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ABSTRACT 
Optimization algorithms plays a vital role in the Building Energy Optimization (BEO) 
technique. Although many algorithms are currently used in BEO, it is difficult to find an 
algorithm that performs well for all optimization problems. Some algorithms may fail in some 
cases. This study specifically focuses on failure algorithms in BEO and the possible causes. 
Several criteria are proposed for identifying failure algorithms. Four optimization problems 
based on the DOE small and large office buildings are developed. Three commonly used 
algorithms in BEO, namely, Pattern Search (PS) algorithm, Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) algorithm, are applied to the four problems to investigate 
possible reasons for their failure. Results indicate that the effectiveness of the three selected 
algorithms is highly dependent on the optimization problems to be addressed. Besides, the 
control parameter setting of the PS algorithm appears to be a significant factor that may cause 
the algorithm to lose effectiveness. However, it does not seem to be the main reason for the 
failure of the GA and PSO algorithm. In General, the results gained from this study can 
deepen our understanding of optimization algorithms used in BEO. Besides, understanding 
the reasons why optimization algorithms are ineffective can help architects, engineers, and 
consultants select the appropriate optimization algorithms and set their parameters to achieve 
a better BEO design that is less vulnerable to failure. 
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INTRODUCTION 
Building Energy Optimization (BEO) is a booming technique that combines building energy 
simulation engines with optimization engines. Unlike the conventional “trial-and-error” 
design methodology, which requires designers to manually adjust the design based on their 
experience and limited simulations, the BEO technique can automatically generate and 
simulate new designs utilizing optimization algorithms and performance simulation software 
and finally achieve the best design based on the predefined design objectives (Si et al. 2016). 
Therefore, optimization algorithms plays a crucial role in the application of the BEO 
technique.  

As shown in some important review works (Machairas et al. 2014; Shi et al. 2016), a quite 
number of algorithms can be used in BEO, for example, the evolutionary algorithms, direct 
search algorithms, hybrid algorithms, etc. However, there is in fact no universal algorithm that 
applies to all optimization problems, which means an algorithm may fail under certain 
circumstances. Thus, finding the causes for their failure and exploring the circumstances 
under which an algorithm may become fail can significantly help designers to choose an 
appropriate algorithm among the available options and help them avoid failure algorithms. 
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The objective of this research is to study failure optimization algorithms used in BEO and 
possible failure reasons. The first research task is to develop a set of criteria to recognize 
whether an optimization algorithm fails for a BEO problem. Then four optimization problems 
are developed using the DOE small and large office buildings. Three optimization algorithms 
are selected to investigate the possible factors that may cause them to fail for the four 
optimization problems. 

METHODS  
Criteria for identifying failure algorithms 
Before defining a failure algorithm, we need to distinguish two concepts: a failure algorithm 
and a failure optimization run. For a specific optimization problem, an optimization algorithm 
fails on an optimization run does not mean it fails for the optimization problem. The reasons 
are stochastic optimization algorithms (e.g., GA, PSO, etc.) usually involve random operators 
in their optimization processes, which will result in different optimization runs when they are 
run repeatedly. In this case, one specific optimization run cannot reflect the performance of 
the algorithm. Users need to repeat the optimization test as many times as possible and then 
analyse all optimization runs. However, for a determined optimization algorithm, it usually 
has a unique optimization run which can fully reflect the performance behaviour of the 
algorithm when all relevant parameters and the initial solution remain unchanged. Therefore, 
in this study, we firstly proposed two criteria, which are the most concerned issues for 
designers when using optimization techniques, to identify a failure optimization run. Then the 
failure rate criterion was used to identify a failure algorithm. Note that this paper is 
particularly focuses on single-objective algorithms because about 60% of the building 
optimization studies used the single-objective approach (Nguyen et al. 2014). Multi-objective 
optimization algorithms are not covered.  

In general, a successful optimization run should find the optimal solution within the desired 
accuracy level using a limited amount of time. It requires two criteria that should be met 
simultaneously, one of which is the quality of the optimal solution obtained in the 
optimization run should be high enough to meet the users’ requirements, and the other is the 
computing time cannot exceed the time limit. An optimization run that violates any of the 
above two criteria is considered failure. In this study, to measure the quality of the optimal 
solution, Equation 1 can be used to calculate the relative distance between the optimal 
solution found in an optimization run and the true optimum of the optimization problem.  

(1) 

where f(X’) is the objective value of the optimal solution found in an optimization run, and 
f(X*) is the objective value of the true optimum, which in some cases can be obtained through 
brute-force search. If the value of δ is larger than that of δ* which is the acceptable accuracy 
level defined by the designer, then the optimization run is considered failure. 

To define a failure optimization algorithm for a given problem, the algorithm needs to repeat 
the optimization process several times and then those failure runs need to be isolated to 
calculate the failure rate, which in essence, is the ratio of failure optimization runs to the total 
runs. Equation 2 provides a formula.  

(2)
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where Nfailure is the number of failure runs and Ntotal is the total number of runs driven by the 
algorithm. According to the Low Probability Event (LPE) principle (Mcclelland et al. 1993), 
which is an important theorem in probability and commonly applied in practical projects and 
mathematical statistics, an LPE is considered will not occur in the actual environment. In 
practice, the value of 0.01, 0.05 or 0.1 are commonly used for an LPE which can be denoted 
by β*. Users can also set other values according to their specific conditions. Consequently, in 
this study, an algorithm is considered failure for a given optimization problem when β>β*. 

Description of the standard optimization problem 

Table 1. Specifications of optimization variables. 
Design variables Symbol Unit Step size Range Initial value 
Building long axis azimuth x1 ° 5 [0,180] 90 
Cooling set-point temperature x2 ℃ 0.05 [22,29] 24 
Heating set-point temperature x3 ℃ 0.05 [15,22] 21 
Roof insulation conductivity x4 W/m·K 0.001 [0.03,0.06] 0.049 
Roof insulation thickness x5 m 0.002 [0.01,0.15] 0.126 
South wall insulation conductivity x6 W/m·K 0.001 [0.03,0.06] 0.049 
East wall insulation conductivity x7 W/m·K 0.001 [0.03,0.06] 0.049 
North wall insulation conductivity x8 W/m·K 0.001 [0.03,0.06] 0.049 
West wall insulation conductivity x9 W/m·K 0.001 [0.03,0.06] 0.049 
South wall insulation thickness x10 m 0.002 [0.01,0.15] 0.036 
East wall insulation thickness x11 m 0.002 [0.01,0.15] 0.036 
North wall insulation thickness x12 m 0.002 [0.01,0.15] 0.036 
West wall insulation thickness x13 m 0.002 [0.01,0.15] 0.036 
South window upper position x14 m 0.02 [1,2.7] 2.5 
East window upper position x15 m 0.02 [1,2.7] 2.5 
North window upper position x16 m 0.02 [1,2.7] 2.5 
West window upper position x17 m 0.02 [1,2.7] 2.5 
South window U-value x18 W/m2·K  0.05 [1,7] 3.25 
East window U-value x19 W/m2·K  0.05 [1,7] 3.25 
North window U-value x20 W/m2·K  0.05 [1,7] 3.25 

Figure. 1 Perspective views of the DOE small and large office buildings. 

In this study, four optimization problems with 10 and 20 optimization variables respectively 
were developed following the models of the DOE small and large office buildings (Deru et al. 
2011) in Baltimore, USA. They were all designed to minimize the annual energy consumption 
of the case buildings. Figure 1 shows the architectural schematic views of the buildings. They 
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all have one core thermal zone and four perimeter thermal zones on each floor. Table 1 lists 
the optimization variables involved in the optimization problems as well as their initial values, 
step sizes and range of variations. Specifically, the value for the lower window position is 
fixed at 0.9 m, and the windows in the same facade are of equal area. Besides, the first ten 
variables were used for optimization problems with 10 design variables.  

RESULTS 
In this section, three commonly used optimization algorithms in BEO, namely, Pattern Search 
(PS) algorithm, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm 
were assessed to find out possible factors that may can cause the algorithms to fail. As shown 
in Table 2, four algorithm parameter settings for each algorithm are randomly generated to 
investigate their impacts on the effectiveness of the selected algorithms. Readers are referred 
to the manual book (Wetter M, 2011) for more information of the working strategies and the 
original development of each algorithm. Based on the two criteria proposed above about a 
failure optimization run, two evaluation approaches are accessible: (1) assessing the quality of 
the optimal solution obtained when the computing time is restricted; (2) assessing the 
computing time consumed when the optimization run finds the desired solution. In this study, 
we chosen the first approach. The maximum number of simulations for each optimization run 
was restricted at 300, and each optimization process was repeated 10 times to calculate the 
failure rate. These numbers were chosen to strike a balance between what is preferred and 
what is practical in terms of computing time. Specifically, the true optimum of the four 
optimization problems were obtained by brute-force search and were listed in Table 3. 
Besides, the desired accuracy level δ* of optimal solutions was set at 1%, and the acceptable 
maximum failure rate β* was 10%. 

Table 2. Algorithm control parameter settings for each algorithm. 
Algorithms Parameters Test 1 Test 2 Test 3 Test 4 
PS Expansion factor 2 3 4 5 

Contraction factor 0.2 0.4 0.6 0.8 
GA Population size 10 15 20 30 

Number of generations 30 20 15 10 
Elite count 1 2 3 4 
Crossover fraction 0.2 0.4 0.6 0.8 
Mutation rate 0.05 0.1 0.15 0.2 

PSO Population size 10 15 20 30 
Maximum number of iterations 30 20 15 10 
acceleration const 1 (local best influence) 2 3 2 3 
acceleration const 2 (global best influence) 2 2 3 3 
Initial inertia weight 0.9 0.8 0.7 0.6 
Final inertia weight 0.4 0.3 0.2 0.1 

For each optimization problem, the quality variation of the optimal solution obtained by each 
algorithm in each test were illustrated in Figure 2. As shown, each algorithm has 4 
consecutive boxplots, corresponding to the 4 tests listed in Table 2. It is noted that all 
optimization runs used the same initial solution listed in Table 1 to avoid the influence of 
different initial solutions on the evaluation results.  

As shown in Figure 2, for each optimization problem, the average quality of optimal solutions 
found by the PS algorithm changes violently between different tests, which means the 
performance of the algorithm is sensitive to its parameter settings. It is further verified when 
the PS algorithm was use to solve Problem 1, in which it succeed in Test 1 but failed in Tests 
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2-4. Therefore, inappropriate parameter settings of the PS algorithm may cause it to fail.
However, for the same optimization problem, the average quality of optimal solutions
searched by the GA and PSO algorithm appears to be more stable between different tests.
Thus, the effectiveness of the two algorithms are less sensitive to their parameter settings.
Although GA and PSO algorithm failed in all four tests for Problem 1, 2 and 4, we cannot
conclude if different parameter settings will cause the two algorithm to lose effective.

Figure. 2 Quality variability of the optimal solutions obtained by each algorithm in each test with 
different algorithm parameter settings.  

Table 3. True optimum of each optimization problem and failure rate of each algorithm for 
each test. 
Index Optimization problems True optimum 

(kW·h/m2·a ) 
Algorithms Failure rate 

Test 1 Test 2 Test 3 Test 4 
Problem 1 Small office and 10 variables 95.532 PS 0 100% 100% 100% 

GA 100% 100% 100% 100% 
PSO 100% 100% 100% 100% 

Problem 2 Small office and 20 variables 134.741 PS 100% 100% 100% 100% 
GA 100% 100% 100% 100% 
PSO 100% 100% 100% 100% 

Problem 3 Large office and 10 variables 96.066 PS 0 0 0 0 
GA 10% 0 0 0 
PSO 0 0 0 0 

Problem 4 Large office and 20 variables 125.355 PS 100% 100% 100% 100% 
GA 100% 100% 100% 100% 
PSO 100% 90% 100% 100% 

1363

7th International Building Physics Conference, IBPC2018



Table 3 gives the calculated failure rate of the trial optimizations (each statistic relating 10 
repeated optimization runs). It shows that for Problem 1, the PS algorithm performed well for 
Test 1with a failure rate of 0, but failed for Tests 2-4 with a failure rate of 100%. The quality 
of the optimal solutions obtained by GA and PSO in the four tests were all beyond the desired 
accuracy level of Problem 1, and therefore, their failure rates were all 100%. For Problems 3 
and 4, all the three algorithms failed to find desired solutions in all tests with a failure rate 
larger than the acceptable maximum failure rate (i.e., 10%). However, when applying the 
three algorithms to Problem 2, all of them could consistently find desired optimal solutions 
with a failure rate of no more than 10% even when they used different parameter settings. 
Thus, the effectiveness of the three selected algorithms highly depends on the optimization 
problems solved. In this study, some properties involved in the Problems 1, 2 and 4 seem to 
dominate the failure of the three selected algorithms. 

CONCLUSIONS 
Optimization algorithms play a critical role in determining the effectiveness and efficiency of 
BEO techniques. In this study, the criteria for helping users to detect failure optimization 
algorithms used for BEO problems are proposed. Four optimization problems were developed 
to find out possible factors that may cause three commonly used algorithms to fail. The 
numerical results demonstrate the following failure mechanisms of the selected algorithms: (1) 
algorithm control parameter setting is an important factor that may cause the PS algorithm to 
fail but it does not seem to be a key factor that may cause the failure of the GA and PSO 
algorithm. (2) Some inherent properties of optimization problems may cause the three 
algorithms to fail because their performance appeared to be highly dependent on the 
optimization problems addressed. Future research is required to examine the impacts of 
different properties involved in a BEO problem on the performance behaviour of different 
optimization algorithms. 
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