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Abstract

We study πη scattering in a model which starts from the tree diagrams of

a non-linear chiral Lagrangian including appropriate resonances. Previously,

models of this type were applied to ππ and πK scattering and were seen

to require the existence of light scalar σ(560) and κ(900) mesons and to be

consistent with the f0(980). The present calculation extends this to include

the a0(980), thereby completing a possible nonet of light scalars, all “seen”

in the same manner. We note that, at the initial level, the πη channel is

considerably cleaner than the ππ and πK channels for the study of light

scalars. This is because the large competing effects of vector meson exchange

and “current-algebra” contact terms are absent. The simplicity of this channel

enables us to demonstrate the closeness of our exactly crossing symmetric

amplitude to a related exactly unitary amplitude. The calculation is also

extended to higher energies in order to let us discuss the role played by the

a0(1450) resonance.
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I. INTRODUCTION

In the last few years there has been a revival of interest in the lowest-lying scalar mesons.

Various authors [1]- [27] have debated evidence that their masses lie below 1 GeV and do not

fit the pattern expected if they were conventional qq̄ states in the quark model. This question

has also stimulated investigations of meson-meson scattering, where these particles should

be “seen” and which anyway is one of the classical problems of elementary particle physics.

Now it is accepted that the solution to this problem should look like chiral perturbation

theory very close to the meson-meson scattering threshold. But when one moves away from

threshold into the resonance region, this essentially polynomial fit to the scattering amplitude

requires many higher order terms and is practically difficult to implement. An alternative

approach which is the stimulus for the present work, involves retaining chiral symmetry but

using a resonance rather than a polynomial basis for the scattering amplitude. This will not

be as accurate near threshold but may be expected to give a simple reasonable picture in the

energies up to the 1 GeV region. The
1

Nc

approximation to QCD [28] provides a motivation

but not a strict proof of this method. Recently it has been applied to ππ scattering [6], πK

scattering [7] and to η′ → ηππ decays [9]. A light scalar-isoscalar – σ(560) – and a light

scalar-isospinor – κ(900) – were found to be necessary to fit the ππ and πK scattering data.

The known f0(980) was also included as a direct channel resonance in the ππ case and the

known a0(980) was observed to play an important role in the η′ → ηππ decay processes.

In the present paper we directly investigate the πη scattering process which is expected

to feature the a0(980) as well as the higher scalar isovector a0(1450). We are employing

the same method as in the previous treatments in the hope of checking the validity and

improving our understanding of the approach.

As before, the amplitude will be constructed from a chiral invariant Lagrangian treated

at tree level but “regularized” near the direct channel poles. The regularization will be

regarded as restoring unitarity in the vicinity of the poles. The resulting amplitude starts out

crossing symmetric but not exactly unitary. The burden of the method is to approximately

satisfy unitarity as well as crossing symmetry. It seems reasonable to include in the effective

Lagrangian all resonances in the range up to the maximum energy of interest. We follow

this rule up to about 1 GeV but, for simplicity, only keep the clearly relevant direct channel

pole a0(1450) above this energy.

The πη scattering actually does turn out to contain some interesting differences from the

ππ and πK cases. In those cases the direct poles σ(560) and κ(900) had to have a modified

Breit-Wigner shape, with an extra parameter, in order to fit the experimental data. This is
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not unreasonable since these resonances appear in direct competition with the large “current-

algebra” contact terms, as well as strong vector meson exchange contributions, and thus do

not dominate their own channels. As already seen in the discussion of η′ → ηππ decay

[9], vector meson exchanges and “current algebra” contact terms do not contribute to πη

scattering in the elastic region. Thus it is appropriate to use the ordinary Breit-Wigner

unitarization for the a0(980).

In Section II we give our notation for the scattering problem and treat πη scattering in

the region where the elastic approximation seems reasonable. This leads to a description

of the a0(980) which is consistent with recent experimental data [29]. Section III contains

a discussion of the problem of unitarizing the I = J = 0 partial wave amplitude and a

comparison of the unitary amplitude with our crossing symmetric one. In Section IV the

πη channel is discussed in the inelastic region, up to about 1.6 GeV, which contains the

a0(1450) resonance. The model was simplified by leaving out a number of higher mass

resonance crossed-channel exchanges. A start on the more involved problem of including

other channels is made in Section V. Multi-channel unitarity is checked for the simplified

model. A brief summary and directions for further work are given in Section VI. Appendix

A gives our chiral Lagrangian and numerical parameters, while Appendix B shows the elastic

I = J = 0 πη partial wave amplitude to interested readers.

II. ELASTIC πη → πη SCATTERING AMPLITUDE

We now discuss πη scattering in a similar way to that previously employed for ππ and

πK scattering. In this section we limit attention to the energy range (up to roughly 1.2

GeV) where the elastic approximation seems at least qualitatively reasonable.

The amplitude, as in the previous treatments, will be obtained from the tree graphs of

the chiral Lagrangian of pseudoscalars, vectors and scalars given in Appendix A. This is

motivated by the large Nc approximation to QCD. As is well known experimentally, the low

energy πη scattering is dominated by the a0(980) scalar resonance.

In detail the πη scattering turns out to be much simpler than the ππ and πK [6,7] cases.

In those examples the leading contributions near threshold were due to the so-called current

algebra contact term (from the first term of Eq. (A6)) and the terms associated with vector

meson exchange. It is easy to see, using G-parity and isospin conservation, that there are

no vector meson exchanges possible for πη → πη scattering at tree level. Similarly the

pseudoscalar contact contribution (first term of Eq. (A6)) which has the same structure as

the vector meson exchange contribution, vanishes identically for πη scattering.
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FIG. 1. Feynman diagrams representing the contributions to the πη → πη

scattering amplitude of scalar mesons σ(560) and f0(980), (a), a0(980) in the

u-channel, (b) and in the s-channel (c).

Thus, considering at first only exchanges of particles less than about 1 GeV in mass,

restricts us to the scalar mesons. This process then provides a very clean channel for

studying the scalar meson properties. Feynman diagrams, representing the contribution of

the scalar mesons to the scattering amplitude, are shown in Fig. 1. The tree level invariant

amplitude is then simply

Aπη =
∑

r=σ,f0

γrππγrηη√
2

(t − 2m2
π)
(
t − 2m2

η

)

m2
r − t

+
γaπη

2

4

(
u − m2

π − m2
η

)2

m2
a − u

+
γaπη

2

4

(
s − m2

π − m2
η

)2

m2
a0
− s

+ 2
m2

π

F 2
π

cos2θp. (2.1)

Here s, t and u are the usual Mandelstam variables. The γ’s, scalar → pseudoscalar-

pseudoscalar coupling constants, were numerically determined in previous papers [6–9]. Fi-

nally, the last term in Eq. (2.1) is a small correction which arises from the pseudoscalar

symmetry breaker of Eq. (A12) and involves the η − η′ mixing angle θp. Numerical values

of this and other relevant parameters are listed in Appendix A. Note that the momentum

dependences in the numerators of the scalar exchange diagrams originate from the chiral

symmetric interaction of Eq. (A9).

The structure of this amplitude is similar to that for the decay process η′ → ηππ. It was

found [9] that an appropriate choice of the parameters C and D in Eq. (A9) was able to
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explain the Dalitz plot and overall rate for the decay process (A and B had previously been

found from ππ and πK scattering [8]).

An important check of the amplitude is that it obeys the general crossing symmetry

relation:

Aπη (s, t, u) = Aπη (u, t, s) . (2.2)

While this maps the physical πη scattering region to an unphysical one, it is a restriction

on the analytic form of Aπη (s, t, u).

Of course, as written, Eq. (2.1) cannot be meaningfully compared with experiment for

a range of energy beyond 1 GeV because there is a physical divergence at s = m2
a0

. A usual

way to handle this problem is to “regularize” the expression by making the substitution:

1

m2
a0
− s

−→ 1

m2
a0
− s − ima0

G′
a0

θ
[
s − (mη + mπ)2

] , (2.3)

where the θ function guarantees that there is no imaginary part below threshold. A simi-

lar substitution for 1/
(
m2

a0
− u

)
which maintains crossing symmetry (Eq. (2.2)) gives no

imaginary piece since u ≤ (mη − mπ)2 in the physical scattering region. The quantity G′
aa

in the elastic approximation is interpreted as the decay rate for a0(980) → πη:

Γ (a0 → πη) =
|pπ|

32πm2
a0

γ2
aπη

(
m2

a0
− m2

π − m2
η

)2
, (2.4)

where pπ is the final pion’s momentum in the a0 rest frame. Analysis of the η′ → ηππ

process fixed Γ (a0 → πη) ≈ 65 MeV while in the same model (see end of section IV of

[8]) it was estimated that Γ
(
a0 → KK̄

)
≈ 5 MeV. Thus the elastic approximation for πη

scattering seems not too bad even slightly beyond the KK̄ threshold. The effect of this

small inelasticity is taken into account by using G′
a0

≈ 70 MeV rather than 65 MeV.

To go further in the analysis it is important to discuss the unitarity constraint on the

scattering amplitude. This is conveniently done with the aid of the partial wave projections.

Since we are dealing with πη scattering the projection will always leave us in the I=1 channel

(all of π+η, π−η and π0η have the same amplitude). Considering a more general case for

later use, the desired angular momentum l partial wave amplitude is given by:

Tab;l(s) =
√

ρa(s)ρb(s)
∫ 1

−1
dcosθ Pl(cos θ) Aab(s, t, u), (2.5)

where θ is the center of mass scattering angle and

ρa(s) =
qa(s)

16π
√

s
, (2.6)
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with qa(s) the center of mass momentum for channel a, containing particles a1 and a2:

q2
a =

s2 +
(
m2

a1
− m2

a2

)2
− 2s

(
m2

a1
+ m2

a2

)

4s
. (2.7)

Aab(s, t, u) stands for the invariant amplitude for channel a → channel b. The two-body

channels of interest are denoted 1 = πη, 2 = KK̄ and 3 = πη′. For the elastic region, of

course, A11 is given by Aπη in Eq. (2.1).

The partial wave amplitudes Tab;l are related to the S-matrix elements by

Sab;l = δab + 2iTab;l, (2.8)

which satisfy (in the two-particle channel dominance approximation) the unitarity formula

∑

b

Sab;lS
∗
cb;l = δac. (2.9)

Since the S-matrix is unitary, |Sab;l| ≤ 1 for each of its entries and so obviously Re(Sab;l) ≤ 1

and Im(Sab;l) ≤ 1. This leads to the very important unitarity bounds on the real and

imaginary parts of the partial wave amplitudes:

Tab;l ≡ Rab;l + iIab;l,

|Rab;l| ≤
1

2
,

|Iab;l| ≤
1

2
(1 + δab) . (2.10)

Usually, if one focuses on the 1 → 1 channel, the standard parameterization of S11 is

S11;l = ηle
2iδl , (2.11)

where 0 < ηl ≤ 1 is the elasticity parameter and δl is the phase shift, in this case for πη → πη

scattering.

In the present case it is interesting to check the unitarity bound for the important l = 0

partial wave amplitude. For simplicity we drop all subscripts and denote T11;0 → R(s)+iI(s).

It is straightforward to carry out the integration in Eq. (2.5). The results are shown in

Appendix B. A plot of R(s) up to
√

s = 1.6 GeV, based on taking the l = 0 partial wave

projection of Eq. (2.1) with the regularization of Eq. (2.3) is presented in Fig. 2. We

notice that the unitarity bound |R(s)| ≤ 1

2
is satisfied. This is not trivial as the plots of

the individual Feynman diagram contributions in Fig. 3 illustrate. The s-channel graph

contribution violates unitarity by itself but the σ and other exchanges act to restore the

bound. Nevertheless, the s-channel graph contribution is clearly the dominant one.
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0.6 0.8 1 1.2 1.4 1.6
√s(GeV)

−0.5

−0.3

−0.1

0.1
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0.5

R
0

FIG. 2. Plot of the real part of the l = 0 partial wave projection of Eq. (2.1)

with the regularization of Eq. (2.3).

0.6 0.8 1 1.2 1.4 1.6
√s(GeV)

−0.75

−0.25

0.25

R
0

a0(980), s

σ(560)

�

f0(980)

SB

a0(980), u

FIG. 3. Individual contributions to R(s) computed as for Fig. 2.
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All in all, the essentially zero parameter prediction shown in Fig. 2 seems reasonable.

Of course, satisfying the unitarity bound is a necessary rather than a sufficient condition for

unitarity. To go further one may take different points of view. The simplest is to consider

that our prediction is most accurate and just given for the real part of the amplitude. The

motivation for this is that the tree graph approximation is purely real. Imaginary parts are

introduced ∗ as regularizations like Eq. (2.3) in the vicinity of the resonance and may be

regarded as (formally small) higher order effects. If we then choose to regard only R(s) as

predicted, we can satisfy unitarity by solving the unitarity formula |S| = |η|, which reads

explicitly

R2(s) +
[
I(s) − 1

2

]2
=

[
η(s)

2

]2

, (2.12)

for I(s). The elasticity factor η(s) may be taken to be approximately one. This procedure

does not exactly solve the problem of finding an amplitude which satisfies both crossing

symmetry and unitarity. While R(s) coincides with the real part of the l = 0 projection of

the crossing symmetric Eq. (2.1), I(s) obtained from Eq. (2.12) above does not coincide

with the imaginary part of this projection. We note that the problem of constructing an

invariant amplitude satisfying both crossing symmetry (Eq. (2.2)) and unitarity (Eq. (2.12))

for all its partial wave projections is an ancient and difficult one.

III. MORE ON UNITARITY

In the preceding section we started from the crossing symmetric invariant amplitude Eq.

(2.1) and regularized it according to the crossing symmetric prescription Eq. (2.3). There

was no guarantee that its l = 0 partial wave projection would be unitary or even satisfy the

unitarity bounds. Fortunately the real part R did satisfy the unitary bound and we could

choose an imaginary part I according to Eq. (2.12) such that partial wave unitarity in the

l = 0 channel was satisfied. This was at the expense of crossing symmetry for the imaginary

part I. To see by how much the original amplitude Eq. (2.1) with the regularization Eq.

(2.3) and its own imaginary part (i.e. the pure crossing symmetric case) violates unitarity,

∗In the treatments of ππ and πK scattering [6,7] the regularizations for the σ and κ were intro-

duced as arbitrary parameters which were varied to make R(s) agree with its experimental shape.

This is very different from the present a0(980) case which does not have the large current algebra

and vector meson exchange backgrounds which greatly complicate the analysis.
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0.6 0.8 1 1.2
√s(GeV)

0

0.5

1

|S
|

FIG. 4. Unitarity of crossing symmetric S-matrix for πη → πη scattering. The

dashed line corresponds to the elastic assumption, G′
a0

= 65 MeV in Eq. (2.3),

while the solid line takes some inelasticity into account by setting G′
a0

= 70 MeV

as explained in the text.

we have plotted |S| in Fig. 4. It is seen that the unitarity violation in the elastic case

(dashed line) is not very severe; this is due to the fact that the a0(980) resonance, which is

approximately of Breit-Wigner shape, dominates.

If |R(s)| had turned out to be greater than
1

2
at some values of s, we would have of course

been unable to impose unitarity with the above method. It seems interesting to discuss a

more or less conventional type of unitarization procedure which can be used in such a case.

This operates at the level of the l = 0 partial wave amplitude. We decompose the S-matrix

into a piece associated with the a0 resonance pole, Spole, and a piece associated with the

remaining “background” terms (t and u-channel exchanges and contact term), SB. The total

S-matrix is written as the product

S (s) = SB (s)Spole (s)

= e2iδB(s) m
2
a0
− s + ima0

Γ (s)

m2
a0
− s − ima0

Γ (s)
. (3.1)

In this form unitarity, |S| = 1, is obvious. Now, using S = 1 + 2iT yields for the partial

wave amplitude,

T (s) = TB (s) + Tpole (s)

= eiδB(s)sinδB (s) + e2iδB(s) ma0
Γ (s)

m2
a0
− s − ima0

Γ (s)
. (3.2)
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For orientation, note that when the background phase δB vanishes and Γ (s) is constant,

this reduces to a pure Breit-Wigner form which is known to be unitary. If δB = δB and

Γ = Γ are taken as constants we get the conventional local form [31] for a narrow resonance

in a constant background:

Tpole ≈ e2iδB
ma0

Γ̄

m2
a0
− s − ima0

Γ̄
. (3.3)

As an example of an application of this last formula, we remark that the presence of a

light σ in ππ scattering produces [6] a background phase δB ≈ π

2
near the f0(980). This

results in an overall minus sign which converts the resonance peak into a dip. This is the

same mechanism – the Ramsauer-Townsend effect – which was observed in atomic scattering

[31] a long time ago.

Returning to the present case of elastic πη scattering in the l = 0 partial wave, we should,

to get an exactly unitary amplitude, identify in Eq. (3.2)

Γ (s) =
q

32πma

√
s
γ2

aπη

(
s − m2

π − m2
η

)2
, (3.4)

where q is the center of mass momentum. Furthermore, noting that TB(s) as obtained from

the partial wave projection of the appropriate terms in Eq. (2.1) is purely real, we identify

δB (s) from:

1

2
sin [2δB (s)] = RB (s) . (3.5)

In order that TB be unitary we must then manufacture an imaginary part from (3.5) as

IB(s) = sin2 [δB (s)] . (3.6)

The amplitude so constructed will satisfy SS∗ = 1 exactly but is, since among other things

we have added IB (s) by hand, expected to violate crossing symmetry.

To summarize, we compare in Fig. 5 the real and imaginary parts of the l = 0 projection

of the crossing symmetric amplitude obtained in section II with the exactly unitary ampli-

tude just discussed. It is encouraging for the method that the crossing symmetric but not

exactly unitary amplitude is close to the unitary but not exactly crossing symmetric ampli-

tude. Reasonably, the difference between the two curves gives a measure of the systematic

uncertainties in the present method. Of course, there is no guarantee that the true solution

lies between the two curves.
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Unitary
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FIG. 5. Comparison of the real and imaginary parts of the exactly crossing

symmetric amplitude obtained in section II with the exactly unitary amplitude

obtained in section III.
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IV. πη SCATTERING IN THE INELASTIC REGION

Here we give a start on extending the previous analysis to πη scattering in the 1.2-1.6

GeV region, where the effects of inelastic channels, namely πη → KK̄ and πη → πη′,

are expected to become important. For a full description we should use a coupled three-

channel approach. According to our initially stated picture we should also include all of

the resonance multiplets up to about 1.6 GeV as exchange particles. This amounts to a

fairly large number of resonances † (including some whose masses and decay properties are

not yet firmly established) and suggests that such an ambitious program be postponed. In

the present paper we shall survey the situation in analogy to an earlier treatment of πK

scattering in [8] by concentrating on the πη → πη channel. In the 1.2-1.6 GeV region

the a0(1450) is the only scalar resonance in the direct channel. We shall also compute the

πη → KK̄ and πη → πη′ amplitudes in our model, including the effects of the a0(1450).

For these off-diagonal transitions we shall be mainly content to check unitarity.

Our approximation for the πη → πη amplitude up to about 1.6 GeV then consists of the

sum of the amplitude given in section II and a piece associated with the a0(1450) resonance.

The piece in section II is the l = 0 partial wave projection of the invariant amplitude in Eq.

(2.1), regularized according to Eq. (2.3). This gives an exactly crossing symmetric partial

wave amplitude which we also saw in section III to be not very different from an exactly

unitary partial wave amplitude. The regularized invariant amplitude including the a0(1450)

is taken to be:

Aπη (s, t, u) ≈ ... +
γ2

a′πη

4

(
u − m2

π − m2
η

)2

m2
a′ − u

+ e2iδa′
γ2

a′πη

4

(
s − m2

π − m2
η

)2

m2
a′ − s − ima′Γtot (a′)

, (4.1)

where a′ denotes the a0(1450) and the ellipsis stands for the other terms just mentioned.

The coupling constants are related to the widths by an obvious generalization of Eq. (2.4).

We have illustrated how to regularize the s-channel pole term as in (3.3) so as to maintain

unitarity near where this term would have blown up. The phase δa′ is evaluated from

1

2
sin

[
2δa′

]
= R

(
s = m2

a′

)
, (4.2)

†In our treatment we shall first neglect exchanges of the spin two nonet which includes f2(1270),

a2(1320), K
∗
2 (1430) and f ′2(1525). We shall also neglect the isoscalar spin zero resonances f0(1370),

f0(1500) and fJ(1710), whose properties are not yet definitively known. Finally in the πη → KK̄

reaction we shall neglect the K∗(1410) and K∗
2 (1430) resonances.
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where R(s) is the real part of the partial wave amplitude due to the background supplied

by the regularized Eq. (2.1). We could multiply the u-channel term also by e2iδa′ to force

crossing symmetry. Actually, we see from Fig. 2 that R (s = m2
a′) is zero to good accuracy

so this correction is not needed in the present case. Fig. 3 shows that this simplification

arises because of cooperation between the pole and exchange terms. With δa′ = 0, Eq. (4.1)

is manifestly crossing symmetric (see the remark after Eq. (2.3)).

Note that Eq. (4.1) explicitly takes some account of inelasticity since Γtot (a
′) = 265±13

MeV [30] is not just gotten from the a0(1450) → πη width as in the generalization of Eq.

(2.4) but will be computed as

Γtot (a′) ≈ Γπη (a′) + ΓKK̄ (a′) + Γπη′ (a′) . (4.3)

This corresponds to the assumption that the πη, KK̄ and πη′ decay modes listed in [30]

saturate the a0(1450) decay, although that assumption is not yet confirmed experimentally.

If the experimental ratios [30]

ΓKK̄

Γπη

= 0.88 ± 0.23 (4.4)

and

Γπη′

Γπη

= 0.35 ± 0.16 (4.5)

are taken together with this assumption we deduce:

Γ [a0(1450) → πη] ≈ 119 ± 26 MeV,

Γ
[
a0(1450) → KK̄

]
≈ 105 ± 36 MeV,

Γ [a0(1450) → πη′] ≈ 42 ± 23 MeV. (4.6)

Actually these three partial widths should be related to each other by flavor SU(3) invariance.

A best fit, on this assumption, yields the slightly different central values:

ΓSU(3) [a0(1450) → πη] ≈ 155 MeV,

ΓSU(3)
[
a0(1450) → KK̄

]
≈ 86 MeV,

ΓSU(3) [a0(1450) → πη′] ≈ 24 MeV. (4.7)

A more detailed discussion of the a0(1450) decay modes is given in [27].
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FIG. 6. Our prediction for the real part of the πη → πη scattering amplitude up

to 1.6GeV. The case where the decay properties of the a0(1450) are taken from

Eq. (4.7) is represented by the solid line, and may be compared with the case

using the estimate Eq. (4.6) shown by the dashed line.

The real part of the l = 0 partial wave amplitude is plotted up to 1.6 GeV using both

Eq. (4.6) and Eq. (4.7) in Fig. 6. We see that these two cases are relatively close‡. Our

prediction for the real part of the scattering amplitude naturally remains within the allowed

range of -0.5 to 0.5 (except for a negligible deviation near the location of the a0(980)).

We have also plotted in Fig. 7 |T11| = |T (πη → πη)| = |R11 + iI11|. This also is seen to

satisfy the unitarity bound |T11| ≤ 1. It thus seems that the πη → πη scattering channel

is remarkably simple in the approximation where the a0(1450) describes the inelastic region

around 1.5 GeV. The partial wave l = 0 amplitude is obtained as a projection of an exactly

crossing symmetric invariant amplitude and the unitarity bounds are satisfied.

‡In subsequent plots we shall continue the same convention where the solid line represents the Eq.

(4.7) determination and the dashed line represents the Eq. (4.6) determination.
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FIG. 7. Modulus of the πη → πη scattering amplitude.

V. OFF-DIAGONAL CHANNELS

Now we present an initial study of the πη → KK̄ and πη → πη′ reactions in the energy

range up to about 1.6 GeV. The Feynman diagrams needed to construct the πη → KK̄

invariant amplitude in our model are shown in Fig. 8.

Unlike the preceding πη → πη case, vector meson exchanges and also contact terms

arising from the first term of Eq. (A6) are now allowed. The contact contributions to the

amplitude for Aπη→KK̄ (s, t, u) for π+η → K+K̄0 from the first term of Eq. (A6) (“current-

algebra” term) together with a piece from the third term of Eq. (A6) (due to addition of

vector mesons in a chiral symmetric way) are:

2s − t − u

3F 2
π

(
cosθp√

2
+ sinθp

)[
1 −

3g2
ρππF 2

π

4m2
ρ

]
. (5.1)

The second term in the square bracket (from the vectors) is about 1.6 times the current

algebra piece so it reverses the sign exactly as in the cases of ππ and πK scattering [6,7].

The contact amplitude arising from the pseudoscalar mass splittings in Eq. (A12) is

2

3F 2
π

(
cosθp

m2
π + m2

K√
2

− sinθpm
2
K

)
, (5.2)
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*
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FIG. 8. Feynman diagrams representing the contributions to the πη → KK̄

scattering amplitude of (a) contact terms, (b) and (c) vector mesons, (d) and

(e) strange scalar κ(900) mesons and (f) a0(980) and a0(1450) mesons.
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and turns out to be completely negligible. The K∗(890) exchange contributions shown in

(b) and (c) of Fig. 8 are found to be

−
(

gρππ

2

)2
(

cosθp√
2

+ sinθp

)

u − s +

(m2
π−m2

K
)(m2

K
−m2

η)

m2

K∗

m2
K∗ − t


+ (t ↔ u) . (5.3)

The κ(900) exchange contribution ((d) and (e) of Fig. 8) turns out to be negligible but

arises from the amplitude piece

γκKπγκKη

4

(t − m2
π − m2

K)(t − m2
K − m2

η)

m2
κ − t

+ (t ↔ u) . (5.4)

Finally, the s-channel contributions from the a0(980) and a0(1450), shown in (f) of Fig.

8, are being described by the regularized amplitude

∑

a

γaπηγaKK

4

(s − 2m2
K)(s − m2

π − m2
η)

m2
a − s − imaΓtot

a

, (5.5)

where the sum is over a = a0(980) and a0(1450). The entire amplitude for πη → KK̄ is the

sum of the terms above and is invariant under t ↔ u exchange, as expected from charge

conjugation invariance.

To proceed we have taken the projection of the amplitude into the l = 0 partial wave

using Eq. (2.5). The real parts of the non-negligible individual components are shown in

Fig. 9. (Notice that the vertical scale has been greatly increased to accomodate the rather

large individual contributions here). We see that the contact terms are dominant although

they partially cancel each other.

The total real part of the πη → KK̄ partial wave is shown in Fig. 10. Amusingly, all the

large pieces in Fig. 9 collaborate with each other to satisfy the unitarity bound up to about

1.6 GeV. To test this further we included the imaginary parts of the partial wave amplitude,

due to the regularization introduced in Eq. (5.5). The plot is shown in Fig. 11. It is seen

that the stronger unitarity bound |T12;0| ≤
1

2
is violated only above 1.5 GeV.

Finally let us consider the πη → πη′ amplitude. The tree level Feynman diagrams are

evident modifications of those shown in Fig. 1 for the πη → πη case. We have the regularized

(due to the a0(980) and a0(1450) poles) tree amplitude

Aπη→πη′ (s, t, u) =
∑

r=σ,f0(980)

γrππγrηη′√
2

(t − 2m2
π)
(
t − m2

η − m2
η′

)

m2
r − t

+
m2

π

F 2
π

sin2θp

+
∑

a

γaπηγaπη′

4





(
s − m2

π − m2
η

) (
s − m2

π − m2
η′

)

m2
a − s − imaΓtot

a

+

(
u − m2

π − m2
η

) (
u − m2

π − m2
η′

)

m2
a − u


 , (5.6)
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FIG. 9. Real parts of contributions to the l = 0 partial wave amplitude for πη → KK̄.
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FIG. 10. Real part of the total l = 0 partial wave amplitude for πη → KK̄.
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FIG. 11. Plot of the magnitude of the l = 0 partial wave amplitude for πη → KK̄.

where the a-summation goes over a0(980) and a0(1450). The second term is a small contact

correction due to the pseudoscalar meson mass splittings. The individual contributions to

the l = 0 partial wave projection of this amplitude are shown in Fig. 12 while the total l = 0

projection is illustrated in Fig. 13. In this case, where the large contact terms are absent,

the unitarity bound |ReT13;0| ≤ 1
2

is satisfied all the way up to 1.6 GeV. This also holds for

the stronger bound, |T13;0| ≤ 1
2
, including the effects of the imaginary part as shown in the

plot of Fig. 14. It is worthwhile to observe that the a0(1450) does not dominate either of

the off-diagonal πη → KK̄ or πη → πη′ channels.

Having looked at the individual πη → πη, πη → KK̄ and πη → πη′ channels it is now

interesting to check the unitarity relation for these l=0 S-matrix elements

∑

a

S1a;0S
∗
1a;0 = 1, (5.7)

on the assumption that the two-particle channels completely saturate the s-wave πη scat-

tering at energies up to about 1.6 GeV. Expressing this formula in terms of the T-matrix

elements suggests that we examine the deviation,

∆ = Im (T11) − |T11|2 − |T12|2 − |T13|2 (5.8)

which should vanish if Eq. (5.7) holds. This is plotted in Fig. 15.
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FIG. 12. Real parts of individual contributions to the l = 0 partial wave

amplitudes for πη → πη′.
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FIG. 13. Real part of the total l = 0 partial wave amplitude for πη → πη′.
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FIG. 14. Plot of the magnitude of the l = 0 partial wave amplitude for πη → πη′.

It is seen that our simple model yields, up until about 1.4 GeV, relatively small violations

of unitarity for the s-wave amplitude. This state of affairs was obtained by projecting out

the l = 0 wave of an invariant amplitude which is exactly crossing symmetric. Thus the

relative simplicity of πη scattering enables one to come closer to obtaining an amplitude

which is both crossing symmetric and unitary.

The larger violation of unitarity above 1.4 GeV can be seen to arise from the violation

of the unitarity bounds already noticed in the πη → KK̄ amplitude (see Fig. 11). In turn

this can be traced to the relatively large contact and vector meson terms which contribute

to this particular off-diagonal process. This is in contrast to the πη → πη and πη → πη′

amplitudes for which the potentially large current algebra and vector meson terms were seen

to vanish. Of course the large current algebra and vector meson pieces were very important

in previous discussions of the ππ and πK scatterings. In this sense, since they only enter

through the “back door” of an off-diagonal channel for πη scattering, the πη scattering is

effectively simpler to treat in our model.

Here, as mentioned above, we have just made an initial exploration of the coupled-channel

πη scattering problem. A fuller treatment would include the exchanges of spin 2 and other

higher mass resonances and also scattering processes having KK̄ and πη′ initial states. For

20



0.6 1 1.4
√s(GeV)

−1

−0.5

0

0.5

1

FIG. 15. Plot of ∆, the deviation from unitarity for πη scattering for l = 0
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example important contributions in the KK̄ case may be expected from the K∗(1410).

VI. DISCUSSION

We studied πη scattering in a model where the starting amplitude was computed at tree

level from a phenomenological chiral Lagrangian containing exchanges of resonances having

masses within the energy range of interest. Divergences at the direct channel poles were

regularized in a conventional manner. Previously this method was applied to ππ scattering

and πK scattering; consistency required the existence of σ(560) and κ(900) scalar resonances.

From that work and also from a related study of η′ → ηππ decay, all the light scalar-

pseudoscalar-pseudoscalar coupling constants were determined. These were used without

change in the present work, which essentially involves no new parameters.

We first examined the roughly elastic region (up to about 1.2 GeV) which is dominated

by the a0(980) resonance. It is noteworthy that neither vector mesons nor large “current

algebra” contact terms can contribute in this region, unlike the ππ and πK cases. The non-

trivial contributions all arise from light scalar meson exchanges. Thus πη scattering seems

an excellent channel for learning more about these resonances which are of great current

interest. Our model in section II was exactly crossing symmetric, but not exactly unitary.

To see why that model which features an a0(980) with mass and width consistent with the

experimental values is not automatically unitary we note the following two points: First,

the amplitude is more general than a pure Breit-Wigner pole for the a0(980) s-channel since

σ and f0 t-channel exchanges and a0(980) u-channel exchange also exist. Furthermore chiral

symmetry dictates a non-trivial momentum dependence of the coupling factors.

To further investigate this question we constructed (in Section III) a related partial wave

amplitude which we made unitary without regard for crossing symmetry. A comparison of

the unitary and the crossing symmetric amplitudes showed that they were in fact close; the

difference between them gives an estimate of the uncertainty of our approach.

It is encouraging to us that treating the a0(980) in πη scattering by the same method as

used in earlier discussions of ππ scattering (in which a σ(560) and the f0(980) appeared) and

πK scattering (in which a κ(900) was needed) seems to be reasonable. Now, all the members

of a possible low-lying scalar nonet have been studied through their appearance in meson-

meson scattering. Of course, many questions remain. One concerns the “family” structure

of such a possible nonet; we have discussed some speculations on this aspect elsewhere

[8,27]. From the present viewpoint, the most important aspect concerns improving our

understanding of the meson-meson chiral scattering amplitude. Clearly, one way to proceed
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is to examine the model at higher energies.

We thus made a preliminary exploration in section IV of the nearby inelastic region

(roughly 1 − 1.5 GeV). This range features the a0(1450) scalar resonance. It turns out

that the earlier terms produce essentially zero background interference at the position of

the a0(1450). Thus, it is natural to add this particle into the picture directly, yielding a

crossing symmetric amplitude. This amplitude was seen to satisfy the unitarity bounds

when the effects of inelasticity were incorporated in the regularization of the a0(1450) pole.

The incomplete experimental data on the a0(1450) branching ratios were interpreted with

the aid of a simple model. Similar preliminary discussions were given for the πη → KK̄ and

πη → πη′ off-diagonal processes. An additional complication showed up in the πη → KK̄

case. Here the vector meson K∗ exchange and a large current algebra contact term both

contribute as in the ππ and πK scatterings. Nevertheless it was found that the exactly

crossing symmetric amplitudes for πη → πη, KK̄ and πη′ satisfied the unitarity relation

amongst themselves to a reasonable accuracy until about 1.4 GeV.

There are many interesting directions for future work. Clearly a full 3-channel analysis

and investigation of various alternative unitarization schemes is suggested. Inclusion of

the many resonances in the 1 − 1.5 GeV range which can be exchanged is also desirable.

Especially interesting are the effects of the isoscalar scalars in this energy regime. Together

with parallel expanded treatments of the ππ and πK cases we may hope to learn about a

second possible scalar nonet containing the a0(1450) and K∗
0(1430). The knowledge of the

scalar coupling constants obtained from refined analyses can be useful in the treatment of

other physical processes. The recently measured [2] radiative decay φ(1020) → a0(980) + γ

is especially important.
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APPENDIX A: CHIRAL LAGRANGIAN

First we write the chiral Lagrangian of pseudoscalars and vectors. This makes use of the

3 × 3 matrix U = e2i
φ

Fπ wherein φ represents the usual 3 × 3 matrix of pseudoscalar fields.

Defining the square root ξ by U = ξξ we consider the combinations
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pµ =
i

2

(
ξ∂µξ† − ξ†∂µξ

)
,

vµ =
i

2

(
ξ∂µξ† + ξ†∂µξ

)
. (A1)

Under a chiral transformation U → ULUU †
R, ξ transforms as:

ξ → UL ξ K†(φ, UL, UR) = K(φ, UL, UR) ξ U †
R, (A2)

which defines K(φ, UL, UR). A vector meson nonet ρµ transforms as a gauge field

ρµ → KρµK
† +

i

g̃
K∂µK†. (A3)

Similarly

vµ → KvµK
† + iK∂µK

†, (A4)

while

pµ → KpµK
†. (A5)

The chiral invariant (neglecting quark mass induced terms) Langrangian of pseudoscalars

and vectors may then be written as

L1 = −F 2
π

8
Tr
(
∂µU∂µU †

)
− 1

4
Tr [Fµν(ρ)Fµν(ρ)] − 1

2
m2

ρTr

(
ρµ − vµ

g̃

)2

− m2
0F

2
π

96

(
ln

detU

detU †

)2

,

(A6)

where Fµν = ∂µρν − ∂νρµ − ig̃[ρµ, ρν ] is the vector meson gauge field strength. Fπ = 0.131

GeV is the pion decay constant, g̃ is the vector meson gauge coupling constant and m0 is a

mass for the unmixed η′ field. g̃ is related to the ρ meson width by

Γ (ρ → ππ) =
g2

ρππq3
π

12πm2
ρ

, gρππ =
m2

ρ

g̃F 2
π

≈ 8.56 (A7)

and mρ = 0.77 GeV. qπ is the pion momentum in the rest frame of the decaying ρ meson.

The last term in Eq. (A6) reflects the U (1)A anomaly in QCD and allows the η′ particle to

have a suitably large mass. We take mπ = 0.137 GeV, mK = 0.496 GeV, mη = 0.547 GeV,

mη′ = 0.958 GeV and mK∗ = 0.890 GeV.

Next consider the chiral invariant Lagrangian involving the scalar nonet field N . We

note [32] that N may be taken to transform as

N → KNK†. (A8)
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Then it is clear that

L = −1

2
Tr (DµNDµN) − aTr (NN) − cTr (N) Tr (N) + F 2

π

[
AǫabcǫdefN

d
a (pµ)

e

b
(pµ)f

c

+ BTr (N) Tr (pµpµ) + CTr (Npµ) Tr (pµ) + DTr (N) Tr (pµ) Tr (pµ)] , (A9)

where D = ∂µ − ivµ, is chirally invariant. The coupling constants describing scalar →
pseudoscalar + pseudoscalar are given in terms of the coefficients A, B, C and D; these

were determined from ππ scattering, πK scattering and η′ → ηππ decay in [8,9]. As an

explicit example of a coupling constant describing a trilinear interaction among isomultiplets

extracted from Eq. (A9) consider

−LNφφ =
γκKπ√

2

(
∂µK̄τ · ∂µπκ + h.c.

)
+ ..., (A10)

which yields the identification γκKπ = −2A. The other terms in this isotopic spin decompo-

sition are also given in [8].

Symmetry breaking terms must still be added. These involve the “spurion” matrix

M = diag (1, 1, x) (A11)

where x ≈ 20.5 [33] is the strange to nonstrange quark mass ratio. Pseudoscalar mass terms

are propotional to

Tr
(
UM†

)
+ h.c., (A12)

vector mass splitting terms are contained in a term

Tr
[
ξ†Mξ†(g̃ρµ − vµ)2

]
+ h.c. (A13)

and finally scalar meson mass splittings are contained in:

− b

2
Tr
(
NNξ†Mξ†

)
+

d

2
Tr (N) Tr

(
Nξ†Mξ†

)
+ h.c. (A14)

A detailed discussion of the scalar meson mass terms and the determination of the

parameters a, b, c and d was given in [8].

The main effects of these mass splitting terms are to give each particle its correct ex-

perimental mass and to accomodate mixing between particles of the same spin-parity and

isospin. Our conventions for the η − η′ and σ − σ′ mixing are:


 η

η′


 =


 cosθp −sinθp

sinθp cosθp




 (φ1

1 + φ2
2)/

√
2

φ3
3


 (A15)
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and


 σ

f0



 =



 cosθs −sinθs

sinθs cosθs







 N3
3

N1

1
+N2

2√
2



 . (A16)

The asymmetry in these two definitions reflects the prejudice that in the ideal mixing

limit (zero mixing angle) the heaviest pseudoscalar η′ is identified as φ3
3 while the lightest

scalar σ is identified as N3
3 . We choose the conventional value θp = 37o and a value θs =

−20.3o as discussed in [8]. This corresponds to the scalar meson masses (needed to explain

ππ and πK scattering in our model):

mσ = 550 MeV , mf0
= 980 MeV

ma0
= 983.5 MeV , mκ = 897 MeV. (A17)

We take the heavier scalar isovector to have a mass given by [30], namely m[a0(1450)] =

1.474 GeV. The coupling constants for the light scalars to two pseudoscalars relevant for the

present paper are (in units of GeV−1) [8,9]:

γσππ = 7.27 , γσηη = 4.11 , γσηη′ = 2.65

γf0ππ = 1.47 , γf0ηη = 1.72 , γf0ηη′ = −9.01

γa0πη = −6.80 , γa0KK̄ = −5.02 , γa0πη′ = −7.80

γκKπ = −5.02 , γκKη = −0.94 (A18)

APPENDIX B: PARTIAL WAVE PROJECTION OF πη → πη ELASTIC

AMPLITUDE

The s-wave projections of the invariant amplitudes represented in Fig. 1 are calculated

from the l = 0 and a = b = 1 case of Eq. (2.5). The direct channel s-wave amplitude is:

T s−channel
11;0 = ρ(s)

γa0πη
2

2

(
s − m2

π − m2
η

)2

m2
a0
− s − ima0

G′
a0

θ
[
s − (mη + mπ)2

] , (B1)

where ρ(s) ≡ ρ1(s) in the notation of Eq. (2.6) for channel 1 (πη → πη). The projection of

the t-channel amplitude of Fig. 1(a) is:

T t−channel,r
11;0 = ρ(s)q2γrππγrηη√

2

[
2α − 4γ +

(
αγ − β − 2γ2

)
ln

∣∣∣∣∣
γ − 1

γ + 1

∣∣∣∣∣

]
, (B2)

where q2 is the center of mass momentum and
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α ≡ 2
m2

π + m2
η + 2q2

q2
, β ≡ 2

(m2
π + q2)

(
m2

η + q2
)

q4
, γ ≡ m2

r + 2q2

2q2
. (B3)

Here there is one term with r = σ and another with r = f0(980). Finally, the l = 0 projection

of the a0(980) u-channel exchange amplitude is:

T u−channel
11;0 = ρ(s)q2 γaπη

2

2

[
2B + 4C + C2ln

∣∣∣∣
B + 1

B − 1

∣∣∣∣
]
, (B4)

where

B ≡ 1

2q2

[
m2

a − m2
η − m2

π + 2
√

m2
π + q2

√
m2

η + q2

]
≡

√
m2

π + q2
√

m2
η + q2

q2
− C. (B5)
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