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Abstract 

 

 The clumped isotope geothermometer estimates the formation temperature (T(Δ 47)) of 

carbonates and has tremendous potential to enhance the extraction of environmental data from 

pedogenic (soil) carbonate in the geologic record. However, the interpretation of pedogenic 

carbonate T(Δ47) data is limited by uncertainties in our understanding of carbonate formation 

processes. This study examines the potential for along-strike, same elevation and plant biomass 

(C3/C4) site variability to influence pedogenic carbonate T(Δ47) data. Pedogenic carbonates were 

collected from five modern soil pits in the semi-arid eastern Andean piedmont of Argentina 

under a summer precipitation regime. Three of the five soil pits were instrumented with soil 

temperature and soil moisture sensors to a depth of 1 m (at 1 km elevation), while a fourth was 

instrumented with an additional soil CO2 sensor and atmospheric sensors (temperature, relative 

humidity, insolation and rainfall) (at 0.6 km elevation). T(Δ47) values are statistically 

indistinguishable between the four instrumented sites and are invariant with depth. The mean 

T(Δ47) is 31°C ± 4°C (± 1SE), reflecting summer soil temperatures. Soil moisture and 

temperature data indicate that isothermal conditions are achieved immediately after significant 

wetting events. Carbonate formation under these conditions could result in our observed hot 

isothermal T(Δ47) values. The results of this study constrain carbonate formation to the early part 

of soil drying, with T(Δ47) interpretations biased to soil conditions just after major precipitation 

events. 
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1. Introduction 

 The development of low temperature geothermometers is important to researchers 

studying Earth surface processes, paleoaltimetry, and paleoclimate. The clumped isotope 

geothermometer allows for the determination of near-surface temperatures based on the relative 

degree of 
13

C-
18

O bonding in carbonates (CaCO3). "Clumping" of these heavy isotope bonds 

varies inversely with temperature, providing an estimate of pedogenic carbonate formation 

temperature (T(∆47)) that is independent of bulk isotopic composition (Ghosh et al. 2006a). Thus, 

clumped isotopes solve the issue of two unknowns in conventional stable isotope analysis of 

carbonate, in which the value of δ
18

Osoil water depends on both the temperature of formation and 

the oxygen isotopic composition of the source water (e.g. Kim and O’Neil, 1997). Previously, 

calculating δ
18

OSW values from conventional isotopic analysis of pedogenic carbonate required 

an assumption about one or the other of these factors, usually temperature. 

 Pedogenic (soil) carbonate is an attractive geologic proxy material because it is 

commonly present in terrestrial sedimentary rocks. Early uses of clumped isotope 

geothermometry assumed that pedogenic carbonate formation temperatures reflect mean annual 

soil temperatures (MAST), with potential systematic errors due to seasonal biases in carbonate 

formation (e.g. Ghosh et al., 2006b). Breecker et al. (2009) calculated a strong seasonal bias for 

pedogenic carbonate during warm, drying episodes in the soil when CO2 concentrations are low 

in the soil. Several studies have found T(∆47) far in excess of MAST (e.g. Passey et al. 2010; 

Quade et al. 2013; Hough et al. 2014) or a mixture of carbonate T(∆47) data reflecting summer 

and fall temperatures depending on the timing of the wet season and snowmelt (Peters et al. 

2013). Together these data call into question our collective understanding of the process of 

carbonate formation in the soil profile. This study examines the potential for variability of T(∆47) 
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data from modern soil carbonates collected in the Andean Piedmont of Argentina (between 32.5 

and 34°S; Fig. 1) in order to better constrain the conditions that lead to the formation of soil 

carbonate and to improve interpretations of clumped isotope paleoenvironmental records. We 

simplified our investigation by (1) choosing sites in a summer-only precipitation regime, thereby 

limiting variability in seasonal soil drying periods, (2) varying C4/C3 grass proportions, which 

may bias seasonal soil moisture and CO2 conditions during times of peak productivity, and (3) 

comparing nearby sites at a single elevation, as some studies show a strong correlation between 

T(∆47) and elevation (Quade et al 2013; Hough et al. 2014) while others do not (Peters et al. 

2013). Our objectives are to (1) explore the influence of environmental variables (air 

temperature, soil temperature, soil moisture, soil gas CO2 concentration and vegetation type via 

in-situ monitoring) on the timing and temperature of pedogenic carbonate formation, and (2) 

determine the potential for site-to-site variability in resulting T(∆47) values. 

 

2. Background 

2.1 Carbonate Formation 

 Pedogenic carbonate forms over hundreds to thousands of years as filaments, then 

nodules in sub-humid to arid soils when the soil solution becomes supersaturated with calcite 

(Cerling and Quade, 1993). The carbonate formation reaction, 

           
        

            
               

 
   (1) 

and its corresponding activity equation under aqueous conditions,  

              
  

  
    
 

    
 

  

          

     (2) 

show that carbonate precipitation in soils may result from any one or a combination of the 

following: an increase in soil temperature, a decrease in soil gas pCO2, or an increase in Ca
2+

 or 
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HCO3
-
 concentration in solution (Breecker et al., 2009). In well-drained, arid climate soils, 

carbonate formation should occur during periods of soil dewatering, due to evaporation and root 

uptake that begins immediately after precipitation events. Carbon in pedogenic carbonates (from 

soil CO2 from plant root and microbial respiration) is depleted in 
13

C relative to atmospheric 

CO2, with a positive shift in  δ13
C near the surface caused by atmospheric exchange (Cerling and 

Quade, 1993). δ
18

Ocarbonate depends on δ
18

Osoil water and temperature-dependent fractionation 

during carbonate formation. In well-drained soils, δ
18

Osoil water is commonly assumed to reflect 

meteoric water, and is typically enriched near the surface by evaporation (e.g. Cerling and 

Quade, 1993).  In equation 2, pCO2 is the partial pressure of carbon dioxide in the soil gas, 

     is the calcium ion concentration in the soil solution (provided by rainwater and dissolution 

of Ca-bearing minerals in dust or soil parent material), and K values are temperature-sensitive 

equilibrium constants as described by Drever (1982) and Plummer and Busenberg (1982). An 

activity of calcite (      
) > 1 indicates precipitation of CaCO3 . This equation is valid for 

systems under conditions of thermodynamic equilibrium where activity ≈ concentration and soil 

water pH ≤  9. In theory, isotopic equilibrium of pedogenic carbonate with soil CO2 and soil 

water is reached during drying episodes and is due to the slow precipitation of calcite at depth in 

soils (Breecker et al. 2009; Cerling and Quade, 1993). However, recent studies have suggested 

that isotopic equilibrium in soil carbonate formation is not always achieved (Gabitov et al., 

2012).  Isotopic disequilibrium effects may result in decreased ∆47 measurements, artificially 

raising T(∆47) values (Guo 2008). 

 Quade et al. (2013) found that average clumped isotope T(∆47) measurements of modern 

soil and paleosol carbonates from soils typically developed under summer rainfall seasonality 

reflect the hottest months of the year, exceeding the mean annual air temperature (MAAT) by 
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10-15⁰C. This study suggested that an increase in reported T(∆47) values towards the surface may 

be due to radiative heating of the soil; however T(∆47) values considered with typical 

uncertainties appear to be isothermal with depth. Passey et al. (2010) found that temperatures 

recorded by modern soil carbonates in East Africa exceeded present-day MAST, plotting closely 

with the average summer soil temperatures. Peters et al. (2013), investigated seasonal bias on 

carbonate formation temperatures along an elevation transect in the central Andes at ~33°S and 

found that average T(∆47) values for carbonates collected above 2 km elevation reflect summer 

soil temperatures, while those below 2 km more closely reflect MAST. This transition coincides 

with a change in seasonality of precipitation, with winter precipitation above 2 km elevation and 

summer precipitation below. Peters et al. (2013) suggested that below 2 km, summer rainfall 

delays soil drying until fall, resulting in carbonate formation later in the year recording cooler 

T(∆47) values. Above 2 km and in winter-only precipitation regimes, soil should dry during the 

warmest months, allowing for carbonate formation with summer T(∆47). 

 The type and amount of vegetation in a region may also influence the timing and 

temperature of carbonate formation because plants impact the radiative heating of the soil 

surface and focus removal of moisture within the rooted part of the soil profile. C3 and C4 type 

plants are adapted to different levels of CO2, light intensity, and water stress due to variations in 

their metabolic pathways for photosynthetic carbon fixation. C3 plants are adapted to be most 

productive under moderate soil and air temperatures and light intensities; in arid environments, 

C3 plants are most active during spring and fall. C4 plants, including most grasses in arid regions, 

are generally adapted to higher water stress (dry) conditions with low CO2 concentrations. C4 

plants are most productive during the hottest months of the year and enhance soil dewatering 
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during this time, so it is expected that carbonate T(∆47) values will be higher in regions with 

significant C4 plant distributions than in regions with C3 vegetation (Breecker et al. 2009). 

 

2.2 General sampling site description  

We sampled pedogenic carbonate from the eastern Andean piedmont of Argentina at 32-

34⁰S in the Villavicencio (CAN01, CAN02), Divisadero Largo (DL01), and Nacuñan Nature 

Reserves (Figure 1). The piedmont is an arid, gently eastward sloping topographic feature; the 

western edge borders the Andes at ~1000 m elevation, sloping down to the eastern edge at an 

elevation of ~500 m. The entire piedmont experiences spatially discontinuous summer 

convective precipitation with infrequent westerly precipitation events rarely reaching its western 

edge during the winter months (Mancini et al., 2005). Mean annual air temperature recorded at 

Mendoza (827 m elevation) is ~17 ⁰C and mean annual precipitation is ~220 mm (1989-2015) 

from Base de Datos Hidrológica Integrada (BDHI; http://bdhi.hidricosargentina.gov.ar); Servicio 

Meteorológico Nacional (SMN; http://www.smn.gov.ar)). Surveys of vegetation type and cover 

density across the piedmont reveal a nearly 50/50 C4/C3 grass mixture at 1000 m elevation in the 

west evolving to a 90/10 mixture at 600 m in the east (Cavagnaro, 1988). At higher elevations, 

genus Larrea shrubs dominate, and the size and density of shrubs and trees increases to the east. 

Soils of the western piedmont are developed in a coarse-grained alluvial conglomerate parent 

material and contain stage I/II carbonate development (Gile et al. 1966; Birkeland, 1999). 

Terrestrial cosmogenic nuclide dating by Schmidt et al. (2011) between the Villavicencio Nature 

Reserve and the City of Mendoza yielded terrace ages between 21 and 0.7 ka on adjacent, 

tectonically uplifted surfaces. 
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 The Nacuñan Nature Reserve is located ~150 km to the southeast of Mendoza at 34 ⁰S. 

This region also experiences summer-only precipitation, with an average annual precipitation of 

~326 mm and a mean annual air temperature of ~16 ⁰C (Ojeda et al. 1998). Plant productivity 

here is higher than Villavicencio and Divisadero Largo sites, though total C4/C3 distribution 

(grasses and shrubs) is similar to Villavicencio. The soil parent material is medium to coarse 

grained sand that contains carbonate nodules. The soil is modern, based on radiocarbon dating of 

carbonate nodule samples (Section 3.1). 

 Prior work in this region documents the elevation dependence of δ
18

O values in 

precipitation, river water, and pedogenic carbonate over a ~100 km E-W transect that crosses the 

Andes through the Río Mendoza valley (Hoke et al. 2009; 2013). Peters et al. (2013) investigated 

soil carbonate formation and associated clumped isotope records through the Río Mendoza 

transect; data from their 2 nearest sites are provided for comparison with our data (Figures 

1,3,5,7). 

 

Figure 1: 

 Eastern Andean 

piedmont of central 

Argentina, 32-34⁰S.  

 

Left: Peters et al. 2013 

transect with 

subsurface monitoring 

sites at 3.2 km, 2.40 

km, 1.6 km and 1.1 

km.  

 

Right: Inset A: 

locations of CAN01, 

CAN02, and DL01 

subsurface monitoring 

sites. Inset B: location 

of Nacuñan Nature 

Reserve site. 
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3. Methods 

3.1 Field Stations and Sampling 

 In order to investigate the impact of seasonality on soil carbonate growth and recorded 

T(∆47), we collected in situ field data on subsurface conditions (soil temperature, soil moisture, 

CO2 concentration, rooting depth, substrate, carbonate stage) and meteorological conditions (air 

temperature, rainfall, relative humidity, insolation). Vegetation data is based on a point intercept 

survey conducted in a representative, undisturbed area near the pits at the end of the study in 

April-May 2015, with biomass estimated as % cover. In July 2013, four pits were excavated at 

sites over a ~40 km N-S transect between the Villavicencio Nature Reserve and the Divisadero 

Largo Nature Reserve (~32.7⁰S) (see Figure 1, Table 1). Two pits (CAN01 and CAN02), 

separated by ~6 km, were instrumented with Onset soil temperature sensors (10, 50, and 100 

cm), and soil moisture sensors (50 cm) connected to an Onset microstation data logger (Figure 

2a). A pendant temperature logger mounted in a radiation shield was suspended from a pole at a 

height of 1.5 m above the ground surface. A third pit (DL01) was instrumented with a 

microstation data logger and soil temperature and moisture sensors at 10 and 50 cm depth. Stage 

I-II soil carbonate clasts were collected at these sites at 15-20 cm intervals from the first 

occurrence of carbonate to 1m depth. Carbonate clasts collected at 40cm depth in DL01 were 

analyzed for radiocarbon age through DirectAMS. The fourth pit (CAN03) was excavated to a 

depth of 50 cm and sampled for carbonate clasts at that same depth. The substrate for each of 

these soil pits is cobble to boulder conglomerate. A fifth pit was sampled for carbonate nodules 

to 1m depth at 34⁰S in the Nacuñan Nature Reserve (Figure 1, Table 1). Carbonate nodules 

collected at 30, 50, and 100 cm depth were analyzed for radiocarbon dating at DirectAMS. This 

pit was instrumented with Onset soil moisture and temperature sensors at 10, 50, and 100 cm 
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depth, a Vaisala pCO2 sensor at 50 cm depth, and Onset air temperature, relative humidity, 

insolation, and rain sensors (Figure 2b). Readings from all of the instruments were logged at 15 

minute intervals by an Onset U30-NRC logger; all sensors were tested prior to deployment in the 

field for proper functionality, and resulting data were calibrated according to the manufacturer.  

 CAN01 and CAN02 lie in a mixed C4/C3 vegetation environment dominated by C3  plants 

with a C4 grass layer (Table 2). DL01 was dominated by C3 grasses and shrubs with a much 

higher plant cover than the previous sites. The high biomass and dominance of C3 at this site may 

be caused by the slight southern aspect of this terrace, which receives lower irradiance than the 

more exposed CAN01 and CAN02. Nacuñan lies in a mixed C4/C3 vegetation environment with 

the highest productivity of the four sites, including a dominantly C4 grass layer and a high 

density of C3 shrubs.  

 Daily precipitation data are available from BDHI for stations Mendoza Airport (near 

CAN01 and CAN02), and for San Rafael (<100 km southwest of Nacuñan). Daily air 

temperature and precipitation data are also available for NOAA's National Climatic Data Center 

(NCDC) (http://www.ncdc.noaa.gov/) at Mendoza Airport and Mendoza Observatory. Limited 

daily air temperature, precipitation amount, and δ
2
H and δ

18
O data are available for Mendoza 

Observatory and Nacuñan through the Global Network of Isotopes in Precipitations (GNIP) 

(http://www.naweb.iaea.org/napc/ih/IHS_resources_gnip.html) and Hoke et al. (2013). 
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Table 1: Soil pit and meteorological station locations 

 

 

Table 2: Vegetation description with biomass estimated by % cover 

 

Soil pit site: Location Elevation Data available 

 Latitude (S) Longitude (W) (m)  

CAN01 32° 35' 31" 68° 54' 19" ~1000 Soil T (10, 50, 100 cm), Soil Moisture (50 cm), 

Carbonate clasts collected to 1m depth 
 

CAN02 32° 39' 07" 68° 55' 00" ~1000 Soil T (10, 50, 100 cm), Soil Moisture (50 cm) 

Carbonate clasts collected to 1m depth 
 

CAN03 32° 34' 12" 68° 56' 34" ~1000 No instrumental data,  

Carbonate clasts collected at 50 cm depth 
 

DL01 32° 52' 40" 68° 55' 21" ~1000 Soil T (10, 50 cm), Soil Moisture (10, 50 cm) 

Carbonate clasts collected to 1m depth 
 

Nacuñan 34° 02' 60" 67° 54' 10" ~540 Soil T (10, 50, 100 cm), Soil Moisture (10, 50, 100 

cm), CO2 (50 cm), Air T, Precip., Insolation, 

Carbonate nodules collected to 1 m depth 
 

Peters et al. 2013 

(1.1 km) 

33° 02' 38" 69° 00' 33" ~1100 Soil T (10, 50, 100 cm), Soil Moisture (50 cm), 

Carbonate clasts collected to 1m depth 
 

Peters et al. 2013 

(1.6 k) 
 

32° 49' 24" 69° 17' 55" ~1600 Soil T (10, 50, 100 cm), Soil Moisture (50 cm), 

Carbonate clasts collected to 1m depth 
 

Meteorological 

station: 

Latitude (S) Longitude (W) Elevation Data available 
 

BDHI: Mendoza 
 

33° 00' 54" 69° 07' 03" ~1000 Precip. (1983-2015) 

NCDC: Mendoza 

Airport 

32° 49' 59" 
 

68° 46' 59" 
 

~1000 
 

Air T, precip. (1959-2015) 
 

NCDC: Mendoza 

Observatory 
 

32° 53' 00" 68° 51' 00" ~1000 Air T, precip. (1959-2015) 

 

GNIP: Mendoza 

Observatory 

32° 52' 48" 68° 51' 00" ~1000 Air T, precip., δ2H, δ18O (1982-1988, 1998-1999) 
 

GNIP: Nacuñan 34° 01' 48" 67° 58' 12" ~540 Air T, precip., δ2H, δ18O (1982-1984) 
 

BDHI: San Rafael 34° 36' 44" 68° 18' 58" ~1000 Precip. (1984-2014) 
 

 CAN01 CAN02 DL01 Nacuñan 

% bare soil 25 22 3 0 

C4 / C3 grasses 4.80 36.00 0.10 2.80 

C4 / total 

vegetation cover 
0.32 0.46 0.02 0.42 

Dominant grasses 

(C3 or C4) 
 Pappophorum (C4) 

 Bouteloa barbata (C4) 

 Eragrostis (C4) 

 Pappophorum (C4) 

 Bouteloa barbata (C4) 

 Eragrostis (C4) 

 Jarava ichu (formerly 

Stipa ichu) (C3) 

 Pappophorum 

caespitosum (C4) 

 Trichloris crinita (C4) 

 Setaria mendocina (C4) 

 Jarava ichu (formerly 

Stipa ichu) (C3) 

Dominant CAM 

(cacti) (C4) 
 Opuntia (C4) 

 Tephrocactus (C4) 

 Opuntia (C4) 

 Tephrocactus (C4) 

  

Dominant shrubs  

(C3) 
 Lycium tenuispinosum  

 Larrea cuneifolia  

 Zucagnia punctata  

 Lycium tenuispinosum  

 Larrea cuneifolia   

 Zucagnia punctata  

 Trycicla spinosa  

 Lycium tenuispinosum 

 Verbena aspera 

 

 Larrea cuneifolia 

 Larrea divaricata 

 Lycium tenuispinosum 

 Prodopsis flexuosa 

 Geoffroea decorticans 
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Figure 2: (a) CAN01 and CAN02 site sensor instrumentation (from Peters et al. 2013) 

(b) Nacuñan soil and atmospheric sensor instrumentation. 

 

3.2 Isotopic methods 

 Carbonate coatings from rocky, western piedmont samples were scraped from multiple 

clasts collected at the same depth, powdered, and homogenized with an agate mortar and pestle. 

Carbonate nodules collected from the sandy soil substrate at Nacuñan were crushed and 

homogenized, with care taken to remove any roots and obvious organic material. The powdered 

and homogenized samples were analyzed at the University of Washington’s Isolab in December 

2013 and July 2014, where they were digested in 105% phosphoric acid at 90⁰C with the evolved 

CO2 gas purified as described in Huntington et al. (2009). Between two and five replicates of 

each carbonate-derived CO2 sample were analyzed on a Thermo MAT 253 mass spectrometer, 

returning measurements of δ
13

C, δ
18

O, ∆47, and ∆48 (used to screen for contaminants.). 

Experimentally determined mass ratios compare the mass 47 abundance of a CO2 sample to that 
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of a stochastic CO2 standard heated to a known temperature; this sample ∆47 is then compared to 

the absolute reference frame (ARF) (Dennis et al. 2011). T(∆47) values were calculated using 

synthetic carbonates calibrations in the ARF (Dennis et al., 2011; Zaarur et al. 2013). For the 

range of ∆47 values reported in this study (0.638-0.706‰, Table 3), the Zaarur and Dennis 

calibrations result in similar carbonate formation temperature estimates, differing by an average 

of 8% for samples run with n = 3 replicates. T(∆47) values from samples with n=3 replicates are 

generally recorded to 3-5⁰C precision (95% confidence). Select samples were also analyzed 

using a Kiel III carbonate device coupled to a Thermo Delta Plus SIRMS for a dual-inlet based 

δ
13

C and δ
18

O carbonate measurement (noted in Table 3) and reported relative to Vienna PeeDee 

Belemnite (VPDB). 

 Peters et al. (2013) samples were reported pre-ARF and are not directly comparable to 

samples reported in the ARF. Samples from each Peters et al. (2013) site at 50 cm depth were 

reanalyzed at the University of Washington in April 2015 in the ARF. 

 

3.3 Carbonate saturation modeling 

 Station measurements from Nacuñan provide the soil temperature and soil CO2 

concentration data necessary to solve equation 2 at 50 cm depth. The concentration of calcium 

ions in the soil solution of this region is taken to be ~3-4 meq/L (or 1.5-2.0 mmol/L), as 

measured in surface soils at Nacuñan (0-20 cm depth) (Rossi 2004; Rossi and Villagra 2003). By 

comparing sensor conditions to calculated activities, we generalize supersaturation conditions 

and seasonality of carbonate formation. 
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4. Results 

4.1 In-situ results 

 Radiocarbon dating of carbonate clasts collected at 40cm depth in DL01 produced an age 

of 2080 ± 30(1σ) years BP, and nodules collected at 30, 50, and 100 cm depth at Nacuñan 

produced ages of 5900 ± 30, 11140 ± 40, and 16200 ± 70 years BP, respectively, indicating 

modern carbonate formation. As soil carbonates grow over time, additional 
14

C is incorporated 

into coatings or nodules; this time integration results in radiocarbon ages that are typically 

interpreted as underestimates of the true age of carbonate formation (Amundson et al. 1994; 

Yang et al. 1994). As such, the Nacuñan radiocarbon signals are consistent with a stable soil pit. 

 At least 1.5 years of data collected at 15 min. intervals are available for each 

instrumented soil pit (starting in July 2013). Air temperature data are available at CAN01, 

CAN02, and Nacuñan. CO2 soil gas concentration at Nacuñan is available from mid-February 

2014 through May 2015; missing data prior to February 2014 was due to a blown fuse in the 

solar power system for the CO2 sensor. Other minor gaps in data collection stem from dead 

batteries at CAN01, excess water in the CAN01 and DL01 microloggers, and rodent activity that 

damaged sensor cables at DL01 (see Appendix). 

 Soil temperatures for all 4 pits ranged between 0⁰C and 40⁰C for sensors at 10 cm depth 

and between 8⁰C and 35⁰C for sensors at 50 and 100 cm depth. Recorded soil temperatures were 

comparable for all sites. Soil temperatures for our sites as well as the two nearest Peters et al. 

(2013) sites are overlain with average T(Δ47) values in Figure 3. For the CAN01, DL01, and 

Nacuñan stations, T(Δ47) ranges intersected soil temperatures only during the hottest summer 

months. T(Δ47) values for CAN02 intersect late spring and late summer soil temperatures. Data 

from Peters et al.’s (2013) 1.1km and 1.6km stations intersected T(Δ47) values at late spring, 
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early fall, and for a brief period during summer (January 2011). These station data were recorded 

in 2010 under typical MAAT conditions of 15⁰C and 13⁰C, respectively, based on nearby 

weather stations (Guido and Cachueta), with precipitation for the recorded year falling ~30% 

below the historical means. 
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Figure 3: In-situ station records averaged daily overlaid 

with T(Δ47) values for August 2013-August 2014 (this 

study); in-situ records and T(Δ47) values for February 2010-

January 2011 (Peters et al., 2013) 
 

Figure 3: In-situ station records averaged daily overlaid 

with T(Δ47) values for August 2013-August 2014 (this 

study); in-situ records and T(Δ47) values for February 2010-

January 2011 (Peters et al., 2013) 
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 Soil moisture values <0.10 m
3
/m

3
 are "oven dry" to "dry" soils, according to the 

manufacturer (Onset), though within this regime wetting events can still be identified. Values of 

0.30 - 0.50 m
3
/m

3
 represent wet to saturated soils. We recorded soil moisture values between 

0.00 and 0.30 m
3
/m

3
 at 50 cm depth for all sites. A significant soil wetting event was captured at 

50 cm depth for all sites in late February 2014, although conditions at CAN02 during this event 

remained "dry" with a peak soil moisture of 0.09 m
3
/m

3
. DL01 captured 4 additional soil wetting 

events at 50 cm depth, occurring in December 2013, April 2014, and December 2014.  Sensors at 

Nacuñan captured 1 wetting event at 100 cm depth in late February 2014 and a series of wetting 

events at 50 cm depth in December 2014 - April 2015. 

 The total precipitation for August 2013 - August 2014 recorded from Mendoza for sites 

CAN01, CAN02, and DL01 was between 260 (Mendoza Airport) and 280 mm (Mendoza 

Observatory), exceeding the mean annual precipitation of 220 mm by ~20%. The total 

precipitation for August 2013-August 2014 recorded at Nacuñan by our rain gauge was ~430 

mm, exceeding the annual average (Nacuñan GNIP station, n = 4) of 326 mm by ~30%. Average 

air temperatures recorded for Mendoza and Nacuñan both reflected the historical MAAT of 17⁰C 

and 16⁰C, respectively, with daily averaged air temperatures recorded between 0⁰C and 35⁰C. 

Solar radiation for Nacuñan ranged between 0 and ~1275 ± 65 W/m
2
, with maximum insolation 

occurring between December 2013 and March 2014. 

 The percentage of CO2 in the soil gas recorded at 50cm depth for Nacuñan ranged 

between 0.12 and 0.60% between February 2014 and May 2015, with maximum CO2 

concentrations occurring in late February - April 2014. CO2 concentrations rose sharply in 

February in the middle of the growing season in response to wetting events (Figure 4). 
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Figure 4: In-situ Nacuñan records (soil temperature, soil moisture, and soil gas CO2 

concentration at 50 cm) with calculated αcalcite values, mid-February 2014 - May 2015. Solid 

portions of the αcalcite line indicate times when the soil has a moisture content > 0.1 m
3
/m

3
. 

 

4.2 Isotopic results 

 Isotopic results are summarized in Table 3 and Figure 5. Soil carbonate δ
13

C and δ
18

O 

measurements generally decrease with depth and range from -6.0 to -0.3‰ (VPDB) and from 

-8.0 to 2.3‰ (VPDB), respectively. A full summary of replicate measurements in available in the 

Appendix. At and below 50 cm, the range of δ
13

C values from CAN01, CAN02, CAN03, and 

DL01 is -6.0‰ to -2.1‰, and the range of δ
18

O values is -8.5‰ to -0.1‰.  

 ∆47 values are reported in the ARF (Dennis et al., 2011) and range between 0.638 and 

0.706‰. For all ∆47 < 0.695‰, T(∆47) values calculated using Dennis et al. (2011) are slightly 

warmer than those following Zaarur et al. (2013); however all T(∆47) values calculated using the 

two calibrations lie within 1 standard error of one another. T(∆47) values range between 24⁰C and 

42⁰C (Zaarur calibration) and between 22⁰C and 50⁰C (Dennis calibration). Individual T(∆47) 
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values in Figure 5 are shown using the Zaarur et al. (2013) calibration. T(∆47) values from Peters 

et al. (2013) for the nearest elevation pits (1.1 and 1.6 km) are provided for comparison (Fig. 3); 

the majority of these data were calculated using Ghosh et al. (2006) and were not reported in the 

ARF. However, samples at 50 cm depth from the 1.1 and 1.6 km sites were replicated in the 

ARF, resulting in T(∆47) differing from pre-ARF values by less than 2⁰C. 

 Average T(Δ47) values for all sampled pits vary little with depth. The mean T(Δ47) value 

for the N-S transect bordering the mountains is 32°C ± 3°C (± 1SE) and for Nacuñan is 30°C ± 

3°C. At all pits, T(Δ47) values exceed MAAT and MAST (Figure 5). Pit-averaged T(Δ47) values 

are greater than or equal to the average hottest month mean soil temperature (HMST) at 50cm, 

with the exception of CAN02, which falls between MAST and HMST (Fig. 3). CAN02's T(Δ47) 

values are slightly cooler than those of CAN01. CAN02 and CAN01, which are separated by ~6 

km, have mean T(Δ47) values (33°C and 28°C, respectively) that are statistically different  (T = 

3.13, P <0.05). No other pairings between the four sites exhibited T(Δ47) values that were 

statistically different. In addition, a one-way ANOVA test indicated that there were no statistical 

differences between the four groups using a significance threshold of 0.05 (95%; see Appendix).  

 δ
18

Osw (VSMOW) values were calculated from carbonate δ
18

O (VPDB) and T(∆47) 

following Kim and O'Neil (1997) (Table 3). Calculated δ
18

OSW values ranged from -4.9 to 4.9‰ 

(VSMOW). Below 50cm depth, δ
18

OSW values for CAN01, CAN02, and DL01 were similar, 

ranging between 0.3 and 2.6‰. Nacuñan values below 50cm depth were more negative, ranging 

between -4.9 and -3.5‰. 
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Table 3: Summary of isotopic analyses for carbonate samples 
Sample: n δ13Ca (‰) 

(VPDB) 

δ18Oa (‰) 

(VPDB) 

∆47 ± 1SEa (‰) T(∆47) ± 1SE (⁰C) Soil water δ18Ob (‰) 

(VSMOW) 

    Calibration: Zaarur et al., 

2013 

Dennis et 

al., 2011 

Ghosh et 

al., 2006 

Zaarur et 

al., 2013 

Dennis et 

al., 2011 

Ghosh et 

al., 2006 

CAN01, 1.0km elevation 
10cm 3 -1.84 -3.7 0.638 ± 0.011c 42 ± 3 50 ± 5  1.9 ± 0.6 3.4 ± 1.9  

25cm 3 -0.29 -2.2 0.676 ± 0.011c 32 ± 3 34 ± 4  1.4 ± 0.7 1.9 ± 1.9  

40cm 3 -1.89 -3.4 0.666 ± 0.016 34 ± 4 38 ± 7  0.7 ± 0.8 1.4 ± 2.6  

55cm 3 -3.13 -3.4 0.674 ± 0.016 32 ± 4 35 ± 6  0.3 ± 0.8 0.8 ± 2.5  

70cm 2 -3.47 -1.9 0.660 ± 0.018 36 ± 5 41 ± 8  2.6 ± 1.0 3.6 ± 3.0  

100cm 2 -2.63 -3.2 0.677 ± 0.045 31 ± 11 33 ± 18  0.4 ± 3.5 0.9 ± 8.4  

Pit average: 
 

-3.08 -2.8 0.670 ± 0.026 34 ± 5 38 ± 8  1.1 ± 1.8* 1.7 ± 4.6*  

CAN02, 1.0km elevation 
10cm 3d -0.95 0.9 0.676 ± 0.011c 32 ± 3 34 ± 4  4.6 ± 0.5 5.1 ± 1.7  

25cm 3d -3.11 2.3 0.698 ± 0.014 26 ± 3 25 ± 5  4.9 ± 0.7 4.8 ± 2.1  

40cm 2d -3.75 0.8 0.680 ± 0.013c 30 ± 3 32 ± 5  4.3 ± 0.6 4.6 ± 2.1  

55cm 2d -4.66 -0.1 0.685 ± 0.030 29 ± 7 30 ± 12  3.1 ± 1.4 3.3 ± 4.7  

70cm 3d -2.08 -0.8 0.693 ± 0.017 27 ± 4 27 ± 6  2.1 ± 0.8 2.1 ± 2.7  

85cm 3d -3.86 -1.9 0.706 ± 0.013 24 ± 3 22 ± 5  0.3± 0.6 0.0 ± 2.0  

100cm 2d -5.01 -1.8 0.683 ± 0.030 30 ± 8 31 ± 12  1.6 ± 1.4 1.8 ± 4.7  

Pit average: 
 

-3.90 -1.1 0.692 ± 0.023 28 ± 5 29 ± 7  1.8 ± 1.1* 1.8 ± 3.5*  

CAN03, 1.0km elevation 
50cm 

 

3 -4.66 -2.9 0.679 ± 0.011c 31 ± 3 33 ± 4  0.6 ± 0.6 1.0 ± 1.8  

DL01, 1.0km elevation 
20cm 3 -1.19 -1.0 0.650 ± 0.011c 38 ± 3 45 ± 5  3.9 ± 0.5 5.1 ± 1.8  

40cm 4 -4.11 -1.4 0.698 ± 0.020 26 ± 5 25 ± 7  1.2 ± 1.0 1.1 ± 3.1  

70cm 2 -5.21 -2.5 0.685 ± 0.013c 29 ± 3 30 ± 5  0.7 ± 0.7 0.9 ± 2.1  

100cm 2 -5.18 -3.0 0.655 ± 0.013c 37 ± 4 43 ± 6  1.7 ± 1.1 2.8 ± 2.6  

Pit average: 
 

-5.19 -2.8 0.670 ± 0.011 33 ± 4 36 ± 6  1.2 ± 0.9* 1.9 ± 2.4*  

Nacuñan, 0.6km elevation *(carbonate nodule samples) 
20cm 3 -5.54 -6.7 0.703 ± 0.014 25 ± 3 24 ± 5  -4.4 ± 0.8 -4.6 ± 2.2  

50cm 4d -6.01 -8.3 0.652 ± 0.013 38 ± 4 44 ± 6  -3.5 ± 0.7 -2.3 ± 2.2  

85cm 3d -5.67 -7.6 0.695 ± 0.011c 27 ± 3 26 ± 4  -4.8 ± 0.5 -4.9 ± 1.7  

100cm 2 -5.53 -8.5 0.678 ± 0.013c 31 ± 3 33 ± 5  -4.9 ± 0.9 -4.5 ± 2.4  

Pit average: 
 

-5.60 -8.0 0.686 ± 0.012 30 ± 3 35 ± 5  -4.4 ± 0.7* -3.9 ± 2.1*  

Peters et al. 2013, 1.1km elevation 

Pit average: 
 

-5.11e -2.7e 0.671 ± 0.023c   20 ± 4   -1.4 ± 0.7 

Peters et al. 2013, 1.6km elevation 

Pit average: 
 

-5.99e -10.5e 0.675 ± 0.013e   19 ± 3   -9.4 ± 0.6 

a
 Carbonate δ

13
C, δ

18
O, reported as mean and ∆47 reported as weighted mean of replicates (n) for each individual sample. Average external 

error (1SE) for replicates of a sample is ±0.03‰ for δ
13

C, ±0.028‰ for δ
18

O, and ±0.019‰ for ∆47. 
b
 Soil water δ

18
O was calculated using the calcite-water O-isotope fractionation equation of Kim and O'Neil (1997). Uncertainty in soil 

water δ
18

O was calculated by propagating errors in T(∆47). 
*Soil pit averages for δ

18
OSW were calculated for samples of depth >50cm. 

c
 For samples with low SE for replicates, SE was assigned using the long-term SD of a standard run during the same period of time 

divided by sqrt(n), where n is the number of sample replicates, following Peters et al. (2013) and Huntington et al. (2009). 
d
 Samples noted with n

d
 were analyzed using an additional two replicates for δ

13
C and δ

18
O measurements using a Kiel III Carbonate 

Device coupled to a dual-inlet Thermo Finnigan Delta Plus IRMS at the University of Washington Isolab. 
e
 Peters et al., (2013) (pre-ARF) average external error (1SE) for replicates is ±0.04‰ for δ

13
C, ±0.002‰ for δ

18
O, and ±0.016‰ for ∆47. 

Replicates in ARF for 50 cm samples at 1.1 and 1.6 km yielded T(∆47) values differing from original publication by < 2⁰C 
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Figure 5: Soil carbonate 

isotope data for CAN01, 

CAN02, DL01, and Nacuñan 

(this study), followed by 1.1km 

and 1.6km data from nearby E-

W Río Mendoza valley 

elevation transect study (Peters 

et al.2013)  

 

Left panels: carbonate δ
13

C 

VPDB (triangles)  and 

carbonate δ
18

O VPDB (squares) 

 

Middle panels: soil carbonate 

T(∆47)±1SE following Zaarur et 

al. (2013) (circles). Gray 

vertical bars and shaded boxes 

indicate the mean and standard 

deviation across all T(∆47) in a 

soil profile. Lines represent 

coldest mean soil temperature 

(CMST, blue), mean annual 

soil temperature (MAST, 

green), hottest mean soil 

temperature (HMST, red), and 

mean annual air temperature 

(MAAT, black), extrapolated 

from 1 year of soil 

temperatures recorded by 

sensors at 10, 50, and 100cm, 

from air temperatures recorded 

at Mendoza Airport (CAN01, 

CAN02, DL01), and by 

instrumentation at Nacuñan.  

 

[Note: Peters T(∆47) data were 

calculated using the Ghosh et 

al. (2006) calibration and were 

not reported in the absolute 

reference frame, with the 

exception of replicated 50 cm 

samples.] 

 

Right panels: calculated δ
18

O 

of soil water (VSMOW) 

(crosses). 
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4.3 Carbonate saturation modeling results 

 Soil temperature and pCO2 sensor data for the Nacuñan site were used to calculate the 

activity of calcite as described in Equation 3, assuming that carbonate formation is an 

equilibrium process (Figure 4). Soil solution Ca
2+

 concentration is assumed at a constant near-

saturation value of 1.5 mmol/L (Rossi and Villagra, 2003). Temperature-dependent equilibrium 

constants K1,K2, Kcal, and KCO2 were calculated using parameters from Plummer and Busenberg 

(1982). Calcite activities calculated for Nacuñan for the period February 2014 and May 2014 

were always greater than 1, suggesting persistent conditions of CaCO3 supersaturation 

throughout the year (Figure 4). The lowest activity values (α = 1.7) occurred in early March 

2014, coincident with the maximum observed soil pCO2. 

  

5. Discussion 

5.1 Potential for variability in T(Δ47) between sites 

 

 In all soil pits, δ
13

C and δ
18

O values generally increase towards the surface. We interpret 

this to be indicative of undisturbed soil profiles with soil water evaporation near the surface and 

soil gas exchange with atmospheric CO2, respectively (Cerling and Quade, 1993). Below 50 cm 

depth, the range of δ
13

C values (-5.0‰ to -2.1‰) at CAN01 and CAN02 reflects a lower soil 

productivity and potentially higher C4/C3 distribution than at DL01 and Nacuñan (-6.0‰ to -

5.2‰) (Cerling, 1988). 

 T(Δ47) values averaged over depth for the CAN01, CAN02, DL01, and Nacuñan soil 

profiles are not significantly different. This suggests that sites chosen in a single precipitation 

regime at a single elevation will be indistinguishable in T(Δ47) even under varying C3/C4 

distributions. This challenges the expectation that soil carbonate formation temperatures will be 
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higher under C4 plant growth (most productive in summer) than under C3 plant growth (adapted 

to cooler conditions) (Breecker et al. 2009; Meyer et al. 2014).  

 While our T(Δ47) values are statistically indistinguishable between 4 nearby sites in this 

study, our T(Δ47) values exceed those of the nearest 2 Peters et al. (2013) sites by ~10°C, despite 

surface and in-situ conditions that are comparable. This suggests that there is a potential for 

substantial variability in T(Δ47) at the same elevation in a region dominated by the same 

precipitation and vegetation regime. The nearest Peters site (1.1 km) differs from DL01 by only 

100 m  elevation and 20 km distance; it may be possible that local topographic features, or a 

difference in soil temperature or water chemistry may contribute to a difference in carbonate 

formation and associated T(Δ47) values. In particular, the Peters 1.1km site lies <0.5 km from the 

Mendoza River , which may have been subject to periodic flooding that could alter soil moisture 

and chemistry in this site. Further investigation into the sub-surface physical and chemical 

differences between these sites will be necessary to say more about the potential impacts on 

T(Δ47) values. 

 

5.2 Inv ri nce of T(∆47) with depth 

 

 T(Δ47) values within each sampled pit were found to vary little with depth (Figure 5, 

middle panels), consistent with other studies (Quade et al., 2013; Peters et al., 2013). The 

simplest explanation for this invariance would be carbonate formation during the spring or fall 

when the soil profile is near isothermal, such that range of T(Δ47) values would be constrained 

through the soil profile. Our instrumental temperature records show that the conditions for a 

seasonally isothermal soil occur over a narrow range of time (1-2 weeks) during the spring and 

fall in which soil temperatures are near MAAT. However, our observed T(Δ47) values range 
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from 28 to 34⁰C and are at least 10⁰C higher than spring or fall temperatures at any instrumented 

soil pit, suggesting that some other process must account for the observed temperature invariance 

with depth.  

 

5.3 Isothermal conditions after rainfall events 

 In all 4 sites, soil moisture sensors installed at 50cm captured one significant soil wetting 

event in late February, immediately after which near-isothermal conditions were registered at 10, 

50, and 100cm (Figure 6, top panel). At CAN01, soil temperatures converge at ~30⁰C over 1-2 

days, at the low range of T(Δ47) for this site (Figure 6). If carbonate were to form at this time at 

any depth in the soil, its T(Δ47)  would contribute to a hot, isothermal T(Δ47) soil profile, such 

as we see in Figure 5. These near-isothermal conditions persist for ~1-3 days after the 

precipitation event, and though the soil is only just beginning to dry, our calculations of aqueous 

calcite activity suggest that conditions of high Ca
2+

 and low CO2 at this time will result in a soil 

solution that is supersaturated in CaCO3. During the months after this event in which the soil 

dries back to dry baseline conditions, soil temperatures fall well below the range of T(Δ47) 

values for this site. 

 Observed soil temperatures were several degrees higher at the peak of summer for 

CAN02 than for CAN01, and soil conditions at CAN02 at 50cm depth were dry throughout the 

recorded year. However, some wetting was observed at the same late February event, and 

sensors registered a significant drop in soil temperature resulting in near-isothermal conditions at 

~30⁰C, roughly agreeing with the average T(Δ47) value calculated for this site.  

 While the DL01 site was located only ~40km away from the CAN01 and CAN02 sites, it 

experienced much wetter conditions between August 2013 and August 2014. Immediately after 
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wetting events in late November and late February (summer), soil temperature sensors at 10 and 

50cm registered isothermal conditions at ~25-27⁰C, falling just at or below the lower range of 

average T(Δ47) value calculated for this site. Soil temperatures recorded after an April 2014 

(fall) wetting event never reached isothermal conditions. 

 One significant soil wetting event was registered for Nacuñan at 50cm depth in late 

February 2014, with precipitation infiltrating through to the 100 cm depth soil moisture sensor. 

Soil temperatures at this site converged at ~27⁰C immediately after this event, within the 

calculated T(Δ47) range.  

 One minor soil wetting event was registered in January 2011(summer) at the 1.1 km 

Peters site, in which soil moisture levels remained below 0.10m
3
/m

3
 (dry), while soil 

temperatures decreased to isothermal conditions at ~23⁰C, matching T(Δ47) for this site. 
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Figure 6: Isothermal conditions immediately after large 

wetting events at 50cm depth for 4 instrumented sites, 

August 2013-August 2014 (this study);  nearest 2 Peters 

sites, February 2010-January 2011 (Peters et al. 2013) 
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 Generally, in-situ soil temperatures recorded at all four sites immediately following 

significant soil wetting events are similar to carbonate formation clumped isotope temperatures 

and reflect the isothermal conditions seen in our clumped isotope T(Δ47) profiles. CAN02 and 

Nacuñan are the best examples of this, where soil temperatures after wetting events are 

isothermal and match calculated T(Δ47), while soil temperatures for CAN01 and DL01 fall at or 

slightly below their T(Δ47) ranges.  

 Our findings are consistent with a recent study using carbonates from Wyoming and 

Nebraska by Hough et al. (2014), who argued that soil carbonate forms during early summer soil 

drying and drying after mid-late summer rainfall events. By providing soil temperature and 

moisture data with depth, we build on Hough et al. (2014) to suggest that high temperatures and 

isothermal conditions recorded in Δ47 signals are accounted for by carbonate formation 

occurring immediately after large precipitation events during the hottest months of summer, and 

not during the progressive drying out of the soil on the tail end of the wet season as suggested by 

Breecker et al. (2009). This further constrains the window of carbonate formation to brief events 

when the soil is just beginning to dry out, rather than during the several weeks of drying 

necessary to return soil moisture to its baseline condition at 50 cm depth. 

 

5.4 Se son l controls on soil c rbon te T(∆47) 

 

 We use equation 2 as a simple equilibrium-based first-pass model for determining the 

seasonality of carbonate supersaturation in soil, although disequilibrium fractionation cannot be 

completely discounted. Calcite activity calculations for Nacuñan indicate constant carbonate 

supersaturation that should allow for calcite precipitation at any time that water is removed from 

the soil (Figure 4). As plant activity dies down in winter and the soil dries out, activities rise, 
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indicating increasing calcite supersaturation. pCO2 is a major control on calcite saturation, such 

that activities only approach 1 during midsummer, when pCO2 increases rapidly in response to 

large rainstorms. Surface soils in this region have relatively high Ca
2+

 concentration of 1.5-2.0 

mmol/L and should be near-constant with depth (Jobbagy and Jackson 2001; Rossi and Villagra 

2003). In order to arrive at conditions that favor calcite dissolution, (αcalcite < 1), Ca
2+

 

concentrations must fall below 1.2 mmol/L in March - May 2014 when pCO2 is highest, below 

1.0 mmol/L for May 2014 - September 2014, and below 0.75 mmol/L for September 2014 

onwards, when pCO2 continues to decrease. In these well-drained arid soils, it is reasonable to 

expect high Ca
2+

 concentrations throughout the soil profile, such that calcite supersaturation is 

maintained throughout the year. Further field data on Ca
2+

 concentrations in soil water would be 

necessary to continue this line of inquiry, but for the period of data available, we expect that 

calcium carbonate is potentially able to form at any time of the year. Since soil carbonates 

represent formation integrated over a period of hundreds to thousands of years, carbonate 

formation must be far more frequent under summer conditions, in our case the wet season, than 

throughout the rest of the year, based on T(∆47) and in-situ temperatures. However, the lowest 

Peters et al. (2013) sites, subject to identical field conditions, do not seem to agree with our 

observations in the piedmont. Potential differences include a difference in the soil water 

chemistry or soil moisture, since the Mendoza River transports limestone rich sediment from the 

high Andes and may have been subject to periodic flooding. 

 In the context of soil wetting events discussed above, the supersaturated conditions 

inferred from calcite activity, combined with the isothermal soil conditions observed 

immediately following the largest rainfall events, suggest that calcium carbonate forms 

seasonally in relation to these large wetting events. While soil solution conditions are likely to be 



27 
 

supersaturated throughout the rest of the year, in-situ conditions are so dry that without some 

change in soil moisture conditions we should not expect any significant carbonate formation. The 

seasonality of rainfall in this region should therefore result in a carbonate clumped T(Δ47) record 

biased towards summer soil temperatures, consistent with our observations. 

 

5.5 Implications for isotopic records from pedogenic carbonates 

 This study results in 3 key findings that should inform future application of the clumped 

isotope geothermometer to estimate formation temperatures of pedogenic carbonates. 

1) For arid to semi-arid field sites under the same precipitation regime and at similar elevations 

(0.6km to 1.0km), site-to-site variability in soil carbonate (clast coating or nodule) T(Δ47) 

records are likely to be negligible. This is important for applications of the clumped isotope 

geothermometer in paleoaltimetry or paleoenvironmental studies; if a site is known to have 

predominantly C3 or C4 plant types, pedogenic clumped isotope T(Δ47) records need not be 

adjusted to account for vegetation type. However, there is significant variation between 

T(Δ47) values calculated for this study and for values from very similar nearby sites (Peters et 

al., 2013). This suggests the potential for strong local controls that may result in spatial 

variability in soil carbonate T(Δ47), though no variation was seen between CAN01, CAN02, 

DL01, and Nacuñan sites in this study. 

2) Similar to previous studies, T(Δ47) values for CAN01, CAN02, DL01, and Nacuñan sites 

were found to be invariant to 1m depth suggesting  that soil carbonate formation is restricted 

to intervals when the soil profile is isothermal, which occurs during either the transition in 

seasons or after large summer rainstorms, or that some other process drives carbonate 

formation such that hot, summer T(Δ47) values are recorded without variation with depth. 



28 
 

3) Under a summer-only precipitation regime in a semi-arid region, T(Δ47) values reflect the 

isothermal summer soil temperatures that occur just after large rainfall events that result in 

significant soil wetting. Thus, potential (paleo)precipitation regimes should be carefully 

considered when applying the carbonate clumped isotope geothermometer to 

paleoenvironmental reconstructions. 

 

5.6 Recommendations for future work 

1) Continued in-situ data collection, particularly for soil CO2 data, during years with more 

typical mean annual precipitation, would allow for comparison of T(Δ47) values with in-situ 

data that better represent long-term conditions in this region. Collection of soil water 

chemistry data, particularly for soil solution Ca
2+

, at all 4 sites and at the Peters 1.1 km site 

would provide a better basis for investigation of calcite activities and for comparison of 

chemical factors that might result in a 10
0
C temperature shift between the CAN/DL sites and 

Peters. 

2) This study focused on pure C3 and ~50/50 C3/C4 environments. Carbonate collection and 

analysis from soil profiles within a pure C4 environment (i.e., grasslands) would allow for a 

better comparison of T(Δ47) records under varying plant types. 

3) Monitored, in-laboratory carbonate growth experiments under controlled conditions that 

simulate arid soils would provide a better test of the timing of carbonate precipitation than our 

use of a simple equilibrium model.  
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6. Conclusions   

 With its summer-only precipitation regime and C3/C4 transition, the eastern Andean 

Piedmont is an ideal location for investigating the variation in pedogenic carbonates clumped 

isotope records. In this region at an elevation of ~0.6-1.0km, we find that carbonate clumped 

isotope temperatures are invariant between sites of ~ 0.02 - 0.46 C4/total vegetation biomass by 

groundcover. Carbonate formation temperatures fall at or above the hottest mean monthly soil 

temperatures and are isothermal between 10cm and 100cm depth. T(Δ47) values coincide with 

in-situ soil temperatures measured immediately after significant summer rainfall events. We 

suggest that the timing of carbonate formation in arid regions with a summer precipitation 

regime is driven by seasonal rainfall, where isothermal summer soil temperatures are captured 

immediately after large rainfall events that result in significant soil wetting.  
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Appendix A: In situ site data  

 

Figure A1:  CAN01 sensor data averaged daily: Soil temperatures (top), soil moisture (bottom), 

and air temperature sensor data (bottom) for the months of July 2013-March 2015. Precipitation 

data are averaged between BDHI and NOAA records from Mendoza, Argentina. Missing data 

beginning in July 2014 and again in January 2015 is due to dead batteries. Soil moisture sensor 

misbehavior in the months May 2014 and October 2014 may be due to water in the micrologger 

case or a damaged soil moisture sensor cable. 
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Figure A2:  CAN02 sensor data averaged daily: Soil temperatures (top), soil moisture (bottom), 

and air temperature sensor data (bottom) for the months of July 2013-May 2015. Precipitation 

data are averaged between BDHI and NOAA records from Mendoza, Argentina. Due to a sensor 

malfunction, air temperature data between July 2013 and November 2013 is taken from NOAA 

records from Mendoza, Argentina, after which point the pendant logger for air temperature was 

replaced. 
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Figure A3:  DL01 sensor data averaged daily: Soil temperatures (top), soil moisture (bottom), 

and air temperature sensor data (bottom) for the months of August 2013-February 2015. 

Precipitation data are averaged between BDHI and NOAA records from Mendoza, Argentina. 

Air temperature data are taken from NOAA records from Mendoza, Argentina. Missing data 

during the months of September through October 2014 is due to severed cables by rodent 

activity. 
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Figure A4:  Nacuñan sensor data: Soil temperatures, soil moisture, air temperature, and soil CO2 

sensor data for the months of July 2013-May 2015. Soil CO2 data are missing before February 

2014 due to a blown fuse in the power system. 
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Appendix B: Summary of all isotopic analyses  

Table B1: Summary for all replicates of isotopic analyses for carbonate samples 
Sample 

(Replicate #) 
Elevation 

(m) 
Depth 
(cm) 

Latitude (S) Longitude (W) δ13Ca 
(‰, VPDB) 

δ18Oa 
(‰, VPDB) 

∆47 ± 1SEa 
(‰) 

T(∆47) ± 1SE 

(⁰C) 

Soil water δ18Ob 
(‰, VSMOW) 

          

CAN01-10 1000 10 32° 35' 31.44"S 68° 54' 19.26"W -1.84 -3.7 0.638 ± 0.011c 42 ± 3 1.9 ± 0.6 
(1)     -1.92 -3.5 0.634 ± 0.009   

(2)     -1.83 -3.8 0.634 ± 0.007   

(3)     -1.78 -3.8 0.646 ± 0.007   
 

CAN01-25 1000 25 32° 35' 31.44"S 68° 54' 19.26"W -0.29 -2.2 0.676 ± 0.011c 32 ± 3 1.4 ± 0.7 

(1)     -0.36 -2.4 0.679 ± 0.007   

(2)     -0.26 -2.0 0.691 ± 0.008   

(3)     -0.26 -2.4 0.658 ± 0.008   

 

CAN01-40 1000 40 32° 35' 31.44"S 68° 54' 19.26"W -1.89 -3.4 0.666 ± 0.016 34 ± 4 0.7 ± 0.8 

(1)     -1.94 -3.4 0.682 ± 0.009   

(2)     -1.87 -3.4 0.635 ± 0.009   
(3)     -1.86 -3.6 0.683 ± 0.008   

 

CAN01-55 1000 55 32° 35' 31.44"S 68° 54' 19.26"W -3.13 -3.4 0.674 ± 0.016 32 ± 4 0.3 ± 0.8 

(1)     -3.15 -3.5 0.704 ± 0.008   

(2)     -3.13 -3.3 0.649 ± 0.008   
(3)     -3.11 -3.4 0.670 ± 0.008   

(4)t     -3.08 -3.6 1.882 ± 0.008   

 

CAN01-70 1000 70 32° 35' 31.44"S 68° 54' 19.26"W -3.47 -1.9 0.660 ± 0.018 36 ± 5 2.6 ± 1.0 

(1)     -3.46 -1.7 0.678 ± 0.008   

(2)     -3.47 -2.0 0.642 ± 0.009   
 

CAN01-100 1000 100 32° 35' 31.44"S 68° 54' 19.26"W -2.63 -3.2 0.677 ± 0.045 31 ± 11 0.4 ± 3.5 

(1)     -2.58 -4.6 0.722 ± 0.009   
(2)     -2.67 -1.7 0.633 ± 0.009   

 

          

CAN02-10 1000 10 32° 39' 07.46"S 68° 55'   0.10"W -0.95 0.9 0.676 ± 0.011c 32 ± 3 4.6 ± 0.5 
(1)     -2.73 -1.6 0.681 ± 0.008   

(2)     -0.53 1.5 0.677 ± 0.009   

(3)     -0.48 1.5 0.669 ± 0.008   
(Kiel (1))     -0.36 1.5    

(Kiel (2))     -0.67 1.9    

 

CAN02-25 1000 25 32° 39' 07.46"S 68° 55'   0.10"W -3.11 2.3 0.698 ± 0.014 26 ± 3 4.9 ± 0.7 

(1)     -0.60 1.6 0.678 ± 0.009   

(2)     -3.75 2.3 0.692 ± 0.009   
(3)     -3.74 2.1 0.725 ± 0.010   

(Kiel (1))     -3.75 2.6    
(Kiel (2))     -3.69 2.8    



35 
 

Sample 

(Replicate #) 

Elevation 

(m) 

Depth 

(cm) 

Latitude (S) Longitude (W) δ13Ca 

(‰, VPDB) 

δ18Oa 

(‰, VPDB) 

∆47 ± 1SEa 

(‰) 

T(∆47) ± 1SE 

(⁰C) 

Soil water δ18Ob 

(‰, VSMOW) 

          

CAN02-40 1000 40 32° 39' 07.46"S 68° 55'   0.10"W -3.75 0.8 0.680 ± 0.013c 30 ± 3 4.3 ± 0.6 

(1)     -3.72 2.6 0.688 ± 0.008   
(2)     -3.73 -0.0 0.672 ± 0.009   

(Kiel (1))     -3.92 0.3    

(Kiel (2))     -3.62 0.3    
 

CAN02-55 1000 55 32° 39' 07.46"S 68° 55'   0.10"W -4.66 -0.1 0.685 ± 0.030 29 ± 7 3.1 ± 1.4 

(1)     -4.52 -0.7 0.715 ± 0.009   
(2)     -4.71 -0.4 0.655 ± 0.008   

(Kiel (1))     -4.72 0.1    

(Kiel (2))     -4.70 0.4    

 

CAN02-70 1000 70 32° 39' 07.46"S 68° 55'   0.10"W -2.08 -0.8 0.693 ± 0.017 27 ± 4 2.1 ± 0.8 

(1)     -4.01 0.3 0.660 ± 0.011   
(2)     -1.57 -1.6 0.719 ± 0.007   

(3)     -1.63 -1.4 0.698 ± 0.009   

(Kiel (1))     -1.49 -0.8    
(Kiel (2))     -1.72 -0.4    

 

CAN02-85 1000 85 32° 39' 07.46"S 68° 55'   0.10"W -3.86 -1.9 0.706 ± 0.013 24 ± 3 0.3± 0.6 
(1)     -1.60 -1.2 0.700 ± 0.010   

(2)     -4.40 -2.3 0.732 ± 0.011   

(3)     -4.46 -2.2 0.687 ± 0.009   
(Kiel (1))     -4.36 -2.0    

(Kiel (2))     -4.48 -1.6    

 

CAN02-100 1000 100 32° 39' 07.46"S 68° 55'   0.10"W -5.01 -1.8 0.683 ± 0.030 30 ± 8 1.6 ± 1.4 

(1)     -4.25 -1.8 0.653 ± 0.020   

(2)     -5.16 -2.1 0.713 ± 0.009   
(Kiel (1))     -5.46 -1.7    

(Kiel (2))     -5.18 -1.5    

          

CAN03-50 1000 50 32° 34' 12.28"S 68° 56' 33.68"W -4.66 -2.9 0.679 ± 0.011c 31 ± 3 0.6 ± 0.6 

(1)     -4.64 -3.1 0.667 ± 0.009   

(2)     -4.62 -3.0 0.686 ± 0.008   
(3)     -4.72 -2.7 0.683 ± 0.008   

          

DL01-20 1000 20 32° 52' 40.22"S 68° 55' 20.98"W -1.19 -1.0 0.650 ± 0.011c 38 ± 3 3.9 ± 0.5 
(1)     -1.20 -1.0 0.656 ± 0.008   

(2)     -1.21 -1.1 0.664 ± 0.007   

(3)     -1.15 -1.0 0.631 ± 0.008   

 

DL01-40 1000 40 32° 52' 40.22"S 68° 55' 20.98"W -4.11 -1.4 0.698 ± 0.020 26 ± 5 1.2 ± 1.0 

(1)     -4.13 -1.4 0.757 ± 0.006   
(2)     -4.13 -1.2 0.669 ± 0.006   

(3)     -4.09 -1.5 0.686 ± 0.007   

(4)     -4.10 -1.4 0.681 ± 0.008   
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Sample 

(Replicate #) 

Elevation 

(m) 

Depth 

(cm) 

Latitude (S) Longitude (W) δ13Ca 

(‰, VPDB) 

δ18Oa 

(‰, VPDB) 

∆47 ± 1SEa 

(‰) 

T(∆47) ± 1SE 

(⁰C) 

Soil water δ18Ob 

(‰, VSMOW) 

          

DL01-70 1000 70 32° 52' 40.22"S 68° 55' 20.98"W -5.21 -2.5 0.685 ± 0.013c 29 ± 3 0.7 ± 0.7 

(1)     -5.21 -2.597 0.689 ± 0.007   
(2)     -5.20 -2.461 0.681 ± 0.008   

DL01-100 1000 100 32° 52' 40.22"S 68° 55' 20.98"W -5.18 -3.0 0.655 ± 0.013c 37 ± 4 1.7 ± 1.1 

(1)     -5.24 -2.508 0.656 ± 0.009   
(2)     -5.12 -3.458 0.654 ± 0.007   

 

          

NAC-30 600 30 34° 02' 60.00"S 67° 54' 09.90"W -5.54 -6.7 0.703 ± 0.014 25 ± 3 -4.4 ± 0.8 

(1)     -5.53 -6.825 0.729 ± 0.009   

(2)     -5.53 -6.909 0.696 ± 0.008   

(3)     -5.55 -6.457 0.683 ± 0.009   

 

NAC-50 600 50 34° 02' 60.00"S 67° 54' 09.90"W -6.01 -8.3 0.652 ± 0.013 38 ± 4 -3.5 ± 0.7 
(1)     -5.53 -9.1 0.654 ± 0.009   

(2)     -6.09 -9.0 0.685 ± 0.008   

(3)     -5.92 -7.9 0.620 ± 0.008   
(4)     -5.83 -8.1 0.649 ± 0.008   

(Kiel (1))     -6.27 -8.1    

(Kiel (2))     -6.41 -7.6    
 

NAC-85 600 85 34° 02' 60.00"S 67° 54' 09.90"W -5.67 -7.6 0.695 ± 0.011c 27 ± 3 -4.8 ± 0.5 

(1)     -5.58 -7.3 0.711 ± 0.008   
(2)     -5.60 -8.3 0.690 ± 0.009   

(3)     -5.92 -7.0 0.684 ± 0.009   

(Kiel (1))     -5.60 -7.7    

(Kiel (2))     -5.63 -7.4    

 

NAC-100 600 100 34° 02' 60.00"S 67° 54' 09.90"W -5.53 -8.5 0.678 ± 0.013c 31 ± 3 -4.9 ± 0.9 
(1)     -5.49 -8.2 0.679 ± 0.008   

(2)     -5.56 -8.8 0.677 ± 0.008   

(3)t     -6.10 -7.9    
 

Mean carbonate δ
13

C, δ
18

O, and ∆47 are reported for all sample analyses (bold, italicized). Below each sample summary, individual replicates for each sample are 

reported. ∆47 and 1SE are given for each individual replicate, but errors are not propagated to T(∆47) and soil water δ
18

O is not calculated. 
a
 Carbonate δ

13
C, δ

18
O, reported as mean and ∆47 reported as weighted mean of replicates (n) for each individual sample. Average external error (1SE) for replicates 

of a sample is ±0.03‰ for δ
13

C, ±0.028‰ for δ
18

O, and ±0.019‰ for ∆47. 
b
 Soil water δ

18
O was calculated using the calcite-water O-isotope fractionation equation of Kim and O'Neil (1997). Uncertainty in soil water δ

18
O was calculated by 

propagating errors in T(∆47). 
c
 For samples with fortuitously low SE for replicates, SE was assigned using the long-term SD of a standard run during the same period of time divided by sqrt(n), 

where n is the number of sample replicates, following Peters et al. (2013) and Huntington et al. (2009). 
t
 Samples with anomalous mass-48 values (exceeding those measured for heated CO2 gases by >1‰) were rejected  and are not reported in text or included in 

calculations. 
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Table B2 : Statistical comparison of T(Δ47) values 
 Passes standard t-test? 

Sites: CAN02 DL01 Nacuñan 

CAN01 
No 

t(8) = 3.13, p = 0.02 

Yes 

t(5) = 0.51, p = 0.63 

Yes 

t(5) = 1.28, p = 0.23 

CAN02  
Yes 

t(4) = 1.37, p = 0.24 

Yes 

t(4) = 0.58, p = 0.59 

DL01   
Yes 

t(6) = 0.61, p = 0.57 

 Passes ANOVA test? 

All four sites Yes, F(3, 17) = 5.43, p = 0.12 
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