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ABSTRACT 
Characterization of building energy performance indicators such as the Heat Loss Coefficient 
(HLC) based on in-situ measurement data calls for thorough building physical insight, a well-
designed measurement set-up to collect sufficient, qualitative data and adequate data analysis 
methods. On-board monitoring may be an alternative for dedicated experiments to perform the 
data collection task. This paper analyses the sensitivity of the end-result of the characterization, 
the HLC estimate, to flaws in the monitoring data set. More specifically, the impact of not 
installing submeters to disentangle the gas consumption for space heating and the production 
of domestic hot water is evaluated. Hereto, multiple gas decomposition methods are applied on 
a case study monitoring data set, after which the HLC is assessed. The results show deviations 
up to 33% for the mean estimate and non-overlapping 95% confidence intervals. 
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INTRODUCTION 
Building energy performance (BEP) characterization based on in-situ measurements has 
recently been gaining much attention in the framework of IEA EBC Annex projects 58 and 71. 
Furthermore, Bauwens (2015), Deconinck (2017) and Farmer et al. (2017) demonstrate how the 
thermal resistance of building elements and the HLC of building envelopes can be estimated 
through application of statistical modelling techniques on data collected in on-site steady-state 
an dynamical measurement experiments. The HLC hereby describes the amount of heating 
power needed to maintain a temperature difference of 1 degree Kelvin over the entire building 
envelope [W/K]. The case studies investigated to date, however, mainly focus on mock-ups or 
unoccupied dwellings. Not only because the measurement conditions can be better controlled, 
but also because the measurement set-up can be perceived as intrusive and costly.  
On-board monitoring, using sensors to collect data of an occupied, in-use building, is put 
forward as a solution to the issues of cost and intrusiveness (Saelens and Reynders, 2016). 
However, much uncertainty still exists about the optimal sensor set-up, the way disturbances 
induced by occupants should be handled, etc. 

The present paper aims to address a particular data related challenge that researchers, aspiring 
to estimate the HLC, might have to face; namely that the same type of fuel has been used for 
both space heating (SH) and the production of domestic hot water (DHW), and that no 
submeters can or have been installed to differentiate between both end uses.  
The dynamic heat balance for a single zone (Eq.1), which forms the framework for both the 
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monitoring campaign and the data analysis model, stipulates that the HLC at each timestep t 
depends on the effective heat capacity Ci [J/K] of the zone, the difference between the interior 
and exterior temperature (Ti and Te resp. in [K]), the heat flow rates due to mechanical 
ventilation with heat recovery, internal and solar gains (φvent,hr, φint and φsol resp.), and the net 
power supplied by the heating system φH [W]. This final term not only implies that the gross 
fuel consumption has to be conversed in net energy use on the basis of the system efficiency, 
but also that the energy use for SH should be separated from that for DHW production and that 
the latter should be eliminated from the analysis for as far that it does not induce internal gains. 

𝐶𝐶𝑖𝑖 ∙ 𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻𝐶𝐶 ∙ �𝑇𝑇𝑖𝑖;𝑑𝑑 −  𝑇𝑇𝑒𝑒;𝑑𝑑� +  𝜑𝜑𝑣𝑣𝑒𝑒𝑣𝑣𝑑𝑑,ℎ𝑟𝑟;𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑣𝑣𝑑𝑑;𝑑𝑑 + 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠;𝑑𝑑 + 𝜑𝜑𝐻𝐻;𝑑𝑑 (1) 

Not decomposing the fuel consumption results in an overestimate of the HLC. However, 
disentangling it incorrectly might just as much lead to an erroneous estimate. This paper will 
therefore evaluate the sensitivity of the HLC estimate to the approach used to determine the 
not-monitored fuel (gas) consumption for space heating.  
The first part of the methodology section describes the case study dwelling and on-board 
monitoring campaign used to this end. Next, three different ways to decompose the gas 
consumption and thus approach φH are discussed. In the final part of the methodology section, 
the data analysis procedure used to estimate the HLC is delineated. In the results section, 
differences between the decomposition outcomes are shown, and, more importantly, their 
impact on the characterization of HLC is demonstrated. Finally, conclusions are drawn on the 
present study and recommendations are given for future research. 

METHODOLOGY 
Case study dwelling and on-board monitoring campaign 
The object of this study is a semi-detached, two-story house built in 2012 in Gainsborough, UK. 
A theoretical HLC of 47 W/K is calculated based on the target U-values and surface areas of 
the building envelope parts, the average result of three blowerdoor tests, and the assumption 
that the efficiency of the mechanical ventilation heat recovery unit equals 100 %. SH and DHW 
are provided by a gas fired combi boiler. Together with the other dwellings in its terrace, the 
house has been the subject of a monitoring campaign conducted from October 2012 until 
November 2015. During this period, the dwelling was inhabited by three persons. The interior 
temperature of the living room and bedroom (both from the studied and neighbouring dwelling), 
the exterior temperature, the gas, water and electricity consumption and the PV production were 
monitored with a 5 min sample frequency. Hourly averaged values of the global horizontal solar 
irradiance (GHR) were obtained from a RAF weather station located 30 km from the site. A 
detailed description of the dwelling and performed monitoring campaign can be found in 
(Sodagar and Starkey, 2016), in which the dwelling is referred to as ‘House 1’. 

Gas consumption decomposition methods (DMs) 
Classifying all gas consumption for the production of DHW as internal gains and thus assessing 
HLC based on the total gas consumption (‘No decomposition’) is incorrect since the hot tap 
water directly leaves the dwelling through the sewage system.  
A first decomposition method to disentangle both end uses (‘DM1’) could therefore be the 
application of a default distribution. In this case study there will be opted for a 76/24 distribution 
for the end uses SH/DHW, as reported by Menkveld (2009). A major drawback of this method 
is that it does not take the actual consumption, SH demand or occupant behavior into account. 

The second decomposition method (‘DM2’) is fully based on the assumptions that (1) in the 
case of the combi boiler, the production of DHW and SH do not occur at the same time and (2) 
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the gas consumption for DHW production perfectly coincides with the DHW consumption. It 
involves the implementation of two rules on the 5min-interval monitoring data. The first rule 
stipulates that the gas consumption for DHW production must be set to 0 when mains water 
consumption is 0, else gas consumption for the production of DHW must be set equal to the 
total monitored gas consumption. The second rule states that the gas consumption for SH must 
be set to 0 when mains water is consumed, else gas consumption for SH must be set equal to 
the total monitored gas consumption.  
This DM is straightforward and easy to implement. However, a number of potential flaws can 
be identified. First, the assumptions imply that all cold water tappings occurring while gas is 
used for SH are classified as DHW usage. The fact that grey water is used to flush the toilets 
though makes this assumption more reasonable. Secondly, the hot water tappings could be 
significantly shorter than the 5 min sampling time. Yet, from the moment water consumption is 
observed, however small, the full gas consumption for that 5 min period is allocated to DHW 
production. Higher frequency logging could solve this issue. Thirdly, small time delays between 
starting and stopping of water and gas consumption will create some error.  

The third approach, ‘DM3’, which was demonstrated by Bacher et al (2016), uses a robust, zero 
order, Gaussian kernel smoother to estimate the ‘gas consumption for SH’-profile underlying 
the noisy 5 min gas consumption data. Next, all spikes of the total gas consumption significantly 
above this kernel (smoother) estimate are classified as DHW heating spikes and their values are 
obtained by subtraction of the kernel estimate. Finally, subtraction of the estimated heat load 
for the production of DHW from the total heat load gives an estimate for the heat load for SH.  
The parameters of the kernel smoother procedure were tuned with an eye on limiting the gas 
consumption classified as ‘gas used for space heating’ during the summer months. The final 
model parameter values are as follows: kernel window: 1 h, bandwidth: 0.5 h, threshold for 
bisquare robust estimation γ: 7 MJ/h, separation threshold qtres: 1.1.  
Just like DM2, this decomposition method has not been verified on a case study were the total 
gas consumption and the consumption for the production of DHW and SH were measured 
separately. In contrast with the previously described approach, this method assumes that gas 
consumption for both end uses can occur simultaneously. It should furthermore be noted that 
all peaks are classified as DHW heating, although the start-up of the space heating might also 
result in a similar peak in the fuel consumption. 

Determination of HLC 
For the characterization exercise, four periods were selected from the entire data set: a relatively 
long model training period, extending from the 1st of October 2014 till the 31st of March 2015, 
and three different shorter model validation periods, in January, February and March 2014. 
With the heat balance equation (Eq.1) in mind, the following variables were selected from the 
monitoring data; the exterior temperature Te, the interior temperature of the dwelling itself and 
the neighbouring dwelling (Ti and Tn, resp). Both Ti and Tn are approximately determined as 
the arithmetic mean of the sensor data collected in the living room and bedroom. In the absence 
of data on the incident radiation on the different facades, the GHR will be used to represent Isol. 
After adaptation with the calorific values published by National Grid (2017) and decomposition 
through one of the above-mentioned decomposition methods, the gas consumption data will be 
used as φH. The system efficiency is thus assumed to be equal to 100 %. Although this value is 
uncertain and in reality not even constant, this will not pose an issue for this study, which 
focuses on the relative differences caused by DMs used for gas consumption. The same holds 
for the other assumptions made. Finally, the internal gains φint are neglected in a first run (‘φint 
= 0’) and assumed to equal the total electricity consumption in a second run (‘φint > 0’). The 
latter variable is hereby approximated as the mains electricity consumption plus half of the PV 
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production to account for the not-submetered electricity that is directly fed to the grid. 
Next, an Auto-regressive with eXogenous input (ARX) model is fitted on the selected time 
series data, utilizing the ‘lm’ function in R-Studio: 

𝜑𝜑𝑖𝑖(𝐵𝐵) ∙ 𝑻𝑻𝒊𝒊;𝒕𝒕 = 𝜔𝜔𝑒𝑒(𝐵𝐵) ∙ 𝑻𝑻𝒆𝒆;𝒕𝒕 + 𝜔𝜔𝑣𝑣(𝐵𝐵) ∙ 𝑻𝑻𝒏𝒏;𝒕𝒕 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵) ∙ 𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔;𝒕𝒕 + 
𝜔𝜔𝐻𝐻(𝐵𝐵) ∙ �𝝋𝝋𝑯𝑯;𝒕𝒕 +  𝝋𝝋𝒊𝒊𝒏𝒏𝒕𝒕;𝒕𝒕� + 𝐼𝐼𝐼𝐼𝐼𝐼 +  𝜀𝜀𝑑𝑑 (4) 

with Ti, Te, Tn, Isol, φH and φint the previously determined variables, resampled to hourly values, 
and φi(B) an input polynomial of order pi in the backshift operator B. Likewise, the ωx(B)’s 
are output polynomials of order px. Int is a constant intercept term and εt the residual (error) 
(Madsen, 2016). 
To decide on the model order, a backward elimination procedure is followed, starting from a 
model including 24 lags for each of the considered polynomials. After every run, the 
significance of the fitted model coefficients is verified using a t-test (threshold of p < 0.05), 
starting with the highest available order. When coefficients of a certain order prove 
insignificant, their variables are eliminated from the model description and the model is refitted. 
The iterative process ends when all model coefficients present are significant.  
To validate the developed models, it is verified whether their residuals resemble white-noise in 
plots of the autocorrelation function (ACF) and cumulated periodogram (CP). By comparing 
the normalized RMSE (nRMSE) [%] between the measured interior temperature and its one-
step-ahead prediction for both the training and a validation period, it is checked whether the 
model is not overfitted.  
If the model is accepted, HLC is calculated as the quotient of steady-state gains ωe(1)/ωH(1). 
Finally, the models are compared based on (1) their score for the Akaike Information Criterion 
(AIC) and (2) the nRMSE between the observed and simulated interior temperature for the 
cross-validation periods. For both criteria, a lower value indicates a better model. 

RESULTS ANALYSIS AND DISCUSSION  
Differences between the gas consumption for SH estimated by the DMs 
Table 1 compares the decomposition of gas consumption for SH and DHW production obtained 
through the different approaches. The default method (DM1) almost always results in a higher 
gas consumption for SH than DM2 and DM3. The method with the robust kernel smoother 
(DM3) uses a certain threshold instead of selectively classifying the gas consumption as either 
gas consumption for SH or production of DHW as DM2 does. This way it appears to 
systematically obtain a lower gas consumption for SH. 

Table 1: Total gas consumption [kWh] and the gas consumption for SH as estimated by the four 
approaches [expressed as a percentage of the total gas consumption], per month.  

Oct 2014 Nov 2014 Dec 2014 Jan 2015 Feb 2015 Mar 2015 
Total gas consumption 188 kWh 286 kWh 486 kWh 526 kWh 428 kWh 267 kWh 
No decomposition 100 % 100 % 100 % 100 % 100 % 100 % 
DM 1 76 % 76 % 76 % 76 % 76 % 76 % 
DM 2 58 % 69 % 74 % 77 % 74 % 59 % 
DM 3 44 % 55 % 62 % 63 % 59 % 45 % 

Validation of developed ARX models 
Given the applied model selection procedure, all finally included parameters of the 8 models (4 
variants for φH times 2 scenarios for φint) are significant. Except for the models with φH based 
on DM2 or DM3 and φint =0, the interior temperature of the neighboring dwelling appeared to 
be an insignificant model input, probably because of a nearly constant profile of Tn. For the 
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other validation tests, the results were positive for all models: the nRMSE did only increase 
with about 1 % for the one-step-ahead cross-validation test, and the ACF and CP plots indicated 
white noise residuals. All models thus appear to be statistically valid. 

Comparison of resulting HLC 
Figure 1 shows the impact of the applied gas decomposition method on the HLC estimate, and 
this for the two different φint scenarios. The models appear to yield fairly different results, with 
95 % confidence intervals that do not all overlap. In the case of φint = 0 the mean estimates 
range from 47 to 71 W/K, which is a difference of 33 %. The assumption that the internal gains 
equal the (approximated) total electricity consumption not only slightly reduces the uncertainty 
on the outcomes, but also lowers the impact of the choice for a certain DM (maximal difference 
of 25 % between the means). Nonetheless, the mean outcomes for DM2 and DM3 still differ 
with 14 %. Notably, the observed deviances are dwelling and occupant specific. In the case of 
a less-insulated dwelling with a lower DHW consumption and higher setpoint temperature of 
the heating system, the sensitivity of the characterization result to the applied DM may be lower. 

The majority of the estimates fall above the calculated reference value, suggesting that the 
actual HLC is higher. As neither DM2 nor DM3 has yet been validated and the information 
available on the boiler is limited, it is impossible to claim that one of the HLC outcomes 

Figure 1: Overview of the HLC estimates and their related 95 % confidence intervals for the 
different models. The dashed line indicates the theoretically calculated reference value. 

Table 2: Comparison of the different models based on the AIC and nRMSE between the 
measured (Ti) and simulated (T̂i) interior temperature. 

AIC nRMSE(Ti, T� i) [%] for validation periods in: 
Training period Jan ‘14 Jan-Feb ‘14 Feb-Mar ‘14 

φint = 0 
No decomposition -4319.60 24.52 18.59 33.62 
DM 1 -4316.53 24.51 18.62 33.69 
DM 2 -4585.14 14.07 10.13 14.72 
DM 3 -4515.00 18.10 17.25 16.76 
φint > 0 
No decomposition -3415.77 35.74 28.44 43.49 
DM 1 -3390.58 43.01 34.22 48.54 
DM 2 -3558.96 22.05 16.04 23.96 
DM 3 -3548.66 26.94 26.75 30.34 
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is correct. However, some conclusions can be drawn from a statistical point of view. When 
comparing the models’ AIC and their nRMSEs for the simulation validation periods (Table 2), 
we see that the models with φint = 0, and the models where DM2 (and DM3) are applied, are 
better capable of predicting the interior temperature. The more accurate predictions on cross-
validation data may indicate more correct input data and a more accurate model structure, and 
are therefore argued to be a reason for favoring the outcome of those models. 

CONCLUSION 
The present paper explored how the HLC of a building envelope can be characterized based on 
on-board monitoring data. The focus was on the sensitivity of the characterization outcome to 
the preciseness of the knowledge on the supplied net heating power. This way the paper aimed 
to address the common problem that the two end-uses of gas (SH and DHW) are not 
submetered. By means of a case study, diverse approaches to approximate the unknown gas 
consumption for SH were illustrated. It was uncovered how, depending on the approach used, 
the HLC outcome can be 33 % apart. Uncertainty regarding other variables involved, e.g. the 
internal gains, furthermore influences this result. Since the applied gas decomposition methods 
have not yet been validated, the ‘correct’ characterization outcome could not be identified. 
However, based on statistical model comparison tests, suggestions on the trustworthiness of the 
outcomes were given. Submetering the gas consumption would, however, clear all doubts and 
increase the accuracy of the outcome. In next steps the applied decomposition techniques should 
be validated and the sensitivity of the HLC estimate towards assumptions on other variables 
(e.g. the system efficiency, interior temperature, incident solar radiation) should be explored.  
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