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Abstract

Motivated by the 1/Nc expansion, we study a simple model in which the

πK scattering amplitude is the sum of a current − algebra contact term and

resonance pole exchanges. This phenomenological model is crossing symmet-

ric and, when a putative light strange scalar meson κ is included, satisfies

the unitarity bounds to well above 1 GeV. The model also features chiral
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I. INTRODUCTION

In the present paper we will generalize to the case of πK scattering the recent treatment

of ππ scattering given in [1–3]. There evidence was found to support the existence of a

low-mass relatively broad scalar resonance, denoted σ[mσ = 560MeV, Γσ = 370MeV, with

pole position s = (0.585 − 0.178i) GeV], in addition to the well-established scalar f0(980)

resonance. A number of other authors have also found similar or related results in different

models [4–14].

If one accepts a low-lying σ and notes the existence of the isovector scalar a0(980), as

well as the f0(980), there would be three scalar resonances below 1GeV. A great deal of

discussion and controversy over the years has surrounded the issue of the nature of such

very low-mass scalars. The reason is that one expects the lowest-lying scalars in the quark

model to be p-wave qq̄ bound states and hence to have masses comparable to those of the

axial and tensor mesons, already in the 1.2 - 1.6 GeV region (see for example [15]). As

an example (see the discussion on page 355 of [16] under the “Note on Scalar Mesons”)

one might form a conventional scalar nonet from the f0(1370), a0(1450), K0
∗(1430) and

fJ(1710). If an assignment like this is correct it raises the question of why the three scalar

candidates σ, f0(980) and a0(980) are so light, and whether a general organizing principle

for their dynamics can be found. From this point of view it is extremely interesting to see

if a light strange scalar resonance, to be denoted κ, emerges in the study of πK scattering.

Evidence for such a resonance has been found by some authors - [12] using a unitarized non-

relativistic meson model and [17] using a method of interfering Breit-Wigner amplitudes

with a repulsive background - and disputed by others - [18] using a unitarized quark model.

The existence of the κ would strengthen the point of view (see for example [19]) that there

is a non-conventional scalar nonet lying below 1 GeV.

Of course another motivation for studying πK scattering using the approach of [1,2] is to

test that approach itself in a context other than ππ scattering. According to experimental

indications [20] the πK channel may be a particularly clean one for this purpose in that

the effects of inelastic channels seem to be less important at moderate energies than for

ππ scattering. Theoretically too, the πK scattering seems cleaner in that its non-trivial

quantum numbers reduce the number of nearby states which can mix with each other. This

contrasts with the ππ isosinglet channel in which (uū + dd̄), ss̄ and glueball states can a

priori mix.

Perhaps it is useful to remark on the need to “discover” a light scalar meson by an

analysis of the sort being undertaken here; why can’t one just rely on an inspection of the
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phase shifts obtained directly from experiment? In the case of the ππ isosinglet channel, the

model of [1,2] for example shows that the light σ is on the broad side and does not dominate

its own channel. Rather it is only one of three comparable and competing contributions. A

similar situation is expected and will be seen to occur for the putative κ meson. Clearly, the

reliability of such a prediction depends on how accurately the “background” of the κ can

be modeled. In the present approach that job will be facilitated by using an effective chiral

Lagrangian approach in which crossing symmetry is manifest. This insures that important

cross-channel contributions from resonances known to exist in a given energy region are

included. Furthermore, by using the physical fields directly, we will not be limiting ourselves

to any assumption about a particular kind of quark substructure for these fields. This is,

on the one hand, an advantage, since it increases the generality of our analysis. On the

other hand our demonstration of the need for a κ meson will not immediately answer the

interesting question of what the quark substructure of light scalars is. In fact, we will not

take a stand on this matter in the present paper and reserve our speculative notions for

elsewhere [21].

This paper is organized as follows. In section II there is a brief review of our approach

as it was applied to the ππ scattering problem. This is used to motivate the specific ap-

proximations which we will make in the present case of πK scattering. Section III treats

the very interesting J = 0, I =
1

2
channel. It is shown that postulating the existence of a

light κ-type resonance enables us to satisfy the unitarity bound in this channel. In section

IV it is further shown that the existence of the κ also plays an important role in producing

a background phase at the position of the K∗
0 (1430) resonance pole; this gives a shape for

the J = 0, I =
1

2
partial wave amplitude in agreement with experiment. The J = 0, I =

3

2

channel, which apparently does not contain any exotic I =
3

2
resonance poles, is studied in

section V. A brief summary and discussion are given in section VI. For the reader’s conve-

nience, many technical details are compactly assembled in three Appendices. Appendix A,

B and C are respectively devoted to scattering kinematics, the underlying chiral Lagrangian

and the “unregularized” invariant amplitudes.

II. REVIEW OF THE MODEL

For the reader’s convenience we will briefly review here the main features of [1,2] in

which ππ scattering was discussed and indicate how they are expected to generalize to the

πK case. For a fuller presentation of the ideas used, we refer the reader to [1,2].
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The approach is inspired by the
1

Nc
expansion [22] of QCD. It is desired to approximate

the low energy (up to the roughly 1 GeV region) part of the leading, order of
1

Nc
, contribution

to the meson-meson scattering amplitude. It seems to be an outstanding unsolved problem

to obtain an analytic representation of even this leading contribution. However, certain of

its features [22] are known. The amplitude should consist of tree diagrams - contact terms

and resonance exchanges. Away from the poles (which contain divergences of the theory in

leading order since the resonance widths go as
1

Nc
) the leading order amplitudes are purely

real. Hence we restrict ourselves to comparing the real parts of our computed amplitudes

with the real parts of the amplitudes deduced from experiment.

A crucial aspect is the regularization procedure at the s-channel poles. The guiding

principle is to make the amplitude unitary in the neighborhood of the pole and the resulting

regularization method used depends on the type of resonance under consideration. As

illustrated in section II of [2] this gives the Breit-Wigner prescription for a narrow isolated

resonance, a Breit-Wigner prescription modified by a computed phase shift for a narrow

resonance in a smoothly varying background and a slightly more general parameterization

for the relatively broad light scalar resonance.

The crossing symmetric amplitude will, to insure chiral symmetry which works very well

near threshold, be computed from the chiral Lagrangian given in Appendix B (the same one

used in [1,2]). The partial wave projections of interest will then be obtained according to

(A8).

To see what happens in the case of the ππ, I = J = 0 partial wave amplitude let us

start from threshold and go up in energy. The threshold region is well explained by the

so-called current algebra contact term. However as shown in Fig. 1 of [2], this contact

amplitude rises rapidly, already violating the unitarity bound at around 500 MeV. It is

postulated that unitarity should be restored by nearby resonance contributions and this

is called “local cancellation”. It is also seen in this figure that the introduction of the ρ-

meson contribution markedly improves, but does not completely cure, the unitarity violation.

However this result makes the possibility of “local cancellation” seem plausible. A certain

amount of experimentation, described in [1], showed that the remaining violation of the

unitarity bound could be neatly cured by the introduction of a suitably parameterized light

scalar σ meson. Figure 9 of [1] shows how such a σ meson, having a mass close to the energy

where the unitarity bound is violated, kills two birds with one stone. At lower energies

it boosts the “current algebra” result which is slightly too small when compared with the

real part of the experimentally determined amplitude. At higher energies it falls rapidly to
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negative values to rescue unitarity. Furthermore in the region of the f0(980) the real part

of these contributions to the amplitude is brought to zero which yields a background phase

of around 90 degrees. In turn (see section IVA of [2]), this leads to a Ramsauer-Townsend

mechanism [24] which changes the f0(980) contribution to the cross-section from a peak to

the experimentally observed dip. All in all a reasonable experimental fit for the isosinglet

scalar amplitude is obtained up to about 1.2 GeV (see Fig. 4 of [2]). The great precision of

the chiral perturbation theory [25] description of the amplitude very close to threshold has

been slightly sacrificed to achieve an overall description over a considerably larger energy

range.

Two additional points can be made. Investigation of the effect of the opening of the

ππ → KK̄ channel (Section V of [2]) showed that it made a relatively minor change in

the qualitative treatment of ππ → ππ scattering up to about 1.2 GeV. Amusingly, the

same mechanism for restoring unitarity which worked for ππ → ππ seemed also effective

for the ππ → KK̄, I = J = 0 amplitude above the KK̄ threshold. Secondly, it was noted

[2,1] that there was a tendency for contributions from the exchange of the “next group” of

resonances - the f2(1270), the f0(1300) and the ρ(1450) - to cancel among themselves. In

any event they did not further improve the fit. Certainly, in order to carry this treatment

still higher in energy it is necessary to treat the higher resonances more precisely. In the

numerical treatment of [2,1], it was found that these effects of inelasticity and the higher

resonances could all be absorbed in relatively minor adjustments of the three parameters

used to describe the light scalar.

From this discussion, it seems that the appropriate model for an initial study of the

generalization to the πK case would neglect the inelastic channels (here η′K is apparently

[20] the main first one) as well as resonances other than the vector mesons and the scalars

which lie below 1 Gev. Since we are especially interested in the J = 0, I =
1

2
channel we

will make an important exception for the K∗
0 (1430) which has a direct pole in this channel.

The K∗
0 (1430) seems to be a reasonable candidate for an “ordinary” p-wave qq̄ scalar. The

diagrams to be considered are shown in Fig. 1. Notice that a putative light scalar κ has

been included. The main question is whether it is needed to satisfy the unitarity bound.

Actually our treatment of the I =
1

2
channel turns out to be conceptually similar to the

experimental analysis of [20]. They parameterize the I =
1

2
, J = 0 channel amplitude by

an effective range background piece plus a modified Breit-Wigner term for the K∗
0(1430).

We work from our crossing symmetric invariant amplitude, so in effect their background

corresponds to the sum of all our diagrams, except for the K∗
0(1430) pole terms in Fig. 1.
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FIG. 1. Tree diagrams relevant for πK scattering in our model

Since their parameters for the K∗
0 (1430) are determined by this method we choose to fit the

K∗
0 (1430) and κ parameters simultaneously.

III. EVIDENCE FOR THE SCALAR κ(900) IN THE I =
1

2
CHANNEL

In this section we make an initial study of the I =
1

2
and J = 0 projection of the real

part of the πK scattering amplitude T
1/2
0 defined in (A8). As in the ππ case we start with

the well-known “current algebra” amplitude. This can be calculated from the second term

of the Lagrangian (B7) together with (B10). If the vector mesons are not included in this
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chiral Lagrangian, then this is the same as using the more conventional chiral Lagrangian,

including only pseudoscalars [23]:

L1 = −F 2
π

8
Tr
(
∂µU∂µU †

)
+ Tr

[
B
(
U + U †

)]
, (3.1)

in which U = e2i φ

Fπ , with φ the 3 × 3 matrix of pseudoscalar fields and Fπ = 132 MeV the

pion decay constant. B is a diagonal matrix (B1, B1, B3) with B1 = m2
πF 2

π/8 = B2 and

B3 = F 2
π (m2

K − m2
π/2)/4. This is the dominant minimal symmetry breaking term for the

pseudoscalar mesons. We shall choose mπ = 137 MeV and mK = 496 MeV. Using (C1)

together with (A7), gives the I =
1

2
invariant amplitude

A
1/2
CA(s, t, u) =

1

2F 2
π

[2(s − u) + t] , (3.2)

and we will refer to this as the current algebra result. Using (A8) we find the J = 0 partial

wave amplitude to be:

R
1/2
0 CA =

q

8πF 2
π

√
s

[
2(s − m2

π − m2
K) − 3q2

]
, (3.3)

where the magnitude of the center of mass momentum q(s) is given in (A9). The current

algebra result is shown in Fig. 2, indicating a severe violation of the unitarity bound (A5)

beyond approximately 900 MeV. This resembles the violation of the unitarity bound by the

current algebra prediction in the ππ case. As in that case we will try to solve this problem

by including resonance contributions to the scattering amplitude.

First consider the effect of the vector mesons. There are ρ and K∗ exchanges and a direct

K∗ pole as illustrated in Figs 1(b), 1(c) and 1(d). The relevant coupling constants are read

off from the ρµvµ piece in the first term of (B7). Symmetry breaking contributions are small

[26] and will be neglected here. As an example, the invariant amplitude representing the

two K∗ diagrams is

A
1/2
K∗ =

3

2
P (u, t, s) − 1

2
P (s, t, u), (3.4)

with

P (u, t, s) =
g2

ρππ

4m2
K∗

[
m2

K∗ (t − u) + (m2
K − m2

π)
2

m2
K∗ − s − imK∗ΓK∗θ (s − sth)

]
, (3.5)

where ΓK∗ is the K∗ width, sth = (mk + mπ)2, θ is the Heaviside step function and we

take mρ = 0.77 GeV, gρππ = 8.56 and mK∗ = 0.89 GeV. We have added a conventional

width term in order to regularize the s-channel pole. We may more generally regard this
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FIG. 2. Current algebra contribution to R
1/2
0 .

regularization as the imposition of unitarity on the J = 0, I =
1

2
partial wave amplitude in

the region near the K∗ mass. Comparison with (A7) shows that this regularization formally

maintains crossing symmetry. Actually our results are not very sensitive to the fine details

of the regularization function.

The contributions associated with the vector mesons including the ρ exchange diagram,

the K∗ diagrams and a new contact term arising from the vµvµ piece in (B7) are plotted ∗in

Fig. 3. As expected, the direct contribution due to the s-channel K∗ pole upon projection

into the scalar channel is almost zero. In fact it is the new contact term which is seen to

play a crucial role in helping to restore unitarity. This term is negative and thus balances

the positive current algebra piece. It arises as a consequence of casting the Lagrangian with

vectors (B7) in a chirally invariant form. The effect of all the vector contributions, added to

the current algebra piece is displayed in Fig. 4. It can be seen that, while individual terms

violate the unitarity bound, the introduction of vectors has pulled the curve down so that it

∗The bump in the s-channel K∗ contribution arises because the amplitude is forced to rise to zero

at the K∗ mass by the spin 1 projection property of the K∗ propagator.
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K* s−channel

Vector Contact

FIG. 3. Individual vector contributions to R
1/2
0 .

almost lies within the bound. A similar improvement, due to the inclusion of vectors, was

observed in the analysis of the ππ scattering amplitude [1,2].

So far we have not used any unknown parameters, so the current algebra and vector

contributions are fixed. Actually the violation of unitarity is smaller than at the corre-

sponding stage of the analogous ππ calculation and one might be inclined to stop at this

point. However, in our framework, we should include other diagrams for resonances lying

within the energy range of interest. There is the established f0(980) as well as the σ(560)

which should be included for self-consistency. Of course the role played by a possible strange

scalar is of great interest. The relevant Feynman diagrams are shown in Figs 1(e), 1(f) and

1(g). Another reason for inclusion of these resonances can be seen by looking ahead to the

experimentally deduced form for R
1/2
0 (Fig. 8). The sharp dip near 1400 MeV could not be

explained from the total current algebra plus vector amplitude of Fig. 4.

In order to compute the scalar exchange diagrams we need the following pieces of the

scalar-pseudoscalar-pseudoscalar interaction Lagrangian given at the end of Appendix B:

Lscalars = −
√

2γσππ

(
σ∂µπ

+∂µπ
− + ....

)
− γσKK̄√

2

(
σ∂µK+∂µK

− + ....
)

−
√

2γf0ππ

(
f0∂µπ

+∂µπ
− + ....

)
− γf0KK̄√

2

(
f0∂µK+∂µK

− + ....
)
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FIG. 4. Contribution of current algebra (solid line), and current algebra +

vectors (dashed-line) to R
1/2
0 .
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− γκKπ

(
κ0∂µK−∂µπ

+ + .....
)

. (3.6)

For generality we are not assuming any model to relate these couplings to each other.

Furthermore, as discussed in Appendix B, the derivative coupling is the one which would

follow from a chiral invariant model. Also, the terms shown are the particular ones needed

to compute the required π+K+ scattering amplitude in (A6). The coupling constants γσππ,

γf0ππ and γf0KK̄ were estimated in [2]:

|γσππ| = 7.81 GeV−1, |γf0ππ| = 2.43 GeV−1,
∣∣∣γf0KK̄

∣∣∣ = 10 GeV−1. (3.7)

Of the needed σ and f0(980) coupling constants, only γσKK̄ was deduced using SU(3) invari-

ance in some way (which implies specializing to a given quark substructure for the scalars).

In our final analysis we will thus, for generality, consider the effect of varying the magnitude

and sign of γσKK̄ . Because the f0(980) contribution is rather small, the relative sign of γf0ππ

and γf0KK̄ is of less interest.

Firstly, we take into account the σ-meson and the well-established f0(980). Using (C4)

and (A7) we find the σ contribution to the invariant amplitude to be

A1/2
σ (s, t, u) =

γσππγσKK̄

4

(t − 2m2
π)(t − 2m2

K)

m2
σ − t

. (3.8)

The f0(980) amplitude has an identical structure with σ → f0 everywhere. We shall take

mσ = 0.55 GeV and mf0
= 0.98 GeV. For now we take γσKK̄ = γσππ and γf0KK̄γf0ππ to be

positive. Then a plot showing the effect of adding the projection of (3.8) into the scalar

partial wave channel is given in Fig. 5. Both the σ and f0(980) contributions are positive,

but that of the σ is roughly three times larger. It is clear that these contributions make the

unitarity violation slightly worse.

Now let us consider the strange scalar κ contribution. Its regularized I =
1

2
invariant

amplitude is similarly found to be:

A1/2
κ (s, t, u) =

γ2
κKπ

8

[
3 (s − m2

π − m2
K)

2

m2
κ − s − imκG′

κθ (s − sth)
− (u − m2

π − m2
K)

2

m2
κ − u − imκG′

κθ (u − sth)

]
. (3.9)

As for the K∗, this regularization is formally crossing symmetric (the u-channel regulariza-

tion term will vanish in the physical region). We will treat mκ, γκKπ and G′
κ as independent

parameters. Analogously to the treatment of the light broad σ(560), we have introduced a

possible deviation from the pure Breit-Wigner form by allowing G′
κ to be a free parameter.

The first term in (3.9) is a direct channel pole and should be extremely important at en-

ergies around mκ. Thus, as in the ππ case it may be used to cure the unitarity violation
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FIG. 5. Current algebra + vectors + σ + f0(980) contribution to R
1/2
0 .

of the J = 0 partial wave amplitude. Since the real part of a direct channel resonance

contribution turns sharply negative just above the resonance energy and the graph in Fig. 5

rises above the positive unitarity bound at around 900 MeV we are led to choose mκ to lie

roughly around this energy. With the additional illustrative choices γκKπ = 4.8 GeV−1 and

G′
κ = 280 MeV we see from Fig. 6, which is a plot of R

1/2
0 including also the contribution

of the J = 0 partial wave projection of (3.9), that it is easy to achieve a fit in which the

unitarity bound is roughly satisified. The parameters chosen above will be seen in the next

section to be close to those needed for a fit to the experimental data.

We obtain the deviation of our κ parameterization from a pure Breit-Wigner shape by

noting that near the resonance the J = 0 partial wave projection of (3.9) is:

mκGκ

m2
κ − s − imκG′

κ

, (3.10)

where the perturbative width Gκ is given by

Gκ =
3γ2

κKπq(m
2
κ)

64πm2
κ

(
m2

κ − m2
K − m2

π

)2
, (3.11)

and q(m2
κ) is defined in (A9).

Gκ

G′
κ

= 1 is the pure Breit-Wigner situation. The result
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FIG. 6. Contribution of current algebra + vectors + σ +f0(980) + κ to R
1/2
0

for κ parameters quoted in section III of text.
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Gκ

G′
κ

= 0.13 is similar to
Gσ

G′
σ

= 0.29 which was previously obtained [1,2] for the σ. It seems

that such deviations for the low mass scalars are a characteristic feature of our model.

Ordinarily, when the resonance is a dominant feature by itself, the Breit-Wigner form may

be regarded as equivalent to unitarity near the resonance. However, in our model, there are

several different interfering contributions in the low mass region and all work together to

keep the partial wave amplitude within the unitarity bound.

IV. GLOBAL FIT TO DATA IN THE J = 0, I =
1

2
CHANNEL

The magnitude and phase of the experimental I =
1

2
s-wave amplitude are given in Fig. 15

of Aston et al [20], based on a high statistics study of the reaction K−p → K−π+n. We

have translated these to the real part R
1/2
0 (s), which is required for our approach, and show

the results† in Fig. 8. It is clear that when one looks at the real part there is an interesting

dip at around 1400 MeV. This is explained as the relatively narrow strange scalar resonance

K∗
0 (1430), which is generally considered to be the best candidate for a p-wave qq̄ state. From

our point of view the most interesting question is whether our model including the κ meson

provides the correct background structure to explain the overall shape of R
1/2
0 in this region.

The role of the K∗
0(1430) thus seems analogous to that of the f0(980) in the I = J = 0

partial wave amplitude for ππ scattering.

In that case, as mentioned in section I, the interplay between the narrow resonance with

its background was introduced as a regularization of the direct channel resonance pole which

is ∝ 1

s − m2
∗

. In the vicinity of the resonance, upon projection into the appropriate partial

wave, one sets the amplitude equal to

e2iδm∗Γ∗

m2
∗ − s − im∗Γ∗

+ eiδsinδ, (4.1)

where m∗ and Γ∗ are the resonance mass and width, while δ is the background phase which

is assumed to be constant in the neighborhood of the resonance. This form automatically

makes the amplitude unitary in this region. We took our total calculated amplitude (which

was crossing symmetric), without the f0(980) contribution, evaluated at the position of the

resonance, to be the second term in (4.1); this allowed us to interpret the invariant amplitude

(4.1) as being formally crossing symmetric.

†Our error bars are based on propagating the errors in [20], assuming conservatively these in turn

to be given by the experimental circles in Fig. 15 of [20].
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FIG. 7. Shape of R
1/2
0 derived from Eq. (4.1) for resonance (m = 1.4 GeV and

Γ = 0.25 GeV) in the presence of a background. Plot shows two choices for the

background phase - δBG = π
2

(solid line) and δBG = π
4

(dashed line).

It turns out that there is an interesting difference between the ππ and Kπ situations.

This can easily be seen by focusing on the real part of (4.1) which is:

1

2
sin2δ +

m∗Γ∗

(m2
∗ − s)2 + m2

∗Γ
2
∗

[(
m2

∗ − s
)

cos2δ − m∗Γ∗sin2δ
]
. (4.2)

The shape of this curve depends on the value of δ. In the ππ case, the background naturally

produced a phase δ ≈ π

2
at the position of the f0(980). This yields the shape indicated in

Fig. 7 which just amounts to a sign reversal of the usual resonance function (in the absence

of a background) - the Ramsauer-Townsend mechanism [24]. On the other hand, Fig. 6

shows that R
1/2
0 is almost

1

2
at around 1400 MeV, so that we expect to have δ ≈ π

4
. This

gives the other shape shown in Fig. 7 which, in fact, basically agrees with the experimental

Kπ channel picture in Fig. 8.

Now let us consider the detailed application of this mechanism to Kπ scattering. The

contribution of the K∗
0 (1430) to the I =

1

2
channel is structurally similar to that of the κ in

(3.9). The real part of this contribution to the regularized invariant amplitude is
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FIG. 8. Experimental Data for R
1/2
0 .

Re
[
A1/2

∗ (s, t, u)
]

=
γ∗

2

8
Re

[
e2iδθ(s−sth) 3(s − m2

π − m2
K)

2

m2
∗ − s − im∗G′

∗θ (s − sth)

]

− γ∗
2

8
Re

[
e2iδθ(u−sth) (u − m2

π − m2
K)

2

m2
∗ − u − im∗G′

∗θ (u − sth)

]
. (4.3)

Here we have denoted quantities associated with the K∗
0(1430) by a star subscript. In

particular, m∗ is now the mass of the K∗
0(1430). The quantity γ∗ is defined in terms of the

K∗
0 (1430) partial width into Kπ by:

Γ (K∗
0(1430) → Kπ) =

3γ∗
2q(m2

∗)(m
2
∗ − m2

π − m2
K)

64πm2
∗

, (4.4)

where q(s) is defined in (A9). The background phase δ will not be considered an arbitrary

parameter but shall be the constant quantity defined from

1

2
sin2δ = R̃

1/2
0 (s = m2

∗), (4.5)

where R̃
1/2
0 (s) is the real part of the partial wave amplitude previously comuted as the sum

of the crossing symmetric current algebra, vector, σ, f0(980) and κ pieces found in section

III. With these arrangements the total invariant amplitude is formally crossing symmetric.
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In order to see the connection with the unitary form (near the resonance) in (4.1) and (4.2),

we simply note that the second term in (4.3) is numerically dominated by the first term

which contains a pole in the physical region. Finally, for the sake of generality, we shall

consider G′
∗ to be a fitting parameter, not necessarily equal to Γ (K∗

0(1430) → Kπ). This

allows for the possibility of some inelasticity.

We notice that the mechanism shown in (4.1) implicitly demands a background which

does not violate the unitarity bounds at the resonance mass m∗. This provides a justification

for the existence of the κ meson, as we showed in the last section that it is needed to restore

unitarity (compare Fig. 5 and Fig. 6).

We now continue with a more quantitative approach in order to extract the physical

parameters of the κ meson and the K∗
0 (1430). We fit the theoretical amplitude, which

consists ‡ of the real part of the partial wave projection of (4.3) added to R̃
1/2
0 (s), defined

above, to the experimental data displayed in Fig. 8. The parameters to be fit are the three

quantities mκ, γκKπ and G′
κ for the κ (see Eq. (3.9)) and the corresponding quantities for

the K∗
0 (1430), namely m∗, γ∗ and G′

∗ (see Eq. (4.3)). As discussed at the end of section II, it

seems reasonable to obtain the three K∗
0(1430) parameters self-consistently from our model

rather than taking them from [20]. The scalar meson coupling constants listed in (3.7) were

used while, in light of its uncertainty, the calculation was performed for a range of values of

γσKK̄ . The fitting procedure made use of the MINUIT package and the fitted parameters,

together with their χ2 values, are shown in Table I. It is interesting to notice that the

fitted parameters vary smoothly with γσKK̄ . The actual comparison between experiment

and the fitted amplitude, using the parameters from the first column in Table I, is shown

in Fig. 9. The individual contributions due to the background and to the K∗
0 (1430) are

shown in Fig. 10, indicating that the background does not violate the unitarity bound at

s = m2
∗. The exact value of the phase found in this fit is sin2δ = 0.937. This agrees with

the qualitative discussion regarding the background phase at the beginning of this section.

The partial decay width of K∗
0 (1430) can be calculated using (4.4). We find that

Γ (K∗
0 (1430) → πK) = 238 MeV and as a result (identifying G′

∗ as the total width) an

estimate of the branching ratio of K∗
0 (1430) to decay to πK can be made

B [K∗
0(1430) → πK] =

ΓK∗

0
(1430)

G′
∗

= 0.895. (4.6)

This quantity is comparable to the 0.93 obtained in [20]. Similarly, the (first column of

‡We also included the f0(1300) contribution, which is however very small.

16



Fitted Parameter γσKK̄ = γσππ γσKK̄ = 0 γσKK̄ = −γσππ

mκ 897 ± 2.1 MeV 951 ± 0.7 MeV 998 ± 1.1 MeV

G′
κ 322 ± 6.0 MeV 277 ± 10.6 MeV 195 ± 5.3 MeV

γκKπ 5.0 ± 0.07 GeV −1 4.32 ± 0.16 GeV −1 4.04 ± 0.08 GeV −1

m∗ 1385 ± 3.3 MeV 1365 ± 2.5 MeV 1349 ± 2.1 MeV

G′
∗ 266 ± 9.5 MeV 201 ± 9.8 MeV 148 ± 5.6 MeV

γ∗ 4.3 ± 2.1 GeV −1 3.7 ± .1 GeV −1 3.1 ± 0.05 GeV −1

χ2 4.0 9.0 25.7

TABLE I. Comparison of different fits in the J = 0 I =
1

2
channel, correspond-

ing to different choices of γσKK̄ .

0.6 0.8 1.0 1.2 1.4 1.6
√s (GeV)

−0.6

−0.4

−0.2

0.0

0.2

0.4

R
01/

2

Experiment
Theory

FIG. 9. Comparison of the theoretical prediction of R
1/2
0 with its experimental

data (for choice γσKK̄ = γσππ)
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FIG. 10. Separate contributions of the background and K∗
0 (1430) to R

1/2
0 (for

choice γσKK̄ = γσππ).
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Table I) mass and width we obtain - 1385 MeV and 266 MeV - are in reasonable agreement

with their [20] respective values - 1429 MeV and 287 MeV.

V. J = 0, I =
3

2
CHANNEL

It is interesting to compare with experiment the projection into the J = 0, I =
3

2
channel

of the same invariant amplitude used for the last section. The structures of the invariant

I =
3

2
amplitudes may actually be read off from Eqs. (C1) - (C4) of Appendix C. Since there

are no I =
3

2
resonances in our model, there are no s-channel poles, and hence this calculation

depends little on the details of the regularizations. As in the I =
1

2
case, cancellations of

individual contributions to the partial wave amplitude act to preserve the unitarity bound.

The experimental points for the real part R
3/2
0 were translated from Fig. 12 of [27] and are

displayed in our Fig. 11.

Fig. 11 also shows various predictions from our model. Firstly, we see that the current

algebra prediction alone quite soon departs from the data points and begins to violate

the unitarity bound at around 900 MeV. Inclusion of the ρ, K∗ and contact contributions

associated with the vector mesons can be seen to pull the curve up considerably so as to

solve the unitarity problem and to give a much better fit to the data. This is very analogous

to the situation in the J = 0, I = 2 partial wave for ππ scattering (see Fig. 4 of [1] and

Fig. 2.10 of [28]). At this stage, the curve does not depend on any unknown parameters.

It turns out that the only additional important contribution to this channel comes from

σ meson exchange. This will depend on the choice of the coupling constant γσKK̄ which

was the important unknown parameter in the previous section. Fig. 11 shows the results

for the three choices of γσKK̄ given in Table I. The best choice for the I =
3

2
amplitude is

the case γσKK̄ = −γσππ which unfortunately yields the fit with the highest χ2 for the I =
1

2
analysis. The small difference between the curve for γσKK̄ = 0 and the curve for the current

algebra plus vector contribution measures the small impact of the other scalars. Actually

the general trend of the data is reproduced for all values of γσKK̄ shown.

Since there are no large direct channel resonance contributions, the I =
3

2
amplitude

may be especially sensitive to exchanged resonances in the range above 1 GeV which we

are currently neglecting. This is in contrast to the I =
1

2
amplitude which contains fitting

parameters that can absorb the effects of higher resonance exchanges. This was the case for

the ππ scattering calculation also.

As we lower γσKK̄, we find fits with larger values of χ2 that correspond to a κ that
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FIG. 11. Comparison of various predictions for R
3/2
0 with experiment.

is heavier, narrower, and has larger coupling constant, and to a K∗
0 (1430) that is lighter,

narrower, and has larger coupling constant.

VI. DISCUSSION

We have found that a large Nc motivated approximate treatment of πK scattering can

give a crossing symmetric and unitary amplitude as a fit to the existing experimental data.

A novel feature of this approach, which is analogous to that employed for ππ scattering

in [1,2], is to start with the invariant perturbative amplitude which is manifestly crossing

symmetric. This results in individual contributions dramatically violating the partial wave

unitarity bounds. We rely on cancellations among these competing contributions to rescue

unitarity. In our framework this suggests the existence of a light strange scalar resonance

κ which has parameters mass mκ = 897 MeV and width Gκ = 322 MeV. These give a pole

position

(sκ)
1/2 = (0.911 − 0.158i)GeV. (6.1)

We do not quote any error here since the main uncertainty in this analysis is clearly due

to the theoretical model. It is noteworthy that these results are similar to those of [17] in
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which a different model was employed. In addition, the fit for the K∗
0 (1430) properties also

obtained is similiar to that of the experimental analysis of [20]. Our work was simplified

by directly making use of the analogous approximation seen to be reasonable in [2] for the

ππ scattering case. Thus, as suggested by working to leading order in
1

Nc
, we compared

the real part of the partial wave amplitude with experiment. Since elastic unitarity seems

[20] to be a reasonable approximation until about the K∗
0(1430) region for the J = 0, I =

1

2
partial wave amplitude, we can recover its imaginary part as

I
1/2
0 ≈ 1

2

[
1 ±

√(
η

1/2
0

)2
− 4

(
R

1/2
0

)2
]
, (6.2)

with η
1/2
0 ≈ 1 and an appropriate choice of sign. Of course the phase shift is recovered as

tan(δ
1/2
0 ) =

I
1/2
0

R
1/2
0

.

As in the ππ treatment we neglected, for an initial analysis, the contributions of most

resonances above 1 GeV. Specifically, we did not include diagrams with the radially excited

vectors ρ(1450) and K∗(1420) or with the tensors f2(1270) and K∗
2(1430). In a “second

generation” treatment of this problem it would be desirable to fully investigate these aspects.

It would be amusing to see if the complicated 1 − 2 GeV region is high enough so that the

“microscopic” approach we are following merges with a kind of string picture [29].

If one accepts the existence of the κ(900) and σ(560), in addition to the f0(980) and

a0(980), then there is a full set of candidates for a possibly unconventional (i.e. not of pure

qq̄ type) low mass scalar nonet. The nature of such a nonet is of great interest - see [30]

for a recent discussion. A useful clue may arise from knowledge of the pattern of 0+0−0−

coupling constants defined in Eqs. (B11) - (B13). The numerical values obtained in our

approach are given in Eq. (3.7) and Table I.
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APPENDIX A: SCATTERING KINEMATICS

The partial wave scattering matrix for a channel like πK → πK can be written as

S = 1 + 2iT , (A1)
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where for simplicity the isospin and the angular momentum variables have not been indi-

cated. The standard parameterization of the single-channel scattering amplitude is

S = ηe2iδπK , (A2)

where δπK is the phase shift and 0 < η ≤ 1 is the elasticity parameter. Evidently,

T I
l (s) =

ηI
l (s)e

2iδI
πK;l

(s) − 1

2i
, (A3)

where l and I label the angular momentum and isospin, respectively. The real and imaginary

parts

RI
l =

ηI
l sin

(
2δI

πK;l

)

2
, II

l =
1 − ηI

l cos
(
2δI

πK;l

)

2
, (A4)

must satisfy the very important unitarity bounds

∣∣∣RI
l

∣∣∣ ≤ 1

2
, 0 ≤ II

l ≤ 1 . (A5)

Now we relate the previous partial wave amplitudes to the I =
1

2
and I =

3

2
invariant am-

plitudes for the scattering process π(p1) + K(p2) → π(p3) + K(p4). This is simply achieved

by first defining the I =
3

2
amplitude via

A3/2 (s, t, u) = A
(
π+(p1)K

+(p2) → π+(p3)K
+(p4)

)
, (A6)

where s, t and u are the Mandelstam variables. By crossing symmetry we have

A
(
π+K− → π+K−

)
= A3/2 (u, t, s) which leads to

A1/2 (s, t, u) =
3

2
A3/2 (u, t, s) − 1

2
A3/2(s, t, u) . (A7)

We then define the partial wave isospin amplitudes according to the formula

T I
l (s) =

ρ(s)

2

∫ 1

−1
dcos θ Pl(cos θ) AI(s, t, u) , (A8)

where θ is the scattering angle and

ρ(s) =
q(s)

8π
√

s
≡ 1

16π s

√[
s − (mπ + mK)2

] [
s − (mπ − mK)2

]
. (A9)
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APPENDIX B: NOTATION AND LAGRANGIAN

Spontaneous chiral symmetry breaking plays a fundamental role at low energies and is

often economically as well as successfully described by non-linear realizations. Associated

with the standard chiral symmetry breaking pattern SU(3)L × SU(3)R → SU(3)V we have

an octet of pseudoscalar Nambu-Goldstone bosons φ. The latter are encoded in a 3 × 3

matrix U as follows,

U = ξ2 , ξ = ei φ

Fπ , (B1)

where Fπ is the pion decay constant. U transforms under a chiral transformation as

U → ULUU †
R , (B2)

with UL,R ∈ U(3)L,R. While U transforms linearly under these transformations (see

Eq. (B2)), ξ transforms non-linearly, i.e.

ξ → UL ξ K†(φ, UL, UR) = K(φ, UL, UR) ξ U †
R . (B3)

The vector meson nonet ρµ may be formally introduced as a gauge field [31]. It transforms

under chiral rotations as

ρµ → KρµK† +
i

g̃
K∂µK

† , (B4)

where g̃ is the gauge coupling constant. (For an alternative approach see, for a review,

Ref. [32].) It is convenient to define the following objects

pµ =
i

2

(
ξ∂µξ

† − ξ†∂µξ
)

,

vµ =
i

2

(
ξ∂µξ

† + ξ†∂µξ
)

, (B5)

which obey the transformation rules

pµ → KpµK† ,

vµ → KvµK
† + iK∂µK† . (B6)

Using the above quantities we can construct the non-anomalous part of the chiral Lagrangian

describing pseudoscalar and vector mesons:

L = −1

2
m2

vTr



(
ρµ − vµ

g̃

)2

− F 2

π

2
Tr [pµpµ] −

1

4
Tr [Fµν(ρ)Fµν(ρ)] , (B7)
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where Fµν = ∂µρν−∂νρµ−ig̃[ρµ, ρν ] is the vector meson gauge field strength. Chiral symmetry

is explicitly broken in QCD by the presence of an explicit quark mass term −m̂qMq, where

m̂ ≡ (mu + md)/2, and M is the dimensionless matrix:

M =




1 + y

1 − y

x


 . (B8)

Here x and y are the quark mass ratios:

x =
ms

m̂
, y =

1

2

(
md − mu

m̂

)
. (B9)

These quark masses induce a mass term for the pseudoscalar mesons which at the effective

lagrangian level is represented by the following term

Lφ−mass = δ′Tr
[
MU † + M†U

]
, (B10)

where δ′ is a real constant. A more general set of terms describing explicit chiral symmetry

breaking in this framework is available in Refs. [26,33]. Scalar resonances, in the non lin-

ear realization framework, interact with pseudoscalars with at least two derivatives. If we

were to identify the scalars with a matter field nonet, i.e.. which transforms under chiral

transformations as S → KSK† a possible invariant interaction term is Tr [Spµpµ]. Since the

quark content of the scalars is not yet firmly established and other possible terms may exist

we adopt here a more phenomcnological approach by not relating the scalar couplings using

SU(3) symmetry. For the present paper, the relevant interaction terms are

Lσ = −γσππ√
2

σ∂µπ · ∂µπ − γσKK̄√
2

σ
(
∂µK

+∂µK− + ....
)

, (B11)

Lf0
= −γf0ππ√

2
f0∂µπ · ∂µπ − γf0KK̄√

2
f0

(
∂µK+∂µK

− + ....
)

, (B12)

Lκ = −γκKπ

(
κ0∂µK−∂µπ

+ + ....
)

. (B13)

Different models will relate the coupling constants in different ways. For example in the

SU(3) limit, and if the scalars belong to the usual matter field nonet with no OZI violating

interactions, we have γσππ = γσKK̄ =
γf0KK̄√

2
= γκKπ while γf0ππ = 0.

APPENDIX C: UNREGULARIZED AMPLITUDES

The current-algebra contribution to the A3/2 (s, t, u) amplitude, obtained from (B7) and

from (B10) is:
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A
3/2
CA (s, t, u) =

t + u − s

2F 2
π

. (C1)

The vector meson contribution contains the following terms

A
3/2
vect (s, t, u) =

g2
ρππ

4

[
u − s

m2
ρ − t

− m2
K∗ (s − t) − (m2

K − m2
π)

2

(m2
K∗ − u)m2

K∗

]

+
g2

ρππ

4m2
ρ

(2s − u − t) , (C2)

where gρππ =
m2

ρ

g̃F 2
π

is the coupling of the vector to two pions, which is related to the width

by Γ (ρ → 2π) =
g2

ρππp3
π

12πm2
ρ

. The first and second terms correspond respectively to ρ0 and

K∗ exchanges, while the third term represents the contact interaction vµvµ in (B7). The

contribution of a strange scalar, denoted κ, is

A3/2
κ (s, t, u) =

γ2
κKπ

4

(u − m2
π − m2

K)
2

m2
κ − u

. (C3)

Finally the σ exchange contribution is

A3/2
σ (s, t, u) =

γσππγσKK̄

4

(2m2
π − t) (2m2

K − t)

m2
σ − t

. (C4)

Note that (C3) can also be used to describe the contribution of the scalar resonance

K∗
0 (1430), if we reidentify the coupling constant and the mass in the denominator. Similarly

(C4) can be used for the f0 exchange if we replace each subscript σ by a subscript f0.

The A1/2 amplitudes are obtained from these using (A7).
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[10] R. Kamínski, L. Leśniak and J. P. Maillet, Phys. Rev. D50, 3145 (1994).

[11] M. Svec, Phys. Rev. D53, 2343 (1996).

[12] E. van Beveren, T.A. Rijken, K. Metzger, C. Dullemond, G. Rupp and J.E. Ribeiro, Z. Phys.

C30, 615 (1986).

[13] R. Delbourgo and M.D. Scadron, Mod. Phys. Lett. A10, 251 (1995). See also D. Atkinson, M.

Harada and A.I. Sanda, Phys. Rev. D46, 3884 (1992).

[14] J.A. Oller, E. Oset and J.R. Pelaez, hep-ph/9804209

[15] F.E. Close, An Introduction to Quarks and Partons, Academic Press (1979).

[16] Review of Particle Properties, Phys. Rev. D54 (1996).

[17] S. Ishida, M. Ishida, T. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. 98, 621

(1997). See also M. Ishida and S. Ishida, Talk given at 7th International Conference on Hadron

Spectroscopy (Hadron 97), Upton, NY, 25-30 Aug. 1997, hep-ph/9712231.

[18] N.A. Törnqvist, hep-ph/9711483, hep-ph/9712479.

[19] R. L. Jaffe, Phys. Rev. D15, 281 (1977).

[20] D. Aston et al, Nucl. Phys B296, 493 (1988).

[21] D. Black et al, in progress.

[22] E. Witten, Nucl. Phys. B160, 57 (1979). See also S. Coleman, Aspects of Symmetry, Cambridge

University Press (1985). The original suggestion is given in G. ’t Hooft, Nucl. Phys. B72, 461

(1974).

[23] J. Cronin, Phys. Rev. D161, 1483 (1967).

[24] J. R. Taylor, Scattering Theory, Krieger (1987).

[25] S. Weinberg, Physica 96A, 327 (1979). J. Gasser and H. Leutwyler, Ann. of Phys. 158, 142

26

http://arXiv.org/abs/hep-ph/9804209
http://arXiv.org/abs/hep-ph/9712231
http://arXiv.org/abs/hep-ph/9711483
http://arXiv.org/abs/hep-ph/9712479


(1984); J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985). A recent review is given

by Ulf-G. Meißner, Rept. Prog. Phys. 56, 903 (1993).

[26] J. Schechter, A. Subbaraman and H. Weigel, Phys. Rev. D48, 339 (1993).

[27] P. Estabrooks et al, Nucl Phys. B133, 490 (1978).

[28] F. Sannino, Ph.D. thesis, Syracuse University, 1997, hep-ph/9709437.

[29] See G. Veneziano, Nuovo Cim. 57A, 190 (1968). A modern perspective is given in M.B. Green,

J.H. Schwarz and E. Witten, Superstring Theory Vol 1, Cambridge University Press (1987).

[30] V. Elias, A.H. Fariborz, Fang Shi and T.G. Steele, to appear in Nucl. Phys. A633 (1998).
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