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ABSTRACT  
In view of growing concerns on climate change and temperature extremes, there is a need to 
explore novel methods that provide thermal comfort in architecture. Latent heat thermal 
energy storage with phase change materials (PCM) has been widely researched in last decades 
in the field of energy technology and proved beneficial for reduction and shifting of the 
thermal loads and improving the overall thermal storage capacity of building components. 
Although a variety of PCM containments have been investigated for indoor cooling 
applications, the examples of exposed, design-oriented macro-encapsulations are rare.  

This paper presents a study of visible, suspended ceiling encapsulations for passive cooling, 
made of glass and novel bio-based PCM. The aim is to provide an overview of correlations 
between basic containment geometries and their thermal behavior that serves as a base for the 
further design of custom-made PCM macro-encapsulations. An experimental set-up of test 
boxes is developed for thermal cycling and a comparative analysis of the thermal performance 
of varied PCM encapsulation geometries. The study concludes that the containments with the 
large exchange surface and the small thickness offer an optimal material distribution for the 
temperature reduction in the box. Based on experimental results, suggestions are made on 
further formal strategies for the design of cooling elements for local thermal regulation. 
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INTRODUCTION 
Contemporary buildings increasingly rely on centralized mechanical systems for the indoor 
climate control, due to the low thermal inertia and high energy gains in buildings. A 
promising renewable energy alternative that could decrease the dependency on high-energy 
consuming technologies and improve the thermal stability of buildings is the latent thermal 
energy storage with PCM (Kośny, 2015; Zalba et al., 2003).  

Current advancements in materials science and the growing interest of designers in a material-
driven performance are opening a possibility for architectural elements to take a more active 
role in managing thermal environments (Addington and Schodek 2005; Bechtold and Weaver 
2017). PCM belong to the novel class of property-changing materials with an inherent 
capacity for thermoregulation, as they can dynamically exchange the energy with 
surroundings while changing the phase at a desirable temperature. Although the primary goal 
of the implementation of PCM is to achieve energy savings in buildings, PCM present yet  
unrealized potential for architectural design and an opportunity for new design methodologies 
based on their thermodynamic behavior. 
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PCM are substances capable to absorb, store and release a large amount of energy in the form 
of latent heat during melting and solidification at a certain, predictable temperature. PCM act 
as latent thermal energy storage due to their large phase change enthalpy or latent heat of 
fusion. Unlike the sensible heat storage, where the added heat results in the temperature 
increase of the storage medium, the latent heat storage medium remains at almost constant 
temperature throughout the solid-liquid phase transition. The added heat is gradually absorbed 
by the material till the melting is complete and released when the surrounding temperature 
drops, and the material starts to solidify (Mehling and Cabeza, 2008). In that way, PCM 
operate in thermal cycles responding to local temperature fluctuations and can be used 
repeatedly without material degradation.  

In passive or free cooling applications, PCM takes advantage of diurnal temperature 
differences, releasing the coldness stored during the night when, during the day, the indoor 
temperature rises above the comfort zone (Raj and Velraj, 2010). Currently available PCM 
products for passive cooling span from micro-encapsulations integrated in different building 
materials to macro-encapsulated elements placed behind the suspended ceiling. However, for 
PCM to function efficiently and regenerate during the night, a direct contact with the cold air 
(heat sink) is of advantage. This study therefore proposes visible suspended glass 
encapsulations that support recharging of the PCM by night ventilation. Since PCM has a low 
thermal conductivity, the containment geometry plays an important role for managing the heat 
transfer between the PCM and surroundings. Thus, coupling the basic encapsulation 
geometries with their thermal behavior in this paper aims to widen the range of PCM 
encapsulations and outline their use within the design realm. 

METHODS  
To evaluate the impact of varied PCM encapsulations on the indoor temperature, an 
experimental set-up for thermal cycling with test boxes was developed. Previous experiments 
that used test boxes to access the thermal performance of the composite PCM wall are 
described in literature (Kuznik and Virgone, 2009). Similarly, in this study two identical 
boxes – a test box containing the PCM sample and an empty reference box – were placed next 
to each other in a controlled indoor environment and exposed to thermal excitation. Boxes 
were made of plywood 18mm, covered with 30mm insulation panels, with the glazed front 
that allowed irradiation by two halogen 750W lamps placed in the front (Fig. 1).  

a) b)  

Figure 1. Experimental set-up for thermal cycling. a) Test boxes, b) Tubular encapsulations. 

The temperature differences were observed during two subsequent heating (3h) and cooling 
(6h) cycles of total duration of 18h. During heating cycle, the temperature in the boxes 

1390

7th International Building Physics Conference, IBPC2018



oscillated from 17◦C to 30◦C, with a resulting heat rate slightly above of the average due to 
the direct solar irradiation of buildings in the summer. The cooling cycle corresponded to the 
effect of night cooling needed for the PCM regeneration. The instrumental set-up consisted of 
two 176T2 dataloggers with four Pt-100 glass-coated probes of the class A precision, 
measuring air, PCM and the room temperature in the interval of 1 minute. Thermal camera 
was attached at the bottom of the box, capturing surface temperatures every 30 minutes. A 
reflective shield protected air probes from the direct irradiation. Before commencing 
measurements, several calibration cycles with different positions of probes were done and 
showed no temperature gradients in the box, and the temperature differences within tolerance 
values (0.2◦C).  

Table 1. Physical properties of bio-based PCM from the data sheet of the producer. 
Property Values
Melting / crystallization temperature 21◦C / 19◦C
Latent heat  190 KJ/kg
Specific heat capacity solid / liquid 2.1 kJ/(kg∙°C) / 2.3 kJ/(kg∙°C) 
Thermal conductivity solid / liquid 0.18 W/(m∙°C) / 0.15 W/(m∙°C) 
Density solid / liquid 891 kg/m3 / 850 kg/m3  

The material used in the study belongs to the novel bio-based category of PCM, with a low 
melting temperature suitable for indoor applications (Tab. 1). The choice of the containment 
geometries was made according to the standard typologies described in the literature (Mehling 
and Cabeza, 2008; VDI, 2016). A total volume of 500ml of PCM was used in each 
measurement, either in a single containment or divided into five smaller units of 100ml. 
Encapsulations were made of borosilicate or soda-lime glass of approx. thickness 2mm in 
following formats: spherical containments used standard laboratory 500ml and 100ml glass 
flasks; multiple tubular used standard 100ml test tubes; 500ml tube was produced by 
lampworking technique; flat container was produced by modifying a standard petri dish ⌀ 
180mm. 

a) b) c) d)      e) 

Figure 2. Ground plan of the box with containment geometries showing surface area and max. 
thickness. a) Sphere 500ml, b) Multiple spheres 5x100ml, c) Tube 500ml, d) Multiple tubes 
5x100ml, e) Flat plate containment 500ml. 

RESULTS 
The graphs show a characteristic latent heat thermal storage effect with a temperature plateau 
during the melting phase of the material (Fig. 3). All encapsulations except the 500ml 
spherical and flat containments allowed the full melting of the PCM. The multiple tubular 
geometry caused the biggest temperature differences between the test boxes (Tab. 2 and     
Fig. 3) and allowed the largest portion of the material to recharge during the cooling cycle in 
comparison to other containments (Fig. 4). 
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Tables and illustrations 

Table 2. Temperature differences in boxes in relation to geometry.  
Encapsulation geometry Values 1st/2nd cycle
a) Sphere 500ml 1.15◦C / 1.13◦C
b) Multiple spheres 5x100ml 1.64◦C / 1.62◦C
c) Tube 500ml 1.51◦C / 1.48◦C
d) Multiple tubes 5x100ml 2.04◦C / 2.03◦C 
e) Flat containment 500ml 1.41◦C / 1.50◦C

               a)              b) 

               c)              d) 

               e) 

Figure 3. Impact of PCM on temperature reduction in the box. a) Spherical containment,  
b) Multiple spherical containment, c) Tubular containment, d) Multiple tubular containment, 
e) Flat plate containment.

DISCUSSIONS 
Multiple containments improved the cooling effect of the single ones by 40%. The results 
point out to benefits of increasing and differentiating surfaces that enclose a certain volume. 
Although the exhibited differences of the cooling potential between PCM containments are 
small, it is expected that they gain on importance in the design of larger ceiling systems. 
Measurements in real conditions with actual thermal loads, building materials and occupant 
behaviour are, however, necessary to validate these findings. Regarding the orientation of 
encapsulations, the experiments assumed the horizontal position of tubes and flat containers 
optimal for the uniform temperature distribution and steadily moving melting fronts (Khan et. 
al, 2016).  
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Figure 4. Thermographic images showing surface temperature at the beginning and the end of 
the heating and cooling cycle: a) 0h, b) 3h, c)12h.  

a) b) c)              

d) 

Figure 5. a) Linear and plane filling tubular elements of 2.6cm thickness and 500ml volume in 
the test box, b) Plane filling configuration principle, c) Difference between linear and plane 
filling patterns in material distribution in larger space, d) Diagram of the operating principle 
of the PCM cooling ceiling made of suspended glass elements. 

a) 

b)  

c)
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A further increase of the surface area of tubular encapsulations could be achieved by 
introducing elements with fins (Fig. 5a), and by formal strategies for connecting elements into 
larger systems, such as plane or space filling tree configurations (Fig. 5b). Compared to linear 
configurations (VDI, 2016), these branching structures could provide a large and uniform 
material distribution with an increased element spacing (Fig. 5c) necessary for recharging the 
material during the night by convection and conduction (Fig. 5d). 

CONCLUSIONS 
This work presented investigation of thermal performance of spherical, tubular and flat plate 
glass encapsulations containing novel bio-based PCM. An experimental set-up of the test box 
was developed for the comparative analyses of the impact of the encapsulation geometry on 
the indoor temperature in the test box. Single and multiple units of an equal volume, but 
varying surface and thickness were tested, and the effect of the increased surface and reduced 
thickness on temperature reduction was observed. Temperature measurements reflected the 
differences in the volume-surface ratio of containments and showed the biggest reduction of 
2◦C in the box with multiple tubular PCM encapsulations. The paper concludes that new 
design and recharging opportunities for cooling ceilings could be afforded by the exposed 
glass encapsulations and suggests further formal strategies for increasing the surface area 
while keeping the thickness, volume and spacing of the encapsulation elements at optimum. 
These findings on cooling effects of glass encapsulations can inform the concept phase of the 
design of more elaborate custom-made ceiling elements for local thermal regulation. 
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