a0 <
1
2
. This is also shown numerically in Fig. 5.2.

5.2.3 Asymptotic results for N binary random variables

We now study the generalization of above example to arbitrary N and in particular

the asymptotic value of the common information for the circularly symmetric binary

sources.

Consider N binary random variables X1, X2, · · · , XN with joint distribution

p(X1, X2, · · · , XN) generated by an underlying Bayesian graph model as in Fig.

5.1, where W is a Bernoulli(1/2) random variable and each Xi, i = 1, 2, · · · , N , is the

output of a BSC with crossover probability a1(0 ≤ a1 ≤ 1
2
) with a common input W .

Hence, for x1, x2, · · · , xN ∈ {0, 1},

P (x1, x2, · · · , xn) =
∑

w∈{0,1}

1

2

N
∏

i=1

Pi(xi|w), (5.20)

where for each i = 1, 2, · · · , N , pi(xi|w) = (1 − a1) if xi = w and a1 otherwise.

Similarly, we have,
N
∑

i=1

H(Xi|W ) ≤ Nh(a1), (5.21)
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for any random variable W that satisfies (5.3) and (5.4).

Therefore, C(X1, X2, · · · , XN) can be lower bounded by

C(X1, X2, · · · , XN) ≥ H(X1, X2, · · · , XN) −Nh(a1). (5.22)

On the other hand, the above lower bound is achievable by exactly the same W

in the above Bayesian model. Hence, we have,

C(X1, X2, · · · , XN) = H(X1, X2, · · · , XN) −Nh(a1), (5.23)

where H(X1, X2, · · · , XN) can be calculated from (5.20).

Now consider the above model but with increasing N . For any ǫ and a1 < 1/2, it

is clear that

H(W |X1, X2, · · · , XN) < ǫ

for N sufficiently large. This can be established by the Fano’s inequality as one

can estimate W with arbitrary reliability given X1, · · · , XN for sufficiently large N .

Therefore,

C(X1, X2, · · · , XN)

= H(X1, X2, · · · , XN) −Nh(a1),

= H(X1, X2, · · · , XN ,W ) −Nh(a1)

−H(W |X1, X2, · · · , XN),

≥ H(W ) − ǫ, (5.24)

where the last step is from the fact that H(X1, X2, · · · , XN |W ) = Nh(a1). On the

other hand,

C(X1, · · · , XN) ≤ H(W )

for any N . Thus, for a1 < 1/2,

lim
N→∞

C(X1, X2, · · · , XN) = H(W ) = 1

If a1 = 1/2, then X1, · · · , XN are mutually independent hence C(X1, · · · , XN) = 0.

5.3 Conclusions

This chapter generalized Wyner’s common information, defined for a pair of random

variables, to that of N dependent random variables. We showed that it is the min-

imum common information rate R0 needed for N separate decoders to recover their
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intended sources losslessly while keeping the total rate close to the entropy bound.

It is also equivalently to the smallest rate of the common input to N independent

processors (random number generators), such that the output distribution is approxi-

mately the same as the given joint distribution. It was shown that such generalization

leads to the phenomenon of ‘common’ information non-decreasing as the number of

sources increases.

For the example of circularly symmetric binary sources, we show that common

information not only increases as N grows, but eventually converges to the entropy

of W that achieves C(X1, · · · , XN).
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Chapter 6

Common Information For

Continuous Random Variables

In previous chapter, we generalized Wyner’s common information to N dependent

random variables. The interpretations there only apply to random variables with

finite alphabet sets. Intuitively, the definition of common information itself applies

to random variables with continuous alphabet. However, it is not clear what physical

interpretation such quantity carries for continuous random variables.

In this chapter, we provide such an interpretation using the rate distortion result

for the Gray-Wyner network as described in Fig. 6.1. That is, instead of requiring the

sources to be reproduced losslessly at the two decoders, we allow certain distortions

subject to given distortion constraints [68]. It turns out that Wyner’s common infor-

mation is precisely the smallest common message rate for a certain range of distortion

constraints when the total rate is arbitrarily close to the rate distortion function with

joint decoding. A surprising result is that, as Wyner’s common information is only

a function of the joint distribution, this smallest common rate remains constant even

if the distortion constraints vary, as long as they are less than certain thresholds.

We limit ourself to two random variable case in this chapter. The extension to N

continuous random variables will be reported in the future works.

The rest of the chapter is organized as follows. Section 6.1 gives the problem

formulation and the main results. In section 6.2, two examples, the doubly symmetric

binary source and the bivariate Gaussian source, are given. We conclude in Section

6.3.

66



Xn, Y n

Encoder

Decoder 1

Decoder 2

W1

W2

W0

X̂n,∆X

Ŷ n,∆Y

Figure 6.1: Gray-Wyner source coding network.

6.1 A Gray-Wyner lossy source coding interpreta-

tion

Let {(Xk, Yk)}∞k=1 be independent copies of a pair of dependent random variables

(X, Y ) ∼ Q(x, y) which take values in some arbitrary (finite, countable, or continuous)

spaces X × Y . Here, we use Q(x, y) to denote the joint distribution of (X, Y ), i.e.,

probability mass function if (X, Y ) are discrete and probability density function if

(X, Y ) are continuous. Thus the joint distribution of length n vectors (Xn, Y n) is

Qn(xn, yn) =
n
∏

i=1

Q(xi, yi). (6.1)

The common information of the pair (X, Y ) is a functional of Q and is defined as

C(X, Y ) , inf I(X, Y ;W ), (6.2)

where the infimum is taken over all random variable triples X, Y,W satisfying

• (C1) The marginal distribution for X, Y is Q(x, y),

• (C2) X and Y are conditionally independent given W .

Let us consider the lossy source coding problem described in Fig. 6.1. The encoder

observes a pair of sequences (Xn, Y n), and map them to three messages W0,W1,W2

with

Wi ∈ {1, · · · , 2nRi},

for i = 0, 1, 2. Let d1(x, x̂) and d2(x, ŷ) be bounded single letter distortion func-

tions defined on X × X and Y × Y respectively. Decoder 1 reproduces Xn from

(W0,W1) subject to an average distortion constraint ∆1; decoder 2 reproduces Y n
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from (W0,W2) subject to an average distortion constraint ∆2. We now give a precise

definition of the quantity C3(∆1,∆2), which is the smallest common rate R0 such

that the total rate meets the rate distortion bound with joint decoding.

Definition 9 An (n,M0,M1,M2) rate distortion code consists of the following:

• One encoder mapping fE

fE : X n × Yn → IM0 × IM1 × IM2, (6.3)

where IMi
= {0, 1, 2, · · · ,Mi − 1} for i = 0, 1, 2 .

• Two decoder mappings f
(X)
D , f

(Y )
D

f
(X)
D : IM0 × IM1 → X n, (6.4)

f
(Y )
D : IM0 × IM2 → Yn. (6.5)

Let fE(Xn, Y n) = (W0,W1,W2), 1 ≤Wi ≤Mi and

X̂n = f
(X)
D (W0,W1), (6.6)

Ŷ n = f
(Y )
D (W0,W2). (6.7)

Denote by (∆X ,∆Y ) the average distortion between encoder inputs and decoder out-

puts:

∆X = Ed1(X
n, X̂n), (6.8)

∆Y = Ed2(Y
n, Ŷ n), (6.9)

where

d1(x
n, x̂n) =

1

n

n
∑

k=1

d1(xk, x̂k), (6.10)

d2(y
n, ŷn) =

1

n

n
∑

k=1

d2(yk, ŷk). (6.11)

An (n,M0,M1,M2) code with distortion (∆X ,∆Y ) is referred to as an (n,M0,M1,M2,∆X ,∆Y )

rate distortion code.
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Definition 10 For any ∆1,∆2 ≥ 0, a number R0 is said to be (∆1,∆2)-achievable if

for any ǫ > 0 we can find n sufficiently large such that there exists a (n,M0,M1,M2,∆X ,∆Y )

rate distortion code with

M0 ≤ 2nR0 , (6.12)
2
∑

i=0

1

n
logMi ≤ RXY (∆1,∆2) + ǫ, (6.13)

∆X ≤ ∆1 + ǫ , ∆Y ≤ ∆2 + ǫ. (6.14)

where RXY (∆1,∆2) is the rate distortion function for (X, Y ) with joint encoding and

decoding, i.e.,

RXY (∆1,∆2) = min I(X, Y ; X̂, Ŷ ), (6.15)

where the minimum is taken over all the test channels qt(x̂, ŷ|x, y) such that Ed1(X, X̂) ≤
∆1, Ed2(Y, Ŷ ) ≤ ∆2.

Definition 11 C3(∆1,∆2) is defined as the infimum of all R0 that is (∆1,∆2)-

achievable.

We now state the main results.

Theorem 11 The common information C(X;Y ) = C3(∆1,∆2) in some neighbor-

hood of the origin {(∆1,∆2) : 0 ≤ ∆1,∆2 ≤ γ} provided that

Q(x, y) > 0 all x ∈ X , y ∈ Y , (6.16)

and d1, d2 satisfy

d1(x, x̂) > d1(x, x) = 0, x 6= x̂, (6.17)

d2(y, ŷ) > d2(y, y) = 0, y 6= ŷ. (6.18)

A proof of Theorem 11 is given in Appendix G.

The condition on d1 and d2 set forth in the theorem amounts to requiring the

distortion function be normal, as defined in [66].

If (X, Y ) are discrete random variables with finite alphabet, and d1 = d2 = dH

are the Hamming distortion, defined as

dH(u, û) =

{

0, u = û

1, u 6= û,
(6.19)

then for ∆1 = ∆2 = 0, C3(∆1,∆2) = C1 = C(X;Y ). Therefore, approach 1 in [59] is

a special case of Theorem 1.
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Theorem 12 For the symmetric case ∆1 = ∆2 = ∆, C3(∆) = C(X, Y ) if and only

if ∆ ≤ R−1
XY (C(X, Y )), where R−1

XY (·) denotes the inverse function of RXY (∆,∆), i.e,

the distortion rate function.

A proof of Theorem 12 is given in Appendix H.

6.2 Examples

6.2.1 Doubly symmetric binary source (DSBS)

Consider a DSBS as in [59, 68]. That is, a binary source where X = Y = {0, 1} and

for x, y = 0, 1,

Q(x, y) =
1

2
(1 − a0)δx,y +

1

2
a0(1 − δx,y), (6.20)

0 ≤ a0 ≤ 1
2

and δx,y is an indicator function of x = y. X can be considered as an

unbiased binary input to a binary symmetric channel (BSC) with crossover probability

a0 and Y as the corresponding output, or vice versa.

It was shown in [59] that for the DSBS

C(X;Y ) = 1 + h(a0) − 2h(a1), (6.21)

where h(a0) is the binary entropy function for 0 ≤ a0 ≤ 1 and a1 = 1
2
− 1

2
(1 − 2a0)

1
2 .

For a DSBS with Hamming distortion d1 = d2 = dH and symmetric distortion

constraint ∆1 = ∆2 = ∆, the joint rate distortion function [71] is given by,

RXY (β, β)=

{

1 + h(a0) − 2h(β) if 0 ≤ β ≤ a1

L(1 − a0) − 1
2
{L(2β − a0) + L[2(1 − β) − a0]} a1 ≤ β ≤ 1

2

,(6.22)

where L(x) = −x log x.

It can be seen that

RXY (a1, a1) = 1 + h(a0) − 2h(a1) = C(X, Y ).

Therefore, by Theorem 12 we have γ = a1 and C3(∆,∆) = 1+h(a0)− 2h(a1) for any

0 ≤ ∆ ≤ a1.

Remark: C3(∆,∆) for any 0 ≤ ∆ ≤ a1 is achieved by R0 = RXY (a1, a1) =

1 + h(a0) − 2h(a1), R1 = RX|X̃Ỹ (∆), and R2 = RY |X̃Ỹ (∆), where (X̃, Ỹ ) are the

random variables achieving RXY (a1, a1). The test channels are

Pr{X = x|x̃ỹ} = (1 − a1)δx,x̃ + a1(1 − δx,x̃), (6.23)
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Pr{Y = y|x̃ỹ} = (1 − a1)δy,ỹ + a1(1 − δy,ỹ). (6.24)

Hence, R1 = R2 = h(a1) − h(∆).

6.2.2 Gaussian source

In this section we consider the case when X, Y are bivariate Gaussian with zero mean

and covariance matrix

K =

[

1 ρ

ρ 1

]

. (6.25)

Proposition 13 For the Gaussian random variable (X, Y ) described above, the com-

mon information is

C(X;Y ) =
1

2
log

1 + ρ

1 − ρ
. (6.26)

The proof is given in Appendix K. Proposition 13 can be extended to multivariate

Gaussian distributions.

Corollary 6 For N joint Gaussian random variables X1, X2, · · · , XN with covari-

ance matrix

KN =











1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · ·
ρ ρ · · · 1











, (6.27)

the common information is

C(X1, X2, · · · , XN) =
1

2
log(1 +

Nρ

1 − ρ
). (6.28)

Proposition 14 For bivariate Gaussian random variables X, Y with zero mean and

covariance matrix in (6.25) and squared error distortion d1(u, û) = d2(u, û) = (u−û)2,

we have

C3(∆,∆) = C(X;Y ), (6.29)

for any ∆ ≤ 1 − ρ.
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Proof: The joint rate distortion function for Gaussian random variables with sym-

metric squared error distortion [71] is

RXY (β, β) =











1
2
log 1−ρ2

β2 0 ≤ β ≤ 1 − ρ
1
2
log 1+ρ

2β−(1−ρ) 1 − ρ ≤ β ≤ 1

0 β ≥ 1

. (6.30)

Thus we have

RXY (1 − ρ, 1 − ρ) =
1

2
log

1 + ρ

1 − ρ
= C(X, Y ). (6.31)

By Theorem 12, γ = 1− ρ. This means that C3(∆,∆) = C(X;Y ) for any ∆ ≤ 1− ρ.

Remark: C3(∆,∆) for any 0 ≤ ∆ ≤ 1 − ρ is achieved by R0 = RXY (1 − ρ, 1 − ρ),

R1 = RX|X̃Ỹ (∆) = 1
2
log 1−ρ

∆
, R2 = RY |X̃Ỹ (∆) = 1

2
log 1−ρ

∆
, where (X̃, Ỹ ) are the

random variables achieving RXY (1 − ρ, 1 − ρ).

6.3 Conclusion

In this chapter, we generalized Wyner’s common information to that of continuous

random variables and provided a lossy source coding interpretation using the Gray-

Wyner network. A surprising observation is that the the minimum common rate for

lossy source coding is invariant to the distortion constraint as long as it is less than

a certain threshold.
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Chapter 7

Quantization for Distributed

Testing of Independence

In this chapter, we consider the problem of distributed test of statistical independence

under communication constraints. While independence test is frequently encountered

in various applications, distributed independence test is particularly useful for events

detection in sensor networks: data correlation often occurs among sensor observations

in the presence of a target. Focusing on the Gaussian case because of its tractability,

we study in this chapter the characteristics of optimal quantization rule for distributed

test of independence.

Consider the following hypothesis testing problem: a pair of random sequences

(Xi, Yi), i = 1, · · · , n, with (Xi, Yi) independent and identically distributed (i.i.d.)

according to the joint probability density function

fX,Y (x, y) =
1

2π
√

1 − ρ2
exp

(

− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

)

.

The two hypotheses under test are

{

H0 : ρ 6= 0,

H1 : ρ = 0.
(7.1)

i.e., (X, Y ) is bivariate Gaussian and they are independent under H1 and dependent

under H0. Notice that assuming zero mean and unit variance does not lose any

generality as long as the mean values and variances are known, since we can always

transform the random variables to standard bivariate Gaussian by proper scaling and

shifting.
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In the centralized case where X and Y sequences are available, this statistical in-

ference problem can be solved straightforwardly by applying some standard statistical

inference frameworks depending on the situations (e.g., whether or not ρ is known

under H0 ) [77].

The problem becomes much more interesting and challenging when {Xi} and

{Yi} are not directly available; instead, compressed versions of X and Y subject to

some rate constraints are used for the test of independence. This distributed test

of independence is the focus of the present work. To be more specific, we assume

that {Xi} and {Yi} are available respectively at two distributed sensor nodes. The

sensor nodes communicate their data to the fusion center under a communication

constraint of R1 and R2 bits per observation. The fusion center, upon receiving the

sensor data, makes a final decision on whether {Xi} and {Yi} are correlated or not.

Our attempt is to understand properties of optimal quantizers at distributed nodes

where the optimality is associated with the performance at the fusion center with

regard to the dependence test.

Consider first the large sample regime, i.e., n is large. Given that (Xi, Yi) form an

i.i.d. sequence, it is easy to show that any reasonable quantizers will lead to a test

with diminishing error probability as n grows for R1 > 0 and R2 > 0. Thus a sensible

criterion is the speed with which the error probability approaches zero, i.e., the error

exponent characterization. This is indeed the underlying reason for the problem

setting where the null hypothesisH0 represents dependence while independence occurs

under H1. Applying Stein’s lemma [35] to the hypothesis testing problem (7.12), for a

given type I error constraint, the error exponent for the type II error (i.e., the Kullback

Leibler distance between the distributions under H0 and H1) reduces to the mutual

information between suitable random variables. For example, with centralized test,

the optimal error exponent becomes I(X;Y ). Our focus in the large sample regime is

to study quantizer properties in the context of distributed test against independence

with Gaussian sources. Motivated by practical constraints that often require simple

sensor processing, we consider only scalar quantizers at local sensors with 1 bit per

observation. That is, R1 = R2 = 1 and each sensor quantizer is ‘memoryless’. Our

objective will be therefore to determine the optimal scalar quantizer structure that

maximizes I(U, V ) where U and V are the one bit quantizer output for the two

sensors.

Characterizing optimal error exponents for dependence test with communication

constraints was first considered by Ahlswede and Csiszár [78]. In particular, for the
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special case of test of independence problem with one sided data compression, i.e.,

R2 = ∞, a single letter characterization of the optimal error exponent was obtained

in [78]. An overview of related work can be found in [80] and the references therein.

We note here that the majority of the reported work are largely restricted to (X, Y )

being discrete memoryless sources. Distributed test of independence with continuous

alphabet sources (e.g., Gaussian sources) have been much less investigated.

We will also study distributed test of independence in the finite sample regime,

where asymptotic error exponent result can not apply. We consider a Bayesian ap-

proach where the priors for the two hypotheses are assumed to be π0 and π1 re-

spectively. We derive quantizer properties for minimum error probability with both

two-sided and one-sided tests, with the latter referring to the situation of H0 : ρ > 0

and H1 : ρ = 0.

The rest of the chapter is organized as follows. In Section 7.1, we give the problem

statement and our main results. Section 7.2 are numerical examples. At last, we

conclude in section 7.3.

7.1 Problem statement and main results

Consider the following hypothesis testing of independence problem for standard zero

mean bivariate Gaussian source.

H0 : (X1, X2) ∼ PX1X2 ,

H1 : (X1, X2) ∼ QX1X2,
(7.2)

where PX1X2 and QX1X2 are given by

H0 : PX1,X2(x1, x2) =
1

2π
√

1 − ρ2
exp

(

− 1

2(1 − ρ2)
(x2

1 − 2ρx1x2 + x2
2)
)

, ρ 6= 0,

H1 : QX1,X2(x1, x2) =
1

2π
exp(−(x2

1 + x2
2)/2). (7.3)

We assume that the source sequences (xn1 , x
n
2 ) are i.i.d. according to the corre-

sponding hypothesis. The fusion center does not have direct access to the source

sequence (xn1 , x
n
2 ), but can be informed about the source only at limited rates. Pre-

cisely, the local sensors encode the source sequence (xn1 , x
n
2 ) into (uk11 , u

k2
2 ), respec-

tively, where

1

n
log ‖Uk1

1 ‖ =
k1

n
≤ R1 (7.4)
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1

n
log ‖Uk2

2 ‖ =
k2

n
≤ R2 (7.5)

We assume that there are no errors for the transmission of uk11 and uk22 . The fusion

center will make the final decision U0 based on received uk11 and uk22 . The model is

shown in Fig.7.1.

H

Xn
1

Xn
2

Sensor 1

Sensor 2

Fusion

Center

Uk1
1

Uk2
2

U0

Figure 7.1: Hypothesis testing with communication constraints.

7.1.1 Large sample regime

Consider the hypothesis test described in (7.2). The fusion center does not have direct

access to the source sequence (Xi, Yi), i = 1, 2, · · · , n, but can be informed about the

sources only at limited rates. Precisely, the local sensors apply scalar quantizers to

their respective observations:

Ui = γ1(Xi),

Vi = γ2(Yi),

where Ui and Vi ∈ {0, 1}.
For the large sample regime, the fusion center will decide H0 or H1 given the

sequence (Ui, Vi) i = 1, · · · , n and we are to characterize the optimal quantizers that

maximize the error exponent. Using the Neyman-Pearson criterion, we assume that

the rejection region is the set B ⊂ X n whose complement of B is B̄. The minimum

probability of type II error for a prescribed arbitrary small probability of type I error,

denoted by βR1,R2(n, ǫ), is defined as

βR1,R2(n, ǫ) = min
B

{Qn(B̄)|B ⊂ X n, P n(B) ≤ ǫ}. (7.6)
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The error exponent associated with βR1,R2(n, ǫ) is, under the problem setup, the

mutual information between U and V , I(U, V ). Our problem becomes finding a pair

of binary quantizers such that I(U, V ) is maximized.

By restricting each sensor to an one bit scalar quantizer, we have the following

result.

Theorem 13 For the distributed test of independence problem described in (7.2)

where each local quantizer is restricted to be one bit scalar quantizer with a single

threshold, the optimal quantizers that maximize the error exponent are a sign detec-

tor, i.e., a binary quantizer with threshold

t1 = t2 = 0. (7.7)

Remark: while the result is rather intuitive with the symmetric problem setting,

the proof is rather lengthy and is sketched in Appendix I. Notice that the result relies

on the assumption of a single threshold quantizer: it is not known if such restriction

may be relaxed though it appears to be the case from extensive numerical examples.

7.1.2 Finite sample regime

For the finite sample regime, we consider a Bayesian approach where the priors for

the two hypotheses are assumed to be π0 and π1 respectively. We derive quantizer

properties for minimum error probability with both two-sided and one-sided compres-

sion, with the latter referring to the situation in which the fusion center has full data

from one sensor while compressed data from another. This situation arises naturally

in the case where one of the sensors is tasked with the final decision making.

For the finite sample regime, we adopt the person-by-person optimal approach and

obtain the following result for two-sided compression, following standard approach

described in [81].

Proposition 15 For the distributed testing of independence problem with one bit

quantization defined above. If we further assume the fusion rule satisfies,

P (U0 = 1|U = 1, V = j) ≥ P (U0 = 1|U = 0, V = j),

P (U0 = 0|U = 0, V = j) ≥ P (U0 = 0|U = 1, V = j),

for all j = {0, 1}, then the optimal local decision rule at ith sensor is given by:

P (Ui = 1|xi) =







1 if

∫

x
ī
BiP (xī|xiH1)dxī

∫

x
ī
AiP (xī|xiH0)dxī

≥ π0

π1

0 otherwise
(7.8)
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where ī = 3 − i, for i = 1, 2, (hence, x1̄ = Y ), π0 = P (H0), π1 = P (H1), and Ai, Bi,

i = 1, 2, are given by

Ai =

1
∑

j=0

[P (U0 = 1|Ui = 1, Uī = j) − P (U0 = 1|Ui = 0, Uī = j)]P (Uī = j|xī),(7.9)

Bi =
1
∑

j=0

[P (U0 = 0|Ui = 0, Uī = j) − P (U0 = 0|Ui = 1, Uī = j)]P (Uī = j|xī).(7.10)

If furthermore the fusion center uses the AND rule, we have

Proposition 16 For the distributed test of independence problem with one bit quan-

tization defined above, if we assume further that AND rule is used at the fusion center,

i.e., U0 = 1 if and only if U = V = 1, then the optimal local decision rule is given by:

P (Ui = 1|xi) =







1 if

∫

D
ī
P (xī|xiH1)dxī

∫

D
ī
P (xī|xiH0)dxī

≥ π0

π1

0 otherwise
(7.11)

where Di = {xi : P (Ui = 1|xi) = 1} is the rejection region for hypothesis H0 at ith

local sensor.

For the case of one sided hypothesis testing of independence, e.g., H0 : ρ > 0

versus H1 : ρ = 0, we have the following corollary.

Corollary 7 For the distributed one sided hypothesis testing of independence problem

with one bit quantization defined above, single semi-infinite intervals for D1 and D2

form a PBPO solution for minimum probability of error.

The fact that optimal quantizer has semi-infinite quantization intervals is rather ap-

pealing as it allows efficient search of a single threshold for quantizer design. Proofs of

Propositions 15 and 16 are sketched in Appendix J. Corollary 7 is proved in Appendix

L.

7.2 Numerical examples

Fig. 7.2 plots I(U ;V ) as a function of thresholds t1 and t2 for ρ = 0.65. Apparently

I(U ;V ) achieves its maximum (≈ 0.15) when (t1, t2) = (0, 0). We further conjecture

that, this point is actually a global maximum which is corroborated by extensive
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Figure 7.2: Plot of I(U ;V ) as a function of thresholds t1 and t2 for ρ = 0.65.

numerical results. The difficulty in proving it’s global maximum is that we do not

have an analytical expression of bivariate normal cumulative function in general.

An interesting example of applying our main result is the spectrum sensing prob-

lem in cognitive radio network, where a secondary user tries to detect whether the

primary user is present or not, i.e.,

{

H0 : X 6= 0,

H1 : X = 0.
(7.12)

While the problem is well understood when the primary user’s signal is fully observed

(maybe corrupted by noise), it is more challenging when only a finite bits of infor-

mation can be received. In this example, we study this spectrum sensing problem in

a distributed fashion. Consider the following model, local sensor Y1 and Y2 receive

noisy version of the original signal through independent additive Gaussian channels.

Y n
1 = Xn +Nn

1 , (7.13)

Y n
2 = Xn +Nn

2 , (7.14)

where Xn is a n length sample of the original random process, either present or not,

i.e., Xn = [x1, x2, · · · , xn] or Xn = [0, 0, · · · , 0]. In this example, we assume that X

is a zero mean independent Gaussian random process with variance P . The noise N1

and N2 are independent standard Gaussian random variables.
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After receiving Y n
i , sensor i will send a binary decision vector uni to the fusion

center, the fusion center will then decide wether the original signal is present or not.

Clearly, if X is present, with high probability, the received signals at local sensors

Y1 and Y2 are correlated (In the simulation, we choose P = 2.857 to make sure that

the correlation of Y1 and Y2 under H0 is 0.65 ). Based on this property, we use the

following decision rules, for k = 1, 2 and i = 1, 2, · · · , n

uki = 1 if
yki√
P + 1

> t. (7.15)

The fusion center will first calculate u0i = 1 if and only if u1i = u2i for i = 1, 2, · · · , n,

and then make a final decision using the following rule,

u = 1 if
n
∑

i=1

u0i ≥ t0(n), (7.16)

where t0(n) is chosen so that the probability of type I error Pe1 = 0.1. Since, under

H0,
∑n

i=1 u0i is a binomial distribution with probability of success p = Pr0(u1i = u2i),

which can be easily calculated, hence, t0(n) can be easily calculated numerically for

each n.
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Figure 7.3: Probability of error for spectrum sensing.

Fig. 7.3 shows the performances of the above algorithm. In the simulation, we

assume that Pr(H0) = 0.8, and we choose five different local decision thresholds
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(t = −1.5,−0.5, 0, 0.5, 1.5) in (7.15). To compare the performance, we also plot the

optimal error exponent I(U ;V ) as plotted in Fig. 7.2. As we can see from the figure,

even with 1 bit of information, we can still achieve a relatively low probability of

error. We also observe that as number of samples increases, the probability of error

decreases, and the threshold t = 0 performs the best among others.

7.3 Conclusion

In this chapter, we studied distributed test of independence of bivariate Gaussian

sources with communication constraints. In particular, with one bit quantization, we

derived quantization rules for single threshold quantizer at the local sensors that op-

timize the error exponent. For distributed one sided independence testwe proved that

semi-infinite interval quantizers form a person by person optimal (PBPO) solution

for minimum probability of error.
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Chapter 8

Conclusion and future work

This dissertation deals with various aspects of correlated observations in distributed

systems, including transmitting correlated sources over interference channels, charac-

terizing the common information of random variables that carries meaningful oper-

ational interpretation, and testing the presence of data dependence in a distributed

network.

First, a sufficient condition for the lossless transmission of a pair of correlated

sources over a DMIC was given. By exploring the correlated source structure, a

coding scheme that uses the random source partition as well as the correlation pre-

serving codeword generation was introduced. The proposed coding scheme was proved

to be optimal in a class of deterministic interference channels. The lossy counterpart

was first studied by considering the special case of transmitting correlated Gaussian

sources over a Gaussian Z interference channel (GZIC). Lower bounds on the distor-

tion as well as several achievable schemes including uncoded transmission, separated

source channel coding, and hybrid digital analog coding were proposed. We then stud-

ied the general case of lossy transmission of two arbitrarily correlated sources over

a DMIC, as well as sending correlated Gaussian source over a Gaussian interference

channel (GIC).

The measure of common information of correlated random variables was also stud-

ied in this thesis. A generalization of Wyner’s definition of common information to

N random variables was given, and an operational meaning was provided. More-

over, a monotone property of Wyner’s common information was given, which is in

contrast to other notions of the common information, specifically Shannon’s mutual

information and Gács and Körner’s common randomness. Later, a generalization of

Wyner’s common information for continuous random variables is provided. An op-
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erational meaning for such generalization using the Gray-Wyner network with lossy

source coding was provided. It was shown that Wyner’s common information equals

the smallest common message rate when the total rate is arbitrarily close to the rate-

distortion function with joint decoding. A surprising observation is that such equality

holds independent of the values of distortion constraints as long as the distortions are

less than certain thresholds.

Finally, the problem of distributed testing of independence was studied. A neces-

sary condition for the optimal scalar quantizer is derived where the optimality is in

the sense of optimizing the error exponent. The optimal quantizer properties for the

finite sample regime was also provided.

For future work, some possible directions are summarized as follows.

• The proposed coding scheme in Chapter 2 is shown to be optimal in a class of

deterministic interference channels. It will be interesting to see whether such

optimality is still valid for more general cases. A possible direction is to pro-

vide a necessary condition to quantify the gap between the proposed sufficient

condition and the necessary condition, and to see under which conditions there

two coincide with each other.

• The hybrid digital analog coding scheme proposed in Chapter 3, though com-

bining both the uncoded scheme and digital transmission, does not seems to

dominate those two by simulation. The reason is that, the hybrid scheme in

Chapter 3 restricts sender 1 to implementing an uncoded transmission with full

power and sender 2 to a digital coding scheme to facilitate the transmission. A

possible extension is hence to let both transmitters do a hybrid digital analog

transmission. Intuitively, this scheme will include the uncoded transmission and

separated transmission as special cases.

• For the general case of lossy transmission of correlated sources over DMIC

studied in Chapter 4. The proposed scheme does reduce to Salehi and Kurtas’s

result for the lossless transmission. However, it can not reduce to the result

studied in Chapter 2. The sufficient conditions in Chapter 2 includes Han and

Kobayashi achievable region for ICs when the sources are independent. The

technical reason behind this observation is that the proposed coding scheme

uses the idea of random source partition that allows the other receiver to decode

part of the interference, hence mimic the idea of partial interference cancelation

as proposed in Han an Kobayashi’s coding scheme. The coding scheme proposed
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in Chapter 4 does not have such source partition. A possible direction is thus to

propose a more general coding scheme that will include the sufficient condition

in Chapter 2 as a special case.

• In Chapter 5, we generalized Wyner’s common information to N random vari-

ables. It is interesting to observe that Wyner’s common information is a non-

decreasing function of the number of random variables. Moreover, the common

information eventually converges and the asymptote suggests that the notion

of common information may have potential application and in certain infer-

ence problems. The circular symmetric binary source example in Chapter 5 as

well as the Gaussian source example in Chapter 6 both indicate such relation-

ship between the common information and inferencing about the hidden source.

What is common between the two examples is that the sources can be decom-

posed into a simple Bayesian graph model that shares a common source, either

through a binary symmetric channel or an additive Gaussian channel. Such

source decomposition may provide a way to quantify the common information

as well as a structure for source inferencing based on correlated observations. A

quantitive measure of such relationship is hence worthwhile to pursue for this

kind of sources or even more general classes of sources.

• For the distributed testing of independence studied in Chapter7, a locally opti-

mal quantization rule is provided, although simulation results showed that such

optimality might be global. A proof for the global optimality is worthwhile

to pursue in the future. Moreover, the model considered in Chapter7 is a two

sided test in the sense that, both transmitters need to quantize its observation.

Another situation that one of the observation is fully available at the fusion cen-

ter is also important both in theory and practical. Theoretically, the optimal

error exponent for this case is known, and practically, this models the situation

where the fusion center has its own measurement about the phenomenon. The

optimal scale quantization rule for this model is another possible direction for

future research.
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Appendix A

Proof of the sufficient condition:

Theorem 1

Theorem 1 can be obtained via Fourier-Motzkin elimination from the following con-

straints.

H(S|K) − r1 < I(SX1;Y1|W0W1W2K), (A.1)

H(S|K) < I(SX1;Y1|W0W2K), (A.2)

H(S|K) − r1 + r2 < I(SW2X1;Y1|W0W1K), (A.3)

H(S|K) + r2 < I(W2SX1;Y1|W0K), (A.4)

H(S) + r2 < I(W0W2SX1;Y1), (A.5)

H(T |K) − r2 < I(TX2;Y2|W0W1W2K), (A.6)

H(T |K) < I(TX2;Y2|W0W1K), (A.7)

H(T |K) − r2 + r1 < I(TW1X2;Y2|W0W2K), (A.8)

H(T |K) + r1 < I(W1TX2;Y2|W0K), (A.9)

H(T ) + r1 < I(W0W1TX2;Y2), (A.10)

r1 ≥ 0, (A.11)

r2 ≥ 0. (A.12)

Therefore, it suffices to prove, for decoder 1, that equations (A.1-A.5) constitute

a sufficient condition. As sketched in Section III, the coding scheme utilizes Cover-El

Gamal-Salehi’s [2] correlation preserving coding and also Han and Costa’s [3] random

source partition.
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a) Random partition of the source sequences: Let r1 ≥ 0, r2 ≥ 0 be any nonnegative

real numbers. Randomly place source sequences Sn ∈ Sn into 2nr1 cells and denote

the cell index for a given sn by α = l1(s
n) ∈ I1 = {1, 2, · · · , 2nr1}. Similarly, randomly

place each T n ∈ T n into 2nr2 cells and denote the cell index for a given tn by β =

l2(t
n) ∈ I2 = {1, 2, · · · , 2nr2}. For this random source partition, we have the following

lemma as in [3].

Lemma 4 Let S0, T0 be any subset of Sn and T n, respectively. Then for any α ∈ I1

and β ∈ I2, we have,

E(|{sn ∈ S0} : l1(s
n) = α|) = |S0| × 2−nr1, (A.13)

E(|{tn ∈ T0} : l2(t
n) = β|) = |T0| × 2−nr2, (A.14)

where E{·} denotes the expectation.

b) Codebook generation: For any given joint distribution defined in (2.9), we

first calculate the following distributions: p(w0), p(w1|w0), p(w2|w0), p(x1|w0w1s) and

p(x2|w0w2t).

For each kn ∈ Kn, independently generate one wn0 sequence according to
∏n

i=1 p(w0i).

Index them by wn0 (kn). For each source sequence sn, find its cell index α and the cor-

responding auxiliary sequence wn0 (f(sn)), and independently generate one codeword

wn1 according to
∏n

i=1 p(w1i|w0i). Index them by wn1 (α,wn0 ). Next, for each sn, find

the corresponding wn0 (f(sn)) and wn1 (α,wn0 ), independently generate one codeword xn1
according to

∏n
i=1 p(x1i|w0iw1isi). Index them by xn1 (sn, wn0 , w

n
1 ). Similarly, generate

codewords wn2 (β, wn0 ) and xn2 (tn, wn0 , w
n
2 ) for user 2.

Notice that, for user 1, there are three sets of codewords: wn0 (kn), wn1 (α,wn0 ) and

xn1 (sn, wn0 , w
n
1 ). Here, wn0 (kn) carries the information corresponding to the common

part of the sources; wn1 (α,wn0 ) carries the information of the cell index of the source sn

which is superimposed on top of wn0 ; xn1 (sn, wn0 , w
n
1 ) carries the private information of

the source sn and is superimposed on top of both wn0 and wn1 . The codebook structure

for user 2 is similar.

c) Encoding: Upon observing sn, encoder 1 finds the cell index α = l1(s
n), code-

words wn0 (f(sn)) and wn1 (α,wn0 ), and then sends the corresponding xn1 (sn, wn0 , w
n
1 ).

Similarly, encoder 2 sends xn2 (tn, wn0 , w
n
2 ).

d) Decoding: Upon receiving yn1 , decoder 1 declares ŝn = sn to be the transmitted

source sequence if sn is the unique sequence such that

(sn, kn, wn0 , w
n
1 , x

n
1 , w

n
2 , y

n
1 ) ∈ T nǫ (SKW0W1X1W2Y1). (A.15)
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Similarly, decoder 2 finds the unique tn such that

(tn, kn, wn0 , w
n
2 , x

n
2 , w

n
1 , y

n
2 ) ∈ T nǫ (TKW0W2X2W1Y2). (A.16)

e) Error analysis: Encoding error occurs only if the source sequence pairs (sn, tn) /∈
T nǫ (ST ) whose probability is bounded by ǫ from the asymptotic equipartition property

(AEP) [35]. By symmetry, we only need to consider decoding errors at receiver 1.

Suppose (sn0 , t
n
0 ) ∈ T nǫ are the source outputs, with kn0 = f(sn0 ) = g(tn0 ). Without

loss of generality, we assume that α = 1 and β = 1, i.e., l1(s
n
0 ) = 1 and l2(t

n
0 ) = 1,

and also wn0 (kn0 ) = wn00. Denote L1(1) = {sn : l1(s
n) = 1}, L2(1) = {tn : l2(t

n) = 1}.
Then an error occurs if any one of the following events happens:

1. E11 :
(

sn0 , k
n
0 , w

n
0 (kn0 ), wn1 (1, wn0 ), xn1 (sn0 , w

n
0 , w

n
1 ), wn2 (1, wn0 ), yn1

)

/∈ T nǫ (SKW0W1X1W2Y1).

2. E12: there exists some sn 6= sn0 in the cell α = 1, i.e., l1(s
n) = 1, and

β = 1, such that,
(

sn, kn0 , w
n
0 (kn0 ), wn1 (1, wn0 ), xn1 (sn, wn0 , w

n
1 ), wn2 (1, wn0 ), yn1

)

∈
T nǫ (SKW0W1X1W2Y1).

3. E13: there exists some sn 6= sn0 in the cell α = 1, i.e., l1(s
n) = 1, and β 6= 1,

such that,
(

sn, kn0 , w
n
0 (kn0 ), wn1 (1, wn0 ), xn1 (sn, wn0 , w

n
1 ), wn2 (β, wn0 ), yn1

)

∈ T nǫ (SKW0W1X1W2Y1).

4. E14: there exists some sn 6= sn0 in the cell α 6= 1, i.e., l1(s
n) = α, and β = 1,

such that,
(

sn, kn0 , w
n
0 (kn0 ), wn1 (α,wn0 ), xn1 (sn, wn0 , w

n
1 ), wn2 (1, wn0 ), yn1

)

∈ T nǫ (SKW0W1X1W2Y1).

5. E15: there exists some sn 6= sn0 in the cell α 6= 1, i.e., l1(s
n) = α, and β 6= 1,

such that,
(

sn, kn0 , w
n
0 (kn0 ), wn1 (α,wn0 ), xn1 (sn, wn0 , w

n
1 ), wn2 (β, wn0 ), yn1

)

∈ T nǫ (SKW0W1X1W2Y1).

6. E16: there exists some sn 6= sn0 in the cell α 6= 1, i.e., l1(s
n) = α, and β 6= 1,

such that,

kn = f(sn) 6= kn0 , wn0 (kn) 6= wn0 (kn0 )

and
(

sn, kn, wn0 (kn), wn1 (α,wn0 ), xn1 (sn, wn0 , w
n
1 ), wn2 (β, wn0 ), yn1

)

∈ T nǫ (SKW0W1X1W2Y1).

7. E17: there exists some sn 6= sn0 in the cell α 6= 1, i.e., l1(s
n) = α, and β 6= 1,

such that,

kn = f(sn) 6= kn0 , wn0 (kn) = wn0 (kn0 )

and
(

sn, kn, wn0 (kn), wn1 (α,wn0 ), xn1 (sn, wn0 , w
n
1 ), wn2 (β, wn0 ), yn1

)

∈ T nǫ (SKW0W1X1W2Y1).
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Hence, the probability of error at decoder 1 is

Pe1 = Pr{∪7
i=1E1i} ≤

7
∑

i=1

Pr{E1i}. (A.17)

We evaluate the probabilities of the seven error events individually. First, by the

AEP,

Pr{E11} ≤ ǫ, (A.18)

for sufficiently large n. For the second event, we have,1

Pr{E12}
= E

(

∑

sn∈L1(1)∩Tn
ǫ (S)

Pr
(

(sn, kn0 , w
n
0 (kn0 ), wn1 (1, wn0 ), xn1 (sn, wn0 , w

n
1 ), wn2 (1, wn0 ), yn1 ) ∈ T nǫ

)

,

= E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

p(knwn0w
n
1w

n
2y

n
1 )p(sn)p(xn1 |snwn1wn0 )

)

,

≤ E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

|T nǫ (SKW0W1X1W2Y1)|2−n(H(KW0W1W2Y1)2−n(H(S)+H(X1|SW1W0)−3ǫ)
)

,

≤ E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

2n(H(SKW0W1X1W2Y1)−H(KW0W1W2Y1))2−n(H(S)+H(X1|SW1W0)−4ǫ)
)

,

= E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

2n(H(S|KW0W1W2)+H(X1Y1|SKW0W1W2)),

·2−n(H(Y1|KW0W1W2)+H(S)+H(X1|SW1W0)−4ǫ)
)

,

(a)
= E

(

∑

sn∈L1(1)∩Tn
ǫ (S)

2n(H(S|K)+H(Y1|SKW0W1W2X1))2−n(H(S)+H(Y1|KW0W1W2)−4ǫ)
)

,

≤ 2n(H(S)+ǫ−r1)2−n(I(SX1;Y1|KW0W1W2)+I(S;K))+4ǫ),

= 2n(H(S|K)−r1−I(SX1;Y1|KW0W1W2)+5ǫ), (A.19)

where (a) is because W0W1W2 → K → S and W2 → SW0W1 → X1 form Markov

chains and K is a deterministic function of S.

For the third event, we have,

Pr{E13}
= E

(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

β 6=1

Pr((sn, kn0 , w
n
0 , w

n
1 (1, wn0 ), xn1 (sn, wn1 , w

n
0 ), wn2 (β, wn0 ), yn1 ) ∈ T nǫ )

)

,

1For notational ease, we use T n

ǫ
to denote the typical set T n

ǫ
(SKW0W1X1W2Y1) below.
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= E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

β 6=1

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

p(sn)p(wn2 |wn0 )p(xn1 |snwn0wn1 )p(knwn0w
n
1y

n
1 )
)

,

≤ E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

β 6=1

2n(H(SKW0W1W2X1Y1)2−n(H(S)+H(W2|W0)+H(X1|W1W0S)+H(KW0W1Y1)−5ǫ),

= E
(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

β 6=1

2n(H(S|KW0W1)+H(W2X1Y1|SKW0W1)),

·2−n(H(S)+H(W2|W0)+H(X1|W1W0S)+H(Y1|KW0W1)−5ǫ)
)

,

(a)
= E

(

∑

sn∈L1(1)∩Tn
ǫ (S)

∑

β 6=1

2−n(I(S;K)+I(SW2X1;Y1|KW0W1)−5ǫ)
)

≤ 2n(H(S)+ǫ−r1+r2)2−n(I(S;K)+I(SW2X1;Y1|KW0W1)−5ǫ),

= 2n(H(S|K)−r1+r2−I(SW2X1;Y1|KW0W1)+6ǫ), (A.20)

where (a) is because SW1 → W0 → W2 and W2 → SW0W1 → X1 form Markov

chains and K is a deterministic function of S.

For the fourth event, we have,

Pr{E14}
= E

(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

Pr((sn, kn0 , w
n
0 , w

n
1 (α,wn0 ), xn1 (sn, wn1 , w

n
0 ), wn2 (1, wn0 ), yn1 ) ∈ T nǫ )

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

p(sn)p(wn1 |wn0 )p(xn1 |snwn0wn1 )p(wn0 )

·p(knwn2yn1 |wn0 )
)

,

≤ 2n(H(S)+ǫ)2n(H(SKW0W1W2X1Y1)2−n(H(SW0W1X1)+H(KW2Y1|W0)+6ǫ),

= 2n(H(S)−I(SW1X1;KW2Y1|W0)+7ǫ),

= 2n(H(S)−I(SW1X1;W2|W0)−I(SX1;Y1K|W0W2))2−n(I(W1;Y1|W0W2X1S)−7ǫ),
(a)
= 2n(H(S)−I(SX1;Y1K|W0W2)+7ǫ),

= 2n(H(S)−I(S;K|W0W2)−I(X1;K|W0W2S))2−n(I(SX1;Y1|KW0W2)−7ǫ),
(b)
= 2n(H(S|K)−I(SX1;Y1|KW0W2)+7ǫ), (A.21)

where (a) is because W2 → W0 → SW1X1 and W1 → SW0W2X1 → Y1 form Markov

chains; (b) is because S is independent of W0W2 and W0W2 → K → S forms a

Markov chain and also K is a deterministic function of S.

For the fifth event, we have,
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Pr{E15}
= E

(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

Pr((sn, kn0 , w
n
0 , w

n
1 (α,wn0 ), xn1 (sn, wn1 , w

n
0 ), wn2 (β, wn0 ), yn1 ) ∈ T nǫ )

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

p(sn)p(wn1 |wn0 )

·p(wn2 |wn0 )p(xn1 |snwn0wn1 )p(knwn0y
n
1 )
)

,

≤ 2n(H(S)+r2+ǫ)2n(H(SKW0W1W2X1Y1)−H(KW0Y1))2−n(H(S)+H(W1W2|W0)+H(X1|SW0W1)−6ǫ),

= 2n(H(S)+r2+H(SKX1Y1|W0W1W2))2−n(H(KY1|W0)+H(S)+H(X1|SW0W1)−7ǫ),
(a)
= 2n(H(S)+r2+H(SX1Y1|KW0W1W2))2−n(H(Y1|KW0)+H(S)+H(X1|SW0W1)−7ǫ),
(b)
= 2n(H(S)+r2+H(S|K)+H(X1Y1|SKW0W1W2))2−n(H(S)+H(Y1|KW0)+H(X1|SW0W1)+7ǫ),
(c)
= 2n(H(S|K)+r2−I(SW1W2X1;Y1|KW0)+7ǫ),

= 2n(H(S|K)+r2−I(W2SX1;Y1|KW0))2−n(I(W1;Y1|SKW0W2X1)−7ǫ),
(d)
= 2n(H(S|K)+r2−I(W2SX1;Y1|KW0)+7ǫ), (A.22)

where (a) is becauseK is independent ofW0W1W2; (b) is because W0W1W2 → K → S

forms a Markov chain; (c) is because W2 → SW0W1 → X1 forms a Markov chain; (d)

is because W1 → SW0W2X1 → Y1 forms a Markov chain.

For the sixth event, we have,

Pr{E16}
= E

(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

,

P r(sn, kn, wn0 (kn), wn1 (α,wn0 ), xn1 (sn, wn1 , w
n
0 ), wn2 (β, wn0 ), yn1 ) ∈ T nǫ );wn0 (kn) 6= wn00)

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

wn
0 ∈Wn

0

p(wn0 = w′n
0 )

·Pr(sn, kn, w′n
0 (kn), wn1 (α,w′n

0 ), xn1 (sn, wn1 , w
′n
0 ), wn2 (β, w′n

0 ), yn1 ) ∈ T nǫ )|w′n
0 6= wn00)

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

∑

wn
0 ∈Tn

ǫ (W0)

p(w′n
0 )

p(snknw′n
0 w

n
1w

n
2x

n
1 )p(yn1 )

)

,

≤ 2n(H(S)+r2+ǫ)2n(H(W0)+ǫ)2−n(H(W0)+ǫ)2n(H(SKW0W1W2X1Y1)−H(SKW0W1W2X1)−H(Y1)+3ǫ)

= 2n(H(S)+r2−I(SKW0W1W2X1;Y1)+4ǫ),
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= 2n(H(S)+r2−I(SW0W2X1;Y1)−I(W1;Y1|SW0W2X1)+4ǫ),
(a)
= 2n(H(S)+r2−I(SW0W2X1;Y1)+4ǫ), (A.23)

where (a) is because W1 → SW0W2X1 → Y1 forms a Markov chain.

For the last event, we have,

Pr{E17}
= E

(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

Pr(sn, kn, wn0 (kn), wn1 (α,wn0 ), xn1 (sn, wn1 , w
n
0 ),

wn2 (β, wn0 ), yn1 ) ∈ T nǫ ;wn0 (kn) = wn00)
)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

w′n
0 ∈Wn

0

p(w′n
0 )p(w′n

0 = wn00)Pr(s
n, kn, w′n

0 (kn), wn1 (α,w′n
0 ),

xn1 (sn, wn1 , w
′n
0 ), wn2 (β, w′n

0 ), yn1 ) ∈ T nǫ |w′n
0 = wn00)

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

w′n
0 ∈T ǫ

n(W0)

p(w′n
0 )p(w′n

0 = wn00)Pr(s
n, kn, w′n

0 (kn), wn1 (α,w′n
0 ),

xn1 (sn, wn1 , w
′n
0 ), wn2 (β, w′n

0 ), yn1 ) ∈ T nǫ |w′n
0 = wn00)

)

,

= E
(

∑

α6=1

∑

sn∈L1(α)∩Tn
ǫ (S)

∑

β 6=1

∑

(sn,kn,wn
0 ,w

n
1 ,x

n
1 ,w

n
2 ,y

n
1 )∈Tn

ǫ

∑

w′n
0 ∈Tn

ǫ (W0)

p(w′n
0 )p(w′n

0 = wn00)

p(snknwn1w
n
2x

n
1 |wn0 )p(wn0y

n
1 )
)

,

≤ 2n(H(S)+r2+ǫ)2n(H(W0)+ǫ)2−n(H(W0−ǫ))2−n(H(W0)−ǫ)

·2n(H(SKW0W1W2X1Y1)−H(SKW0W1W2X1)−H(Y1|W0)+3ǫ),

= 2n(H(S)+r2−H(W0)−I(SKW1W2X1;Y1|W0)+7ǫ),
(a)
= 2n(H(S)+r2−H(W0)−I(SW2X1;Y1|W0)+7ǫ), (A.24)

where (a) is because W1 → SW0W2X1 → Y1 forms a Markov chain and K is a

deterministic function of S.

From (A.19)-(A.24), if the following conditions are satisfied, then the probability

of error at decoder 1 will vanish as n goes to infinity.

H(S|K) − r1 < I(SX1;Y1|W0W1W2K), (A.25)

H(S|K) < I(SX1;Y1|W0W2K), (A.26)

H(S|K) − r1 + r2 < I(SW2X1;Y1|W0W1K), (A.27)
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H(S|K) + r2 < I(W2SX1;Y1|W0K), (A.28)

H(S) + r2 < I(W0W2SX1;Y1), (A.29)

H(S) + r2 < I(W2SX1;Y1|W0) +H(W0). (A.30)

One can easily check that (A.30) is dominated by (A.29), since, I(W0;Y1) ≤
H(W0).

This establishes (A.1-A.5). Similarly, (A.6-A.10) can be established symmetrically

for decoder 2. The proof of Theorem 1 is complete by applying the Fourier-Motzkin

elimination to (A.1-A.12).
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Appendix B

Proof of the necessary and

sufficient condition: Theorem 2

1. Achievability: follows from Corollary 2 by setting W0 = Q,W1 = V1,W2 = V2

and choosing the joint distribution as

p(q, v1, v2, x1, x2) = p(q)p(v1|q)p(v2|q)p(x1|q, v1)p(x1|q, v2). (B.1)

2. Converse: We first prove that for any non-deterministic encoders that achieve

a decoding error P ∗
e for transmitting the source through the channel, there exists

a deterministic encoder which achieves a decoding error Pe ≤ P ∗
e . This can be

proved following the lines of [32, Appendix D]. Next, we want to show that the

inequalities (2.55-2.67) should be satisfied.

Consider a deterministic encoder with Pe ≤ ǫ. Notice that this implies Pe1 ≤ ǫ

and Pe2 ≤ ǫ. By Fano’s inequality, we have (for notation convenience, we denote

S
′

as S1 and T
′

as T1 from now on),

H(Kn, Sn1 |Y n
1 ) ≤ nǫ. (B.2)

Hence, we get,

H(Sn1 |Kn
1 , Y

n
1 ) ≤ nǫ, (B.3)

H(T n1 |Kn
1 , Y

n
1 ) ≤ nǫ. (B.4)

Notice that

H(Y n
1 , V

n
2 |Kn, Sn1 ) = H(Y n

1 , V
n
2 |Kn, Sn1 , X

n
1 ), (B.5)
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and by expanding H(Y n
1 , V

n
2 |Kn, Sn1 , X

n
1 ) in two different ways, it can be easily

shown that

H(V n
2 |Xn

1 S
n
1K

n) = H(Y n
1 |Xn

1 S
n
1K

n). (B.6)

Hence,

H(V n
2 |Sn1Kn) = H(Y n

1 |Sn1Kn), (B.7)

H(V n
2 |Kn) = H(Y n

1 |Sn1Kn). (B.8)

Similarly, we have

H(V n
1 |Kn) = H(Y n

2 |T n1 Kn). (B.9)

Next, we want to show that

I(Sn1 ;Y n
1 |Kn) ≤ I(Sn1 ;Y n

1 V
n
1 |V n

2 K
n), (B.10)

I(T n1 ;Y n
2 |Kn) ≤ I(T n1 ;Y n

2 V
n
2 |V n

1 K
n). (B.11)

Inequality (B.10) can be shown as follows,

I(Sn1 ;Y n
1 |Kn)

= H(Sn1 |Kn) −H(Sn1 |Y n
1 K

n), (B.12)

≤ H(Sn1 |V n
2 K

n) −H(Sn1 |Y n
1 V

n
2 K

n), (B.13)

≤ H(Sn1 |V n
2 K

n) −H(Sn1 |Y n
1 V

n
1 V

n
2 K

n), (B.14)

= I(Sn1 ;Y n
1 V

n
1 |V n

2 K
n). (B.15)

Similarly, we can obtain (B.11).

We now proceed to prove each of (2.55-2.67).

For inequality (2.55), we have,

H(Sn1 ) = H(Sn1 |Kn), (B.16)

= H(Sn1 |KnV n
2 ), (B.17)

= I(Sn1 ;Y n
1 |KnV n

2 ) +H(Sn1 |Y n
1 K

nV n
2 ), (B.18)

≤ I(Sn1 ;Y n
1 |KnV n

2 ) + nǫ, (B.19)

= H(Y n
1 |KnV n

2 ) + nǫ, (B.20)

≤
n
∑

i=1

H(Y1i|KnV2i) + nǫ. (B.21)
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Similarly, for (2.56), we get

H(T n1 ) ≤
n
∑

i=1

H(Y2i|KnV1i) + nǫ. (B.22)

As for (2.57), we have,

H(Kn) +H(Sn1 ) = H(KnSn1 ), (B.23)

= I(KnSn1 ;Y n
1 ) +H(KnSn1 |Y n

1 ), (B.24)

≤ I(KnSn1 ;Y n
1 + nǫ, (B.25)

≤ H(Y n
1 ) + nǫ, (B.26)

≤
n
∑

i=1

H(Y1i) + nǫ. (B.27)

Similarly, we get

H(Kn) +H(T n1 ) ≤
n
∑

i=1

H(Y2i) + nǫ. (B.28)

For inequality (2.59), we have,

H(Sn1 ) +H(T n1 )

= H(Sn1 |Kn) +H(T n1 |Kn), (B.29)

≤ I(Sn1 ;Y n
1 |Kn) + I(T n1 ;Y n

2 |Kn) + 2nǫ, (B.30)

= H(Y n
1 |Kn) −H(Y n

1 |KnSn1 ) +

H(Y n
2 |Kn) −H(Y n

2 |KnT n1 ) + 2nǫ, (B.31)

= H(Y n
1 |Kn) −H(V n

2 |Kn) +

H(Y n
2 |Kn) −H(V n

1 |Kn) + 2nǫ, (B.32)

≤ H(Y n
1 V

n
1 |Kn) −H(V n

2 |Kn) +

H(Y n
2 V

n
2 |Kn) −H(V n

1 |Kn) + 2nǫ, (B.33)

= H(Y n
1 |V n

1 K
n) +H(Y n

2 |V n
2 K

n) + 2nǫ, (B.34)

≤
n
∑

i=1

H(Y1i|V1iK
n) +H(Y2i|V2iK

n) + 2nǫ. (B.35)

Regarding (2.60), we get,

H(Sn1 ) +H(T n1 )
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= H(Sn1 |Kn) +H(T n1 |Kn), (B.36)

≤ I(Sn1 ;Y n
1 |Kn) + I(T n1 ;Y n

2 |Kn) + 2nǫ, (B.37)
(a)

≤ I(Sn1 ;Y n
1 |Kn) + I(T n1 ;Y n

2 V
n
2 |KnV n

1 ) + 2nǫ, (B.38)

= H(Y n
1 |Kn) −H(Y n

1 |Sn1Kn) +H(V n
2 |KnV n

1 )

−H(V n
2 |KnV n

1 T
n
1 ) +H(Y n

2 |KnV n
1 V

n
2 )

−H(Y n
2 |KnV n

1 V
n
2 T

n
1 ), (B.39)

(b)
= H(Y n

1 |Kn) +H(Y n
2 |V n

1 V
n
2 K

n) + 2nǫ, (B.40)

≤
n
∑

i=1

H(Y1i|Kn) +H(Y2i|V1iV2iK
n) + 2nǫ, (B.41)

where (a) is because of (B.11) and (b) is because thatH(Y n
1 |Sn1Kn) = H(V n

2 |V n
1 K

n),

H(V n
2 |V n

1 T
n
1 K

n) = 0 and H(Y n
2 |KnV n

1 V
n
2 T

n
1 ) = 0.

Similarly, we get,

H(Sn1 ) +H(T n1 ) ≤
n
∑

i=1

H(Y2i|Kn) +H(Y1i|V1iV2iK
n) + 2nǫ. (B.42)

For (2.62), we have,

H(Kn) +H(Sn1 ) +H(T n1 )

= H(KnSn1 ) +H(T n1 |Kn), (B.43)

≤ I(KnSn1 ;Y n
1 ) + I(T n1 ;Y n

2 |Kn) + 2nǫ, (B.44)
(a)

≤ I(KnSn1 ;Y n
1 ) + I(T n1 ;Y n

2 V
n
2 |KnV n

1 ) + 2nǫ, (B.45)

= I(KnSn1 ;Y n
1 ) + I(T n1 ;V n

2 |KnV n
1 )

+I(T n1 ;Y n
2 |KnV n

1 V
n
2 ) + 2nǫ, (B.46)

= H(Y n
1 ) −H(Y n

1 |KnSn1 ) +H(V n
2 |V n

1 K
n)

−H(V n
2 |V n

1 K
nT n1 ) +H(Y n

2 |V n
1 V

n
2 K

n)

−H(Y n
2 |V n

1 V
n
2 K

nT n1 ) + 2nǫ, (B.47)
(b)
= H(Y n

1 ) −H(Y n
2 |V n

1 V
n
2 K

n) + 2nǫ, (B.48)

≤
n
∑

i=1

H(Y1i) +

n
∑

i=1

H(Y2i|V1iV2iK
n) + 2nǫ, (B.49)

where (a) is because of (B.11) and (b) is because thatH(Y n
1 |Sn1Kn) = H(V n

2 |V n
1 K

n),

H(V n
2 |V n

1 T
n
1 K

n) = 0 and H(Y n
2 |KnV n

1 V
n
2 T

n
1 ) = 0.
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Similarly, we get,

H(Kn) +H(Sn1 ) +H(T n1 )

≤
n
∑

i=1

[H(Y2i) +H(Y1i|V1iV2iK
n)] + 2nǫ. (B.50)

For (2.64), we get,

2H(Sn1 ) +H(T n1 )

= H(Sn1 |Kn) +H(Sn1 |Kn) +H(T n1 |Kn), (B.51)

≤ I(Sn1 ;Y n
1 |Kn) + I(Sn1 ;Y n

1 |Kn)

+I(T n1 ;Y n
2 |Kn) + 3nǫ, (B.52)

≤ I(Sn1 ;Y n
1 |Kn) + I(Sn1 ;Y n

1 V
n
1 |V n

2 K
n)

+I(T n1 ;Y n
2 |Kn) + 3nǫ, (B.53)

= I(Sn1 ;Y n
1 |Kn) + I(Sn1 ;V n

1 |V n
2 K

n) +

I(Sn1 ;Y n
1 |V n

1 V
n
2 K

n) + I(T n1 ;Y n
2 |Kn) + 3nǫ, (B.54)

= H(Y n
1 |Kn) −H(Y n

1 |Sn1Kn) +H(V n
1 |V n

2 K
n)

−H(V n
1 |V n

2 K
nSn1 ) +H(Y n

1 |V n
1 V

n
2 K

n)

−H(Y n
1 |Sn1 V n

1 V
n
2 K

n) +H(Y n
2 |Kn)

−H(Y n
2 |KnT n1 ) + 2nǫ, (B.55)

(a)
= H(Y n

1 |Kn) −H(Y n
1 |Sn1Kn) +H(Y n

1 |V n
1 V

n
2 K

n)

+H(Y n
2 |Kn) + 3nǫ, (B.56)

(b)
= H(Y n

1 |Kn) −H(V n
2 |Kn) +H(Y n

1 |V n
1 V

n
2 K

n)

+H(Y n
2 |Kn) + 3nǫ, (B.57)

≤ H(Y n
1 |Kn) −H(V n

2 |Kn) +H(Y n
1 |V n

1 V
n
2 K

n)

+H(Y n
2 V

n
2 |Kn) + 3nǫ, (B.58)

= H(Y n
1 |Kn) +H(Y n

1 |V n
1 V

n
2 K

n) +H(Y n
2 |KnV n

2 )

+3nǫ, (B.59)

≤
n
∑

i=1

H(Y1i|Kn) +

n
∑

i=1

H(Y1i|V1iV2iK
n)

+
n
∑

i=1

H(Y2i|V2iK
n) + 3nǫ, (B.60)
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where (a) is becauseH(V n
1 |V n

2 K
n) = H(V n

1 |Kn) = H(Y n
2 |KnT n1 ),H(V n

1 |V n
2 K

nSn1 ) =

H(V n
1 |Xn

1 V
n
2 K

nSn1 ) = 0 and H(Y n
1 |V n

1 V
n
2 S

n
1K

n) = H(Y n
1 |Xn

1 V
n
1 V

n
2 S

n
1K

n) = 0;

(b) is from the fact that H(V n
2 |Kn) = H(Y n

1 |KnSn1 ).

Similarly,we have,

H(Sn1 ) + 2H(T n1 )

≤
n
∑

i=1

H(Y2i|Kn) +

n
∑

i=1

H(Y2i|V1iV2iK
n)

+
n
∑

i=1

H(Y1i|V1iK
n) + 3nǫ. (B.61)

As for (2.66), we have,

H(Kn) + 2H(Sn1 ) +H(T n1 )

= H(Sn1K
n) +H(Sn1 |Kn) +H(T n1 |Kn), (B.62)

≤ I(Sn1K
n;Y n

1 ) + I(Sn1 ;Y n
1 |Kn)

≤ I(Sn1K
n;Y n

1 ) + I(Sn1 ;Y n
1 V

n
1 |V n

2 K
n)

+I(T n1 ;Y n
2 |Kn) + 3nǫ, (B.63)

= I(Sn1K
n;Y n

1 ) + I(Sn1 ;V n
1 |V n

2 K
n) +

I(Sn1 ;Y n
1 |V n

1 V
n
2 K

n) + I(T n1 ;Y n
2 |Kn) + 3nǫ, (B.64)

= H(Y n
1 ) −H(Y n

1 |Sn1Kn) +H(V n
1 |V n

2 K
n)

−H(V n
1 |V n

2 K
nSn1 ) +H(Y n

1 |V n
1 V

n
2 K

n)

−H(Y n
1 |Sn1V n

1 V
n
2 K

n) +H(Y n
2 |Kn)

−H(Y n
2 |KnT n1 ) + 2nǫ, (B.65)

(a)

≤ H(Y n
1 ) +H(Y n

1 |V n
1 V

n
2 K

n) +H(Y n
2 |KnV n

2 )

+3nǫ, (B.66)

≤
n
∑

i=1

H(Y n) +

n
∑

i=1

H(Y1i|V1iV2iK
n)

+

n
∑

i=1

H(Y2i|V2iK
n) + 3nǫ, (B.67)

where (a) follows similar procedure as in proving (2.64).
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Similarly, we have,

H(Kn) + 2H(Sn1 ) +H(T n1 )

≤
n
∑

i=1

H(Y2i) +

n
∑

i=1

H(Y2i|V1iV2iK
n)

+
n
∑

i=1

H(Y1i|V1iK
n) + 3nǫ. (B.68)

Now introduce a random variable Q with p(qi) = p(kn), i.e., qi is an auxil-

iary random variable uniformly distributed over the set Kn = {1, 2, · · · , |K|n}.
Noticing that p(x1ix2i|q) = p(x1i|kn)p(x2i|kn), hence, we have, p(x1ix2i|kn) =

p(x1i|q)p(x2i|q). By standard convexity argument, we completes the proof of

converse.
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Appendix C

Proof of the sufficient condition:

Theorem 8

In this section, we give the proof of Theorem 8.

For any fixed joint distribution as in (4.7), we first calculate the distributions

p(w1|q), p(w2|q), p(u1|q), p(u2|q), p(x1|w1u1q), and p(x2|w2u2q), and fix the decoding

functions φ1, φ2 satisfying the distortion constraints as in (4.17).

Codebook generation: For each fixed qn, let R1 = I(W1;S|Q) + ǫ, and R2 =

I(W2;T |Q) + ǫ, first randomly generate 2nRi codewords W n
i , i = 1, 2, independent

and identically distributed (i.i.d.) according to p(wi|q). Next, randomly generate

2n(I(S;U1|Q)+ǫ) codewords Un
1 , i.i.d. according to p(u1|q) and 2n(I(T ;U2|Q)+ǫ) codewords

Un
2 , i.i.d. according to p(u2|q). For each source sequence sn, note that (4.7) implies

W1, S, U1 (given Q) forms a Markov chain in this order. By the Markov lemma [35],

for n sufficiently large, there exist at least one pair of codewords (wn1
∗, un1

∗) such that

(sn, wn1
∗, un1

∗) ∈ T nǫ (SW1U1). Similarly, for each source sequence tn, there exist at

least one pair of codewords (wn2
∗, un2

∗) such that (tn, wn2
∗, un2

∗) ∈ T nǫ (TW2U2). For each

pair of (wni
∗, uni

∗), generate one codeword xni (w
n
i
∗, uni

∗, qn) according to distribution

p(xni |wni , uni , qn) =
∏n

j=1 p(xij|wijuijqij), i = 1, 2.

Encoding: Upon observing sn, encoder 1 transmits the corresponding codeword

xn1 (wn1
∗, un1

∗, qn). Similarly, encoder 2 transmits the codeword xn2 (wn2
∗, un2

∗, qn).

Decoding: Upon receiving yn1 , decoder 1 finds a unique set of codewords (wn1 , u
n
1 , u

n
2)

such that (wn1 , u
n
1 , u

n
2 , x

n
1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q). Similarly, decoder 2 finds a

unique set of codewords (wn2 , u
n
2 , u

n
1) such that (wn2 , u

n
2 , u

n
1 , x

n
2 , y

n
2 , q

n) ∈ T nǫ (W2U2U1X2Y2Q).

If it fails, the decoder i, i = 1, 2, declares an error and chooses the a set of fixed code-

words (wni0, u
n
10, u

n
20) as the decoder output, which leads a fixed bounded distortion
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d0 = max{E[d1(S, φ1(W1U1U2))], E[d2(T, φ2(W2U2U1))]} at each decoder.

Error analysis: By symmetry, we only consider the error events at decoder 1. An

error occurs if one of the following events happens:

1. E11: the true codewords transmitted satisfy that (wn1
∗, un1

∗, un2
∗, xn1 , y

n
1 , q

n) /∈
T nǫ (W1U1U2X1Y1Q).

2. E12: there exists some codeword wn1 6= wn1
∗ such that (wn1 , u

n
1
∗, un2

∗, xn1 , y
n
1 , q

n) ∈
T nǫ (W1U1U2X1Y1Q).

3. E13: there exist (wn1 , u
n
1) 6= (wn1

∗, un1
∗) such that

(wn1 , u
n
1 , u

n
2
∗, xn1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q).

4. E14: there exist (wn1 , u
n
2) 6= (wn1

∗, un2
∗) such that

(wn1 , u
n
1
∗, un2 , x

n
1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q).

5. E15: there exist (wn1 , u
n
1 , u

n
2) 6= (wn1

∗, un1
∗, un2

∗) such that (wn1 , u
n
1 , u

n
2 , x

n
1 , y

n
1 , q

n) ∈
T nǫ (W1U1U2X1Y1Q).

Hence, the probability of error at decoder 1 is

Pe1 = Pr{∪5
i=1E1i} ≤

5
∑

i=1

Pr{E1i} (C.1)

Next, we will evaluate the seven probability of errors individually. First, by the

extended Markov Lemma [39,40], as n→ ∞, Pr{E11} ≤ ǫ. For the second event, we

have,

Pr{E12}
= Pr

(

(wn1 , u
n
1
∗, un2

∗, xn1 , y
n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q)
)

=
∑

wn
1

∑

(wn
1 ,u

n
1
∗,un

2
∗,xn

1 ,y
n
1 ,q

n)∈Tn
ǫ (W1U1U2X1Y1Q)

p(wn1 |qn)p(xn1 |wn1un1qn)p(un1un2yn1 qn)
≤

∑

wn
1

2n(H(W1U1U2X1Y1Q)−H(W1|Q))

·2−n(H(X1|W1U1Q)+H(U1U2Y1Q)−4ǫ)

= 2n(R1−I(U1U2;W1|Q)−I(W1X1;Y1|U1U2Q)+4ǫ)

= 2n(I(W1;S|U1U2Q)−I(W1X1;Y1|U1U2Q)+5ǫ) (C.2)
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where the last equality is because that given Q, W1 → S → (U1, U2) forms a Markov

chain.

For the third event, we have,

Pr{E13}
= Pr

(

(wn1 , u
n
1 , u

n
2
∗, xn1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q)
)

=
∑

wn
1

∑

un
1

∑

(wn
1 ,u

n
1 ,u

n
2
∗,xn

1 ,y
n
1 ,q

n)∈Tn
ǫ (W1U1U2X1Y1Q)

p(wn1 |qn)p(un1 |qn)p(xn1 |wn1un1qn)p(un2yn1 qn)
≤

∑

wn
1

∑

un
1

2n(H(W1U1U2X1Y1Q)−H(W1|Q))

·2−n(H(U1|Q)+H(X1|W1U1Q)+H(U2Y1Q)−5ǫ)

= 2n(R1+I(U1;S|Q)−I(W1;U2|Q)−I(W1U2;U1|Q))

·2−n(I(W1U1X1;Y1|U2Q)−6ǫ)

= 2n(I(W1U1;S|U2Q)−I(W1U1X1;Y1|U2Q)+6ǫ) (C.3)

where the last equality is because that given Q, W1 → S → U2 and U1 → S →
(W1, U2) form Markov chains.

For the fourth event, we have,

Pr{E14}
= Pr

(

(wn1 , u
n
1
∗, un2 , x

n
1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q)
)

=
∑

wn
1

∑

un
2

∑

(wn
1 ,u

n
1
∗,un

2 ,x
n
1 ,y

n
1 ,q

n)∈Tn
ǫ (W1U1U2X1Y1Q)

p(wn1 |qn)p(un2 |qn)p(xn1 |wn1un1qn)p(un1yn1 qn)
≤

∑

wn
1

∑

un
2

2n(H(W1U1U2X1Y1Q)−H(W1|Q))

·2−n(H(U2|Q)+H(X1|W1U1Q)+H(U1Y1Q)−5ǫ)

= 2n(R1+I(U2;T |Q)−I(U1;U2|Q))

·2−n(I(U1U2;W1|Q)+I(W1U2X1;Y1|U1Q)−6ǫ)

= 2n(I(W1;S|U1U2Q)+I(U2;T |U1Q)−I(W1U2X1;Y1|U1Q)+7ǫ) (C.4)

where the last equality is because that given Q, W1 → S → (U1, U2) and U2 → T →
U1 form Markov chains.

For the last event, we have,

Pr{E15}

102



= Pr
(

(wn1 , u
n
1 , u

n
2 , x

n
1 , y

n
1 , q

n) ∈ T nǫ (W1U1U2X1Y1Q)
)

=
∑

wn
1

∑

un
1

∑

un
2

∑

(wn
1 ,u

n
1 ,u

n
2 ,x

n
1 ,y

n
1 ,q

n)∈Tn
ǫ (W1U1U2X1Y1Q)

p(wn1 |qn)p(un1 |qn)p(un2 |qn)p(xn1 |wn1un1qn)p(yn1 qn)
≤

∑

wn
1

∑

un
1

∑

un
2

2n(H(W1U1U2X1Y1Q)−H(W1|Q))

·2−n(H(U1|Q)+H(U2|Q)+H(X1|W1U1Q)+H(Y1Q)−6ǫ)

= 2n(R1+I(U1;S|Q)+I(U2;T |Q)−I(W1;U2|Q))

·2−n(I(W1U2;U1|Q)+I(W1U2X1;Y1|Q)−8ǫ)

= 2n(I(W1U1;S|U2Q)+I(U2;T |Q)−I(W1U1U2X1;Y1|Q)+8ǫ) (C.5)

From (C.2-C.5), if the following conditions are satisfied, then the probability of

error at decoder 1 will vanish as n goes to infinity.

I(W1;S|U1U2Q) < I(W1X1;Y1|U1U2Q),

I(W1U1;S|U2Q) < I(W1U1X1;Y1|U2Q),

I(W1;S|U1U2Q) < I(W1U2X1;Y1|U1Q)

−I(U2;T |U1Q),

I(W1U1;S|U2Q) < I(W1U1U2X1;Y1|Q)

−I(U2;T |Q). (C.6)

Similarly, the following conditions can be obtained for decoder 2.

I(W2;T |U1U2Q) < I(W2X2;Y2|U1U2Q), (C.7)

I(W2U2;T |U1Q) < I(W2U2X2;Y2|U1Q) (C.8)

I(W2;T |U1U2Q) < I(W2U1X2;Y2|U2Q)

−I(U1;S|U2Q) (C.9)

I(W2U2;T |U1Q) < I(W2U1U2X2;Y2|Q)

−I(U1;S|Q) (C.10)

For the distortion part, upon correctly decoding as n → ∞, decoder 1 finds the

correct codewords (wn1
∗, un1

∗, un2
∗) which are jointly typical with sn. Similarly, decoder

2 finds the correct codewords (wn2
∗, un1

∗, un2
∗) which are jointly typical with tn. By the

standard argument as in the rate distortion theory [65], we get the desired distortion

(D1, D2), as n→ ∞. This completes the proof of Theorem 8. 2
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Appendix D

Proof of the main results:

Theorem 10

First, as with [59], we define a quantity Γ(δ1, δ2) which plays an important role in the

proof.

Let (X1, X2, · · · , XN) ∼ P (x1, x2, · · · , xN) where X1, · · · , XN take values in finite

alphabet X1, · · · ,XN . Let (X̂1, X̂2, · · · , X̂N ,W ) be a (N+1)tuple of random variables

where X̂1 ∈ X1, X̂2 ∈ X2, · · · , X̂N ∈ XN and W ∈ W, a finite set. Denote the

marginal distribution of (X̂1, X̂2, · · · , X̂N) by

Q(x1, x2, · · · , xN ) = Pr(X̂1 = x1, X̂2 = x2, · · · , X̂N = xn), (D.1)

for xi ∈ Xi, i = 1, 2, · · · , N .

For any δ1, δ2 ≥ 0, define

Γ(δ1, δ2) = supH(X̂1, X̂2, · · · , X̂N |W ), (D.2)

where the sumpremum is taken over all (N + 1)-tuples (X̂1, X̂2, · · · , X̂N ,W ) that

satisfy

D(P ;Q) =
∑

x,y

P (x1, x2, · · · , xN) log
P (x1, x2, · · · , xN)

Q(x1, x2, · · · , xN)
≤ δ1, (D.3)

and
N
∑

i=1

H(X̂i|W ) −H(X̂1, X̂2, · · · , X̂N |W ) ≤ δ2. (D.4)

It follows that C(X1, X2, · · · , XN) as defined in Theorem 1, is equivalent to

C(X1, X2, · · · , XN) = H(X1, X2, · · · , XN) − Γ(0, 0). (D.5)

The following lemma gives some properties of Γ(δ1, δ2).
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Lemma 5 1) For all δ1, δ2 ≥ 0, there exists a (N + 1)-tuple (X̂1, X̂2, · · · , X̂N ,W )

such that (D.3) and (D.4) are satisfied and

Γ(δ1, δ2) = H(X̂1, X̂2, · · · , X̂N |W ). (D.6)

Moreover, for δ1, δ2 = 0,

|W| ≤
N
∏

i=1

|Xi|. (D.7)

2) Γ(δ1, δ2) is a concave function of (δ1, δ2) and it is continuous for all δ1, δ2 ≥ 0.

3) For δ ≥ 0, define Γ1(δ) = Γ(0, δ) and Γ2(δ) = Γ(δ, 0), then Γ1(δ) and Γ2(δ) are

concave and continuous for δ ≥ 0.

The proof of Lemma 1 follows similarly as the proof of Theorem 4.4 in [59].
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Appendix E

Proof of C1 = C

In this section, we prove the first part of Theorem 1, that is C1 = C(X1, X2, · · · , XN).

We first prove the converse part, that is for any R0 that is achievable for the Gray-

Wyner source coding network, we have,

Theorem 14 (Converse)

C1 ≥ C(X1, X2, · · · , XN). (E.1)

To prove the converse, first let (f, gi), i = 1, 2, · · · , N be any (n,M0,M1, · · · ,MN)

code that satisfies (5.7), (5.8) and (5.9).

Then, we have,

logM0

≥ H(M0), (E.2)

≥ I(Xn
1X

n
2 · · ·Xn

N ;M0), (E.3)

= H(Xn
1X

n
2 · · ·Xn

N) −H(Xn
1X

n
2 · · ·Xn

N |M0), (E.4)

= nH(X1X2 · · ·XN ) −
n
∑

j=1

H(X1jX2j · · ·XNj |Wj), (E.5)

where Wj , (M0, X
j−1
1 , Xj−1

2 , · · · , Xj−1
N ) and Xj−1

i = (Xi1, Xi2, · · · , Xi,j−1) for i =

1, 2, · · · , N .

Notice that, the (N + 1)-tuple (X1j , X2j , · · · , XNj,Wj) satisfies condition (D.3)

and (D.4) with δ1 = 0 and

δ
(j)
2 =

N
∑

i=1

H(Xi,j|Wj) −H(X1j, X2j, · · · , XNj |Wj). (E.6)
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Hence, by the definition of Γ(δ1, δ2), we have

H(X1jX2j · · ·XNj |Wj) ≤ Γ1(δ
(j)
2 ). (E.7)

Substitute (E.7) into (E.5), we get,

logM0 ≥ nH(X1X2 · · ·XN) −
n
∑

j=1

Γ1(δ
(j)
2 ), (E.8)

≥ nH(X1X2 · · ·XN) − nΓ1(
1

n

n
∑

j=1

δ
(j)
2 ). (E.9)

where the last step is from the concavity of Γ1(·) function. Now define

η =
1

n

n
∑

j=1

δ
(j)
2 . (E.10)

The following lemma gives an upper bound on η.

Lemma 6 For any (n,M0,M1, · · · ,MN) code that satisfies (5.7), (5.8) and (5.9),

we have

η ≤ (N + 1)ǫ. (E.11)

Proof :

By Fano’s inequality, we have, for i = 1, 2, · · · , N ,

H(Xn
i |M0Mi) ≤ nǫ. (E.12)

Hence, we have, for i = 1, 2, · · · , N ,

logMi ≥ H(Mi), (E.13)

≥ H(Mi|M0), (E.14)

= H(Xn
i Mi|M0) −H(Xn

i |MiM0), (E.15)

≥ H(Xn
i Mi|M0) − nǫ, (E.16)

= H(Xn|M0) − nǫ. (E.17)

Then, we get,
N
∑

i=1

logMi ≥
N
∑

i=1

H(Xn
i |M0) − nǫ′. (E.18)
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where ǫ′ = Nǫ. Together with (E.5), we get,

N
∑

i=0

logMi ≥ nH(X1X2 · · ·XN)

−
n
∑

j=1

H(X1jX2j · · ·XNj |Wj)

+
N
∑

i=1

H(Xn
i |M0) − nǫ′. (E.19)

Together with (5.9), we get,

N
∑

i=1

H(Xn
i |M0) −

n
∑

j=1

H(X1jX2j · · ·XNj|Wj) ≤ nǫ
′′

. (E.20)

where ǫ
′′

= (N + 1)ǫ. On the other hand, we have,

N
∑

i=1

H(Xn
i |M0)

=

N
∑

i=1

n
∑

j=1

H(Xij|Xj−1
i M0), (E.21)

≥
N
∑

i=1

n
∑

j=1

H(Xij|Xj−1
1 , Xj−1

2 , · · · , Xj−1
N ,M0), (E.22)

=
N
∑

i=1

n
∑

j=1

H(Xij|Wj). (E.23)

Combine (E.20) and (E.23), we have,

n
∑

j=1

[

N
∑

i=1

H(Xij|Wj) −H(X1jX2j · · ·XNj |Wj)
]

≤ nǫ
′′

. (E.24)

Hence, we have,
1

n

n
∑

j=1

δ
(j)
2 ≤ ǫ

′′

. (E.25)

This completes the proof of Lemma 6.2

Now, from Lemma 6 and (E.9), we get,

R0 ≥
1

n
logM0 ≥ H(X1, X2, · · · , XN) − Γ1(η). (E.26)
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Together with the continuity of Γ1(·), we have, as n→ ∞,

R0 ≥ H(X1, X2, · · · , XN) − Γ1(0), (E.27)

= C(X1, X2, · · · , XN). (E.28)

This completes the proof of converse part.2

We now prove the achievability part, that is, let the joint distribution P (x1, x2, · · · , xN )

be given, we have,

Theorem 15 (Achievability)

C1 ≤ C(X1, X2, · · · , XN). (E.29)

Our proof mainly involves generalizing Gray-Wyner source coding network [68] to

that of N sources. The system model we considered here is the same as Fig. ??

described in section II except that definition 6 is replaced by,

Definition 12 A rate tuple (R0, R1, · · · , RN) is said to be achievable if for all ǫ > 0,

we can find an n sufficiently large such that there exists a (n, 2nR0, 2nR1 , · · · , 2nRN )

code with

P (n)
e ≤ ǫ. (E.30)

Our purpose is to find all achievable rate tuples (R0, R1, · · · , RN). The rate region of

this source coding problem is summarized in the following theorem.

Theorem 16 For the source coding model described above, a rate tuple (R0, R1, · · · , RN)

is achievable if and only if the following conditions are satisfied,

R0 ≥ I(X1, X2, · · · , XN ;W ), (E.31)

Ri ≥ H(Xi|W ), (E.32)

for i = 1, 2, · · · , N , and for some W ∼ P (w|x1, x2, · · · , xN), where W ∈ W and

|W| ≤∏N
i=1 |Xi| + 2.

Proof of Theorem 16 (Sketch):

For the achievability part, we want to show that for any rate tuple (R0, R1, · · · , RN)

that satisfies above conditions, we can construct a (n, 2nR0 , 2nR1, · · · , 2nRN ) code such

that the decoding error P
(n)
e → 0 as codeword length n→ ∞.

Codeword Generation: for any given distributions P (x1, x2, · · · , xN ) and P (w|x1, x2, · · · , xN ),

we calculate the marginal distribution P (w).
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1. Codebook C0: we first randomly generate 2nR0 sequences wn i.i.d. ∼ P (w), and

index them by m0 ∈ {1, 2, · · · , 2nR0}.

2. Codebook C(Xi): for each i = 1, 2 · · · , N , for each xni ∈ X n
i , randomly put

them into 2nRi bins and index them bins by mi ∈ {1, 2, · · · , 2nRi}.

Encoding:

1. for each source sequences (xn1 , x
n
2 , · · · , xnN), encoder f0 finds a wn(m0) ∈ C0

such that (xn1 , x
n
2 , · · · , xnN , wn(m0)) ∈ T nǫ , where T nǫ is the jointly typical set as

defined in [35], and send the index m0 to the decoder. If there is no more than

one wn, choose the sequence wn with the smallest index; if there exist no such

sequence, choose sequence wn(1),

2. for i = 1, 2, · · · , N , encoder fi sends the bin index mi of sequence xni .

Decoding: for i = 1, 2, · · · , N , decoder i looks at bin mi for codebook C(Xi) and

finds the sequence x̂ni such that (x̂ni , w
n(m0)) ∈ T nǫ . If there is more than one or none

such sequence, declare an error.

Error analysis: Assuming mi, i = 0, 1, · · · , N are the chosen indices for encoding

(xn1 , x
n
2 , · · · , xnN). There are three error events.

1. E1: (xn1 , x
n
2 , · · · , xnN , wn(m0)) /∈ T nǫ for all m0 ∈ {1, 2, · · · , 2nR0}.

2. E2: (xni , w
n(m0)) /∈ T nǫ for each i.

3. E3: for some i, there exists x̃ni 6= xni in bin mi of codebook C(Xi) such that

(x̃ni , w
n(m0)) ∈ T nǫ .

Hence,

P (n)
e ≤ P (E1) + P (E2|Ec

1) + P (E3|Ec
1, E

c
2). (E.33)

By some standard argument, we can get, as n→ ∞,

1. P (E1) → 0 if

R0 ≥ I(X1, X2, · · · , XN ;W ) + ǫ, (E.34)

2. P (E2|Ec
1) → 0,

3. P (E3|Ec
1, E

c
2) → 0 if for each i = 1, 2, · · · , N ,

Ri ≥ H(Xi|W ) + ǫ. (E.35)
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This completes the achievability proof.

For the converse part, we want to show that for any achievable rate tuple (R0, R1, · · · , RN),

it should satisfy (E.31) and (E.32).

By Fano’s inequality, we have

H(Xn
i |MiM0) ≤ nǫ. (E.36)

Hence, we have, for i = 1, 2, · · · , N

nRi

≥ H(Mi), (E.37)

≥ H(Mi|M0), (E.38)

≥ H(Mi|M0) +H(Xn
i |MiM0) − nǫ, (E.39)

= H(Xn
i Mi|M0) − nǫ, (E.40)

= H(Xn
i |M0) − nǫ, (E.41)

=
n
∑

j=1

H(Xij|M0X
j−1
i ) − nǫ, (E.42)

≥
n
∑

j=1

H(Xij|M0, X
j−1
1 , Xj−1

2 , · · · , Xj−1
N ) − nǫ. (E.43)

and

nR0

≥ H(M0), (E.44)

≥ I(M0;X
n
1 , X

n
2 , · · · , Xn

N), (E.45)

=
n
∑

j=1

I(M0;X1jX2j · · ·XNj|Xj−1
1 Xj−1

2 · · ·Xj−1
N ), (E.46)

=

n
∑

j=1

I(M0X
j−1
1 Xj−1

2 · · ·Xj−1
N ;X1jX2j · · ·XNj). (E.47)

Define Wj = (M0, X
j−1
1 , Xj−1

2 , · · · , Xj−1
N ), and using a standard time sharing argu-

ment, we can get, for i = 1, 2, · · · , N ,

Ri ≥ H(Xi|W ) − ǫ, (E.48)

R0 ≥ I(X1X2 · · ·XN ;W ). (E.49)
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Let n → ∞, then ǫ → 0, and this completes the proof of converse. The cardinality

bound can be obtained using the technique introduced in [69, Appdendix C]. We skip

the details. This completes the proof of Theorem 16.2

Now we proceed to prove Theorem 15. We will show that ifR0 > C(X1, X2, · · · , XN),

it is achievable for Model I.

Let R0 > C(X1, X2, · · · , XN) and any ǫ > 0 be given and let random variables

(X1, X2, · · · , XN ,W ) satisfy (5.3) and (5.4), such that

C(X1, X2, · · · , XN) = I(X1X2 · · ·XN ;W ). (E.50)

Notice that, the existence of such random variables is guaranteed by Lemma 5. Now

define

ǫ1 = min{ ǫ

N + 1
, R0 − C(X1, X2, · · · , XN)}, (E.51)

and hence ǫ1 > 0. By Theorem 16, there exists a (n,M0,M1, · · · ,MN) code with

P
(n)
e ≤ ǫ′ and ǫ′ ≤ ǫ1. Hence,

1

n
logM0 ≤ C(X1, X2, · · · , XN) + ǫ1 ≤ R0, (E.52)

1

n
logMi ≤ H(Xi|W ) + ǫ1. (E.53)

Hence, we have,

N
∑

i=0

1

n
logMi

≤ C(X1, X2, · · · , XN) +

N
∑

i=1

H(Xi|W ) + ǫ, (E.54)

(a)
= H(X1, X2, · · · , XN) + ǫ. (E.55)

where (a) is from condition (5.4). Thus, condition (5.9) is also satisfied. This implies

that R0 is achievable in Model I, which completes the proof of achievability part. This

completes the proof of Theorem 15.2
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Appendix F

Proof of C2 = C

In this section, we prove the second part of theorem 1, that is C2 = C(X1, X2, · · · , XN).

We have the following theorem.

Theorem 17

C2 ≥ C(X1, X2, · · · , XN), (F.1)

C2 ≤ C(X1, X2, · · · , XN). (F.2)

For the converse part , that is (F.1), the proof follows almost the same line as

in [59, Section 5.2]. For the achievability part, that is (F.2), the proof follows similarly

as in [59, Seciton 6.2] by applying U = X1 × X2, · · · × XN in [59, Theorem 6.3]. We

omit the details here.
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Appendix G

Proof of the sufficient condition of

C3 = C: Theorem 11

We first introduce the following two lemmas. The first one is given by Gray [70].

Lemma 7 Given a two-dimensional source X, Y and a compound distortion measure,

we have the following inequalities

RXY (∆1,∆2) ≥ RX|Y (∆1) +RY (∆2), (G.1)

RX|Y (∆1) ≥ RX(∆1) − I(X;Y ), (G.2)

and equalities hold in some neighborhood of the origin {(∆1,∆2) : 0 ≤ ∆1,∆2 ≤ γ},
provided that

Q(x, y) > 0 all x ∈ X , y ∈ Y , (G.3)

and d1, d2 satisfy

d1(x, x̂) > d1(x, x) = 0, x 6= x̂, (G.4)

d2(y, ŷ) > d2(y, y) = 0, y 6= ŷ. (G.5)

Here RX|Y (∆) is the conditional rate distortion function which is defined as

RX|Y (∆) = min I(X; X̂|Y ), (G.6)

where the minimum is taken with respect to all test channels qt(x̂|x, y) such that

Ed(X, X̂) ≤ ∆.

The second lemma is given by Gray and Wyner [68].
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Lemma 8 For the lossy source coding problem described in the previous section, for

∆1,∆2 ≥ 0, the rate distortion region is given by

R(∆1,∆2) = {(R0, R1, R2) : R0 ≥ I(X, Y ;W ),

R1 ≥ RX|W (∆1), R2 ≥ RY |W (∆2)}, (G.7)

for some distributions p(w|x, y)Q(x, y).

Note that Lemma 8 is valid for both the discrete case and the continuous case.

Although Gray and Wyner only treated the discrete case in [68], the result can be

generalized to the continuous case [72].

We now prove Theorem 11.

1. Achievability:

For a given Q(x, y) > 0 x ∈ X , y ∈ Y , let C(X;Y ) = I(XY ;W ) where

(X, Y,W ) satisfies X − W − Y and
∑

w p(x, y, w) = Q(x, y), i.e., W is the

auxiliary variable that achieves C(X, Y ). Let (∆1,∆2) be in the range {0 ≤
∆1,∆2 ≤ γ} where γ is chosen such that the following equalities hold

RX(∆1) = RX|W (∆1) + I(X;W ), (G.8)

RY (∆2) = RY |W (∆2) + I(Y ;W ), (G.9)

RXY (∆1,∆2) = RX(∆1) +RY (∆2) − I(X;Y ). (G.10)

We now prove that C3(∆1,∆2) ≤ C(X, Y ) in the range {0 ≤ ∆1,∆2 ≤ γ}. For

any R0 > C(X, Y ) and ǫ > 0 let

ǫ1 = min(ǫ/3, R0 − C(X;Y )). (G.11)

Since ǫ1 > 0, we know from Lemma 8 that there exists a code (n,M0,M1,M2,∆X ,∆Y )

with ∆X ≤ ∆1 + ǫ1, ∆Y ≤ ∆2 + ǫ1 and

1

n
logM0 ≤ I(X, Y ;W ) + ǫ1

= C(X;Y ) + ǫ1 ≤ R0, (G.12)
1

n
logM1 ≤ RX|W (∆1) + ǫ1, (G.13)

1

n
logM2 ≤ RY |W (∆2) + ǫ1. (G.14)
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From (G.12-G.14), we have that

1

n

2
∑

i=0

logMi

≤ I(X, Y ;W ) +RX|W (∆1) +RY |W (∆2) + 3ǫ1, (G.15)

= I(X;W ) +RX|W (∆1) + I(Y ;W ) +RY |W (∆2)

−I(X;Y ) + 3ǫ1, (G.16)

= RX(∆1) +RY (∆2) − I(X;Y ) + 3ǫ1, (G.17)

≤ RXY (∆1,∆2) + ǫ. (G.18)

where (G.16) follows from the chain rule and the Markov Chain X −W − Y ,

(G.17) and (G.18) follow from (G.8-G.11).

This proves that the code satisfies (6.12)-(6.14), i.e., R0 is (∆1,∆2)-achievable.

This completes the proof of C3(∆1,∆2) ≤ C(X;Y ).

2. Converse:

Let ∆1,∆2 be in the region {0 ≤ ∆1,∆2 ≤ γ} such that

RX(∆1) +RY (∆2) − I(X;Y ) = RXY (∆1,∆2). (G.19)

Let R0 be (∆1,∆2)-achievable. We will show that R0 ≥ C(X;Y ). The proof

follows similar procedures as the proof of Theorem 5.1 in [59].

Since R0 is (∆1,∆2)-achievable, there exists an (n,M0,M1,M2,∆X ,∆Y ) code

satisfying (6.12)-(6.14). Let fE(Xn, Y n) = (W0,W1,W2), we have that

R0 ≥
1

n
logM0 ≥

1

n
H(W0), (G.20)

≥ 1

n
I(Xn, Y n;W0), (G.21)

=
1

n
H(Xn, Y n) − 1

n
H(Xn, Y n|W0), (G.22)

= H(X, Y ) − 1

n

n
∑

k=1

H(Xk, Yk|Xk−1, Y k−1,W0), (G.23)

≥ H(X, Y ) − 1

n

n
∑

k=1

Γ1(δ
(k)), (G.24)

≥ H(X, Y ) − Γ1(
1

n

n
∑

k=1

δ(k)), (G.25)

116



where (G.24) comes from the definition of Γ1(·) (c.f. Corollary 4.5, [59]) and

the definition of δ(k), where

δ(k) = I(Xk;Yk|Xk−1, Y k−1,W0).

Inequality (G.25) follows from the concavity of Γ1(δ).

Therefore, since C(X;Y ) = H(X, Y ) − Γ1(0) (c.f. equation (4.4) in [59]) and

(G.25), to establish R0 ≥ C(X;Y ) we only need to prove that, for arbitrary

ǫ > 0,

1

n

n
∑

k=1

δ(k) ≤ v(ǫ), (G.26)

lim
ǫ→0

v(ǫ) = 0. (G.27)

From (G.22), we have that

1

n
logM0 ≥ 1

n
H(Xn, Y n) − 1

n
H(Xn, Y n|W0), (G.28)

=
1

n
H(Xn, Y n) +

1

n
I(Xn;Y n|W0)

−1

n
H(Xn|W0) −

1

n
H(Y n|W0). (G.29)

Consider again the (n,M0,M1,M2,∆X ,∆Y ) code that satisfies (6.12)-(6.14) for

arbitrary ǫ > 0. Set X̂n = f
(X)
D (W0,W1) and Ŷ n = f

(Y )
D (W0,W2), we have

1

n
logM1 ≥ 1

n
H(W1), (G.30)

≥ 1

n
H(W1|W0), (G.31)

≥ 1

n
I(Xn;W1|W0), (G.32)

≥ 1

n
I(Xn; X̂n|W0). (G.33)

where inequality (G.33) follows from the Markov chain Xn − W0,W1 − X̂n.

Similarly, we have

1

n
logM2 ≥

1

n
I(Y n; Ŷ n|W0). (G.34)

Adding (G.29), (G.33) and (G.34), we obtain

2
∑

i=0

1

n
logMi
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≥ 1

n
(H(Xn, Y n) + I(Xn;Y n|W0) −H(Xn|W0)

−H(Y n|W0) + I(Xn; X̂n|W0) + I(Y n; Ŷ n|W0)), (G.35)

=
1

n
(I(Xn;W0) + I(Y n;W0) − I(Xn;Y n)

+I(Xn;Y n|W0)+I(X
n; X̂n|W0)+I(Y

n; Ŷ n|W0)), (G.36)

=
1

n
(I(Xn; X̂n,W0) + I(Y n; Ŷ n,W0) − I(Xn;Y n)

+I(Xn;Y n|W0)), (G.37)

≥ 1

n
(I(Xn; X̂n)+I(Y n; Ŷ n)−nI(X;Y )

+I(Xn;Y n|W0)), (G.38)

≥RX(∆1)+RY (∆2)−I(X;Y )+
1

n
I(Xn;Y n|W0), (G.39)

= RXY (∆1,∆2) +
1

n
I(Xn;Y n|W0). (G.40)

where (G.36), (G.37) follow from the chain rule, (G.38) follows from the fact

that conditioning does not increase entropy, (G.39) follows from the definition

of rate distortion function and (G.40) is from (G.19).

On the other hand, the code satisfies (6.13), so we have

2
∑

i=0

1

n
logMi ≤ RXY (∆1,∆2) + ǫ. (G.41)

Combining (G.40) and (G.41) we will have that

1

n
I(Xn;Y n|W0) ≤ ǫ. (G.42)

Also, it is easy to check that the following inequality is true.

1

n
I(Xn;Y n|W0) ≥

1

n

n
∑

k=1

δ(k). (G.43)

Combining (G.42) and (G.43), we obtain

1

n

n
∑

k=1

δ(k) ≤ ǫ, (G.44)

which completes the proof.
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Appendix H

Proof of the optimality of the

distortion threshold: Theorem 12

Before proving Theorem 12, we first introduce two lemmas.

Lemma 9 For any ∆1,∆2,

C3(∆1,∆2) ≤ RXY (∆1,∆2). (H.1)

Proof: The lemma follows from the fact that R0 = RXY (∆1,∆2) is (∆1,∆2)-

achievable.

Lemma 10 Let τ = R−1
XY (C(X, Y )), ∆ ≤ τ , if R0 is ∆-achievable, then there exists

a W such that X −W − Y , R0 ≥ I(X, Y ;W ), and

I(X, Y ;W ) +RX|W (∆) +RY |W (∆) = RXY (∆,∆). (H.2)

Proof: For ∆ ≤ τ , if R0 is ∆-achievable, we have that for any ǫ > 0, there

exists a code (n,M0,M1,M2,∆,∆) that satisfies (6.12)-(6.14). Let R′
i = 1

n
logMi for

i = 0, 1, 2, we have that
2
∑

i=0

R′
i ≤ RXY (∆,∆) + ǫ. (H.3)

From the definition of rate distortion region [68], we know that (R′
0, R

′
1−ǫ/2, R′

2−ǫ/2)

is in the rate distortion region R. By Lemma 8, there exists a W jointly distributed

with X, Y as p(w|x, y)Q(x, y) and satisfies

R′
0+R

′
1+R

′
2−ǫ≥I(X, Y ;W )+RX|W (∆)+RY |W (∆), (H.4)
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≥ I(X, Y ;W ) +RXY |W (∆,∆), (H.5)

≥RXY (∆,∆), (H.6)

where inequalities (H.5) and (H.6) are from Theorem 3.1 in [70]. The equality in

(H.5) holds only when X is conditionally independent of Y given W and equality in

(H.6) holds only when 0 ≤ ∆ ≤ γ. For ∆ = τ , combined with (H.3), we have that

I(X, Y ;W ) = RXY (τ, τ). Hence for any ∆ ≤ τ ,

I(X, Y ;W ) +RX|W (∆) +RY |W (∆) = RXY (∆,∆). (H.7)

This completes the proof.

We now prove Theorem 12.

First we show that for any ∆ such that C3(∆) = C(X, Y ), we have ∆ ≤ τ . From

Lemma 9, RXY (∆,∆) ≥ C(X, Y ). RXY (∆,∆) is a non increasing function of ∆,

therefore, ∆ ≤ R−1
XY (C(X, Y )) = τ .

Next we will show that for any distortion ∆ ≤ τ , C3(∆) = C(X, Y ).

For any R0 that is ∆-achievable, from Lemma 10, there exists a W such that

X − W − Y and R0 ≥ I(X, Y ;W ). Hence, R0 ≥ I(X, Y ;W ) ≥ C(X, Y ), which

implies C3(∆) ≥ C(X, Y ).

From Lemma 3, C3(τ) ≤ C(X, Y ). Hence, C3(τ) = C(X, Y ). Thus, any rate

R0 > C(X, Y ) is τ -achievable. By Lemma 10, we have

C(X, Y ) +RX|W (τ) +RY |W (τ) = RXY (τ, τ),

where W is the random variable such that C(X, Y ) = I(X, Y ;W ). Thus, by Lemma

7, for any ∆ ≤ τ ,

C(X, Y ) +RX|W (∆) +RY |W (∆) = RXY (∆,∆).

Then use the same proof as the achievability part of Theorem 11, we can prove

that when the distortion ∆ ≤ τ , any rate R0 > C(X, Y ) is ∆-achievable. Hence,

C3(∆) ≤ C(X, Y ), completing the proof.
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Appendix I

Proof of the optimality of

quantization threshold: Theorem

13

With one bit scalar quantization, optimizing error exponent is equivalent to max-

imize the mutual information I(U ;V ). Define, under H0, Pij = Pr(U = i;V =

j), i, j = {0, 1}, which can be expressed in terms of integration of (7.2) given the

single threshold quantizer assumption. We have:

P00 =

∫ t1

−∞

∫ t2

−∞
fx,y(x, y)dxdy, (I.1)

P01 =

∫ t1

−∞

∫ ∞

t2

fX,Y (x, y)dxdy, (I.2)

P10 =

∫ ∞

t1

∫ t2

∞
fX,Y (x, y)dxdy, (I.3)

P11 =

∫ ∞

t1

∫ ∞

t2

fX,Y (x, y)dxdy. (I.4)

By definition,

Pr(U = 1) = Pr(X ≥ t1) = Q(t1), (I.5)

Pr(V = 1) = Pr(Y ≥ t2) = Q(t2), (I.6)

where the Q function is complementary cumulative distribution function for standard

Gaussian distribution, defined as

Q(x) =
1√
2π

∫ ∞

x

exp(−t2/2)dt. (I.7)
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We want to maximize I(U ;V ), where

I(U ;V ) = H(U) +H(V ) −H(U ;V ), (I.8)

= H(Q(t1)) +H(Q(t2)) −H(P00, P01, P10, P11), (I.9)

where H(·) is the Shannon entropy function, i.e.,

H(Q(t)) = −Q(t) logQ(t) − (1 −Q(t)) log(1 −Q(t)), (I.10)

and

H(P00, P01, P10, P11) = −
2
∑

i=1

2
∑

j=1

Pij logPij . (I.11)

We now compute the first partial derivative of I(U ;V ) with respect to t1 and t2,

receptively. We get, with tedious but straightforward computation,

∂I(U ;V )

∂t1
=

1√
2π

exp
−t21
2

{

log
Q(t1)

1 −Q(t1)
+ [1 −Q(

t2 − ρt1
√

1 − ρ2
)] log

P00

P10

+Q(
t2 − ρt1
√

1 − ρ2
) log

P01

P11

}

, (I.12)

∂I(U ;V )

∂t2
=

1√
2π

exp
−t22
2

{

log
Q(t2)

1 −Q(t2)
+ [1 −Q(

t1 − ρt2
√

1 − ρ2
)] log

P00

P01

+Q(
t1 − ρt2
√

1 − ρ2
) log

P10

P11

}

. (I.13)

One can easily check that (t1, t2) = (0, 0) is a critical point, i.e., the first partial

derivatives equal 0. We next check its Hessian matrix:

M =

(

a(ρ) b(ρ)

b(ρ) c(ρ)

)

(I.14)

where

a(ρ) =
∂2I(U ;V )

∂t21
|(t1,t2)=(0,0),

b(ρ) =
∂2I(U ;V )

∂t1t2
|(t1,t2)=(0,0),

c(ρ) =
∂2I(U ;V )

∂t22
|(t1,t2)=(0,0).

We want to show that a(ρ) < 0 and detM = b(ρ)2 − a(ρ)c(ρ) > 0 for all ρ ∈
[−1, 0) ∪ (0, 1].
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We can easily calculate that,

a(ρ) = c(ρ), (I.15)

=
1

2π
[−4 +

2ρ
√

1 − ρ2
log

P10

P11

+
1

4P10P11

]|(0,0), (I.16)

b(ρ) =
1

2π
[

2
√

1 − ρ2
log

P11

P10
+
P10 − P11

2P10P11
]|(0,0). (I.17)

Next, we introduce a lemma concerning evaluating the cumulative distribution

function of a standard bivariate Gaussian distribution at point (0, 0).

Lemma 11 [82, page 290]

P00(t1 = t2 = 0) = P11(t1 = t2 = 0) =
1

4
+

1

2π
arcsin(ρ), (I.18)

P01(t1 = t2 = 0) = P10(t1 = t2 = 0) =
1

4
− 1

2π
arcsin(ρ). (I.19)

Using (I.18) and (I.19), we can further get

a(ρ) = c(ρ) =
1

2π
[−4 +

2ρ
√

1 − ρ2
log

π − 2 arcsin ρ

π + 2 arcsin ρ

+
4π2

π2 − 4 arcsin2 ρ
], (I.20)

b(ρ) =
1

2π
[

2
√

1 − ρ2
log

π + 2 arcsin ρ

π − 2 arcsin ρ

− 8π arcsin ρ

π2 − 4 arcsin2 ρ
]. (I.21)

Next, we want to evaluate functions a(ρ), b(ρ) and c(ρ) with the help of the fol-

lowing two lemmas.

Lemma 12 For a(ρ) and c(ρ) defined above, we have:

a(ρ) = c(ρ) ≤ 0, (I.22)

for all ρ ∈ [−1, 1] and the maximum is achieved when ρ = 0.

Lemma 13 For the function b(ρ) defined above, we have

b(ρ) > 0, if ρ ∈ (0, 1], (I.23)

b(ρ) < 0, if ρ ∈ [−1, 0), (I.24)

b(ρ) = 0, if ρ = 0. (I.25)
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Form Lemma 12, we can see that a(ρ) < 0 for all ρ ∈ [−1, 0)∪ (0, 1] is satisfied. Next,

we want to prove that b2(ρ) − a(ρ)c(ρ) < 0 for all ρ 6= 0 is also true. Notice that,

form Lemmas 12 and I.25, we only need to prove that

− a(ρ) > b(ρ) if ρ ∈ (0, 1], (I.26)

a(ρ) < b(ρ) if ρ ∈ [−1, 0). (I.27)

Define, d(ρ) = −a(ρ) − b(ρ) and e(ρ) = a(ρ) − b(ρ). We want to show that

d(ρ) > 0 if ρ ∈ (0, 1], (I.28)

e(ρ) < 0 if ρ ∈ [−1, 0). (I.29)

This can be verified by noting that

d(ρ) =
1

2π
[−2

√

1 − ρ

1 + ρ
log

π + 2 arcsin ρ

π − 2 arcsin ρ
+

8(π − 2 arcsin ρ) arcsin ρ

π2 − 4 arcsin2 ρ
], (I.30)

e(ρ) =
1

2π
[2

√

1 + ρ

1 − ρ
log

π − 2 arcsin ρ

π + 2 arcsin ρ
+

8(π + 2 arcsin ρ) arcsin ρ

π2 − 4 arcsin2 ρ
]. (I.31)
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Appendix J

Proof of the optimal local decision

rule : Proposition 15 and 16

We begin with the probability of error for the hypothesis testing problem. We first

expand the probability of error with respect to sensor 1. The result is given by

Pe = π0P (U = 1|H0) + π1P (U = 0|H1),

= π0

∫

x1

∫

x2

∑

U1

∑

U2

P (U = 1, U1, U2, x1, x2|H0)dx1dx2

+π1

∫

x1

∫

x2

∑

u1

∑

u2

P (U = 0, U1, U2, x1, x2|H1)dx1dx2,

= π0

∫

x1

∫

x2

∑

U2

[

P (U0 = 1|U1 = 1, U2)P (x1x2|H0)P (U1 = 1|x1)P (U2|x2)

+P (U0 = 1|U1 = 0, U2)P (x1x2|H0)P (U1 = 0|x1)P (U2|x2)
]

dx1dx2

+π1

∫

x1

∫

x2

∑

U2

[

P (U0 = 0|U1 = 1, U2)P (x1x2|H1)P (U1 = 1|x1)P (U2|x2)

+P (U0 = 0|U1 = 0, U2)P (x1x2|H1)P (U1 = 0|x1)P (U2|x2)
]

dx1dx2,

=

∫

x1

∫

x2

∑

U2

{

[

π0P (U0 = 1|U1 = 1, U2)P (x1x2|H0) + π1P (U0 = 0|U1 = 1, U2)

·P (x1x2|H1)
]

P (U1 = 1|x1)P (U2|x2)
}

dx1dx2

+

∫

x1

∫

x2

∑

U2

{

[

π0P (U0 = 1|U1 = 0, U2)P (x1x2|H0) + π1P (U0 = 0|U1 = 0, U2)

·P (x1x2|H1)
]

P (U1 = 0|x1)P (U2|x2)
}

dx1dx2
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=

∫

x1

∫

x2

{

π0A1P (x1x2|H0) − π1B1P (x1x2|H1)
}

P (U1 = 1|x1)dx1dx2 + C1,

=

∫

x1

P (U1 = 1|x1)

∫

x2

{

π0A1P (x1x2|H0) − π1B1P (x1x2|H1)
}

dx2dx1 + C1,

(J.1)

where A1 and B1 are defined as in (7.9) and (7.10), and Ci is defined as

Ci =

∫

x1

∫

x2

∑

Uī

[

π0P (U0 = 1|Ui = 0Uī)P (x1x2|H0)

+π1P (U0 = 0|Ui = 0Uī)P (x1x2|H1)
]

P (Uī|xī)dx1dx2.

Note that, for fixed decision rule at sensor ī, the term Ci is a constant. Then, minimize

Pe is equivalent to minimize the first term in (J.1). If we further assume that the

fusion rule satisfies

P (U0 = 1|U1 = 1, U2 = j) ≥ P (U0 = 1|U1 = 0, U2 = j),

P (U0 = 0|U1 = 0, U2 = j) ≥ P (U0 = 0|U1 = 1, U2 = j),

for all j = {0, 1}, then the optimal decision rule at sensor 1 is given as follows:

P (U1 = 1|x1) =







1 if
∫

x2
B1P (x1x2|H1)dx2

∫

x2
A1P (x1x2|H0)dx2

≥ π0

π1

0 otherwise
(J.2)

The optimal decision rule at sensor 2 can be proved similarly if we expand the error

probability with respect to sensor 1. This completes the proof of Proposition 15.

If we assume AND rule is used at the fusion center. Then

Ai = Bi = IDī
, (J.3)

Where I is the indicator function, i.e.,

IDi
=

{

1 if xi ∈ Di

0 otherwise
(J.4)

Hence,
∫

xī

BiP (x1x2|H1)dxi =

∫

Dī

P (x1x2|H1)dxī, (J.5)

∫

xī

AiP (x1x2|H0)dxi =

∫

Dī

P (x1x2|H0)dxi. (J.6)

Together with Proposition 15, we complete the proof of Proposition 16.
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Appendix K

Proof of Proposition 13

Let W,N1 and N2 be standard Gaussian random variables independent of each other

and express X, Y as

X =
√
ρW +

√

1 − ρN1, (K.1)

Y =
√
ρW +

√

1 − ρN2. (K.2)

It is easy to verify that conditions (C1) and (C2) are satisfied. Straightforward

calculation yields I(X, Y ;W ) = 1
2
log 1+ρ

1−ρ .

The proof is thus complete if one can prove I(X, Y ;W ) > 1
2
log 1+ρ

1−ρ for all W

satisfying the conditions (C1) and (C2).

Let PX,W,Y be any joint distribution satisfying the conditions (C1) and (C2) and

let K denote the corresponding covariance matrix. Let P̃X,W,Y be joint Gaussian

satisfying the conditions (C1) and (C2) with zero mean and the same covariance

matrix K. From the fact that conditional differential entropy is maximized under

Gaussian distribution for a given covariance matrix [73], we have

h(X, Y |W ) ≤ hP̃ (X, Y |W ). (K.3)

Therefore I(X, Y ;W ) ≥ IP̃ (X, Y ;W ). Hence we only need to consider (X,W, Y ) that

are jointly Gaussian distributed.

Without loss of generality, let W be a Gaussian random variable with zero mean

and variance σ2, and

X = ρ1W +
√

1 − ρ2
1σ

2N1, (K.4)

Y = ρ2W +
√

1 − ρ2
2σ

2N2, (K.5)

127



where N1 and N2 are standard Gaussian random variables andW,N1, N2 are mutually

independent with each other.

Since EXY = ρ, we have

ρ = ρ1ρ2σ
2, (K.6)

and due to the Markov chain X −W − Y , we have H(X|W ) = H(X|W,Y ), i.e.,

1 − ρ2
1 =

1 + 2ρρ1ρ2 − ρ2 − ρ2
1 − ρ2

2

1 − ρ2
2

. (K.7)

Combining (K.6) and (K.7), we get σ2 = 1. Therefore, we can lower bound I(X, Y ;W )

by

I(X, Y ;W ) = h(X, Y ) − h(X|W ) − h(Y |W ), (K.8)

=
1

2
log

1 − ρ2

(1 − ρ2
1)(1 − ρ2

2)
, (K.9)

=
1

2
log

1 − ρ2

1 + ρ2 − ρ2
1 − ρ2

2

, (K.10)

≥ 1

2
log

1 − ρ2

1 + ρ2 − 2ρ
, (K.11)

=
1

2
log

1 + ρ

1 − ρ
, (K.12)

where we use the facts that ρ1ρ2 = ρ and ρ2
1 + ρ2

2 ≥ 2ρ1ρ2.
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Appendix L

Proof of Corollary 7

Without any loss of generality, we only consider the case H0 : ρ > 0 Vs H1 : ρ = 0.

We assume that the rejection region of sensor 1 is a single semi-infinite interval, that

is,

D1 = (l1,+∞). (L.1)

From Corollary 1, we have that, the rejection region D2 for sensor 2 is characterized

by

D2 =
{

x2 :
Q(l1)

Q( l1−ρx2√
1−ρ2

)
≥ π0

π1

}

, (L.2)

Where Q(·) is the Q function defined in (I.7).

Since Q( l1−ρx2√
1−ρ2

) is monotone increasing as a function of x2 from 0 to 1 given ρ > 0

(monotone decreasing from 1 to 0 given ρ < 0), hence D2 is a single semi-infinite

interval of the form (−∞, l2) given ρ > 0 ((l2,∞) given ρ < 0). This completes the

proof of Corollary 7.
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