
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Center for Policy Research Institutes, Research Centers, and Campus 
Groups 

10-2021 

Robust Dynamic Panel Data Models Using ��-Contamination Robust Dynamic Panel Data Models Using ��-Contamination 

Badi H. Baltagi 
Syracuse University, bbaltagi@maxwell.syr.edu 

Georges Bresson 
Université Paris II, georges.bresson@u-paris2.fr 

Anoop Chaturvedi 
Department of Statistics, University of Allahabad, Allahabad, India, anoopchaturv@gmail.com 

Guy Lacroix 
Laval University, guy.lacroix@ecn.ulaval.ca 

Follow this and additional works at: https://surface.syr.edu/cpr 

 Part of the Economic Policy Commons, and the Economics Commons 

Recommended Citation Recommended Citation 
Baltagi, Badi H.; Bresson, Georges; Chaturvedi, Anoop; and Lacroix, Guy, "Robust Dynamic Panel Data 
Models Using ��-Contamination" (2021). Center for Policy Research. 292. 
https://surface.syr.edu/cpr/292 

This Working Paper is brought to you for free and open access by the Institutes, Research Centers, and Campus 
Groups at SURFACE at Syracuse University. It has been accepted for inclusion in Center for Policy Research by an 
authorized administrator of SURFACE at Syracuse University. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/cpr
https://surface.syr.edu/irccg
https://surface.syr.edu/irccg
https://surface.syr.edu/cpr?utm_source=surface.syr.edu%2Fcpr%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1025?utm_source=surface.syr.edu%2Fcpr%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/340?utm_source=surface.syr.edu%2Fcpr%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/cpr/292?utm_source=surface.syr.edu%2Fcpr%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


CENTER FOR POLICY RESEARCH 
THE MAXWELL SCHOOL 

WORKING PAPER SERIES 

Robust Dynamic Panel Data 
Models Using 𝛆𝛆-Contamination 
Badi H. Baltagi, Georges Bresson, Anoop Chaturvedi, and 
Guy Lacroix 
Paper No. 240 
October 2021 

ISSN: 1525-3066 
426 Eggers Hall 
Syracuse University 
Syracuse, NY 13244-1020 
T 315.443.3114  E ctrpol@syr.edu 
https://www.maxwell.syr.edu/CPR_Working_Papers.aspx 



CENTER FOR POLICY RESEARCH – Fall 2021 
Leonard M. Lopoo, Director 

Professor of Public Administration and International Affairs (PAIA) 

Associate Directors 

Margaret Austin 
Associate Director, Budget and Administration 

John Yinger 
Trustee Professor of Economics (ECON) and Public Administration and International Affairs (PAIA) 

Associate Director, Center for Policy Research 

SENIOR RESEARCH ASSOCIATES 

Badi Baltagi, ECON 

Robert Bifulco, PAIA 

Carmen Carrión-Flores, ECON 

Sean Drake, SOC 
Alfonso Flores-Lagunes, ECON 

Sarah Hamersma, PAIA 

Madonna Harrington Meyer, SOC 

Colleen Heflin, PAIA 

William Horrace, ECON  

Yilin Hou, PAIA

Hugo Jales, ECON  

Jeffrey Kubik, ECON 

Yoonseok Lee, ECON 

Amy Lutz, SOC 

Yingyi Ma, SOC 

Jerry Miner, ECON 

Shannon Monnat, SOC 

Jan Ondrich, ECON  

David Popp, PAIA 

Stuart Rosenthal, ECON 

Michah Rothbart, PAIA 

Alexander Rothenberg, ECON 

Rebecca Schewe, SOC 

Amy Ellen Schwartz, PAIA/ECON 

Ying Shi, PAIA 

Saba Siddiki, PAIA 

Perry Singleton, ECON 

Yulong Wang, ECON 

Peter Wilcoxen, PAIA 

Maria Zhu, ECON

GRADUATE ASSOCIATES

Rhea Acuña, PAIA 

Graham Ambrose, PAIA 

Mariah Brennan, SOC. SCI. 

Brandon Charles, PAIA 

Ziqiao Chen, PAIA 

Yoon Jung Choi, PAIA 

Stephanie Coffey, ECON 

Adam Cucchiara, PAIA 

William Clay Fannin, PAIA 

Giuseppe Germinario, ECON 

Myriam Gregoire-Zawilski, PAIA 

Joshua Grove, SOC 

Hyojeong Kim, PAIA 

Mattie Mackenzie-Liu, PAIA 

Maeve Maloney, ECON  

Austin McNeill Brown, SOC. SCI. 

Qasim Mehdi, PAIA 

Nicholas Oesterling, PAIA 

Claire Pendergrast, SOC 

Lauryn Quick, PAIA 

Michael Quinn, ECON 

Radine Rafols, ECON 

Christopher Rick, PAIA 

Sam Saltmarsh, ECON 

Spencer Shanholtz, PAIA 

Sarah Souders, PAIA 

Yue Sun, SOC 

Joaquin Urrego, ECON 

Yao Wang, ECON 

Zhanhan Yu, ECON 

Xiaoyan Zhang, Human Dev. 

Bo Zheng, PAIA 

Dongmei Zuo, SOC. SCI. 

 

STAFF 

Willy Chen, Research Associate 

Michael Dunaway, Postdoctoral Scholar 

Katrina Fiacchi, Administrative Specialist  

Michelle Kincaid, Senior Associate, Maxwell X Lab 

Emily Minnoe, Administrative Assistant 

Hannah Patnaik, Managing Director, Maxwell X Lab 

Candi Patterson, Computer Consultant 

Xiaohan Sun, Postdoctoral Scholar 

Samantha Trajkovski, Postdoctoral Scholar 

Laura Walsh, Administrative Assistant



Abstract 

This paper extends the work of Baltagi et al. (2018) to the popular dynamic panel data model. We 
investigate the robustness of Bayesian panel data models to possible misspecification of the prior 
distribution. The proposed robust Bayesian approach departs from the standard Bayesian framework in 
two ways. First, we consider the ε-contamination class of prior distributions for the model parameters 
as well as for the individual effects. Second, both the base elicited priors and the ε-contamination priors 
use Zellner (1986)'s g-priors for the variance-covariance matrices. We propose a general "toolbox" for 
a wide range of specifications which includes the dynamic panel model with random effects, with cross-
correlated effects à la Chamberlain, for the Hausman-Taylor world and for dynamic panel data models 
with homogeneous/heterogeneous slopes and cross-sectional dependence. Using a Monte Carlo 
simulation study, we compare the finite sample properties of our proposed estimator to those of 
standard classical estimators. The paper contributes to the dynamic panel data literature by proposing a 
general robust Bayesian framework which encompasses the conventional frequentist specifications and 
their associated estimation methods as special cases. 
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1. Introduction

The dynamic panel data model allows for feedback from lagged endogenous values and have
been used in many empirical studies. The most popular estimation method is the generalized
method of moments (GMM) with many variants, the best known being the Arellano-Bond difference
GMM and the Blundell-Bond system GMM (see Arellano and Bond (1991), Blundell and Bond
(1998) and the survey by Bun and Sarafidis (2015)). Despite its optimal asymptotic properties, the
finite sample behavior of the GMM estimator can be poor due to weakness and/or abundance of
moment conditions and dependence on crucial nuisance parameters. Several alternative inference
methods derived from inconsistent least squares (LS) or likelihood based procedures have been
proposed. These include modifications of the profile likelihood (Dhaene and Jochmans, 2011, 2016)
or estimation methods based on the likelihood function of the first differences (Hsiao et al., 2002;
Hayakawa and Pesaran, 2015).

While GMM estimation is very attractive because of its flexibility, other promising methods
remain underrepresented in empirical work. Examples are bias-correction procedures for the fixed-
effects dynamic panel estimator proposed by Kiviet (1995), Bun (2003), Everaert and Pozzi (2007)
among others. Estimation of dynamic panel data models with heterogeneous slopes and/or cross-
sectional dependence has also been investigated by Chudik and Pesaran (2015a,b) using the common
correlated effects (CCE) approach of Pesaran (2006), and by Moon and Weidner (2015, 2017), who
studied linear models with interactive fixed effects.

Quasi-maximum likelihood (QML) methods have been also proposed to circumvent the afore-
mentioned bias by modeling the unconditional likelihood function instead of conditioning on the
initial observations. While this requires additional assumptions on the marginal distribution of
the initial observations, the QML estimators are an attractive alternative to other estimation ap-
proaches in terms of efficiency and finite-sample performance if all the assumptions are satisfied.
QML estimators can be characterized as limited-information maximum likelihood estimators that
are special cases of structural equation modeling or full information maximum-likelihood approach
with many cross-equation restrictions1. For dynamic models with random effects, we must be ex-
plicit about the non-zero correlation between the individual-specific effects and the initial conditions
(see Anderson and Hsiao (1982), Hsiao and Pesaran (2008), Kripfganz (2016), Bun et al. (2017),
Moral-Benito et al. (2019)).2

The widely used difference GMM estimator suffers from finite sample bias when the number
of cross-section observations is small. Moreover, some have expressed concern in recent years that
many instrumental variables of the type considered in panel GMM estimators may be invalid, weak
or both (see Bun and Sarafidis (2015)). Based on the same identifying assumption, some alternatives
have been proposed in the literature (e.g. Ahn and Schmidt (1995) and Hsiao et al. (2002), to
mention a few). Maximum likelihood estimators, asymptotically equivalent to the GMM estimator,
have recently been proposed and are strongly preferred in terms of finite sample performance (Moral-
Benito et al. (2019)).

Bayesian analysis for dynamic panel data models have also been proposed (see for instance

1For the dynamic fixed-effects model, see for instance Hsiao et al. (2002).
2In a Gaussian dynamic linear mixed model: yit = ρyit−1 +X′ β+W ′ bi+uit, i = 1, ..., N , t = 2, ..., T, as in ourit it

case (see (8) in section (2)), maximum likelihood analysis is subject to an initial condition problem if the permanent
subject effects bi and the initial observations are correlated. In case of such correlation, possible options are a joint
random prior (e.g., bivariate normal) involving bi and the first disturbance ui1 (Dorsett (1999)), or a prior for bi
that is conditional on yi1, such as bi | y 2

i1 ∼ N(ϕyi1, σ1) (see Hirano (2002) and Wooldridge (2005)).
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Hsiao et al. (1999), Hsiao and Pesaran (2008), Koop et al. (2008), Juárez and Steel (2010), Liu
et al. (2017), Bretó et al. (2019), Pacifico (2019)). Some consider that the process which generates
the initial observation yi0 of the dependent variable for each individual i has started a long time
ago (e.g., Juárez and Steel (2010)). Others derive the estimators under the assumption that yi0 are
fixed constants (e.g., Hsiao et al. (1999), Hsiao and Pesaran (2008)). Yet others consider that the
initial value is generated from the finite past using state space forms (e.g., Liu et al. (2017)), or
use the Prais-Winsten transformation for the initial period. A simplifying approach, more feasible
for large T , is to condition on the first observation in a model involving a first-order lag in y, so
that yi1 is nonstochastic (see Bauwens et al. (2005)). Geweke and Keane (2000) consider Bayesian
approaches to the dynamic linear panel model in which the model for period 1 is not necessarily
linked to those for subsequent periods in a way consistent with stationarity.

This brief overview seems to confirm the strong comeback of ML methods and associated
Bayesian approaches for dynamic panel data models. MCMC holds some advantages over ML
or QML estimation. For instance, Su and Yang (2015) have discussed issues involved in maximiz-
ing a concentrated version of the likelihood function that could involve trivariate optimization over
the parameters and subject to stationarity restrictions. This type of constrained optimization may
lead to local optima and may produce misleading inference. In our earlier paper (Baltagi et al.,
2018), which considered a static panel data model, we argued that the Bayesian approach rests upon
hypothesized prior distributions (and possibly on their hyperparameters). The choice of specific
distributions is often made out of convenience. Yet, it is well-known that the estimators can be
sensitive to misspecification of the latter. Fortunately, this difficulty can be partly circumvented by
use of the robust Bayesian approach which relies upon a class of prior distributions and selects an
appropriate one in a data dependent fashion. This paper extends our earlier paper to the popular
dynamic panel data model and studies the robustness of Bayesian panel data models to possible
misspecification of the prior distribution in the spirit of the works of Good (1965), Berger (1985)
and Berger and Berliner (1984, 1986). In particular, it is concerned with the posterior robustness
which is different from the robustness à la White (1980). The objective of our paper is to pro-
pose a robust Bayesian approach for dynamic panel data models which departs from the standard
Bayesian one in two ways. First, we consider the ε-contamination class of prior distributions for
the model parameters (and for the individual effects). Second, both the base elicited priors and the
ε-contamination priors use Zellner (1986)’s g-priors rather than the standard Wishart distributions
for the variance-covariance matrices. We propose a general “toolbox” for a wide range of specifi-
cations such as the dynamic panel model with random effects, or with cross-correlated effects à la
Mundlak or à la Chamberlain, for the Hausman-Taylor world or for dynamic panel data models
with homogeneous/heterogeneous slopes and cross-sectional dependence. The paper contributes
to the dynamic panel data literature by proposing a general robust Bayesian framework which
encompasses all the above-mentioned conventional frequentist specifications and their associated
estimation methods as special cases.

Section 2 gives the general framework of a robust linear dynamic panel data model using
ε-contamination and derives the Type-II maximum likelihood posterior mean and the variance-
covariance matrix of the coefficients in a two-stage hierarchy model. Section 3 investigates the
finite sample performance of our robust Bayesian estimator through extensive Monte Carlo ex-
periments. The simulation results underscore the relatively good performance of the two-stage
hierarchy estimator as compared to the standard frequentist estimation methods. Section 4 gives
our conclusion.
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2. A robust linear dynamic panel data model

2.1. The static framework

Baltagi et al. (2018) considered the following Gaussian static linear mixed model:

yit = X ′itβ +W ′itbi + uit , i = 1, ..., N , t = 1, ..., T, (1)

where X ′it is a (1×Kx) vector of explanatory variables including the intercept, and β is a (Kx × 1)
vector of parameters. t is the faster index (primal pooling). Furthermore, let W ′it denote a (1× k2)
vector of covariates and bi a (k2 × 1) vector of parameters. The subscript i of bi indicates that the
model allows for heterogeneity on the W variables. The distribution of uit is parametrized in terms
of its precision τ rather than its variance σ2

u (= 1/τ).3

Following the seminal papers of Lindley and Smith (1972) and Smith (1973), various authors
including Chib and Carlin (1999), Koop (2003), Chib (2008), Greenberg (2008), Zheng et al. (2008),
and Rendon (2013) have proposed a very general three-stage hierarchy framework

First stage : y = Xβ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1INT

Second stage : β ∼ N (β0,Λβ) and b ∼ N (b0,Λb) (2)

Third stage : Λ−1 ∼b Wish (νb, Rb) and τ ∼ G(·),

′
where y = (y1,1, ..., y1,T , ..., yN,1, ..., yN,T ) is (NT × 1). X is (NT ×Kx), W is (NT ×K2) with
K2 = Nk2, u is (NT × 1) and INT is a (NT ×NT ) identity matrix. TO better understand the
difference between X ′itβ and W ′itbi (or Xβ and Wb for the NT observations), we provide the
following examples of Wb which we will use in the dynamic version in Section 3 of the Monte
Carlo simulation study.4 In the random effects world, Wb = Zµµ with Zµ = IN ⊗ ιT being of
dimension (NT ×N), ⊗ is the Kronecker product, ιT is a (T × 1) vector of ones and(µ is a (N) × 1)
vector of idiosyncratic parameters. When W ≡ Zµ, the random effects are µ ∼ N 0, σ2

µIN . For
a Chamberlain-type fixed effects world, the individual effects are given by µ = XΠ + $, where X
is a (N × TKx) matrix with Xi = (X ′ , ..., X ′ ) and Π = (π′ , ..., π′ )′ ×i1 iT 1 T is a (TKx 1) vector. The
model can be rewritten as: y(= Xβ +)ZµXΠ + Zµ$ + u = Zθ + Zµ$ + u with Z = [X,ZµX] and
let Wb ≡ Z 2

µ$ with $ ∼ N 0, σ$IN . For the Hausman-Taylor world, y = Xβ + V η + Zµµ + u,
where V is a vector of time-invariant variables, and subsets of X and V may be correlated with the
individual effects µ, but leaves( the correlations) unspecified. Then, y = Zθ+Wb+u with Z = [X,V ]
and Wb = Zµµ with µ ∼ N 0, σ2

µIN . For the panel data world with common correlated effects
(or common trends), y = Xβ +Wb+ u = Xβ + FΓ + u where the (NT ×Nm) matrix F of the m
unobserved factors (or common trends) is a blockdiagonal matrix where each (T ×m) sub block f
is replicated N times and Γ is the (Nm× 1) individual varying coefficients vector.

The parameters depend upon hyperparameters which themselves follow random distributions.
The second stage (also called fixed effects model in the Bayesian literature) updates the distribution
of the parameters. The third stage (also called random effects model in the Bayesian literature)

3Here we assume the homoskedasticity of uit. As the GMM or QML estimators are robust to the presence of
time-series heteroskedasticity, one could introduce time-series heteroskedasticity as an ARCH processes or HAR-type
models. We thank an anonymous referee for this suggestion. However, in that case, the derivation of the marginal
likelihoods (or predictive densities) (see section 2.3) is quite involved. An extension along these lines is beyond the
scope of the current paper and is more appropriately dealt with in a separate one.

4We thank an anonymous referee for this suggestion.
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updates the distribution of the hyperparameters. The random effects model simply updates the dis-
tribution of the hyperparameters. The precision τ is assumed to follow a Gamma distribution and
Λ−1
b is assumed to follow a Wishart distribution with νb degrees of freedom and a hyperparameter

matrix Rb which is generally chosen close to an identity matrix. In that case, the hyperparam-
eters only concern the variance-covariance matrix of the b coefficients and the precision τ . As is
well-known, Bayesian methods are sensitive to misspecification of the distributions of the priors.
Conventional proper priors in the normal linear model have been based on the conjugate Normal-
Gamma family because they allow closed form calculations of all marginal likelihoods. Likewise,
rather than specifying a Wishart distribution for the variance-covariance matrices as is customary,

−1 −1
Zellner’s g-prior (Λβ = (τgX ′X) for β or Λb = (τhW ′W ) for b) has been widely adopted
because of its computational efficiency in evaluating marginal likelihoods and because of its simple
interpretation arising from the design matrix of observables in the sample. Since the calculation
of marginal likelihoods using a mixture of g-priors involves only a one-dimensional integral, this
approach provides an attractive computational solution that made the original g-priors popular
while insuring robustness to misspecification of g (see Zellner (1986)).

To guard against mispecifying the distributions of the priors, Baltagi et al. (2018) considered
the ε-contamination class of prior distributions for (β, b, τ):

Γ = {π (β, b, τ |g0, h0) = (1− ε)π0 (β, b, τ |g0, h0) + εq (β, b, τ |g0, h0)} , (3)

where π0 (·) is the base elicited prior, q (·) is the contamination belonging to some suitable class Q
of prior distributions, and 0 ≤ ε ≤ 1 reflects the amount of error in π0 (·) . τ is assumed to have
a vague prior, p (τ) ∝ τ−1, 0 < τ < ∞, and π0 (β, b, τ |g0, h0) is the base prior assumed to be a
specific g-prior with  ( ) −1

β ∼ N β0ιKx , (τg0ΛX) with ΛX = X ′X( ) (4) −1
b ∼ N b ′

0ιK2
, (τh0ΛW ) with ΛW = W W,

where ιKx is a (Kx × 1) vector of ones. Here, β0, b0, g0 and h0 are known scalar hyperparameters
of the base prior π0 (β, b, τ |g0, h0). The probability density function (henceforth pdf) of the base
prior π0 (.) is given by:

π0 (β, b, τ |g0, h0) = p (β|b, τ, β0, b0, g0, h0)× p (b|τ, b0, h0)× p (τ) . (5)

The possible class of contamination Q is defined as:{ }
q (β, b, τ |g0, h0) = p (β|b, τ, βq, bq, gq, hq)× p (b|τ, bq, hq)× p (τ)

Q = , (6)
with 0 < gq ≤ g0, 0 < hq ≤ h0

with  ( ) −1
β ∼ N βqιKx , (τgqΛX)( ) (7) −1
b ∼ N bqιK2

, (τhqΛW ) ,

where βq, bq, gq and hq are unknown. The restrictions gq ≤ g0 and hq ≤ h0 imply that the base
prior is the best possible so that the precision of the base prior is greater than any prior belonging
to the contamination class. The ε-contamination class of prior distributions for (β, b, τ) is then
conditional on known g0 and h0.

4



Following Baltagi et al. (2018) for the static panel model, we use a two-step strategy because it
simplifies the derivation of the predictive densities (or marginal likelihoods).5 This will be extended
to the dynamic panel model introduced in the next section.

2.2. The dynamic framework

This paper considers the Gaussian dynamic linear mixed model:

y = ρy +X ′ β +W ′ ′
it it−1 it itbi + uit = Zitθ +W ′itbi + uit , i = 1, ..., N , t = 2, ..., T, (8)

where Z ′it = [yit−1, X
′
it] and θ′ = [ρ, β′] are (1×K1) vectors with K1 = Kx + 1. The likelihood is

conditional on the first period observations y1. In that case, the first period is assumed exogenous
and known. In the spirit of (2), we have the following:

First stage : y = ρy−1 +Xβ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1IN(T−1)

Second stage : β ∼ N (β0,Λβ) and b ∼ N (b0,Λb) (9)

with p (τ) ∝ τ−1 −1 −1
, Λβ = (τgX ′X) and Λb = (τhW ′W ) .

′ ′
where y = (y1,2, ..., y1,T , ..., yN,2, ..., yN,T ) and y−1 = (y1,1, ..., y1,T−1, ..., yN,1, ..., yN,T−1) are (N(T − 1)× 1).
X is (N(T − 1)×Kx), W is (N(T − 1)×K2), u is (N(T − 1)× 1) and IN(T−1) is a (N(T − 1)×N(T − 1))
identity matrix.

There is an extensive literature on autoregressive processes using Bayesian methods. The sta-
tionarity assumption implies that the autoregressive time dependence parameter space for ρ is
a compact subset of (−1, 1). For the pros and cons of imposing a stationarity hypothesis in a
Bayesian setup see Phillips (1991). Ghosh and Heo (2003) proposed a comparative study using
some selected noninformative (objective) priors for the AR(1) model. Ibazizen and Fellag (2003),
assumed a noninformative prior for the autoregressive parameter without considering the stationar-
ity assumption for the AR(1) model. However, most papers consider a noninformative (objective)
prior for the Bayesian analysis of an AR(1) model without considering the stationarity assumption.
See for example Sims and Uhlig (1991). For the dynamic random coefficients panel data model,
Hsiao and Pesaran (2008) do not impose any constraint on the coefficients of the lag dependent
variable, ρi. But, one way to impose the stability condition on individual units would be to assume
that ρi follows a rescaled Beta distribution on (0, 1). In the time series framework, and for an
AR(1) model, Karakani et al. (2016) have performed a posterior sensitivity analysis based on Gibbs
sampling with four different priors: natural conjugate prior, Jeffreys’ prior, truncated normal prior
and g-prior. Their respective performances are compared in terms of the highest posterior density
region criterion. They show that the truncated normal distribution outperforms very slightly the
g-prior and more strongly the other priors especially when the time dimension is small. On the
other hand, for a larger time span, there is no significant difference between the truncated normal
distribution and the g-prior.

Nevertheless, introducing a truncated normal distribution for ρ poses very complex integration
problems due to the presence of the normal cdf function as integrand in the marginal likelihoods
with ε-contamination class of prior distributions. To avoid these problems, ρ could be assumed

5One could also use a one-step estimation of the ML-II posterior distribution. But in the one-step approach, the
pdf of y and the pdf of the base prior π0 (β, b, τ |g0, h0) need to be combined to get the predictive density. It thus
leads to a complex expression whose integration with respect to (β, b, τ) may be involved.
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to be U (−1, 1). In that case, its mean (0) and its variance (1/3) are exactly defined and we do
not need to introduce an ε-contamination class of prior distributions for ρ at the second stage
of the hierarchy. This was initially our first goal. Unfortunately, the results using Monte Carlo
simulations showed biased estimates of ρ, β and residual variances (see Appendices( A.1 and A.2

′)
in the supplementary material). Consequently, we assume a Zellner g-prior for θ = [ρ, β′] which
encompasses the coefficient of the lagged dependent variable yi,t−1 and those of the explanatory
variables X ′it. In other words, the two-stage hierarchy becomes.

First stage : y = Zθ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1IN(T−1)

Second stage : θ ∼ N (θ0,Λθ) and b ∼ N (b0,Λb) (10)

with p (τ) ∝ τ−1 , Λθ = (τgZ ′
−1 1

Z) and Λ ′ −
b = (τhW W ) .

Thus, we do not impose stationarity constraints like many authors and we respect the philosophy
of ε-contamination class using data-driven priors.

2.3. The robust dynamic linear model in the two-stage hierarchy

Using a two-step approach, we can integrate first with respect to (θ, τ) given b and then, con-
ditional on θ, we integrate with respect to (b, τ) .

1. Let y∗ = (y−Wb). Derive the conditional ML-II posterior distribution of θ given the specific
effects b.

2. Let ỹ = (y−Zθ). Derive the conditional ML-II posterior distribution of b given the coefficients
θ.

Thus, the marginal likelihoods (or predictive densities) corresponding to the base priors are:

∫∞ ∫
m (y∗|π0, b, g

∗
0) = π0 (θ, τ |g0)× p (y |Z, b, τ) dθ dτ

0 RK1

and ∫∞ ∫
m (ỹ|π0, θ, h0) = π0 (b, τ |h0)× p (ỹ|W, θ, τ) db dτ,

0 RK2

with ( )τg
K1 ( )

0 2 1/2 τg0
π0 (θ, τ |g0) = τ−1 |ΛZ | exp − (θ − θ0ιK1)′ΛZ(θ − θ0ιK

2π 1)) ,
2( )K2 ( )

τh 2
0 −1 1/2 τh0

π0 (b, τ |h0) = τ |ΛW | exp − (b− b ′
0ιK2

) ΛW (b− b0ιK2
) .

2π 2

Solving these equations is considerably easier than solving the equivalent expression in the one-step
approach.

6



2.3.1. The first step of the robust Bayesian estimator

Let y∗ = y −Wb. Combining the pdf of y∗ and the pdf of the base prior, we get the predictive
density corresponding to the base prior6:∫∞ ∫

m (y∗|π0, b, g0) = π0 (θ, τ |g ∗
0)× p (y |Z, b, τ) dθ dτ (11)

0 RK1( ) (
K1/2 ( )( )) N(T−1)−

g
= H̃

0 g0 R2 2

θ1 + 0

g + 1 g + 1 1−R2
0 0 θ0

˜ Γ(N(T−1)
2 ) (θ̂(b)−θ0ιK )′ΛZ(θ̂(b)−θ

with H = 2 0ιK )
1 1 −1 ′ ∗

(N(T−
̂

1) ) (N(T−1) , R
) θ =

0 (θ̂(b)−θ ι )′ ̂ , θ (b) = ΛZ Z y and v (b) =
Λ

π v(b) 0 K Z(θ(b)−θ0ιK )+v(b)2 2 1 1

(y∗ − Zθ̂ (b))′(y∗ − Zθ̂ (b)), and where Γ (·) is the Gamma function.
Likewise, we can obtain the predictive density corresponding to the contaminated prior for the

distribution q (θ, τ |g0, h0) ∈ Q from the class Q of possible contamination distributions:( )K1
( ( )( )) N(T−1)−

R2
g g

2
2

q
m (y∗|q, b, g0) = H̃

q θ
1 + q , (12)

gq + 1 g + 1 R2
q 1− θq

where
(θ̂ (b)− θ ′ (θ̂qιK ) ΛZ (b)− θqιK )

R2 = 1 1

θq .
(θ̂ (b)− θqιK1

)′ΛZ(θ̂ (b)− θqιK1
) + v (b)

As the ε-contamination of the prior distributions for (θ, τ) is defined by π (θ, τ |g0) = (1− ε)π0 (θ, τ |g0)+
εq (θ, τ |g0), the corresponding predictive density is given by:

m (y∗|π, b, g ∗ ∗
0) = (1− ε)m (y |π0, b, g0) + εm (y |q, b, g0)

and
supm (y∗|π, b, g0) = (1− ε)m (y∗|π0, b, g0) + ε supm (y∗|q, b, g0) .
π∈Γ q∈Q

The maximization of m (y∗|π, b, g0) requires the maximization of m (y∗|q, b, g0) with respect to θq
and gq. The first-order conditions lead to(

θ̂q = ι′
)−1

K1
ΛZιK1 ι′K1

Λ θ̂Z (b) (13)

and ( ( ) −1


R2 )̂
ĝ = min (g , g∗ ∗  (N(T − 1)−K1) θ
q 0 ) with g = max q − 1 , 0 . (14)

K1 1−R2
θ̂q

Denote supq∈Qm (y∗|q, b, g0) = m (y∗|q̂, b, g0). Then

( ) ( ( )( )) N(T−1)−̂ K1 ̂ R2 2

g 2
q

m (y∗
g ̂q|q̂ θ

, b, g H̃ q

0) = 1 + .
ĝ + 1 gq + 1 1− 2
q ̂ R

θ̂q

6Derivation can be found in the supplementary appendix of Baltagi et al. (2018).

7



Let π∗0 (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior π0 (θ, τ |g0). Also, let
q∗ (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior q (θ, τ |g0). The ML-II posterior
density of θ is thus given by:

∫∞ ∫∞ ( )∫∞
π̂∗ (θ|g ) = π̂∗0 (θ, τ |g0) dτ = λ̂θ 0

π∗,g 0 (θ, τ |g0) dτ + 1− λ̂ ∗
θ,g0 q (θ, τ |g0) dτ

0 ( 0 ) 0

= λ̂θ,g0π
∗
0 (θ|g0) + 1− λ̂θ,g0 q̂∗ (θ|g0) (15)

with   ( )  1  T−1)
( ) N( − R2 2

ĝ
K 2 g θ 1/

q 
ε ĝq+1 1 + 0 0

g 1 R2
0+1 − θ0

 
λ̂  
θ = ,g0 1 +  

1− ε g  ( )(  R20
)

gg0+1 ̂ ̂   .

1 + q θq 
ĝq+1 1−R2

θ̂q

Note that λ̂θ,g0 depends upon the ratio of the R2
θ and R2

θ , but primarily on the sample size
0 q

N(T − 1). Indeed, λ̂θ,g0 tends to 0 when R2
θ > R2

θ and tends to 1 when R2
0 q θ < R2

0 θ , irrespective
q

of the model fit (i.e, the absolute values of R2 2 2 2
θ or R R
0 θ ). Only the relative values of

q θ and R
q θ0

matter.
It can be shown that π∗0 (θ|g0) is the pdf (see the supplementary appendix of Baltagi(et al. (2018))

ξ M−1
)

of a multivariate t-distribution with mean vector θ∗(b|g
0,θ 0,θ

0), variance-covariance matrix N(T−1)−2

and degrees of freedom (N(T − 1)) with ( )( )
(g0 + 1) g0 R2

θM0,θ = ΛZ and ξ0,θ = 1 + 0 . (16)
v (b) g0 + 1 1−R2

θ0

θ∗(b|g0) is the Bayes estimate of θ for the prior distribution π0 (θ, τ) :

θ̂ (b) + g0θ0ιK
θ∗ (b|g0) = 1 . (17)

g0 + 1

Likewise q̂∗ (θ) is the( pdf of a)multivariate t-distribution with mean vector θ̂EB (b|g0), variance-
ξ

covariance matrix
q,θM

−1
q,θ

− NN( 1)− and degrees of freedom ( (T − 1)) withT 2

( )( 2 ) ( )̂ Rg ̂q θq (ĝq + 1)
ξq,θ = 1 + and Mq,θ = ΛZ , (18)

ĝq + 1 1−R2 v (b)
θ̂q

where θ̂EB (b|g0) is the empirical Bayes estimator of θ for the contaminated prior distribution q (θ, τ)
given by:

θ̂ ( g
θ̂

b) + ̂ ̂qθqιK
EB (b|g0) = 1 . (19)

ĝq + 1
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The mean of the ML-II posterior density of θ is then:

θ̂ML−II = E [π̂∗ (θ|g0)] (20)( )
= λ̂ ∗ ̂ ∗

θ,g0E [π0 (θ|g0)] + 1− λθ,g0 E [q̂ (θ|g0)]( )
= λ̂θ,g0θ∗(b|g0) + 1− λ̂ ̂

θ,g0 θEB (b|g0) .

The ML-II posterior density of θ, given b and g0 is a shrinkage estimator. It is a weighted average of
the Bayes estimator θ∗(b|g0) under base prior g0 and the data-dependent empirical Bayes estimator

θ̂EB (b|g0). If the base prior is consistent with the data, the weight λ̂θ,g0 → 1 and the ML-II
posterior density of θ gives more weight to the posterior π∗0 (θ|g0) derived from the elicited prior.

In this case θ̂ML−II is close to the Bayes estimator θ∗(b|g0). Conversely, if the base prior is not

consistent with the data, the weight λ̂θ,g0 → 0 and the ML-II posterior density of θ is then close

to the posterior q̂∗ (θ|g ̂
0) and to the empirical Bayes estimator θEB (b|g0). The ability of the ε-

contamination model to extract more information from the data is what makes it superior to the
classical Bayes estimator based on a single base prior.7

2.3.2. The second step of the robust Bayesian estimator

Let ỹ = y−Zθ. Moving along the lines of the first step, the ML-II posterior density of b is given
by: ( )

π̂∗ (b|h0) = λ̂
0
π∗b,h 0 (b|h0) + 1− λ̂b,h0

q̂∗ (b|h0)

with   ( )( )  N(T−1)
−1 R2 2̂ K /2 h b  2h 1 + 0 0

2  
λ̂  ε ̂ h0+1

h+1  1−Rb0  
b,h + 

0
= 1  ( 1− ε h  ( )̂ R2

)
0 ̂   ,

hh0+1 1 +
bq̂ 2

h+1 1−R
b̂q

and where λ̂b,h0 is defined in a similar manner as λ̂θ,g0 .8 π∗0 (b|h0) (is the pdf
−1
)of a multivariate

ξ M
t-distribution with mean vector b∗(θ|h iance-covariance matrix

0,b

0), var 0,b of(T− and degreesN 1)−2

freedom (N(T − 1)) with ( )
(h + 1) h (̂ ̂

0 b (θ)− ′
0 b0ιK ) ΛW (b (θ)− b0ιK )

M0,b = ΛW and ξ0,b = 1 + 2 2 .
v (θ) h0 + 1 v (θ)

b∗(θ|h0) is the Bayes estimate of b for the prior distribution π0 (b, τ |h0) :

b̂ (θ) + h0b0ιK
b∗(θ|h0) = 2 .

h0 + 1

7Following Berger (1985), Baltagi et al. (2018) derived the analytical ML-II posterior variance-covariance matrix
of θ (see the supplementary appendix of Baltagi et al. (2018)).

8λ̂b,h0 is defined by the following elements ĥ, Rb0 , R̂ , b̂ (θ) , b̂q which are analogous respectively to ĝq , Rθ0 ,
bq

R θ̂̂ , (b), θ̂q and where W , ΛW , ỹ, h0, K2, b0, ιK2
replace Z, ΛZ , y∗, g0, K1, θ0, ιK1

of the preceeding subsection.
θq
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q∗ (b|h0)(is the pdf ̂)of a multivariate t-distribution with mean vector bEB (θ|h0), variance-covariance
ξ

matrix
1,bM

−1
1,b ofN( −1)− and degrees freedom (N(T − 1)) withT 2 ( ) ( )

ĥ (̂q b (θ)− b̂ ̂ ι ) ̂
qιK )′ΛW (̂b (θ)− bq K h+ 1

ξ 2 2
1,b = 1 + and M̂ 1,b = ΛW

h + 1 v (θ) v (θ)q

b̂EB (θ|h0) is the empirical Bayes estimator of b for the contaminated prior distribution q (b, τ |h0) :

̂̂ θ(b) + ĥ ̂qbqιK
bEB (θ|h0) = 2 .

ĥq + 1

The mean of the ML-II posterior density of b is hence given by:( )
b̂ML−II = λ̂bb∗(θ|h0) + 1− λ̂ ̂

θ bEB (θ|h0) . (21)

The ML-II posterior variance-covariance matrix of b can be derived in a similar fashion9 to that of
θ̂ML−II .

2.4. Estimating the ML-II posterior variance-covariance matrix

Many have raised concerns about the unbiasedness of the posterior variance-covariance matrices
of θ̂ − and ̂ML II bML−II . Indeed, they will both be biased towards zero as λ̂θ,g0 and λ̂b,h0

→ 0
and converge to the empirical variance which is known to underestimate the true variance (see e.g.
Berger and Berliner (1986); Gilks et al. (1997); Robert (2007)). Consequently, the assessment of

the performance of either θ̂ ̂
ML−II or bML−II using standard quadratic loss functions can not be

conducted using the analytical expressions. What is needed is an unbiased estimator of the true
ML-II variances. Baltagi et al. (2018) proposed two different strategies to approximate these, each
with different desirable properties: MCMC with multivariate t-distributions or block resampling
bootstrap. Simulations show that one needs as few as 20 bootstrap samples to achieve acceptable
results10. Here, we will use the same individual block resampling bootstrap method. Following
Kapetanios (2008), individual block resampling consists of drawing an (N × (T − 1)) matrix Y BR

whose rows are obtained by resampling those of an (N × (T − 1)) matrix Y with replacement.
Conditionally on Y , the rows of Y BR are independent and identically distributed. The following
algorithm is used to approximate the variance matrices:

1. Loop over BR samples

2. In the first step, compute the mean of the ML-II posterior density of θ using our initial
shrinkage procedure

θ̂ ∗
ML−II,br = E [π̂ (θ|g0)] ( )

= λ̂θ,g0θ∗(b|g ) + 1− λ̂ ̂
0 θ,g0 θEB (b|g0) .

9See the supplementary appendix of Baltagi et al. (2018).
10Increasing the number of bootstrap samples does not change the results but increases the computation time

considerably.
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3. In the second step, compute the mean of the ML-II posterior density of b:( )
b̂ML−II,br = λ̂bb∗(θ|h0) + 1− λ̂ ̂

θ bEB (θ|h0)

4. Once the BR bootstraps are completed, use the (K1 × BR) matrix of coefficients θ(BR) and
the (N ×BR) matrix of coefficients b(BR) to compute:[ ] √ ( [ ])

θ̂M = θ(BR)
L−II E , σ̂θML−II = diag V ar θ(BR)[ ] √ ( [ ])

b̂ML−II = E b(BR) , σ̂bML−II = diag V ar b(BR)

3. Monte Carlo simulation study

In what follows, we compare the finite sample properties of our proposed estimator with those
of standard classical estimators.

3.1. The DGP of the Monte Carlo simulation study

For the random effects (RE), the Chamberlain (1982)-type fixed effects (FE) world and the
Hausman and Taylor (1981) (HT) worlds, we use the same DGP as that of Baltagi et al. (2018)
extended to the dynamic case. For the dynamic homogeneous/heterogeneous panel data model
with common trends or with common correlated effects, we are inspired by Chudik and Pesaran
(2015a,b).

yit = ρyi,t−1 + x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + V1,iη1 + V2,iη2 + µi + uit, (22)

for i = 1, ..., N , t = 2, ..., T, with

x1,1,it = 0.7x1,1,it−1 + δi + ζit

x1,2,it = 0.7x1,2,it−1 + θi + ς( ) it

u ∼ N 0, τ−1
it , (δi, θi, ζit, ςit) ∼ U(−6, 6)

and ρ = 0.75, β1,1 = β1,2 = β2 = 1.

1. For a random effects (RE) world, we assume that:

η1 = η2 = 0

x2,it = 0.7x2,it−1 + κi + ϑit , (κi, ϑit) ∼ U(−6, 6)( )
µi ∼ N 0, σ2

µ , σ2
µ = 4τ−1.

Furthermore, x1,1,it, x1,2,it and x2,it are assumed to be exogenous in that they are not corre-
lated with µi and uit.

2. For a Chamberlain-type fixed effects (FE) world, we assume that:

η1 = η2 = 0;

x2,it = δ2,i + ω2,it , δ2,i ∼ N(mδ2 , σ
2
δ2), ω 2

2,it ∼ N(mω2 , σω2
);

mδ2 = mω2 = 1, σ2
δ2 = 8, σ2

ω2
= 2;

µi = x2,i1π1 + x2,i2π2 + ...+ x2,iTπT + νi, ν
2

i ∼ N(0, σν);

σ2
ν = 1, πt = (0.8)T−t for t = 1, ..., T.
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x1,1,it and x1,2,it are assumed to be exogenous but x2,it is correlated with the µi and we
assume an exponential growth for the correlation coefficient πt.

3. For a Hausman-Taylor (HT) world, we assume that:

η1 = η2 = 1;

x2,it = 0.7x2,it−1 + µi + ϑit , ϑit ∼ U(−6, 6);

V1,i = 1, ∀i;
V2,i = µi + δi + θi + ξi, ξ( i ∼ U(−6, 6);)
µi ∼ N 0, σ2

µ and σ2
µ = 4τ−1.

x1,1,it and x1,2,it and V1,i are assumed to be exogenous while x2,it and V2,i are endogenous
because they are correlated with the µi but not with the uit.

4. For the homogeneous panel data world with common trends, we follow Chudik and Pesaran
(2015a,b) and assume that

yit = ρyi,t−1 + xitβ1 + xi,t−1β
′

2 + ftγi + uit, for i = 1, ..., N , t = 2, ..., T, (23)

with

xit = αxiyi,t−1 + f ′tγxi + ωxit
ωxit = %xiωxit−1

+ ζxit
γil = γl + ηi,γl , for l = 1, ...,m

γxil = γxl + ηi,γx , for l = 1, ...,m
l

where

ζxit ∼ U(−3, 3) , η 2 2
i,γl ∼ N(0, σγl) , ηi,γx ∼ N(0, σ

l γx )√ √ l

σ2 2 2
γ ×
l

= σγx = 0.2 , γl = l cγ , γxl = l × cx,l
l

2σ2 ( )
cγ = (1/m)− σ2

γ , c 2
x,l = − γxl , and uit ∼ N 0, τ−1

l
.m(m+1) (m+1)

ft and γi are (m × 1) vectors. We consider m = 2 deterministic known common trends:
one linear trend ft,1 = t/T and one polynomial trend: f = t/T + 1.4(t/T )2 3

t,2 − 3(t/T ) for
t = 1, ..., T . The feedback coefficients follow a uniform distribution αxi ∼ U(0, 0.15) and are
non-zero for all i (αxi = 0). They lead to weakly exogenous regressors xit.

5. For the homogeneous panel data world with common correlated effects, we follow Chudik
and Pesaran (2015a,b), and assume that the m common trends ft in (23), are replaced with
unobserved common factors:

ftl = ρflft−1,l + ξftl, ξftl ∼ N(0, 1− ρ2
fl), l = 1, ...,m

We assume that the common factors are independent stationary AR(1) processes with ρfl =
0.6 for l = 1, ...,m.

6. For the heterogeneous panel data world with common correlated effects, we follow Chudik and
Pesaran (2015a,b) and assume that ρ (resp. β1) in the model (23) is replaced by individual
coefficients ρi ∼ U(0.6, 0.9) (resp. β1i ∼ U(0.5, 1)) for i = 1, ..., N and we keep the m
unobserved common factors as defined previously.

6
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For each set-up, we vary the size of the sample and the length of the panel. We choose several
(N,T ) pairs with N = 100, 200 and T = 10, 30 for cases 1 to 3 and N = (50, 100) and T = (30, 50)
for cases 4 to 6. The autoregressive coefficient is set as ρ = 0.75. We set the initial values of yit,
x1,1,it, x1,2,it and x2,it, xit to zero. We next generate all the x1,1,it, x1,2,it, x1,2,it, xit, yit, uit, ζit,
ςit, ω2,it, . . . over T + T0 time periods and we drop the first T0(= 50) observations to reduce the
dependence on the initial values. The robust Bayesian estimators for the two-stage hierarchy are
estimated with ε = 0.5, though we investigate the robustness of our results to various values of ε.11

(We must set the)hyperparameters( values θ0, b0, g0), h0, τ for the initial distributions of θ ∼
−1 −1 ′

N θ0ιK1
, (τg0ΛZ) and b ∼ N b0ιK2

, (τh0ΛW ) where θ = [ρ, β1,1, β1,2, β2] for the first
′

three cases and θ = [ρ, β1, β2] for the last three cases. While we can choose arbitrary values for
θ0, b0 and τ , the literature generally recommends using the unit information prior (UIP) to set
the g-priors.12 In the normal regression case, and following Kass and Wasserman (1995), the UIP
corresponds to g0 = h0 = 1/N(T − 1), leading to Bayes factors that behave like the Bayesian
Information Criterion (BIC).

For the 2S robust estimators, we use BR = 20 samples in the block resampling bootstrap. For
each experiment, we run R = 1, 000 replications and we compute the means, standard errors and
root mean squared errors (RMSEs) of the coefficients and the residual variances.

3.1.1. The random effects world

Rewrite the general dynamic model (8) as follows:

y =Zθ +Wb+ u = Zθ + Zµµ+ u

with Z ′
′

it = [yit−1, X
′
it] , θ = [ρ, β′] and X ′it = [x1,1,it, x1,2,it, x2,it] ,

where u ∼ N(0,Σ), Σ = τ−1IN(T−1), Zµ = IN ⊗ ιT−1 is (N(T − 1)×N), ⊗ is the Kronecker
product, ιT−1 is a (T − 1× 1) vector of ones and µ(≡( b) is a) (N × 1) vector of idiosyncratic pa-
rameters. When W ≡ Zµ, the random effects, µ ∼ N 0, σ2

µIN , are associated with the error term
ν = Z µ + u with Var (ν) = σ2 2

µ µ (IN ⊗ JT−1) + σuIN(T−1), where JT−1 = ιT−1ι
′
T−1. This model

is usually estimated using GMM. It could also be estimated using the quasi-maximum likelihood
(QML) estimator (see Kripfganz (2016), Bun et al. (2017), Moral-Benito et al. (2019)). Thus we
compare our Bayesian two-stage estimator with the Arellano-Bond GMM and the QML estima-
tors.13

Table 1 reports the results of fitting the Bayesian two-stage model with block resampling boot-
strap (2S bootstrap)14 along with those from the GMM and QMLE, each in a separate panel for

11ε = 0.5 is an arbitrary value. This implicitly assumes that the amount of error in the base elicited prior is 50%.
In other words, ε = 0.5 means that we elicit the π0 prior but feel we could be as much as 50% off (in terms of implied
probability sets).

12We chose: θ0 = 0, b0 = 0 and τ = 1.
13We use our own R codes for our Bayesian estimator, the R package plm for the Arellano-Bond GMM estimator and

the xtdpdqml Stata package for the QMLE. We use the same DGP set under R and Stata environments to compare the
three methods. We thank Jean-Michel Etienne for his help and support with the full-blown programming language
Mata of Stata.

14Recall that we use only BR = 20 individual block bootstrap samples. Fortunately, the results are very robust to
the value of BR. For instance, increasing BR from 20 to 200 in the random effects world increases the computation
time tenfold but yields practically the same results.
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N = 100, T = 10 (see Table B.1 in the supplementary material for N = 200, T = 30).15 The true
parameter values appear in the first row of the Table. The last column reports the computation
time in seconds.16 Note that the computation time increases significantly as we move from a small
sample to a larger one (the QMLE being the fastest).

The first noteworthy feature of the Table is that all the estimators yield parameter estimates,
standard errors17 and RMSEs that are very close. For the coefficient of the lagged dependent
variable, ρ, as well as for the β coefficients, the RMSE are the lowest both for the 2S bootstrap
and the QMLE when N = 100 and T = 10 or when N = 200 and T = 30. GMM yields higher
RMSEs for all coefficients. The 2S bootstrap and the QMLE have also better RMSEs than the
GMM estimator for the residual disturbances (σ2

u) and the random effects (σ2
µ). Table 1 confirms

ˆthat the base prior is not consistent with the data since λθ,g0 is close to zero. The ML-II posterior

density of θ is close to the posterior q̂∗ (θ|g0) and to the empirical Bayes estimator θ̂EB (b|g0). In

contrast, λ̂µ is close to 0.5 so the Bayes estimator b∗(θ|h0) under the base prior h0 and the empirical

Bayes estimator b̂EB (θ|h0) each contribute similarly to the random effects bi(≡ µi). Note that the
computation times are roughly the same for the 2S bootstrap and QMLE compared to those of
GMMs which explode when N and T increase.

We can also use a simple and efficient way to drastically reduce the computation time of our
Bayesian two-stage estimator. The ML-II posterior density of θ in (15) is a two-component finite
mixture of multivariate t-distributions whose location parameters and scale matrices are given
in (16) to (19). Following McLachlan and Lee (2013), one can generate mixture of multivariate
skewed (or non-skewed) t-distributions via an EM Algorithm approach. Thus, generating 1000 (or
more) random samples of K1-dimensional multivariate t observations with location parameters,
scale matrices given in (16)-(19) and degrees of freedom N(T − 1), allows one to sample a mixture
of the two components to get 1000 (or more) random vectors of θML−II . The latter can then be
used to compute the variances of the K1 parameters.18 Using this device reduces the computation
time by as much as by 80 − 90% in all cases, although small discrepancies with the bootstrapped
standard errors may occur in specific cases. For instance, for N = 100, T = 10 (resp. N = 200,
T = 30) and r = 0.8, the computation time shrinks from 285 seconds to 19 seconds (resp. 3079
seconds to 289 seconds) — a reduction by a factor of 15 (resp. 10.6) — and the estimated standard
errors of the parameters ρ and β by the bootstrap and mixture approaches differ by at most 0.007
(resp. 0.003). (see Tables C.1 to C.3 in the supplementary material). This considerable time-saving
device makes our Bayesian two-stage estimator all the more favorable.

Table B.2 in the supplementary material gives the results when the coefficient ρ of the lagged
dependent variable is increased from 0.75 to 0.98 (close to the unit root) for N = 100 and T = 10.
The GMM estimator performs the worst as compared to the two other estimators, mainly for the
estimation of the residual disturbances (σ2

u) and the random effects (σ2
µ). An important point to

15Whenever we discuss samples other than (N = 100, T = 10) for the random effects, the Chamberlain-type fixed
effects and the Hausman-Taylor worlds or (N = 100, T = 30) for the commom correlated effects world, we refer the
reader to Tables in section B in the supplementary material.

16The simulations were conducted using R version 3.3.2 on a MacBook Pro, 2.8 GHz core i7 with 16Go 1600 MGz
DDR3 ram.

17Strictly speaking, we should mention “posterior means” and “posterior standard errors” whenever we refer to
Bayesian estimates and “coefficients” and “standard errors” when discussing frequentist ones. For the sake of brevity,
we will use “coefficients” and “standard errors” in both cases.

18See the supplementary material for more details.
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note is the significant bias and unlikely estimated values of σ2
u and σ2

µ for QMLE.19 2S bootstrap
has the lowest RMSE for all the parameters and the variances of specific effects and remainder
disturbances. Even with a coefficient ρ very close to the unit root, the 95% Highest Posterior
Density Interval (HPDI) of the Bayesian estimator confirm the stationarity of the AR(1) process.
It does not therefore seem necessary to impose a stationarity constraint on the prior distribution
of ρ.

3.1.2. The Chamberlain-type fixed effects world

For the Chamberlain (1982)-type specification, the individual effects are given by µ = XΠ +
$, where X is a (N × (T − 1)K ) matrix with X = (X ′ ′

x i i2, ..., XiT ) and Π = (π′ ′ ′
2, ..., πT ) is a

((T − 1)Kx × 1) vector. Here πt is a (Kx × 1) vector of parameters to be estimated. The model
can be rewritten as: y = Zθ + ZµXΠ + Zµ$ + u. We concatenate [Z,ZµX] into a single matrix of
observables Z∗ and let Wb ≡ Zµ$.

For the Chamberlain world, we compare the QML estimator to our Bayesian estimator.∑ These
T

are based on the transformed model: yit = ρyi,t−1 +x1,1,itβ1,1 +[x1,2,itβ1,2 +x2,itβ2 +] t=2 x2,itπt+
$ ∗
i +uit or y = Z θ∗+Wb+u = Z∗θ∗+Zµ$+u where Z∗ = y−1, x1,1, x1,2, x2, x2 , W = Zµ and

b = $.
Table 1 once again shows that the results of the 2S bootstrap are very close to those of the QML

estimator. Table B.3 in the supplementary material reports the estimates of the πt coefficients. 2S
bootstrap has RMSE very close to those of QMLE whatever the sample size except for σ2

µ when
N = 100 and T = 10 but this difference diminishes quickly when N = 200 and T = 30 (see Table
B.4 in the supplementary material). Hsiao and Zhou (2018) show that a properly specified QMLE
that uses the Chamberlain approach to condition the unobserved effects and initial values on the
observed strictly exogenous covariates is asymptotically unbiased if N goes to infinity whether T
is fixed or goes to infinity.20 Note that the computation times of the QMLE are 1.6 to 3.7 times
longer than those of the 2S bootstrap.21 Here again, the RMSE of 2S bootstrap and QMLE are close
to each other.

19When ρ is close to the non-stationarity bounds (i.e., close to one), the QMLE, two-stage QMLE, CCEP and
CCEMG estimators give unrealistic values of the variances σ2

u and σ2
µ or cannot be computed.

20If they underline that it does not matter whether the initial values are treated as fixed constants or random
variables when N is fixed and T is large, they point out that the treatment of initial values becomes important when
N is large. When one treats initial values as fixed constan√ts, the QMLE is inconsistent if T is fixed and N → ∞.
It becomes consistent but asymptotically biased of order N/T 3 when both N and T are large. However, if the
specific effects are correlated with√ the exogenous variables, the naive GLS estimator on fixed initial conditions is
asymptotically biased of order N/T as (N,T ) → ∞. Hsiao and Zhou (2018) show that using the Chamberlain’s
approac√ h to condition the effects on observed explanatory variables can reduce the order of asymptotic bias to
N/T 3. On the other hand, they show that the QMLE with a properly modeled initial value distribution combined

with Chamberlain’s approach is consistent and asymptotically unbiased whether T is fixed or goes to infinity as long
as N →∞. For our specification yit = ρyi,t−1 + z′ θ+$i +uit, the used QMLE estimator with the xtdpdqml Statait ∑

m m−1command iterates the initial observations continuously backward in time as: yi0 = ρ yi,−m + ρsz′s=0 i,− θ +s
m1−ρ ∑m−1$i + + ρsui,−s with m → ∞. The last right three terms of the previous equation imply a restriction

1−ρ s=0

on the covariance between the initial observations and the unit-specific effects: φσ2 2
0 = σ$/(1 − ρ) with σ2

0 =
(σ2
$+σ2

u)/(1−ρ)2. Feasible starting values for the variance parameters (σ2
$, σ

2
u, σ

2
0 , φ) need to satisfy the restriction

(σ2 −$ φ2σ2
0)T > −σ2

u (see Kripfganz (2016)). We use the following starting values (σ2
$, σ

2
u, σ

2
0 , φ) = (0.1, 0.2, 0.2, 0.2)

which allow to get unbiased QMLE.
21Again, the mixture approach for calculating the standard errors considerably reduces the computation time. For

N = 200 and T = 30, it decreases from 2708 seconds to 254 seconds — a reduction by a factor of 10.7 — and the
differences with the bootstrap approach are marginal (see Table C.4 in the supplementary material).
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3.1.3. The Hausman-Taylor world

The static Hausman-Taylor model (henceforth HT, see Hausman and Taylor (1981)) posits that
y = Xβ+V η+Zµµ+u, where V is a vector of time-invariant variables, and that subsets of X (e.g.,
X ′2,i) and V (e.g., V ′2i) may be correlated with the individual effects µ, but leaves the correlations
unspecified. Hausman and Taylor (1981) proposed a two-step IV estimator.

For our dynamic general model (8) and for equation (22): y = Zθ + Wb + u = ρy−1 + Xβ +
′

V η + Zµµ+ u, we assume that (X2,i, V
′
2i and µi) are jointly normally distributed:    ( µi ( ) ′ ) ( 0 )

X  ∼ N  E ′  Σ 
2,i X , 11 Σ12 ,

2
′ Σ21 Σ22

V ′
2i EV2

′
where X2,i is the individual mean of X ′2,it and E ′ is the general mean of X ′X 2. We could estimate

2
′

the conditional distribution of µi | X2,i, V
′
2i if we knew the elements of the variance-covariance

matrix Σjs. We can nevertheless assume that( )′ ( )
µi = X2,i − E ′ θ + V ′XX 2i − EV ′ θV +$i,22

where $i is uncorrelated with uit, and where θX and θV are vectors of parameters to be estimated.
In order to identify the coefficient vector of V ′2i and to avoid possible collinearity problems, we
assume that the individual effects are given by:( ) [( ) ]′ ′ (

µi = X ′ )
2,i − E ′ θX + f X2,i − E ′ � V i (24)X X 2i − EV ′ θV +$ ,

22 2[( )′ ( )]
where � is the Hadamard product and f X2,i − E ′′ � V −X 2i E( ) V ′ can be a nonlinear function

2

′ ( ) 2

of X2,i − E ′ ′′ � V −2i EV . The first term on the right-hand side of equation (24) correspondsX 22

to the Mundlak (1978) transformation while the middle term captures the correlation between V ′2i
and µi. The individual effects, µ, are a function of PX and (f [PX � V ]), i.e., a function of
the column-by-column Hadamard product of PX and V where P = (IN ⊗ JT−1)/(T − 1)) is the
between transformation. We can once again concatenate [y−1, X, PX, f [PX � V ]] into a single
matrix of observables Z∗ and let Wb ≡ Zµ$.
For our model (22), yit = ρyi,t−1 + x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + V1,iη1 + V2,iη2 + µi + uit or
y = ρy−1 +X1β1+ x2β2 + V1η1 + V2η2 + Zµµ+ u. Then, we assume that

µi = (x2,i − Ex2) θX + f [(x2,i − Ex2)� (V2i − EV2)] θV +$i. (25)

We propose adopting the following strategy: If the correlation between µi and V2i is quite large
2 s

(> 0.2), use f [.] = (x2,i − Ex2) � (V2i − EV2) with s = 1. If the correlation is weak, set
s = 2. In real-world applications, we do not know the correlation between( µi and) V2i a pri-̂ −1
ori. We can use a proxy of µi defined by the OLS estimation of µ: µ = Z ′µZµ Z ′µŷ where
ŷ are the fitted values of the pooling regression y = ρy−1 + X1β1+ x2β2 + V1η1 + V2η2 + ζ.
Then, we compute the correlation between µ̂ and V2. In our simulation study, it turns out the
correlations between µ and V2 are large: 0.65. Hence, we choose s = 1. In this specification,
Z = [y−1, x1,1, x1,2, x2, V1, V2, Px2, f [Px2 � V2]], W = Zµ and b = $.
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Our 2S bootstrap estimation method is compared with the two-stage quasi-maximum likelihood
sequential approach proposed by Kripfganz and Schwarz (2019). In the first stage, they estimate
the coefficients of the time-varying regressors without relying on coefficient estimates for the time-
invariant regressors using the quasi-maximum likelihood (QML) estimator of Hsiao et al. (2002)
with the xtdpdqml Stata command. Subsequently, they regress the first-stage residuals on the
time-invariant regressors. They achieve identification by using instrumental variables in the spirit
of Hausman and Taylor (1981), and they adjust the second-stage standard errors to account for
the first-stage estimation error.22 They have proposed a new xtseqreg Stata command which
implements the standard error correction for two-stage dynamic linear panel data models.23

Table 1 compares results of the 2S bootstrap estimator to those of the two-stage QML sequential
approach. Once again, the estimates and the RMSE are very close to one another (see Table B.5
in the supplementary material for other (T,N) simulations). On the other hand, the 2S bootstrap
has a lower RMSE for η2 (for N = 100 and T = 10) and (N = 100 and T = 30). This is true
despite the fact that the 2S bootstrap estimator yields a slightly upward biased estimate of η2, the
coefficient associated with the time-invariant variable Z2,i which is itself correlated with µi. This
bias decreases as T increases (from 3.9% for T = 10 to 1.3% for T = 30). Interestingly, the standard
errors of that same coefficient η2 are smaller when using the Bayesian estimator as compared to
the two-stage QMLE, and especially when T is larger. Even with a slight bias, the 95% confidence
intervals of the Bayesian estimator are narrower and entirely nested within those obtained with the
two-stage QML sequential approach. We also reached the same conclusion in a static model (see
Baltagi et al. (2018)). Note that the 2S bootstrap estimator yields very small biases of σ2

µ but these
biases decrease rapidly as the individual span is increased from −1.5% for N = 100 to −0.75% for
N = 200. Finally, note that the computation times of the two-stage QML sequential approach are
1.1 to 2.6 times longer than those of the 2S bootstrap.24

3.1.4. The dynamic homogeneous panel data world with common trends

The dynamic homogeneous panel data world with common trends is defined as:

yit = ρyi,t−1 + xitβ1 + x ′
i,t−1β2 + ftγi + uit

Since the m common trends, ft, are known, we can rewrite the general dynamic model (8) as follows:

y =Zθ +Wb+ u = Zθ + FΓ + u

with Z ′
′

it = [y ′ ′ ′
it−1, Xit] , θ = [ρ, β ] and Xit = [xi,t, xi,t−1] ,

22For the following specification: yit = ρyi,t−1 + x′ β + V ′η + µ + u , the first stage model is y = ρy +it i i it it i,t−1

x′ β + κ+ eit, where e ′
it = κi − κ+ uit, κi = V η+ µi, κ = E[κ isi i] and estimated in first differences. In the secondit

stage, Kripfganz and Schwarz (2019) estimate the coefficients η based on the level relationship: y ′ ̂
it−ρŷi,t−1−x β =it

V ′η + ϑit where ϑit = µi + uit + (ρ̂− ρ)yi,t−1 − x′ (β̂ − β) and compute proper standard errors with an analyticali it
correction term.

23Following Kripfganz and Schwarz (2019), we use successively these two Stata commands (xtdpdqml and
xtseqreg). Unfortunately, these Stata commands do not give the residual variance of specific effects σ2

µ but only σ2
u.

24As with previous estimators, the mixture approach for calculating the standard errors considerably reduces the
computation time. For N = 200 and T = 10, it shrinks from 1183 seconds to as litle as 106 seconds — a reduction
by a factor of 11 — although the standard errors differ marginally from those of the bootstrap approach (see Table
C.5 in the supplementary material).
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where u ∼ N(0,Σ), Σ = τ−1IN . The (N(T − 1) × Nm) matrix F of the m common trends is
a blockdiagonal matrix where each (T − 1 × m) sub block f is replicated N times and Γ is the
(Nm× 1) individual varying coefficients vector:    γ

f 11 γ21 . . . γ
. N

21 . . f 1
2m  γ γ . . . γ 

F = I ⊗ f with f = . . . . . . . . .  and Γ = vec 12 22 N2 
N  . . . . . . . . . . . . 

fT1 . . . fTm γ1m γ2m . . . γNm

This model is usually estimated using the common correlated effects pooled estimator (CCEP)
(see Pesaran (2006) and Chudik and Pesaran (2015a,b)). It can also be estimated using the quasi-
maximum likelihood (QML) estimator. We compare our 2S bootstrap estimator with the CCEP
estimator.25 We chose samples in which the time span is large T = 30 or T = 50 with small
(N = 50) or medium (N = 100) number of individuals (in the spirit of Chudik and Pesaran (2015a)
who vary N and T between 40 and 200 in their simulations).

Table 2 shows that the results of the 2S bootstrap estimator are close to those of the CCEP
estimator. Moreover, the RMSEs of 2S bootstrap and CCEP are close each other. Even if one
increases the size of N and/or T , all estimators yield essentially the same parameter estimates and
associated RMSEs (See Table B.6 in the supplementary material). The computation time is slightly

−1
longer with our estimator given the bootstrap procedure and the use of the inverse (F ′F ) where
F could be a huge block-diagonal matrix. In fact, the 2S bootstrap computation times are 1.2 to
1.6 times longer than those of CCEP.26

3.1.5. The dynamic homogeneous panel data world with common correlated effects

Again, this model is usually estimated using the common correlated effects pooled estimator
(CCEP) (see Pesaran (2006); Chudik and Pesaran (2015a,b)) or with the principal components
estimators using quasi-maximum likelihood (QML) estimator (see Bai (2009) or Song (2013)).
Since the m common correlated effects, ft, are unknown, we need to rewrite the general dynamic
model (8) as follows:

y =Zθ +Wb+ u = Zθ + FΓ + u

with Z ′
′

it = [yit−1, X
′
it] , θ = [ρ, β′] and X ′it = [xi,t, xi,t−1] ,

where the (N(T − 1)×Nm) matrix F of the m unobserved factors is still a blockdiagonal matrix
where each ((T −1)×m) sub block f is replicated N times but f should be approximated by known
variables. Similar to the Hausman-Taylor case (see (24)), we can approximate the ((T − 1)×m) f

25We use our own R codes for our Bayesian estimator and the xtdcce2 Stata package for the CCEP estimator. We
use the same DGP set under R and Stata environments to compare the two methods.

26Once again, the use of the mixture approach for the calculation of the standard errors considerably reduces the
computation time. For N = 100, T = 30 (resp. N = 50, T = 50), it goes from 1775 to 106 seconds (resp. from
1901 seconds to 113 seconds) — a sizable factor (16.6 and 16.8, respectively) — and differences with the bootstrap
approach are minimal (see Table C.6 in the supplementary material).
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matrix with a ((T − 1)×K1) f∗ matrix of the within time transformation27 of Zit: 
f∗2

f∗ =  . . .  where f∗
[( ) ( ) ( )]

t = y−1,t − y−1 , xt − x , x−1,t − x−1

f∗T ∑N ∑N ∑T
with xt = (1/N) xit, x = (1/NT ) xit,

i=1 i=1 t=2

or as [Chudik and Pesaran] (2015a) by the time means of the dependent and explanatory variables:
f∗ 28
t = yt, y−1,t, xt, x−1,t . We follow the method of Chudik and Pesaran (2015a,b) by introducing

the time means of the dependent and explanatory variables instead of introducing only the within
time transformation of the explanatory variables Z ′it. Then, the product FΓ is approximated with
the product F ∗Γ∗ where the factor loadings Γ∗ is a (NK ∗

1×1) vector and F is a (N(T −1)×NK1)
matrix of the time means of Y and Z.

Table 2 shows that the results of the 2S bootstrap are very close to those of the dynamic CCEP
estimator. However, the RMSE is slightly smaller for CCEP than 2S bootstrap.29 Once again, the
computation time is longer with our estimator as the 2S bootstrap computation times are 1.4 to 1.6
times longer than those of CCEP.30

3.1.6. The dynamic heterogeneous panel data world with common correlated effects

The dynamic heterogeneous panel data world with common factors is defined as:

yit = ρiyi,t−1 + xitβ1i + xi,t−1β
′

2i + ftγi + uit = Z ′itθi + f ′tγi + uit

where Z ′it = [yit−1, X
′ ′
it] , θ′i = [ρi, β

′
i] and X ′it = [xi,t, xi,t−1]. This model is usually estimated

using the common correlated effects mean group estimator (CCEMG) (see Pesaran (2006) and
Chudik and Pesaran (2015a,b)). It could also be estimated using the quasi-maximum likelihood̂ ∑N
(QML) estimator. So we compare the mean coefficients θ = (1/N) ̂

i=1 θi of our 2S bootstrap
estimator with the CCEMG estimator.31

While the bottom panel of Table 2 gives insights on the distribution of ρi and β1i for different
sample sizes, the panel of Table 2 located just above gives the estimated values of the mean coeffi-
cients ρ, β1, the estimated values of β2 and σ2

u, their standard deviations and their RMSE’s. Table
2 shows that the results of the 2S bootstrap estimator are close to those of the CCEMG estimator
but the bias of σ2

u is slightly larger for CCEMG. The RMSEs results are mixed. 2S bootstrap gives
smaller RMSE for ρ and σ2

u than CCEMG, but CCEMG gives a smaller RMSE for β1. The results

27i.e., the demeaned time means. ∑
28 p

The dynamic CCEP estimator is defined as: yit = ρyi,t−1 + xitβ1 + x T ∗
i,t−1β2 + fj=0 t− γj i,j + uit where

pT = T 1/3 (see Chudik and Pesaran (2015b) pp. 26). Then, pT ≈ 3 when T = 30 or T = 50. In the simulations, we
use pT = 0.

29See Table B.6 in the supplementary material for N = 50, T = 50.
30The mixture approach for the calculation of the standard errors once again reduces considerably the computation

time. For N = 100, T = 30 (resp. N = 50, T = 50), it goes from 1996 seconds to 344 seconds (resp. from 1820
seconds to 177 seconds) — a reduction factor of between 5.8 and 10.3 — and differences with the bootstrap approach
are minimal (see Table C.7 in the supplementary material).

31We use our own R codes for our Bayesian estimator and the xtdcce2 Stata package for the CCEMG estimator.
We use the same DGP set under R and Stata environments to compare the two methods.
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for β2 depend on the sample size. For β1 the bias is 2.5% for N = 100, T = 30, (resp. 5.7% for
N = 50, T = 50)32 for the 2S bootstrap estimator as compared to those of the CCEMG estimator
(−1%, resp.(−0.8%)). For the residuals’ variance σ2

u, the bias increases with the time dimension for
both estimators but to a lesser extent for 2S bootstrap. However, all the estimators yield roughly
the same parameter estimates. Once again, the computation time is longer with our estimator as
the 2S bootstrap computation times are 1.3 to 1.6 times longer than those of CCEMG.33

4. Conclusion

To our knowledge, our paper is the first to analyze the dynamic linear panel data model using
an ε-contamination approach within a two-stage hierarchical approach. The main benefit of this
approach is its ability to extract more information from the data than the classical Bayes estimator
with a single base prior. In addition, we show that our approach encompasses a variety of classical
or frequentist specifications. We estimate the Type-II maximum likelihood (ML-II) posterior distri-
bution of the slope coefficients and the individual effects using a two-step procedure. The posterior
distribution is a convex combination of the conditional posterior densities derived from the elicited
prior and the ε-contaminated prior. Thus if the base prior is consistent with the data, more weight
is given to the conditional posterior density derived from the former. Otherwise, more weight is
given to the latter.

The finite sample performance of the two-stage hierarchical models is investigated using ex-
tensive Monte Carlo experiments. The experimental design includes a random effects world, a
Chamberlain-type fixed effects world, a Hausman–Taylor-type world and worlds with homoge-
neous/heterogeneous slopes and cross-sectional dependence. The simulation results underscore the
relatively good performance of the two-stage hierarchy estimator, irrespective of the data generat-
ing process considered. The biases and the RMSEs are close and sometimes smaller than those of
the conventional (classical) estimators. Although not reported for the sake of brevity, a thorough
analysis of the sensitivity of our estimators to the contamination part of the prior distribution shows
that parameter estimates are relatively stable.34 Likewise, the robustness of our estimators when
the remainder disturbances are assumed to follow a right-skewed t-distribution is investigated and
shown to behave well in terms of precision and bias relative to classical estimators.35

The robust Bayesian approach we propose is arguably a useful all-in-one panel data estimator.
Because it embeds a variety of estimators, it can be used straightforwardly to estimate dynamic
panel data models under many alternative stochastic specifications. Unlike classical estimators,
there is no need to have a custom estimator for each possible DGP or to settle for those available
in standard software suites.

We reckon that our estimator contributes only marginally to those already available in the
literature. Our main contribution is to propose an estimator that allows the analysts to focus on
the stochastic specification of their model. This is because our estimator is easily amenable to

32See Table B.6 in the supplementary material for N = 50, T = 50.
33The mixture approach once again is highly efficient. For N = 100, T = 30 (resp. N = 50, T = 50), computation

time decreases from 3059 to 159 seconds (resp. from 1566 seconds to 177 seconds) — a reduction factor of between
8.8 and 19.2 — although small differences between the estimated standard errors remain (see Tables C.8 and C.9 in
the supplementary material).

34See the supplementary material.
35See the supplementary material.
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many specifications in addition to those already presented in this paper. These include models with
individual and time random effects in unknown common factors, spatial structures (autoregressive
spatial, space-time), etc. We leave these for future work.

21



Table 1: Dynamic Random Effects, Chamberlain-type Fixed Effects and Hausman-Taylor Models

ε = 0.5, r = 0.8, N=100, T=10, Replications=1, 000

Dynamic Random Effects World Chamberlain-type Fixed Effects World
ρ β11 β12 β2 σ2

u σ2
µ CPU ρ β11 β12 β2 σ2

u σ2
µ CPU

(sec.) (sec.)
true 0.75 1 1 1 1 4 0.75 1 1 1 1 162.534
2S boot coef 0.749 1.005 0.996 1.006 0.994 4.084 285.88 0.748 1.001 1.001 0.998 0.999 162.571 349.40
se 0.002 0.008 0.008 0.024 0.048 0.158 0.002 0.008 0.008 0.023 0.066 31.096
rmse
GMM coef

0.002 0.010 0.009 0.024 0.048 0.179 0.002 0.008 0.008 0.023 0.066 31.081
0.748 1.005 0.979 1.015 0.874 4.844 134.53

se 0.002 0.009 0.009 0.026 0.052 0.215
rmse
QMLE coef

0.003 0.013 0.024 0.031 0.135 0.871
0.748 1.004 0.992 1.006 0.993 4.078 471.14 0.750 0.999 0.999 1.004 1.002 162.258 1286.36

se 0.002 0.008 0.008 0.023 0.050 0.172 0.004 0.018 0.018 0.196 0.065 23.352
rmse 0.002 0.009 0.009 0.009 0.051 0.188 0.004 0.018 0.018 0.018 0.065 23.342

(†) λθ < 10−4, λµ = 0.494 (†) λθ < 10−4, λµ = 0.496

2S boot coef: two-stage with individual block resampling bootstrap. (†): the parameters λθ and λµ only concern the
2s boot estimator. QMLE: quasi-maximum likelihood estimation. For the Chamberlain-type fixed effects world, the
parameters πt are omitted from the Table, see Table B.3 in the supplementary material.

Dynamic Hausman-Taylor World
ρ β11 β12 β2 η1 η2 σ2

u σ2
µ CPU

True 0.75 1 1 1 1 1 1 4
2s boot coef 0.748 1.000 1.000 1.001 1.028 1.039 0.994 3.946 311.80

se 0.003 0.011 0.011 0.012 0.230 0.047 0.063 0.681
rmse 0.003 0.011 0.011 0.012 0.232 0.061 0.064 0.682

two-stage QML coef 0.749 1.000 0.999 1.000 1.021 1.000 0.993 n.a 696.25
se 0.002 0.009 0.009 0.009 0.201 0.070 0.048 n.a

rmse 0.002 0.009 0.009 0.009 0.202 0.070 0.048 n.a
(†) λθ < 10−4, λµ = 0.499

2S boot: two-stage with individual block resampling bootstrap. (†): the parameters λθ
and λµ only concern the 2s boot estimator.
two-stage QMLE: two-stage quasi-maximum likelihood sequential approach with non avail-
able (n.a) estimate of σ2

µ.
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Table 2: Dynamic Homogeneous/Heterogeneous Panel Data Models With Common Correlated Effects

ε = 0.5, Replications=1, 000, N=100, T=30

Dynamic Homogeneous Model with Common Trends
ρ β1 β2 σ2

u λθ λµ CPU
(secs.)

true 0.75 1 1 1
2S boot coef 0.751 0.992 0.996 1.004 < 10−4 0.459 1775.99

se 0.001 0.012 0.015 0.026
rmse

CCEP coef
0.002 0.014 0.015 0.026
0.748 1.001 1.006 0.991 1437.60

se 0.001 0.010 0.012 0.027
rmse 0.002 0.010 0.013 0.028

Dynamic Homogeneous Model with Common Correlated Effects
ρ β1 β2 σ2

u λθ λµ CPU
(secs.)

true 0.75 1 1 1
2S boot coef 0.745 1.019 1.013 1.028 < 10−4 0.481 1996.72

se 0.003 0.018 0.019 0.032
rmse

CCEP coef
0.005 0.027 0.023 0.043
0.748 1.000 1.004 1.023 1392.09

se 0.002 0.011 0.012 0.031
rmse 0.002 0.011 0.013 0.038

Dynamic Heterogeneous Model with Common Correlated Effects

ρ β1 β2 σ2
u λθ λµ CPU

(secs.)
true 0.750 0.750 1 1

2S boot coef 0.752 0.769 1.011 1.097 0.002 0.416 1996.33
se 0.013 0.029 0.018 0.061

rmse
CCEMG coef

0.013 0.035 0.021 0.115
0.742 0.754 1.013 1.181 1569.35

se 0.014 0.026 0.016 0.134
rmse 0.016 0.026 0.021 0.226

2S boot: two-stage with individual block resampling bootstrap.
CCEP: Common Correlated Effects Pooled estimator.
CCEMG: Common Correlated Effects Mean Group estimator. Mean coefficients:

∑N ∑N
ρ = (1/N) ρi and β1 = (1/N) β1i

i=1 i=1

.

N = 100, T = 30
ρi β1i

min 0.603 0.505
mean 0.750 0.750
sd 0.087 0.144
max 0.897 0.995

23



References

Ahn, S.C., Schmidt, P., 1995. Efficient estimation of models for dynamic panel data. Journal of
Econometrics 68, 5–27.

Anderson, T.W., Hsiao, C., 1982. Formulation and estimation of dynamic models using panel data.
Journal of Econometrics 18, 47–82.

Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte Carlo evidence and
an application to employment equations. The Review of Economic Studies 58, 277–297.

Bai, J., 2009. Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.

Baltagi, B.H., Bresson, G., Chaturvedi, A., Lacroix, G., 2018. Robust linear static panel data
models using ε-contamination. Journal of Econometrics 202, 108–123.

Bauwens, L., Lubrano, M., Richard, J.F., 2005. Bayesian Inference in Dynamic Econometric Models.
Advanced Text in Econometrics. Oxford University Press, Oxford, UK.

Berger, J., 1985. Statistical Decision Theory and Bayesian Analysis. Springer, New York.

Berger, J., Berliner, M., 1984. Bayesian input in Stein estimation and a new minimax empirical
Bayes estimator. Journal of Econometrics 25, 87–108.

Berger, J., Berliner, M., 1986. Robust Bayes and empirical Bayes analysis with ε-contaminated
priors. Annals of Statistics 14, 461–486.

Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic panel data
models. Journal of Econometrics 87, 115–143.
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A. Uniform distribution, derivation of the mean and variance of the ML-II posterior
density of ρ and some Monte Carlo results

A.1. Uniform distribution and derivation of the mean and variance of the ML-II posterior density
of ρ

Following Singh and Chaturvedi (2012) (see also Shrivastava et al. (2019)), and for deriving the
posterior density of ρ, given (β, b), we write:

y◦ = (y −Xβ −Wb) = ρy−1 + u

the probability density function (pdf) of y◦, given the observables and the parameters, is:( )N(T−1) ( )
◦ τ 2 τ

p (y |y−1, ρ, τ) = exp − (y◦ − ρy−1)′(y◦ − ρy−1)
2π 2( )̂ −1 −1

Let ρ(β, b) = y′ ′ ◦ ′ ◦
−1y−1 y−1y = (Λy) y−1y , then following the derivation of (eq.16) in the

technical appendix (pp 6-7) of Baltagi et al. (2018), we can write:

(y◦
2− ρy−1)′(y◦ − ρy−1) = ϕ (β, b) + Λy {ρ− ρ̂(β, b)}

with
ϕ (β, b) = (y◦ − ρ̂(β, b)y−1)′(y◦ − ρ̂(β, b)y−1)

and ( )
ρ̂

−1
(β, b) = y′−1y

◦
1 y′− −1y = Λ−1

y y′−1y
◦

then ( )N(T−1) ( { })τ
(y◦

τ 2 2
p |y−1, ρ, τ) = exp − ϕ (β, b) + Λy {ρ− ρ̂(β, b)}

2π 2

As the precision τ is assumed to have a vague prior p (τ) ∝ τ−1 and as |ρ| < 1 is assumed to be
U (−1, 1), the conditional posterior density of ρ, given (β, b) is defined by:∫∞

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dτ

π∗ 0(ρ|β, b) = (A.1)∫∞ ∫1
p(ρ)p (τ) p (y◦|y−1, ρ, τ) dρdτ

0 −1

where

1 1
p (ρ) = and p (τ) =

2 τ

So, the numerator of π∗ (ρ|β, b) can be written as:

∫∞ ∫∞( )( )( )1 1 τ
N(T−1)

2

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dτ =
2 τ 2π

0 0 ( { })τ 2× exp − ϕ (β, b) + Λy {ρ− ρ̂(β, b)} dτ
2

2



∫∞ ( )( )N(T−1)

1
p(ρ)p (τ) p ( ◦

1 2

y |y−1, ρ, τ) dτ =
2 2π

0  ∫∞ N(T−1)−1
(τ) 2

×  ( { })  dτ
× exp − τ 2

ϕ (β, b) + Λy {ρ− ρ2 (̂β, b)}
0∫∞ [ ]

As τx−1 exp − τ r dτ = (2/r)xΓ(x), then2
0 ∫∞ N(T−1) [ ]Γ( )

N(T−1)−
◦ 2 ̂ 2 2

p(ρ)p (τ) p (y |y−1, ρ, τ) dτ =
N(T−1)

ϕ (β, b) + Λy {ρ− ρ(β, b)}
2 (π) 2

0

The denominator of the conditional posterior density of ρ is

∫∞∫1 N(T−1) ∫1 [ ] N−
◦ Γ( )

(T−1)

p(ρ)p (τ) p (y |y−1, ρ, τ) dρdτ = 2
N(T−1)

ϕ (β, b) + Λy {ρ− ρ̂ 2 2

(β, b)} dρ

0 − 2 (π) 2
1 −1

then, the conditional posterior density of ρ, given (β, b) is defined by:

[ ] N(T−1)−
2 2

ϕ (β, b) + Λy {ρ− ρ̂(β, b)}
π∗ (ρ|β, b) = (A.2)∫1 [ ] N(T−1)−

2 2

ϕ (β, b) + Λy {ρ− ρ̂(β, b)} dρ
−1

Let us derive the denominator of the previous expression

∫1 [ ] N(T−1)−
2 2

A = ϕ (β, b) + Λy {ρ− ρ̂(β, b)} dρ

−1

1 [ ]∫ N(T−1)−2 2
N(T−1)− Λy {ρ− ρ̂(β, b)}

= [ϕ (β, b)] 2 1 + dρ
ϕ (β, b)

−1 √√ Λy ∫(1−ρ̂(β,b))ϕ(β,b) ( ) N(T−1)−
N(T−1) 2− ϕ (β, b)

= [ϕ (β, b)] 2 1 + t2 dt
Λy √

Λy− (1+ρ̂(β,b))
ϕ(β,b)

3



√√ [ ∫ (1 ρ(β,b))0 ( ) Λy

T− ,b)∫ −̂
N( 1) ϕ(β− ( ) N(T−1) ]

−
N(T−1) 2− ϕ (β, b) 2

A = [ϕ (β, b)] 2 1 + t2 dt+ 1 + t2 dt
Λy √

Λy 0− (1+ρ(β,b))
ϕ(β,b)

̂√ √√ [ Λy ∫ β,b))( ) Λ
(1+ρ̂( y ∫(1−ρ̂(β,b))ϕ(β,b) N(T−1) ϕ(β,b) N(T−1) ]

− ( )−
N(T−1)− ϕ (β, b) 2 2

= [ϕ (β, b)] 2 1 + t2 dt+ 1 + t2 dt
Λy√ 0 0[ ]

N(T−1)− ϕ (β, b)
= [ϕ (β, b)] 2 I1 + I2 (A.3)

Λy

Now taking the transformation η = t2

1+t2 , then( ) ( )−1 ( )−3/2

1 2 1 1

+ t = 1− η and dt = η− 2 1− η dη
2

and we obtain I1 as1

√
Λy ,b))

ϕ(β,b)∫(1+ρ̂(β ( ) N(T−1)− 2
∫ζ1

( 3

I1 = + t2
1 N T−1)−1

1 dt = η− 2 (1− η) 2 dη (A.4)
2

0 0

Λy (1 + ρ bϕ(β,b) ̂ 2
(β, ))

where ζ1 = [ ]
Λ

1 + y (1 +ϕ(β,b) ̂ 2
ρ(β, b))

∫1 ( )
1 1 N(T−1)−3− 1 /

I ζ 2
1 1 Γ (1 2) N (T − 1)− 3 1 3

1 = z 22 − ζ1z)
2 1 (1 2 dz = ζ ×1 2 F1 − ; ; ; ζ1

2 Γ (3/2) 2 2 2
0 ( )

1 ( −
2

N T − 1) 3 1 3
= ζ ×1 2 F1 − ; ; ; ζ1 (A.5)

2 2 2

Using the Pfaff’s transformation: ( )
−a2

z
2F1 (a1; a2; a3; z) = (1− z) ×2 F1 a3 − a1; a2; a3;

z − 1

1The Euler integral formula is given by:∫1
− 3 −a −1 a −a −1 a Γ (a2) Γ (a a2)

(t) 2 (1− t) 3 2 (1− zt) 1 dt = ×2 F1 (a1; a2; a3; z)
Γ (a3)

0

where 2F1 (a1; a2; a3; z) is the Gaussian hypergeometric function.

4



we obtain ( ) ( )
N (T − 1)− 3 1 3 − 1 N (T − 1) 1 3 ζ1

2F1 − ; ; ; ζ1 = (1− ζ1) 2 ×2 F1 ; ; ;
2 2 2 2 2 2 ζ1 − 1

Notice that

ζ1 Λy ζ Λ
= − (1 + ρ̂

2 1 y 2
(β, b)) and = (1 + ρ̂(β, b))

ζ1 − 1 ϕ (β, b) 1− ζ1 ϕ (β, b)

Hence ( )
1
2 − 1 N (T − 1) 1 3 ζ1

I = ζ1 (1− ζ1) 2
1 ×2 F1 ; ; ;

2 2 2 ζ1 − 1√ ( )
Λy N (T − 1) 1 3 Λ̂ y ̂ 2

= (1 + ρ(β, b))×2 F1 ; ; ;− (1 + ρ(β, b)) (A.6)
ϕ (β, b) 2 2 2 ϕ (β, b)

Similarly we obtain

√
Λy ∫(1−ρ ,b))

ϕ(β,b)
(̂β ( ) N(T−1) ζ− 2

2
∫

T−

I = 1 + t2
1 N( 1)−3

dt = η−
1

2 2 (1− η) 2 dη (A.7)
2

0 0

Λy (1− ρϕ(β,b) ̂ 2
(β, b))

where ζ2 = [ ]
Λ

1 + y 2
(1− ρ) (̂β, b))ϕ(β,b

( ) ( )
1 − 1 3 1
2

N (T − 1) 3 − 1 N (T − 1) 1 3 ζ2
I2 = ζ ×2 2 F1 − ; ; ; ζ = 2

2 ζ 2 − ×2 F1
2 2 2 (1 ζ2) ; ; ;

2 2 2 2 ζ2 − 1

Since

ζ2 Λy 2 ζ2 Λy 2
= − (1− ρ̂(β, b)) and = (1− ρ̂(β, b))

ζ2 − 1 ϕ (β, b) 1− ζ2 ϕ (β, b)

Hence √ ( )
Λy N (T − 1) 1 3 Λy 2

I2 = (1− ρ̂(β, b))×2 F1 ; ; ;− (1− ρ̂(β, b)) (A.8)
ϕ (β, b) 2 2 2 ϕ (β, b)

Then, the denominator of the conditional posterior density of ρ, given (β, b), is√ [ ]
N(T−1)− ϕ (β, b)

A = [ϕ (β, b)] 2 I1 + I2
Λy√  √ ( ) 

Λy ̂ N(T−1) 1 3 Λy 2
N(T−1) ϕ (β, b) (1 + ρ(β, b))×2 F1 ; ; ;− (1 + ρ− ϕ( ) 2 2 2 ϕ(β,b) (̂β, b))β,b

= [ϕ (β, b)] 2  √ ( ) 
Λ Λy ̂ N(T−1) 1 3 Λ 2
y + (1− ρ(β, b))× F y

2 1 ; ; ;− (1− ρ̂(β, b))ϕ(β,b) 2 2 2 ϕ(β,b)

5



 ( ) 
N(T−1) Λ 2

N(T−1) (1 + ρ̂(β, b))× ; y
2 F

3
1 ; 1 ; − (1 + ρ̂(β, b))− 2 2 2 ϕ(β

A = [ϕ (β, b)] 2  ( ,b) ) (A.9)
+ ρ̂ N(T−1) Λ 2

(1− (β, b))× F 1 ; 3 ;− y
2 1 ; (1− ρ2 (̂β, b))2 2 ϕ(β,b)

and the conditional posterior density of ρ, given (β, b), is[ ] N(−
∗ 1

T−1)

2 2

π (ρ|β, b) = ϕ (β, b) + Λy {ρ− ρ̂(β, b)}
A

N(T−1) N(T−1)− [ −
ϕ (β b) 2 Σ−1

]
, 2

2
= B 1 + {ρ− ρ̂(β, b)} (A.10)

(AB) N(T − 1)− 1

where2 ( )
N(T−1) √

Γ
−1 Λy [N(T − 1)− 1] 2 Λ

Σ = and B = ( ) y
(A.11)

ϕ (β, b) N(T−1) 1 πϕ (β, b)Γ −2 2

Since N(T − 1) is large, we can use the following result:

x
lim b Γ(

x −a
+ a) Γ(x+ a)

= 1→ lim = xa−b
x→∞ Γ(x+ b) x→∞ Γ(x+ b)

with x = N(T − 1)/2, a = 0 and b = −1/2 so that B becomes:3√
N(T − 1) Λy

B = (A.12)
2π ϕ (β, b)

Then, the conditional posterior density of ρ, given (β, b), π∗ (ρ|β, b) is the pdf of a t-distribution

C−1tν (ρ̂ ϕ(β,b)(β, b),Σ) with shape matrix Σ = −Λy [N(T−1)− , ν = N(T 1)− 1 degrees of freedom and1]

2A random variable X ∈ Rp has a multivariate Student distribution with location parameters µ, shape matrix Σ
and ν degrees of freedom, X ∼ tν (µ,Σ) if its pdf is given by( )

ν+p [ ]Γ ν+p−
2 1 2( ) ′
p 1 1 + (x− µ) Σ−1 (x− µ)

Γ ν ) 2 | Σ | 2 ν(νπ
2

3The asymptotic expansion of the ratio of two Gamma functions is given by:

Γ(x+ a) ∑∞
∼ xa−b

Gk(a, b)

Γ(x+ b) xk
k=0( )

a− b a−b+1where Gk(a, b) = B (a) and Bi(n) is a generalized Bernoulli polynomial and x = N(T − 1)/2, a = 0,
k k j

b = −1/2. Using the computational knowledge engine Wolfram alpha (https://www.wolframalpha.com) with the
command Series[ Gamma[n/2]/Gamma[(n - 1)/2], {n, [Infinity], 3}], we get:( )

N(T−1)
Γ √ √( 2 ) N(T−1) N(T∼ − √ 3 − √ 7 +O( 1 −1)

2 (N(T−1))2
) = as N(T − 1)→∞.

N(T−1)−1 − 3 24 2N(T 1)Γ 32 2(N(T−1))
2
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N(T−1)
√

C = A.B.ϕ (β, b) 2 N(T−1)= (I1 + I2). Using the results of Kotz and Nadarajah (2004)4,2π

the mean of the posterior density of ρ is:

ρ̂ = C−1ρ̂(β, b) (A.13)

and the variance of the posterior density of ρ is

ν
V ar [ρ̂] = C−2. Σ (A.14)

ν − 2

If ρ is assumed to be U (−1, 1), then we get a three-step approach. For the dynamic specification:
y = ρy−1 + Xβ + Wb + u, we can integrate first with respect to (β, τ) given b and ρ, and then,
conditional on β and ρ, we can next integrate with respect to (b, τ) and last, we can integrate with
respect to ρ given (β, b).

1. Let y∗ = (y− ρy−1−Wb). Derive the conditional ML-II posterior distribution of β given the
specific effects b and ρ as in the section 2.3.1 of the main text.

2. Let ỹ = (y − ρy−1 −Xβ). Derive the conditional ML-II posterior distribution of b given the
coefficients β and ρ as in the section 2.3.2 of the main text.

3. Let y◦ = (y −Xβ −Wb). Derive the conditional ML-II posterior distribution of ρ given the
coefficients β and b as in the previous section A.1.

As the mean and variance of ρ are exactly defined, we do not need to introduce an ε-contamination
class of prior distributions for ρ at the second stage of the hierarchy. This was initially our first goal.
Unfortunately, the results obtained on a Monte Carlo simulation study (see section A.2) provide
biased( estimates) of ρ, β and residual variances. That is why we assume a Zellner g-prior, for the
θ [ρ, β′

′
= ] vector encompassing the coefficient of the lagged dependent variable yi,t−1 and those of

the explanatory variables X ′it. Thus, we do not impose stationarity constraints like many authors
and we respect the philosophy of ε-contamination class using data-driven priors.

A.2. Some Monte Carlo results

We run a Monte Carlo simulation study for the dynamic random effects world comparing dif-
ferent robust Bayesian estimators. As previously in the main text, we run the tw(o-stage approac) h
with individual block resampling bootstrap assuming a Zellner g-prior, for the θ = [ρ, β′

′
] vector

encompassing the coefficient of the lagged dependent variable yi,t−1 and those of the explanatory
variables X ′it. We introduce a two-stage three step approach when ρ ∼ U(−1, 1). When the initial
value of ρ is drawn for a uniform distribution U(−1, 1), results are strongly biased as shown on
Table A.1. Even if we initialize ρ with its OLS estimator on the pooled model, the results, if they
improve, are still slightly biased and the computation time is much longer than that of the two-stage
two-step approach. The last panel of Table A.1 shows that less biased results are obtained with
initial value of ρ coming from a LSDV estimator of ρ (rather than an OLS estimator of ρ).5 So,
there is a significant cost to pay when using a constrained ρ coefficient because it is not enough to

4“If X has the p-variate t distribution with degrees of freedom ν, mean vector µ, and correlation matrix R, then,
for any nonsingular scalar matrix C and for any a, CX + a has the p-variate t distribution with degrees of freedom
ν, mean vector Cµ+ a, and correlation matrix CRC′.” (Kotz and Nadarajah (2004), p.15).

5OLS: y = Zθ + ν with Z = [y−1, X], θ = (ρ, β′)′, ν = Zµµ + u and LSDV: y = Zθ + u with Z = [y−1, X, Zµ],
θ = (ρ, β′, µ′)′.
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generate it initially from a U(−1, 1) but it must first be estimated from an LSDV estimator which
also greatly increases the computation time and that the bias on σ2

µ increases. All this confirms our
idea that we are doing well not to impose stationarity constraints like many authors and respect in
this sense the philosophy of ε-contamination class using data-driven priors.
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Table A.1: Dynamic Random Effects World

N = 100, T = 10, ε = 0.5, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 4
2S boot coef 0.7492 1.0057 0.9964 1.0062 0.9946 4.0849 < 10−4 0.4940 285.88

se 0.0025 0.0084 0.0083 0.0243 0.0481 0.1584
rmse 0.0023 0.0101 0.0090 0.0247 0.0484 0.1797

2S-3S boot coef 0.2511 1.1934 1.1705 1.2323 5.2118 160.5033 0.0520 0.3836 616.37
U(−1, 1) se

rmse
0.3843
0.5060

0.2437
0.2258

0.2418
0.2033

0.2661
0.2612

1.4235
4.4456

50.1455
164.3330

2S-3S boot coef 0.8020 1.0119 0.9812 1.0033 1.0751 4.4848 0.0560 0.4824 620.38
U(−1, 1) init OLS se

rmse
0.0080
0.0524

0.0294
0.0301

0.0291
0.0330

0.0308
0.0284

0.0504
0.0904

0.3067
0.5735

2S-3S boot coef 0.7226 1.0384 1.0085 1.0362 0.9934 5.1754 0.0578 0.4926 937.83
U(−1, 1) init LSDV se

rmse
0.0086
0.0289

0.0265
0.0457

0.0262
0.0255

0.0263
0.0441

0.0479
0.0484

0.5296
1.2891

2S bootstrap: two-stage with individual block resampling bootstrap.

2S-3S boot U(−1, 1): two-stage - three steps with individual block resampling bootstrap and with ρ ∼ U(−1, 1)

where ρ init is drawn from U(−1, 1).

2S-3S boot U(−1, 1) init OLS: two-stage - three steps with individual block resampling bootstrap and with ρ ∼ U(−1, 1)

where ρ init is the OLS estimator of ρ.

2S-3S boot U(−1, 1) init LSDV: two-stage - three steps with individual block resampling bootstrap and with ρ ∼ U(−1, 1)

where ρ init is the LSDV estimator of ρ.
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B. Some extra Monte Carlo simulation results

1. Dynamic random effects world with N = 200, T = 30, ρ = 0.75.

2. Dynamic random effects world with N = 100, T = 10, ρ = 0.98.

3. Chamberlain-type fixed effects world with N = 100, T = 10, ρ = 0.75 and the πt parameters.

4. Chamberlain-type fixed effects world with N = 200, T = 30, ρ = 0.75 and the πt parameters.

5. Hausman-Taylor world with N = 100, T = 30, ρ = 0.75 and N = 200, T = 10, ρ = 0.75.

6. Dynamic homogeneous/heterogeneous models with common correlated effets withN = 50, T =
50, ρ = 0.75 and ρ = 0.75.
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Table B.1: Dynamic Random Effects World

ε = 0.5, r = 0.8, N = 200, T = 30, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 4
2S boot coef 0.7498 1.0009 1.0003 1.0004 0.9991 4.1245 < 10−4 0.4975 3079.78

se 0.0009 0.0030 0.0030 0.0030 0.0187 0.0548
rmse 0.0007 0.0031 0.0030 0.0030 0.0187 0.1360

GMM coef 0.7510 0.9942 0.9880 0.9894 0.9675 4.2862 5075.67
se 0.0007 0.0026 0.0026 0.0026 0.0229 0.0736

rmse 0.0019 0.0080 0.0133 0.0119 0.0397 0.2955
QMLE coef 0.7497 1.0002 0.9996 0.9997 0.9989 4.1227 2486.84

se 0.0007 0.0029 0.0030 0.0031 0.0188 0.0561
rmse 0.0007 0.0029 0.0029 0.0029 0.0188 0.1349

2S boot: two-stage with individual block resampling bootstrap.

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.
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Table B.2: Dynamic Random Effects World

N = 100, T = 10, ε = 0.5, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.98 1 1 1 1 4
2S boot coef 0.9801 1.0037 0.9946 1.0022 0.9944 4.0514 < 10−4 0.4939 321.40

se 0.0003 0.0081 0.0083 0.0083 0.0486 0.1502
rmse 0.0002 0.0090 0.0096 0.0086 0.0489 0.1587

hpdi lower
hpdi upper

0.9794
0.9809

0.9805
1.0252

0.9718
1.0166

0.9793
1.0251

0.9015
1.0896

3.7619
4.3364

GMM coef 0.9799 1.0053 0.9790 1.0051 0.8761 4.8407 132.04
se 0.0003 0.0092 0.0090 0.0094 0.0523 0.2144

rmse 0.0004 0.0134 0.0245 0.0136 0.1345 0.8676
QMLE coef 0.9798 1.0034 0.9920 1.0025 12.1494 2.6910 1093.13

se 0.0003 0.0127 0.0130 0.0119 352.7469 44.061
rmse 0.2298 0.0131 0.0131 0.0131 352.7467 44.058

2S boot: two-stage with individual block resampling bootstrap.

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.

hpdi lower (hpdi upper): lower and upper bounds of the 95% Highest Posterior Density Interval (HPDI).
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Table B.3: Dynamic Chamberlain-type Fixed Effects World

N = 100, T = 10, ε = 0.5, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 162.5341
2S boot coef 0.7489 1.0016 1.0014 0.9984 0.9997 162.5717 < 10−4 0.4959 349.40

se 0.0022 0.0079 0.0080 0.0230 0.0667 31.0964
rmse 0.0023 0.0083 0.0083 0.0236 0.0667 31.0808

π2 π3 π4 π5 π6 π7 π8 π9 π10

true 0.1678 0.2097 0.2621 0.3277 0.4096 0.5120 0.6400 0.8000 1.0000
2S boot coef 0.1733 0.2125 0.2657 0.3331 0.4129 0.5129 0.6435 0.8012 1.0036

se 0.1044 0.1039 0.1040 0.1039 0.1060 0.1052 0.1047 0.1053 0.1046
rmse 0.0765 0.0784 0.0803 0.0762 0.0815 0.0769 0.0818 0.0780 0.0794

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 162.5341
QMLE coef 0.7502 0.9990 0.9991 1.0044 1.0021 162.2586 1286.36

se 0.0048 0.0183 0.0184 0.1966 0.0651 23.3529
rmse 0.0048 0.0183 0.0184 0.0183 0.0651 23.3429

π2 π3 π4 π5 π6 π7 π8 π9 π10

true 0.1678 0.2097 0.2621 0.3277 0.4096 0.5120 0.6400 0.8000 1.0000
QMLE coef 0.1694 0.2084 0.2614 0.3274 0.4087 0.5092 0.6391 0.7968 0.9976

se 0.0780 0.0797 0.0802 0.0771 0.0803 0.0813 0.0824 0.0794 0.0844
rmse 0.0780 0.0797 0.0802 0.0771 0.0803 0.0813 0.0824 0.0795 0.0844

2S boot: two-stage with individual block resampling bootstrap.

QMLE: quasi-maximum likelihood estimation.
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Table B.4: Dynamic Chamberlain-type Fixed Effects World

N = 200, T = 30, ε = 0.5, Replications=500(∗)

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 204.3142
2S boot coef 0.7496 1.0008 1.0007 0.9995 0.9971 203.2024 < 10−4 0.4984 2708.19

se 0.0009 0.0030 0.0030 0.0090 0.0265 29.3042
rmse 0.0009 0.0032 0.0031 0.0094 0.0266 29.2960

π2 π3 π4 π5 π6 π7 π8 π9 π10

true 0.0019 0.0024 0.0030 0.0038 0.0047 0.0059 0.0074 0.0092 0.0115
2S boot coef 0.0021 0.0020 0.0017 0.0025 0.0007 0.0058 0.0073 0.0086 0.0134

se 0.0763 0.0750 0.0754 0.0763 0.0765 0.0770 0.0768 0.0765 0.0756
rmse 0.0589 0.0553 0.0571 0.0589 0.0577 0.0583 0.0578 0.0583 0.0551

π11 π12 π13 π14 π15 π16 π17 π18 π19 π20

true 0.0144 0.0180 0.0225 0.0281 0.0352 0.0440 0.0550 0.0687 0.0859 0.1074
2S boot coef 0.0218 0.0203 0.0201 0.0254 0.0364 0.0412 0.0598 0.0704 0.0854 0.1078

se 0.0766 0.0760 0.0767 0.0743 0.0754 0.0765 0.0760 0.0760 0.0760 0.0773
rmse 0.0579 0.0554 0.0577 0.0544 0.0529 0.0583 0.0586 0.0584 0.0577 0.0565

π21 π22 π33 π24 π25 π26 π27 π28 π29 π30

true 0.1342 0.1678 0.2097 0.2621 0.3277 0.4096 0.5120 0.6400 0.8000 1.0000
2S boot coef 0.1376 0.1666 0.2082 0.2601 0.3286 0.4128 0.5147 0.6407 0.8010 1.0005

se 0.0760 0.0755 0.0762 0.0769 0.0761 0.0760 0.0755 0.0757 0.0757 0.0763
rmse 0.0551 0.0585 0.0600 0.0582 0.0594 0.0569 0.0591 0.0585 0.0561 0.0582

(∗) When T = 30, we restrict the exercise to only 500 replications, not because of our estimator under R but because of the size
of the simulated database and its reading under Stata. Indeed, for 1, 000 replications and T = 30, one must read, under Stata,
(1 + 4 + 30)× 1, 000 = 35, 000 variables of size (NT, 1)! Even with a 64-bit computer and Stata (MP and S), only 32, 767
variables can be read. On the other hand, with our code under R, there is no limitation of that order.
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Table B.4 - Cont’d: Dynamic Chamberlain-type Fixed Effects World

N = 200, T = 30, ε = 0.5, Replications=500

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 204.3142
QMLE coef 0.7499 0.9999 0.9999 0.9995 1.9166 204.3702 4335.38

se 0.0008 0.0030 0.0029 0.0094 0.2765 20.5173
rmse 0.0008 0.0030 0.0030 0.0030 0.9574 20.4968

π2 π3 π4 π5 π6 π7 π8 π9 π10

true 0.0019 0.0024 0.0030 0.0038 0.0047 0.0059 0.0074 0.0092 0.0115
QMLE coef 0.0028 0.0012 0.0016 0.0032 0.0018 0.0065 0.0031 0.0088 0.0119

se 0.0558 0.0528 0.0536 0.0557 0.0542 0.0553 0.0553 0.0567 0.0529
rmse 0.0558 0.0528 0.0535 0.0556 0.0542 0.0552 0.0554 0.0566 0.0529

π11 π12 π13 π14 π15 π16 π17 π18 π19 π20

true 0.0144 0.0180 0.0225 0.0281 0.0352 0.0440 0.0550 0.0687 0.0859 0.1074
QMLE coef 0.0205 0.0204 0.0211 0.0261 0.0361 0.0426 0.0587 0.0709 0.0848 0.1068

se 0.0546 0.0517 0.0553 0.0543 0.0502 0.0560 0.0544 0.0544 0.0559 0.0532
rmse 0.0549 0.0517 0.0552 0.0543 0.0502 0.0560 0.0545 0.0544 0.0558 0.0531

π21 π22 π33 π24 π25 π26 π27 π28 π29 π30

true 0.1342 0.1678 0.2097 0.2621 0.3277 0.4096 0.5120 0.6400 0.8000 1.0000
QMLE coef 0.1365 0.1652 0.2082 0.2598 0.3272 0.4122 0.5127 0.6404 0.7997 0.9993

se 0.0516 0.0561 0.0572 0.0560 0.0562 0.0544 0.0561 0.0551 0.0542 0.0558
rmse 0.0516 0.0561 0.0572 0.0560 0.0561 0.0544 0.0561 0.0551 0.0542 0.0558
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Table B.5: Dynamic Hausman-Taylor World

ρ = 0.8, ε = 0.5, replications=1, 000

ρ β11 β12 β2 η1 η2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

N = 100
True 0.75 1 1 1 1 1 1 4

2S boot coef 0.7496 1.0003 1.0006 1.0005 1.0196 1.0130 0.9984 3.9421 < 10−4 0.5005 966.48
T = 30 se 0.0015 0.0058 0.0058 0.0060 0.2092 0.0251 0.0383 0.6015

rmse 0.0016 0.0058 0.0058 0.0060 0.2102 0.0283 0.0383 0.6039
two-stage QML coef

se
0.7500
0.0011

0.9999
0.0043

1.0001
0.0042

1.0001
0.0043

1.0191
0.1972

0.9987
0.0463

0.9978
0.0273

n.a
n.a

2528.13

rmse 0.0011 0.0043 0.0043 0.0043 0.1981 0.0463 0.0274 n.a

N = 200 2S boot coef 0.7484 1.0010 1.0009 1.0005 1.0057 1.0378 0.9972 3.9724 < 10−4 0.4999 1183.16
T = 10 se 0.0022 0.0078 0.0077 0.0085 0.1611 0.0324 0.0466 0.4585

rmse 0.0027 0.0078 0.0078 0.0085 0.1612 0.0498 0.0467 0.4591
two-stage QML coef

se
0.7500
0.0020

1.0001
0.0066

1.0001
0.0063

0.9998
0.0066

0.9986
0.1427

1.0013
0.0487

0.9965
0.0355

n.a
n.a

1242.89

rmse 0.0020 0.0066 0.0066 0.0066 0.1427 0.0487 0.0357 n.a

2S boot: two-stage with individual block resampling bootstrap.

two-stage QML: two-stage quasi-maximum likelihood sequential approach with non available (n.a) estimate of σ2
µ.
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Table B.6: Dynamic Homogeneous/Heterogeneous Panel Data Models with Common Correlated Effects

ε = 0.5, Replications=1, 000, N = 50, T = 50

Dynamic Homogeneous Panel Data model with Common Trends

ρ β1 β2 σ2
u λθ λµ CPU

(secs.)

true 0.75 1 1 1

2S boot coef 0.7501 1.0032 1.0026 1.0116 < 10−4 0.4613 1901.78
se 0.0026 0.0152 0.0188 0.0492

rmse 0.0026 0.0156 0.0190 0.0505
CCEP coef 0.7486 1.0007 1.0037 0.9807 1139.69

se 0.0020 0.0115 0.0141 0.0280
rmse 0.0024 0.0116 0.0145 0.0340

Dynamic Homogeneous Panel Data Model with Common Correlated Effects

ρ β1 β2 σ2
u λθ λµ CPU

(secs.)

true 0.75 1 1 1

2S boot coef 0.7474 1.0146 1.0068 1.0235 < 10−4 0.4865 1820.55
se 0.0031 0.0174 0.0196 0.0606

rmse 0.0040 0.0227 0.0208 0.0650
CCEP coef 0.7493 1.0011 1.0022 1.0148 1100.73

se 0.0019 0.0116 0.0142 0.0315
rmse 0.0020 0.0117 0.0143 0.0348

Dynamic Heterogenous Panel Data Model with Common Correlated Effects

ρ β1 β2 σ2
u λθ λµ CPU

(secs.)

true 0.7501 0.7503 1 1

2S boot coef 0.7591 0.7936 1.0101 1.1808 < 10−4 0.4407 1566.68
se 0.0217 0.0973 0.0643 0.0474

rmse 0.0219 0.1572 0.0925 0.0963
CCEMG coef 0.7568 0.7776 1.0070 1.2473 1205.11

se 0.0175 0.0383 0.0206 0.5980
rmse 0.0188 0.0471 0.0218 0.6468

2S boot: two-stage with individual block resampling bootstrap.
CCEP: Common Correlated Effects Pooled estimator.
CCEMG: Common Correlated Effects Mean Group estimator. Mean coefficients:

∑N ∑N
ρ = (1/N) ρi and β1 = (1/N) β1i

i=1 i=1

.

N = 50, T = 50
ρi β1i

min 0.605917 0.5095
mean 0.7501 0.7503
sd 0.0863 0.1442
max 0.8942 0.9905



C. A simple and efficient way to drastically reduce the computation time of our
Bayesian two-stage estimator.

The first stage of the Gaussian dynamic linear mixed model (eq.(10) in the main text) is given
by

y = Zθ +Wb+ u , u ∼ N(0, τ−1INT ) (C.15)

where y is (N(T − 1)× 1). Z is (N(T − 1)× (Kx + 1)), W is (N(T − 1)×K2) with K2 = Nk2

and u is (N(T − 1)× 1). The mean of the ML-II posterior density of θ is:( )
θ̂ −II = E [π̂∗ML (θ|g0)] = λ̂θ,g0

E [π∗0 (θ|g0)] + 1− λ̂θ,g0
E [q̂∗ (θ|g0)] (C.16)( )

= λ̂θ,g0
θ∗(b|g0) + 1− λ̂ ̂

θ,g0
θEB (b|g0) .

Baltagi et al. (2018) have shown that the ML-II posterior variance-covariance matrix of θ is given
by ( ) ( )

V ar θ̂ML−II = λ̂ ∗ ̂ ∗
θ,g0

V ar [π0 (θ | g0)] + 1− λθ,g0
V ar [q̂ (θ | g0)] (C.17)( )( )( )

+ λ̂ ̂ ̂ ̂ ′
θ,g0

1− λθ,g0
θ∗(b | g0)− θEB (b | g0) θ∗(b | g0)− θEB (b | g0)

Many have raised concerns about the unbiasedness of the posterior variance-covariance matrix of
θ̂ML−II . Indeed, it will be biased towards zero as λ̂θ,g0 → 0 and converge to the empirical variance
which is known to underestimate the true variance (see e.g. Berger and Berliner (1986); Gilks et al.
(1997); Robert (2007)). To solve this problem, Baltagi et al. (2018) have proposed two different
strategies to approximate it, each with different desirable properties: MCMC with multivariate
t-distributions or individual block resampling bootstrap. They have shown that fortunately, one
needs as few as 20 bootstrap samples to achieve acceptable results. They also showed that the
bootstrap method had some advantages over the MCMC method, especially in terms of computa-
tion time.

Computation times can be improved by using the Choleski decomposition for matrices inversion6

for all the tested worlds (RE, Chamberlain, Hausman-Taylor, CCE). Additionally, multivariate nor-
mal random vectors in the common correlated effects (CCE) models could make use of the sparse
matrices.7 Yet, the efficiency gains would be relatively modest given the number of bootstrap draws
that need to be generated.

An alternative approach arises if we exploit the intrinsic features of the distributions of the Bayes
estimate θ∗(b|g0) for the prior distribution π0 (θ, τ) and the empirical Bayes estimate θ̂EB (b|g0) for
the contaminated prior distribution q (θ, τ). ( )
We have shown that π∗0 (θ|g0) is the pdf of a multivariate t-distribution tK1

θ∗(b|g0),Σθ∗(b|g0), N(T − 1)

6The R function chol2inv(chol(X)) instead of the standard function solve(X) for a symmetric definite positive
X matrix.

7Using the rmvn.sparse command in the sparseMVN R package.
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( )
and q̂∗ (θ) is the pdf of a multivariate t-distribution t ̂

K1
θEB (b|g0) ,Σ̂ | , N(T − 1) whereθEB(b g0)

the mean vectors θ∗(b|g0) and θ̂EB (b|g0) are given by

θ̂ (b) + g0θ0ι θ̂ (b) +
θ̂

g ̂K
θ∗ (b|g0) = 1 q̂θqιK

, EB (b|g0) = 1 .
g0 + 1 ĝq + 1

and the variance-covariance matrices Σθ∗(b|g0) and Σθ̂EB(b| are given byg0)( ) ( ( )
ξ0 M−1 )
,θ 0,θ (g + 1) g 2

0 0 RθΣ 0
θ∗(b|g0) = with M0,θ = ΛZ and ξ0,θ = 1 + .

N(T − 1)− 2 v (b) g0 + 1 1−R2
θ( ) 0( ) ( )( 2 )

ξq,θM
−1
,θ (ĝq + 1) ĝ R̂q q θ

Σ = with M = Λ and ξ = 1 + q̂ | q,θ Z q,θ .θEB(b g0) N(T − 1)− 2 v (b) ĝq + 1 1−R2
θ̂q

Thus the ML-II posterior density of θ in (C.16) is a two-component finite mixture of multivariate
t-distributions. Its pdf is given by

( ) ∑2 ( )
˜π θ θ̂ML−II = %hπh ML−II ,mh,Σh, νh . (C.18)

h=1( )
where π ̂

h θML−II ,mh,Σh, νh denotes the h-th pdf of the mixture model with location parameter

mh, scale matrix Σh and degrees of freedom νh. The mixing proportions satisfy %h ≥ 0 (h = 1, 2)∑2
and h=1 %h = 1. In our case, νh = N(T − 1), ∀h, m1 = θ∗(b|g0), m2 = θ̂EB (b|g0), Σ1 = Σθ∗(b|g0),

Σ2 = Σ̂ 1 = λ̂| , % θ,g0 and % λ̂2 = 1− θ,gθEB(b g0) 0 .

Derivations of the location parameter and the scale matrix of a mixture of multivariate t-
distributions is a very difficult task (see for instance Walker and Saw (1978), Peel and McLachlan
(2000), Kotz and Nadarajah (2004), McLachlan and Peel (2004), Mengersen et al. (2011) among
others). Parameter estimates of the mixture of t-distributions is generally obtained via an EM
algorithm. McLachlan and Lee (2013) have proposed a EMMIXuskew R package for generating and
fitting mixture of multivariate skewed (and non-skewed) t distributions via the EM Algorithm.
Based on the command rfmmst of this package, and given the parameters of the two components
defined above, one can generate 1000 (or more) random samples of K1-dimensional multivariate t
observations with location parameter mh, scale matrix Σh and degrees of freedom νh for h = 1, 2,
and hence sample from the mixture of these two components to generate as many random vectors

˜of θML−II . The variances of the K1 parameters can then be computed over these 1000 (or more)
random samples.

After extensive experimentation, it was found that the estimated variances were slightly under-
estimated compared to those obtained with the bootstrap method. We therefore propose to correct

√ ( √ )2

the variances with the following multiplicative factor: k2 1 + r̂ . In the RE, Chamberlain( ) ( )
and Hausman-Taylor worlds, r̂ = σ̂2

µ/ σ̂2 2
µ + σ̂u is the fraction of the variance σ̂2

µ + σ̂2
u due to the
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specific effects µi, with σ̂2
u = τ̂−1 and k2 is the number of covariates in W in eq.(C.15).8 In the

common correlated effects worlds (CCE) worlds,9 σ̂2
µ = V ar [Γ].

For the random effects world, and when the true r = 0.8 (see Table C.1)10, the difference be-
tween the estimated standard errors of the parameters ρ and β from the bootstrap and mixture
approaches is at most 0.007, and decreases when N and T increase. The more r decreases, the
more the difference between the estimated standard errors (bootstrap versus mixture) decreases
until reaching as little as 10−3 (see Tables C.2 and C.3). We also note that whatever the sample
sizes N , T or the value of r, the bias of the GMM estimator of σ̂2

µ, and to a lesser extent that of
σ̂2
u, is bigger than those of our Bayesian two-stage estimator (B2S ) and the QMLE estimator.

In the Chamberlain-type fixed effects worlds, the differences between the standard errors from
the bootstrap and the mixture approaches are slightly larger than those of the random effects (see
Table C.4). Note that the standard errors of β11 and β12 — from the mixture of t-distributions
— are approximately 30% larger than those computed by the bootstrap approach. Yet the more
important difference concerns the standard error of β2, which is twice as large. However, as these
standard errors are small, the 95% confidence intervals are nevertheless very similar (for instance,
for β2: [0.95; 1.04] for se boot and [0.90; 1.08] for se mixt for N = 100 and T = 10). Increasing N
and T greatly reduces the differences between the two approaches. Thus, for N = 200 and T = 30,
the 95% confidence intervals of β2 are [0.98; 1.01] for se boot and [0.96; 1.03] for se mixt and the
differences are marginal.

For the Hausman-Taylor world, the mixture approach leads to similar standard errors for ρ,
β11 and β12 but generates a small bias for β2, and yet more important downward biases for the
standard errors of the parameters of the time-invariant variables η1 (the constant) and to a lesser
extent for η2 (see Table C.5). As N increases and especially when T increases, these biases reduce
but that of the constant η1 always remains bigger.

For the common correlated effects world with common trends, we find few differences between
standard errors arising from the bootstrap and the mixture approaches and these differences taper
off as N increases (see Table C.6). We find the same type of results for the common correlated
effects world with unobserved common factors (see Table C.7).

In the case of the dynamic heterogeneous panel data world with common correlated unobserved
effects, the correction factor needs to be modified slightly to take into account the average over all

8In other words, k2 = 1 for the RE, Chamberlain and Hausman-Taylor worlds. k2 = m for the common trends
world and the common correlated effects world.

9Γ is given in sections 3.1.4 and 3.1.6 in the main text.
10Table C.1 reports the results of fitting the Bayesian two-stage (B2S) model with block resampling bootstrap

(se boot) and mixture of t-distributions (se mixt) for estimating the standard errors along with those from the GMM
and QMLE, each in a separate panel respectively for (N = 100, T = 10) and (N = 200, T = 30). The true parameter
values appear on the first line of the Table. The last column reports the computation time in seconds.
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˜individuals. The corrected variance of θ 11
ML−II is computed as:

[ ] ∑N [ ]1˜ ˜V ar θML−II = V ar θi,ML−II
N cor

i=1 [ ] [ ]√ ( √ )2
˜ ˜with V ar θi,ML−II = V ar θi,ML−II mN 1 + r̂i

cor

and r̂i = V ar [γ̂i] / (V ar [γ̂i] + V ar [ûi]) .

√
This additional correction factor, N , is somewhat reminescent of the results from Theorem 3
of Chudik and Pesaran (2015), which shows that the convergence rate of the CCEMG estimator√
θ̂CCEMG of θ is N due to the heterogeneity of the coefficients. Moreover, Chudik and Pesaran
(2015) show that the ratio N/T → κ1, for some constant 0 < κ1 <∞, is required for the derivation

ˆof the asymptotic distribution of θCCEMG due to the time series bias and that it is unsuitable for
panels with T being small relative to N .12 Standard errors computed using the mixture approach
are close to those from the bootstrap one except for the standard error of the coefficient ρ of the
lagged dependent variable which appears to be slightly downward biased (see Table C.8). When
the sample size increases (N = 200, T = 30 and T = 50) (see Table C.9), the previous results are
confirmed but the gain in computation time for the mixture approach is reduced from a factor of
10 to a factor of 6, which is still considerable in a dynamic heterogeneous panel data world with
common correlated effects.

As confirmed in Tables C.1 to C.9, the standard errors calculated with the bootstrap method
and those calculated with the mixture of t distributions diverge slightly in some cases. Assuredly,
the most impressive result concerns the gain in computation speed irrespective of the tested worlds.
Yet, the small differences in the standard errors is a small price to pay to obtain ε-contamination
estimators in a timely fashion. The computation time of the two-stage method using the mixture
model to estimate the parameter variances is 10 times faster than the one using the bootstrap
method. This also applies to approaches (GMM, QMLE, 2SQMLE, CCEP or CCEMG). With a
larger sample size (N = 200 and T = 50), a final confirmation is provided in Table C.10 for the
random effects world.13 The differences between the estimates for the Bayesian two-stage (B2S)
estimator with se boot, or with se mixt, and those obtained with QMLE are marginal when
the sample size is significantly increased. The difference in computation times is impressive (464
seconds for se mixt, 3911 seconds for se boot and 6150 seconds for QMLE for 1, 000 replications).
The advantage of our Bayesian two-stage estimator is pretty obvious. And because it has little
computing time, it should be valuable for applied econometricians.

11γi is given in sections 3.1.4 and 3.1.6 in the main text.
12In their simulation study, Chudik and Pesaran (2015) use 0.2 ≤ N/T ≤ 5. They also use a jackknife bias

correction and a recursive mean adjustment correction of the CCEMG estimator.
13We do not report the GMM estimation since it takes more than 50, 000 seconds!
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Table C.1: Dynamic Random Effects World

ε = 0.5, r = 0.8, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 4
N = 100 B2S coef 0.7492 1.0057 0.9964 1.0062 0.9946 4.0849 < 10−4 0.4940
T = 10 se boot 0.0025 0.0084 0.0083 0.0243 0.0481 0.1584 285.88

se mixt 0.0024 0.0097 0.0093 0.0168 0.0481 0.1569 19.96
rmse 0.0023 0.0101 0.0090 0.0247 0.0484 0.1797

GMM coef 0.7489 1.0052 0.9793 1.0153 0.8746 4.8449 134.53
se 0.0027 0.0093 0.0092 0.0263 0.0523 0.2152

rmse 0.0038 0.0137 0.0243 0.0315 0.1359 0.8718
QMLE coef 0.7485 1.0041 0.9927 1.0061 0.9931 4.0782 471.14

se 0.0023 0.0088 0.0086 0.0236 0.0507 0.1720
rmse 0.0027 0.0097 0.0097 0.0097 0.0511 0.1889

N = 200 B2S coef 0.7498 1.0009 1.0003 1.0004 0.9991 4.1245 < 10−4 0.4975
T = 30 se boot 0.0009 0.0030 0.0030 0.0030 0.0187 0.0548 3079.78

se mixt 0.0004 0.0037 0.0033 0.0068 0.0181 0.0569 289.18
rmse 0.0007 0.0031 0.0030 0.0030 0.0187 0.1360

GMM coef 0.7510 0.9942 0.9880 0.9894 0.9675 4.2862 5075.67
se 0.0007 0.0026 0.0026 0.0026 0.0229 0.0736

rmse 0.0019 0.0080 0.0133 0.0119 0.0397 0.2955
QMLE coef 0.7497 1.0002 0.9996 0.9997 0.9989 4.1227 2486.84

se 0.0007 0.0029 0.0030 0.0031 0.0188 0.0561
rmse 0.0007 0.0029 0.0029 0.0029 0.0188 0.1349

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors of θ = (ρ, β′ ′) computed with mixture of t-distributions of θ∗(b|g0) and θ̂EB (b|g0).

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.
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Table C.2: Dynamic Random Effects World

ε = 0.5, r = 0.5, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 1
N = 100 B2S coef 0.7490 1.0026 0.9981 1.0020 0.9940 1.0378 < 10−4 0.4991
T = 10 se boot 0.0017 0.0079 0.0080 0.0080 0.0481 0.0795 279.60

se mixt 0.0019 0.0079 0.0078 0.0080 0.0481 0.0787 19.84
rmse 0.0020 0.0085 0.0083 0.0086 0.0485 0.0880

GMM coef 0.7497 1.0037 0.9874 1.0035 0.8737 1.4006 124.57
se 0.0017 0.0074 0.0072 0.0076 0.0522 0.0907

rmse 0.0025 0.0103 0.0158 0.0105 0.1366 0.4108
QMLE coef 0.7494 1.0036 0.9917 1.0028 0.9951 0.9975 653.15

se 0.0015 0.0069 0.0067 0.0068 0.0508 0.0768
rmse 0.0016 0.0078 0.0078 0.0078 0.0510 0.0768

N = 200 B2S coef 0.7496 1.0006 1.0003 1.0003 0.9991 1.0333 < 10−4 0.4997
T = 30 se boot 0.0007 0.0029 0.0029 0.0029 0.0187 0.0268 2350.81

se mixt 0.0019 0.0079 0.0078 0.0080 0.0481 0.0787 205.64
rmse 0.0008 0.0030 0.0030 0.0030 0.0187 0.0427

GMM coef 0.7497 1.0037 0.9874 1.0035 0.8737 1.4006 4605.65
se 0.0017 0.0074 0.0072 0.0076 0.0522 0.0907

rmse 0.0025 0.0103 0.0158 0.0105 0.1366 0.4108
QMLE coef 0.7496 1.0003 0.9994 0.9996 0.9990 1.0307 2545.70

se 0.0006 0.0026 0.0027 0.0028 0.0188 0.0272
rmse 0.0006 0.0027 0.0027 0.0027 0.0188 0.0411

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors of θ = (ρ, β′ ′) computed with mixture of t-distributions of θ∗(b|g0) and θ̂EB (b|g0).

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.
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Table C.3: Dynamic Random Effects World

ε = 0.5, r = 0.2, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 0.25
N = 100 B2S coef 0.7490 1.0017 0.9994 1.0016 0.9939 0.2779 < 10−4 0.4985
T = 10 se boot 0.0016 0.0078 0.0078 0.0080 0.0481 0.0459 290.17

se mixt 0.0016 0.0068 0.0067 0.0069 0.0481 0.0452 18.89
rmse 0.0020 0.0083 0.0081 0.0085 0.0485 0.0537

GMM coef 0.7499 1.0021 0.9931 1.0019 0.8734 0.5491 122.24
se 0.0016 0.0063 0.0062 0.0064 0.0522 0.0536

rmse 0.0023 0.0091 0.0112 0.0093 0.1370 0.3039
QMLE coef 0.7497 1.0024 0.9943 1.0020 0.9959 0.2449 1101.57

se 0.0014 0.0061 0.0059 0.0061 0.0508 0.0404
rmse 0.0014 0.0066 0.0066 0.0066 0.0509 0.0407

N = 200 B2S coef 0.7496 1.0005 1.0004 1.0004 0.9991 0.2607 < 10−4 0.4973
T = 30 se boot 0.0006 0.0029 0.0029 0.0029 0.0187 0.0139 2358.91

se mixt 0.0007 0.0029 0.0029 0.0028 0.0187 0.0138 207.69
rmse 0.0008 0.0030 0.0030 0.0030 0.0187 0.0175

GMM coef 0.7499 1.0001 0.9981 0.9985 0.9640 0.3387 4619.38
se 0.0004 0.0018 0.0019 0.0018 0.0226 0.0199

rmse 0.0008 0.0033 0.0038 0.0036 0.0425 0.0909
QMLE coef 0.7497 1.0004 0.9994 0.9996 0.9991 0.2572 2455.69

se 0.0005 0.0023 0.0023 0.0024 0.0188 0.0137
rmse 0.0005 0.0023 0.0023 0.0023 0.0188 0.0155

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors of θ = (ρ, β′ ′) computed with mixture of t-distributions of θ∗(b|g0) and θ̂EB (b|g0).

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.
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Table C.4: Dynamic Chamberlain-type Fixed Effects World (ε = 0.5)

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 162.5341
N = 100 B2S coef 0.7489 1.0016 1.0014 0.9984 0.9997 162.5717 < 10−4 0.4959
T = 10 se boot 0.0022 0.0079 0.0080 0.0230 0.0667 31.0964 349.40

se mixt 0.0029 0.0116 0.0116 0.0466 0.0450 23.0263 35.40
Replications=1, 000 rmse 0.0023 0.0083 0.0083 0.0236 0.0667 31.0808

QMLE coef 0.7502 0.9990 0.9991 1.0044 1.0021 162.2586 1286.36
se 0.0048 0.0183 0.0184 0.1966 0.0651 23.3529

rmse 0.0048 0.0183 0.0184 0.0183 0.0651 23.3429

true 0.75 1 1 1 1 204.3142
N = 200 B2S coef 0.7496 1.0008 1.0007 0.9995 0.9971 203.2024 < 10−4 0.4984
T = 30 se boot 0.0009 0.0030 0.0030 0.0090 0.0265 29.3042 2708.19

se mixt 0.0012 0.0047 0.0047 0.0191 0.0188 20.5737 254.19
Replications=500(∗) rmse 0.0009 0.0032 0.0031 0.0094 0.0266 29.2960

QMLE coef 0.7499 0.9999 0.9999 0.9995 1.9166 204.3702 4335.38
se 0.0008 0.0030 0.0029 0.0094 0.2765 20.5173

rmse 0.0008 0.0030 0.0030 0.0030 0.9574 20.4968

B2S : Bayesian two-stage estimation. The parameters πt are omitted from the table.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

QMLE: quasi-maximum likelihood estimation. The parameters πt are omitted from the table.

(∗) When T = 30, we restrict the exercise to only 500 replications, not because of our estimator under R but because of the size
of the simulated database and its reading under Stata. Indeed, for 1, 000 replications and T = 30, one must read, under Stata,
(1 + 4 + 30)× 1, 000 = 35, 000 variables of size (NT, 1)! Even with a 64-bit computer and Stata (MP and S), only 32, 767
variables can be read. On the other hand, with our code under R, there is no limitation of that order.
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Table C.5: Dynamic Hausman-Taylor World

r = 0.8, ε = 0.5, replications=1, 000

ρ β11 β12 β2 η1 η2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

True 0.75 1 1 1 1 1 1 4
N = 100 B2S coef 0.7483 1.0007 1.0002 1.0011 1.0281 1.0394 0.9945 3.9468 < 10−4 0.4999
T = 10 se boot 0.0031 0.0109 0.0109 0.0121 0.2305 0.0472 0.0639 0.6808 301.06

se mixt 0.0026 0.0100 0.0100 0.0159 0.0692 0.0221 0.0447 0.6620 25.53
rmse 0.0035 0.0109 0.0109 0.0121 0.2322 0.0615 0.0641 0.6826

2SQML coef 0.7499 1.0000 0.9997 1.0003 1.0219 1.0003 0.9935 n.a 688.99
se 0.0028 0.0092 0.0090 0.0091 0.2012 0.0703 0.0480 n.a

rmse 0.0028 0.0092 0.0092 0.0092 0.2023 0.0703 0.0484 n.a

N = 100 B2S coef 0.7496 1.0003 1.0006 1.0005 1.0196 1.0130 0.9984 3.9421 < 10−4 0.5005
T = 30 se boot 0.0015 0.0058 0.0058 0.0060 0.2092 0.0251 0.0383 0.6015 966.48

se mixt 0.0014 0.0056 0.0056 0.0078 0.0388 0.0124 0.0267 0.5944 104.60
rmse 0.0016 0.0058 0.0058 0.0060 0.2102 0.0283 0.0383 0.6039

2SQML coef 0.7500 0.9999 1.0001 1.0001 1.0191 0.9987 0.9978 n.a 2528.13
se 0.0011 0.0043 0.0042 0.0043 0.1972 0.0463 0.0273 n.a

rmse 0.0011 0.0043 0.0043 0.0043 0.1981 0.0463 0.0274 n.a

N = 200 B2S coef 0.7484 1.0010 1.0009 1.0005 1.0057 1.0378 0.9972 3.9724 < 10−4 0.4999
T = 10 se boot 0.0022 0.0078 0.0077 0.0085 0.1611 0.0324 0.0466 0.4585 1183.16

se mixt 0.0018 0.0069 0.0068 0.0113 0.0466 0.0151 0.0333 0.4519 106.52
rmse 0.0027 0.0078 0.0078 0.0085 0.1612 0.0498 0.0467 0.4591

2SQML coef 0.7500 1.0001 1.0001 0.9998 0.9986 1.0013 0.9965 n.a 1242.89
se 0.0020 0.0066 0.0063 0.0066 0.1427 0.0487 0.0355 n.a

rmse 0.0020 0.0066 0.0066 0.0066 0.1427 0.0487 0.0357 n.a

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

2SQML: two-stage quasi-maximum likelihood sequential approach with non available (n.a) estimate of σ2
µ.
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Table C.6: Dynamic Homogeneous Panel Data Model with Common Trends

ε = 0.5, Replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.75 1 1 1

N = 100 B2S coef 0.7518 0.9923 0.9961 1.0048 < 10−4 0.4594
T = 30 se boot 0.0014 0.0122 0.0154 0.0262 1775.99

se mixt 0.0010 0.0140 0.0185 0.0262 106.80
rmse 0.0023 0.0144 0.0159 0.0267

CCEP coef 0.7487 1.0016 1.0063 0.9910 1437.60
se 0.0017 0.0103 0.0122 0.0270

rmse 0.0021 0.0104 0.0137 0.0285

N = 50 B2S coef 0.7501 1.0032 1.0026 1.0116 < 10−4 0.4613
T = 50 se boot 0.0026 0.0152 0.0188 0.0492 1901.78

se mixt 0.0024 0.0161 0.0206 0.0316 113.04
rmse 0.0026 0.0156 0.0190 0.0505

CCEP coef 0.7486 1.0007 1.0037 0.9807 1139.69
se 0.0020 0.0115 0.0141 0.0280

rmse 0.0024 0.0116 0.0145 0.0340

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

CCEP: Common Correlated Effects Pooled estimator.
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Table C.7: Dynamic Homogeneous Panel Data Model with Common Correlated Effects

ε = 0.5, Replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.75 1 1 1

N = 100 B2S coef 0.7459 1.0199 1.0131 1.0289 < 10−4 0.4809
T = 30 se boot 0.0039 0.0184 0.0198 0.0322 1996.72

se mixt 0.0033 0.0219 0.0289 0.0348 344.04
rmse 0.0056 0.0270 0.0237 0.0432

CCEP coef 0.7487 1.0003 1.0044 1.0229 1392.09
se 0.0020 0.0107 0.0124 0.0313

rmse 0.0023 0.0107 0.0131 0.0388

N = 50 B2S coef 0.7474 1.0146 1.0068 1.0235 < 10−4 0.4865
T = 50 se boot 0.0031 0.0174 0.0196 0.0606 1820.55

se mixt 0.0024 0.0169 0.0212 0.0281 177.83
rmse 0.0040 0.0227 0.0208 0.0650

CCEP coef 0.7493 1.0011 1.0022 1.0148 1100.73
se 0.0019 0.0116 0.0142 0.0315

rmse 0.0020 0.0117 0.0143 0.0348

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

CCEP: Common Correlated Effects Pooled estimator.
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Table C.8: Dynamic Heterogeneous Panel Data Model with Common Correlated Effects

ε = 0.5, Replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.7501 0.7498 1 1

N = 100 B2S coef 0.7529 0.7690 1.0112 1.0977 0.0020 0.4160
T = 30 se boot 0.0135 0.0296 0.0184 0.0616 3059.25

se mixt 0.0097 0.0444 0.0531 0.0611 159.42
rmse 0.0137 0.0353 0.0215 0.1155

CCEMG coef 0.7427 0.7543 1.0136 1.1818 1569.35
se 0.0142 0.0261 0.0167 0.1347

rmse 0.0160 0.0265 0.0216 0.2263

true 0.7501 0.7503 1 1
N = 50 B2S coef 0.7591 0.7936 1.0101 1.1808 0.0010 0.4407
T = 50 se boot 0.0217 0.0973 0.0643 0.0474 1566.68

se mixt 0.0087 0.0415 0.0500 0.1172 177.83
rmse 0.0219 0.1572 0.0925 0.0963

CCEMG coef 0.7568 0.7776 1.0070 1.2473 1205.11
se 0.0175 0.0383 0.0206 0.5980

rmse 0.0188 0.0471 0.0218 0.6468

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

CCEMG: Common Correlated Effects Mean Group estimator.∑N ∑Nmean coefficients: ρ = (1/N) ρ βi i and β1 = (1/N) .=1 i=1 1i

N = 100, T = 30 N = 50, T = 50
ρi β1i ρi β1i

min 0.6030 0.5052 0.6059 0.5095
mean 0.7501 0.7498 0.7501 0.7503
sd 0.0865 0.1442 0.0863 0.1442
max 0.8970 0.9951 0.8942 0.9905
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Table C.9: Dynamic Heterogeneous Panel Data Model with Common Correlated Effects

ε = 0.5, Replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.75 0.7496 1 1

N = 200 B2S coef 0.7491 0.7616 1.0119 1.0752 0.0010 0.4107
T = 30 se Boot 0.0123 0.0224 0.0146 0.0506 6156.63

se mixt 0.0083 0.0382 0.0459 0.0501 776.54
rmse 0.0123 0.0254 0.0188 0.0906

CCEMG coef 0.7377 0.7476 1.0147 1.1652 4367.99
se 0.0126 0.0191 0.0113 0.0370

rmse 0.0175 0.0192 0.0185 0.1693

N = 200 B2S coef 0.7532 0.7933 1.0179 1.1659 < 10−4 0.4402
T = 50 se Boot 0.0157 0.0438 0.0256 0.1224 7046.55

se mixt 0.0063 0.0305 0.0369 0.1223 1159.68
rmse 0.0160 0.0618 0.0312 0.2061

CCEMG coef 0.7524 0.7716 1.0113 1.1767 5260.12
se 0.0148 0.0290 0.0127 0.2279

rmse 0.0150 0.0364 0.0170 0.2883

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

CCEMG: Common Correlated Effects Mean Group estimator.∑N ∑Nmean coefficients: ρ = (1/N) ρi and β1 = (1/N) β .i=1 i=1 1i

N = 200, T = 30 N = 200, T = 50
ρi β1i ρi β1i

min 0.6015 0.5052 0.6015 0.5024
mean 0.7500 0.7496 0.7500 0.7496
sd 0.0866 0.1442 0.0866 0.1442
max 0.8985 0.9975 0.8985 0.9975
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Table C.10: Dynamic Random Effects World

ε = 0.5, r = 0.8, Replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 4
N = 200 B2S coef 0.7501 1.0011 1.0012 0.9990 1.0005 4.1091 < 10−4 0.4999
T = 50 se boot 0.0007 0.0022 0.0023 0.0023 0.0147 0.0439 3910.89

se mixt 0.0007 0.0028 0.0028 0.0027 0.0147 0.0435 464.95
rmse 0.0005 0.0025 0.0025 0.0024 0.0147 0.1176

QMLE coef 0.7499 1.0002 1.0003 0.9992 1.0002 4.1178 6150.10
se 0.0005 0.0022 0.0022 0.0022 0.0147 0.0448

rmse 0.0005 0.0022 0.0022 0.0022 0.0147 0.1261

B2S : Bayesian two-stage estimation.

se boot: standard errors computed with individual block resampling bootstrap.

se mixt: standard errors computed with mixture of t-distributions.

QMLE: quasi-maximum likelihood estimation.
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D. Sensitivity to ε-contamination values

Tables D.1 and D.2 investigate the sensitivity of the 2S bootstrap estimator for the random effects
world and for the heterogeneous panel data world with common correlated effects14 with respect
to ε, the contamination part of the prior distributions, which varies between 0 and 90%. As shown
in Table D.1 for the random effects world when N = 100 and T = 10, all the parameter estimates
are insensitive to ε. The only noteworthy change concerns the estimated value of λµ(≡(λb,h0).)It

more or less corresponds to (1 − ε). This particular relation may occur whenever ĥ/ ĥ+ 1 =( ) ( )
h / (h + 1) and R2 / 1−R2 = R2 / 1−R2 ̂

0 0 b0 b (see the definition of λb,h0 in section 2.3.2 in
0 b̂ ̂

q bq

the main text). The observed stability of the coefficients estimates stems from the fact that the

base prior is not consistent with the data as the weight λ̂θ → 0. The ML-II posterior mean of θ is
thus close to the posterior q̂∗ (θ | g0) and to the empirical Bayes estimator θ̂EB (µ | g0). Hence, the
numerical value of the ε-contamination, for ε = 0, does not seem to play an important role in our
simulated worlds. Table D.1 also reports the results when ε is very close to zero (ε = 10−17) and we
get similar results. Lastly, we have also checked the extreme case when ε = 0. The restricted ML-II
estimator (ε = 0) constrains the model to rely exclusively on a base elicited prior which is implicitly
assumed error-free. This is a strong assumption. This time, results are not strictly similar to those
of ε = 0 but they are close to the true values except for σ2

µ which has a fairly large upward bias
(11.4%) as well as a large RMSE.15

Table D.2 shows similar results. All the parameter estimates are insensitive to ε (ε = 0) for the
heterogeneous panel data world with common correlated effects when N = 100 and T = 30. The
only changes concern the estimated values of λθ,g0 and λ ̂ ̂

µ(≡ λb,h0). While λµ(≡ λb,h0) changes

inversely to ε, λ̂θ,g0 has the shape of an inverted J as ε increases. As for the random effects world,
when ε = 0, the results are not strictly similar to those of ε = 0 but they are close to the true values
except for σ2

u which has also a fairly large upward bias (23.8%) as well as large standard error and
RMSE. Whatever the world tested, results are insensitive to the exact value of ε = 0. This stems
from the fact that the 2S bootstrap estimator is data driven and implicitly adjusts the weights to
the different values of ε-contamination. This may be why, even though the choice of ε = 0.5 is
somewhat arbitrary, the adjustment compensates for it not being optimal (see Berger (1985)).

6

6

6

6

6

14This exercise could be conducted for the other worlds such as the Chamberlain-type fixed effects or Hausman-
Taylor world but we report the results for only two worlds for the sake of brevity.

15From a theoretical point of view, and under the null, H0 : ε = 0, it follows that the weights λ̂θ,g0 = 1 and

λ̂b,h0
= 1 so that the restricted ML-I( I estimator) of θ is given by θ̂(restrict =)θ∗(b | g0). Under H1 : ε = 0 the

unrestricted estimator is θ̂unrestrict ≡ θ̂ML−I = λ̂I θ,g0θ∗(b | g ) + 1− ̂0 λθ,g0 θEB (b | g0) . The restricted ML-II

estimator θ∗ (b | g0) is the Bayes estimator under the base prior g0.

6
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Table D.1: Dynamic Random Effects World, robustness to ε-contamination

N = 100, T = 10, replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 1 4
GMM coef 0.7489 1.0052 0.9793 1.0153 0.8746 4.8449 134.53

se 0.0027 0.0093 0.0092 0.0263 0.0523 0.2152
rmse 0.0038 0.0137 0.0243 0.0315 0.1359 0.8718

QMLE coef 0.7485 1.0041 0.9927 1.0061 0.9931 4.0782 471.14
se 0.0023 0.0088 0.0086 0.0236 0.0507 0.1720

rmse 0.0027 0.0097 0.0097 0.0097 0.0511 0.1889
ε = 0 2S boot coef 0.7383 1.0168 0.9871 1.0116 0.9906 4.4573 1.0000 1.0000 317.02

se 0.0059 0.0248 0.0252 0.0250 0.0479 0.2310

ε = 10−17
rmse 0.0127 0.0296 0.0274 0.0275 0.0488 0.5123

2S boot coef 0.7497 1.0045 0.9955 1.0031 0.9948 4.0745 < 10−4 1.0000 326.04
se 0.0021 0.0083 0.0084 0.0084 0.0481 0.1565

ε = 0.1
rmse 0.0018 0.0094 0.0092 0.0090 0.0484 0.1732

2S boot coef 0.7497 1.0045 0.9955 1.0031 0.9948 4.0745 < 10−4 0.8978 322.75
se 0.0021 0.0083 0.0084 0.0084 0.0481 0.1565

ε = 0.5
rmse 0.0018 0.0094 0.0092 0.0090 0.0484 0.1732

2S boot coef 0.7497 1.0045 0.9955 1.0031 0.9948 4.0745 < 10−4 0.4940 327.98
se 0.0021 0.0083 0.0084 0.0084 0.0481 0.1565

ε = 0.9
rmse 0.0018 0.0094 0.0092 0.0090 0.0484 0.1732

2S boot coef 0.7497 1.0045 0.9955 1.0031 0.9948 4.0745 < 10−4 0.0979 310.67
se 0.0021 0.0083 0.0084 0.0084 0.0481 0.1565

rmse 0.0018 0.0094 0.0092 0.0090 0.0484 0.1732

2S boot: two-stage with individual block resampling bootstrap.

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.

33



Table D.2: Dynamic Heterogeneous Panel Data model with Common Correlated Effects, robustness to ε-contamination

N = 100, T = 30, replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.7501 0.7498 1 1

CCEMG coef 0.7427 0.7543 1.0136 1.1818 1569.35
se 0.0142 0.0261 0.0167 0.1347

rmse 0.0160 0.0265 0.0216 0.2263
ε = 0 2S boot coef 0.7521 0.7678 1.0108 1.2380 1.0000 1.0000 3105.32

se 0.0135 0.0298 0.0188 0.4510

ε = 10−17
rmse 0.0136 0.0348 0.0217 0.5098

2S boot coef 0.7526 0.7688 1.0110 1.0977 0.4122 0.9890 3171.07
se 0.0097 0.0444 0.0532 0.0611

ε = 0.1
rmse 0.0135 0.0349 0.0212 0.1152

2S boot coef 0.7529 0.7690 1.0112 1.0977 0.0020 0.8158 3095.86
se 0.0135 0.0296 0.0184 0.0616

ε = 0.5
rmse 0.0137 0.0353 0.0215 0.1155

2S boot coef 0.7529 0.7690 1.0112 1.0977 0.0020 0.4160 3059.25
se 0.0135 0.0296 0.0184 0.0616

ε = 0.9
rmse 0.0137 0.0353 0.0215 0.1155

2S boot coef 0.7529 0.7690 1.0112 1.0977 0.0020 0.0789 2988.05
se 0.0135 0.0296 0.0184 0.0616

rmse 0.0137 0.0353 0.0215 0.1155

2S boot: two-stage with individual block resampling bootstrap.

CCEMG: Common Correlated Effects Mean Group estimator.∑N ∑Nmean coefficients: ρ = (1/N) ρi=1 i and β1 = (1/N) βi=1 1i.
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E. Departure from normality

Tables E.1 and E.2 investigate the robustness of the estimators to a non-normal framework
for the random effects world and for the heterogeneous panel data world with common correlated
effects. The remainder disturbances, uit, are now assumed to follow a right-skewed t-distribution
with mean = 0, degrees of freedom ν = 3, and skewing parameter γ = 2 (see Fernández and Steel
(1998), Baltagi et al. (2018)).16 Our 2S bootstrap estimator behaves pretty much like the GMM
and the QMLE for the random effects world when N = 100 and T = 10 (see Table E.1). Compared
to the GMM estimator, our 2S bootstrap estimator provides better estimates of σ2

u and σ2
µ but it is

the QML estimator that gives the estimates closest to the true values. Another interesting result
concerns the standard errors and RMSEs of all the estimators. The presence of a right-skewed
t-distribution greatly increases these values especially for σ2

u.
Table E.2 investigates the robustness of the CCEMG and 2S bootstrap estimators to the right-

skewed t-distribution for the heterogeneous panel data world with common correlated effects when
N = 100 and T = 30. There are slight downward biases for the ρ mean coefficient, with that of
CCEMG being larger than that of 2S bootstrap (−16% vs −7.6%) as well as slight upward bias for
σ2
u, that of CCEMG being larger than that of 2S bootstrap (5.6% vs 0.5%). However, for the β1

mean coefficient, it is the 2S bootstrap estimator which has larger bias (17.2% vs 7.5%). Finally, it
can be noted that the RMSE of σ2

u is larger for the CCEMG estimator than for the 2S bootstrap
estimator.

16The Skewed t distribution with ν degrees of freedom and skewing parameter γ has the following density:

2
pdf(x) = f(z) where z = γx if x < 0 or z = x/γ if x ≥ 0

γ + 1
γ

where f(.) is the density of the t distribution with ν degrees of freedom.
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Table E.1: Dynamic Random Effects World, robustness to ε-contamination, departure from normality: the skewed t-distribution

N = 100, T = 10, ε = 0.5, replications=1, 000

ρ β11 β12 β2 σ2
u σ2

µ λθ λµ Computation
Time (secs.)

true 0.75 1 1 1 7.0052 4
2S boot coef 0.7445 1.0105 1.0020 1.0101 6.8157 4.4287 < 10−4 0.4986 288.47

se 0.0051 0.0206 0.0207 0.0218 4.2378 0.7319
rmse 0.0076 0.0235 0.0224 0.0249 4.2399 0.8479

GMM coef 0.7509 1.0037 0.9703 1.0019 6.0394 6.2868 124.22
se 0.0036 0.0153 0.0146 0.0155 4.4155 1.0284

rmse 0.0055 0.0217 0.0361 0.0217 4.5177 2.5072
QMLE coef 0.7489 1.0075 0.9808 1.0061 6.8424 3.9816 468.18

se 0.0041 0.0170 0.0176 0.0176 4.4516 0.4327
rmse 0.0042 0.0186 0.0186 0.0186 4.4524 0.4329

2S boot: two-stage with individual block resampling bootstrap.

GMM: Arellano-Bond GMM estimation.

QMLE: quasi-maximum likelihood estimation.

Table E.2: Dynamic Heterogeneous Panel data Model with Common Correlated Effects, departure from normality: the skewed
t-distribution

N = 100, T = 30, ε = 0.5, replications=1, 000

ρ β1 β2 σ2
u λθ λµ Computation

Time (secs.)
true 0.7501 0.7498 1 6.9824

2S boot coef 0.6930 0.8788 1.2188 7.0220 0.0110 0.4202 2371.93
se 0.0222 0.1292 0.1018 2.5438

rmse 0.0613 0.1825 0.2413 2.5428
CCEMG coef 0.6300 0.8064 1.2112 7.3744 1569.28

se 0.0319 0.1364 0.1119 1.6597
rmse 0.1242 0.1477 0.2390 6.5867

2S boot: two-stage with individual block resampling bootstrap.

CCEMG: Common Correlated Effects Mean Group estimator.∑N ∑Nmean coefficients: ρ = (1/N) ρi=1 i and β1 = (1/N) βi=1 1i.
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