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Abstract

We explore the anomaly induced effective QCD meson potential in the

framework of the effective Lagrangian approach. We suggest a decoupling

procedure, when a flavored quark becomes massive, which mimics the one

employed by Seiberg for supersymmetric gauge theories. It is seen that, after

decoupling, the QCD potential naturally converts to the one with one less

flavor. We study the Nc and Nf dependence of the η′ mass.
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I. INTRODUCTION

In the last few years there has been a great flurry of interest in the effective Lagrangian

approach to supersymmetric gauge theories. This was stimulated by some papers of Seiberg

[1] and Seiberg and Witten [2] in which a number of fascinating “exact results” were ob-

tained. In particular Seiberg has provided a very interesting picture for different phases of

supersymmetric gauge theories. There are already several interesting review articles [3–5].

It is natural to hope that information obtained from the more highly constrained super-

symmetric gauge theories can be used to learn more about ordinary gauge theories, notably

QCD. In a recent paper [6] it was shown how the effective Lagrangian for super QCD might

go over to the one for ordinary QCD by a mechanism whereby the gluinos and squarks in

the fundamental theory decouple below a given supersymmetric breaking scale m. To ac-

complish this goal a suitable choice of possible supersymmetry breaking terms was used. An

amusing feature of the model was the emergence of the ordinary QCD degrees of freedom

which had been hidden in the auxiliary fields of the supersymmetric effective Lagrangian.

Constraints on the supersymmetry breaking terms were obtained by requiring the trace of

the energy momentum tensor to agree (at one loop level), once supersymmetry was broken,

with that of ordinary QCD. It was also noticed that a reasonable initial picture resulted

by neglecting the Kähler terms in the original supersymmetric effective Lagrangian. This

feature is analogous to Seiberg’s treatment [1] of supersymmetric effective Lagrangians with

different numbers of flavors. It led to a dominant piece of the QCD effective Lagrangian

possessing a kind of tree level ”holomorphicity”. Physically this corresponds to the explicit

realization of the axial and trace anomalies by the model.

In this letter we will further explore the ”holomorphic” part of the potential for QCD

with Nf(< Nc) massless quarks as obtained by breaking super QCD according to the scheme

above (see section III of [6]). In particular, we shall study the analog of the decoupling

procedure used in [1] when one flavor becomes heavy. In the present case we no longer have

the protection of supersymmetry for deriving exact results so the procedure will be carried

out at the one loop level. The analog of the Affleck-Dine-Seiberg (ADS) superpotential [7]

turns out to be [6] the holomorphic part of the potential:

V (M) = −C (Nc, Nf)





Λ
11
3

Nc−
2
3
Nf

detM





12

11(Nc−Nf)
+ h.c. , (1.1)

where Λ is the invariant QCD scale and the meson matrix M contains N2
f scalars and N2

f

pseudoscalars. A particular choice of the dimensionless positive quantity C (Nc, Nf) was
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made in [6]. Here we find the constraints on C (Nc, Nf ) which follow from decoupling.

The result can be used to suggest that the well known [8,9] large Nc behavior of the η′

(pseudoscalar singlet) meson mass should also include an Nf dependence of the form:

M2
η′ ∝

Nf

Nc − Nf

Λ2 (Nf < Nc) . (1.2)

This could be considered an indication that, while Mη′ is suppressed in the large Nc limit,

there is an enhancement mechanism for Nf near Nc − 1 to explain its relatively large nu-

merical value.

II. MESON POTENTIAL AND QUARK DECOUPLING

The various super QCD (SQCD) effective Lagrangians [7] are essentially derived using

the anomaly structure of the underlying gauge theory as well as supersymmetry. It is thus

interesting to first see how much of the effective QCD Lagrangians we get after decoupling

the super-partner fields, follows just from anomaly considerations. In ordinary QCD the

two relevant anomalies are the trace and Adler-Bell-Jackiw UA(1) anomalies:

θm
m = −b

g2

32π2
F mn

a Fmn;a ≡ 2bH , (2.1)

δUA(1)VQCD = Nfα
g2

32π2
ǫmnrsF

mn
a F rs

a ≡ 4NfαG . (2.2)

Nf is the number of flavors, b =
11

3
Nc −

2

3
Nf is the coefficient of the one loop beta function

and left handed quarks have unit axial charge. H and G can be interpreted as composite

operators describing, in the confining regime, the scalar and pseudoscalar glueball fields [10].

The general effective (i.e. in terms of composite operators) potential which, at tree level,

saturates the one loop anomalies is [10]:

V = −bF
∑

n

cn

n
ln
(

On

Λn

)

+ h.c. + VI , (2.3)

where On is an operator built out of the relevant degrees of freedom at a given scale µ

(glueballs, mesons, baryons, ..) with mass dimension n and axial charge qn, F = H + iδG

and VI is a scale and UA(1) invariant potential. The anomaly constraints are:

∑

n

cn = 1 ,
∑

n

cn

n
qn =

2Nf

bδ
. (2.4)

Λ is connected with the invariant scale of the theory and the θ parameter (at one loop) via

Λb = µbe−τ with τ = 8π2

g2(µ)
− iθ. At high scales ( µ ≫ Λ) we expect to approach the classical
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regime where the glue potential displays the holomorphic structure −τ(H + iG)+h.c.. This

suggests choosing δ = 1 and hence F = H + iG. Here we assume that the lightest meson

(M)∗ and glueball (H and G) fields are the relevant degrees of freedom. It is amusing to

notice that the field associated with the UA(1) transformation (η′) can only appear in the

first term of the potential in Eq. (2.3).

We can arrange the anomaly potential (first term in Eq. (2.3)) to be ”holomorphic” by

setting On = On (F, detM). By holomorphic we mean a potential of the form χ(Φ) + h.c.

where χ is a function of the generic complex field Φ. Now, in Ref. [6] it was shown that a

suitable decoupling of the holomorphic superpotential in the Taylor Veneziano Yankielowicz

(TVY) model [7] yielded an important ”holomorphic” contribution to the ordinary potential

for QCD. For Nf (< Nc) flavors the result was of the form

V (F, M) = −
11

12
(Nc − Nf) F

[

ln

(

−NcF

γΛ4

)

− 1

]

− F ln

(

detM

Λ3Nf

)

+A (Nf , Nc) F + h.c. , (2.5)

where γ =
12Nc − 4Nf

11Nc − 2Nf

and A (Nc, Nf) is a dimensionless constant which cannot be fixed by

saturating the QCD anomalies and assuming holomorphicity. This is because the term AF

does not contribute to θm
m and is also a chiral singlet. The potential in Eq. (2.5) is easily

seen to be consistent with the general form in Eq. (2.3), and the associated constraints in

Eq. (2.4) when the scale dimension of M is fixed to be 3 and δ = 1. (The constants are

c4 = 1 − 3
Nf

b
and c3Nf

= 3
Nf

b
).

By integrating out the ”heavy” glueball field F one obtains the ”light” meson field

potential for M . This is given in Eq. (1.1) wherein the unknown coefficient C (Nc, Nf) is

related to A(Nc, Nf) by the following expression:

A (Nc, Nf) =
11

12
(Nc − Nf) ln

(

12

11

Nc

γ (Nc − Nf)
C (Nc, Nf)

)

. (2.6)

Similar effective potential models and some related phenomenological questions have already

been discussed in the literature [11–15].

The potential for the meson variables in Eq. (1.1) is similar to the effective ADS super-

potential for massless super QCD theory with Nf < Nc [7]

WADS(T ) = − (Nc − Nf)





Λ
3Nc−Nf

S

detT





1
Nc−Nf

, (2.7)

∗In Ref. [6] M ≃ −q̄RqL was denoted FT .
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where T ≃ QQ̃ is the composite meson superfield, Q and Q̃ are the quark super fields and ΛS

is the invariant scale of SQCD. In the instanton generated super potential the exponent of

ΛS is the coefficient of the super symmetric beta function. In the potential for the ordinary

meson variables Eq. (1.1) the exponent inside the square brackets of the QCD invariant scale

Λ is similarly the coefficient of the one loop QCD beta function b =
11

3
Nc −

2

3
Nf . As in

the SQCD case the ordinary QCD potential Eq. (1.1) can also be constructed if we assign

to Λb charge 2Nf under the matter field axial transformation, as prescribed by the θ-angle

variation, and if holomorphicity in the coupling constant is assumed.

An important difference with respect to the ADS superpotential, as already explained

in Ref. [6], is the fact that the QCD potential displays a fall to the origin while the ADS

potential does not have a minimum for finite values of the squark condensate. In [6] it was

shown that the fall to the origin can be cured by introducing non holomorphic terms which

also trigger spontaneous chiral symmetry breaking.

The mesonic holomorphic potential, due to the presence of the appropriate beta function,

is expected to hold for any Nf < Nc. In particular a non trivial check would be to decouple

a single heavy flavor and show that the potential reduces to the potential for one less flavor

fermion. A similar procedure, at the supersymmetric level, was used by Seiberg to check

the validity of the ADS superpotential. This is in the same spirit as the well known [16]

criterion for decoupling a heavy flavor (at the one loop level). For a small mass m of the Nf

-th quark the perturbative contribution, prescribed in the fundamental lagrangian, of the

mass operator to the potential is

V (M) = · · · − mM
Nf

Nf
+ h.c. . (2.8)

To achieve a complete decoupling we generalize the perturbative mass operator to

Vm = −m∆M
Nf

Nf

Γ
+ h.c. , (2.9)

where dimensional analysis requires ∆ = 4 − 3Γ. We interpret the departure from unity of

∆ as an effective dynamical evolution of the chiral symmetry breaking operator for large

values of m. The total potential for large m,

VT (M) = −C (Nc, Nf)





Λ
11

3
Nc−

2

3
Nf

detM





12

11(Nc−Nf)
− m∆M

Nf

Nf

Γ
+ h.c. , (2.10)

where Λ is the appropriate invariant scale for Nf flavors and Nc colors, must convert to the

potential for Nf − 1 light quarks. Notice that the generalized mass term preserves the holo-

morphic structure. Here it is being assumed that the non-holomorphic terms in the potential
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can be treated as small pertubations. A similar mass operator was already introduced in

Ref. [6] to appropriately decouple the gluino in the underlying theory. Eliminating the heavy

degrees of freedom by their equations of motion and substituting back in the potential gives

V (M̂) = −
[

Γ + w

w

]

[

C (Nc, Nf) w

Γ

] Γ
Γ+w





Λb(Nc,Nf )m
∆
Γ

detM̂





Γw
Γ+w

+ h.c. , (2.11)

where w =
12

11 (Nc − Nf )
, b(Nc, Nf) is the coefficient of the beta function for the theory with

Nc colors and Nf flavors and M̂ is the meson matrix for Nf − 1 flavors. In the standard

physical picture the gauge coupling constant evolves according to the QCD beta-function

for Nf flavors above scale m and according to the QCD beta-function for Nf − 1 flavors

below scale m. Since the coupling constant at scale µ is given by

(

Λ

µ

)b

= exp

(

−
8π2

g2(µ)

)

,

the matching at µ = m requires

(

ΛNc,Nf

m

)b(Nc,Nf)
=

(

ΛNc,Nf−1

m

)b(Nc,Nf−1)
, which yields

Λ
b(Nc,Nf−1)
Nc,Nf−1 = Λ

b(Nc,Nf)
Nc,Nf

m
2
3 . (2.12)

If we require the presence of the chiral symmetry breaking term in Eq. (2.10) to convert

the Nf theory into the Nf − 1 theory, the ratio ∆/Γ is fixed to
2

3
and by using the relation

∆ = 4 − 3Γ one derives

∆ =
8

11
, Γ =

12

11
. (2.13)

This value† of Γ is exactly what is needed to get the correct exponent

Γw

Γ + w
=

12

11 (Nc − Nf + 1)
, (2.14)

in Eq. (2.11). A consistent decoupling is obtained provided that the coefficient C (Nc, Nf)

obeys the following recursive relation

[

C (Nc, Nf)

Nc − Nf

]Nc−Nf

=

[

C (Nc, Nf − 1)

Nc − Nf + 1

]Nc−Nf +1

. (2.15)

The general solution of Eq. (2.15) is finally,

†These are the same exponents found in section II of [6] for decoupling a massive gluino. Here

we can also use, as in [6], the one loop matching of the anomaly of the traced energy momentum

tensor to derive the same exponents.
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C (Nc, Nf) = (Nc − Nf) D (Nc)
1

Nc−Nf . (2.16)

Using Eq. (2.6), A (Nc, Nf) can be expressed as the function of D:

A (Nc, Nf) =
11

12
(Nc − Nf) ln

(

12

11

Nc

γ

)

+
11

12
lnD (Nc) . (2.17)

It is interesting to contrast the result in Eq. (2.16) for the coefficient of the ”holomorphic”

part of the QCD potential Eq. (1.1) with Seiberg’s result [1] C (Nc, Nf) = (Nc − Nf ) for

the coefficient of the ADS superpotential in Eq. (2.7). Clearly, in the SUSY case the analog

of D(Nc) is just a constant (which turns out, in fact, to be unity by an instanton analysis

[1]). This feature arises in the SUSY case because of the existence of squark fields which can

break the gauge and flavor symmetries by the Higgs mechanism; it leads to C (Nc, Nf) =

C (Nc − Nf ). Since there are no appropriate scalar fields in ordinary QCD we do not expect

such a feature. The possibility of a non-constant D(Nc) factor can thus be taken as an

indication that there is no Higgs mechanism present.

III. PHYSICAL EFFECTS

As mentioned above, we must add to the ”holomorphic” piece of the potential (Eq. (1.1)

with Eq. (2.6)) a ”non-holomorphic” piece in order to prevent a ”fall to the origin”. This

would also yield a non-zero value for 〈M b
a〉. The non-holomorphic piece will be required to

neither contribute to the trace anomaly nor to the axial anomaly. At the level of Eq. (2.3),

where the ”heavy” glueball fields have not yet been integrated out, such a potential could

be of the form

VI =
∑

n

An (F ∗F )
1
2
− 3

4
n Tr

[(

M †M
)n]

, (3.1)

where the A’s are real constants. (For definiteness the terms have been restricted to those

which are leading in the large Nc limit). For our initial analysis we assume that VI is small

compared to the holomorphic piece and can be treated as a pertubation. An example of a

single term with n > 2
3

was presented in Ref. [6]. An analogous term without the heavy F

fields is

V ′
I =

∑

n

A′
nTr

[(

M †M
)n]

, (3.2)

which should be added to Eq. (1.1). The new feature of the present model is that the

piece which mocks up the anomalies can be thought of as inheriting a specific holomorphic

structure from the SQCD theory.
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Since the model of Eq. (1.1) plus Eq. (3.2) contains a great deal of arbitrariness it is

natural to wonder what can be learned from it. The key point is that Eq. (3.2) possesses an

axial U (Nf )L
× U (Nf)R

symmetry and cannot contribute to the η′ (pseudoscalar singlet)

mass. Thus we may learn something about this quantity from Eq. (1.1) directly. Now the

η′ field may be isolated from the meson matrix M as

M = KŨ exp



i
η′

αΛ
√

Nf



 , (3.3)

where K = K†, Ũ † = Ũ−1, detŨ = 1 and α is a dimensionless real constant. K contains the

scalar fields and Ũ the non flavor-singlet pseudoscalars. For our present purpose we may set

K = βΛ31, where β is another dimensionless real constant. For simplicity we shall make

the approximation α = β = 1, which will not affect our results in the large Nc limit. Then

substituting Eq. (3.3) into Eq. (1.1), using Eq. (2.16) and expanding the result to quadratic

order in η′ yields the mass

M2
η′ =

2Nf

Nc − Nf

(

12

11

)2

Λ2D (Nc)
1

Nc−Nf . (3.4)

Here it has been assumed that the η′ has the canonical Lagrangian mass term −
1

2
∂mη′∂mη′.

If the factors α and β were to be included the right hand side of Eq. (3.4) would get multiplied

by α−2β
−

12Nf

11(Nc−Nf) . α does not have any large Nc dependence and that of β gets washed

out.

D(Nc) is unspecified by our model so we cannot predict Mη′ . We can however check the

dependence on Nc of the quantities in Eq. (3.4) for large Nc. It is well known [8,9] that

M2
η′ ∼ 1/Nc for large Nc. Furthermore, 〈F 〉 (defined after Eq. (2.3)) should behave like Nc

for large Nc by standard counting arguments. Hence (see the discussion after Eq. (2.18) of

Ref. [6]) Λ is expected to behave as (Nc〈F 〉)
1

4 ∼ N
1

2
c at large Nc. For consistency we thus

expect the large Nc behavior

D (Nc) ∼
(

1

Nc

)Nc

. (3.5)

It is amusing to observe that when Nf is close to Nc the resulting pole in Eq. (3.4) suggests

a possible enhancement mechanism for the η′ mass. This could explain the unusually large

value of this quantity in the realistic three flavor case.

Of course the Nf = Nc case is rather non-trivial. Equation (1.1) shows that the overall

coefficient of our model, C (Nc, Nf ) should vanish for Nf = Nc. This is what happens

in the SQCD situation. There, Seiberg [1] shows that the effective superpotential should

7



be replaced by a quantum constraint which also involves the baryon superfields. Before

considering the analog of these results in our context, let us try to understand the situation

a little better by going back to the holomorphic part of the potential in Eq. (2.5), in which

the heavy glueball field F has not yet been integrated out. Focusing on the pieces of Eq. (2.5)

which are related to generating an η′ mass we get in a schematic form

V (F, M) ∼ − (Nc − Nf) G2 + η′G , (3.6)

where G is the pseudoscalar glueball field defined in Eq. (2.2) and inessential factors have

been dropped. The first term is a wrong sign (for Nf < Nc) mass term for G and is obtained

by expanding the first term of Eq. (2.5). Integrating out G according to the equation of

motion results in a correct sign mass term for the η′ as long as Nf < Nc. It is clear that

this mechanism will not work for Nf ≥ Nc From our present treatment we can see what

is likely to be happening in the case of ordinary QCD. Here the non-holomorphic piece in

Eq. (3.1) may contain a −G2 piece when it is expanded and may thus generate an η′ mass.

We have been treating VI in Eq. (3.1) as a small pertubation but, for consistency, it must be

non-negligible especially for Nf ≥ Nc. The usual phenomenology is consistent with the large

Nc approximation to QCD so perhaps it is easiest to use the present model in that case too.

In that event we would always have Nf ≪ Nc. However it is certainly of interest to examine

the small Nc case. The present model suggests that something different is occurring as we

let Nf vary near Nc. It is noteworthy that recent preliminary computer simulations [17]

indicate that there is a rather noticeable change in the quark condensate for Nf near Nc.

Now let us return to the discussion of the holomorphic part of the potential and point

out that formally the Nf = Nc case can be handled as in SQCD. When we put Nf = Nc in

Eq. (2.5)

V (F, M) → −F ln

(

detM

eA(Nc,Nc)Λ3Nc

Nc,Nc

)

+ h.c. . (3.7)

Integrating out F then gives the constraint on the field M ,

detM = eA(Nc,Nc)Λ3Nc

Nc,Nc
, (3.8)

rather than a potential V (M). In fact the holomorphic potential vanishes as we argued.

Nevertheless this vanishing potential is consistent (as in the SQCD case) with decoupling

to the Nf = Nc − 1 theory. Following Eq. (2.9) we consider the Nc = Nf potential with a

heavy Nf -th quark of mass m:

V = 0 − m∆
(

M
Nf

Nf

)Γ
+ h.c. , (3.9)

8



where ∆ = 8/11 and Γ = 12/11 as before. Now the constraint in Eq. (3.8) enables us to

write

M
Nf

Nf
detM̂ → eA(Nc,Nc)Λ3Nc

Nc,Nc
, (3.10)

where M̂ is the meson matrix for Nc − 1 flavors. Substituting this back into Eq. (3.9) yields

V = −eA(Nc,Nc)Γ





m
∆
Γ Λ3Nc

Nc,Nc

detM̂





Γ

+ h.c. . (3.11)

When one uses Eq. (2.12) and Eq. (2.17) this is recognized as precisely Eq. (1.1) together

with Eq. (2.16) for the Nf = Nc − 1 case. This argument may also serve to clarify what is

”happening” in the SQCD situation.

A final question concerns the role of baryons when Nf = Nc. Baryon superfields were

shown to play an important role [1] for Nf = Nc in SQCD. One might hope to decouple

the superpartners of the baryon superfields B and B̃ [1] to obtain information on the QCD

three quark baryons. However it is easy to see that none of the components of B and B̃

contain any three quark composite fields. Thus the quick answer would be that the baryon

fields are irrelevant for the ordinary QCD effective Lagrangian. This point of view is perhaps

reinforced by the usual treatment (for large Nc) of baryons as solitons of the effective meson

Lagrangian. Nevertheless, the arguments in the first part of section II show that ordinary

baryon fields may readily be added to the holomorphic potential in a manner consistent with

the anomaly structure of QCD. They may very well be relevant for a small Nc treatment of

the theory. We hope to return to this question elsewhere.
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