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ABSTRACT

In this dissertation, a set of general purpose single-field finite-difference time-domain
updating equations for solving electromagnetic problems is derived. The formulation uses a
single-field expression for full-wave solution. This formulation can provide numerical results
similar to those obtained using the traditional formulation with less required computer resources.

Traditional finite-difference time-domain updating equations are based on Maxwell's curl
equations whereas the single-field updating equations used here are based on the vector wave
equation. General formulations are derived for normal and oblique incidence plane wave cases
for linear, isotropic, homogeneous and non-dispersive as well as dispersive media.

To compare the single-field updating equations with the traditional ones, two-
dimensional transverse magnetic, two-dimensional transverse electric and one-dimensional
electromagnetic problems are solved. Fields generated by a current sheet and a filament electric
current are calculated for one and two-dimensional formulations, respectively. Performance
analyses of the single—field formulation in terms of CPU time, memory requirement, stability,
dispersion, and accuracy are presented. Based on the simulations of several two-dimensional
problems excited by a filament of electric current, it was observed that the single-field method is
more efficient than the traditional one in terms of speed and memory requirements.

One scattering problem consisting of three infinitely long dielectric cylinders excited by
an obliguely incident plane wave and another scattering problem consisting of a point source
exciting a dispersive sphere, utilizing Lorentz-Drude model, are also formulated and analyzed.
The numerical results obtained confirmed the validity and efficiency of the single—field

formulations.
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1. INTRODUCTION

1.1. Finite-Difference Time-Domain (FDTD) Method

The first paper on FDTD was published in 1966 by Kane Yee [1]. Though Yee was
the first person to develop the algorithm, the term “finite-difference time-domain™ and its
acronym “FDTD” were coined by Allen Taflove in 1980 [2]. The correct numerical stability
criterion for Yee’s algorithm was determined by Taflove and Brodwin; they also reported the
first sinusoidal steady-state FDTD solutions of two- and three-dimensional electromagnetic
wave interactions with material structures [3]. In 1981, Mur published the first numerically
stable, second-order accurate, absorbing boundary condition (ABC) for Yee’s grid [4].
Thanks to the improvements in computational power, interest in FDTD solution of
Maxwell’s equations has increased almost exponentially since 1980s. FDTD is and will
likely remain one of the dominant computational electrodynamics techniques due to its
simple and versatile nature as well as its ability to utilize developments in computer hardware
and software architecture.

Yee's insight was to choose a geometry for spatially sampling the electric and
magnetic field vector components which robustly represents both the differential and integral
forms of Maxwell's equations [2]. The technique divides the problem geometry into spatial
grids as shown in Figure 1.1 where electric and magnetic field components are placed at
certain discrete positions in space and it solves Maxwell's equations in time-domain at
discrete time instances [5]. Yee used an electric field (E) grid, which was offset from the
magnetic field (H) grid in time as well as space, to derive updating equations that are used to

calculate present values of field by using the past values throughout the entire computational



domain. The updating equations march E and H fields in a leap-frog fashion and move
forward in time.

The starting point for the construction of the traditional FDTD algorithm is Maxwell's
time-domain curl equations. The vector form of Maxwell's curl equations is decomposed into

six scalar equations for three-dimensional space:

0E, 1 9H, OH

ot e dy 0z 0°Ex = Jix) (1.1)
0Ey 1(0H, 0H,
Fi z( 9z ox O by ‘fl»y) (1.2)
0E, 1 0H, 0H,

ot - E( x - ay —0 Ez _]i,z) (13)
0H, 1 0E, 0E,

ot 1oz "oy 0 M Mix) (1.4)

OHy, 109E, 0B, .. _ .
ot ~ulox oz 0 My Miy) (1.5)

OH, 1 0E, OE,

— — — — m —_— -
ot u-dy Ox 0" H; =M.z (1.6)

where E is the electric field strength in volts per meter, H is the magnetic field strength in
amperes per meter, J; is the impressed electric current density in amperes per square meter,
M; is the impressed magnetic current density in volts per square meter, ¢ is the permittivity
(g0 = 8.854 x 10712) in farads per meter and p is the permeability (u, = 47 X 1077) in
henrys per meter.

The grid based nature of the method makes it memory-hog; therefore the FDTD

problem domain must have the minimum size possible. The computational domain is



bounded with proper absorbing boundary to prevent any reflection from the FDTD problem
domain walls. Accuracy, speed and required memory of the simulation are directly related to
the absorbing boundary used. Various ABCs have been studied to provide better reflection

performance while minimizing the extra memory requirements for the absorbing boundaries

[4,6,7].
— Ax
R 4
cﬂe (i+1,j+1,k+1)
Az
E_(i,j,K)
v
/'4
node (i,j,k)

E, (1.1, ) -

y\x

Fig. 1.1 The Yee-cell [5].

FDTD can be used for the simulation of numerous kinds of electromagnetic
problems: microstrip circuits, waveguide structures, electromagnetic coupling and
propagation. FDTD can also easily handle many complex structures which are either quite

challenging or currently impossible to solve analytically or with other numerical methods.



FDTD gives field solutions for transient problems. Time-domain results can be easily
transformed to frequency domain if necessary; therefore, with one single computation,

simulation results can be obtained over a wide frequency range.

1.2.  Simulation Challenges with FDTD Method

FDTD has some issues to be handled with care such as stability, numerical
dispersion, long computational time and large memory requirement for big size problems.

The stability, hence the accuracy, of the solution is guaranteed by the choice of the
sampling period in time and space i.e., At, Ax, Ay and Az. The numerical stability of the
FDTD method is determined by the Courant-Friedrichs-Lewy (CFL) condition, which simply
requires that a wave cannot be allowed to travel more than one cell size in space during one
time step [8]. The existence of instability exposes itself as the development of divergent
spurious fields in the problem space as the FDTD iterations proceed [5].

Due to the discretized nature of the procedure, error is inevitably introduced into the
solution because of the finite-difference approximation of derivatives of continuous
functions. One of the consequences of this error is the difference between c and the velocity
of propagation of the numerical solution for a wave even in homogenous free space. The
difference between the phase velocity numerically obtained by the FDTD method and the
exact phase velocity is known as numerical dispersion [5]. A general discussion of numerical
stability and dispersion, including the derivation of two and three dimensional numerical
dispersion relations, other factors affecting the numerical dispersion and strategies to reduce

the associated errors, can be found in [2].



1.3. Motivation

Although the FDTD method is widely used in the field of computational
electromagnetics, the long computational time and large memory requirement have always
been a concern with the technique. Extensive research has been done to improve the accuracy
and speed of the method and different ABCs are developed to provide more accurate results
[4,6,7]. An improvement in speed of the method, however, has relied almost solely on
progress in computer hardware and software architecture.

The equivalency of the vector wave equation to the Maxwell's curl equations, hence
the existence of alternative formulations such as scalar and vector wave equations, has been
known. Therefore, they are used as alternative formulations to be utilized with numerical
techniques. Peterson et al. studied the scalar wave equation for the analysis of two-
dimensional inhomogeneous dielectric bodies illuminated by normally-incident fields with
the finite element method (FEM) [9, 10]; he also developed ABCs for the vector wave
equation to be used with FEM [11]. Gedney and Navsariwala provided an unconditionally
stable finite element time-domain solution of the vector wave equation [12]. There is not
much published work investigating these formulations as a complete alternative to the
traditional Yee algorithm; Aoyagi et al. investigated a possible combination of scalar and
vector wave equations as well as a scalar wave equation and Maxwell's equations [13];
however both approaches lose generality since they require partitioning of the problem
domain; Okoniewski discussed the application of the vector wave equation approach to an
inhomogeneous wave-guide structure by using transverse field components [14]. Chu et al.
studied the FDTD modeling of optical guided-wave devices based on the Yee algorithm and

investigated the scalar wave equation and its semivectorial version for the simulation of



optical guided-wave devices, but the vector nature of the electromagnetic waves is either
completely or partially ignored [15-19].

This study investigates a general single-field approach to derive the FDTD updating
equations in a way that only one field component will be calculated and updated inside the
iteration loop to eliminate iteration steps required to update the other field components. The
single-field FDTD is an effort at reduction of FDTD variables in a Yee grid to only the three
components of a single field variable, either E or H, while maintaining the ability to analyze
full vector source injection. Since one field (E or H) can be derived from the other field,
whenever needed, the proposed method, hence, is able to provide simulation results that can
be obtained from traditional FDTD updating equations. The paradigm presented proposes to
use single-field for the simulation. However, it does not impose and is not limited to any
particular field term (E or H), because each field formulation has advantage over the others
for some set of problems. For example, the electric field formulation (E formulation) is the
most advantageous for two-dimensional transverse magnetic (2D TM) problems whereas the
magnetic field formulation (H formulation) is a better choice for two-dimensional transverse
electric (2D TE) problems. From software point of view, however, this does not imply that
the lines of code and memory allocations will be doubled for the proposed technique. Due to
the symmetry in Maxwell's equations and dual relations between the field and the source
terms, one set of equations (E or H) can be transformed into a general purpose simulation
software that can handle either case (TM or TE) with advantage in speed and memory. The
described technique has the ability to analyze a large class of two-dimensional structures

including arbitrary material types (perfect conductors, lossy dielectric and magnetic material



types). In addition to the arbitrary material types, various illumination sources (plane wave
and arbitrarily positioned electric and magnetic sources) can also be handled.

The significance of the improvement in speed and memory usage of the two-
dimensional formulations is that there are many interesting geometries that lend themselves
to a two-dimensional analysis where bodies are assumed to be infinite in the longitudinal
dimension. This includes (i) structures that are long in one dimension and are, thus, naturally
two-dimensional problems, (ii) three-dimensional problems in which significant insight into
the physics of the problem can be gained by a two-dimensional analysis, and (iii) structures
that can be described by their E-plane and H-plane patterns [20].

In this dissertation, a single-field finite-difference time-domain formulation for
electromagnetic simulations is derived and its accuracy and performance are investigated
with various problems. The main focus is on solving two-dimensional electromagnetic
problems with the presented formulation as the single-field formulation shows obvious
advantage over the traditional one for two-dimensional problems.

In Chapter 2, single-field finite-difference time-domain updating equations are
derived for linear, homogeneous, isotropic and nondispersive media. In Chapter 3, one-
dimensional updating equations are derived and their performance is analyzed with an
example. Chapter 4 presents the derivation and various analyses e.g., accuracy, speed, etc. for
the two-dimensional single-field formulation. Chapter 5 has a detailed investigation of the
single-field formulation for electromagnetic problems in the case of oblique plane wave
incidence, and Chapter 6 includes the derivation and the numerical validation of single-field

FDTD updating equations for dispersive media. Chapter 7 concludes the dissertation.



2. SINGLE-FIELD FDTD UPDATING EQUATIONS

Characteristic behavior of electromagnetic fields can be specified by constructing an

FDTD algorithm of Maxwell's time-domain equations. For linear, isotropic and

nondispersive media; starting with Maxwell's curl equations, one can obtain a vector wave

equation and solve it as scalar equations for its Cartesian coordinates.

oH -
VXE:_ME_(Mi-FO- H)

OE
V><H=£E+(]i+aeE)

Taking the curl of (2.1), we have:

0H
V X VxE=—uE—(Mi+amH)

OH
VxVsz—quE—VxMi—am(VxH)

0
VxVxE=—ME(VXH)—VxMi—am(VxH)
Substituting (2.2) into (2.5)

0 ( OE . m( OE .
VxVsz—ua(s§+(li+a E))—VxMi—a (£E+Ui+a E))

Using the following vector identity

(2.1)

2.2)

(2.3)

(2.4)

(2.5)

(2.6)



VXVXE=V(V-E)-V?E 2.7)
Rearranging the terms in (2.6), one can obtain a vector wave equation as

V2E —V(V-E) (2.8)

e . o\ OF 0°E - ]
= 0M0°E + (uo® + o )E+M£F+7XM1-+O' ]i+/1§

To solve (2.8) with finite-difference time-domain method, we have to decompose it into its
Cartesian components. The following three sections will detail the FDTD single-field

formulation for a three dimensional computational domain.

2.1. Derivation of the Updating Equation for the x Component

Cartesian component of (2.8) in x direction can be written as

VZEx - (‘7(‘7 ) E))x

OE, 0%E, (0M;, O0M,, (2.9)
= o™Mo®Ey + (uo® + ea™) 5t + ue FYS + < 3y oz
a]i,x

0°Ey 0By 0°E (0°E, 92E, | OEs
0x*  dy?  0z? 0x?>  0xdy 0x0z

J0E 0%E aM; dM;
=0Mm0%E, + (ua® + ea™) atx + ue atzx + < =

Vi
ot

2.10
dy 0z ) (2.10)

+ Gm]i,x +u
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0%E, N 0%E, B 0%E, B 0%E,
dy? = 0z? 0xdy 0x0z

J0E, 0%E, (0M;, O0M;,
=0Mm0°E, + (uo€ + eac™) 5t + ue 72 +< 3y -3, (2.11)
a];
+ O-m]i,x + M altjx

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (2.11) at the corresponding electric field node, i.e. Ex. The

time derivatives are evaluated at the n™ time step; therefore:

OE,(i,j k) _ Ex*(i,j, k) —Ex~'(i.j. k)

2.12

ot 2At (212

0%Ex(i,j,k)  EX*'(i,j,k) — 2E¢(i,j, k) + Ex7'(i,j, k) (2.13)
otz (At)2 '

a]l,x(ll];k) =]l7',l;1(l’]‘k)_]l7:l;1(l‘],k) (214)

ot 2At

0%Ex(i,j,k) EX(i,j+1,k) —2E(i,j,k) + EX(i,j — 1,k) (2.15)
ay? (8y)? '

0%Ex(i,j,k) EX(i,j,k+1) —2EX(i,j,k) + EX(i,j,k — 1) (2.16)
9z2 (Az)? '

For the other electric field components, we have to consider their positions in the Yee-cell [1]

as shown in Figures 2.1 and 2.2.



‘ ZV Ey(i.j.K)
X

11

Ex(i.j.K)

Ey(i+1,j,K)

Fig. 2.1 The positions of E, field components with respect to E, in the Yee-cell.

2.17
3 Ay (2.17)
.. nes 1N s
0E,(i,j, k) _ EZ(+1,j,k) —E}(i,j, k) (2.18)
dx Ax
0%E,(i,j, k) Ep(i+1,j,k)—EjGi+1,j—1,k)—E}@i,j, k) +E}@,j—1,k)
= (2.19)
dxdy AxAy
Y . Y \
Z EZ (IaLk) EZ (|+1’Lk)
A
X =
Ex (i,),k)
Fig. 2.2 The positions of E, field components with respect to E in the Yee-cell.
.. nes 1N phes
dE,(i,j, k) _ Eri+1,j,k)—EXGijk) (2.20)
dx Ax
.. nei i LN BN ;D
OF,(i,j, k) _ EP(i,j,k) = EZ(irj,k — 1) (2.21)

0z

Az
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0°E,(i,j,k) EF(i+1,j,k)—E}(i+1j,k—1)—E}QQjk)+E}ijk—1)

(2.22)
0x0z AxAz

The spatial derivatives of the magnetic sources are determined according to their positions in

the Yee-cell as shown in Figures 2.3 and 2.4.

: Ay il

O

Ex(i,j:,li)

Gk

Fig. 2.3 The positions of My with respect to Ey in the Yee-cell.

2.23
0z Az ( )
z M; (i,j,K)
A U
X -

Ex(ij.K)

" M, (i,j-1,K)

Fig. 2.4 The positions of M, with respect to Ey in the Yee-cell.
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oM, ,(i,j,k) _ M,(,j, k) — M, (6,j — 1,k)

2.24
5 5 (2.24)

Inserting (2.12)-(2.24) into (2.11), we have

EMGi,j+ 1,k) — 2E7(i,j, k) + EP(i,j — 1, k)
(Ay)?

E™(i,j, k + 1) — 2E2(i,j, k) + E™(i,j, k — 1)
i (82)?

Er(i+1,j,k) — ER(i+ 1,5 — 1,k) — ER(i,j, k) + EX(i,j — 1,k)
- AxAy

Er(Gi+1,j,k) —ErGi+1,j,k —1) —E*(i,j, k) + EF(i, j, k — 1)
B AxAz
EX*1(i,j, k) — EX (i, j, k)

20t

(2.25)

=o0Mmo®E}(i,j, k) + (uo® +ea™)

EP*Y(i,j, k) — 2ER(i,j, k) + EF~1(i,j, k)
+ ue

(At)?
4 M{‘Z(i,j, k) — M{_’Z(i,j -1,k B Ml?_“y(i,j, k) — M{}y(i,j,k -1
Ay Az
TG k) — JE MG k)

+ 0™ (), k) + AL

We can simplify the updating equation for Ex as
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EP*1(i,j, k) = CEE™ (i, j, k) [EP (i, j, k)] + CE2™ (i, j, k) [EF2 (i, j, k)]

where

CEN (i j k) = Cy(iyj, k) (

+C™M (0, K)ERG,j + 1,k) + ER(i,j — 1, k)]

+ CSM (L1, ) [ERGL ), k + 1) + ER(i,j, k — 1]
+ Coy™ (4 [ERG+1,j,k) —ERG+1,j — 1,k) — E}(i, j, k)
+E}i,j— 1,k)]
+CoEE (i IERG+1,),k) — ERGi+1,j,k — 1) — ERGi,j k) (&26)
+EF (i, 4,k — D]+ C ™ (0, IME L, j, k) — ME (i, ) — 1, k)]
+ Co ™ (1, ), k)M (i, j, k) — M2Q, j, k — 1)]

+ CLM (i g, R (g, R
+ CLE g UG k) — I () R

2A¢?
L, ] = - 2.27
Cx(io)i ) At(uo€ + eo™) + 2ue (2:27)

2 2 2ue
@) @) (BD?

+ amae> (2.28)

CEEM (i, k) = Cy(i, )i k) < - (“ ae;;:am)) (2.29)
CE™ 0ik) = €0, (s (2:30)

Cox (1, ), k) = —Cy (i, ], )((Aiy) (2.31)
™ @) = i 0 () 03
CEM (i), k) = Ce(i, ],k)( 1AZ> (2.33)
G @) = €0 (3) 234
CI™2 (i j k) = —Cyo (i, j, ) (i) (2.35)
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CIEM(ij, k) = Cu(iyj, k) (a™) (2.36)
jxt . . . .. K
CHA ) = € b (557) (2.37)

2.2. Derivation of the Updating Equation for the y Component

Cartesian component of (2.8) in y direction can be written as

V2E, — (V(V- E))y

aEy azEy + (0Ml-,x OML-,Z>

=o™Mo®E, + (uo® + eam)ﬁ + ue FYS 7 ox (2.38)
a]i,y
+ Um]i,y + MW
0%E, N 0%E, N 0%E, _ 0%E, N 0%E, N 02%E,
0x? = 0y? 0z dxdy dy? 0dyoz

JE 0°E oM; dM;
= ocMoCE e m Yy Yy ( Lx er> (239)
c™0°Ey + (uo® + o )at + ue 3 + 9 %
)iy

Jt

+ O-m]i,y +u

0°Ey  0’By 0’E, 0%
0x? = 0z* O0xdy 0yoz

oE, azEy oM;, O0M;, 2 40
=o™Mo®E, + (uo® + eam)ﬁ-l— He— + ( % ox ) (2.40)
a]i,y

T iyt

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (2.40) at the corresponding electric field node, i.e. Ey. The

time derivatives are evaluated at the n™ time step; therefore:
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0Ey(i,j, k) _ Ey*'(ij.k) — B} (0), k)

2.41
ot 2At ( )
02Ey(i,j,k) _ EF*i(ij, k) — 2E3 (i j, k) + EF71(0,j, k) (2.42)
atZ - (At)z .
iy (i, k) _ TG k) = JI5 i ) (243)
ot N 2At
0?Ey(i,j, k) _ Ej(i+1,)j,k) — 2B} (i) k) + Ej (i — 1,j,k) (2.44)
0 x2 (Ax)?
azEy(i,j; k) _ E;l(i,j, k+1) - ZE;}(l',j, k) + E;}(i;j, k —1) (2.45)

072 (Az)?

For the other electric field components we have to consider their positions in the Yee-cell as

shown in Figures 2.5 and 2.6.

7 Ex (i,j+1,k)
‘ % E, (i) g
X .
N

Fig. 2.5 The positions of E, field components with respect to E, in the Yee-cell.

2.46
dx Ax ( )

ay Ay

(2.47)
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0?Ey(i,j,k)  Ex(i,j+1,k)—ER(i—1j+1,k)—EX(i,j k) + Ex(i—1,j,k)

2.48
dxdy AxAy (249)
y
1 E. (i,j+1,k)
Z E. (i,j,k)
Yy ..
‘é' Ey (i,,K)
X
Fig. 2.6 The positions of E;, field components with respect to Ey in the Yee-cell.
0E,(i,j, k) E}(G,j+1,k)—E}(,j k
.. Rl i LN BN 5 b
0E, (L) k) _EZ (L) k) —EZ(Ljk—1) (2.50)
0z Az
0%E,(i,j, k) B+ LE)-EF(j+ Lk—1) - EX(L ), k) + EF () k— 1) (251)

0z0y AyAz

The spatial derivatives of the magnetic sources are determined according to their positions in

the Yee cell as shown in Figures 2.7 and 2.8.
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MX I’j!k)
z -
‘ tv ' .
! Ey (i,j,k)
X :
—
Ile (I:!J’k-l)

Fig. 2.7 The positions of M, with respect to Ey in the Yee-cell.

My (irj k) MPGoj, k) — MP(ij ke — 1) (252)
0z N Az
Z
E, (i.j.k
‘ S .
X My (i-1,j,k) M, (1,],K)

Fig. 2.8 The positions of M, with respect to E, in the Yee-cell.

M, (iji k) _ M7, Gij, k) — M7, (i — 1), k) (2.53)
dx Ax

Inserting (2.41)-(2.53) into (2.40), we have
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EN(i+1,j,k) — 2E}(i,j, k) + EX(i — 1,j,k)
(Ax)?

EN(i,j, k +1) — 2E}(i,j, k) + EZ(i,j, k — 1)
¥ (82)?

EPGi,j+1,k) —Er(Gi—1,j+ 1,k) — E*(i,j, k) + E*(i — 1,j, k)
B AxAy

ErGi,j+1,k) — EP(i,j + 1,k — 1) — E*(i,j, k) + E*(i, j, k — 1)
- AyAz
Ey*(i,j, k) — EJ~1(i, ), k)

Y

(2.54)

= oMo Ey(i,j, k) + (uo® + ea™)
EN*1(i,j, k) — 2ER(i, j, k) + EF1(i, j, k)
’ (412
N M{fx(i,j, k) — M{fx(i,j, k—-1) 3 M{fz(i,j, k) — M[,‘Z(i —-1,j,k)
Az Ax
Ji G g k) = 15 (g, k)
2At

+u

+o™iy @0, k) +

We can simplify the updating equation for E, as

E}13i,j k) = €2 (i j [ER G, k)] + €5 (g, IO [ER 1 (o, k)

+ COM (6, R)[ERG +1,),k) + EFGE— 1,j, k)]

+ CoY ™ IOER (g ke + 1) + ER(ij k = 1)]

+ 0oy @ IOLER (6] + 100 = Y= L) + 140) = EF (6,10
+EMi—1,),k)]

+ CEEMYA (L, K)ERGL ) + 1,6 — ERGj + 1k — 1) — EZ(i,j, k)
+EF(i,j, k — D]+ Coy ™ j, K [ME G ji, k) = ME (), k = 1)]
+ CP (0, 4, k) [ ML G j, k) — M (i — 1., k)]

+ C O K]

+ C G O G k) = T8, )]

(2.55)

where
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2(At)?

Cy(jile) = = At(uoe€ + ea™) + 2ue (2.56)
e n .. 2 2 2,1,18 m_e
Y, k) = Cy (i, k) ((Ax)z R G ) (2.57)
ceym-1 ue (uo® + ea™)
o (L) k) =Gy, J,k)<(At)2— At ) (2.58)
e nx 1
S k) = —Cy (i), ) (( B (2.59)
1
CEM (i, j, k) = —Cy (i, )((Az)z) (2.60)
1
exnxy( i,j, k)= C, (i,j, k) (AxAy) (2.61)
1
eznyz(l 7, k)=C (l J, k) (AyAz) (2.62)
1
Coy "2 (1, ), k) = Cy(i, ), k) (E) (2.63)
1
CB (k) = =Cy (0,10 (1) (2.64)
CL™(i,j k) = €y (i, j, k) (a™) (2.65)
CB1 0 = 600,10 (552) (2.66)

2.3. Derivation of the Updating Equation for the z Component

Cartesian component of (2.8) in z direction can be written as



V’E, — (V(V-E)).
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OM; ,

0E 0%E oM;
=oMo®E, + (uo® + ea™) atZ + ue atzz < a;y
a;,
+ O-m]i,Z + M altz

0°E, 0%E, 0%E, (0°E, O0°E, 0%E,
+ + — + +
d0x?  0y?  0z? 0x0z 0ydz  0z?

ay' ) (2.67)

0
=oMo®E, + (uo® + ea™) 5t + ue

o0t2 0x

dy

2 ; .
EZ a EZ + <6Ml,y . aMl’x> (2.68)

dJ;
+0"i, + M%
92E, | 0’E, 0°E, 9°E,
dx?>  0y? 0x0z 0yoz

0E,  0%E, (oM, oM,
= oMgCE e m Yo , 2.69
oc™o®E, + (uo€ + o )at + ue 72 <6x 3y (2.69)
dJ;
+ 0™ iz +

To derive the FDTD updating equations for the electric fields, we have to evaluate all the

spatial derivatives in equations (2.69) at the corresponding electric field node, i.e. E,. The

time derivatives are evaluated at the n™ time step; therefore:

0E,(i,j, k) _ E7*1(ij, k) — EZ7 (i), k)

ot 2At
0%E,(i,j, k) _ EF*(i,j, k) — 2E7(i,j, k) + EF~*(i,j, k)
at? (At)?
)i (i, k) JI g k) = T (g k)
ot B 2At

0%E,(i,j, k) EPGi+1,j,k) — 2EP(i,j,k) + EF(i — 1, k)

dx? (Ax)?

(2.70)

(2.71)

(2.72)

(2.73)
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0°E,(i,j, k) EF(,j+1k)—2E7(j, k) +EF(i,j—1k)

2.74
dy? (Ay)? (@14

For the other electric field components, we have to consider their positions in the Yee-cell as

shown in Figures 2.9 and 2.10.

E, (i,j,k+1)
2 E, Gkl
R
X - .:
Ex (i,J,K)

Fig. 2.9 The positions of E field components with respect to E; in the Yee-cell.

O0E (i,j, k)  Ex(i,j,k+1)—Ey(ij k)

2.75
0z Az &7

ox Ax
02E,(i,j,k) ER(i,j,k+1)—EZ(i—1,j,k+1) — EX(i,j, k) + EZ(i — 1,j, k) 2.77)

0x0z B AxAz
Ey (|1J!k+1)
. y
z E, (i,j,K)

‘gy Ey (i.K)
X

Fig. 2.10 The positions of E, field components with respect to E; in the Yee-cell.
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0E,(i,j, k) _ Ey(ij,k) = B3 (i,j = LK)

2.78
3y Ay (2.78)
Oy (i,j, k)  E}(i,j k +1) — E}(i,j. k) (2.79)
0z B Az
92E,, (i, ], k) _EpGjk+1) — EpGij k) — B} (i) — Lk + 1) + E}(i,j — LK) (2:80)

0yoz AyAz

The spatial derivatives of the magnetic sources are determined according to their positions in

the Yee cell as shown in Figures 2.11 and 2.12.

MyG-1ik) | [MyGik)
. ey B S

‘[ y E, (i.K)
X

Fig. 2.11 The positions of My with respect to E; in the Yee-cell.

oM, (i), k) My, (i), k) — Mpy, (i — 1,j, k)

2.81
0x Ax ( )
. A
Z EZ (I,j,k) Mx (I,j,k)
‘ :v —_
X

—> My (i,j-1,K)

Fig. 2.12 The positions of My with respect to E; in the Yee-cell.
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M, (i,j, k)  M{(i,j k) — M (i,j — 1,k)

2.82
3y Ay (2.82)
Inserting (2.70)-(2.82) into (2.69), we have
EX}(i+1,j,k)—2E}(,j, k) +E}(i—1,j,k)
(Ax)?
N EPrG,j+1,k) — 2E2(i,j, k) + EF(i,j — 1,k)
(Ay)?
AxAz
EMGi,jk+1) —EPGi,j, k) —ER(i,j— Lk + 1)+ EF(i,j — 1,k) (2.83)
AyAz
E}*(i,j, k) — E} (i), k)

= o™oER(i,j, k) + (uo€ + eo™) =

2At
+ Eg+1(i;jj k) - ZEEL(l,], k) + Eg_l(i;]'; k) + er,ly(l'_]’ k) - Mz:ly(l - 1'j’ k)
He (AD)2 Ax
My (g k) = M () — 1,k) Jo g k) = I (g, k)

- : : +o—m]lr,lz(lr]'k) +u

Ay 2t

We can simplify the updating equation for E, as

EF*(i,j, k) = Cor™ (i, j, K)ER G, k)] + Cor ™ (i ) ER (1 j, )]
+ Cor™ (4 KEFG + 1,4, k) + ER (i — 1,), k)]
+ Co™ (i, KEFGLj + 1, k) + EZ(L,j — 1,K)]
+ CM (L, k) [ER(G, j, k+ 1) —ERG—1,j,k+ 1) — ER(,j, k)
+Ex(i—1,j,k)] (2.84)
+ Coy™ (), K [ERG, j k+ 1) — ERGLj, k) — ERGLj— Lk + 1)
+ER(i,j — LK)+ C ™ (6, k) [MP, (G, j k) — M7, (i = 1,5, )]
+ Co ™ (i, ) [ME G ji k) — MP(ij — 1,K)]
+ 2" g O G )]
+ CL2 g O g k) = JE G, )



where

2(At)?
At(uo® + ea™) + 2ue

CZ(i’j’ k) = -

2 2ue
@0z @y (aD?

Ceezz‘n(i;ji k) = Cz(lr];k)( +0'm0'e>

ezn 1(1 j k) = C, G, ],k)< ue (uc® + eo ))

(At)z - 2At
Ceezz,nx(l ]’k) = —C (l ], k) ((AX)2>
1
eznyO j, k) =—-C,(,J, )( Ay) )
1
CEM(1j,0) = G0 (o)

1
C™ (1, ), k) = C,y(iyj, k) (AyAZ)

1
Co™ 010 = 6,6k (52

1
Cl (1,00 = =G0, (55 )
Cl2(i,j, k) = C,(i,j, k) (6™)

izt e .. u
Cejj,t(l)]l k) = CZ(LIJ' k) (E)

25

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)
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3. ONE-DIMENSIONAL  SINGLE-FIELD FDTD

UPDATING EQUATIONS

For the one-dimensional case, we assume that there is no field variation in z and y
directions, i.e., % = aa—y = 0 and the wave is propagating in the x direction. Based on this

assumption, we can derive one-dimensional single-field FDTD updating equations by
starting with (2.8) and decomposing it into its Cartesian components. Since only plane
waves propagate in this one-dimensional domain and the assumed propagation direction is X,

Ex component is therefore equal to zero.

3.1 Derivation of 1D Updating Equations

3.1.1. 1D Updating Equation for the y Component

Cartesian component of (2.8) in y direction can be written as

VzEy - (V(V-E)),

= o™M°E, + (uo® + m)aﬂ_k aZEy_aMi'Z_l_ mj.
=00 Ey + (uo® +eo™) o=+ ue— 5z T iy (3.1)
a]i,y
MY
0%E 0E 0%E, OM; dJ;
any = o™M0®E, + (uo® + eo™) a_ty + ue atzy - le + 0™y + ,u% (3.2)
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equations (3.2) at the corresponding electric field node, i.e. Ey. The time

derivatives are evaluated at the n™ time step; therefore:

0E,(i) EF*i(i) — EF (D)

ot 2At 3
0%E, (D)  EPFL() — 2ER() + EF1(D) (3.4)
3z - @07 |
iy _Jiy '@ —Ji @ (3.5)
ot 2At
0’E,(i) Ep(i+1)—-2E}()+E}(i—1) (3.6)

oxz (Ax)?

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly as shown in Figure 3.1.
b
— X M, (i-1) M, (i)

Fig. 3.1 The positions of M, with respect to E, in the Yee-cell.

oM, (1) _ M, (D) — MP,(i—1)

3.7
dx Ax 37)

Inserting (3.3)-(3.7) into (3.2), we have
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EN(i+1) — 2ER(i) + EX(i — 1)
(Ax)?

+1(; —1,;
= oMo Ey(i) + (uo® + ea™) ETO-E O

2At (3.8)
E;}“(i) - ZEJT}(L') + E}}‘l(i) M{}Z(i) — M{}Z(i - 1) ’
+ ue (At)2 - A
JEFE@ = 57N

+ o™iy, +u At

We can simplify the updating equation for E, as

EFI() = CYMW[EFD] + ¢ OER ()]

ey
+Co M DERGE+ 1) + Ef(i — 1)]
mznxi . n (: n /: jym N (39)
+ Coy ™M [ME, (D) = ME, G~ D]+ M@, 0]
+C OO -5 0]
where
N 2(At)?
GO =~ At(uoe + so™) + 2ue (3.10)
2 2
Cf;,"n(i) =C, (D) (_(Ax)z — (A'l:; + amae) (3.11)
Coy™ (D) = €, () <( A“ :)2 _lue 221—86 )> (3.12)
eynx - . 1
CE™ (i) = —C, (7) (W> (3.13)
1
CIEmx (i) = —C, (i) (E) (3.14)
o™ () = ¢, (D™ (3.15)
B =60 (55) (3.16)
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3.1.2. 1D Updating Equation for the z Component

Cartesian component of (2.8) in z direction can be written as

VZEz - (V(V ' E))z

= 0™0°E, + (uo€ + o ) +us 362 -+ 0 T O iz (3.17)
a.]lZ
MY
2 = gMG®E, + (uo€ + €o Z+—l’y+0m]iz+,u iz (3.18)

0x? ot2 ox ot

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equations (3.18) at the corresponding electric field node, i.e. E,. The

time derivatives are evaluated at the n™ time step; therefore:

0E,() _ E7"'() —E; ()

ac 20t 19
02E,(i) _ EF*'() — 2E}() + EF (D) (3.20)
a2 (At)? |
0)i () _Jiz @ —Ji; ' (@) (3.21)
ot 2At
0%E, (1) E}@i+1)—2E})+EF(i—1) (3.22)

oxz (Ax)?

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly as shown in Figure 3.2.
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Fig. 3.2 The positions of My with respect to E; in the Yee-cell.

oM, (i) _ M, (D) — M7, (i — 1)

3.23
0x Ax ( )

Inserting (3.19)-(3.23) into (3.18), we have

Er(i+ 1) — 2E7(0) + ER(i — 1)
(Ax)?

En+1 i _En—l i
= 0™MERr(i) + (uo® + eo™) = ( )ZAt 20
EZ*1(0) — 2E}() + EZ (D) N M, () — M, (- 1)
(At)? Ax
JE @ =IO
2At

(3.24)

+o™, (O +p

We can simplify the updating equation for E; as

EPML() = CZMWDIEFD] + C2™ T DER ()]
+Co, M WIEFG+ D)+ EF(i— 1)]

+ ™M O [ME, @) - ME,( — D] + 2O O]
+ OB -5 W]

(3.25)

where
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- 2(at)?
GO =- At(uc® + ea™) + 2pe (3:26)

2
Coy (1) = C,(D) ((A B (Algz + amaE) (3.27)
Co2m (i) = C,(i )<(A:)2 (ko ZZ:G )> (3.28)
Cor " (1) = —=C, (1) (( o )2) (3.29)
CTYME () = C (z)( ) (3.30)
" (@) = C,(D)(e™) (3.31)
cit =60 (55) (332)

3.2 Performance Analysis

Next, we examine a one-dimensional electromagnetic problem, as given in [5]. The
electric field components, due to a z-directed electric current sheet placed at the center of a
problem space filled with air between two parallel perfectly electric conducting (PEC) plates
extending to infinity in y and z directions, are computed.

Figure 3.3 shows the problem geometry along with field distributions at t = 0.3 ns.
The current sheet placed at the center, namely x = 0.5 m, generates two waves in both sides
in opposite directions: solid line represents the electric field whereas corresponding magnetic
field multiplied by the free space characteristic impedance is depicted as the dashed line.
PECs are located at x = 0 and x = 1m. Electric field values are calculated based on single-
field FDTD formulation along x axis. In addition, magnetic field component, namely Hy, is

also calculated directly from electric field values for visualization purpose.
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[V/m]

Fig. 3.3 One-dimensional problem configuration [5].

Figure 3.4 shows the comparison of the CPU times required by the single-field and the
traditional formulations for different sizes of one-dimensional computational domain. There
is approximately 20% improvement in the simulation speed. This decrease in simulation time
is because the single-field formulation has three floating-point multiplication operations per
node (FLMOPN) in the FDTD loop as opposed to the traditional one having four as shown in

Table 3.1.
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250 T T ]
| | | | |
--- Single-field /
200 — Traditional
215 /
o /
e s
= //
o 100 /
O S
v
50 /ﬁ/’
-mn/—
oot 0.01 1

0.1
Number of cells in FDTD domain [millions]

Fig. 3.4 Comparison of CPU time performances in 1D.

Required FLMOPN and the number of memory allocations for field terms per node (MAFTn)
are tabulated in Table 3.1. The traditional formulation requires 20% more memory than the
single-field formulation does. With these results, we can conclude that the single-field
formulation is slightly advantageous over the traditional one for one-dimensional

computational domains.

Table 3.1: The required FLMOPNn and MAFTn for 1D case.

Formulations # FLMOPnN # MAFTn
Single-Field 3 3 coefficients + 2 fields = 5
Traditional 4 3 coefficients + 3 fields = 6

Improvement % 25 % 17
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4. TWO-DIMENSIONAL SINGLE-FIELD FDTD

UPDATING EQUATIONS

For the two-dimensional case, we assume that there is no field variation in the z
direction, i.e., aa_z = 0. Based on this assumption, we can derive two-dimensional single-field

FDTD updating equations by starting with (2.8) and decomposing it to its Cartesian

components.

4.1.  Derivation of 2D Updating Equations

4.1.1. 2D Updating Equation for the x Component

Cartesian component of (2.8) in x direction can be written as

VzEx - (V(V ) E))x

_ oMgeE . e~ OEx 0%E, 0M;, m
=0Mm0°E, + (uo® + €o )W+ue FYS + 3y +0™ix 4.1)
a]ix
n ,
H ot
0%E, N 0’E; (0%Ey N 0%E,
0x? = 0dy? d0x?  0xdy
J0E 0%E, OM,;
= O-mO-eEx + (,UO'e + SO'm)a_tx + pue atzx + a;z + Um]i,x (4'2)

a] i,x
Jat

+u
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OBy 0%y _ . .. + (ot 4 eomy 2B 0%E, My,
3y2 “oxay 0 0 Bxt ot tedt) Gt ueGn T, T 0 i 43)
ay; '
+u i x
at

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (4.3) at the corresponding electric field node, i.e. Ex. The time

derivatives are evaluated at the n™ time step; therefore:

. . n+1 . . _ n_l . .

0E,(i,)) _ EXT(,)) — EX (L)) (4.4)

Jat 2At
OE, (i) _ EF1G6)) — 2E20) + BT G) s

atz (At)? '

a]i,x(i'j) =]ir,l;1(i'j) _]ir,lx_l(i'j) (46)

Jat 2At
0%E, (i) _ EPL + 1) — 2B2()) + E2GLJ — 1) wn

dy? (Ay)?

For the y-directed electric field components, we have to consider their positions in the Yee-

cell as shown in Figure 4.1.

2 50 20 S

Ex(i.j)

Fig. 4.1 The positions of E, field components with respect to E, in the Yee-cell.
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0Ey (L)) _ E3(i,)) = B}(i,j — 1)

4.8
3y Ay (4.8)
. s N g
0E,(i,)) _ EZ(i+1,)) —Ey(,j) (4.9)
0x Ax
0%Ey(i,j) Ep(i+1,j) —E}(i+1,j—1)—E}G,j) +E}(i,j— 1) (4.10)

oxdy AxAy

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figure 4.2.

M (i.j)

y 1
2y

T,,/’Exii,j)

M, (i,j-1)

Fig. 4.2 The positions of M, with respect to Ey in the Yee-cell.

Mz (1)) _ MiL (i) = Mi,(ij = 1)

4.11
3y Ay (4.11)

Inserting (4.4) - (4.11) into (4.3), we have



EXG,j+1)—2ERG, )+ EX(G,j—1)
(Ay)?

B EJ(i+1,)—-Ej(i+1,j—1)—E}G,j))+E;(,j—1)

AxAy
Ex*'(i,j) — Ex'(i.))
2At

=oMo®E}(i,j) + (ua® + eac™)
EX*(i,j) — 2E¢ (6, )) + Ex~1(i,))
(At)?
4 M7, @) — ML, — 1)
Ay
N AR (N il (W)
H 20t

+ ue

+ 0™y (0, ))

We can simplify the updating equation for Ex as

EF*(, ) = Co™ U DIEFEN] + Cox™ G NIEF(G, )]
+ Co ™Y (L, OER(Lj + 1) + ER(i,j — 1]
+CYMY W PIERGE+ 1, ) —EF(i+1,j— 1) — ERGL, J)
+EJ(i,j — D]+ Co ™ (L, D[ME, G ) — MPLGLj — 1)
+ MDD + CREF DU =T )]

where

2(At)?
At(uo® + ea™) + 2ue

Cx (i'j) =
2 2ue
(Ay)?  (At)?

1. . o ne  (uo®+ea™)
Cee}i'c’n 1(1']) = Cx(ll]) <(At)2 - ZAt

CE™ ) = G ) +omo?)

CEE™Y (1, ) = —Ce (i, ) (@)
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



() = 60 ()

Co "™ (i,)) = Cy (11)( )
CLM6, ) = Co(i, ) (6™
CL ) = € )) (5=

ZAt)

4.1.2. 2D Updating Equation for the y Component

Cartesian component of (2.8) in y direction can be written as

VZE, — (V(V- E)),

0E 0°%E oM; oM;
= oMg€E e my__Y y ( Lx er>
c™0°Ey + (uo® + o )at + ue FYS + P %
iy
62Ey+62Ey_ 62Ex+62Ey
d0x?>  dy? 0xdy  0dy?
. _O0E,  9%E, oM,
=0o™M0o®E, + (uo® + co ) +u T —W+a Tty
a]ty
ta ot
9%E, 02E, . _OE,  0%E, oM;,
Fp _axa =o"0o°E, + (uo® + eo ) +,u 2 ox +a™J;
+u a]ly

Jt
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(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.24)
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equations (4.24) at the corresponding electric field node, i.e. Ey. The

time derivatives are evaluated at the n™ time step; therefore:

0Ey(i,)) _ Ey*™ (i) — By~ (i.) (4.25)
ot 2At
0%Ey(i,)) _ By, )) — 2E5 (i) + EyT (L)) (4.26)
otz (At)? |
iy (b)) T ) =i ) (427)
ot 2At

0°E,(i,)) Ep(i+1,j) —2E}(i,j) + E}(i—1,))
ox2 (Ax)?

(4.28)

For the x-directed electric field components, we have to consider their positions in the Yee-

cell, as shown in Figure 4.3.

Ex(i,j+1)

y Ey<i,j>// >
L

Ex (i.J)

Fig. 4.3 The positions of E, field components with respect to E, in the Yee-cell.

OB (L)) _Ex(L))—EX(i-1)) (4.29)
ox Ax

OEx (L)) _ Ex(,j+1) — EX (L))
dy Ay

(4.30)
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02E,(i,j) Ex(,j+1) —Ex(i-1j+1) —EX(, ) +EX(i—1))

= 4.31
d0xdy AxAy (431)

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figure 4.4.

Fig. 4.4 The positions of M, with respect to E, in the Yee-cell.

oMz () _ Mz (@) — Mz~ 1)) (4.32)
0x Ax

Inserting (4.25) - (4.32) into (4.24), we have

EPGi+1,7) — 2E2(i,)) + EX(i— 1,))

(Ax)?
Ex(i,j+1)—-Ex(i—1j+1)—EY(,j)+ExX(i—1))
AxAy
En+1 ij _En—l ij
_ oM, (i, ]) + (uo® + eom) 2D B () (4.33)

2At
ST Z2EY @)+ EYTIG))  ME(L) — MG 1)
(At)z Ax
e ()R il ()
2At

+0™y, () +u

We can simplify the updating equation for E, as



EFT(i,)) = Co "G D[ERGN] + €5 G D[EF )]
+Co ™ LPD[EFGE+ 1, ) + EF(i— 1,))]
+Co Y LPIEFGj+ 1) —ER(i—1,j + 1) - E"(i )
+ EF(i— L)1+ €™ G DIME, G ) — MPL(E— 1, )]
+ OGN GN] + cé'z'tm)[ff;l(u) —szy L@ )]

where
N 2(At)?
GG = - At(uce + ea™) + 2ue
2ue
Coy" (@) = €y (0.J) ((Ax)z @z " "m"e>

eyn 1(l ]) _ C (l ])< ue (,uo-e + So'm)>

(A2 2At
5™ ) = =60 ()
5™ = 60D (s Ay)
e ) = 6, (52
CRM(0 ) = Cy (i, ) (0™

CH (@) = Cy(0,)) (ZM)

4.1.3. 2D Updating Equation for the z Component

Cartesian component of (2.8) in z direction can be written as
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)



V’E, — (V(V-E)).
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ootk + (ot 4+ eom) 2B 4 e OEr (M OMy
=00 kT HoT T E0T) o T HET S 0x dy (4.43)
aJ;
+ O-m]i,Z + M altj_z
0%E, 0°E, . _0E, 0%, (M, OM,
8x2+ay2_a 0°E, + (uo® + €0 )at +.u£at2+<ax — 6y> »
o, (4.44)
my i,z
+O— ]l,Z+:u‘ at

To derive the FDTD updating equations for the electric fields, we have to evaluate all the

spatial derivatives in equation (4.44) at the corresponding electric field node, i.e. E,. The time

derivatives are evaluated at the n™ time step; therefore:

aEz(ilj) _ E;H_l(i'j) - Ezn_l(i'j)

Jt 2At
02E,(i,J) _ E}*'(i,j) — 2E7(i,)) + E}7'(, )
at? (At)?
0)izs (L) _JiF @) = I @)
Jt 2At

0x? (Ax)?

0%E,(i,)) _ERGj+ 1) - 2E7G )+ E7(L— 1)
dy? (Ay)?

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figures 4.5 and 4.6.
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\ Ez (I’J)
L, X ? ..
My (i-1,j) My (i.j)

Fig. 4.5 The positions of My with respect to E; in the Yee-cell.

My, (i,7) M, (L) — M, (i—1,))

4.50
d0x Ax ( )
My (i.J)
) =
X EZ (I!J) I L7
My (i,j-1)
Fig. 4.6 The positions of My with respect to E;, in the Yee-cell.

My (L)) _ M (i) = M (ij — 1) (450

ay Ay

Inserting (4.45)-(4.51) into (4.44), we have



D

EF(i+1,j)—2E7(L, ) +EX({—1,)) N Ep(L,j+1) - 2E7(L,)) +EZ(@, ) —
(Ax)? (Ay)?
En+1 i, En 1 i
=o0MmoCE}(i,j) + (uo€ + ea™) < ])ZAt “))

EF*(i,)) — 2E7 (L)) + E771(0 )
(At)?
by G — M, (- L) MEG)) - ML) —1)
Ax Bl Ay
Ji @) =i )
2At

+ ue

+o™)i () +u

We can simplify the updating equation for E, as

EF*L(i, ) = Co W DIEFG N + Cor™ (L DIEF (0, )]
+ CF™M (L DIEME+ 1)) + ER(i — 1, )]
+Cor™ (L DIERG,J + 1) + EF(i,j — 1)]
+ Co ™, DM, ) — MP, (= 1,))]
+ Coy ™ (i, DM G ) — MBS G — D] + ¢ G DRG]
+ G “(l DS (w)]

where
SN 2(At)?
C(0)) = ~ At(uoe€ + ea™) + 2ue
ezn 2 2ue m e
(l])—C(LJ)((A 2 (Ay)z_(At)Z-I_G a)

1. . o ue  (uo®+eoc™)
Cor™ (i, )) = Cz(l'])<

(A2 2At

(i) = —C,(i, ) (@)

CE™ (1,7) = —C,(3i, j) ((Ai/)z)
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)
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) = ) (52) (4.59)
1
CQWWQJ)=—Q0J%ZQ (4.60)
CZ™Mi, ) = C,(6,))(a™) (4.61)
Clt D) = G (55) (4.62)

4.2. A 2D TM Problem with a Filament Electric Current

A two-dimensional problem is constructed as free space with a z-directed impressed

electric current located at the origin, as depicted in Figure 4.7.

FDTD Domain °E;
Yy
H
e
J;
Liao's ABCs \

Fig. 4.7 2D TM problem configuration.
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The current density has a Gaussian waveform with magnitude of 1 [Amp/m]. Electric
fields generated by the traditional and the single-field formulations are compared in time and
frequency domains; the stability and dispersion analyses are also performed for both. Since
the real benefit of the single-field formulation is the time required to run the simulation and
the required memory size, the two formulations are run for different domain sizes and the
CPU times required to complete the simulation are recorded. CPU time verses domain size is
plotted for both formulations. To get a better insight for the simulation time and memory

usage, required FLMOPN and MAFTn will be tabulated.

4.2.1. Stability Comparison

Stability analysis was conducted by changing the value of discrete time, i.e., At, and
observing the change in the field values generated by the single-field and the traditional 2D
updating equations.

-3
x 10
6 » »

— Single-field

: /\ efild |
3 A

| /A N\

| Sy S

0 20 40 60 80 100 120 140 160 180 200
Time step

abs(Ez) [V/m]

Fig. 4.8 Field comparison for At =2.35 ps.
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Fig. 4.9 Field comparison for At =2.37 ps.

The Courant-Friedrichs-Lewy (CFL) condition [8] requires that the time increment At
be 2.35 ps for a stable result if the space increments in both directions, Ax and Ay, are 1 mm.
Figure 4.8 shows the field comparison of such stable simulation results calculated at point (8,
8) mm in a 20 mm x 20 mm problem domain as shown in Figure 4.7. If we set it to 2.37 ps,
the single-field and the traditional formulations show divergence from optimum field values.
Figure 4.9 shows the divergence in terms of magnitude of the field versus time step. The
single-field formulation provides comparatively less divergent results than the traditional

formulation does, since it requires less numerical computation.



48

4.2.2. Dispersion Analysis

Dispersion is defined as the variation of a propagating wave’s velocity with
frequency. The analysis is done for E, component of the electric field under the assumption

of lossless medium and monochromatic traveling wave solution

E}(i,j k) = Eo e/ (Onitixtxbamhylyly) (4.63)

where k, and k,, are the x and y components of the numerical wavevector; iy, and iy are

space indices. By substituting this field expression into the single-field updating equation for

: n 1 At _ .
E., and using PPW = €= N and —= 0.5, one can obtain

(4.64)
T

1/2
- lz cos <PPW (cos a + sin a)) cos <PPW (cos a — sin a))l}

where PPW is the number of points in wavelength discretization, c, is the numerical velocity,
Ay 1s the numerical wavelength, and « is the angle between the direction of the propagating
wave and the positive x-axis. (4.64) gives the ratio of the velocities or wavelengths as a
function of PPW and «a. A detailed derivation of dispersion analysis procedure for single-
field formulation is given in Appendix A.

Figure 4.10 shows the variation of the normalized numerical phase velocity (c,/ o)

versus points per wavelength discretization (PPW) in two-dimensional FDTD grid.
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Dispersion performance of the single-field formulation shows a characteristic similar to the

traditional formulation as given in [21].

0.99
0.98

0.97 /
0.96 /

0.95

Cn/Co

0'945 10 15 20 25 30 35 40

PPW

Fig. 4.10 Dispersion performance of the single-field formulation.

4.2.3. CPU Time Analysis

Figure 4.11 shows the CPU time the formulations require to complete a simulation of
corresponding size for 1800 time steps with 0.0694% difference in calculated field values. X

axis represents the number of grids used to characterize the problem.
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Fig. 4.11 Comparison of CPU time performances in 2D.

A speed up factor is calculated according to the formula given in (4.65) for different problem

sizes and plotted in Fig. 4.11 for different number of time steps.

Speed up Factor = CPU Time (Traditional) (4.65)
peed up Factor = oy Time (Single — field) '
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Fig. 4.12 Speedup factor in 2D.

The single-field formulation appears to be three times faster than the traditional one for
domain sizes close to three million cells. Higher speed factors are expected for larger
domains as evident from the trend in Figure 4.12. This speed up is because the single-field
formulation has four FLMOPnN inside the FDTD time marching loop as opposed to the
traditional one having seven. The specifications of the computing system used for the

simulations are given in Appendix C.

4.2.4. Memory Usage Analysis

Table 4.1 shows the number of FLMOPN, floating-point addition operation per node
(FLAOPN) and MAFTN. The single-field formulation requires 40% less memory to simulate

the same size problem than the traditional formulation.
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Table 4.1. The required FLMOPN, FLAOPNn and MAFTn for 2D formulations.

Formulations # FLAOPN # FLMOPnN # MAFTn
Single-field 5 4 4 coefficients + 2 fields = 6
Traditional 8 7 7 coefficients + 3 fields = 10

Improvement % 37.5 % 43 % 40

4.3. A 2D TE Problem with a Filament Magnetic Current

A two-dimensional problem is constructed as free space with a z-directed impressed
magnetic current located at the origin. The current density has a Gaussian waveform with
magnitude of 1 [V/m]. Magnetic fields generated by the traditional and the single-field
formulations are compared in time and frequency domains; stability and dispersion analyses
are also performed for both. For the TE problem, H field-based single-field formulation is
used as given in Appendix B. Due to the symmetry in the formulation and duality in the
problem, merits for CPU time, memory requirements, stability and dispersion are the same as
for the TM problem given in section 4.2. Therefore, Figure 4.11 and Figure 4.12, and Table

4.1 show the performance of the single-field formulation for 2D TE problems as well.

4.4. A 2D TM Scattered Field Problem

An infinite line of a constant electric current is placed parallel and in the vicinity of a

circular conducting cylinder of infinite length.
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p-p

(a) (b)

Fig. 4.13 A line source near a circular cylinder. (a) Side view. (b) Top view [22].

We will examine here the scattering of the cylindrical waves by the cylinder for p > p'. The

analytical solution for the total electric field is given in [22] as

E; =Ep =0 (4.66)
c_ P & B o ] e (4.67)
E; = _%HZOO H,” (Bp) []n(ﬁp) - mfln (Bp")| e’ (-9

where p is the distance from the center of the cylinder to the field point, its range is 0.1-1.1
m, p' is the distance from the center of the cylinder to the source point, its value is 0.1 m, ¢
is the azimuth angle of the field point and ¢’ is the azimuth angle of the source point, its
value is 0, a is the radius of the conducting cylinder and its value is 0.01 m. For the
numerical simulation, the spatial and temporal steps used are Ax =1 mm, Ay = 1 mm and At

= 2.2407 ps, respectively. The cylinder is modeled in FDTD domain by stair-casing. For the
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analytical solution two hundred terms are used for the Hankel function summation and the
frequency is set to 1 GHz. Electric field is computed with the single-field and the traditional
formulation at one thousand different spatial points on the x axis in time-domain and
converted to frequency domain to compare with the analytical solution results. Error for
single-field and traditional formulations with respect to the analytical solution is calculated
according to (4.68) and their performances are shown in Figures 4.14 and 4.15. The single-

field and the traditional formulations show similar performance in terms of accuracy.

E — 20 x1 abs(Numerical value — Analytical value) (4.68)
ror = 0810 max (abs(Analytical value)) '
-20
-30\ - :
\ — Single-field
—, -40 --- Traditional
m \
2,
5 -50
(0 \
-60
~—
70 B \/\\
8 0.2 0.4 0.6 08 1 0 0.2 0.4 06 08

The radial distance along x axis [m]

Fig. 4.14 Comparison of the numerical solutions with the analytical solution; magnitude.
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Fig. 4.15 Comparison of the numerical solutions with the analytical solution; phase.

45. A 2D TM Problem with Dielectric and PEC Scatterers

A two-dimensional problem is constructed as free space with a z-directed impressed
electric current located at the origin. The current density has a Gaussian waveform with
magnitude of 1 [V/m]. A dielectric square of size 1 mm with dielectric constant 2.2 is located
at (0.5, 1.5) mm and a square PEC of size 1 mm is located at (-0.5, -1.5) mm. In addition, one
dielectric circular media of radius 1 mm with dielectric constant 2.2 and another circular
media with dielectric constant 3.2, relative permeability 1.4, electric conductivity 0.5, and

magnetic conductivity 0.3 are located at (-2, 1) mm and (2, -1) mm, respectively [5].
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Fig. 4.16 2DTM problem with an electric line current in the presence of objects of different

materials and shapes.

Electric field values sampled at (0.8, 0.8) mm by the traditional and the single-field
formulations are compared in time and frequency domain. Figure 4.17 shows a comparison
between field values calculated by both formulations in time-domain. Figures 4.18 and 4.19
show a comparison of magnitude and phase of the field values in frequency domain,
respectively.

CPU time comparison is also performed for this configuration and the resulting speed
up is the same as the one shown in Fig. 4.11, as expected. This example is of great
significance for the validity of the single-field formulation as it includes non-zero electric

and magnetic conductivity in addition to dielectric and magnetic property in scatterers.
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Fig. 4.17 Time-domain comparison.
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Fig. 4.18 Frequency domain comparison: magnitude.
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Fig. 4.19 Frequency domain comparison: phase.

4.6. 2D Analysis of a Horn Antenna

FDTD solution is produced for a sectoral (2D) PEC horn antenna excited by a
sinusoidal voltage in a TE, computational domain. The computational domain is truncated by
a Liao absorbing boundary condition (ABC). The ABC is introduced to eliminate reflections
from the grid truncation and to simulate outgoing traveling wave propagation in an
unbounded medium. The horn is modeled by setting the necessary FDTD update equation

coefficients to represent the PEC material walls.
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Fig. 4.20 TE; 2D horn antenna configuration in the FDTD computational domain.

Figure 4.20 shows how the horn antenna is modeled for the FDTD method, Ey field excites
the antenna on the excitation plane. The flare section of the horn is staircased to conform
with the Cartesian coordinates used. The simulation is run with the following data: time step
4.23 ps, the frequency of excitation 9.84252 GHz, spatial discretization in x and y 2.5 mm
and the wavelegth 30.5 m [23]. This application is a good example of structures that can be
characterized by their principal plane patterns. This 2D analysis of the geometry gives
substantial engineering insight to the behavior of the antenna with minimum memory

requirement and computational time.



60

y Coordinate Index

0 20 40 60 80 100
x Coordinate Index

Fig. 4.21 E, field at 0.5 ns: The single-field formulation.

The y component of the radiated electric field is given for visual comparison between the
single-field and the traditional formulations. Figures 4.21 and 4.22 show that both

formulations' simulation results are in good match.

y Coordinate Index

0 20 40 60 80 100
x Coordinate Index

Fig. 4.22 E, field at 0.5 ns: The traditional formulation.



61
5. SINGLE-FIELD FDTD UPDATING EQUATIONS for

OBLIQUE INCIDENCE

Starting with Maxwell's equations for the incident and the total field, one can obtain
the vector wave equation and solve it for each component of the Cartesian coordinate system
as scalar equations.

One can write Maxwell's equations for incident field in free space as

aHinc (t)

VX Eine(t) = —po—5 (5.1)
OE ;,.(t
VX Hie(t) = & lg;( ) (6.2)
and for the total field as
OH ., (t
VX Epo(£) = —M%() — 0™ Hyo (1) (5.3)
OE ., (t
VX Ho(t) =¢ Z')O;( ) + 0°E 0 (1) 4
The total field is comprised of incident and scattered field components
Eiot = Einc + Escar (5.5)
Hiot = Hipe + Hgeqr (5.6)

Taking the curl of (5.1) and (5.3), we have:
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JH;
¥ x (VX Eine = g ) (5.7)
d
VXVXEj = _/10% (VX Hip) (5.8)
0°E;
VXV X Einc = —Uo&p T;nc (59)
0
VXVXEtot:_Ua(VXHtot)_Jm(VXHtot) (5.10)
Using (5.4), (5.5) and (5.9)
0%E;
<_.u0£0 T?) + VXV XEgcq
5.11
0 ( OE e m (. OE ot e ( )
= —,UE(E T +o Etot) -0 (e—at +o Ewt>
Using the following vector identity

(5.12)

VXVXE=V({V-E)—-V?E

VZEscat - V(V ) Escat)
aZEinc azEscat e m aEtot

= — — 5.13
(e — to&op) 52 + ue 72 + (uo€ + ea™) 5% (5.13)

m_.e
+0M0°Ep

To implement (5.13) with finite-difference time-domain method, we have to decompose it to
its Cartesian components. Moreover, we assume no variation for field magnitude in z
direction, but the variation in phase of the field can be obtained from the phase expression of

the field.
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Fig. 5.1 Obliquely incident electric field.

The phase expression of a time-harmonic incident plane field, as shown in Figure 5.1, can be

written as

ol er) (5.14)

where the wave vector k and the position vector r are expressed in Cartesian coordinates as

k = ky(Xsin 0, oS Qine + Y Sin Oy Sin Qine + Z oS Oiyc) (5.15)

r=Xx+3yy+2z (5.16)

where

ko = (D,/,U()SO (517)
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A general expression for the incident field with a time delay t, and spatial shift [, as

depicted in Figure 5.1, can be written as

Einc = (EgO + E,®) xf((t—to) —%(E-r— zo)> (5.18)

Expressions for the incident plane wave for oblique incidence case are given in Table 5.1.

Table 5.1. The obliquely incident plane wave field expressions.

TE, (Eg =0&E, =1)

TM, (Eg =1&E, =0)

Einc,x = —=sin@i X f(t,x,y)

Einc,x = €0S Oinc COS Pine X (L, X,Y)

Einc,y = COS Pinc X f(t,x,¥)

Einc,y = €0S Ojpc SIN Qi X f(t; x,Y)

E incz = 0

Einc,z = —sinbi,c X f(t,x,Y)

1
Hinc,x = % COS Bipc COS Pine X f (L, x,y)

1
Hinc,x = %Sln Pinc X f(t,%,Y)

1 -
Hinc,y = % COS Oipne SN Qe X f (L, x,y)

Hinc,y = _%COS Pinc X f(t,%,Y)

1
Hinc,z = _%Sln Oine X f(t,x,y)

H incz — 0

Using (5.14) and (5.15), one can derive the following identities for the variation in z direction

0z

d
== = jko cos Oinc

(5.19)
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d
o5 = Hog0 €08 Binc = (5.20)
62
ﬁ = (]ko cos Qinc)z (521)
0?2 ik
352 — Ho%o (cos Bnc)? (5.22)

at?

At this point, we have two options to continue with; either to replace the spatial derivatives
with a constant, namely (5.19) and (5.21) or to harness the assumption that the fields are
time-harmonic or can be decomposed into harmonic components, hence replace the spatial
derivatives with their time derivative equivalents, namely (5.20) and (5.22). Since there is no
published work that uses the latter approach to compare with, the former (constant-k)
approach will be evaluated in the following section to compare with the traditional

formulation [24, 25].

5.1. Derivation of the Updating Equations for Oblique Case

5.1.1. Updating Equation for the x Component

Cartesian component of (5.13) incorporated with (5.19) and (5.21) in x direction can be

written as
62E ¢ . aZE ¢ . aE .
a;cza = + (]kO Cos Hinc)ZEscat,x - ﬁ;y - (]ko coSs einc) ;C; 2z
0°E; 9°E JE (5.23)
= (ue - Mogo)% + Ms% + (Uo® + eg™) —LobX

+ 0™0E ot
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the

spatial derivatives in equation (5.23) at the corresponding electric field node, i.e. Ex. The

time derivatives are evaluated at the n™ time step; therefore:

0Ex(i,j) _ EX*'(i,)) — Ex71(i))

at 2At
0%E,(i,)) B EMY(i, ) — 2ER(L ) + ERFTI(3L))
otz (At)?
0%Ex(i)) _Ex(Lj+ 1) —2ERG ) +EXGj -1
dy? (&y)?
0%E, (i, )) _ Ej(i+1,)—-Ey(i+1,j—1)—E}Q,j)+E;({j—1)
dxady AxAy

0F, EPGi+1,))— EF(i,))
ox Ax

Inserting (5.24) - (5.28) into (5.23), we have

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)



67

(E;zat,x(i,j 1) = 2B 000 (i) + Elbar (i) = 1))
(Ay)?
+ (ko €05 Bine)? (Eltar (i)
B (E;zat,y(i + 1) = Elbaey (i + 1, = 1) = Efbary (0)) + Elbary (i) — 1))

AxAy
_ El o, (i + 1)) — ERar (i)
_ (]ko cos Qinc) < scat,z Ax scat,z
= (e — ooy Bt D) = 2Einea (1) + Efici (6 1) (5.29)
HE — oo (AD)?

(At)?
Esnctl%x (i;j) - E?c?t%,x(i:j)
2At

(E;lc-'c-z%,x(i;j) - ZEsncat,x(i;j) + Esnc:l%,x(i,j)>
+ ue

+ (uae + SO'm) < ) +0o™o® (E?cat,x(i'j))

EMLIG, ) —EML(,)
+ (uo€ + ec™) < inex( ])ZAt inc.x( D) +o™Mo® (E{,llc_x(i,j))

We can simplify the updating equation for E as

EXtt (i) = CE G N[Ekarx G D] + Cox™ (6 D[ Edat G )]
+ Coy ™Y (L DEfaen (i j + 1) + Efbgrr(i,j — 1]
+ Cod ™ (D Etary( + 1)) = Elbgry (i + 1,/ — 1)
— Escat,y (L)) + Escat,y (L7 — 1)] (5.30)
+ MO (1 D[ERar G+ 1)) — ERar 2 (i )]
+ CF M PD[EREL G D] + Cor™ ™ ) Eex ()]
+ CXm (6, BB ()]

where

N pe  (uo® +ea™)\
Ce(i,)) = —<(At)2+ AT ) (5.31)

T Dz ay)?

2ue 2 ) (532)

CE ) = Culin)) (70° = (ko €05 61nc)?
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exn—1/: ~ _ .. HE _(Hae+80m)
e ) = o) (s - L) 539
coxm _ 1
) = 60D (G55) (534
CE™Y (i, j) = C, (i, ])( y) (5.35)
.kO ginc

CEM* () = ol ) (o) (536)

exincn+1 (,UO' +£0.m) (MOSO —‘LLE)
CEmem (i, ) = ¢ (,J)< . L ) (5:37)
Cexinc,n(l. N = C.(i, ) 2(pogo — ue) m e (5.38)

) = GUD—gar .

exinemt oo (W0 +ea™)  (uogo = pie)

N O e e 5.39

5.1.2. Updating Equation for the y Component

Cartesian component of (5.13) with (5.19) and (5.21) incorporated in y direction can be

written as
0%Escqr ) 0%Egcqr, t
% + (]kO cos Hinc)zEscat,y - axsgc}l/ = — (]kO cos glnc) sca -
aZEinc,y a° Esc Etoty (5-40)

= (ue — Uo&o) L+ (uo€ + go™) ——=

+ 0™ Etory

otz Mg ot
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the

spatial derivatives in equation (5.40) at the corresponding electric field node, i.e. Ey. The

time derivatives are evaluated at the n™ time step; therefore:

0B, (i) _ EF*1 ) — B3 G))

ot 2At
02Ey(i,j)  Ey*i(i,j) — 2E} (i) + E} (i, )
otz (At)?
02E, (i, ) _EBE+HLD 2B G+ EYE - L))

0x? (Ax)?

0%Ex(i,)) _EBGH L) B+ - D - EBRGH+HERG - D
dxdy AxAy

0B, (L) _EZGj+1) —E7())
dy Ay

Inserting (5.41) - (5.45) into (5.40), we have

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)
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E;lcat,y(i + Lj) - ZE;lcat,y(irj) + E;lcat,y(i - 1'j)
(Ax)?
+ (fko cos Qinc)z (E;lcat,y(i;j))
. E;lcat,x(i + 1»j) - E;lcat,x(i + 1)] - 1) - E;lcat,x(irj) + E:?cat,x(irj - 1)
AxAy
EM i,j+1)—EZ i,j
_ (jko cos 9inc)< scat,z( ] ) scat,z( ]))
Ay
Elney ) = 2EL (L)) + Bl (0 ) (5.46)
= (ue — po&o) (At)?
Efcaty (1) = 2Edeary (L)) + Efcat y (i, ))
+ ue (At)z
Esrlc‘z%y(l:]) - Esnc?z%y(l']) ..
ZAt + O-mo-e (E;l(:at,y(l']))

Efrey (1) = Einey (i)
+ (uo® + ea™) < oy A ey ) + o™Mg*® (Eirrllc,y(i;j))

+ (uo€ + ec™) <

We can simplify the updating equation for E, as

Exety ) = Co (DB aey @ D] + Coy ™ G D[ Edaty ()]
+ Coy ™ (i, D[ Efeary (4 1,)) + Ettgey (i — 1,))]
+ Co™ (i, DERarx (4 1)) — Egr (i +1,j — 1)
— Egcatx (L)) + Escarx(L,j — D] (5.47)
+ CoM O (B2 (6] + 1) = ERge (0, )]
+ Co ™M PD[EBL ()] + Co ™ (4 D ERcy ()]
n Ceincy,n—l(i,j) [E-”‘l (i,j)]

ey inc,y

where

o pe  (uo® +ea™)\ "
C,(i,)) = (— @02 — AL ) (5.48)
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Cey (L)) = Cy (i) (a ¢ — (jko oS Oinc)? %+@) (5.49)
2w = 60 (s~ ) (550
Coy ™ (i,)) = —=Cy (i, ) ((Aiy) (5.51)

C5™ @) = 60 (5 y) (5.52)

5w = 6y (B (553)

oy ™)) = €y (i) ((u E(Zt’)lgg") +£ Gezztwm> (5.54)
CEmm G, ) = 1)( mge W) (5.55)
CEr ) = 6y (L g AT (5.56)

5.1.3. Updating Equation for the z Component

Cartesian component of (5.13) incorporated with (5.19) and (5.21) in z direction can be

written as
0°E 0°E
a;czatz a;]CatZ - (/kO cos Hmc) scatx - (Iko cos emc) Sf;lty
a Einc,z a Escat,z e m aEt:ot,z (5-57)
= (ue —Hofo)T‘F H€T+ (uo® + eo )T

+ 0™0%Eor 2
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (5.57) at the corresponding electric field node, i.e. E;. The time

derivatives are evaluated at the n™ time step; therefore:

OE,(i,])  EF(i)) — EFL( ) (558)
ot 2At
0%E,(i,]) _ EF*(i)) = 2E2i) + EZ7 (i) (5.59)
otz (At)? '
oxz (Ax)? '
02E,(i,)) CEPGj+ D) -2E7G )+ EZ@G - 1) (5.61)
ay> (Ay)? '
dx Ax
OE.(L1) E(i)—EN(ij—1
y(l 7 _ y(l ) y(L] ) (5.63)
dy Ay

Inserting (5.58) - (5.63) into (5.57), we have
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<Esncat,z(i + 1:j) - ZEsncat,z(irj) + Esncat,z(i - 1'j)>

(Ax)?

(Esncat'za'j 1) = 2ER00p () + Bl = 1)>

¥ 2
(8y)

— jko cos 0, Escatx (0 )) — Escarx(t = 1,7)

J%o inc o

ET i,j)— En ij— 1

— Jko cos 05 < scaty (1] A;cat,y( J ))

(5.64)

= (e — oy [ FineaGo) = 2Eines (b)) + Einoa(G,))
0€o @02

(Esflc-lc-l%,z(l;]) - ZE.ST"lCClt,Z (I'F,]) + E.STLC:Z%,Z (L]))
+ ue

(At)?
Esncz%,z (i;j) - E;lc?l%,z (i'j)
2At

+ (,uae + SO'm) < ) +0o™Mo° (E;lcat,z(i'j))

Ene, (i) — (i)
+ (uo® + sam)< incs( ])ZAt inc.z( ])> +o™M0o*® (Eirch,z(i,j))

We can simplify the updating equation for E, as

Extt (L)) = Cof™ (L D|Ekar (L D] + Cor™ (i D[ Etbat -G )]
+ Cor ™ (L D[ Etae (i + L) + Elgr (i — 1,))]
+ Cor™ (L P|Ettarz(j + 1) + Elbgr (6, — D]
+ C™ O (G D ER () = ERar (i = 1,))] (5.65)
+ C5L ™Y G D E oty (0)) — Eloary (j — D]
+ CEm N, DIEBEL G )] + Com M [ER . G )]
+ Co™ DBy )]

where

C,Gi,)) = - ( ( ng C 22:“ )> (5.66)
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Cor " (1,)) = C, (i, 1)( (ZA’;; + (Ai)z + (Ai)2> (5.67)
Cer™ (1) = C,G.)) ( i f :)2 _ UEZZ:Gm)) (5.68)
Cer ™ (0, 1) = —C,(i,)) ((Ai)z) (5.69)
) = ~60d) (5) (570

Crm O () = €00, ) (L0 C0 Pne) 571
2™ ) = 6 (B 572)

CEmem ) = €40 )) <(“ ) Gm) 573)
CEMEn (i, ) = C,(1,)) (a’"ae - W) (5.74)
Cm (A, ) = €3 ) ((”g(;t‘)‘;’e") _E Gezztwm> (5.75)

5.2. Accuracy Analysis

Problem geometry is constructed as shown in Figures 5.2 and 5.3. Three dielectric
cylinders are located on y axis, as a plane wave is obliquely incident towards -x direction.
Scattered fields are sampled at 500 points on the x-axis (0-0.5 m, 0). The dielectric cylinders
have radius of 1 cm and dielectric constant 4. Center-to-center distance is 3 cm. The incident
wave has a Gaussian shape with maximum frequency 15 GHz, the azimuth angle (¢;,.) is 0
with respect to the x axis and its angle of incidence (6;,.) is 30 degrees with respect to the z

axis. Figures 5.4 to 5.9 show the field comparison of the single-field and the traditional
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formulation. In both formulations, constant-k approach is utilized, and the ko value is set

according to the following formula

k = w+/uecos b

—

Incident Plane Wave

|

|

|

|

|

|

|

Q)----- > X — :
|

|

|

|

|

FDTD Domain :

Fig. 5.2 Three dielectric cylinders subject to an obliquely incident plane wave.

(5.76)
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Fig. 5.3 Arrangement of the cylinders.
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Fig. 5.4 Electric field comparison for f = 5 GHz: magnitude.
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Fig. 5.6 Electric field comparison for f = 10 GHz: magnitude.
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Fig. 5.7 Electric field comparison for f = 10 GHz: phase.
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Fig. 5.8 Electric field comparison for f = 15 GHz: magnitude.



79

Y

= __-ﬁ- >

ssper

\

— Single-field
-- Traditional

e

pmmm =™

e

e R S
==

\
\
\

\

=

prllase(Ez) [rad]
.
mmm
pammn
e
pmmm

WA
{ P

0 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 0.5
x coordinate [m]

T o
pnn
e
Py
e

W
= vt
S g

B o

dﬁ:"

Fig. 5.9 Electric field comparison for f = 15 GHz: phase.

Figures 5.4 to 5.9 show a good agreement between the single-field and the traditional
formulation. The k value is calculated as 91, 182 and 273 for incidence angle of 30 degrees

and for frequency of 5, 10 and 15 GHz, respectively, according to the Equation (5.76).

5.3. CPU Time Analysis

Figure 5.10 shows the CPU time the formulations require to complete a simulation of
corresponding size. X axis represents the number of cells used to characterize the problem.
Though in oblique incidence case the single-field formulation has to use three updating
equations as opposed to the normal incident case where only one updating equation is used to
solve any 2D TE or TM problem, the single-field formulation is still faster than the

traditional one as shown in Figure 5.10. This result reinforces the argument that the single-
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field formulation is faster than the traditional one for any 2D problem in the case of both

normal and oblique incidence.

25 T T
| |
| |
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— Traditional /
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- / ”"
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- / ¢¢¢¢

1.6 2 24 28 32 36

Number of cells in FDTD domain [millions]

Fig. 5.10 CPU time comparison for 2D oblique case.

5.4. Memory Usage Analysis

Memory requirements for both formulations can be compared by counting the
number of coefficients used in the updating equations in addition to the scattered and incident

field terms needed. The traditional formulation has six updating equations for constant-k

approach, such as

EMtE () = CoG D [ERaex D] + Co G D[HERES (G, j) — HER2S (6, j — 1)] (5.77)
+ C3 (L, N[HERYS @ D] + Co(i D[EEELGND] + CsG D[Efe ()]
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Table 5.2 shows the number of FLMOPN and MAFTn required for the single-field and the
traditional formulations. Given memory allocations are for updating equations only, problem
domain and material related memory allocations are not mentioned here since they apply in
both formulations. The single-field formulation seems to require less memory; therefore it

can handle bigger problems than the traditional one with the same amount of memory.

Table 5.2. Required FLMOPN and MAFTN for oblique incidence case.

Formulations | # FLMOPnN # MAFTn

Single-field 25 25 coefficients + 15 fields (6 scat. + 9.inc.) =40
Traditional 30 30 coefficients + 18 fields (6 scat. + 12 inc.) = 48
Improvement % 17 % 17
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6. SINGLE-FIELD FDTD UPDATING EQUATIONS

FOR DISPERSIVE MEDIA

Characteristic behavior of electromagnetic fields inside dispersive media can be
analyzed by Lorentz-Drude (LD) model. The traditional formulation incorporated with the
LD model has been used extensively to simulate various materials and geometries for
scientific and practical applications [26-28]; the updating equations are given in Appendix D.
One can incorporate LD model in Maxwell's curl equations in frequency domain, and
transform the resulting equations to time-domain.

Starting with Maxwell's curl equations in frequency domain and harnessing the
auxiliary differential equation (ADE) approach [29], one can obtain a vector wave equation

and solve it for each component of Cartesian coordinate system as scalar equations.

6.1. Lorentz-Drude Model for Permittivity

The LD model for permittivity is given by [2] as

2 2
Wyp Agjwyy,

g(w) =€, + (6.1)

JRPo? + o j2ew?+jol + o),
where ¢, is the relative permittivity at infinite frequency, w,p, is the Drude pole frequency,
[, is the inverse of the pole relaxation time, Ag; is the change in relative permittivity due to
the Lorentz pole pair, w,,, is the frequency of the pole pair (the undamped resonant

frequency of the medium), and I, is the damping coefficient.
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Maxwell's equations in frequency domain for time-harmonic fields with e/t

dependence are given by

VXE=—joB (6.2)

VxH=jwD (6.3)

And the constitutive relations for linear, isotropic and homogeneous media are defined as

D=¢E (6.4)

(6.5)

Assuming a constant permeability, taking the curl of (6.2) and using (6.3), we have:

VX (VXE)=—jou(VxH) (6.6)
VX (VX E)=—jou(jweE) (6.7)
VX (VXE) = w?ugy(e)E (6.8)

Substituting (6.1) into (6.8)

(6.9)

w? Ag; w?
VX (VXE)=w?ug, <800 + pD L pl )

JRPo? +jTho  j2w?+ jell + o),

Rearranging (6.9) and introducing two terms J,, and P,
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V X (VXE) = O)ZﬂsosooE +]D +PL (610)

where J, and P, represents the Drude part and the Lorentz part, respectively.

2
W
= wlys, —P2 6.11
]D w nungza)z_I_erw ( )
Ag; w?
P, = w?ugy- L bl (6.12)

J2w? + jol'y + w);

Replacing jw terms with % and arranging the terms, (6.11) and (6.12) can be written as

%] p 0%E dJp

9 = Mgz gy ¢49
o%p, L 0’E 0P, (6.14)
5z —ugodeLwyy Frea I, B wpL Py,
2
Revisiting (6.10), and replacing w? term with — ;?, one can obtain the vector wave equation
’E
Vx(VXE)= —HegE 5 +Ip + Py (6.15)

Now, we can decompose (6.15) into its Cartesian components.
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6.1.1. Updating Equation for the x Component

Cartesian component of (6.15) in x direction can be written as

0%E,. 0°E, 0°%E 0%E,. 0°%E, O0°E 0°%E
- Y z < o o x>=_1u80£oo_x+]D,x+PL,x (6-16)

O0x? +6x6y+6xaz_ 0x2 + dy? + 072 ot2
0°E, 9%E, 0%E, 0Z%E, 92E,
- - == -z 6.17
oxdy Toxaz  oyz 9z - =gz tIoxtPux (6.17)

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (6.17) at the corresponding electric field node, i.e. Ex. The

time derivatives are evaluated at the n™ time step, therefore:

aZEx(i,j, k) _ EarcH_l(iijl k) - ZEJrcl(l']r k) + E;l_l(irj' k)

6.18
ot? (At)? (6.18)
0Ex(i,j k) _ Ex(ij+1,k) —2E7(i,j, k) + EX(i,j — 1 k) (6.19)
oy (Ay)? |
02 (i,j, k) _ EPGi,jk+1) — 2EP(i,j, k) + EF(i,j,k — 1) (6.20)
072 B (Az)? '
OBy (LK) B+ L)) — B+ L] = LI~ BfG )R+ EfQ] — LK) oy
0xdy AxAy |
0°E,(ij, k) _ EFGi+1j,k) —EpG+1j,k = 1) = EF(bj, )+ EF (k= 1) g5

0x0z AxAz

Inserting (6.18) - (6.22) into (6.17), we have



Ep(i+1,,k) — EpGi+1,j — 1K) — ER(,j, k) + EJ(i,j — 1,k)

AxAy

AxAz
(Ay)?
(Az)?
E}*1(i,j, k) — 2ER(i,j, k) + EZ 7' (i, j, k) - -
= JEAt)Z = + ]B,x(ll_]’ k) + PZ}x(ll]’ k)

= —UExEg

We can simplify the updating equation for E as

EP*Y(i,j, k) = CE™ (i, j, R ER(L j, k)] + CoF™ (W, j, ) [EF1(, j, )]

where

+Coy ™ (i ER(Lj + 1K) + ER (i, — 1,k)]

+Cox ™ (L RER (G k + 1) + EZ (), k — 1)]

+ Coy™ (4, [ERG+ 1,j,k) —ERGE+1,j — 1,k) — E}(i, j, k)
+E}i,j— 1,k)]

+ CEE™M2 (1L G, K ERG +1,j,k) —ERG+ 1,j,k—1) — ER(i, j, k)
+EP(i,j, k= D]+ Ce (i, k) [Py (i, k) + 5G]

@y
Cx(i,j, k) = PEvE
2,[,[80800 2 2
exn . - - P —
Cex (l,]; k) = Cx(lf]: k)( (At)z (Ay)z + (AZ)2>
el N oy (HE0E) _
Com (i), k) = _Cx(l']'k)((At)2> -

1
Cee;CC’n'y(ifj’ k) = Cx(i'j’ k) ((Ay)2>
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(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
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1
exnz .. 629
(l _]l k) Cx(ll_]F k) ((AZ)Z) ( )
CE™ @i = =i ) (55 (6.30)
J J AxDy

eZNXZ - - - _ .. 631
CEM(0,], 1) = =G0 (5op ) (631)

The x component of the Drude part can be written as

aZJD,x azEx a]D,x
5z~ Havm g b, (6:32)
0%Jp (i), k) _Jp, 3G k) — 2J5 (), k) + 55 (G j, k) (6.33)
ot2 (At)? '
0o (i) k) _JBEMGiji ) = B (i) ) (6.34)
Jat 2At
Jox G ji k) = 2] (i k) + I (i )
(At)?
EM(i,j, k) — 2ERX(i,j, k) + EX1(i,j, k)

= _.UsowzzJD - )EAt)Z : (6.35)

r b () k) = Jpx' (], k)

b 2At
We can simplify the updating equation for Jp x as

JBENj k) = Clp ™ (i fy kIR (i k) + g™ (0, KRR (i, i K 636

Cf,;‘x"(z G ROEXT, ), k) — 2ER2(i,j, k) + EZ1(i,j, k)]

where



: 4
C}dx,n .’ .’ k) =
o (L1 0) = o
: Atl'y — 2
dex,n—l .’ ., k) = D
jox (B0 k) = 5 R
Cex,n(. . k) _ 2.“800);2;0
ypx Ao 1) = T A

The x component of the Lorentz part can be written as

02Py
0t2

0%E oP,
= —ligoASszz)L Otzx — 1y at’x — Wy Py

0?Puy(ij k) _ PLxt () k) — 2Py (), k) + Pr (i) k)
ot? (At)?

0P (i, k)  PLx'(i,j, k) =PI (i), k)
ot - 2At

PIYY(i,j, k) — 2P (i, j, k) + PR (i g k)

a0y
pegde, w? . o “1(4,j
= =T B G ) = 2EE K + B K]

Pﬁ;l(l,], k) - Plrj;l(L']' k)

We can simplify the updating equation for P4 as

PPY(i j, k) = CBE™ (i, j, k) PR iy j, k) + CER (0, j, k) PR (G, &)
+ Cop (i, KERT (i, k) — 2E2 (i, k) + EX~ (i, ), k)]

where
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(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)
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4 - 2(A0)%w?,

1, . I At —2
G 60 = 5 e (6.46)
o 2uegde, w

Equations (6.24), (6.36) and (6.44) constitute the updating equations in x direction.

6.1.2. Updating Equation for the y Component

Cartesian component of (6.15) in y direction can be written as

0%E, 0%E, 0%E,\ (0%E, 0%°E, 0%E 9%E
<6x6; t oy T ayaZ> - < Sty y) = —peot—ms +py + Py (6.48)

0x? + dy? = 0z2 at?

0%E, 0%E, 0%*E, 0°E, 02E,
N == - 6.49
dx2 0z2 + 0x0y + 0y0z HEo€e 02 +Jpyt+ PLy ( )

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (6.49) at the corresponding electric field node, i.e. Ey. The

time derivatives are evaluated at the n™ time step, therefore:

azEy(i,j, k) _ E;}“(i,j, k) — 2E37}(i,j, k) + Ej’}_l(i,j, k)
at2 B (At)?

(6.50)

dx? B (Ax)?

(6.51)
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0%E,(i,j,k) Ey(i,jk+1)—2E3(i,j,k) + E}(i,j,k — 1)

6.52
0z2 (Az)? (6.52)
oxdy AxAy '
02E,(i,j,k) _EP(i,j+1,k) —E}(i,j+ 1L,k —1)— EF(i,j, k) + EP(i,j, k — 1) (6.54)
dydz AyAz '
Inserting (6.50) - (6.54) into (6.49), we have
(Ax)?
(Az)?
EX(,j+1,k)—EXi—1,j+1,k)—EXG,j,k)+EXi—1,j,k
N x (i) )—Ex(i—1,) ) —Ex(i,j,k) + Ex(i—1,j,k) (6.55)
AxAy
N EX}i,j+1,k)—EXi,j+1,k—1)—El(i,j, k) + EX(Gi,j,k—1)
AyAz
EMY(i,j, k) — 2ER(i,j, k) + ED71(i, j, k)
y 1)) y ) ) y 1))
= U (At)z +]D,y + PL,y
We can simplify the updating equation for E, as
EF1(ij, k) = Coy ™ (0, [Ey (6, 1] + €™ (6, IO [EY (04, 1)
+Coy ™ [ERG +1,5,k) + ER(i — 1,j, k)]
+ Coy ™ (1, I [ER Gj b + 1) + EF (i, k = 1)] (6.56)

+ Cee;f,n,xy(i,j, k)[E,TCL(l,] +1, k) — E,?(l —1,j+1, k) _ E,’Z(i,j, k)
+ER({A—1,j,k)]
+ EFGLj k— D1+ C, G, B, G j k) + PG, k)|



where
a2
Zﬂgoeoo 2 2
eyn i —
(i), k) = Cy("f'k)( (At)? +(Ax)2+(AZ)2>

. HEoEw
eyn 1, j k) = Cy(L,],k)<(A°t)2) =-1

eynx(l j k) = Cy (i,j, k) <(A1)2)

e n,z 1
510 = 60601 (G52)

Co™ (i), k) = =€, (i,j, k) (A Ay)

eznyz(l k) =-C(, ]'k)< 1AZ>

The y component of the Drude part can be written as

(')ZJD,y:_’uE 2 OBy Oy
ot2 07PD H2 b ot

0%Jp,y (i, j, k) ]"“(l J k) = 2Jp, @ k) + 5, (6, k)

ot? (At)?

a]Dy(l ];k) ]n+1(l ]'k) ] 1(i'j'k)
Jt 2At
Jby g k) = 2]5, (6 j, k) + ] (W), k)
(At)?

2

EM1(i,j, k) — 2E2(i, j, k) + EZ(i, j, k)

= _.uSprD (At)z

”*1(1 Jo k) = Jby' (i), k)
24t
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(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)



We can simplify the updating equation for Jpy as

JBSMG k) = c;g;"o SR (g k) + o™ G j KRS G )

+Cy G K[ERFA (g, k) — 2E3 G g, k) + EF~23i, ji, o) |

where
4
Clor™ (i), k) = o———
joy " (B0 k) = 53 R
Aty — 2
deyn 1 i, ,k _ D
oy (k) = 2 + IpAt
eyn ZMSOwZZJD
Ciby (), k) =—5—F+
2+ At

The y component of the Lorentz part can be written as

0P, 62E 0P,
atzy #EOAEL(UpL 9t2 _FL ot _wjzaLPL,y

0%P,,(i,j, k) B PPIY(, j, k) — 2PPy, (i, k) + P (G k)

ot2 - (At)?
0P, (i,j,k)  PLy (i j k) — Pl (), k)
ot - 2At
PP, j, k) = 2PPy, (6, k) + P (i k)
(At)?
golde; w
% [E"“(z J k) — 2E3(,j, k) + EF1(0,j, k)]

PPSY(, j, k) — PRt (i ), k)
L 2At

wzz,LPﬂy(i,j, k)
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(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)
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We can simplify the updating equation for Py as

PISY(i, g k) = CR™ (i KPR, (o, k) + CE™ Gy k)PP Y (i ji k)

6.76
+ Cﬁ{&”(i,j, K[EF(,j, k) — 2E3 (i, j, k) + EX1(i, j, k)| (6:76)
where
4 — 2(At)2w2
b () k) = 2 6.77
CPLy (,Jj, k) 2+ At ( )
I At — 2
plyn—-1,. . _ 1L
CPLy (i,j, k) = ST AL T (6.78)
ZﬂgoAngzL
ey S g ) 6.79
CpLy (l:];k) ) +FLAt ( )

Equations (6.56), (6.68) and (6.76) constitute the updating equations in y direction.

6.1.3. Updating Equation for the z Component

Cartesian component of (6.15) in z direction can be written as

2
z

0°E
) = —peotn—— +Jp, + P, (6.80)

(62Ex 0%E, 62EZ> <6ZEZ aZEZ_l_aZEZ

6x62+6y62+ 0z? 0x? + dy? = 0z2 ot?
0%E, 0°E, 0%E, 0ZE, 02E,
— — = — —_ 6.81
ax2 " ay2 T axaz Vayaz - Mot Tt bz (6.81)

To derive the FDTD updating equations for the electric fields, we have to evaluate all the
spatial derivatives in equation (6.81) at the corresponding electric field node, i.e. E;. The time

derivatives are evaluated at the n™ time step, therefore:



02E,(i,j, k) _ EF*(i,j,k) — 2E}(i, j, k) + EF (i, j, k)

at? (At)?
0x? B (Ax)?
ayr (4y)?
0%E.(i,j,k) EY(,j,k+1)—Ex(i—1,j,k+1)—E}(i,j,k) + Ex(i—1,j,k)
oxdz AxAz

dyoz AyAz

Inserting (6.82)-(6.86) into (6.81), we have

E}(i+1,j,k)—2E}(,j,k)+E}i—1,j,k)

(Ax)?
EF(@i,j+1,k) —2E}(i,j, k) + E}(i,j — 1, k)
(Ay)?
N Ex(i,j,k+1)—E}(i—1,j,k+1)—EZ@,j,k)+Ef(i—1,j,k)
AxAz
LBk D)~ B0 ~ Bl = Lk + 1) + B~ 1K)
AyAz
E”+1(Lj,k)—-ZE"(Lj,k)i—E"‘l(Lj,k)
= _.ugogoo . Z(At)z g +]D,Z + PL,Z

We can simplify the updating equation for E; as
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(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)



B, k) = CE7 Gy RLER G fy kO] + CE2™ i IO LER (6, k)]
+ CoZ™M (O ERG+ 1,),k) + ER(i — 1,j, k)]
+Cer ™ (01, IEF@) + LK) + EF(,j — 1,K)]
+CM ) ER G R+ 1) = ERG = 1k + 1) = EE ()
+ EX(i—1,j,k)]
+ CE™MP (0, KRG, k + 1) — EFGj k) — ERGLj — 1k + 1)
E;l(l,j - 1; k)] + Cz(i,j, k)[PZfz(l']' k) +]B,z(ilj' k)]

where

C,(i,j, k) = (8"
z l,]i - Hgogoo
3 3 3 3 Zﬂgogw 2 2
CEE™(0,), 1) = =C,(0,j, 1) - @02 +(Ax>2+(A”2>

- . . gw
ngz'n 1(l:];k) - C (l ]'k) ((A(;)Z) =-1

1
CEE™ )1 = Gl ) (g72)

ezn — 1
y(l ], k) C (l ]' k) ((Ay)Z)

Co)™M (i, ), k) = —C, (i, ]’k)(A 1A )

CEEMY2 (i i k) = —C, (i, j, k) (AyAZ)

The z component of the Drude part can be written as

az]D,Z aZE a]D’Z
gz = Re%m g g
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(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)



0%)p (L), k) Jp3t (), k) = 2J5 (i, k) + 52" (i, ), k)
ot2 h (At)?
0Jp,.(L,J, k) Jp5t(j, k) =5, (i), k)
ot B 2At
]3;1(11,]', k) - zjg,z(iﬂji k) + ]B,;l(i'j! k)
(At)?

o EZTNG k) —2E7(i ) k) + EZTN(i ) k)
= THUEWpp (At)2
B B
2At

We can simplify the updating equation for Jp; as

JBEN g k) = Clpr ™, kIR (o, ) + Cloy ™ (i J kTR (i ji K
+ Cp (L O ER (i j, k) — 2E2 (i, j, k) + EF72(1, j, K]

where
; 4
C]dz,n .’ ., k) =
oz (L1 K) = 9 p hy
; AtTp — 2
C}dz,n—l .’ .’ k) = D
oz (LI =57
Cez,n .o k 2/"80(‘);an
joz (LK) = =5 i

The z component of the Lorentz part can be written as

9P,
0t2

, 0%E, P,
PLogez LT gt

— 2
= —uegoldeLw — wp P,
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(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)



0°P,,(i,j, k) PLF(i,j, k) — 2P, (i, j, k) + PL (0, j, k)
at2 h (At)?

aPL,Z(ifj' k) _ le,;l(i'j' k) - Pﬂz_l(i'j' k)
ot B 2At

Pﬁ;l(l,], k) - ZPLn,z(l»L k) + Plr,fz_l(l']' k)
(At)?
Mgoﬁng;%L ntlcs s nee o ne1r: :
= _W [Ez (l']'k) — 2E; (l']'k) + E; (l,],k)]
PL7 (i), k) = PL7 (i), k)
—h 20t

- wzz)LPZfz(i'j! k)

We can simplify the updating equation for P_; as

PIF(i,j, k) = CPEZ™ (i, j, k)PP, (i, 7, k) + CEEZ™ (i, j, k) PR (i, j, K)
+ CE (L j, ) ERTY(, j, k) — 2ER(i, j, k) + EZ(i,j, k)]

where

4 — 2(At) % w?
B, k) = )

2 + At
I; At — 2
Ch" ) k) = 5
PLz 2+ At

.. 2uede 0y,

Cory (i, k) = _TFLAtp

Equations (6.88), (6.100) and (6.108) constitute the updating equations in z direction.

6.2. Lorentz-Drude Model for Permeability

The LD model for permeability can be written as

97

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)
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2 2
Wpp ApLwpy

jRPw?+jho  jlo?+jol, + ol

tr(@) = poo + (6.112)

where pu,, is the relative permeability at infinite frequency, w,, is the Drude pole frequency,
I, is the inverse of the pole relaxation time, Ay, is the change in relative permeability due to
the Lorentz pole pair, w,,, is the frequency of the pole pair (the undamped resonant
frequency of the medium), I'; is the damping coefficient.

Assuming constant permittivity, taking the curl of (6.3), using (6.2), (6.4) and (6.5),

we have:

VX (VX H)=jw(VxD) (6.113)
VX (VX H) =jwe(—jwB) (6.114)
VX (VX H) = w?cuou,H (6.115)

Substituting (6.112) into (6.115)

2

w Ap; w?
VX(VXH)=w2€l10<lloo+.2 — e 2>H
Jew* + jIhw  jfw +ijL+pr

(6.116)

Rearranging (6.116) and introducing two terms K, and M,

VX (VX H) = w?suguH+ Kp + M, (6.117)
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where K, and M, represent the Drude part and the Lorentz part, respectively.

w
Kp = wlepy——22—H (6.118)

M, = w?epn, (6.119)

J2w? + jwl;, + a);L

Replacing jw terms with % and arranging terms, (6.118) and (6.119) can be written as

%K 0’H oK,

iz = eHWin 5z I (6.120)
92M, 02H oM
3z —ehoApL w3, 2z L a_tL —wp M, (6.121)

2
Revisiting (6.117), and replacing w? term with — %, one can obtain the vector wave

equation

0’H

VX (VX H) = —elloior 7+ Kp + M, (6.122)

Now, we can decompose (6.122) into its Cartesian components

6.2.1. Updating Equation for the x Component

Cartesian component of (6.122) in x direction can be written as
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0%H, N 0%H, N 0%H, [(0°%H,
0x?  0xdy 0x0z

0°H, 0°H, 0°H,

axdy | axdz  9y?

02H, 02%H, 92H,

9x2 ayz + 922 = —EMOMOOW + KD,x + ML,x (6123)
0°H 0H
aZZx = —€loleo atzx + Kpx + Mpx (6.124)

To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the

spatial derivatives in equation (6.124) at the corresponding magnetic field node, i.e. Hy. The

time derivatives are evaluated at the n™ time step, therefore:

0%H,(i,j, k) _ HI}M(,j, k) — 2H2 (i, j, k) + HX (i, j, k)

6.125
at? (At)? o120
0%H (i,j,k)  Hy(i,j+1,k) —2H}(i,j, k) + HY (i, — 1,k) (6.126)
9y (By)? |
0*Hy(i,j, k) _ HY(ij, k +1) — 2HR(i,j, k) + Hy (i, j, k — 1) (6.127)
o2 (8z)? |
02Hy(ij, k) _HyG+Ljk) = Hy(+1j= 1K)~ Hy(Lj k) + Hy(Li=Lk) oo
dxdy AxAy
02H,(i,j,k) HPGi+1,j,k)—H}(i+1,j,k—1) —H}G,j, k) + H(i,j,k— 1) (6.129)

0x0z

AxAz

Inserting (6.125) - (6.129) into (6.124), we have
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HRG+1,),k) — HRGi+ 1) — LK) — H(i,j, k) + HpGj — 1K)

AxAy
AxAz
H(i,j+1,k) —2H?(i,j, k) + H2}(i,j — 1,k

L) x ]2 (0] ) (6.130)

(Ay)

(Az)?

Hn+1(i,j, k) — 2H}(i,j, k) + Hn_l(i,j, k) o o

= _S.UO.“OO = J(CAL_)Z = + Kg,x(l:]’ k) + le,x(l;]: k)

We can simplify the updating equation for Hy as

HE (G, j k) = Cr™ (i, K HE G, K] + Chy™ (i, k) THE 2 (6, K]
+ O™ (i, K [HECJ + 1, k) + HE(, j — 1, k)]
+ CPEM (i j, k) [HEGL j k + 1) + HE (L, k — 1)]
+ CPYY (6, k) [HEG +1,j,k) — HRFG + 1,j — 1,k) — HI'(i,j, k) (6.131)
+H(i,j — 1,k)]
+ CPP™M (6 R HR G+ 1, ), k) — HPG + 1,7,k — 1) — HE(, j, k)
+ HP (i, j k= D]+ Ce(i,j, k) [KD 1 (i, k) + M7 (0, ), k)|

where
Ce(i,j k) = 5(30200 (6.132)
Crix " (6, 1) = =Ce (i), ) (— ZEXE)’?" C Ai)z 7 Ai)z) (6.133)
G ) = =G0 (T7) = = (6.134)
™ 1) = 0 (Goss) (6.135)
Che™ (i, j, k) = Co (i, j, k) <( A1)2) (6.136)



62" () = (i) (o)

<

Chamaz (i 1y = —C,(i, J:k)< 1AZ)

The x component of the Drude part can be written as

otz Ho®pp 5z T b Tgy

0%Kp (i, j, k) _ KBt (i, j, k) — 2K5 (i, j, k) + K531, j, k)
ot? (At)?

0Kpx(ij, k) _ Kp3'(ij k) — Kpx' (i), k)
at 2A¢

Kpit(i,j, k) — 2KB . (i,j, k) + KB (i, k)
(At)?

2 H}cH-l(ilj' k) - ZH;l(lr]r k) + H;l_l(ilj' k)

= —&UoWpp (At)2
r KB (i, k) — Kpyt (i, k)
b 2At

We can simplify the updating equation for Kp x as

KFEL(i,j, k) = CREM™ (i, j, kKR (i, k) + CEX™ (i, j, K)KR R (0, j, k)

+ PG j, k) [HEV (i, j, k) — 2H2 (D, k) + HE 10, j, k)]

where

Ciox" (0J:0) = 5
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(6.137)

(6.138)

(6.139)

(6.140)

(6.141)

(6.142)

(6.143)

(6.144)



AT, — 2
kdxn—1,. - D
)y k —
Chpx™ (k) = 57 I, AL
Chx,n(i . k) _ ZgﬂowzzyD
o 0 2 + [pAt

The x component of the Lorentz part can be written as

02My
dat2

0%H, oM,
ot2 L ot

— 2 2
= —gloAUL Wy — wp My

azML,x(iﬂj' k) _ Mltl,jc—l(li]l k) - ZMltl,x(Lr]' k) + Mltl,y:l(l']' k)
at? (At)?

M, (i, k) MPx (i), k) — M7 (i), k)
ot B 2At

MPEt (i j k) — 2MP (0, k) + M (L ), k)
(At)?
_ 5H0A.UL(U12nL
(At)?
MG j, k) — M (), k)
L 2At B

[H;H_l(i'jr k) - ZHJrcl(l']r k) + H;L_l(iljl k)]

wf)LMlT,l,x(iﬂj' k)
We can simplify the updating equation for M,y as

MY g, k) = Col™ (i J, )MPL (i, j, k) + Corie™ (G 7, k) MP (&)
+ Cyn G, j, K)[HEY (I, j k) — 2HR (i, j, k) + HE1(, j, k)]

where

N 4— 2(A0)2w?,
Che " (L), ) = — At )
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(6.145)

(6.146)

(6.147)

(6.148)

(6.149)

(6.150)

(6.151)

(6.152)
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1. . I At — 2
. 2epoAp w5
Cotie () k) = =—— 0= e (6.154)

Equations (6.131), (6.143) and (6.151) constitute the updating equations in x direction.

6.2.2. Updating Equation for the y Component

Cartesian component of (6.122) in y direction can be written as

0%H, N 0%H, N 0*H,\ (0°H, N 0%H, N 0%H,
dxdy 0y?  dyoz 0x? dy? 0z?

(6.155)
0%H,
= —Ellote 7+ Kpy + My
0°H, 9°H, 0%H, 0°H, 0°H,
N - =- w5 1K M 6.156
0x? 072 + dxdy + dyoz EHoH 9t2 T Rpy + My ( )

To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the
spatial derivatives in equations (6.156) at the corresponding magnetic field node, i.e. Hy. The

time derivatives are evaluated at the n™ time step, therefore:

0%H,(i,j, k) B Hy*1 (i, k) — 2H3 (i, j, k) + H} 71 (0, j, k)

e o (6.157)

0%Hy (i,j,k) _ H}(i+1,j,k) = 2H}(i,j, k) + Hy (i = 1,j, )
0x? (Ax)?

(6.158)
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0%Hy (i,j,k)  H}(,j k+1) — 2H}(i,j, k) + Hy(i,j,k — 1)

6.159
07?2 (Az)? ( )
0%H,.(i,], k) _ H}i,j+1,k)—H}i—1,j+1,k)—H},j, k) +H}i—1,j,k) (6.160)
axdy AxAy .
02H,(i,j,k) HP(i,j+1,k) — H}(i,j+ 1,k — 1) — H}(i,j, k) + H}(i, j, k — 1) (6.161)
dydz AyAz '
Inserting (6.157) - (6.161) into (6.156), we have
HX}(,j+1,k)—H}i—1,j+1,k) —H}(i,j, k) + H}(i—1,j,k)
AxAy
AyAz
(Ax)? (6.162)
HPGj ke +1) = 2HP G, k) + HR () k — 1)
(Az)?
HMY(i,j, k) — 2H(i,j, k) + H1(i, ), k)
_ y » ) y ') y 1) . .
= —E&UolUoo (At)z + Kg'y(l,], k)
+ M7, (0, ), k)
We can simplify the updating equation for Hy as
HL (0, g, k) = Coy ™ (0, J, [HR G, )] + Gy ™ g, IO [H 2 (i K
+ Coy™ (i j O[HRG + 1,5, k) + HE G — 1,5, 1)
+ Coy ™ (i, [HE G j b + 1) + HE(Gj, k — 1]
+ Coy ™ (i f ) [HR(Lj + 1,k) — HRG — 1,5 + 1,k) — HE(i,j k) (6-163)

+ HX(i—1,j,k)]
+ Cr ™ (0, O THE G j + 1, k) — HPGLj + 1k — 1) — HE G, k)
+ HZ(,j k — D]+ C, (6 j, KR, G k) + MPE, (), K|



where

(At)?
EloHoo

Cy(i,j, k) =

i - 2eptohor | 2 2
Cry " (0,j, k) = =Cy (0, ), k) (_ (A;:))Z +(Ax)ZJr(AZ)2>
1= (L) -

010 = 60 ()

1
hynz(l ],k) Cy(l']rk) (@)

hanY(’ jk)=-C (l]'k)<A Ay)

hznyz(l],k)-— C'(l]'k)(AyA >

The y component of the Drude part can be written as

0*Mpy _ 9%H,  OMp,
at2 ~EHoWpp FYCR e

aZMD,y(i,j,k) MpErG,j, k) — 2Mp , (G, j, k) + Mp3t(i, j, k)

ot? (At)?

aMD,y(i'j’ k) Mn+1(l JI k) M l(iljl k)
Jat 2At
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(6.164)

(6.165)

(6.166)

(6.167)

(6.168)

(6.169)

(6.170)

(6.171)

(6.172)

(6.173)



MB':;:[(L',]', k) - ZMB,y(ifj’ k) + MS,;/l(i’j’ k)

(At)?
, Hy*'(Q,j, k) — 2Hp (i, ), k) + HY (0, j, k)
= —EUoWyp (At)z
T Mpt (G k) — Mp3t(iL ), k)
b 2At

We can simplify the updating equation for Mp y as

MG, k) = Coppy ™ (i jy KIMB 3, (i, j k) + Copoy ™ (0, KOMBS (i, k)
1\%;(1 ],k)[H”“(L j. k) = 2H3 (i, j, k) + H} (G, J. k)]

where

Crpy (i), k) =

2+ AL
Atly — 2
dym-1,. . D
C;/InD;n Y04, k) = PR
eyn Zg.uowzz)D
Cupy (01, K) = =57 ny

The y component of the Lorentz part can be written as

9*M,,, 0%H, oM, ,,

atz = _EMOAML('UZZ)L atz - I—L at - wlszML'y

0*My,,(i,j, k) Mn+1(l k) = 2Mp, (i, k) + M (i k)

ot2 (At)?

oMy, (i,j, k) MPS (i g k) — M5 (i k)
ot B 2At
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(6.174)

(6.175)

(6.176)

(6.177)

(6.178)

(6.179)

(6.180)

(6.181)

(6.182)
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MPSY(, g, k) = 2M7, (g, k) + M7 (L j, k)

(At)?
Elo A, w?

=— —”0( Algz PLIHI*Y(i, j, k) — 2HD (i j, k) + HE1(i, , K]
MPIY(, j, k) — M7 (L ), k) N

-1, AL — wi M, (i, ), k)

We can simplify the updating equation for My as

MPSA(L g, k) = Copy™ (0 OMP (i, k) + Cor ™ G j KM i k)

O )0 — 2 ) + HE G )
where
e, = - _ZZJEAI?AZ:%L (6.184)
Cy ™ MG k) = IZlitFL_Ai (6.185)
Cairy (L Ji k) = = % (6.186)

Equations (6.163), (6.175) and (6.183) constitute the updating equations in y direction.

6.2.3. Updating Equation for the z Component

Cartesian component of (6.122) in z direction can be written as
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d*H, 0°H, 0%H, 0%H, 0°H, 0%H,
+ + —~ + +
0x0z 0ydz  0z? d0x?  0y?  0z*

, (6.187)
92H,
= —3M0#ooa—yz +Kp,+ My,
0°H, 0%H, 0°H, 0°H 0°H
x y z_ z Z 4 Kp,+M,, (6.188)

axdz | dydz  oxz oy | Hokegn

To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the
spatial derivatives in equations (6.188) at the corresponding magnetic field node, i.e. H,. The

time derivatives are evaluated at the n™ time step, therefore:

0%H,(i,j, k) B HMY(i,j, k) — 2HM(i, j, k) + HF (i, j, k)

6.189
Ot2 (At)z ( )
02H,(i,j, k) _HF(+1,j,k) —2H7(i,j,k) + Hy (i — 1,j, k) (6.190)
0x2 - (Ax)? .
0%H,(i,j,k) _HP(i,j+1,k) — 2HP(i,j,k) + HE(i,j — 1, k) (6.191)
0y (@y)? |
0P Hy(i,j ) _ HE(j ke +1) = HRG = 1)k + 1) = HRGJ ) + HEG = 1) (g 199y
ava AxAz

(6.193)
dyoz AyAz

Inserting (6.189) - (6.193) into (6.188), we have
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H}(,j,k+1)—H}(i—1,j,k+1)—H(,jk)+H}(i—1,j,k)

AxAz
Ii"(l],k +1)—H}(,j,k) —Hy(i,j—1,k+ 1)+ H}(i,j — 1,k)
AyAz
HYi+1,j,k)—2H"(,j, k) + H}i—1,j,k
_H7(+ 1)k Z(JZ )+H(=1,),k) (6.194)
(Ax)
(Ay)?
HIMY(,j, k) — 2HR(, j, k) + HRF (0, ), k) o o
= _g.uo.uoo = ZAt)Z 2 + Kg,Z(ll_]’ k) + MZ’;Z(lr]! k)

We can simplify the updating equation for H; as

HZY(, j k) = Cre™ (g, K THE (i, k)] + CRem G j IO [HE G i )
+ CPP™ (i j, k) [HRG + 1,5, k) + HE (i — 1,j, k)]
+ C™ (1,4, k) [HE (G, j + 1,k) + HE (i, j — 1, k)]
+ Cp ™ (0 R THE Gk + 1) = HEG = 1),k + 1) — HE G, j k) (6.195)
+HMi—1,j,k)]
+ PP (4, k) [HE G e + 1) — HE (G, j, k) — HRG,j — 1L,k + 1)
+H}G ) — LK)+ C,( ), K [KE G k) + M, (G, k)]

where
C,(L,), k) = 5(30200 (6.196)
Cry (0, 1) = =C, (0, j, k) (— ZEX‘;;“’ C Ai)z 7 Ai)2> (6.197)
Cra™ (i, k) = =C,(0,), k) ( (IZOS?) = (6.198)
Cre™ (i, J, k) = C,(i,j, k) ((Aiy) (6.199)
Cr2™ (i, k) = C,(i,j, k) ((AiP) (6.200)



1
CR™ 1,10 = =€, (rop )

N

hz‘nyZ( k) = —C,(1, J:k)( ylA >

N

The z component of the Drude part can be written as

02Kp , 0%H, 0Kp,,

2
gz - W 5 ~ o5,

azKD,Z(iﬂjlk) Kg (l ],k) _ZKDZ(L ]'k) +K321(L ]'k)
dt? (At)?

0Kp ,(i,], k) K"“(l j. k) — K51 (i), k)
ot 2At

Kg (l ] k) - 2KDz(l ]:k) +ngl(1 ]'k)
(At)2

2 H;H-l(ilj' k) - 2Hzn(l']r k) + Hzn_l(ilj' k)
= —€UoWpp (At)2
Kp3'(j, k) — K57 (i), k)
b 2At

We can simplify the updating equation for Kp ; as

K3E(i, j, k) = CRAZM (i, j, kKR, (i, j, k) + CRAZM2 (1, j, k)KE 51 (i, j, k)
+ Corn (4, K)[HF (A, j, k) — 2HZ (G, j, k) + HE (I, j, k)]
where

Cips" (01,1 = 55T
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(6.201)

(6.202)

(6.203)

(6.204)

(6.205)

(6.206)

(6.207)

(6.208)



AtT) — 2
ckdzn-1 i k) = D
ke LR =
Cezjn(i . k) _ 28.“0“);27D
Koz b 2+ [pAt

The z component of the Lorentz part can be written as

0°M,,
ot?

02H, oM,
otz L ot

— 2 2
= —gllodp Wy, — wp M),

0*Myz (g k) _ Mpz* (g k) — 2Mp, (o, k) + Mi;* (i) k)
ot? (At)?

aML,Z (i,j, k) _ ME;I(irj' k) - M?,;l(irj' k)
ot B 2At

MPEZ (i, j, k) = 2M7, (i, j, k) + M7z (0, k)
(At)?
_ S.qu.uszZ)L
(At)?
MpZ (g, k) — MEZ (0, ), k)

[HZ (6 j, k) = 2H7 (6 j, k) + Hp 71 (0 ), k)]

We can simplify the updating equation for M, ; as

MPEY(D j, k) = C2m (G, f, k)M, (G, k) + Cor2™ 7 (6, j, KIMP L (0, j, k)
+ Cofn (4, ) [HFM (W, j, k) — 2HE (L j, k) + HEY(, j, k)]

where

4 - 2(A0)%w?,
2 + At

Clzn (i, j k) =

112

(6.209)

(6.210)

(6.211)

(6.212)

(6.213)

(6.214)

(6.215)

(6.216)
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LAt —2

crizn=li i gy =2+~ (6.217)
MLz 2 + At
. 2eppdpLw;

Cuiz (0),1) = == e (6.218)

Equations (6.195), (6.207) and (6.215) constitute the updating equations in z direction.

6.3. A Note on Performance

Single-field FDTD updating equations are derived for three-dimensional dispersive
media by harnessing Lorentz-Drude model. One can reduce the formulations presented here
to two-dimensional dispersive problems and take advantage of the improvement in speed and
memory requirement as presented in Chapter 4, because the dispersive media updating
equations have structure similar to the ones derived for general non-dispersive media. The
only addition is the Lorentz and Drude parts that also exist in the traditional method. This
chapter shows that the single-field approach is applicable for dispersive as well as

nondispersive media.

6.4. Numerical Validation

To verify the numerical validity of the derived formulations, a three-dimensional
problem is set up. To perform the simulation of the structure, the single-field formulations
incorporated with LD modeled permittivity as given in Section 6.1 are used along with the
traditional formulations given in Appendix D.

The problem space includes a sphere of radius 18 nm located at the origin with the

following properties: €, = 5.9673, w,p = 2m(2.1136 x 10*°), I, = 2m(15.92 x 10'?),
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wp, = 2m(650.07 x 10'%), T, = 2mw(104.84 x 10'%) and Ag;, = 1.09. There is a point
field-source that updates x component of the electric field at (60, 60, 20) nm with a Gaussian
pulse; the total field is sampled in three different locations: (60, 60, 40) nm, (60, 60, 70) nm
and (60, 60, 100) nm. Figures 6.1, 6.2 and 6.3 show the comparison of field values calculated
by the single-field and the traditional formulations. The entire FDTD domain is 120 nm x

120 nm x 120 nm, and the sphere is located at (60, 60, 60) nm.

0.1
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Fig. 6.1 Ey field sampled at (60, 60, 40) nm.
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7. CONCLUSION

Single-field finite-difference time-domain updating equations based on single-field
have been derived for three-, two- and one-dimensional electromagnetic problems. Although
the single-field approach can be applied to either field, that is, we can develop single-field
FDTD updating equations based on E or H field, electric field based updating equations are
used for the derivation and verification purposes. Liao's absorbing boundary condition is
used whenever needed.

One-dimensional case of the single-field formulation is evaluated with an example
geometry, and it is observed that the single-field formulation is 20% faster than the
traditional one, and provides around 17% memory reduction for solving the same size
problem.

The single-field formulation has a great advantage in two-dimensional case. A two-
dimensional TM problem is constructed with an electric current source, and the field away
from the source is calculated by the single-field and the traditional formulations. First, the
stability and dispersion analyses are performed. Then, the speed and memory analyses
follow; the single-field formulation happens to be almost three times faster and requires
about 40% less memory than its traditional counterpart. A two-dimensional TE problem
evaluation is also discussed to show that the single-field formulation is advantageous for
two-dimensional TE as well as TM problems. A scattering problem of an infinite line-current
in the vicinity of a circular conducting cylinder is simulated with both formulations and the
results are compared with respect to the analytical solution; the two FDTD formulations
show similar accuracy characteristics. Another TM problem is considered to test the ability

of the single-field formulation in handling simulations that include PECs and dielectric and
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magnetic scatterers with non-zero electric and magnetic conductivity. A sectoral (2D) horn
antenna that is of great significance in practice is also simulated with both formulations;
generated fields are plotted for visual comparison and they are in good agreement.

In addition to the normal incidence case, oblique incidence case is also considered,
oblique incidence FDTD updating equations are derived and compared with the traditional
formulation in terms of accuracy, speed and memory requirements. The single-field
formulation is as advantageous in terms of speed and memory requirements in oblique
incidence case as it is in the case of normal incidence.

Finally, general FDTD updating equations based on single-field are derived for
dispersive media. Two cases are studied: (i) E-based single-field FDTD updating equations
with constant permeability and Lorentz-Drude (LD) modeled permittivity and (ii) H-based
single-field FDTD updating equations with constant permittivity and LD modeled
permeability. It is shown that single-field formulation can be obtained for dispersive media,
too. Numerical validation is performed with a three-dimensional problem that includes a
dispersive sphere. Results generated by the single-field and the traditional formulations are in
good agreement.

The single-field FDTD formulation, in overall, is faster and requires less memory for
any two-dimensional TE and TM problems with normal as well as oblique incident waves.
This is the main contribution of this dissertation. Another contribution is the derivation and
validation of single-field FDTD formulation for dispersive media analysis.

Future studies would be to investigate the compatibility of the single-field approach

with the software and hardware acceleration techniques such as parallel programming and
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Compute Unified Device Architecture (CUDA) [30, 31]. Moreover, this single-field

approach can be extended to finite-difference frequency-domain formulation.
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APPENDIX A

Dispersion Analysis in Two-dimensional Problem Space

Start with the updating equation for E; component

EF(i, ) = CZ Y NDIER TG D] + 2™ DIER (L, ]
+ C27 G DIERG,j + 1) + ER(G,j — 1]

Consider a lossless medium and assume the following monochromatic traveling-wave trial

solutions, then

ER(i,j) = Eo e J(@nAt—KyixAx—kyiyAy) (A.2)
Er1(i,j) = Eo e J(@M=1)At—kyiyDy—kyiyAy) (A.3)
Eri+1,)) = EO’Zej(wnAt—kx(ix+1)Ax—kyiyAy) (A.4)
ERr(i—1,)) = Eq e J(@ndt—ky(ix—1)Dx—kyiyAy) (A.5)
ErGj+1) = EO’Zej(wnAt—kxixAx—ky(iy+1)Ay) (A.6)
Er(i,j—1) = EO,Zej(wnAt—kxixAx—ky(iy—l)Ay) (A7)

where k, and k,, are the x and y components of the numerical wavevector, and ix and iy are

space indices. By substituting those field expressions into the updating equation, one may

obtain
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Eoze J(wM+1D)At—kyixAx—kyiyAy)
= CE2ML(i, ) [Eo pe! (00 DA kxixb—kyiyhy)]
+ CEEM (i, ) [Eo zo! (Ot Kalebx—kylyhy))
+Coy (0, )) [Eo,zej((‘mm_kx(ix+1)Ax—kyiyAy) (A8)
+ Ey e (0ndt—kx(iz=Dds—kyiydy)]
+ €57 (i, )| o ped (Onat—hutaba=hy(iy +1)Ay)

+E, Zej(amAt—kxixAx—ky(iy—l)Ay)]

el(@At) o J(wnAt—kyixAyx—kyiyAy)
_ Ceezz,n—l(i’j) [ej(—a)At)ej(amAt—kxixAx—kyiyAy)]
+ CE2M(i, ) [ e j(wnAt—kxixAx—kyiyAy)]
+ CE2% (i, )) [ej(—kxAx)ef(wnAt—kxixAx—kyiyAy) (A.9)
+ el (kxby) gi(wnit—kyixhx—kyiydy)]
+ Ceezz'y(i'j) [ej(—kyAy)ej(wnAt—kxixAx—kyiyAy)

+ o Ueyby) gj(@ndt—kyixBx—kyiyAy)]

el @8 = M, [/ COAO] + L)) + € () [/ TRt 4 el Uent)]

. ) A.l
+ Coy” (L, N[/ Tt + /)] (A1)
Coefficient values for a lossless medium are
Cor™ (i) =-1 (A.11)
(A%, 2 2 2
Cez,n -’ . — ( — —_ > A12
ez (l ]) ‘uzgz (At)z .uZEZ (Ax)z (Ay)z ( )
(AD)? 1
CE*(i, i) = (A.13)
e ) = e,
(At)? 1
CeY (i) = (A.14)
ez (1)) &, (Ay)?

Assuming that Ay = Ax = h



ej(wAt) + ej(—wAt)

2(sin (%
Sin 2

(Sin( 2

on

wAt

2
T (ax)? (Ay)z)

- [cos(k h) + cos(kyh)]

cos(k,h) + cos(k h)]

- [cos(kxh) + cos(kyh)]

kech — kyh

ki h + k, h) (
cos

2

Jos (v

3 (At)z( 2 2 )
e @0 T o2 T (ay)?
At? 1
J(=kxh) J(kxh) j(=kyh) j(kyh)
Mzszhz[(e +e ) + (e7CkyM) 4 el Ueyi))]
(At)? 2 2
2cos(wAt) = (— 2€2
(wht) e, \(AD2 "
At® 2 k.h k,h
+ s wz [cos( )+ cos( )]
At)? 2 At)?
cos(wAt) = 1—( )—+( )
z€; h?
(At)? 2 (At)2
cos(wAt) — 1 =— e, w2 hz [
2( _ (a)At))z __@9*2 @n*1
T2 T T e T e
At))z _ r2 (At)2 I
MZEZ MZEZ
At At)? k, +k
w_)) (a8 1—|[cos|[h—= 4
Uz, h? 2
2 A2 1
) -2k
2 U &, h?

hm

— (cosa + sina)

An

e

— (cosa — sina)
An

)

)
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)



Atmc
A

= sin_l{

A

An 2PPw
A

/A

1

4

|
|

1

—COS
4

1
4

[1

4

1
2 €08

1
Cc =
vV Hoéo
cAt 0.5
h - .

An An

1-— [cos (h_n (cosa + sin a)) cos (h_n (cosa — sin a))]}

—COS

—COS

1

4

(PPW

hm _ hm )
— (cosa + sina) |cos| — (cosa — sina)
An An

h
idd (cosa +sina) |cos| — (cosa — sina)
An An

hm

hm

An

T

T
(cosa + sin a)) cos <

h
(— (cosa + sin a)) cos (/1—7-[ (cosa — sina)
n

PPW

11/2

11/2

¥

1/2
(cosa — sin a))l}
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(A.27)

(A.28)

(A.29)

(A.30)

(A31)

(A.32)

(A.33)
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APPENDIX B

Single-Field FDTD Updating Equations Based on H-field

Starting with Maxwell's curl equations:

H (B.1)
VXE = —ME— (Mi+O'mH)
OE
VXxH=¢—+(J; + 0E) (B.2)

ot

Taking the curl of (B.2) and following a procedure similar to that presented in Chapter 2, one

can obtain the H-field vector wave equation as

V?H - V(V-H)

= otomH 4 (0" + o) 4 en T vyt oem v e B
=00 ge a,uat syatz Ji +o°M; Eat

To find the H-based single-field updating equations, (B.3) is decomposed into its Cartesian
components and necessary difference equations are substituted according to their positions in

the Yee-cell. Consequently, the following updating equations can be derived.
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HI(, j k) = Cre™ (6, KOHE G j k) + Cr™ (g, ) [HE 1 (6, K]
+ C™M (4, j ) HE j + 1,k) + HE(G, j — 1,k)]
+ CEM (i, j, k) [HR(L, j, ke + 1) + H2 (L j, k — 1)]
+ CPY™Y (G, k[HE G e+ 1) — HEG j, k) — HREGE = 1,5,k + 1)
+Hy(i—1,j,k)]

B4
£ O IOTHEG + 1)) — HEG 4 1,k — 1) — HEG k) o)
+ HP( j e — D]+ C2™ (4, IO G j + 1K) = T (6, 1) |
+ G g R gk + 1) — T8, (), )
+ Cr ™M, kM, (6, ), k)
+ Ct (L, )M, k) — MESE(L ), K]
where
C.(ij k) = 2A¢? (B.5)
S At(:uxo_x + €,07") + 2pyEy
.. .. 2 20U, E
C;L‘;,n(l,], k) =C.(,j, k) ((Ay)z + TOE — Aagzx n afaf) (B.6)
.. . UxEx  (UxOx + Ex07")
Crxm™ (i, j, k) = Cx(l.],k)<Athx— — (B.7)
hxny 1
01,10 = =€ (752) ©8)
hxnz(l ]1 k) - _C (L JI )<(AZ)2) (B.g)
CYm (i, ) = i) () (B.10)
' " \AxAy
hznxz /. - .. 1
Clo™2 (i, j, k) = Cy(i,j k) (AxAZ) (B.11)
G (i k) = ~Co(i,j, 10 (55) (8.12)
J» J, Ay .

- 1
Cox™ (0, j, k) = Co(ij, K (E (B.13)
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Cr " (i, j, k) = C(i,j, k) (0%) (B.14)
mxt
(ij, k) = Ce(iyj ) (2 =) (B.15)
HP (i, g, k) = Coy™ G ju K)VHR (G, k) + G ™ (i, k) [HE 236, )
+ c"y"y(z,],k)[H;(l +1,j,k) + H}Gi — 1,5, k)]
+ Coy ™ (0, [HE G j b + 1) + HRGLj, k — 1)]
+ Coy ™ (0, O [HR( + 1,4, k) — HEGE+ 1,5 — 1,k) — HEi, j, k)
+HMi,j— 1,k
hz(niz . )] .o .. L. (816)
+C, (G, j,HM,j,k+1) —H}i,j—1,k+1) — H},j, k)
+ H"(l J—LK]+ Cjznx(l LROULG+1,),k) — 53, k)]
+ G, IR G jik + 1) = TR o, K
+ Cp" (0 J, k)M (0, J, k)
+ Co (6, K [MS (g, k) — MI (i, b))
where
2At2 B.17
C, (i, j,k) = — (B.17)
At(pyoy +£,03") + 218y
2 2 2u, e
hyn _ _oyey m e
(i, ), k) = Cy(Q,j, k) ((Ax)2 + @n: AL + oy ay> (B.18)
hyn 1 Hy&y (”yay + &0y ) B.19
hyny(t} k) =—C,(i,j k)( ! ) (B.20)
) ) (Ax)z
CIIm2 (i, j, k) = —Cy i, )( ! ) (B.21)
L Jr (Az)? '
Cm (1) = €600 (o) (8.22)
' " \AxAy
CImY2 (i ko) = €, (i k)( ! ) (B.23)
J J: AyAz '
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- 1
jznx, . . _ ..
Chy (i j, k) = Cy(i,j, k) (E) (B.24)
jynz, . . .. 1
Cry " (0, ), k) = Cy (i, j, k) (o) (B.26)
myt
(i, k) = C, (i, j, k) (2 At) (B.27)
HPY(i, j, k) = G2, j, HRGL j, k) + CR2™ ™ (4, j, K THE A (0, ), )]
+ P, j, k) [HRGE + 1, ), k) + HEG — 1,), k)]
+ C™ (i, 7, k) [HE (i, j + 1,k) + HP (i, j — 1, k)]
+ CR™ (0, J, K HRG + 1,j, k) — HRFG,j, k) — HRG + 1,5,k — 1)
+ Hy(i,j, k — 1)]
hynyz . ne: nes -« nes - (B.28)
+ C, (i, ],k)[Hy(l,] +1,k) —Hy(l,],k) —Hy(l,] +1,k—1)
+ H;(L, Jok =D+ G G, UL, G+ 1,4, k) = I, (), K|
+ ™ (L, G + 1,k — G — 1,K)]
+ C (0,5, k)M, (G, k)
+ C2t (4, ) [ MG, k) — M (), )|
where
G k) = 2At2 (B.29)
2D = T At (upag + £,070) + 2i135,
2 2 2u,€
hzn _ _ z¢z m __e
(i,j,k) = C,(i,j, k) ((Ax)z + @y? A2 + o} az) (B.30)
hzn—-1,: . _ .. UzE _ (.uzo-ze + gzo-zm)
Cry, (i,j,k) =C,(,j, k) <At2 AL (B.31)
Chom (i j k) = —C, (i, j, ) (;) (B.32)
J; VA 1]; (Ax)z .
CrE™ (i, j, k) = —C, (i, j, k) (L) (B.33)
]1 VA l_]l (Ay)z .



hxnxz . - _ ..
Chz (I"JP k) - Cz(l']: k) (AXAZ)

CY2 (1) k) = €, ), k) (M)

j .. .. 1
™M (i, ), k) = —C,(i,j, k) (E)
jxny . . _ .. 1
C, (). k)=C,(3,j, k) E

Cra™ (i, j, k) = C,(i,j, k) (0F)

&
Cr (6o k) = €0, (557)
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(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)
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APPENDIX C

The Computing System Information

All of the simulations presented in this dissertation are done with a system whose

specifications are given in Table C.1 below.

Table C.1 The computing system specifications.

Processor Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz
Memory 6.00 GB

System Type 64-bit Operating System

Operating System Windows 7 Professional

Programming Language/Compiler Matlab v.7.8.0.347 (R2009a) 32-bit (win32)
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APPENDIX D

The Traditional Updating Equations with Lorentz-Drude

Model for Permittivity

Following a procedure similar to the one presented in Section 6.1, we can derive the
traditional FDTD updating equations for dispersive media based on Lorentz-Drude model.
The formulations are developed with constant permeability and LD-modeled permittivity as
given in (6.1). Moreover, this procedure can provide the dual formulations for media with a
constant permittivity and LD-modeled permeability.

Incorporating (6.1) in (6.3), and making use of (6.4), one can obtain

VX H = jweye, (w)E (D.1)
Wpp Aeywp, E (D.2)
JRPw?+ o j2ew?+jel + o),

VxH=jwsO<soo+

Introducing the Drude and the Lorentz terms,

2

. wpD
= — _ F D.3
Jp ]‘Ugojz 2+, (D.3)

2
Agpwy,

(D.4)

P, =
L7202 4 jwl, + a)zz,L

Revisiting (D.2), and using (D.3) and (D.4)
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VX H = jweyge E + Jp + jwey Py, (D.5)

Replacing jw terms with % and arranging the equations, (D.3) and (D.4) can be written in

time-domain as

d
gowopE = % + IpJp (D.6)
%P oP
ASL(A)ZZJLE = TZL + FLa_tL + a)zszPL (D.7)

We can write (D.5) and (6.2) in time domain as

OE oP,
_ D.8
VX H = &g o+ Jp + & (D.8)
oH
VXE=—py— D.9
Ho ot (D.9)

The traditional FDTD updating equations will be based on the time-domain equations (D.6)
to (D.9). Those vector equations are decomposed into their Cartesian components and
differentiation terms are discretized accordingly to obtain the following updating equations
for electric field, magnetic field, Drude and Lorentz terms. C terms represent constant

coefficients in terms of medium characteristics.
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The x component of the electric field, magnetic field, the Lorentz part and the Drude

part updating equations are

EX*1(i,j, k) = Cox (i, ), OIEZ (i, ), )]
1 1
+ Cezx(i'j; k) lH:+2(i’j' k) - H;H_Z(i'j - 1! k)l

1 1
+ Ce3x(i'j; k) lH;+2(i’j' k) - H;H-Z
+ Co (i, J, k) [P, j, k)]
+ C (4, [P0, k)]

Gi,j, k — 1)] (D.10)

n+y n-y.. . L - - (D.11)
H, “(i,j,k)=H, “(i,j,k) + Cp, (i, j, )IE}(Q,j + 1, k) — E}(i,j, k)]
+ C2.(i,j, ER (i, j, k + 1) — ER(i, j, k)]
JE (), k) = (i, ) UZ L, k)] (D.12)
+ Ch G KEF (G j, k) + EZ (i, j, k)]
PG k) = Cox (0, P (o, K] (D.13)

+ Che (0, )P (0, k)]
+ Cox (1), DER (0 J, k) + ER (0., K]
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The y component of the electric field, magnetic field, the Lorentz part and the Drude

part updating equations are

EP*(i,j, k) = €3, (i, j, )| ER(, j, k)]

1 1
+C2,(i,j, k) [H: “2(i,5,k) - H, 2(i—1,], k)l

1 1
+C3,(3i,j,k) IHZZ 21, k) — H, 2(i,j, k — 1)] (D.14)
+C3, (6, j, [P, K]
+ 8 (4, J, [P 13, ), k)]

n+y.. n-3.. . L temes A e (D.15)
H, *(i,j,k) =H, “@,j, k) + Cpy (i, j, )[EZ (0 + 1,j, k) — EZ (i, ], k)]
+ Chy (i, [ER (i j k + 1) — EX (i, j, k)]
JEG g k) = €L G g RG] (D.16)
+ 3,0, J, EF(i,j, k) + ER(, j, k)]
PPL(, j, k) = Ch, (G j, K[PRLj, K] (D.17)

+C2, (L, ), [P0, ), k)]
+ Gy (4, J, [EF(,j, k) + ER (i, j, k)]
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The z component of the electric field, magnetic field, the Lorentz part and the Drude

part updating equations are

E7 (0 j, k) = Cep (i), KIEZ (0, ), K]

1 1
+ €&, (i), k) lH;HZ(i,j, k) — H;l 23— 1,j, k)l
. n+l . . n+l ']
+C3,(i,j, k) [H, 2(i,j,k) — H, 2(i,j — 1,k) (D.18)

+ Co, (0, OUZ (0 J, )]
+ €2, (L), )R (i j, K]
+C&, (4, P (1), k)]

n+s n-t o femes 4 (D.19)
H, “(i,j,k)=H, “(i,j,k)+ Chz(l,],k)[Ey (i+1,),k)—Ej (l,],k)]
+ CL (0, j, KIERQ,j+ 1,k) — EX(i,j, k)]
JE(, ) k) = CL 3L, DR, j, )] (D.20)
+ 23, EF (i), k) + EF(i,/,1)]
Pzn+1(i,j, k) = C;Z(iljﬁ k) [PZn(i’j' k)] (D21)

+ CZ(i,j, P13, j, k)]
+ C3,(i,j, EF* (i, j, k) + EF(i, j, k)]



The constant coefficients are given as follows

0,.0,j,k)=

Celx(irj' k) =7

g0Chr (i, J, k) 14 AtCh (i, ), k)
£0€w 280€0

1 ACh( k) eoChe(in) )

.Qx Z.ngogoo -ngogoo

At

Cex(i,j k) = Dotocoby
X [oe]

At

Cc3.(i,j, k) =— WY,
X o)

At(1+ G (i), k)
20, &0€0

go(ch(i'j: k) - 1)
0,800

ng(l',j, k) = -

ng(i:j' k) = -

g0Cox(i,], k)

CSX(ilj' k) = .Q 808
X %)

CL k) = At
hx\LJ, - ‘uAy

At

2 /. .’k -

(o)

(1+552)

CL(ij k) =

2
AtwypEg

.. 2
Cr(), k) = —F—

(205

At*Ag w),

CL(i ) k) = 2

2

At“w
<1 + AT, +— ”L>
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(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)
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At?w?
2+ AT, ——— ”L>
C2.(i,j, k) = IYp (D.34)
<1 + AT, +— pL)
c3.(i,j k) = !
px(l;]; ) = Atza)zz,L (D.35)
1+ AT +—
o €0Cpy(i,j, k) AtC3, (i, j, k)
Oy P Iy (D.36)
02,(i,j, k) cotn + 260t
Chy (i k) = e — 2] 20y (001D (D.37)
12, 2000 2600
At
2, ), k) = ————— D.38
Cey(l;]: k) -ngogooAx ( )
At
30, ), k) = —— D.39
Cey(l:]; k) .ngogooAZ ( )
At(1+ CL (i, k)
4 (i), k) =— 1Y D.40
Cey(i,), k) 20, 050 (D.40)
&0(C3, 3, j, k) — 1)
CS i, "k - _ (D41)
ey (L), k) 0, 2060
.. SOCpBy(i'j:k)
6 =t - - D.42
At
LG,jk)=— D.43
Cry (i), k) X (D.43)
At
2 (i,j k) =—— D.44
Chy(ll]'k) ,LLAZ ( )
(1-2)
Cry(i,j, k) = AT (D.45)
(1+732)
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Atw;peg
C2 (i) k) = —5—— (D.46)
(1+%2)
At*Ae wp,
. . 2
Coy (L), 1) = ey (D.47)
(1 + AT, + — ”L>
(2 + AT, — 2“)“)
C2,(i,j, k) = Y (D.48)
(1 + AT, + — ”L>
c3,3i,j, k) !
py\LJ,K) = — 2.2
At2w D.49
(1 + AT, + — pL) (D.49)
- €0Cpz (i, ], k) AtC? (i, j, k)
0,3, k) =2pe 72 gy Uz DT D.50
2(0,j, k) v, +1+ T (D.50)
1 AtCL(i,j, k) ,CL,(ij k)
Celz(i:j; k) = .Q__ 2;)2 - 0~pz ] (D51)
. 2€0€00 £,E0€0
C2 (i), ) = — (D.52)
ez\b ], 1) = 0,80€Ax '
c3,(i,j, k) ar D.53
ll ) - .
ezib] ngogooAy ( )
At(1+ CL(i,j, k)
4 (i k)= — jz D.54
Cez(l;]: k) 2.{2280800 ( )
.. SO(ngZ(i'jr k) - 1)
cs (i,j k) = — (D.55)
ez\b] 0,600
SOCBZ(i,j, k)
6 (i i) =0 Pz )0 D.56
CeZ(LIJI k) .ngogoo ( )
Lo At
Crz (L), k) = — (D.57)

Ulx



At
CL(i,j k) = —(1 _ AtZFD)
jz\*r J» -
(1+°72)
Atw;peg
20: _ 2
Gt k) = ey
(1+532)
AtZAeprL
C,}Z(i,j, k) = 7,7
(1 + AT, +— ”L>
At?w?
(2 + AT, - = pL)
Co(i,j, ) = 72
(1 + AtT, + — pL)

C3,Gij, k) = —

At2w2
(1 + AT, +— ”L>
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(D.58)

(D.59)

(D.60)

(D.61)

(D.62)

(D.63)
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