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Abstract

Sequential Bayesian estimation is the process of recursively estimating
the state of a dynamical system observed in the presence of noise. Pos-
terior Cramér-Rao lower bound (PCRLB) sets a performance limit on
any Bayesian estimator for the given dynamical system. The PCRLB
does not fully utilize the existing measurement information to give an
indication of the mean squared error (MSE) of the estimator in the
future. In many practical applications, we are more concerned with
the value of the bound in the future than in the past. PCRLB is an
offline bound, because it averages out the very useful measurement
information, which makes it an off-line bound determined only by the
system dynamical model, system measurement model and the prior
knowledge of the system state at the initial time.

This dissertation studies the sequential Bayesian estimation problem
and then introduces the notation of conditional PCRLB, which uti-
lizes the existing measurement information up to the current time, and
sets the limit on the MSE of any Bayesian estimators at the next time
step. This work has two emphases: firstly, we give the mathematically
rigorous formulation of the conditional PCRLB as well as the approx-
imate recursive version of conditional PCRLB for nonlinear, possibly
non-Gaussian dynamical systems. Secondly, we apply particle filter
techniques to compute the numerical values of the conditional PCRLB
approximately, which overcomes the integration problems introduced
by nonlinear/non-Gaussian systems.

Further, we explore several possible applications of the proposed bound
to find algorithms that provide improved performance. The primary
problem of interest is the sensor selection problem for target tracking
in sensor networks. Comparisons are also made between the perfor-
mance of sensor selection algorithm based on the proposed bound and
the existing approaches, such as information driven, nearest neighbor,
and PCRLB with renewal strategy, to demonstrate the superior per-
formances of the proposed approach.

This dissertation also presents a bandwidth-efficient algorithm for
tracking a target in sensor networks using distributed particle filters.



This algorithm distributes the computation burden for target track-
ing over the sensor nodes. Each sensor node transmits a compressed
local tracking result to the fusion center by a modified expectation-
maximization (EM) algorithm to save the communication bandwidth.
The fusion center incorporates the compressed tracking results to give
the estimate of the target state.

Finally, the target tracking problem in heterogeneous sensor networks
is investigated extensively. Extended Kalman Filter and particle filter
techniques are implemented and compared for tracking a maneuvering
target with the Interacting Multiple Model (IMM).



Conditional Posterior Cramér-Rao Lower

Bound and Distributed Target Tracking in

Sensor Networks

by

LONG ZUO

M.S., Institute of Automation, Chinese Academy of Science, 2002

B.S., Xi’an Jiaotong University, P.R. China 1999

THESIS

Submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Electrical Engineering and Computer Science in the Graduate

School of Syracuse University

December, 2010

COMMITTEE IN CHARGE:

Professor Pramod K. Varshney

Research Assist. Professor Ruixin Niu

Professor Chilukuri Mohan

Professor Kishan Mehrotra

Professor Biao Chen

Associate Professor Lixin Shen



c© Copyright 2010

Long Zuo

All Rights Reserved



Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor

Pramod K. Varshney for his invaluable guidance and support through-

out my graduate study in Sensor Fusion Group at Syracuse Univer-

sity. I would also like to express the appreciation to my co-advisor,

Dr. Ruixin Niu, for providing me the opportunity to work on the fan-

tastic topics and guiding me throughout my Ph.D study with kindly

help and inspiring discussions. Without his never ending patience this

thesis would probably not exist today. In addition, I am also grate-

ful to professors Chilukuri K. Mohan and Kishan Mehrotra for the

comments, remarks and suggestions that significantly improved the

quality of my research.

I would also like to thank all my friends and colleagues at Syracuse

University with whom I have had the pleasure of working over the

years. These include Hao Chen, Min Xu, Priyadip Ray, Nikhil Pad-

hye, Onur Ozdemir, Dazhi Chen, Arun Subramanian, Swarnendu Kar,

Ashok Sundaresan, Satish G Iyengar, Renbin Peng and all other mem-

bers of the Sensor Fusion Group to create a creative, stimulating and

professional atmosphere.

Finally, I would like to dedicate this thesis to my loving parents and

extended family members for their patience and support during these

years.



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . 5

2 Sequential Bayesian Estimation 7

2.1 Bayesian Estimation Problems . . . . . . . . . . . . . . . . . . . . 7

2.2 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . 11

2.3 Bayesian Estimation through Sequential Monte Carlo Approach . 12

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Sequential Monte Carlo Sampling for Bayesian Estimation 12

2.3.2.1 Monte Carlo Sampling . . . . . . . . . . . . . . . 12

2.3.2.2 Importance Sampling . . . . . . . . . . . . . . . . 14

2.3.2.3 Sequential Importance Sampling . . . . . . . . . 14

2.3.2.4 Sampling Importance Resampling . . . . . . . . . 15

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Conditional Posterior Cramér-Rao Lower Bounds for Sequential

Bayesian Estimation 17

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Classical Cramer-Rao Lower Bounds . . . . . . . . . . . . . . . . 20

3.3 Conditional PCRLB for Nonlinear Dynamical Systems . . . . . . 22

3.4 A Sequential Monte Carlo solution for Conditional PCRLB . . . . 29

vi



TABLE OF CONTENTS

3.4.1 General Formulation . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Additive Gaussian Noise Case . . . . . . . . . . . . . . . . 34

3.4.3 Linear System with Additive Gaussian Noise Case . . . . . 37

3.5 Simulation Results for Comparison . . . . . . . . . . . . . . . . . 39

3.5.1 Conditional PCRLB vs Conditional MSE for UNGM . . . 40

3.5.2 Weakly UNGM results . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Conditional PCRLB vs Unconditional PCRLB . . . . . . . 41

3.5.4 Exact Conditional PCRLB vs Its Recursive Approximation 42

3.5.5 Unconditional PCRLB with Renewal Strategy . . . . . . . 43

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Sensor Selection for Target Tracking in Sensor Networks 48

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Sensor Selection Approaches . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Information Driven . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Conditional PCRLB . . . . . . . . . . . . . . . . . . . . . 56

4.3 Target Tracking Model in Sensor Networks . . . . . . . . . . . . . 57

4.3.1 Target Motion Model . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Sensor Measurement Model . . . . . . . . . . . . . . . . . 57

4.4 Sensor Selection Based on Conditional PCRLB . . . . . . . . . . . 58

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Sensor Selection with Analog Data . . . . . . . . . . . . . 63

4.5.2 Sensor Selection with Quantized Data . . . . . . . . . . . . 63

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Bandwidth-Efficient Distributed Particle Filter for Target Track-

ing in Sensor Networks 71

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Distributed Target Tracking . . . . . . . . . . . . . . . . . . . . . 72

5.3 Tracking Based on Particle Filters . . . . . . . . . . . . . . . . . . 73

5.4 Gaussian Mixture Approximation to Particle Filter Estimates . . 74

5.4.1 Expectation-Maximization Algorithm . . . . . . . . . . . . 74

5.4.2 MLE of Gaussian Mixture Densities Parameters via EM . 75

vii



TABLE OF CONTENTS

5.4.3 Dynamic EM for GMM . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Best Linear Unbiased Estimators for Centralized Estimation 78

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Target Motion Model . . . . . . . . . . . . . . . . . . . . . 79

5.5.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . 80

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Target Tracking in Heterogeneous Sensor Networks 85

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Sensor Network Setup . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Target Motion Model . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Sensor Measurement Model . . . . . . . . . . . . . . . . . 88

6.4 Target Tracking Algorithms . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . 90

6.4.2 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5.1 Target Tracking Using Two Bearing-only Sensors . . . . . 93

6.5.2 Target Tracking Using One Radar Sensor . . . . . . . . . . 94

6.5.3 Target Tracking Using One Range Sensor and One Bearing-

only Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.4 Target Tracking Using Two Range Sensors . . . . . . . . . 95

6.5.5 Target Tracking Using Bearing Only, Range and Radar

Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions 108

A Proof of Proposition 1 in Chapter 3 111

B Proof of Proposition 2 in Chapter 3 114

C Approximation of B22,b
k by Particle Filters in Chapter 3 Section

3.4.2 116

viii



TABLE OF CONTENTS

References 124

ix



List of Tables

3.1 Comparison between LA(x1|z1) and J̃1 . . . . . . . . . . . . . . . 46

4.1 Comparison of average CPU computational times (Analog data

with two active sensors selected at each time, 30 time steps with

N = 300) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



List of Figures

1.1 Wireless Sensor Networks (from http://www2.ece.ohio-state.edu/ ekici/res wmsn.html) 3

3.1 Plot of the true state xk and observations zk . . . . . . . . . . . . 41

3.2 Plot of filtering results by Extended Kalman filter and by particle

filter for Example I . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Plot of conditional posterior CRLB and conditional MSE for Ex-

ample I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Plot of filtering results by Extended Kalman filter and by particle

filter for Example II . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Plot of conditional posterior CRLB and conditional MSE for Ex-

ample II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Comparison of conditional and unconditional PCRLBs for Exam-

ple III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Comparison of conditional PCRLB between the one with error

propagation and the one without error propagation . . . . . . . . 47

4.1 Sensor management based on feedback from recursive estimator. . 49

4.2 Conditional PCRLB Tracking results with analog data . . . . . . 63

4.3 Renewal PCRLB Tracking results with analog data . . . . . . . . 64

4.4 Nearest Neighbor Tracking results with analog data . . . . . . . . 65

4.5 Information based Tracking results with analog data . . . . . . . . 66

4.6 Comparison of x-MSEs with analog data . . . . . . . . . . . . . . 66

4.7 Comparison of y-MSEs with analog data . . . . . . . . . . . . . . 67

4.8 Conditional PCRLB Tracking results with quantized data . . . . . 67

4.9 Renewal PCRLB Tracking results with quantized data . . . . . . 68

xi



LIST OF FIGURES

4.10 Nearest Neighbor Tracking results with quantized data . . . . . . 68

4.11 Information based Tracking results with quantized data . . . . . . 69

4.12 Comparison of x-MSEs with quantized data . . . . . . . . . . . . 69

4.13 Comparison of y-MSEs with quantized data . . . . . . . . . . . . 70

5.1 Distributed target tracking results . . . . . . . . . . . . . . . . . . 80

5.2 Number of GMM components . . . . . . . . . . . . . . . . . . . . 81

5.3 Plot of number of particles vs number of bits transmitted . . . . . 82

5.4 Plot of number of bits transmitted vs RMSE . . . . . . . . . . . . 83

5.5 Plot of cumulative number of bits transmitted vs number of particles 84

5.6 Fixed number of GMM components vs dynamic number of GMM

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Centralized fusion process . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Simulated trajectory in a multi-sensor environment . . . . . . . . 93

6.3 2 bearing sensors - CV model with glint measurement noise : track-

ing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 2 bearing sensors - CV model with glint measurement noise: MSE 95

6.5 2 bearing sensors - Maneuvering target: tracking results . . . . . . 96

6.6 2 bearing sensors - Maneuvering target: MSE . . . . . . . . . . . 96

6.7 One radar sensor - CV model with glint measurement noise: track-

ing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.8 One radar sensor - CV model with glint measurement noise: MSE 97

6.9 One radar sensor - Maneuvering target: tracking results . . . . . . 98

6.10 One radar sensor - Maneuvering target: MSE . . . . . . . . . . . 98

6.11 One range and One bearing - CV model with glint measurement

noise: tracking results . . . . . . . . . . . . . . . . . . . . . . . . 99

6.12 One range and One bearing - CV model with glint measurement

noise: MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.13 One range and One bearing - Maneuvering target: tracking results 100

6.14 One range and One bearing - Maneuvering target: MSE . . . . . 101

6.15 Two range sensors - CV model with glint measurement noise:

tracking results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.16 Two range sensors - CV model with glint measurement noise: MSE 102

xii



LIST OF FIGURES

6.17 Two range sensors - Maneuvering target: tracking results . . . . . 102

6.18 Two range sensors - Maneuvering target: MSE . . . . . . . . . . . 103

6.19 Bearing + range + radar - CV model with glint measurement noise:

tracking results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.20 Bearing + range + radar - CV model with glint measurement noise:

MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.21 Bearing + range + radar - Maneuvering target: tracking results . 106

6.22 Bearing + range + radar - Maneuvering target: MSE . . . . . . . 107

xiii



Chapter 1

Introduction

1.1 Background

Over the past decade, wireless networks have been deployed that are able to pro-

vide a large number of users with the ability to move diverse forms of information

readily and thus have revolutionized business, industry, defense, science, educa-

tion, research, and human interactions. Recent technological improvements have

made the deployment of small, inexpensive, low-power, distributed devices, which

are capable of local processing and wireless communication, a reality. This has

resulted in the proliferation of wireless sensor networks that combine distributed

sensing, computing, and wireless communications into a powerful technology and

offer unprecedented resolution, unobtrusiveness, and autonomous operation for

countless applications. At the same time, they offer numerous challenges consist-

ing of monitoring and collecting the data, assessing and evaluating the informa-

tion, formulating meaningful user displays, and performing decision-making and

alarm functions especially under strict energy constraints, distributed operation,

and scalability. This has generated world-wide interest in the basic and applied

research and deployment of sensor networks [1].

As shown in Fig 1.1, a sensor network is composed of a large number of sensor

nodes that are densely deployed either inside the region where the phenomenon

is taking place or very close to it [2]. Sensor nodes with various functionalities

usually allow random deployment in inaccessible terrains or disaster relief oper-

ations. Another unique feature of sensor networks is the cooperative effort of

1



1.1 Background

sensor nodes. Sensor nodes either have the ability to send raw data to the nodes

responsible for further processing or have the processing abilities to locally carry

out simple computations and transmit only the required and partially processed

data over a flexible network architecture with dynamic topologies. Therefore,

sensor networks have the great potential to enable a large class of applications

ranging from military scenarios to environmental control, consumer electronics

and industrial equipment, health monitoring, warehouse inventory, etc. [3]. Some

important applications are as follows:

• Military Monitoring. Special sensors can be deployed in the battlefield

to gain enemy information for surveillance, to detect and track the enemy

target movements, explosions and other phenomena of interest.

• Environmental Monitoring. Environmental sensors can be used to de-

tect and monitor environmental changes in plains, forests, oceans, etc. or

to monitor disaster areas to detect and characterize Chemical, Biological,

Radiological, Nuclear, and Explosive (CBRNE) attacks.

• Building Monitoring. Sensors can be used in large buildings to monitor

climate changes or vibration that could damage the structure of a building.

• Traffic Monitoring. Sensors can be used to monitor vehicle traffic on

highways or in congested parts of a city.

• Health Care. Sensors can be used in biomedical applications to improve

the quality of the provided care. For example, sensors are implanted in

the human body to monitor medical problems like cancer and help patients

maintain their health.

This dissertation focuses on target tracking problems in sensor networks. Due

to the energy or bandwidth limitations, one of the main goals of target tracking

problems in sensor networks is to provide most informative or accurate informa-

tion about the moving target over time with constrained resources. Maximizing

the tracking accuracy requires collecting the measurements from all the sensors,

whose sensing ranges cover the moving target. However, due to the energy or

2



1.1 Background

Figure 1.1: Wireless Sensor Networks (from http://www2.ece.ohio-

state.edu/ ekici/res wmsn.html)

bandwidth limitations, the number of active sensors should be kept to a min-

imum, while the requirement of the tracking accuracy is still satisfied. Sensor

selection schemes that provide acceptable tracking accuracy and yet address en-

ergy and bandwidth limitations are, therefore, investigated in this dissertation.

The sensor selection problem can be defined as follows: given a set of sensors

S = {S1, S2, . . . , Sn}, a subset of k sensors need to be determined to provide

the information in order to maximize a specific objective, for example, tracking

accuracy. There are several existing approaches. One of the most widely used

methods is the dynamic information-driven solution proposed by Zhao et al. [4].

They consider selecting the sensors that collectively have the maximum mutual

information between the sensor measurements and the target state.

In the dissertation, a novel approach for evaluating the estimation perfor-

mance in the sequential Bayesian estimation problems is proposed. Utilization

of the novel conditional posterior Cramér-Rao lower bounds (PCRLBs) concept

for the task of real-time sensor selection is proposed and compared with exist-

ing methods. PCRLBs for sequential Bayesian estimators provide performance

bounds for general nonlinear filtering problems and their modified versions have

3
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1.1 Background

been used for sensor management in tracking and fusion systems. However, the

unconditional PCRLB [5] is an off-line bound that is obtained by taking the

expectation of the Fisher information matrix (FIM) with respect to the measure-

ment and the state to be estimated. In other words, the standard unconditional

PCRLB uses a prior i information instead of currently sensed information. The

novelty of the conditional PCRLB comes from the fact that it utilizes the infor-

mation contained in the observation data up to the current time for a particular

realization of the system state, which makes it an online bound adaptive to the

particular track realization. This approach is expected to provide a more ac-

curate and effective performance evaluation than the conventional unconditional

PCRLB. However, analytical computation of this new bound is, in general, in-

tractable except when the system is linear and Gaussian. In this dissertation, we

utilize a sequential Monte Carlo solution to compute the conditional PCRLB for

nonlinear, non-Gaussian sequential Bayesian estimation problems.

In addition, a novel algorithm for tracking a moving target in a multi-sensor

environment using distributed particle filters (DPFs) is presented. In a sensor

network, the implementation of distributed particle filters requires huge amount

of communications between local sensor nodes and the fusion center. To make

the DPF approach feasible for real time processing and to reduce communication

requirements, we approximate the a posteriori distribution obtained from the

local particle filters by a Gaussian Mixture Model (GMM). We propose a modified

EM algorithm to estimate the parameters of GMMs obtained locally. These

parameters are transmitted to the fusion center where the Best Linear Unbiased

Estimator (BLUE) is used for fusion. Simulation results are presented to illustrate

the performance of the proposed algorithm.

Beyond that, tracking a moving target in heterogeneous sensor networks is

investigated. Algorithms based on the classical extended Kalman filter (EKF) and

on the emerging non-Gaussian and nonlinear particle filtering (PF) techniques

have been implemented. These algorithms are tested in the practical case where

a target maneuvers from time to time and an Interacting Multiple Model (IMM)

framework is used.

4



1.2 Main Contributions

1.2 Main Contributions

In this section, we present an outline of the significant contributions presented in

the dissertation:

• A new notion of conditional PCRLB is proposed, which is conditioned on

the actual past measurement realizations and is, therefore, more suitable

for online adaptive sensor management. Derivation and implementation

of the conditional PCRLB is also presented. Extensive comparison of the

proposed conditional PCRLB and the conventional PCRLB is carried out.

• The conditional PCRLB is applied to the sensor selection problem for target

tracking in sensor networks. A particle filter is used to estimate the mov-

ing target states as well as recursively computing the conditional PCRLB.

Simulations for both analog and quantized measurement data are presented

and compared to existing state of art approaches.

• A novel algorithm is developed for target tracking in sensor networks with

distributed particle filters in order to save the communication bandwidth.

Instead of transmitting the raw particles, we use a Gaussian Mixture Model

(GMM) to approximate the a posteriori distribution obtained from the

local particle filters, and only transmit the parameters of the GMM to the

fusion center. The optimal rule based on the best linear unbiased estimation

(BLUE) method is developed to fuse the GMM parameters collected from

local sensors.

• Maneuvering target tracking with glint noise in heterogeneous sensor net-

works is investigated. Several algorithms are presented and compared in

the practical case where a target maneuvers from time to time and an In-

teracting Multiple Model (IMM) framework is used.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 describes some

commonly used methods in estimation theory. Mainly, the maximum likelihood

5



1.3 Dissertation Organization

method and the Bayesian method are discussed. Bayesian framework for dy-

namical systems is highlighted and optimal Bayesian estimation is presented.

Optimal and sub-optimal approaches based on Kalman Filter theory and particle

filter theory are presented as feasible estimation methods.

In Chapter 3, the new concept of conditional PCRLB is proposed. The exact

conditional PCRLB and its recursive evaluation approach including an approx-

imation are derived. Further, a general sequential Monte Carlo solution is pro-

posed to compute the conditional PCRLB recursively for nonlinear non-Gaussian

sequential Bayesian estimation problems. The differences between this new bound

and existing measurement dependent PCRLBs are investigated and discussed. Il-

lustrative examples are also provided to show the performance of the proposed

conditional PCRLB.

Chapter 4 applies the conditional PCRLB to sensor selection problems for

target tracking in sensor networks. Comparison between the conditional PCRLB

and other existing approaches, including information-driven, PCRLB with re-

newal and nearest neighbor, are presented in terms of the simulation results.

Chapter 5 proposes a distributed target tracking algorithm based on particle

filters for sensor networks. A modified EM algorithm is proposed to estimate

the parameters of GMMs based on particles obtained locally. These parameters

are transmitted to the fusion center where the Best Linear Unbiased Estima-

tor(BLUE) is used for fusion. Simulation results are presented to illustrate the

performance of the proposed algorithm.

Chapter 6 discusses and compares several target tracking algorithms in het-

erogenous sensor networks.

Finally, Chapter 7 provides concluding remarks as well a summary of the work

and discusses future research.
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Chapter 2

Sequential Bayesian Estimation

2.1 Bayesian Estimation Problems

The sequential Bayesian estimation problem is to find the estimate of the state

from the measurements (observations) over time. The evolution of the state

sequence xk is assumed to be an unobserved first order Markov process, xk|xk−1 ∼
p(xk|xk−1), and is modeled as

xk+1 = fk(xk,uk) (2.1)

where fk : Rnx × R
nu → R

nx is, in general, a nonlinear function of state x, and

{uk, k ∈ {0}
⋃
N} is an independent white process noise. nu is the dimension of

the noise vector uk. The probability density function (PDF) of the initial state

x0 is assumed to be known.

The observations are conditionally independent provided that x0,x1, . . . are

known. So the measurement equation is modeled as

zk = hk(xk,vk) (2.2)

where hk : Rnx × R
nv → R

nz is, in general, a nonlinear function, {vk, k ∈ N} is

the measurement noise sequence, which is independent of xk as well as uk. nv is

the dimension of the noise vector vk. Since process noise and measurement noise

are assumed to be independent, xk+1 is independent of z1:k , {z1, z2, . . . , zk}
given xk, which means that p(xk+1|xk, z1:k) = p(xk+1|xk).
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2.2 Bayesian Filtering

If we denote the states and measurements up to time k as x0:k and z1:k, then

the joint PDF of (x0:k, z1:k) can be determined from (2.1) and (2.2) with known

initial PDF p(x0) and noise models for uk and vk

p(x0:k, z1:k) = p(x0)
k∏

i=1

p(xi|xi−1)
k∏

j=1

p(zj|xj) (2.3)

Given the above Equations (2.1), (2.2) and (2.3), the Bayesian estimation

problems can be classified into three categories:

• Prediction is an operation that involves the estimation of the state at time

k+ τ (τ > 0) by using the observations up to and including time k. It is an

a priori form of estimation in that the observed data up to time k is used

for estimating the state at a future time.

• Filtering corresponds to estimating the distribution of the current state

based upon the observations received up to and including k.

• Smoothing corresponds to estimating the distribution of the state at a

particular time k
′
given the observations up to some later time k, where

k > k
′
. It is an a posteriori form of estimation in that the data measured

after the time of interest are used for estimation.

2.2 Bayesian Filtering

Bayesian filtering is aimed to apply Bayesian statistics and Bayes rule to prob-

abilistic inference problems, and specifically the stochastic filtering problem. In

the past few decades, numerous authors have investigated the Bayesian filtering

problem in a dynamic state space framework [6][7][8]. This section provides a

Bayesian view of the existing methods by focusing on the approach for solving

the estimation problems mentioned in the last section.

An optimal filter is said to be optimal usually in some specific sense [9]. A

criterion should be defined to measure the optimality. Here are some criteria for

measuring the optimality:
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2.2 Bayesian Filtering

• Minimum mean-squared error (MMSE): It can be defined in terms of pre-

diction or filtering error (or equivalently the trace of the MSE matrix of the

state).

• Maximum a posteriori (MAP): It is aimed to find the mode of posterior

probability.

• Maximum likelihood (ML): which is a special case of MAP where the prior

is neglected.

The criterion of optimality for Bayesian filtering is the Bayesian MMSE. How-

ever, except in some special cases (e.g. linear Gaussian or conjugate family case),

the analytical form of the state distribution is not obtainable so that Bayesian

MMSE is not tractable either. Therefore, in general we can only seek to obtain

suboptimal solutions (e.g. Extended Kalman Filter, Particle Filter, etc.).

2.2.1 Kalman Filter

The Kalman filter [10], or Kalman-Bucy filter [11] is the optimal Bayesian filter

for dynamic systems with linear state equation and additive Gaussian noise for

both the process Equation (2.1) and measurement Equation (2.2). It is optimal

not only in the sense of MMSE, but also the filtering result gives the exact

distribution of state xk given the measurements up to the current time k.

Assuming the linearity and additive Gaussian noise properties, Equations (2.1)

and (2.2) become:

xk+1 = Fkxk + uk (2.4)

zk = Hkxk + vk (2.5)

where the dynamics noise uk is a white Gaussian noise process, uk ∼ N{0, Qk},
measurement noise vk is also white Gaussian noise process, and vk ∼ N{0, Rk},
which is uncorrelated with uk. The initial state x0 is assumed to be known and

distributed as x0 ∼ N{x̂0|0, P0|0}. x̂0|0 and P0|0 are the mean and covariance

respectively for x0.
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2.2 Bayesian Filtering

The Kalman filter consists of an iterative prediction-update process. In the

prediction step, the one-step ahead prediction of state is calculated:

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.6)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1 (2.7)

where x̂k|k−1 is defined as the estimate of xk conditioned on measurements up to

and including time k−1, while Pk|k−1 is the covariance matrix of the corresponding

prediction error.

In the update step, the predicted state estimate is updated according the new

measurement at time k.

Sk = HkPk|k−1H
T
k +Rk (2.8)

Kk = Pk|k−1H
T
k S

−1
k (2.9)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k−1|k−1) (2.10)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.11)

where x̂k|k is the updated state estimate and Pk|k is the updated estimate covari-

ance. Sk is the innovation(or residual) covariance:

Sk = cov(ỹk) (2.12)

where ỹk is the innovation(or measurement) residual, which is defined as ỹk =

zk −Hkx̂k−1|k−1.

For some reason, if the observation is unavailable, the update may be skipped

and multiple prediction steps performed. Likewise, if multiple independent obser-

vations are available at the same time, multiple update steps may be performed.

In a stationary situation. Kalman filter is precisely the Wiener filter for sta-

tionary least-squares smoothing. In other words, Kalman filter is a time-variant

Wiener filter. The reader is referred to [12] and [9] for more in-depth treatments.
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2.2 Bayesian Filtering

2.2.2 Extended Kalman Filter

The Kalman filter is only applicable to linear systems with additive Gaussian

noise. For nonlinear systems, the solution is that a mild nonlinearity may be

approximated as being linear about a nominal point through the Taylor series

expansion [13]. The mean x̂k|k and covariance Pk|k of the Gaussian approximation

to the posterior distribution of the states can be derived as follows:

x̂k|k−1 = f(x̂k−1|k−1, 0) (2.13)

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1 (2.14)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k )

−1 (2.15)

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1, 0)) (2.16)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.17)

where Kk is the Kalman gain, and Jacobians of the process model and measure-

ment model are given by

Fk−1 ,
∂f(xk−1)

∂xk−1

∣∣∣
(xk−1=x̂k−1|k−1)

(2.18)

Hk ,
∂h(xk)

∂xk

∣∣∣
(xk=x̂k|k−1)

(2.19)

It can be seen that, in EKF, the function f is used to compute the predicted

state from the previous estimate and similarly the function h is used to compute

the predicted measurement from the predicted state. However, f and h cannot

be applied to compute the covariance directly. Instead, at each time step, the

process linearizes the non-linear function f , which is evaluated at the updated

state estimate xk−1 = x̂k−1|k−1 as shown in Equation (2.18). Equation (2.19)

shows the linearization process for the non-linear function h with Jacobian matrix

evaluated with predicted states xk = x̂k|k−1. These Jacobians are used in the

Kalman filter equations.
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2.3 Bayesian Estimation through Sequential Monte Carlo Approach

2.3 Bayesian Estimation through Sequential Monte

Carlo Approach

2.3.1 Background

Monte Carlo methods are a class of computational algorithms that rely on statis-

tical sampling and estimation techniques to evaluate the solutions to mathemat-

ical problems. Monte Carlo methods can be classified into three categories: (i)

Monte Carlo sampling, which is aimed at developing efficient (variance-reduction

oriented) sampling algorithms for parameter estimation; (ii) Monte Carlo calcu-

lation, which is a class of computational algorithms that rely on repeated random

sampling to compute their results; and (iii) Monte Carlo optimization, which is

devoted to applying the Monte Carlo idea to optimize some (non-convex or non-

differentiable) functions. In last decades, modern Monte Carlo techniques have

attracted more and more attention and have been developed in different areas.

A detailed background of Monte Carlo methods can be obtained from the books

[14][15] and survey papers, e.g., [16].

2.3.2 Sequential Monte Carlo Sampling for Bayesian Es-

timation

2.3.2.1 Monte Carlo Sampling

Monte Carlo sampling is a bunch of random number generation algorithms that

use Monte Carlo Markov Chain (MCMC) methods to generate samples for a

certain distribution, from which it is usually difficult to generate random sam-

ples directly. Monte Carlo sampling provides a convenient way to compute the

properties of distributions, such as mean or variance of the random variable.

Expectation based on Monte Carlo sampling may be expressed as [15]

E[f(x)] =

∫
f(x)p(x)dx ≈ 1

N

N∑

i=1

f(xi) (2.20)

By the law of large numbers, as the number of samples goes to infinity, this es-

timate approaches the true value. Due to the discrete nature of Monte Carlo
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2.3 Bayesian Estimation through Sequential Monte Carlo Approach

sampling, it is difficult to obtain the probability distribution. A crude approx-

imation in term of discrete distributions, useful for building intuition, may be

written as,

p(x) ≈
N∑

i=1

wiδ(x− xi) (2.21)

where xi is the i-th sample that approximates the distribution. The coefficient

wi is the probability associated with each sample.

There are two fundamental problems arising in Monte Carlo sampling meth-

ods: (i) How to draw random samples {xi} from a probability distribution p(x)?

and (ii) How to estimate the expectation of a function w.r.t. the distribution or

density? The first problem is a design problem, and the second one is an inference

problem invoking integration. Besides, there are several relevant issues that need

to be considered in the context of parameter estimation:

• Consistency: An estimator is consistent if the estimator converges to the

true value almost surely as the number of observations approaches infinity.

• Unbiasedness: An estimator is unbiased if its expected value is equal to the

true value.

• Efficiency: An estimator is efficient if it produces the smallest error covari-

ance matrix among all unbiased estimators, and it is also regarded as the

one optimally using the information in the measurements. A well-known

efficiency criterion is the Cramér-Rao bound.

• Robustness: An estimator is robust if it is insensitive to the gross measure-

ment errors and the uncertainties of the model.

• Minimal variance: Variance reduction is the central issue of various Monte

Carlo approximation methods, most improvement techniques are variance-

reduction oriented.
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2.3 Bayesian Estimation through Sequential Monte Carlo Approach

2.3.2.2 Importance Sampling

Importance sampling (IS) was first introduced by Marshall [17] and is a general

technique for estimating the expectations of a particular function of a random

variable or random vector, while samples are generated from a different distribu-

tion rather than the distribution of interest. The idea of importance sampling is

to choose a proposal distribution q(x) in place of the true probability distribution

p(x), which is hard-to-sample. The support of q(x) is assumed to cover that of

p(x). The objective of importance sampling is aimed to sample the distribution

in the region of importance in order to achieve computational efficiency.

Importance sampling is useful in two ways [15]: 1) it can be used when en-

countering the difficulty to sample from the true distribution directly; and 2) it

provides an elegant way to reduce the variance of the estimator. The idea is

that certain values of the input random variables in a simulation have more im-

pact on the parameter being estimated than others. If these “important” values

are emphasized by sampling more frequently, then the estimator variance can be

reduced. Hence, the basic methodology in importance sampling is to choose a

distribution which “encourages” the important values.

2.3.2.3 Sequential Importance Sampling

For the sequential estimation problems, a good proposal distribution is to con-

struct the proposal distribution sequentially, which is the basic idea of sequential

importance sampling (SIS). In particular, if the proposal distribution is chosen

in a factorized form

q(x0:k|z1:k) = q(x0)Π
k
t=1q(xt|x0:t−1, z1:t) (2.22)

then the importance sampling can be performed recursively.

There are a number of potential problems with the SIS algorithm. One prob-

lem is sample impoverishment or weight degeneracy, which is a phenomenon where

after a few iterations, the weights of most samples become insignificant, while only

a few samples start to dominate the distribution [18]. Consequently, most samples

have no influence on the posterior and distributions are then determined only by

a few samples. This implies that a large computational resources will be wasted
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2.3 Bayesian Estimation through Sequential Monte Carlo Approach

to update particles whose contribution has little or no relevance to the approx-

imation. Therefore, this phenomenon may weaken the successful application of

Monte Carlo sampling which relies on diversity of the samples. Degeneracy could

be observed by monitoring the variance of the samples’ weights.

Degeneracy is inevitable in SMC unless importance functions are selected

such that the variance of samples’ weights is minimized. In order to alleviate

this problem, the importance density function has to be chosen very carefully.

Another convenient approach to avoid degeneracy is to implement resampling

whenever degeneracy develops. This approach involves drawing samples from the

weighted sample pool. However, resampling consumes a substantial computation

power.

2.3.2.4 Sampling Importance Resampling

The sampling-importance resampling (SIS) is an approach to avoid the problem

of degeneracy. Resampling can be taken at every step or only taken if regarded

necessary. In the resampling step, the particles and associated importance weights

{xi, w̄i} are replaced by the new samples with equal importance weights (i.e. w̄i =

1/N). There are many types of resampling methods available in the literature:

• Multinomial resampling: Multinomial resampling uniformly generates N

new independent particles from the old particle set.

• Residual resampling: Residual resampling, or remainder resampling is an

efficient means to decrease the variance due to resampling. Residual resam-

pling procedure is computationally cheaper than the conventional SIR, and

it does not introduce additional bias.

• Systematic resampling: Systematic resampling treats the weights as contin-

uous random variables in the interval (0, 1), which are randomly ordered.

• Local Monte Carlo resampling: The samples are redrawn using rejection

method or Metropolis-Hastings method.
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2.4 Discussion

• Stratified Sampling: The idea of stratified sampling is to distribute the

samples evenly (or unevenly according to their respective variance) to the

subregions dividing the whole space.

2.4 Discussion

In this dissertation, SIS particle filter is used extensively for all the target track-

ing problems. We also use particle filter to obtain the numerical values of the

conditional posterior Cramér-Rao lower bound in Chapter 3. Extended Kalman

Filter is used for comparison purpose. For most problems in this dissertation, due

to the nonlinearity property, the particle filter yields more accurate simulation

results than the extended Kalman Filter.
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Chapter 3

Conditional Posterior

Cramér-Rao Lower Bounds for

Sequential Bayesian Estimation

3.1 Motivation

The conventional Cramér-Rao lower bound (CRLB) [19] on the variance of esti-

mation error provides the performance limit for any unbiased estimator of a fixed

parameter. For a random parameter, Van Trees presented an analogous bound,

the posterior CRLB (PCRLB) [19], which is also referred to as the Bayesian

CRLB. The PCRLB is defined as the inverse of the Fisher information matrix

(FIM) for a random vector and provides a lower bound on the mean squared error

(MSE) of any estimator of the random parameter, which in general is a vector.

In [5], Tichavsky et al. derived an elegant recursive approach to calculate the se-

quential PCRLB for a general multi-dimensional discrete-time nonlinear filtering

problem.

The PCRLB is a very important tool, since it provides a theoretical perfor-

mance limit of any estimator for a nonlinear filtering problem under the Bayesian

framework. In an unconditional PCRLB, the FIM is derived by taking the expec-

tation with respect to the joint distribution of the measurements and the system

states up to the current time. As a result, the very useful measurement informa-

tion is averaged out and the unconditional PCRLB becomes an off-line bound.
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3.1 Motivation

It is determined only by the system dynamic model, system measurement model

and the prior knowledge regarding the system state at the initial time, and is thus

independent of any specific realization of the system state, as we will show later in

the chapter. As a result, the unconditional PCRLB does not reflect the nonlinear

filtering performance for a particular system state realization very faithfully. This

is especially true when the uncertainty in the state model (or equivalently the

state process noise) is high and thus the prior knowledge regarding the system

state at the initial time quickly becomes irrelevant as the system state evolves

over time.

Some attempts have been made in the literature to include the information

obtained from measurements by incorporating the tracker’s information into the

calculation of the PCRLB. In [20], a renewal strategy has been used to restart

the recursive unconditional PCRLB evaluation process, where the initial time is

reset to a more recent past time, so that the prior knowledge of the initial sys-

tem state is more useful and relevant to the sensor management problem. The

resulting PCRLB is, therefore, conditioned on the measurements up to the reset

initial time. Based on the PCRLB evaluated in this manner, a sensor deployment

approach is developed to achieve better tracking accuracy which at the same time

uses the limited sensor resources more efficiently. This approach is extended in

[21] to incorporate sensor deployment and motion uncertainties, and to man-

age sensor arrays for multi-target tracking problems in [22, 23]. In the renewal

strategy proposed in [20], using a particle filter, the posterior probability density

function (PDF) of the system state at the reset initial time is represented non-

parametrically by a set of random samples (particles), from which it is difficult

to derive the exact Fisher information matrix. One solution is to use a Gaussian

approximation, and in this case the FIM at the reset initial time can be taken

as the inverse of the empirical covariance matrix estimated based on the parti-

cles. This, however, may incur large errors and discrepancy, especially in a highly

nonlinear and non-Gaussian system. Once restarted, the renewal based approach

recursively evaluates the PCRLB as provided in [5] till the next restart. Since the

FIM at the reset initial time is evaluated based on filtering results rather than

the previous FIM, this is not an entirely recursive approach. In contrast, in this

chapter, we introduce the notion of conditional PCRLB, which is shown to be
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3.1 Motivation

different from the PCRLB based on renewal strategy presented in [20], through

analysis and numerical examples. A systematic recursive approach to evaluate

the conditional PCRLB with approximation is also presented.

Another related work is reported in [24], where a PCRLB based adaptive

radar waveform design method for target tracking has been presented. In [24],

for a system with a linear and Gaussian state dynamic model, but nonlinear mea-

surement model, the framework of the unconditional recursive PCRLB derived

in [5] has been retained. Only one term corresponding to the contribution of the

future measurement to the Fisher information matrix (FIM) has been modified in

an ad-hoc manner to include the measurement history, by taking the expectation

of the second-order derivative of the log-likelihood function with respect to the

joint probability density function (PDF) of the state and measurement at the

next time step conditioned on the measurements up to the current time. The

heuristically modified PCRLB calculated in this manner does not yield the exact

conditional PCRLB, as shown later in this chapter.

In [25], for nonlinear target tracking problems, an algorithm is developed

to select and configure radar waveforms to minimize the predicted MSE in the

target state estimate, which is the expectation of the squared error over predicted

states and observations given a past history of measurements. The predicted

MSE is computationally intractable, and in [25] it has been approximated by the

covariance update of the unscented Kalman filter.

Given the importance of the PCRLB based adaptive sensor management prob-

lem, to take advantage of the available measurement information, we have system-

atically developed the exact conditional PCRLB based on first principles. The

proposed conditional PCRLB is dependent on the past data and hence implicitly

dependent on the system state. The conditional PCRLB provides a bound on the

conditional MSE of the system state estimate, based on the measurements up to

the current time. In this chapter, we systematically derive an approximate re-

cursive formula to calculate the conditional PCRLB for nonlinear/non-Gaussian

Bayesian estimation problems. The cumulative error due to the approximation is

not severe even for a highly nonlinear problem, as demonstrated in a simulation

example. Further, we present numerical approximation approaches for the com-

putation of the recursive formula through particle filters. Since the conditional
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3.2 Classical Cramer-Rao Lower Bounds

PCRLB is a function of the past history of measurements, which contains the

information of the current realization of the system state, an approach based on

it is expected to lead to much better solutions to the sensor resource management

problem than those based on the unconditional PCRLB.

3.2 Classical Cramer-Rao Lower Bounds

We are interested in estimating the state x given the observation z, where x and

z are both random vectors with dimensions nx and nz respectively, nx, nz ∈ N,

and N is the set of natural numbers. Let x̂(z) be an estimator of x, which is

a function of z. The Bayesian Cramér-Rao inequality [19] shows that the mean

squared error (MSE) of any estimator can not go below a bound, which is given

by

E
{
[x̂(z)− x][x̂(z)− x]T

}
≥ J−1 (3.1)

where J is the Fisher information matrix

J = E {−∆x
x log p(x, z)} (3.2)

and the expectation is taken with respect to p(x, z), which is the joint PDF of

the pair (x, z). ∆ denotes the second-order derivative operator, namely

∆y
x = ∇x∇T

y (3.3)

in which ∇ denotes the gradient operator. Unbiasedness of the estimator x̂ is not

required for the Bayesian CRLB. The mild conditions and proof of this inequality

can be found in [19].

The sequential Bayesian estimation problem is to find the estimate of the

state from the measurements (observations) over time. The evolution of the state

sequence xk is assumed to be an unobserved first order Markov process, and is

modeled as

xk+1 = fk(xk,uk) (3.4)

where fk : Rnx × R
nu → R

nx is, in general, a nonlinear function of state x, and

{uk, k ∈ {0}⋃N} is an independent white process noise. nu is the dimension of
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3.2 Classical Cramer-Rao Lower Bounds

the noise vector uk. The PDF of the initial state x0 is assumed to be known.

The observations about the state are obtained from the measurement equation

zk = hk(xk,vk) (3.5)

where hk : Rnx × R
nv → R

nz is, in general, a nonlinear function, {vk, k ∈ N} is

the measurement noise sequence, which is independent of xk as well as uk. nv

is the dimension of the noise vector vk. Since process noise and measurement

noise are assumed to be independent, xk+1 is independent of z1:k given xk, which

means that p(xk+1|xk, z1:k) = p(xk+1|xk).

If we denote the states and measurements up to time k as x0:k and z1:k, then

the joint PDF of (x0:k, z1:k) can be determined from (3.4) and (3.5) with known

initial PDF p(x0) and noise models for uk and vk

p(x0:k, z1:k) = p(x0)

k∏

i=1

p(xi|xi−1)

k∏

j=1

p(zj|xj) (3.6)

If we consider x0:k as a vector with dimension (k+1)nx, and define J(x0:k) to be

the (k+1)nx× (k+1)nx Fisher information matrix of x0:k derived from the joint

PDF p(x0:k, z1:k), (3.1) becomes

E
{
[x̂0:k(z1:k)− x0:k][x̂0:k(z1:k)− x0:k]

T
}
≥ J−1(x0:k) (3.7)

Let us define Jk as the matrix whose inverse equals the nx × nx lower-right

corner submatrix of J−1(x0:k). Then, the MSE of the estimate for xk is bounded

by J−1
k .

Jk can be obtained directly from the computed inverse of the (k+1)nx× (k+

1)nx matrix J(x0:k). However, this is not an efficient approach. In [5], Tichavsky

et al. provide an elegant recursive approach to calculate Jk without manipulating

the large matrices at each time k

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k (3.8)

where

D11
k = E{−∆xk

xk
logp(xk+1|xk)} (3.9)
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D12
k = E{−∆xk+1

xk
logp(xk+1|xk)} = (D21

k )T (3.10)

D22
k = E

{
−∆xk+1

xk+1
[logp(xk+1|xk) + logp(zk+1|xk+1)]

}

= D22,a
k +D22,b

k (3.11)

Conventional PCRLB considers the measurements as random vectors, and at

any particular time k, the bound is calculated by taking the average of both

the measurements and the states up to time k. In many cases, besides the two

system equations, some of the measurements are available, for example, the mea-

surements up to time k − 1, z1:k−1. In this chapter, we introduce the notion of

conditional PCRLB, which utilizes the information contained in the available

measurements. The proposed bound is an online bound, and it gives us more

accurate indication on the performance of the estimator at the upcoming time

than the conventional PCRLB.

3.3 Conditional PCRLB for Nonlinear Dynam-

ical Systems

The conditional PCRLB sets a bound on the performance of estimating x0:k+1

when the new measurement zk+1 becomes available given that the past measure-

ments up to time k are all known. Here the measurements up to time k are taken

as realizations rather than random vectors.

Definition 1 Conditional estimator x̂0:k+1(zk+1|z1:k) is defined as a function of

the observed data zk+1 given the existing measurements z1:k.

Definition 2 Mean squared error of the conditional estimator at time k + 1 is

defined as follows

MSE(x̂0:k+1|z1:k) , E{x̃0:k+1x̃
T
0:k+1

∣∣z1:k} (3.12)

=

∫
x̃0:k+1x̃

T
0:k+1p

c
k+1dx0:k+1dzk+1

where x̃0:k+1 , x̂0:k+1−x0:k+1 is the estimation error, and pck+1 , p(x0:k+1, zk+1|z1:k).
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3.3 Conditional PCRLB for Nonlinear Dynamical Systems

Definition 3 Let I(x0:k+1|z1:k) be the (k + 2)nx × (k + 2)nx conditional Fisher

information matrix of the state vector x0:k+1 from time 0 to k + 1:

I(x0:k+1|z1:k) (3.13)

, E
{
−
[
∆x0:k+1

x0:k+1
log pck+1

]∣∣∣z1:k
}

= −
∫ [

∆x0:k+1
x0:k+1

log pck+1

]
× pck+1dx0:k+1dzk+1

With the above definitions, we give the conditional posterior CRLB inequality.

Proposition 1 The conditional mean squared error of the state vector x0:k+1 is

lower bounded by the inverse of the conditional Fisher information matrix

E
{
x̃0:k+1x̃

T
0:k+1

∣∣∣z1:k
}
≥ I−1(x0:k+1|z1:k) (3.14)

The proof of Proposition 1 is similar to the one for the unconditional PCRLB

presented in [19]. See appendix A for details.

Definition 4 L(xk+1|z1:k) is defined as the conditional Fisher information ma-

trix for estimating xk+1, and L−1(xk+1|z1:k) is equal to the nx × nx lower-right

block of I−1(x0:k+1|z1:k).

By definition, L−1(xk+1|z1:k) is a bound on the MSE of the estimate for xk+1

given z1:k. At time k, the conditional PCRLB, L−1(xk+1|z1:k), provides a pre-

dicted estimator performance limit for the upcoming time k + 1, given the mea-

surements up to time k. Therefore, it is very useful for the sensor/resource

management for target tracking in sensor networks[26, 27]. Here, we propose

an iterative approach to calculate L−1(xk+1|z1:k) without manipulating the large

matrix I(x0:k+1|z1:k). This iterative approach is facilitated by an auxiliary FIM,

which is defined below.

Definition 5 The auxiliary Fisher information matrix for the state vector from

time 0 to k is defined as

IA(x0:k|z1:k) (3.15)

, Ep(x0:k |z1:k)

{
−∆x0:k

x0:k
log p(x0:k

∣∣z1:k)
}

= −
∫ [

∆x0:k
x0:k

log p(x0:k|z1:k)
]
p(x0:k|z1:k)dx0:k

23



3.3 Conditional PCRLB for Nonlinear Dynamical Systems

Definition 6 We define LA(xk|z1:k) as the auxiliary Fisher information matrix

for xk, and L−1
A (xk|z1:k) is equal to the nx×nx lower-right block of I−1

A (x0:k|z1:k).

The matrix inversion formula [28] is heavily used for deriving the recursive

version of the conditional PCRLB. We include it here for completeness

[
A B
BT C

]−1

=

[
D−1 −A−1BE−1

−E−1BTA−1 E−1

]
(3.16)

where A,B and C are sub-matrices with appropriate dimensions, and D = A −
BC−1BT , E = C − BTA−1B.

By definition, the inverse of L(xk+1|z1:k) is the lower-right block of I−1(x0:k+1|z1:k).
Instead of calculating I−1(x0:k+1|z1:k) directly, the following theorem gives a sim-

ple approach for computing L(xk+1|z1:k).

Theorem 1 The sequence of conditional Fisher information {L(xk+1|z1:k)} for

estimating state vectors {xk+1} can be computed as follows

L(xk+1|z1:k) = B22
k − B21

k

[
B11

k + LA(xk|z1:k)
]−1

B12
k (3.17)

where

B11
k = Epc

k+1

{
−∆xk

xk
log p(xk+1|xk)

}
(3.18)

B12
k = Epc

k+1

{
−∆xk+1

xk
log p(xk+1|xk)

}
= (B21

k )T (3.19)

B22
k = Epck+1

{
−∆xk+1

xk+1
[log p(xk+1|xk) + log p(zk+1|xk+1)]

}
(3.20)

Proof : The conditional Fisher information matrix can be decomposed as

follows

I(x0:k+1|z1:k) = Epc
k+1

(−1)




∆
x0:k−1
x0:k−1 ∆xk

x0:k−1
∆

xk+1
x0:k−1

∆
x0:k−1
xk ∆xk

xk
∆

xk+1
xk

∆
x0:k−1
xk+1 ∆xk

xk+1
∆

xk+1
xk+1


 log pck+1

=




A11
k A12

k 0

A21
k A22

k +B11
k B12

k

0 B21
k B22

k


 (3.21)
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3.3 Conditional PCRLB for Nonlinear Dynamical Systems

where

A11
k = Epc

k+1

[
−∆x0:k−1

x0:k−1
log pck+1

]

= Ep(x0:k|z1:k)

[
−∆x0:k−1

x0:k−1
log p(x0:k|z1:k)

]
(3.22)

In a similar manner, A12
k can be derived as

A12
k = Ep(x0:k|z1:k)

[
−∆xk

x0:k−1
log p(x0:k|z1:k)

]
= (A21

k )T (3.23)

A22
k +B11

k = Epc
k+1

[
−∆xk

xk
log pck+1

]
(3.24)

where

A22
k = Ep(x0:k |z1:k)

[
−∆xk

xk
log p(x0:k|z1:k)

]
(3.25)

and B11
k has been defined in (3.18). The conditional Fisher information matrix

L(xk+1|z1:k) is equal to the inverse of the lower-right sub-matrix of I−1(x0:k+1|z1:k).
So

L(xk+1|z1:k) (3.26)

= B22
k − [ 0 B21

k ]

[
A11

k A12
k

A21
k A22

k +B11
k

]−1 [
0

B12
k

]

= B22
k − B21

k [B11
k + LA(xk|z1:k)]−1B12

k

where

LA(xk|z1:k) = A22
k −A21

k

(
A11

k

)−1
A12

k (3.27)

Q.E.D.

Theorem 1 indicates that the conditional Fisher information at the current

time step, L(xk+1|z1:k), can not be directly calculated from that at the pre-

vious time step, L(xk|z1:k−1). Instead, its evaluation has to be facilitated by

the auxiliary Fisher information LA(xk|z1:k). This implies that the heuristically

modified conditional PCRLB presented in [24], which has a direct recursion from

L(xk|z1:k−1) to L(xk+1|z1:k), does not yield the exact conditional PCRLB as pro-

vided in Definitions 3 and 4.
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3.3 Conditional PCRLB for Nonlinear Dynamical Systems

In Theorem 1, a recursive approach is provided to predict the performance

of the nonlinear filter at the next time step, based on the measurements up to

the current time. Now let us investigate the relationship between the conditional

PCRLB presented in Theorem 1 and the unconditional PCRLB with renewal

strategy proposed in [20]. In the unconditional PCRLB with renewal strategy, the

counterpart of the one-step-ahead conditional PCRLB works as follows. At each

time k, the system prior PDF is re-initialized with the posterior PDF p0(xk) =

p(xk|z1:k). Accordingly, E{−∆xk
xk

log p(xk|z1:k)} takes the place of Jk in (3.8). The

Fisher information Jk+1 at time k + 1 is then calculated by one-step recursion

using Eqs. (3.8) through (3.11), where the expectations are taken with respect

to p(xk:k+1, zk+1|z1:k).
We summarize the relationship between the one-step ahead conditional PCRLB

and the recursive unconditional PCRLB that renews its prior at each time in the

following Lemma.

Lemma 1 The conditional Fisher information matrix L(xk+1|z1:k) provided in

Theorem 1 is different from Jk+1, calculated by one-step recursion using Eqs. (3.8)

through (3.11) and setting the system state prior PDF p0(xk) as p(xk|z1:k), pro-
vided that LA(xk|z1:k) is different from J̃k, which is defined as Ep(xk|z1:k){−∆xk

xk
log p(xk|z1:k)}.

Proof : In the recursive unconditional PCRLB that renews its prior at each

time, according to (3.8),

Jk+1 = D22
k −D21

k (J̃k +D11
k )−1D12

k (3.28)

where

J̃k = Ep(xk|z1:k){−∆xk
xk

log p(xk|z1:k)} (3.29)

Based on Theorem 1, the conditional FIM is given as

L(xk+1|z1:k) = B22
k − B21

k

[
B11

k + LA(xk|z1:k)
]−1

B12
k (3.30)

Since in the unconditional PCRLB that renews its prior at each time, the ex-

pectations are taken with respect to p(xk:k+1, zk+1|z1:k). According to (3.9), it is
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3.3 Conditional PCRLB for Nonlinear Dynamical Systems

easy to show that

D11
k = Ep(xk:k+1,zk+1|z1:k){−∆xk

xk
logp(xk+1|xk)}

= Ep(x0:k+1,zk+1|z1:k){−∆xk
xk
logp(xk+1|xk)}

= B11
k (3.31)

Similarly, it can be proved that B12
k = D12

k , B21
k = D21

k , and B22
k = D22

k . The right

hand sides of (3.28) and (3.30) differ by only one term, which is either LA(xk|z1:k)
or J̃k. Hence, if LA(xk|z1:k) is different from J̃k, in general, the conditional Fisher

information matrix L(xk+1|z1:k) is different from Jk+1, which is calculated using

the unconditional PCRLB that renews its prior at each time. Q.E.D.

The auxiliary Fisher information matrix has been defined in a way such that

its inverse, L−1
A (xk|z1:k), is equal to the nx × nx lower-right block of[

Ep(x0:k|z1:k)

{
−∆x0:k

x0:k
log p(x0:k

∣∣z1:k)
}]−1

. It can be shown that in a linear and

Gaussian system, LA(xk|z1:k) and J̃k are equivalent, so that the conditional

PCRLB and the unconditional PCRLB that renews its prior at each time are

equivalent. For nonlinear/non-Gaussian systems, the calculation of LA(xk|z1:k)
and J̃k involves complex integrations and analytical results are intractable in gen-

eral. Hence, direct comparison is very difficult. However, we demonstrate their

difference through a simulation for a particular nonlinear system. The results

are shown in Experiment V in Section 3.5. From the numerical results, we can

see that LA(xk|z1:k) is not equal to J̃k = E{−∆xk
xk

log p(xk|z1:k)}. This in turn

implies that L(xk+1|z1:k) and Jk+1 are different in general.

One problem that is left in the proof of Theorem 1 is the inverse of the auxiliary

Fisher Information matrix, L−1
A (xk|z1:k), which is equal to the nx×nx lower-right

block of I−1
A (x0:k|z1:k). Direct computation of LA(xk|z1:k) involves the inverse of

the matrix IA(x0:k|z1:k) of size (k + 1)nx × (k + 1)nx. Therefore, we provide a

recursive method for computing LA(xk|z1:k) approximately, which is much more

efficient.

Now let us derive the approximate recursive formula to calculate LA(xk|z1:k).
IA(x0:k−1|z1:k−1) can be decomposed as

IA(x0:k−1|z1:k−1) =

[
A11

k−1 A12
k−1

A21
k−1 A22

k−1

]
(3.32)
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Taking the inverse of the above matrix and applying (3.16), we have

LA(xk−1|z1:k−1) = A22
k−1 − A21

k−1

(
A11

k−1

)−1
A12

k−1 (3.33)

Now consider IA(x0:k|z1:k). We have

IA(x0:k|z1:k) = (3.34)

Ep(x0:k |z1:k)



(−1)




∆
x0:k−2
x0:k−2 ∆

xk−1
x0:k−2 0

∆
x0:k−2
xk−1 ∆

xk−1
xk−1 ∆xk

xk−1

0 ∆
xk−1
xk ∆xk

xk


 log p(x0:k|z1:k)





=




Ep(x0:k|z1:k)

[
−∆

x0:k−2
x0:k−2 log p(x0:k|z1:k)

]
A12

k−1 0

A21
k−1 A22

k−1 + S11
k S12

k

0 S21
k S22

k




where 0s stand for blocks of zeros of appropriate dimensions. In general, there is

no recursive method to calculate LA(xk|z1:k). This is because the measurement

zk provides new information about the system state in the past (x0:k−1), which

will affect the top-left part of IA(x0:k|z1:k). As we can see, IA(x0:k|z1:k) is a block

tridiagonal matrix. The top-left sub-matrix of IA(x0:k|z1:k) is a function of zk,

which can be approximated by its expectation with respect to p(zk|z1:k−1), if we

take zk and z1:k−1 as random vector and measurement realizations respectively.

So we have

Ep(x0:k|z1:k)

[
−∆x0:k−2

x0:k−2
log p(x0:k|z1:k)

]

≈ Ep(zk|z1:k−1)

{
Ep(x0:k|z1:k)

[
−∆x0:k−2

x0:k−2
log p(x0:k−1|z1:k−1)

]}

= Ep(x0:k−1|z1:k−1)

[
−∆x0:k−2

x0:k−2
log p(x0:k−1|z1:k−1)

]

= A11
k−1 (3.35)

where (3.6) has been used. Because the auxiliary Fisher information matrix

LA(xk|z1:k) is equal to the inverse of the lower-right block of I−1
A (x0:k|z1:k), we

have

LA(xk|z1:k)

≈ S22
k − [ 0 S21

k ]

[
A11

k−1 A12
k−1

A21
k−1 A22

k−1 + S11
k

]−1 [
0

S12
k

]

= S22
k − S21

k [S11
k + A22

k−1 − A21
k−1

(
A11

k−1

)−1
A12

k−1]
−1S12

k

= S22
k − S21

k

[
S11
k + LA(xk−1|z1:k−1)

]−1
S12
k (3.36)
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where

S11
k , Ep(x0:k|z1:k)

[
−∆xk−1

xk−1
log p(xk|xk−1)

]
(3.37)

S12
k , Ep(x0:k|z1:k)

[
−∆xk

xk−1
log p(xk|xk−1)

]
= (S21

k )T (3.38)

S22
k , Ep(x0:k|z1:k)

{
−∆xk

xk
[log p(xk|xk−1) + log p(zk|xk)]

}
(3.39)

In summary, the sequence of {LA(xk|z1:k)} can be computed recursively as

provided in the following approximation

Approximation 1

LA(xk|z1:k) ≈ S22
k − S21

k

[
S11
k + LA(xk−1|z1:k−1)

]−1
S12
k (3.40)

In the recursive evaluation approach, the approximation made in (3.35) may

cause cumulative error. The theoretical analysis of the cumulative approxima-

tion error is very difficult. In Section 3.5, this approximation method is justified

through simulation experiments for a highly nonlinear system. In the experi-

ments, the conditional PCRLB evaluated using Theorem 1 and the method with

the approximated LA(xk|z1:k) provided by Approximation 1 and that evaluated

based on Theorem 1 and the exact LA(xk|z1:k) by calculating (3.34) without

approximation yield results that are very close to each other.

3.4 A Sequential Monte Carlo solution for Con-

ditional PCRLB

In Section 3.3, we have shown that given the available measurement data z1:k, the

conditional Fisher information matrix L(xk+1|z1:k) can be recursively calculated

according to Theorem 1 and Approximation 1. However, in most cases, direct

computation of B11
k , B12

k , B22
k , S11

k , S12
k , and S22

k involves high-dimensional integra-

tion, and in general analytical solutions do not exist. Here sequential Monte Carlo

methods, or particle filters, are proposed to evaluate these terms. For nonlinear

non-Gaussian Bayesian recursive estimation problems, the particle filter is a very
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popular and powerful tool. Based on importance sampling techniques, particle

filters approximate the high-dimension integration using Monte Carlo simulations

and interested readers are referred to [16, 29] for details. For nonlinear dynamic

systems that use particle filters for state estimation, the proposed particle filter

based conditional PCRLB evaluation solution is very convenient, since the auxil-

iary Fisher information matrix LA(xk|z1:k) and the conditional Fisher information

matrix L(xk+1|z1:k) can be evaluated online as by-products of the particle filter

state estimation process, as shown later in the chapter.

Under the assumptions that the states evolve according to a first-order Markov

process and the observations are conditionally independent given the states, the

PDF p(x0:k+1, zk+1|z1:k) can be factorized as

pck+1 = p(zk+1|xk+1)p(xk+1|xk)

× p(x0:k|z1:k) (3.41)

Letting N denote the number of particles used in the particle filter, the posterior

PDF p(x0:k|z1:k) at time k can be approximated by the particles[16]

p(x0:k|z1:k) ≈
1

N

N∑

l=1

δ(x0:k − xl
0:k) (3.42)

where we assume that the resampling has been performed at time k, so that each

particle has an identical weight 1
N
. With (3.41) and (3.42), we can readily show

that

pck+1 ≈
1

N
p(zk+1|xk+1)p(xk+1|xk)

N∑

l=1

δ(x0:k − xl
0:k)

We also derive another approximation for p(x0:k+1, zk+1|z1:k), which is given

by the following proposition.

Proposition 2

p(x0:k+1, zk+1|z1:k) (3.43)

≈ 1

N

N∑

l=1

δ(x0:k+1 − xl
0:k+1)p(zk+1|xl

k+1)
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Proof : See Appendix B.

Note that even though approximations in (3.42) and (3.43) require that each

particle represents one system state realization from time 0 to time k (x0:k),

we will show later that for calculating conditional PCRLB at time step k, it is

sufficient for each particle to keep system state realization at time steps k − 1

and k only, which means that we only need to keep xk−1:k for computation. This

results in a significantly reduced burden for system memory.

In this section, we will consider the general form of the conditional PCRLB

for any nonlinear/non-Gaussian dynamic system, as well as two special cases.

3.4.1 General Formulation

The general form is given to calculate each component in (3.17) and (3.40) for

any nonlinear/non-Gaussian system. In the following equations, the superscripts

represent the particle index. We also assume that the derivatives and expectations

exist and the integration and derivatives are exchangeable. For B11
k , we have

B11
k = Epc

k+1

{
−∆xk

xk
log p(xk+1|xk)

}

= Epck+1

[∇xk
p(xk+1|xk)∇T

xk
p(xk+1|xk)

p2(xk+1|xk)
−

∆xk
xk
p(xk+1|xk)

p(xk+1|xk)

]
(3.44)

First, it is easy to show that

Epck+1

[
∆xk

xk
p(xk+1|xk)

p(xk+1|xk)

]
= 0 (3.45)

Now let us define

g1(xk,xk+1) ,
∇xk

p(xk+1|xk)∇T
xk
p(xk+1|xk)

p2(xk+1|xk)
(3.46)

By substituting (3.43), (3.45), and (3.46) into (3.44), we have

B11
k = Epc

k+1
[g1(xk,xk+1)]

≈ 1

N

N∑

l=1

g1(x
l
k,x

l
k+1) (3.47)
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B12
k Following a similar procedure, we have

B12
k ≈ 1

N

N∑

l=1

∇xk
p(xk+1|xk)∇T

xk+1
p(xk+1|xk)

p2(xk+1|xk)

∣∣∣∣∣
{xk ,xk+1}={xl

k
,xl

k+1}

(3.48)

B22
k = B

22,a
k +B

22,b
k

B22,a
k ≈ 1

N

N∑

l=1

∇xk+1
p(xk+1|xk)∇T

xk+1
p(xk+1|xk)

p2(xk+1|xk)

∣∣∣∣∣
{xk ,xk+1}={xl

k
,xl

k+1}

(3.49)

B22,b
k = Epc

k+1

[
−∆xk+1

xk+1
log p(zk+1|xk+1)

]

≈ 1

N

N∑

l=1

g2(x
l
k+1) (3.50)

where

g2(xk+1) ,

∫ ∇xk+1
p(zk+1|xk+1)∇T

xk+1
p(zk+1|xk+1)

p(zk+1|xk+1)
dzk+1 (3.51)

For the cases where the integration in (3.51) does not have a closed-form solution,

it can be approximated by numerical integration approaches.

S11
k = Ep(x0:k|z1:k)

[
−∆xk−1

xk−1
log p(xk|xk−1)

]

= Ep(x0:k|z1:k)

[
∇xk−1

p(xk|xk−1)∇T
xk−1

p(xk|xk−1)

p2(xk|xk−1)
− ∆

xk−1
xk−1p(xk|xk−1)

p(xk|xk−1)

]
(3.52)

Since z1:k are available measurement data, the posterior PDF p(x0:k|z1:k) can be

approximated through sequential Monte Carlo approaches. Plugging (3.42) into

the above equation, we have

S11
k ≈ 1

N

N∑

l=1

g3(x
l
k−1,x

l
k) (3.53)

where

g3(xk−1,xk) ,
∇xk−1

p(xk|xk−1)∇T
xk−1

p(xk|xk−1)

p2(xk|xk−1)
− ∆

xk−1
xk−1p(xk|xk−1)

p(xk|xk−1)
(3.54)
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Following a similar procedure as in calculating S11
k , we have

S12
k ≈ 1

N

N∑

l=1

g4(x
l
k−1,x

l
k) (3.55)

where

g4(xk−1,xk) ,
∇xk−1

p(xk|xk−1)∇T
xk
p(xk|xk−1)

p2(xk|xk−1)
−

∆xk
xk−1

p(xk|xk−1)

p(xk|xk−1)
(3.56)

S22
k consists of two parts, S22

k = S22,a
k + S22,b

k , where

S22,a
k ≈ 1

N

N∑

l=1

[∇xk
p(xk|xk−1)∇T

xk
p(xk|xk−1)

p2(xk|xk−1)
−

∆xk
xk
p(xk|xk−1)

p(xk|xk−1)

]∣∣∣∣
{xk−1,xk}={xl

k−1,x
l
k
}

(3.57)

and

S22,b
k ≈ 1

N

N∑

l=1

[∇xk
p(zk|xk)∇T

xk
p(zk|xk)

p2(zk|xk)
−

∆xk
xk
p(zk|xk)

p(zk|xk)

]∣∣∣∣
xk=xl

k

(3.58)

Taking a closer look at approximations made in this subsection, it is clear

that at time step k, for the calculation of the conditional PCRLB at time k + 1,

only the values of system states from time k − 1 to time k + 1 (xl
k−1:k+1) are

needed. Moreover, when the system transits from step k to step k + 1, it is

sufficient to propagate and update the particle set from {xl
k−1:k} to {xl

k:k+1},
where l = 1, · · · , N .

With numerical integrations provided by the particle filter, the approach for

evaluating the conditional PCRLB works recursively as follows. At time k, when

the measurement zk is available, the weights of the particle sets {xl
k−1:k} are

updated, which is followed by a re-sampling procedure. Then each particle xl
k−1:k

has an equal constant weight of 1/N . {xl
k−1:k} will be used for the calculation of

S11
k , S12

k and S22
k . Then only the particles {xl

k} are propagated to the next time

step according to (3.4). The particle set {xl
k:k+1} is used to evaluate B11

k , B12
k

and B22
k . At the end of the kth time step, for the lth particle, only xl

k:k+1 will be

preserved and passed to the next (k + 1) time step.

Note that the particle filter is an approximate solution to the optimal non-

linear estimator. At the (k − 1)th iteration, based on the information state
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3.4 A Sequential Monte Carlo solution for Conditional PCRLB

p(xk−1|z1:k−1), which is a function of z1:k−1 and completely summarizes the past

of the system in a probabilistic sense [30], the optimal nonlinear estimator calcu-

lates the new information state p(xk|z1:k) by incorporating the new measurement

zk. As a result, the optimal nonlinear estimator of xk at time k is a function of

all the measurements up to time k, namely z1:k. The particle filter is nothing but

a numerical approximation to the optimal estimator, which recursively updates

the particle weights using arriving new measurements, and hence is a function

of the measurements up to the current time. Therefore, the conditional PCRLB

approximated by sequential Monte-Carlo methods depends on the history of the

measurements. Details of the optimal estimator and the information state, and

the particle filter can be found in [30] and [16] respectively.

Now let us investigate the computational complexities of the recursive con-

ditional FIM, which can be evaluated using Theorem 1 and Approximation 1,

and the recursive unconditional PCRLB that renews its prior at each iteration.

Lemma 1 shows that these two methods differ only in the computation of J̃k and

LA(xk|z1:k). When applying the particle filter, at each time k, the complexity for

computing the common terms (B11
k , B12

k , and B22
k ) in Lemma 1 is linear in the

number of particles (N) . The terms used in Approximation 1 to recursively com-

pute LA(xk|z1:k) (S11
k , S12

k , and S22
k ) also have complexities that are linear in N .

Since p(xk|z1:k) has been represented by a set of particles and associated weights,

J̃k = Ep(xk|z1:k){−∆xk
xk

log p(xk|z1:k)} could only be evaluated numerically, with a

complexity at least linear in N . Thus, the computation of J̃k has a complexity

that is at least in the same order of that of LA(xk|z1:k).

3.4.2 Additive Gaussian Noise Case

Here we consider a special case of nonlinear dynamic systems with additive Gaus-

sian noises. It is assumed that the dynamic system has the following state and

measurement equations:

xk+1 = fk(xk) + uk (3.59)

zk = hk(xk) + vk (3.60)
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3.4 A Sequential Monte Carlo solution for Conditional PCRLB

where fk(·) and hk(·) are nonlinear state transition and measurement functions

respectively, uk is the white Gaussian state process noise with zero mean and

covariance matrix Qk, and vk is the white Gaussian measurement noise with zero

mean and covariance matrix Rk. The sequences {uk} and {vk} are mutually

independent. With these assumptions and notations, the transition prior of the

state can be written as

p(xk+1|xk) =
1

(2π)
nx
2 |Qk|

1
2

(3.61)

exp

{
−1

2
[xk+1 − fk(xk)]

TQ−1
k [xk+1 − fk(xk)]

}

Taking the logarithm of the above PDF, we have

− log p(xk+1|xk) (3.62)

= c0 +
1

2
[xk+1 − fk(xk)]

TQ−1
k [xk+1 − fk(xk)]

where c0 denotes a constant independent of xk and xk+1. Then the first and

second-order partial derivatives of log p(xk+1|xk) with respect to xk can be derived

respectively as

∇xk
log p(xk+1|xk) = [∇xk

fk(xk)]Q
−1
k (xk+1 − fk(xk)) (3.63)

and

−∆xk
xk

log p(xk+1|xk) = (3.64)

[∇xk
fk(xk)]Q

−1
k [∇T

xk
fk(xk)]− [∆xk

xk
fk(xk)]Σ̃

−1
uk
Υ11

k

where

Σ̃−1
uk

=




Q−1
k 0 . . . 0

0 Q−1
k 0

...
... 0

. . . 0

0 . . . 0 Q−1
k




n2
x×n2

x

(3.65)

and

Υ11
k =




xk+1 − fk(xk) . . . 0
...

. . . 0

0 0 xk+1 − fk(xk)



n2
x×nx

(3.66)

35



3.4 A Sequential Monte Carlo solution for Conditional PCRLB

For vector-valued functions f(·) = [f1, f2, · · · , fnx ]
T , the first order and second

order derivatives of f(·) are defined respectively as

∇xf(x) = [∇xf1,∇xf2, · · · ,∇xfnx ]nx×nx (3.67)

∆x
xf(x) = [∆x

xf1,∆
x
xf2, · · · ,∆x

xfnx ]nx×n2
x

(3.68)

By substituting (3.43) and (3.64) into (3.44), we have

B11
k = Epc

k+1
{−∆xk

xk
log p(xk+1|xk)}

≈ 1

N

N∑

l=1

(
[∇xk

f(xk)]Q
−1
k [∇T

xk
f(xk)]

)∣∣∣
xk=xl

k

(3.69)

where the following identity has been used

Ep(xk+1|xk)

{
Υ11

k

}
= 0 (3.70)

From (3.62), we have

−∆xk
xk+1

log p(xk+1|xk) = −Q−1
k ∇T

xk
fk(xk)

Similarly, we have

B21
k = Epck+1

{−∆xk
xk+1

logp(xk+1|xk)}

≈ − 1

N

N∑

l=1

(
Q−1

k ∇T
xk
fk(xk)

)∣∣∣
xk=xl

k

(3.71)

As for B22,a
k and B22,b

k , we have

B22,a
k = Q−1

k (3.72)

B22,b
k =

1

N

N∑

l=1

(3.73)

(
[∇xk+1

h(xk+1)]R
−1
k+1[∇T

xk+1
h(xk+1)]

)∣∣∣
xk+1=xl

k+1

whose derivation is provided in Appendix C.
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3.4 A Sequential Monte Carlo solution for Conditional PCRLB

The approximations for S11
k , S21

k , and S22
k can be derived similarly. Using

(3.42), we have

S11
k ≈ 1

N

N∑

l=1

g5(x
l
k−1,x

l
k) (3.74)

where

g5(xk−1,xk) = (3.75)

[∇xk−1
fk−1(xk−1)]Q

−1
k−1[∇T

xk−1
fk−1(xk−1)]

−[∆xk−1
xk−1

fk−1(xk−1)]Σ̃
−1
uk−1

Υ11
k−1(xk−1,xk)

S21
k ≈ − 1

N

N∑

l=1

[
Q−1

k−1∇T
xk−1

fk−1(xk−1)
]∣∣∣

xk−1=xl
k−1

(3.76)

S22,a
k = Q−1

k−1 (3.77)

and

S22,b
k ≈ 1

N

N∑

l=1

{[∇xk
hk(xk)]R

−1
k [∇T

xk
hk(xk)]

− ∆xk
xk
hk(xk)Σ̃

−1
vk
Υ22,b

k }
∣∣∣
xk=xl

k

(3.78)

where Σ̃−1
vk

and Υ22,b
k are defined in Appendix C.

3.4.3 Linear System with Additive Gaussian Noise Case

The Gaussian dynamic system is characterized by its system state equation and

measurement equation:

xk+1 = Fkxk + uk (3.79)

zk = Hkxk + vk (3.80)

where uk and vk have been defined in Subsection 3.4.2, and Fk and Hk are known

matrices with proper dimensions. In such a linear Gaussian system, we have the

following theorem
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3.4 A Sequential Monte Carlo solution for Conditional PCRLB

Theorem 2 If the initial conditions for both the conditional PCRLB and the

unconditional PCRLB are the same, namely

J0 = IA(x0) (3.81)

then the conditional PCRLB and PCRLB are equivalent for linear Gaussian dy-

namic systems, and all the three Fisher information matrices, namely the uncon-

ditional Fisher information, the conditional Fisher information and the auxiliary

Fisher information, are equivalent. Mathematically, we have

Jk = IA(xk|z1:k) = I(xk|z1:k−1) (3.82)

Proof : In a linear Gaussian system, for the unconditional PCRLB, it can be

shown [5] that

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k

= HT
k+1R

−1
k+1Hk+1 + (Qk + FkJ

−1
k F T

k )
−1 (3.83)

which is nothing but the recursive formula for the inverse covariance matrix in

an information filter [30]. Based on results in Section 3.4.2, it can be proved that

S11
k = B11

k−1 = F T
k−1Q

−1
k−1Fk−1 = D11

k−1

S12
k = B12

k−1 = −F T
k−1Q

−1
k−1 = D12

k−1

S22
k = B22

k−1 = Q−1
k−1 +HT

k R
−1
k Hk = D22

k−1 (3.84)

According to Theorem 1, we have the recursive formula for the auxiliary Fisher

information matrix

IA(xk|z1:k) = (3.85)

D22
k−1 −D21

k−1[D
11
k−1 + IA(xk−1|z1:k−1)]

−1D12
k−1

Comparing (3.83) and (3.86), it is clear that Jk and IA(xk|z1:k) have the same

recursive formula. Since they start from the same initial conditions (J0 = IA(x0)),

we have

Jk = IA(xk|z1:k) (3.86)
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Now using Theorem 1, we have

I(xk+1|z1:k) = D22
k −D21

k

[
D11

k + IA(xk|z1:k)
]−1

D12
k

= IA(xk+1|z1:k+1) = Jk+1 (3.87)

Q.E.D.

Theorem 2 indicates that in a linear Gaussian system, there is no need to use

an online conditional PCRLB bound, which is equivalent to the unconditional

PCRLB. Note that in such a case, the Kalman filter is the optimal estimator,

where the recursive calculations of filter gains and covariance matrices can be per-

formed offline, since they are independent of the state [30]. In addition, Theorem

2 provides the insight that the approximation provided in Theorem 1 yields the

exact result when the system is linear and Gaussian. Therefore, one can expect

that for a system with weak nonlinearity and non-Gaussianity, the approximation

error incurred by the recursive conditional PCRLB evaluation approach provided

in Theorem 1 will be smaller than that in a highly nonlinear system.

3.5 Simulation Results for Comparison

In this section, we present some illustrative examples to demonstrate the accuracy

of the computed bounds. Here we consider the univariate non-stationary growth

model (UNGM), a highly nonlinear and bimodal model. The UNGM is very useful

in econometrics, and has been used in [29, 31, 32]. In a UNGM, the dynamic state

space equations are given by

xk+1 = αxk + β
xk

1 + x2
k

+ γcos(1.2k) + uk (3.88)

zk = κx2
k + vk (3.89)

where uk and vk are the state process noise and measurement noise respectively,

and they are white Gaussian with zero means and variances σ2
u and σ2

v .

In the simulations, the conditional MSE is obtained recursively as follows.

At time k, the posterior PDF is calculated using a particle filter given the mea-

surement z1:k. 1000 Monte Carlo trials are performed to generate independent
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3.5 Simulation Results for Comparison

realizations of zk+1 according to the measurement Equation (3.89). The condi-

tional MSE, MSE(x̂k+1|z1:k), is obtained based on the 1000 Monte-Carlo trials.

At the next time step (k + 1), a single realization of zk+1 is picked randomly

among the 1000 realizations, and concatenated with the past measurement his-

tory to form z1:k+1. The particles and weights corresponding to this particular

zk+1 are stored and used for the (k + 1)th iteration. The recursive conditional

PCRLB with approximations mentioned in Theorem 1 and Approximation 1 is

used throughout the experiments, unless otherwise specified. The same parti-

cle filter can be used to evaluate both the conditional MSE and the conditional

PCRLB.

3.5.1 Conditional PCRLB vs Conditional MSE for UNGM

We set parameters α = 1, β = 5, γ = 8, σ2
u = 1, σ2

v = 1, and κ = 1/20 for UNGM.

Fig. 3.1 shows the system states and measurements over a period of 20 discrete

time steps. Due to the measurement equation of the UNGM specified in (3.89),

there is bi-modality inherent in the filtering problem. As a result, the observation

does not follow the system state very closely, as shown in Fig. 3.1. In such a case,

it is very difficult to track the state using conventional methods, and the particle

filter demonstrates better tracking performance than the extended Kalman filter,

as illustrated in Fig. 3.2.

Fig. 3.3 shows the conditional posterior CRLB and the conditional MSE. It is

clearly shown that the conditional PCRLB gives a lower bound on the conditional

MSE that an estimator can achieve. It is also clear that the conditional PCRLB

and the conditional MSE follow the same trend.

3.5.2 Weakly UNGM results

In Section 3.5.1, the choice of parameters for the UNGM makes it highly nonlin-

ear, so that the MSE of the particle filter does not converge to the conditional

PCRLB. In Experiment II, we set β = 0.1, implying a much smaller nonlin-

ear component in the state equation, and set the measurement noise variance as

40



3.5 Simulation Results for Comparison

2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

10

20

30

40

Time k

 

 

True state value
Observation z

Figure 3.1: Plot of the true state xk and observations zk

σ2
v = 0.01, meaning a much higher signal to noise ratio (SNR) for the observa-

tion. We keep other parameters the same as in Experiment I. In such a case,

the UNGM is weakly nonlinear. As illustrated in Fig. 3.4, the EKF achieves a

much better tracking performance than in Experiment I, but the particle filter

still outperforms the EKF due to the nonlinearity inherent in this problem. The

conditional PCRLB and MSE in Experiment II are shown in Fig. 3.5. As we can

see, the gap between the conditional MSE and the conditional PCRLB is much

smaller than that in Experiment I.

3.5.3 Conditional PCRLB vs Unconditional PCRLB

In this experiment, we set the parameters in the UNGM the same as those in Ex-

periment I, and compare the conditional and unconditional PCRLBs in Fig. 3.6.

The conditional PCRLB and conditional MSE are drawn based on a particular

realization of the measurement z1:k, and the unconditional PCRLB is obtained

by taking the expectation with respect to both the measurements z1:k and states

x0:k. It can be seen that the conditional PCRLB is much tighter than the un-

conditional PCRLB for the conditional MSE, and it follows the trends of the

conditional MSE more faithfully, since the proposed bound utilizes the available
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Figure 3.2: Plot of filtering results by Extended Kalman filter and by particle

filter for Example I

measurement information. As a result, the conditional PCRLB can be used as

a criterion for managing sensors dynamically for the next time step so that its

value is minimized.

3.5.4 Exact Conditional PCRLB vs Its Recursive Approx-

imation

In order to recursively calculate the conditional PCRLB, the top-left sub-matrix

of IA(x0:k|z0:k) is replaced by its expectation in Equation (3.34). This might

cause propagation of errors due to approximation. Since it is very difficult to

analyze the cumulative error theoretically, an experiment is designed to illustrate

the approximation errors. In this experiment, the parameters in the UNGM are

the same as those in Experiment I. In Fig. 3.7, the approximate conditional

PCRLB evaluated based on Theorem 1 and the approximate recursive method

provided by Approximation 1 is compared to the exact conditional PCRLB eval-

uated using Theorem 1 alone. In the evaluation of the exact conditional PCRLB,

by using particle filters, we calculate the complete matrix IA(x0:k|z1:k) first, then
L−1
A (xk|z1:k) can be obtained from the lower-right sub-matrix of I−1

A (x0:k|z1:k). It
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Figure 3.3: Plot of conditional posterior CRLB and conditional MSE for Example

I

is clear from Fig. 3.7 that the error propagation is not severe even for the highly

nonlinear filtering problem. Further, as time increases, the difference between

the exact conditional PCRLB and its recursive approximation is getting smaller.

Note that the recursive approach requires much less computational effort.

3.5.5 Unconditional PCRLB with Renewal Strategy

To show the difference between the conditional PCRLB and the unconditional

PCRLB with renewal strategy, we choose the following system equations in the

numerical example

xk+1 = x2
k + uk

zk = xk + vk (3.90)

where xk and zk are both scalars, and x0, uk, and vk are independent and iden-

tically distributed (i.i.d.) Gaussian random variables with zero mean and unit

variance. From Lemma 1, we know that the conditional PCRLB L(xk+1|z1:k) and
the PCRLB with renewal strategy Jk+1 are different if and only if LA(xk|z1:k)
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Figure 3.4: Plot of filtering results by Extended Kalman filter and by particle

filter for Example II

and J̃k are different. For simplicity, we only consider the case of k = 1 in the

experiment. According to Definition 5, we have

IA(x0:1|z1) = Ep(x0:1|z1)[−∆x0:1
x0:1

log p(x0:1|z1)]

=

[
a b
b c

]
(3.91)

With the model used in this experiment and according to Definition 6, the aux-

iliary FIM LA(x1|z1) = c− b2/a, where

a = 1− 2Ep(x0:1|z1){x1}+ 6Ep(x0:1|z1){x2
0} (3.92)

b = −2Ep(x0:1|z1){x0}
c = 2

The evaluation of LA(x1|z1) can be obtained with the help of particle filters.

For the unconditional PCRLB with renewal strategy, at k = 1 after the re-

initialization,

J̃1 = Ep(x1|z1)[−∆x1
x1
log p(x1|z1)]

= Ep(x1|z1)[−∆x1
x1
log p(z1|x1)p(x1)]

= 1 + Ep(x1|z1){−∆x1
x1
log p(x1)} (3.93)
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Figure 3.5: Plot of conditional posterior CRLB and conditional MSE for Example

II

Given the system Equation (3.90), the PDF of x1 can be derived

p(x1) =
1

2π
e−

x21
2

∫ ∞

0

t−
1
2 e−

t2

2
+(x1−

1
2
)tdt

=
1

π
e−

x21
2 g(x1) (3.94)

where due to the change of variable,

g(x1) ,

∫ ∞

0

e−
t4

2
+(x1−

1
2
)t2dt (3.95)

Finally, we have

∆x1
x1
log p(x1) = −1 +

∆x1
x1
g(x1)

g(x1)
−
[∇x1g(x1)

g(x1)

]2
(3.96)

p(x1|z1) and p(x0:1|z1) are posterior PDFs, which can be calculated from the

particle filter. So given a particular measurement z1, the value of LA(x1|z1) and
J̃1 through numerical simulation can be obtained.
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Figure 3.6: Comparison of conditional and unconditional PCRLBs for Example

III.

Table 3.1: Comparison between LA(x1|z1) and J̃1

z1 -1.1414 2.3827 -0.0536 1.3337 -0.4035 0.9550 -0.7795 0.5070 1.2737 -1.9947

LA(x1|z1) 1.9988 1.9594 1.9955 1.9998 1.9989 1.9977 1.9794 1.9763 1.9972 1.9955

J̃1 1.8436 1.3275 1.7662 1.5069 1.7493 1.5863 1.8203 1.6576 1.5560 1.8769

The simulation results are shown in Table 3.1. Given a variety of measurements

z1’s, it is clear that LA(x1|z1) have different values from J̃1. It can also be seen

that LA(x1|z1) is greater than J̃1, which indicates that in this particular case the

conditional PCRLB is lower than the PCRLB that renews the prior at each time.

3.6 Discussion

In this chapter, we presented the new notation of PCRLB, which is conditioned

on the actual past measurement realizations and is, therefore, suitable for online

adaptive sensor management. The exact conditional PCRLB and its approximate

recursive evaluation formula were theoretically derived. Further, the sequential

Monte Carlo approximation for this bound were proposed to provide a conve-
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Figure 3.7: Comparison of conditional PCRLB between the one with error prop-

agation and the one without error propagation

nient numerical evaluation solution, as a by-product of the particle filtering pro-

cess. The conditional PCRLB was compared to existing measurement dependent

PCRLBs and shown to be different from them.

Simulation results were provided to demonstrate the effectiveness of the condi-

tional PCRLB in providing online estimation performance prediction, as opposed

to the unconditional PCRLB. And the conditional PCRLB derived in this chap-

ter provides an approach to recursively predict the MSE one-step ahead. It can

be extended to multi-step ahead cases in the future.

The applications of the proposed bound will be numerous. One possible ap-

plication area will be a variety of sensor management problems in sensor net-

works. Choosing the most informative set of sensors will improve the tracking

performance, while at the same time reduce the requirement for communication

bandwidth and the energy needed by sensors for sensing, local computation and

communication. In the next chapter, we show one application of the proposed

bound for the sensor selection problems for target tracking in sensor networks.
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Chapter 4

Sensor Selection for Target

Tracking in Sensor Networks

4.1 Motivation

In sensor networks, the sensors are used to gain information about the kinematic

state (moving angle, position and velocity, etc.) of moving targets. The prob-

lem of sensor selection for target tracking in sensor networks is to determine the

optimal way to select a subset of sensors over time to minimize a cost function

considering the constraints, which might be sensor lifetime, bandwidth, com-

munication, etc. As illustrated in Figure 4.1, typically, there is a fusion center

that collects the information from active sensors via a data-link with low and/or

time-varying bandwidth, and sends commands to sensors. There are some other

practical concerns such as limited sensing resources per target, sensor energy

consumption, etc. Due to these considerations, the fusion center must dynami-

cally decide which sensor’s data are the most valuable to transfer to the tracking

system under the currently available data link capacity constraint during each

measurement interval. Or, more generally the fusion center needs to decide on

how the communication bandwidth should be allocated among the sensors so

that the most informative data are transmitted to it as shown in Figure 4.1. The

sensor selection scheme is usually based on the kinematic state of the target, er-

ror covariances of the estimators or some other predictive information about the

target.
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Figure 4.1: Sensor management based on feedback from recursive estimator.

There are several existing approaches to solve sensor management for target

tracking. The state of art approach is based on information theoretic measures,

such as entropy, relative entropy and Rényi Divergence. In the context of Bayesian

estimation, a good measure of the quality of a sensing action is the reduction in

entropy of the posterior distribution that is expected to be induced by the mea-

surement. Therefore, information theoretic methods choose the sensing action

that maximizes the expected gain in information. Authors in [33] focus on using

the expected change in Shannon entropy when tracking a single target. In [4, 34],

authors have compared several sensor selection approaches involving entropy and

relative entropy. Kreucher et al. [35, 36] have proposed sensor management

schemes that maximize the Rényi divergence between the current target state

probability density and the density after a new measurement arrives. In [37, 38],

sensors are selected that maximize the mutual information between the sensor

measurements and the target state. But one problem with the information theo-

retic measures based approaches is that computational complexity of the mutual

information or Rényi divergence is large, especially when the number (Ns) of sen-

sors to be selected at each step is large. If the sensors provide quantized data,

it can be shown that the computational complexity of the mutual information is

exponential in Ns, whereas the complexity of PCRLB or conditional PCRLB is

linear in Ns [39]. If the sensors provide analog data, it could be shown [40] that
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the computation of the mutual information involves a Ns × nz fold integration,

where nz is the dimensionality of the sensor measurements, whereas the complex-

ity of the recursive conditional PCRLB involves only a nz fold integration. This

fact makes the information measures based sensor management impractical when

Ns is large.

Another sensor management approach is based on PCRLB. The PCRLB pro-

vides a theoretical performance limit of any estimator for a nonlinear filtering

problem. Tichavsky et al. [5] derived an elegant recursive approach to calculate

the sequential PCRLB for a general multi-dimensional discrete-time nonlinear

filtering problem. This algorithm makes it possible to obtain the PCRLB se-

quentially and in real time. However, the PCRLB is determined only by the

system dynamic model, system measurement model and the prior knowledge re-

garding the system state at the initial time. As a result, sensor management

problems solved by using PCRLB do not utilize the specific realization of the

measurements so that the PCRLB does not reflect the filtering performance for

the system state realization very faithfully.

Some attempts have been made in the literature to include the information

obtained from measurements by incorporating the tracker’s information into the

calculation of the modified PCRLB. In [20], a renewal strategy has been used to

restart the recursive PCRLB evaluation process, where the initial time is reset to

a more recent past time, so that the prior knowledge of the initial system state

is more useful and relevant to the sensor management problem. This approach

is extended in [21] to incorporate sensor deployment and motion uncertainties,

and to manage sensor arrays for multi-target tracking problems in [22, 23]. For

the renewal strategy proposed in [20], there exists an intrinsic difficulty of cal-

culating the PCRLB from the filtering results, which may incur large errors and

discrepancy, especially in a highly nonlinear and non-Gaussian system.

In [24], the authors include the measurement history to calculate the modi-

fied PCRLB in an ad-hoc manner for the adaptive radar waveform design method

used for target tracking. However, the heuristically modified PCRLB does not

yield the exact conditional PCRLB. In [25], for nonlinear target tracking prob-

lems, an algorithm is developed to select and configure radar waveforms to mini-

mize the predicted MSE in the target state estimate, which is the expectation of
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the squared estimation error over predicted states and observations given a past

history of measurements. The predicted MSE is, in general, computationally in-

tractable, so it has been approximated by the covariance update of the unscented

Kalman filter.

In this chapter, we consider the application of conditional PCRLB to the

problem of tracking a single target traversing through a sensor field and develop

an approach for sensor selection for this task. In addition to analog sensor data,

we also investigate the sensor selection problems with quantized measurement

data for the situations where the bandwidth for transmitting the data between

the sensors and the fusion center is constrained.

4.2 Sensor Selection Approaches

Sensor networks consist of a large number of small sensor devices that have the

capability to take various measurements of their environment. These measure-

ments can include seismic, acoustic, magnetic, IR and video information. Each

of these devices is equipped with a small processor and wireless communication

antenna and is powered by a battery making it very resource constrained. Typ-

ically, sensors are scattered around a sensing field to collect information about

their surroundings. For example, sensors can be used in a battlefield to gather

information about enemy troops, detect events such as explosions, and track and

localize targets. Upon deployment in a field, they form an ad hoc network and

communicate with each other and with data processing centers.

Sensor networks are usually intended to last for long periods of time, such as

several days or even months. However, due to the limited energy available on

board, if a sensor remains active continuously, its energy will be depleted quickly

leading to its death. To prolong the network lifetime, sensors alternate between

being active and sleeping. There are several sensor selection algorithms to achieve

this while still achieving the goal of continuously monitoring the environment.

The decision as to which sensor should be activated takes into account a variety

of factors such as residual energy, required coverage, or the type of information

required. Sensors are selected to do one or multiple missions. These missions

can be general and related to the function of the network, such as monitoring
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4.2 Sensor Selection Approaches

the whole field by ensuring complete coverage, or more specific and application-

oriented, such as tracking the movement of a target. At a given time, the system

might be required to do multiple missions such as monitoring an event and, at the

same time, track a single or multiple moving objects. Sensor selection schemes

are used to allocate the sensor resources to different tasks while at the same time

maximize the tracking or detection performances.

Here, we consider two existing approaches and one novel approach based on

conditional PCRLB proposed in Chapter 3.

4.2.1 Information Driven

Zhao et al. [4] proposed a sensor selection scheme for target tracking whose per-

formance is compared with our proposed algorithm in Section 4.5. They consider

the problem of selecting a sensor S(j), which provides the greatest improvement

in the estimate of a target location. This is solved as an optimization problem

defined in terms of information gain and cost. The goal is to improve: (1) detec-

tion quality, (2) track quality, (3) scalability, (4) survivability and (5) resource

usage.

The proposed scheme selects a single sensor node (the leader) at initial time

by predicting the location of the target. The leader is activated and collects the

required measurements about the target and run a tracking algorithm. From

that point on, the leader selects the next node that it believes to be the most

informative and passes its tracking information to it. That node becomes the new

leader, collects measurements, and runs the tracking algorithm. This continues as

long as needed to track a target. When deciding on the next leader, the current

leader considers the information utility value of candidate sensors. This value

is based only on available information such as a sensor’s location, its modality

and the current tracking results. The authors consider two possible definitions

of information utility; one based on entropy and another based on a distance

measure. Although an entropy based definition is mathematically more precise,

it is very difficult to compute in a practical setting. This is because the entropy

approach requires knowing a sensor’s measurement before making any decision,

which is very difficult. With distance based measure, the leader node measures
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the utility of other sensors based on how far they are located from the estimated

target position. This provides a good approximation of the sensor’s utility.

One of the drawbacks of above approach is that its accuracy depends on the

quality of the choice of the first leader. If the first leader is not close to the target

location, due to an error in prediction, the overall tracking quality might degrade

and the whole process might even fail. Also, this scheme only selects a single

sensor (leader) at a time, so although it may be energy efficient, it might not

provide information that is as good as if more sensors are used. When extending

the entropy approach to the scenario where more than one sensor is selected,

the computational complexity of the entropy approach becoming a problem for a

practical application.

For comparing purpose, we implemented entropy based selection approach.

In our simulation, we assume that there exists a fusion center, which collects

measurement information from active local sensors, and selects those sensors that

maximize the mutual information between the moving target and the sensor mea-

surements. We assume that a particle filter is used to tracking the target and use

particles to calculate the numerical value of the mutual information between the

target state and the sensor measurements in the upcoming step.

In a particle filter, we know that

p(xk+1|z1:k) ≈
1

N

N∑

i=1

δ(xk+1 − xi
k+1) (4.1)

p(zk+1|z1:k) =

∫
p(zk+1|xk+1)p(xk+1|z1:k)dxk+1

≈ 1

N

N∑

i=1

p(zk+1|xi
k+1) (4.2)
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Therefore,

MI(zk+1;xk+1|z1:k)

=

∫
p(zk+1|xk+1)p(xk+1|z1:k) log

p(zk+1|xk+1)

p(zk+1|z1:k)
dxk+1dzk+1

≈ 1

N

N∑

i=1

∫
p(zk+1|x(i)

k+1) log
p(zk+1|x(i)

k+1)

p(zk+1|z1:k)
dzk+1

≈ 1

N

N∑

i=1

∫
p(zk+1|xi

k+1) log
p(zk+1|xi

k+1)
1
N

∑N

l=1 p(zk+1|xl
k+1)

dzk+1 (4.3)

The above equation could be used for selecting the best sensor each at a time.

However, it is not difficult to derive the equation for selecting more than one best

sensors. The mutual information for a two-sensor case becomes

MI(zSa

k+1, z
Sb

k+1;xk+1|z1:k)

≈ 1

N

N∑

i=1

∫
p(zSa

k+1, z
Sb

k+1|xi
k+1) log

p(zSa

k+1, z
Sb

k+1|x
(i)
k+1)

p(zSa

k+1, z
Sb

k+1|z1:k)
dzSa

k+1dz
Sb

k+1 (4.4)

where zSa

k+1 and z
Sb

k+1 represent the measurement taking from sensor a and b re-

spectively.

For nonlinear/non-Gaussian systems, there is no analytical closed-form ex-

pression due to the integration over zk+1 in the above equation. However, if we

know the target state at k+1, xk+1, then according to the measurement equation

(3.5), the measurement at time k + 1 can be estimated from the predicted state

x̂k+1. Then,

p(zSa,Sb

k+1 |xk+1) ≈
1

M

M∑

m=1

δ(zSa,Sb

k+1 − z
(m)
k+1) (4.5)

where z
Sa,Sb

k+1 , (zSa

k+1, z
Sb

k+1), and M is the number of measurement samples taken

from the measurement space at time k+ 1. Then the mutual information can be

calculated according to the following expression:

MI(zSa

k+1, z
Sb

k+1;xk+1|z1:k)

≈ 1

N

N∑

i=1

1

M

M∑

m=1

log
p(zmk+1|xi

k+1)
1
N

∑N

l=1 p(z
m
k+1|xl

k+1)
(4.6)

54



4.2 Sensor Selection Approaches

We must note that for multiple sensors, the mutual information can not be de-

coupled, which means that the mutual information between the target state and

the measurements taken from more than one sensor is not equal to the summa-

tion of the mutual information between the target and each sensor measurement

individually:

MI(zSa

k+1, z
Sb

k+1;xk+1|z1:k) 6= MI(zSa

k+1;xk+1|z1:k) + MI(zSb

k+1;xk+1|z1:k) (4.7)

Therefore, the computation complexity of the information based approach is

O(NM), assuming the equal sample size M for each sensor, and N is the number

of particles used by the fusion center. According to Equation (4.5), it can be seen

that the number of generated samples should scale exponentially as Ns increases

to guarantee an accurate estimation of the mutual information, where Ns is the

number of active sensors.

It can also be seen that maximizing the mutual information is equivalent

to minimizing the conditional entropy for the target state xk+1 given the mea-

surement z1:k and zk+1. Here the existing measurements z1:k are considered as

realizations, while zk+1 is considered as a random variable (vector).

MI(zk+1,xk+1|z1:k)
= H(xk+1|z1:k)−H(xk+1|z1:k, zk+1) (4.8)

The first term in the above equation, H(xk+1|z1:k), has the same value for all the

different sensor selection solutions. Therefore, maximizing MI(zk+1,xk+1|z1:k) is
equivalent to minimizing H(xk+1|z1:k, zk+1).

4.2.2 Nearest Neighbor

The nearest neighbor algorithm always updates the tracking results with the

measurement closest to the predicted state.

The cost function for the nearest neighbor approach is:

dist2(S(j), x̂k+1|z1:k) = (S(j)
x − x̂k+1|z1:k)2 + (S(j)

y − ŷk+1|z1:k)2 (4.9)

In the above equation, (S
(j)
x , S

(j)
y ) represents the position for the sensor node j.

(x̂k+1, ŷk+1|z1:k) represents the predicted target position.
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The sensors that minimize the above cost function will be selected for the

tracking task in the next time step k+1. Obviously, the nearest neighbor approach

is a heuristic method. The advantage of nearest neighbor approach is that it is

easy to implement and very fast. But for some kinds of sensors, such as bearing

sensors, the sensor closest to the predicted target state is not always the best

sensor to minimize the tracking error, which is shown in the simulations later.

4.2.3 Conditional PCRLB

The PCRLB considers the measurements as random vectors, and at any particular

time k, the bound is calculated by taking the average of both the measurements

and the states up to time k. In practice, besides the two system equations, some

of the measurements are available. More particularly, the measurements up to

time k−1, z1:k−1, which provide extra information beyond the two dynamic equa-

tions. The conditional PCRLB utilizes the information contained in the available

measurements, and it gives us more accurate indication on the performance of

the estimator at the upcoming time than the regular PCRLB.

The conditional PCRLB can be used as a criterion to select the sensors for

target tracking in sensor networks, since it can provide a tracking performance

lower bound for the sensor to be selected. The lower the conditional PCRLB is,

the more is the potential for those sensors to provide more informative measure-

ments to reduce the MSE, especially for the cases where the MSE can reach or is

close to the conditional PCRLB.

The conditional PCRLB is a matrix if the state xk is a vector. For tracking

problems, we are more interested in the position of the moving target, so the

summation of the position bounds along the x and y axes are chosen as the

criterion function to be minimized. We can also choose the determinant or the

trace of the conditional PCRLB, but the simulation results are quite similar.
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4.3 Target Tracking Model in Sensor Networks

4.3.1 Target Motion Model

In this chapter, we consider a single target moving in a 2-D Cartesian coordinate

plane according to a dynamic white noise acceleration model [30]:

xk = Fxk−1 + vk (4.10)

where the constant parameter F models the state kinematics

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 (4.11)

T is the time interval between two consecutive sampling points, and in simulation

we set it equal to 1 s. The target state at time k is defined as xk = [xk ẋk yk ẏk]
T ,

xk and yk denote the target position and ẋk, and ẏk denote the velocity. vk is

white Gaussian noise with covariance matrix Q.

4.3.2 Sensor Measurement Model

We assume that a large number of homogenous bearing-only sensors are ran-

domly deployed. There exists a fusion center that is responsible for collecting

information from each sensor and providing the estimate of the target state. The

fusion center has knowledge about the individual sensors, such as their positions

and measurement accuracy. At each time, only a small number of sensors are

activated to perform the sensing task and providing their observations to the fu-

sion center. For the sensors providing the analog data, the measurement model

is given by

z
j
k = h(xk) +w

j
k = tan−1

(
yk − ysj

xk − xsj

)
+w

j
k (4.12)

where zjk is the measurement from sensor j, xsj and ysj represent the correspond-

ing position of sensor j, and w
j
k is the white Gaussian noise with covariance

matrix R.
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Considering the situation of sensors providing quantized data, the measure-

ment model is given by

θjk = h(xk) +w
j
k = tan−1

(
yk − ysj

xk − xsj

)
+w

j
k (4.13)

z
j
k = Q(θjk mod 2π) (4.14)

where θjk is the original sensor measurement. The remainder after θjk is divided

by 2π is sent to the quantizer. Q is a m-bit uniform quantizer on (−π, π). And

z
j
k is the quantized measurement data.

4.4 Sensor Selection Based on Conditional PCRLB

The system model we presented in Section 4.3.1 is a dynamic system with additive

Gaussian noises. The conditional Fisher information matrix L(xk+1|z1:k) can be

recursively calculated accordingly as described in Section 3.3. Here we propose

the particle filter approach to evaluate B11
k , B12

k , B22
k , S11

k , S12
k , and S22

k as well as

providing the tracking results for the state xk.

Given the two equations (4.10) and (4.12), we have

B11
k = Epc

k+1
{−∆xk

xk
log p(xk+1|xk)}

≈ 1

N

N∑

l=1

(
[∇xk

f(xk)]Q
−1
k [∇T

xk
f(xk)]

)∣∣∣
xk=xl

k

= FQ−1
k F T (4.15)

where pck+1 , p(x0:k+1, zk+1|z1:k), ∇xk
f(xk) = F

B21
k = Epck+1

{−∆xk
xk+1

logp(xk+1|xk)}

≈ − 1

N

N∑

l=1

(
Q−1

k ∇T
xk
fk(xk)

)∣∣∣
xk=xl

k

= −Q−1F (4.16)

As for B22,a
k and B22,b

k , we have

B22,a
k = Q−1 (4.17)
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B22,b
k =

1

N

N∑

l=1

(
[∇xk+1

h(xk+1)]R
−1
k+1[∇T

xk+1
h(xk+1)]

)∣∣∣
xk+1=xl

k+1

(4.18)

where ∇T
xk
h(xk) = [−yk−y

Sj

D
Sj

0 xk−x
Sj

D
Sj

0], DSj , (xk − xSj )2 + (yk − ySj)2. The

approximations for S11
k , S21

k , and S22
k can be derived similarly.

S11
k ≈ 1

N

N∑

l=1

g(xl
k−1,x

l
k) = F TQ−1F (4.19)

because

g(xk−1,xk) = (4.20)

[∇xk−1
fk−1(xk−1)]Q

−1
k−1[∇T

xk−1
fk−1(xk−1)]

−[∆xk−1
xk−1

fk−1(xk−1)]Σ̃
−1Υ11

k−1(xk−1,xk)

= F TQ−1F − [∆xk−1
xk−1

f(xk−1)]Σ̃
−1Υ11

k−1(xk−1,xk)

= F TQ−1F (4.21)

since f(xk−1) = Fxk−1, we have ∆
xk−1
xk−1f(xk−1) = 0 and

Σ̃−1 =




Q−1 0 . . . 0

0 Q−1 0
...

... 0
. . . 0

0 . . . 0 Q−1




n2
x×n2

x

(4.22)

and

Υ11
k =




xk+1 − Fxk . . . 0
...

. . . 0

0 0 xk+1 − Fxk



n2
x×nx

(4.23)

S21
k = −Q−1F (4.24)

S22,a
k = Q−1 (4.25)

and

S22,b
k ≈ 1

N

N∑

l=1

{[∇xk
h(xk)]R

−1[∇T
xk
h(xk)]

− ∆xk
xk
h(xk)Σ̃

−1
v Υ22,b

k }
∣∣∣
xk=xl

k

(4.26)
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where

Σ̃−1
v =




R−1 0 . . . 0

0 R−1 0
...

... 0
. . . 0

0 . . . 0 R−1




(nxnz)×(nxnz)

(4.27)

and

Υ22,b
k =




zk − hk(xk) . . . 0
...

. . . 0

0 0 zk − hk(xk)




(nxnz)×nx

(4.28)

The above derivation for conditional PCRLB is for one sensor measurement

case. For selecting multiple sensors (Mk) on every tracking snapshot at time

k, we need to include all the measurements from active sensors to calculate the

conditional PCRLB, such that Zk , {zjk, j ∈ Mk}. We assume that the sensor

measurements are independent from each other conditioned on xk. Now the

recursive conditional PCRLB can be evaluated with the help of particle filtering.

The derivation of conditional PCRLB for quantized data measurements is

similar to that for analog data. The only difference lies in the likelihood func-

tion, and when the periodicity of bearings around 2π is taken into account, the

likelihood function for each quantization level l can be found by

Pr{zjk+1 = l|xk+1} =

∞∑

n=−∞

Pr{(l− 1)η + 2nπ

< tan−1∆y
Sj

k+1

∆x
Sj

k+1

+w
j
k+1 < lη + 2nπ}

(4.29)

Pr(zjk+1 = l|xk+1) =

∞∑

n=−∞

{
Φ

(
lη + β

Sj

k+1,n

σ

)
−

Φ

(
(l − 1)η + β

Sj

k+1,n

σ

)} (4.30)

where ∆y
Sj

k+1 , yk+1 − ySj , and ∆x
Sj

k+1 , xk+1 − xSj , β
Sj

k+1,n = 2nπ − tan−1 ∆y
Sj
k+1

∆x
Sj
k+1

,

l = −L/2 + 1,−L/2 + 2, . . . , L/2, and L = 2m. η = 2π/L, σ is the standard

deviation of the measurement noise, Φ is a cumulative Gaussian distribution

with mean 0 and variance 1.
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The partial derivatives in above equations can be found by

∂p(zjk+1|xk+1)

∂xk+1
=

∆y
Sj

k+1

∑∞
n=−∞ γ(k + 1, n, l, Sj)

√
2πσ

[
(∆x

Sj

k+1)
2 + (∆y

Sj

k+1)
2
] (4.31)

∂p(zjk+1|xk+1)

∂yk+1
=

−∆x
Sj

k+1

∑∞
n=−∞ γ(k + 1, n, l, Sj)

√
2πσ

[
(∆x

Sj

k+1)
2 + (∆y

Sj

k+1)
2
] (4.32)

where

γ(k + 1, n, l, Sj) , e−
lη+β

Sj
k+1,n
σ − e−

(l−1)η+β
Sj
k+1,n

σ

Due to quantization, the likelihood function p(zk+1|xk+1) becomes a probability

mass function and the PDF p(xk+1|z1:k) can be represented approximately by

propagating the samples {x(i)
k } from time k to k + 1 according to the particle

filter theory.

p(xk+1|z1:k+1) ≈
N∑

i=1

ω
(i)
k · δ(xk+1 − x

(i)
k+1) (4.33)

Therefore, the integrals due to expectation can be converted into summation and

further can be evaluated approximately by particle filters only if we know the

current PDF p(xk|z1:k), which can be easily derived by particle filter theory and

represented approximately by the following equation

p(xk|z1:k) ≈
N∑

i=1

ω
(i)
k · δ(xk − x

(i)
k ) (4.34)

where N is the number of particles.

For the target tracking problems, we are more concerned with the target

position. So we choose the summation of the position bounds along each axis as

the cost function for time k + 1

Ck+1 = L−1
k+1(1, 1) + L−1

k+1(3, 3) (4.35)

where Lk+1 , L(xk+1|z1:k), and L−1
k+1(1, 1) and L−1

k+1(3, 3) are the bounds on the

MSE corresponding to position coordinates xk+1 and yk+1 respectively. Those

sensors that collectively minimize the above cost function will be activated at the
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next time k + 1. In this chapter, we use the optimal enumerative search method

to determine the combination of sensors, which minimizes the cost function.

Mk+1,∗
s , argmin

Mk+1
s ⊂S

Ck+1(M
k+1
s ) (4.36)

where S denotes the set containing all the sensors, Mk+1
s is a pair of sensors chosen

from S.

4.5 Simulation Results

In this section, the performance of the proposed sensor selection approach in this

chapter is evaluated in terms of the MSEs of the state vector. In the simulations,

we consider a scenario where 30 homogenous bearing-only sensors are randomly

deployed in a 500 × 500 field. A single target moves in the field for 60 seconds

according to the white noise acceleration model (4.10). At each time, two sensors

are activated to report the information of the target to fusion center according

to Equation (4.12). The measurement noise variance is set to R = 0.005, and the

system noise covariance matrix Q is chosen as

Q =




0.3333 0.5000 0 0
0.5000 1.0000 0 0

0 0 0.3333 0.5000
0 0 0.5000 1.0000




The prior PDF of the target state is assumed Gaussian with mean [0 10 0 10]T

and covariance P0 = diag(1, 0.5, 1, 0.5). For simplicity and illustration purposes,

the transition PDF p(xk+1|xk) is chosen as the proposal density function π(xk|
x0:k−1, z0:k). We implement our approach by using N = 500 particles, and 100

Monte Carlo repetitions are performed for each experiment.

For comparison purposes, we also consider three other selection methods. 1)

PCRLB with renewal strategy, in which the prior pdf of the target state is updated

at each time after we get the state estimate, which uses similar selection criterion

as the conditional PCRLB to try to minimize position error; 2) Information-

driven approach, where the selection schemes aim to minimize the entropy of

the measurement; and 3) Nearest neighbor approach, where the sensors that are

closest to the predicted position of the target are selected.
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4.5.1 Sensor Selection with Analog Data

Figures 4.2 - 4.5 demonstrate the tracking results where true target trajectory

and estimated trajectories by different sensor selection methods are compared.

We can see that the proposed selection method achieves more accurate tracking

results. Figure 4.6 and Figure 4.7 show the MSEs of target position in x and y

coordinates respectively. The proposed sensor selection method by minimizing

the conditional PCRLB offers a significant error reduction for most of the tracking

time compared to other existing methods.

For analog data, Table 4.1 shows the time complexities of different sensor

selection approaches. It can be seen that nearest neighbor, PCRLB with renewal

prior and conditional PCRLB has the same order of time complexity, which is

liner in the number of particles and the number of active sensors. However,

information based approach has a much higher order of time complexity than the

other three.
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Figure 4.2: Conditional PCRLB Tracking results with analog data

4.5.2 Sensor Selection with Quantized Data

In the simulation, we choose a quantization of measurement with m = 5 bits for

the Equation (4.14). Figures 4.8 - 4.11 show the tracking results under the same
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Figure 4.3: Renewal PCRLB Tracking results with analog data

Table 4.1: Comparison of average CPU computational times (Analog data with

two active sensors selected at each time, 30 time steps with N = 300)

Time (s)

C-PCRLB 5.102285

PCRLB with renewal prior 3.642564

Nearest neighbor 1.159977

Mutual information 276.001549

simulation configuration as the analog data. The MSE results are illustrated in

Figures 4.12 and 4.13. It can be seen that the proposed method shows better

tracking results than the nearest neighbor, information-driven and PCRLB with

renewal strategy approaches.

In the experiment, we have observed that due to the quantization procedure,

the Fisher information is smaller and the conditional PCRLB is higher compared

to the analog data. The tracking error is also increased.
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Figure 4.4: Nearest Neighbor Tracking results with analog data

4.6 Discussion

In this chapter, we considered a sensor selection problem for tracking a single

target in sensor networks. The conditional PCRLB method is approximated re-

cursively by using a particle filter without the knowledge of future measurements.

Those sensors that collectively minimized the cost function established on condi-

tional PCRLB are activated, while other sensors are in the idle state. Simulation

results for both analog and quantized measurement data were presented to illus-

trate the improved performance of our proposed sensor selection approach, which

outperforms other existing methods.

We also use conditional PCRLB as one of the objectives for the multi-objective

target tracking problems. Such kind of problems involves simultaneously maxi-

mizing target tracking accuracy and minimizing querying cost. The querying cost

could consist of computation, sensing range, communication bandwidth, and en-

ergy consumption. The tracking task tends to be sequentially identifying active

subset sensor while simultaneously addressing two conflicting objectives: cost and

tracking accuracy. For more in-depth information on these topics, the reader is

referred to [41]
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Figure 4.5: Information based Tracking results with analog data
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Figure 4.6: Comparison of x-MSEs with analog data

66

Chapter4/Entropy_Track.eps
Chapter4/RMSE_X.eps


4.6 Discussion

0 10 20 30 40 50
0

5

10

15

20

25

30

Time k

R
M

S
E

 o
f y

 

 
Conditional PCRLB
Renewal PCRLB
Information Driven
Nearest Neigbor

Figure 4.7: Comparison of y-MSEs with analog data
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Figure 4.8: Conditional PCRLB Tracking results with quantized data
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Figure 4.9: Renewal PCRLB Tracking results with quantized data

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

x−coordinate

y−
co

or
di

na
te

 

 
Sensors
True Trajectory
Tracking Results by Nearest Neighbor

Figure 4.10: Nearest Neighbor Tracking results with quantized data
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Figure 4.11: Information based Tracking results with quantized data
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Figure 4.12: Comparison of x-MSEs with quantized data
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Figure 4.13: Comparison of y-MSEs with quantized data
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Chapter 5

Bandwidth-Efficient Distributed

Particle Filter for Target

Tracking in Sensor Networks

5.1 Motivation

Wireless sensor networks composed of miniature devices that integrate physical

sensing, data processing and communication capabilities present great opportu-

nities for a wide range of applications [42]. The technology lends itself well to

surveillance and monitoring tasks, including target tracking. Unfortunately, the

sensors used for these tasks are inherently limited, and individually incapable of

estimating the target state. However, fusing measurements from multiple sensors

for improving tracking performance has been the subject of significant research

[30]. The focus has been on combining measurements from sensors (radars, bear-

ing sensors, etc.) individually capable of estimating the target state (position,

velocity, etc.).

As opposed to centralized computation based on measurements available from

all the sensors [13][43], distributed processing has many advantages: 1) Dis-

tributed architecture is more robust. 2) Sensor nodes can have computation

power. Therefore, the computations of particle filter can be distributed to sensor

nodes. 3) Local estimation results by particle filter need to be compressed before
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being transmitted to the fusion center in order to save the communication band-

width. Vercauteren et al, [44] proposed a collaborative signal processing algorithm

for object tracking and classification in sensor networks. In their work, only one

sensor is active at any time, which does not fully utilize the power of multiple

sensors. Use of distributed Kalman filters for tracking in a sensor network, such

as in [45], is based on the linearity and Gaussian assumptions. In this chapter, we

present a distributed particle filter (DPF) algorithm to perform sampling-based

sequential target tracking over a wireless sensor network efficiently and accu-

rately. In contrast to the centralized method, our approach is to distribute the

computation burden and communication burden over the entire sensor network.

Each local sensor node is assumed to have enough computing capacity to update

its own estimate in parallel based only on its local observations. These partial

estimates are then transmitted to the fusion center. Our method is different from

[46], which sought to employ a quantization-based method to adaptively encode

the local measurements before applying the particle filter. This method needs

complicated learning procedure to run the algorithm. Similar to [47], we also

propose a method to approximate the local estimate with the parameters of a

low dimensional Gaussian Mixture Model(GMM). Instead of transmitting raw

estimates of particles, parameters of the GMMs, which approximate the particles

to estimate the posterior distribution of the moving object, are transmitted to the

fusion center. This approximation scheme significantly reduces communication

bandwidth requirement. The difference between our method and that in [47] is

that in our method the number of components for each GMM are dynamically

selected according to the posterior distribution approximated by the particles,

and an optimal fusion method is introduced to fuse the collected GMMs with

different number of components.

5.2 Distributed Target Tracking

The problem of single target tracking is considered here assuming that the data

association problem has been solved. Let superscript j denote quantities pertain-

ing to the jth sensor. It is assumed that each sensor operates and provides the

estimate xk of the true target state to the fusion center. Note here the local
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5.3 Tracking Based on Particle Filters

estimates x̂’s are in world Cartesian coordinates. The fusion center treats the

local estimates as target measurements according to the equation:

z∗k =




x̂1
k|k
...

x̂Ns

k|k


 =




I
...
I


xk +




x̂1
k|k − xk

...
x̂Ns

k|k − xk


 (5.1)

where I is the identity matrix with appropriate dimension. This model was

introduced in [48] as a universal model for standard distributed fusion. Thus, the

target tracking problem at the fusion center is treated as an estimation problem

for the state xk subject to the target motion model (5.22) based on the sequence

of pseudo-measurements given by (5.1). This is a nonlinear estimation problem

and its complete solution is given by the posterior PDF p(xk|z∗k) .

5.3 Tracking Based on Particle Filters

Given the process and measurement models (5.22) and (5.25), the recursive

Bayesian filtering paradigm provides the a posteriori PDF p(xk|z1:k) via the pre-

diction and update recursions. z1:k represents all the available measurement in-

formation until and including time k.

Prediction:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (5.2)

Update:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(5.3)

where the state xk evolution is described in terms of the transition probability:

p(xk|xk−1) =

∫
p(xk|xk−1,vk−1)p(vk−1)dvk−1 (5.4)

And how the given xk fits the available measurement is described as:

p(zk|xk) =

∫
δ(zk − hk(xk,wk))p(wk)dwk (5.5)

Particle filters represent the state PDFs approximately by a set of samples

and implement Bayesian recursion directly on the samples instead of dealing
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5.4 Gaussian Mixture Approximation to Particle Filter Estimates

with the exact analytical functional representations of the distributions. Our

tracking framework is based on sequential importance sampling (SIS) for particle

filtering described in [29][15]. There are two main corresponding steps in particle

filters: prediction and update. Resampling is also needed to avoid the degeneracy

problem.

We can envisage a general distributed particle filter (GDPF) algorithm, where

local sensor nodes draw samples, calculate the importance weights and send them

to the fusion center. In this case, the importance weight normalization and

resampling are performed at the fusion center. The resampled particles are sent

back to each sensor node. In this GDPF approach, not only is there a heavy

computation at the fusion center, but also this method requires transmitting

large amounts of data from the sensor node to the fusion center. This provides

the motivation for the bandwidth efficient distributed particle filter based scheme.

5.4 Gaussian Mixture Approximation to Parti-

cle Filter Estimates

In order to reduce the communication cost, we approximate the locally resampled

particles by a Gaussian mixture model, and only the parameters of the GMMs

are transmitted to the fusion center. The parameters of GMM are learned using

an iterative EM algorithm [49].

5.4.1 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a general algorithm for find-

ing the maximum-likelihood estimate (MLE) of the parameters of an underlying

distribution where the data are incomplete, have missing values or the likelihood

function involves latent variables [50, 51, 52].

EM is an iterative method which alternates between performing an expec-

tation (E) step, which computes the expectation of the log-likelihood evaluated

using the current estimate for the latent variables, and a maximization (M) step,

which computes parameters maximizing the expected log-likelihood found on the

E step. These parameter-estimates are then used to determine the distribution
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of the latent variables in the next E step. Given a likelihood function L(Θ|Z),
where Θ is the parameter vector, Z = {x, y} represents the complete data set,

and x represents the incomplete data, y represents the unobserved latent data or

missing values. The joint density function is

p(Z|Θ) = p(x, y|Θ) = p(y|x,Θ)p(x|Θ) (5.6)

So the complete likelihood function can be written as

L(Θ|Z) = L(Θ|x, y) = p(x, y|Θ), (5.7)

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively

applying the following two steps

Expectation step: Find the expected value of the complete-data log-likelihood

log p(x, y|Θ) with respect to the unknown data y given the observed data x under

the current parameter estimates Θ(t).

Q(Θ|Θ(t)) = Ep(y|x,Θ(t)) logL(Θ|Z) (5.8)

where the superscript t represents the iteration step. In the above equation,

Θ(t) is considered to be a constant, and Θ corresponds to the parameters that

ultimately will be estimated in an attempt to maximize the likelihood.

Maximization step: Find the parameter that maximizes this quantity:

Θ(t+1) = argmax
Θ

Q(Θ|Θ(t)) (5.9)

Each iteration of the above two steps is guaranteed to increase the likelihood

and the EM algorithm is guaranteed to converge to a local maximum of the

likelihood function [53].

5.4.2 MLE of Gaussian Mixture Densities Parameters via

EM

The finite Gaussian Mixture Model (GMM) is a probabilistic model for den-

sity estimation using a mixture of several Gaussian distributions with associated
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weights. The weights for Gaussian distributions are constrained to have an unit

sum [54][55].

p(x|Θ) =
M∑

i=1

αipi(x|θ) (5.10)

and
M∑

i=1

αi = 1 (5.11)

where the parameters are Θ = α1, . . . , αM , θ1, . . . , θM , each pi is a density function

parameterized by θi, M is the number of components, and
∑M

i=1 αi = 1. If we

have N observations assumed to be independent, the log-likelihood of the above

GMM is given by

log p(x|Θ) =

N∑

i=1

log

(
M∑

j=1

αipi(xi|θj)
)

(5.12)

The above likelihood function is difficult to optimize because of the summation

within the log function. In order to apply EM to find the MLE of GMM, we could

assume that the data set x is incomplete and unobserved data y could inform us

which component density generates the data. And if the value of y is known, the

likelihood with complete data becomes

log p(x, y|Θ) =

N∑

i=1

log(αyipyi(xi|θyi))) (5.13)

where we assume that yi ∈ 1, . . . ,M for each i, and yi = k if ith sample is

generated by the kth mixture component.

Given the definition of the hidden variable yi, the Expectation step in Equa-

tion (5.8) can be rewritten as [49]

Q(Θ,Θ(t)) =
M∑

l=1

N∑

i=1

log(αl)p(l|xi,Θ
(t))+

M∑

l=1

N∑

i=1

log(pl(xi|θl))p(l|xi,Θ
(t)) (5.14)

where l ∈ 1, . . . ,M , and
∑M

i=1 p(i|xj,Θ
(t)) = 1 for j ∈ 1, . . . , N .

In order to find the update rule for parameter Θl = {αl, µl,Σl} of each com-

ponent in GMM, we can take the differentiation of the above equation, and the

76



5.4 Gaussian Mixture Approximation to Particle Filter Estimates

estimates of the new parameters in terms of the old parameters can be derived

as follows

α
(t+1)
ℓ =

1

N

N∑

i=1

p(ℓ|xi,Θ
(t)) (5.15)

µ
(t+1)
ℓ =

∑N

i=1 xip(ℓ|xi,Θ
(t))

∑N

i=1 p(ℓ|xi,Θ(t))
(5.16)

Σ
(t+1)
ℓ =

∑N

i=1 p(ℓ|xi,Θ
(t))(xi − µ

(t+1)
ℓ )(xi − µ

(t+1)
ℓ )T

∑N

i=1 p(ℓ|xi,Θ(t))
(5.17)

5.4.3 Dynamic EM for GMM

Applying the EM algorithm to estimate the parameters of GMM requires a known

number of GMM components. However, in our tracking problem, we usually

do not have prior knowledge of the number of components. We should set a

value before applying the EM algorithm. The larger the value that we assign to

the number of GMM components, the more accurate the approximation we will

obtain, but more bandwidth we will use for transmission.

We introduce a modified EM algorithm here to dynamically select the number

of GMM components according to the posterior distribution estimated by the par-

ticles. Assume that homogeneous sensors are used, and each sensor at each time

can transmit information represented by a GMM with at most Ng components

because of bandwidth limitations. We utilize the Kullback-Liebler(KL) distance

to merge the GMM components if the KL distance of GMM components is less

than a threshold. This will further save the bandwidth.

In probability theory and information theory, the KL distance [56] (also known

as information divergence, information gain, relative entropy, etc.) is a non-

symmetric measure of the difference between two probability distributions P and

Q, which is defined by

KL(p||q) =
∫

p log
p

q
(5.18)

KL distance measures the expected number of extra bits required to code samples

from P when using a code based on Q, rather than using a code based on P.

The Kullback-Leibler divergence is well-defined for both discrete and continuous
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distributions, and furthermore is invariant under parameter transformations. One

of its important properties is that KL distance is always non-negative. So in our

work, we calculate pairwise KL distances for all the Gaussian components, and

it has a closed form expression

KL(N(µ1,Σ1)‖N(µ2,Σ2)) =
1
2

{
log |Σ2|

Σ1|
+ Tr(Σ1

(Σ−1
2 − Σ−1

1 )) + Tr(Σ−1
2 (µ1 − µ2)(µ1 − µ2)

T )
}

(5.19)

The algorithm starts with Ng number of components. If the distance is smaller

than a threshold, we decrease Ng by 1, and re-run the EM algorithm until Ng = 1,

or the KL distances of all the component pairs are greater than the threshold.

The threshold is chosen empirically or according to the bandwidth requirement

in the real application. Note that at different tracking instants, we may use a

different number of GMM components for each local sensor node.

5.4.4 Best Linear Unbiased Estimators for Centralized

Estimation

Each local senor will send the parameters of the GMM to the fusion center,

and the fusion center’s task is to fuse the local estimates, which is known as

estimation fusion. The important thing here is that we consider the local sensor

GMM estimation as a kind of measurements of the true target state xk. Faced

with the difficulties to determine the optimal estimation given the GMMs from

the local sensor, we utilized the best linear unbiased estimation (BLUE) [57]

as a suboptimal estimator to fuse the GMM components to perform centralized

estimation at the fusion center.

BLUE is a linear estimator which is unbiased and has minimum variance

among all other linear estimators. To employ BLUE, we assume that the fused

estimator is unbiased and is a linear combination of the GMMs. Now we can de-

termine the target state with the knowledge of only the first and second moments

of the PDF.
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We rewrite (5.1) as:

z∗k =




µ1,1
k|k

µ1,2
k|k
...

µ1,q1
k|k
...

µ
Ns,qNs

k|k




= Mxk +




τ 1,1k

τ 1,2k
...

τ 1,q1k
...

τ
Ns,qNs

k




(5.20)

where M is the concatenation of the identity matrices, Ns is the total number

of sensors participating in tracking, and qNs is the number of GMM components

at sensor Ns. µi,j

k|k denotes the mean from the jth Gaussian component sent by

sensor i at time k, and τ i,jk is the corresponding white noise with zero mean and

weight covariance 1

α
i,j
k

Σi,j. αi,j
k represents the weight of the jth GMM component

form sensor i. Then the BLUE is:

x̂k = (MTC−1M)−1MTC−1z∗k (5.21)

where C is the covariance matrix of [τ̂ 1,1k , · · · , τ̂Ns,qNs

k ]T .

5.5 Simulation Results

A typical scenario is considered for tracking a moving target based on position

measurements from multiple distributed sensors.

5.5.1 Target Motion Model

The target motion is described by the discrete-time nonlinear nearly constant

turn(CT) model [58]

xk = f(xk−1) +Gvk k=1,2,. . . (5.22)

where the target state vector xk = [x, ẋ, y, ẏ, ω]T consists of the position, velocity

and the constant turn rate ω; vk ∼ N(0, Qk) is white process noise; and

f(x) =




1 sinωT
ω

0 −1−cos ωT
ω

0
0 cosωT 0 − sinωT 0
0 1−cos ωT

ω
1 sinωT

ω
0

0 sinωT 0 cosωT 0
0 0 0 0 1







x
ẋ
y
ẏ
ω




(5.23)
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G =




1
2
T 2 0 0
T 0 0
0 1

2
T 2 0

0 T 0
0 0 T




(5.24)

5.5.2 Measurement Model

Although the target state is expressed in Cartesian coordinates, the measurements

are usually expressed in polar coordinates of local sensors [59]. Measurements of

range and bearing are given by

zk = h(xk) + wi
k i=1,2,. . . ,N (5.25)

with

h(xk) =

[
ri

bi

]
=

[ √
x2
k + y2k

tan−1 yk
xk

]
(5.26)

and white measurement noise wi
k ∼ N(0, Ri

k).
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Figure 5.1: Distributed target tracking results

A sensor network scenario as shown in Figure 5.1 is considered to evaluate the

performance of the proposed algorithm. Nine sensor nodes are uniformly placed

in the 1000 × 1000 area. The target motion model is described by the nearly

80

chapter5/fig1.ps


5.5 Simulation Results

0 10 20 30 40 50
0

1

2

3

4

5

6

Time

N
um

be
r 

of
 G

M
M

 C
om

po
ne

nt
s

Figure 5.2: Number of GMM components

constant turn model given in Equations (5.22) and (5.23). In the simulation, we

use Qk = [1, 1, 0.001] , T = 1s, and Rk = diag(10, 0.5). The importance density

for the particle filter is chosen to be the prior distribution p(xk|xk−1). Resampling

was performed at each iteration to make sure that the particles are independent

and identically distributed before running the EM algorithm. 100 Monte Carlo

runs were carried out and the position root mean square error (RMSE) was used

for comparing the tracking performance.

Figure 5.2 shows the number of components used at different tracking instants

at one sensor node. Here we assume that at most Ng = 5 components can be

transmitted each time by the local sensor to the fusion center due to bandwidth

limitations. It is evident that the introduction of the KL distance based method

reduces the number of GMM components to be transmitted, thus saving the

communication bandwidth of the network.

To evaluate the performance, we increase the number of particles used for esti-

mation by each sensor node from 300 to 1000. Figure 5.3 shows the corresponding

average number of bits transmitted to the fusion center with different number of

particles. For the general distributed particle filter(GDPF), the number of bits

transmitted is proportional to the number of particles. Instead of transmitting

particles, sending the parameters of the GMMs incurs much less communication
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Figure 5.3: Plot of number of particles vs number of bits transmitted

cost. But the accuracy still remains almost the same as the GDPF approach

especially when using a larger number of particles as shown in Figure 5.4.

If the number of GMM components at each tracking instant is fixed to be Ng,

we can see the substantial saving in bandwidth from Figure 5.5. However, the

RMSEs of these two methods are almost the same as shown in Figure 5.6.

5.6 Discussion

In this chapter, we have proposed a distributed target tracking algorithm based

on particle filters for sensor networks. Three main contributions of this method

are: first, instead of transmitting the raw particles, we use a Gaussian Mixture

Model (GMM) to approximate the a posteriori distribution obtained from the

local particle filters, and only transmit the parameters of the GMM to the fusion

center. Second, in order to further save the bandwidth, the number of components

of the GMM is dynamically updated according to the posterior distribution at

each local sensor. Finally, an optimal rule based on the best linear unbiased

estimation (BLUE) method is introduced to fuse the GMM parameters collected

from local sensors. Simulation results demonstrate that our approach is accurate
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Figure 5.4: Plot of number of bits transmitted vs RMSE

and more bandwidth efficient. There is no estimation accuracy degradation when

we dynamically select the number of GMM components.
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Chapter 6

Target Tracking in

Heterogeneous Sensor Networks

6.1 Motivation

Heterogeneous sensor networks with multiple sensing modalities are gaining pop-

ularity in diverse fields because they can provide diverse sensor data for multiple

applications with different purposes [60]. Multiple sensing modalities provide

flexibility and robustness, however, different sensors may have different resource

requirements in terms of processing, memory, or bandwidth. And heterogeneous

sensor networks can have nodes with various capabilities for supporting several

sensing tasks.

Combining the information from multiple heterogeneous sensors can lead to

more accurate tracking results than using a single sensor. To fuse these heteroge-

neous and non-linear measurements, there are many tracking algorithms, of which

the most commonly used is the classical method called the extended Kalman filter

(EKF) [13], where the non-linear measurement model and/or nonlinear motion

model are linearized via Taylor series expansion, and the noises are approximately

to be Gaussian. On the other hand, a Monte-Carlo simulation based recursive

estimation algorithm, the particle filtering (PF) algorithm [5] [15] has emerged

as a very promising technique to solve the non-linear and non-Gaussian filtering

problem. It has been shown that using highly nonlinear measurements, such as

bearing-only measurements, the PF outperforms the EKF [29].
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6.2 Sensor Network Setup

In this chapter, we compare the tracking performance of the EKF and the PF

under various situations, where different combinations of sensor measurements

are available for data fusion. Different types of sensors are considered, including

range-only sensors, bearing-only sensors, and radars that provide both range

and bearing measurements. Besides the non-linearity in the measurements, non-

Gaussian measurement noise, the glint noise modeled as a Gaussian mixture, has

been used in the experiments. In addition to the relatively easy case where the

target moves at nearly a constant velocity, we investigate the difficult case where

the target maneuvers and an Interacting Multiple Model (IMM) algorithm has to

be used. Through simulation experiments, we demonstrate that particle filter has

superior performance during the first several steps after initialization. In steady

state, when the data are highly nonlinear bearing-only measurements, the PF

still outperforms the EKF. However, whenever radar data are available, the PF

has very similar steady-state performance as the EKF in terms of MSE.

6.2 Sensor Network Setup

Since multiple heterogeneous sensors are connected to form a sensor network, it is

very important to take advantage of the information from multiple sources. Here

we adopt one of the most common data fusion schemes, namely the centralized

fusion scheme. In a centralized fusion process, all the sensors transmit their raw

measurements, such as range and bearing to the fusion center, as described in Fig.

6.1. After collecting all these measurements, the fusion center fuses them to form

a new and more accurate estimate of the target state. The fusion is accomplished

by the tracker in a very natural way. Namely all the raw measurements and

their associated accuracies are used to update the target state. The tracker only

needs to adjust its measurement equation to reflect that measurements are from

multiple heterogeneous sensors. The centralized fusion scheme is optimal in the

sense that no information is lost during the fusion process, since the unprocessed

raw measurements are transmitted to the fusion center.
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Figure 6.1: Centralized fusion process

6.3 System Models

6.3.1 Target Motion Model

The maneuvering target motion is modeled by three switching dynamics models

whose evolution follows a Markov chain, also called a Jump Markov System (JMS)

[58][61]. We assume that at any time, the target moves according to one of

s = 3 dynamic behavior models: (a) Constant Velocity (CV) motion model, (b)

clockwise Coordinated Turn (CT) model, and (c) anticlockwise CT model. Let

S = {1, 2, 3} denotes the set of three models for the dynamic motion. Then, the

target dynamics can be written as

xk = f rk(xk−1) + vk (6.1)

where xk is the state vector defined by xk = [x ẋ y ẏ], k denotes the discrete

time index, and rk ∈ S is the regime variable taking effect in the time interval

(k−1, k], with transition probabilities πij , Pr{rk+1 = j|rk = i}, (i, j ∈ S), such

that πij ≥ 0,
∑

j πij = 1. vk denotes the white Gaussian noise with covariance
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matrix Q,

Q = q




1/3T 3 1/2T 2 0 0
1/2T 2 T 0 0

0 0 1/3T 3 1/2T 2

0 0 1/2T 2 T


 (6.2)

where q is a scalar, and T is the sampling time. For the CV motion model, the

f rk(·) function can be replaced by the transition matrix F rk(·). When rk = 1,

F rk(·) corresponds to the standard CV model

F rk(xk) =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 T


 (6.3)

And rk = 2, 3 correspond to clockwise and anticlockwise CT motions, respectively,

F (j)(xk) =




1
sin(ω

(j)
k

)T

ω
(j)
k

)
0 −1−cos(ω

(j)
k

)T

ω
(j)
k

)

0 cos(ω
(j)
k ) 0 sin(ω

(j)
k )

0
1−cos(ω

(j)
k

)T

ω
(j)
k )

1
sin(ω

(j)
k

)T

ω
(j)
k )

0 sin(ω
(j)
k ) 0 cos(ω

(j)
k )



, j = 2, 3 (6.4)

Here the mode-conditioned turning rates are given by

ω
(2)
k =

am√
ẋ2 + ẏ2

ω
(3)
k = − am√

ẋ2 + ẏ2

where am is the constant maneuver acceleration parameter.

6.3.2 Sensor Measurement Model

Three types of sensors are used in our work. These are 1) ESM sensor that reports

bearing-only measurements, 2) range sensor that reports range measurements

and 3) 2D RADAR sensor that reports range-bearing measurements [59]. The

measurement model can be mathematically written as

z
j
k = h(i)(xk) +wk (6.5)
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6.4 Target Tracking Algorithms

where z
j
k is the measurement from sensor j. h(i)(·) corresponds to three types of

sensor measurement models, i = 1, 2, 3.

h(1)(xk) = tan−1

(
yk − ysj

xk − xsj

)
(6.6)

h(2)(xk) =
√

(yk − ysj)2 + (xk − xsj )2 (6.7)

h(3)(xk) =

[
tan−1( yk−y

sj

xk−x
sj )√

(yk − ysj)2 + (xk − xsj )2

]
(6.8)

where (xk, yk) is the target position at time k, (xsj , ysj) is the position of sensor j.

And wk denotes the measurement noise. In our work, we examine the standard

Gaussian noise as well as the glint noise [62].

Changes in the aspect toward the radar can cause irregular electromagnetic

wave reflections, resulting in significant variation of radar reflections. This phe-

nomenon gives rise to outliers in angle tracking, and it is referred to as target

glint. Glint noise has a non-Gaussian distribution, and a mixture approach is

widely used in modeling the non-Gaussian glint noise. In the proposed tracking

algorithm, the glint noise is modeled by a Gaussian Mixture Model (GMM) with

two components. This model consists of one Gaussian with high probability and

small variance and another with small probability of occurrence and very high

variance.

wk ∼ (1− ag)N(0,Σ1) + agN(0,Σ2) (6.9)

where ag < 0.5 is the glint probability, and Σ1 < Σ2. Note that when ag = 1,

glint noise degenerates to standard Gaussian noise with zero mean and covariance

matrix Σ1.

6.4 Target Tracking Algorithms

This section describes the recursive algorithms implemented for tracking a single

target using EKF or particle filter techniques. Two of the algorithms are EKF-

based and the other two are PF-based schemes. The algorithms considered are
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6.4 Target Tracking Algorithms

(i) EKF-IMM, (ii) PF-IMM, (iii) EKF-Glint Noise, (iv)PF-Glint Noise. All four

algorithms are applicable to both single-sensor and multi-sensor scenarios.

6.4.1 Extended Kalman Filter

Extended Kalman filter is a minimum mean square error (MMSE) estimator

based on the Taylor series expansion as shown in Chapter 2. Given the target

motion model and measurement model, we have

Fk−1 ,
∂f(xk)

∂xk

∣∣∣
(xk=x̂k−1|k−1)

(6.10)

Hk ,
∂h(xk)

∂xk

∣∣∣
(xk=x̂k|k−1)

=

[
− yk−ys

(yk−ys)2+(xk−xs)2
0 − xk−xs

(yk−ys)2+(xk−xs)2
0

xk−xs√
(yk−ys)2+(xk−xs)2

0 yk−ys√
(yk−ys)2+(xk−xs)2

0

]

(6.11)

For centralized measurement EKF fusion

Hk = [HT
k,S1

, HT
k,S2

, · · · , HT
k,Sn

]T (6.12)

Rk =




Rk,S1 · · · 0
...

. . .
...

0 · · · Rk,Sn


 (6.13)

where Hk,Si
is the Jacobian of the measurement model for each sensor, and Rk,Si

is the covariance of the measurements model.

For the maneuvering target tracking problem, the IMM algorithm has been

shown to be one of the most cost effective and simple approaches. At each

calculation cycle, the IMM consists of three major steps: interaction (mixing),

filtering and combination. At each time, the initial condition for the filter matched

to a certain mode is obtained by mixing the state estimates of all the filters at the

previous time under the assumption that this particular mode is in effect at the

current time. This is followed by a regular filtering step, performed in parallel for

each mode. Then a combination of the updated state estimates of all the filters

yields the state estimate.
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6.4.2 Particle Filtering

Particle filters represent the state probability density function approximately

through a set of samples and implement Bayesian recursion directly on the sam-

ples instead of dealing with the exact analytical functional representations of the

distributions [29][15]. Tracking framework based on particle filtering will show

better performance on nonlinear/non-Gaussian problems than EKF. The recur-

sive Bayesian filtering paradigm provides the a posteriori PDF p(xk|z1:k) via the

prediction and update recursions. Prediction:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)d(xk−1) (6.14)

Updating:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(6.15)

where the state xk evolution is described in terms of the transition probability:

p(xk|xk−1) =

∫
p(xk|xk−1,vk−1)p(vk−1)dvk−1

=

∫
δ(xk − fk−1(xk−1,vk−1))p(vk−1)dvk−1 (6.16)

And how the given xk fits the available measurement zk is described as:

p(zk|xk) =

∫
δ(zk − hk(xk,wk))p(wk)dwk (6.17)

For maneuvering target tracking, the aim of the optimal filter is to sequen-

tially estimate the unknown hybrid hidden state {xk, rk} given the observations

{z1:k}. Applying Bayes rule, the formulation of the recursion that updates

p(x0:k, r1:k−1|z1:k−1) to p(x0:k, r1:k|z1:k) can be derived as

p(x0:k, r1:k|z1:k) = p(x0:k−1, r1:k−1|z1:k−1)
p(zk|x0:k, r1:k, z1:k−1)f(xk|xk−1, rk−1)πrk−1rk

C
(6.18)

where C is a constant. The basic idea for solving maneuvering target tracking

using a particle filter is to decouple the hybrid estimation problem into a discrete

part and a continuous part. We assume that sensor measurements are indepen-

dent from each other. Here is the summary of the particle filter solution for the

maneuvering target tracking problem in sensor networks.
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1. Generate samples of r
(i)
k from an importance proposal distribution r̃

(i)
k ∼

π(rk|z1:k, r(i)1:k−1), where z1:k represents the measurements from all the sen-

sors up to time k. Generate samples x̃
(i)
k ∼ p(xk|xk−1, r

(i)
k ).

2. Evaluate the importance weights

ω̃
(i)
k ∝ ω

(i)
k−1

p(r̃
(i)
k |r̃(i)k−1)

π(r̃
(i)
k |z1:k, r̃(i)1:k−1)

Sn∏

j=1

p(zjk|z1:k−1, r
(i)
1:k) (6.19)

3. Normalize the weights

ω̃
(i)
k =

ω̃
(i)
k∑N

j ω̃
(i)
k

(6.20)

4. Resampling: multiply/discard particles {r(i)k , i = 1, 2, · · · , N} with respect

to high/low normalized importance weights ω̃
(i)
k to obtainN samples {r(i)k ,x

(i)
k }Ni=1

5. Calculate MMSE of x̂k|k =
∑N

i=1 ω
(i)
k x̃

(i)
k

6.5 Simulation Results

We address the problem of tracking a maneuvering target in noise using multiple

heterogeneous sensors. Fig 6.2 shows the tracking scenario. In our experiments,

we use the dynamic state space model to generate the synthetic data, and 50

Monte Carlo computation simulations were carried out to evaluate the perfor-

mance of the algorithms for each experiment. The position mean square error is

defined as

MSEk =
1

N

N∑

n=1

[
(xk − x̂k|k)

2 + (yk − ŷk|k)
2
]

(6.21)

We set sampling rate T = 1, and q = 20, then

Q =




6.6667 10 0 0
10 20 0 0
0 0 6.6667 10
0 0 10 20


 (6.22)
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Figure 6.2: Simulated trajectory in a multi-sensor environment

The typical maneuver acceleration parameter is set to am = 1 m/s2. And the

mode probability transition matrix used in the IMM is

∏
=




0.9 0.05 0.05
0.6 0.3 0.1
0.6 0.1 0.3


 (6.23)

The glint probability is set to ag = 0.9, the measurement noise covariances Σ2 =

10Σ1, and

Σ1 =

[
3.0462× 10−4 0

0 5

]

6.5.1 Target Tracking Using Two Bearing-only Sensors

Bearing-only sensors are located (xS1 , yS1) = (100m, 100m) and (xS2 , yS2) =

(0m, 250m) respectively. Figures 6.3 and 6.4 show the tracking results for the

CV model with glint noise. Figures 6.5 and 6.6 show the tracking results for a

maneuvering target. The PF shows a better tracking performance than EKF. As

93

Chapter6/fig2.eps
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we can see later, using only two bearing-only sensors is the most difficult case to

track the target, and the tracking results are much worse than those of using two

range sensors. For the difficult case where the target is maneuvering, we can see

that the MSEs for both the EKF and the PF are higher than those in the case

where the target motion follows a CV model.

Figure 6.3: 2 bearing sensors - CV model with glint measurement noise : tracking

results

6.5.2 Target Tracking Using One Radar Sensor

We assume that a radar is located at (xS, yS) = (500m, 500m). From the experi-

mental results Figures 6.7 and 6.8 , we can see that except for the first few steps,

EKF and PF achieve almost the same MSE. But the computation time is much

shorter for the EKF. For the difficult case where the target is maneuvering, we

can see in Figures 6.9 and 6.10 that the MSEs for both the EKF and the PF are

higher than those in the case where the target motion follows a CV model.
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Figure 6.4: 2 bearing sensors - CV model with glint measurement noise: MSE

6.5.3 Target Tracking Using One Range Sensor and One

Bearing-only Sensor

The range sensor position is set to (xS1 , yS1) = (0m, 250m), and bearing-only

sensor position is set to (xS2 , yS2) = (100m, 100m). The function of bearing-only

sensor plus range sensor is almost the same as a single radar sensor, except that

the bearing-only sensor and range sensor are located at different locations, so we

have similar experimental results as in Section 6.5.2 shown in Figures 6.11, 6.12,

6.13 and 6.14.

6.5.4 Target Tracking Using Two Range Sensors

Two range sensors positions are set to (xS1 , yS1) = (100m, 250m) and (xS2 , yS2) =

(300m, 0m), respectively. For this sensor configuration, the PF still has similar

steady-state performance as that of the EKF. Results are shown in Figures 6.15,

6.16, 6.17 and 6.18.
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Figure 6.5: 2 bearing sensors - Maneuvering target: tracking results

Figure 6.6: 2 bearing sensors - Maneuvering target: MSE
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Figure 6.7: One radar sensor - CV model with glint measurement noise: tracking

results

Figure 6.8: One radar sensor - CV model with glint measurement noise: MSE
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Figure 6.9: One radar sensor - Maneuvering target: tracking results

Figure 6.10: One radar sensor - Maneuvering target: MSE

98

Chapter6/B2_1.eps
Chapter6/B2_2.eps


6.5 Simulation Results

Figure 6.11: One range and One bearing - CV model with glint measurement

noise: tracking results
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6.5 Simulation Results

Figure 6.12: One range and One bearing - CV model with glint measurement

noise: MSE

Figure 6.13: One range and One bearing - Maneuvering target: tracking results
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6.5 Simulation Results

Figure 6.14: One range and One bearing - Maneuvering target: MSE

Figure 6.15: Two range sensors - CV model with glint measurement noise: track-

ing results
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6.5 Simulation Results

Figure 6.16: Two range sensors - CV model with glint measurement noise: MSE

Figure 6.17: Two range sensors - Maneuvering target: tracking results
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6.5 Simulation Results

Figure 6.18: Two range sensors - Maneuvering target: MSE
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6.5.5 Target Tracking Using Bearing Only, Range and

Radar Sensors

In this experiment, we use three different type of sensors, and set the bearing-only

sensor at location (xS1 , yS1) = (250m, 0m), range sensor at location (xS2 , yS2) =

(0m, 250m) and radar sensor at location (xS3 , yS3) = (500m, 500m). With more

sensors providing information, the MSE is much smaller than the previous cases.

As expected, more accurate tracking results are achieved, since we are fusing

data from more sources. Again, the PF and the EKF have very close steady-

state performance. Simulation results are shown in Figures 6.19, 6.20, 6.21 and

6.22.

Figure 6.19: Bearing + range + radar - CV model with glint measurement noise:

tracking results

From the above experiments, we can observe that even when the measurement

model is nonlinear for all types of sensors, using particle filtering does not always

achieve a better steady-state performance in terms of MSE. Only in the cases

where bearing-only sensors are used, the particle filter shows better performance

than the EKF. We also found that even when the initial condition for both EKF
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Figure 6.20: Bearing + range + radar - CV model with glint measurement noise:

MSE

and PF is the same, in the first few tracking steps, PF tracking results are more

accurate than EKF. This is a valuable characteristic, especially when clutter and

false alarms are among the measurements. When the measurements contain many

false alarms, there is uncertainty as to which measurement is from the target and

which is a false alarm. With such uncertainty, inaccurate estimates even at one

time step could lead the filter to diverge and result in the loss of the target track.

The PF has the potential to maintain the target track for a longer time in such

harsh and realistic conditions. This issue needs further investigation in the future.

6.6 Summary

In this chapter, we investigated several data fusion and target tracking algorithms

for a surveillance system that consists of multiple heterogeneous sensors. Algo-

rithms based on the classical extended Kalman filter (EKF) and on the emerging

non-Gaussian and nonlinear particle filtering (PF) techniques were implemented.
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Figure 6.21: Bearing + range + radar - Maneuvering target: tracking results

These algorithms were tested in the practical case where a target maneuvers from

time to time and an Interacting Multiple Model (IMM) framework was used. We

also tested them in the presence of radar glint noise.

The performances of the EKF and the particle filter were compared through

extensive simulation experiments. The results show that for highly non-linear

measurements, such as those from multiple bearing-only sensors, particle filter

exhibits a superior data fusion and tracking performance than the EKF. How-

ever, if the system receives measurements from a radar (both bearing and range

measurements), the EKF and the PF have very similar tracking accuracy, and

the EKF is a more desirable choice, considering that it requires much less com-

putation than the PF, and has a much easier real-time implementation.
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Figure 6.22: Bearing + range + radar - Maneuvering target: MSE
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Chapter 7

Conclusions

The Bayesian paradigm for sequential estimation has proven to be successful for

a large number of applications. Analyzing the performance of estimation results,

therefore, becomes crucial to determine whether the imposed requirements are

realistic or not. One of the main contributions of this dissertation is to intro-

duce a novel conditional PCRLB for sequential Bayesian estimation problems for

nonlinear/non-Gaussian dynamic systems.

In Chapter 3, we presented the exact conditional PCRLB as well as its re-

cursive evaluation approach including an approximation. For the nonlinear/non-

Gaussian systems, it is not realistic to have the analytical closed-form for the

conditional PCRLB. Therefore, we proposed a general sequential Monte Carlo

approximation for this bound to provide a convenient numerical evaluation solu-

tion. The sequential estimate and its performance evaluation through conditional

PCRLB are calculated alternately. The current estimate results are used for com-

puting the conditional PCRLB at the next step.

One of the most important properties of conditional PCRLB is that it is

an online bound compared to the convectional PCRLB bound for the reason

that it utilizes the available measurement information. As a result, it is more

appropriate for evaluating the sequential estimate results dynamically. We also

investigated and discussed the existing measurement dependent PCRLBs, and

provided illustrative examples to compare the differences between the conditional

PCRLB and the existing measurement dependent PCRLBs.

Conditional PCRLB is expected to handle broader range of problems and
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result in more accurate estimation than existing approaches. One possible appli-

cation area is sensor management in sensor networks. Choosing the most infor-

mative set of sensors is likely to improve the tracking performance, while at the

same time reduce the requirement for communication bandwidth and the energy

needed by sensors for sensing, local computation and communication. In Chapter

4, we mainly focused on applying the conditional PCRLB to the sensor selection

problems for target tracking in sensor networks, and comparing its performance

with existing sensor selection approaches, including information driven and those

based on other existing measurement dependent PCRLBs. Simulation results

for both the analog and quantized measurement data cases demonstrate the im-

proved tracking performance by the conditional PCRLB approach compared to

other existing methods in terms of tracking accuracy.

In addition, we presented a novel algorithm to save communication bandwidth

for target tracking in sensor networks with distributed particle filters in Chapter

5. The transmission bandwidth from the local sensor to the fusion center is saved

through an approximation of the a posteriori distribution obtained from the local

filtering results. At the fusion center, an optimal rule was presented to fuse the

information collected from the distributed sensors to make an estimate of the

target state.

In Chapter 6, we presented several algorithms for tracking a maneuvering

target with glint noise in heterogeneous sensor networks. Extensive simulations

were carried out to compare their performance.

Future work will focus on investigating the properties of the proposed bound.

Theorem 1 in Chapter 3 showed that the conditional PCRLB is not only a bound

on the filtering estimator x̂k+1, it also sets a bound on the smoothing estimator

x̂0:k, when the new measurement zk+1 becomes available. The conditional PCRLB

derived in this dissertation provides an approach to recursively predict the MSE

one-step ahead. It can be extended to multi-step ahead cases in the future.

Another future challenge is to theoretically investigate the relationship be-

tween the conditional PCRLB and the unconditional PCRLBs. In Chapter 3, we

have shown through simulations that the conditional PCRLB is tighter than the

unconditional one. However, there is no proof yet for the general case. A rigorous

mathematical proof is needed in the future.
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The work in this dissertation has mainly focused on the accuracy of the single

target tracking problems. It is also of considerable importance to be able to eval-

uate the multi-target tracking performance and therefore the conditional PCRLB

for multiple target tracking in sensor works must be derived in the future.
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Appendix A

Proof of Proposition 1 in

Chapter 3

The following conditions are assumed to exist:

1. If
∂pck+1

∂xi
and

∂2pck+1

∂x2
i

exist and both are absolutely integrable with respect to

x0:k+1 and zk+1. Then for any statistic T , where T is a function of z1:k+1, but

not that of x0:k+1, such that Epc
k+1

(|T |) < ∞, the operation of integration

and differentiation by xi can be interchanged in
∫
Tpck+1. That is

∂

∂xi

[∫
Tpck+1dx0:k+1dzk+1

]
=

∫
T
∂pck+1

∂xi

dx0:k+1dzk+1 (A.1)

2. xi is defined over the compact interval [ai, bi], where −∞ ≤ ai < bi ≤ ∞,

and for i = 1, · · · , (k + 2)nx

lim
xi→ai

p(x0:k+1) = lim
xi→bi

p(x0:k+1) = 0 (A.2)

lim
xi→ai

aip(x0:k+1) = lim
xi→bi

bip(x0:k+1) = 0 (A.3)

Let x̂i stand for the estimate of xi. Since x̂i is a function of z1:k+1, we have

∂

∂xi

∫
x̂ip

c
k+1dx0:k+1dzk+1 = 0 (A.4)
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With Assumption 1, (A.4) implies that

∫
x̂i

∂pck+1

∂xi

dx0:k+1dzk+1 = 0 (A.5)

Applying integration by parts and Assumption 2, it is easy to show that

∫ bi

ai

xi

∂pck+1

∂xi

dxi = −
∫ bi

ai

pck+1dxi (A.6)

By integrating the above quantity with respect to x0:k+1\i and zk+1, where x0:k+1\i

stands for the state vector up to k + 1 excluding xi, we have
∫

xi

∂pck+1

∂xi

dx0:k+1dzk+1 = −1 (A.7)

Then subtracting (A.7) from (A.5), it yields
∫

(x̂i − xi)
∂pck+1

∂xi

dx0:k+1dzk+1

=

∫
(x̂i − xi)

∂log pck+1

∂xi

pck+1dx0:k+1dzk+1 = 1 (A.8)

Similarly, for i 6= j, we have
∫

(x̂i − xi)
∂log pck+1

∂xj

pck+1dx0:k+1dzk+1 = 0 (A.9)

Combining (A.8) and (A.9) into matrix form, we have
∫

(x̂0:k+1 − x0:k+1)
[
∇T

x0:k+1
log pck+1

]
×

pck+1dx0:k+1dzk+1 = Ik+2 (A.10)

where Ik+2 is an identity matrix with dimension (k + 2)nx. Now pre-multiply

by aT and postmultiply by b, where a and b are arbitrary column vectors with

dimension (k + 2)nx, we have
∫

aT (x̂0:k+1 − x0:k+1)
[
∇T

x0:k+1
log pck+1

]

×pck+1bdx0:k+1dzk+1 = aTb

Applying the Cauchy-Schwarz inequality, we have

(aTb)2 ≤ aTMSE(x̂0:k+1|z1:k)a× bT I(x0:k+1|z1:k)b (A.11)
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Since b is arbitrary, letting

b = I−1(x0:k+1|z1:k)a (A.12)

we can show that

aT
(
MSE(x̂0:k+1|z1:k)− I−1(x0:k+1|z1:k)

)
a ≥ 0 (A.13)

Since vector a is arbitrary, MSE(x̂0:k+1|z1:k)−I−1(x0:k+1|z1:k) is positive semidef-

inite. Q.E.D.
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Appendix B

Proof of Proposition 2 in

Chapter 3

First, the PDF p(x0:k+1, zk+1|z1:k) can be factorized as

p(x0:k+1, zk+1|z1:k) = p(x0:k+1|z1:k+1)p(zk+1|z1:k) (B.1)

At time k, the prediction or prior p(xk+1|z1:k) can be approximated as follows.

First, a re-sampling procedure is performed, after which each particle has an

identical weight, and the posterior PDF is approximated by

p(xk|z1:k) ≈
1

N

N∑

l=1

δ(xk − xl
k) (B.2)

The prediction p(xk+1|z1:k) is derived by propagating the particle set {xl
k, ω

l
k}

from time k to time k + 1 according to the system model (3.4)

p(xk+1|z1:k) ≈
1

N

N∑

l=1

δ(xk+1 − xl
k+1) (B.3)

If the transition density of the state p(xk+1|xk) is chosen as the importance

density function[29], then the weights at time k + 1 are given by

ωl
k+1 ∝ ωl

kp(zk+1|xl
k+1) (B.4)
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Since re-sampling has been taken at time k, we have ωl
k = 1/N, ∀l. This yields

ωl
k+1 ∝ p(zk+1|xl

k+1) (B.5)

More specifically, the normalized weights are

ωl
k+1 =

p(zk+1|xl
k+1)∑N

l=1 p(zk+1|xl
k+1)

(B.6)

Then the posterior PDF at time k + 1 can be approximated by

p(x0:k+1|z1:k+1) ≈
N∑

l=1

ωl
k+1δ(x0:k+1 − xl

0:k+1) (B.7)

The second PDF in (B.1) involves an integral

p(zk+1|z1:k) =
∫

p(zk+1|xk+1)p(xk+1|z1:k)dxk+1 (B.8)

Substitution of (B.3) into (B.8) yields

p(zk+1|z1:k) ≈
1

N

N∑

l=1

p(zk+1|xl
k+1) (B.9)

Further substituting (B.6), (B.7), and (B.9) into (B.1) yields

p(x0:k+1, zk+1|z1:k) (B.10)

≈ 1

N

N∑

l=1

δ(x0:k+1 − xl
0:k+1)p(zk+1|xl

k+1)

Note that the choice of transition density as the importance function is only

used as a tool to derive the particle-filter version of the conditional PCRLB. For

the purpose of state estimation, any appropriate importance density function can

be chosen for the particle filter.
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Appendix C

Approximation of B
22,b
k by

Particle Filters in Chapter 3

Section 3.4.2

If the measurement noise is additive Gaussian noise, the likelihood function can

be written as follows

p(zk|xk) =
1

(2π)
nz
2 |Rk|

1
2

(C.1)

× exp

{
−1

2
[zk − hk(xk)]

TR−1
k [zk − hk(xk)]

}

where nz is the dimension of the measurement vector zk. Taking the logarithm

of the likelihood function, we have

− log p(zk|xk) = c0 +
1

2
(zk − hk(xk))

TR−1
k (zk − hk(xk))

where c0 denotes a constant independent of xk and zk. Then the first and second-

order partial derivatives of log p(zk|xk) can be derived respectively as follows

∇xk
log p(zk|xk) = [∇xk

hk(xk)]R
−1
k (zk − hk(xk)) (C.2)
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−∆xk
xk

log p(zk|xk) (C.3)

= [∇xk
hk(xk)]R

−1
k [∇T

xk
hk(xk)]−∆xk

xk
hk(xk)Σ̃

−1
vk
Υ22,b

k

where

Σ̃−1
vk

=




R−1
k 0 . . . 0

0 R−1
k 0

...
... 0

. . . 0

0 . . . 0 R−1
k




(nxnz)×(nxnz)

(C.4)

and

Υ22,b
k =




zk − hk(xk) . . . 0
...

. . . 0

0 0 zk − hk(xk)




(nxnz)×nx

(C.5)

Now with (B.10) and (C.3), we have

B22,b
k = Epc

k+1
{−∆xk+1

xk+1
logp(zk+1|xk+1)}

≈ 1

N

N∑

l=1

∇xk+1
h(xk+1)R

−1
k+1∇T

xk+1
h(xk+1)

∣∣∣
xk+1=xl

k+1

(C.6)

where the identity

Ep(zk+1|xk+1){Υ22,b
k+1} = 0 (C.7)

has been used.
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