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(b) Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
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(Received February 1, 2008)

We summarize some features of the vector meson dominance model which was recently
proposed for studying radiative decays involving the scalar mesons. Using the experimental
values of Γ (a0 → γγ), Γ (f0 → γγ) and Γ (φ → a0γ) as inputs, we show that the model
predicts a large hierarchy between Γ (a0 → ωγ) and Γ (a0 → ργ) as well as between Γ (f0 →

ωγ) and Γ (f0 → ργ).

§1. Introduction

According to the recent theoretical and experimental analysis, there is a pos-
sibility that nine light scalar mesons exist below 1 GeV, and they form a scalar
nonet.1) In addition to the well established f0(980) and a0(980) evidence of both
experimental and theoretical nature for a very broad σ (≃ 560) and a very broad
κ (≃ 900) has been presented. However, the properties of the nonet members such
as quark structure and interactions with other mesons are not well known. It is
interesting to study the properties of these light scalar mesons, which would be of
great importance for a full understanding of QCD in its nonperturbative low energy
regime.

In particular, the reactions φ → f0γ and φ → a0γ have recently been observed2)

with good accuracy and are considered as useful probes of scalar properties. The
theoretical analysis was initiated by Achasov and Ivanchenko3) and followed up by
many others.4) The models employed are essentially variants of the single K meson
loop diagram to which a φ-type vector meson, a photon and two pseudoscalars or a
scalar are attached.

In this paper we summarize some features of the vector meson dominance model
which was recently proposed in Ref. 5) for studying radiative decays involving the
scalar mesons. Our model predicts that a large hierarchy between Γ (a0 → ωγ) and
Γ (a0 → ργ) as well as between Γ (f0 → ωγ) and Γ (f0 → ργ).

∗) Talk given by M. Harada at International Symposium on Hadron Spectroscopy, Chiral Sym-

metry and Relativistic Description of Bound Systems, February 24-26, 2003, Nihon University,

Tokyo, Japan.

http://arXiv.org/abs/hep-ph/0306065v1
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§2. Vector Meson Dominance Model

Framework of the model proposed in Ref. 5) is that of a standard non-linear
chiral Lagrangian containing, in addition to the pseudoscalar nonet matrix field φ,
the vector meson nonet matrix ρµ and a scalar nonet matrix field denoted N . Under
chiral unitary transformations of the three light quarks; qL,R → UL,R ·qL,R, the chiral

matrix U = exp(2iφ/Fπ), where Fπ ≃ 0.131GeV, transforms as U → UL · U · U †
R.

The convenient matrix K(UL, UR, φ)6) is defined by the following transformation

property of ξ (U = ξ2): ξ → UL ·ξ ·K† = K ·ξ ·U †
R, and specifies the transformations

of “constituent-type” objects. The fields we need transform as

N → K · N · K† ,

ρµ → K · ρµ · K† +
i

g̃
K · ∂µK† ,

Fµν(ρ) = ∂µρν − ∂νρµ − ig̃ [ρµ , ρν ] → K · Fµν · K† , (2.1)

where the coupling constant g̃ is about 4.04. One may refer to Ref. 7) for our
treatment of the pseudoscalar-vector Lagrangian and to Ref. 8) for the scalar addi-
tion. The entire Lagrangian is chiral invariant (modulo the quark mass term induced
symmetry breaking pieces) and, when electromagnetism is added, gauge invariant.

In Ref. 5), the strong trilinear scalar-vector-vector terms were included into the
effective Lagrangian as

LSV V = βA ǫabcǫ
a′b′c′ [Fµν(ρ)]aa′ [Fµν(ρ)]bb′ N

c
c′

+ βB Tr [N ] Tr [Fµν(ρ)Fµν(ρ)]

+ βC Tr [NFµν(ρ)] Tr [Fµν(ρ)]

+ βD Tr [N ] Tr [Fµν(ρ)] Tr [Fµν(ρ)] . (2.2)

Chiral invariance is evident from (2.1) and the four flavor-invariants are needed for
generality. (A term ∼ Tr(FFN) is linearly dependent on the four shown). Actu-
ally the βD term will not contribute in our model so there are only three relevant
parameters βA, βB and βC . Equation (2.2) is analogous to the PV V interaction ∗)

which was originally introduced as a πρω coupling a long time ago.10) One can now
compute the amplitudes for S → γγ and V → Sγ according to the diagrams of
Fig. 1.

The decay matrix element for S → γγ is written as (e2/g̃2)XS ×
(

k1 · k2 ǫ1 · ǫ2 −
k1 · ǫ2 k2 · ǫ1

)

where ǫµ stands for the photon polarization vector. It is related to the
width by

Γ (S → γγ) = α2 π

4
m3

S

∣

∣

∣

∣

XS

g̃2

∣

∣

∣

∣

2

, (2.3)

∗) It was shown9) that the complete vector meson dominance (VMD) is violated in the ω →

π0π+π− decay which is expressed by PV V interactions. However, since the VMD is satisfied in

other processes such π0
→ γγ∗ as well as in the electromagnetic form factor of pion, we here assume

that it holds in the processes related to SV V interactions.
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Fig. 1. Feynman diagrams for (a) S → γγ and (b) V → Sγ.

and XS takes on the specific forms:

Xσ =
4

9
βA

(√
2s − 4c

)

+
8

3
βB

(

c −
√

2s
)

,

Xf0 = −4

9
βA

(√
2c + 4s

)

+
8

3
βB

(√
2c + s

)

,

Xa0 =
4
√

2

3
βA . (2.4)

Here α = e2/(4π), s = sin θS and c = cos θS where the scalar mixing angle, θS is
defined from5)

(

σ
f0

)

=

(

c −s
s c

)(

N3
3

(N1
1 + N2

2 )/
√

2

)

. (2.5)

Furthermore ideal mixing for the vectors, with ρ0 = (ρ1
1−ρ2

2)/
√

2, ω = (ρ1
1 +ρ2

2)/
√

2,
φ = ρ3

3, was assumed for simplicity.
Similarly, the decay matrix element for V → Sγ is written as (e/g̃)CS

V ×
[p · kǫV · ǫ − p · ǫk · ǫV ]. It is related to the width by

Γ (V → Sγ) =
α

3

∣

∣kS
V

∣

∣

3
∣

∣

∣

∣

CS
V

g̃

∣

∣

∣

∣

2

, (2.6)

where kS
V = (m2

V − m2
S)/(2mV ) is the photon momentum in the V rest frame. For

the energetically allowed V → Sγ processes we have

Cf0

φ =
2
√

2

3
βAc − 4

3
βB

(√
2c + s

)

+

√
2

3
βC

(

c −
√

2s
)

,

Cσ
φ = −2

√
2

3
βAs − 4

3
βB

(

c −
√

2s
)

− 2

3
βC

(

c +
1√
2
s

)

,

Ca0
φ =

√
2 (βC − 2βA) ,

Cσ
ω =

2
√

2

3
βA

(

c +
√

2s
)

+
2
√

2

3
βB

(

c −
√

2s
)

− 2

3
βC

(√
2c + s

)

,

Cσ
ρ0 = −2

√
2βAc + 2

√
2βB

(

c −
√

2s
)

. (2.7)

In addition, the same model predicts amplitudes for the energetically allowed
S → V γ processes: f0 → ωγ, f0 → ρ0γ, a0

0 → ωγ, a0
0 → ρ0γ and, if κ0 is sufficiently
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heavy κ0 → K∗0γ. The corresponding width is

Γ (S → V γ) = α
∣

∣kV
S

∣

∣

3
∣

∣

∣

∣

DV
S

g̃

∣

∣

∣

∣

2

, (2.8)

where kV
S = (m2

S − m2
V )/(2mS) and

Dω
f0

=
2

3
βA

(

−2c +
√

2s
)

+
2

3
βB

(

2c +
√

2s
)

+
2

3
βC

(

c −
√

2s
)

,

Dρ0

f0
= −2

√
2βAs + 2βB

(

2c +
√

2s
)

,

Dω
a0

= 2βC ,

Dρ0

a0
=

4

3
βA ,

DK∗0

κ0 = −8

3
βA . (2.9)

§3. Results

Let us summarize main points of the results obtained in Ref. 5) together with
new results from our recent analysis.11)

We should stress again that all the different decay amplitudes are described by
the parameters βA, βB and βC . Below we shall first illustrate the procedure for the
model of a single putative scalar nonet.8)

We determine the value of βA from the a0 → γγ process. Substituting Γexp(a0 →
γγ) = (0.28 ± 0.09) keV (obtained using12) B(a0 → KK̄)/B(a0 → ηπ) = 0.177 ±
0.024) into Eqs. (2.3) and (2.4) yields

βA = (0.72 ± 0.12)GeV , (3.1)

where we assumed positive in sign. By using this value, the value of βC is deter-
mined from Γexp(φ → a0γ) = (0.47 ± 0.07) keV (obtained by assuming φ → ηπ0γ is
dominated by φ → a0γ) and Eq. (2.7) as

βC = (7.7 ± 0.5 , −4.8 ± 0.5)GeV−1 . (3.2)

We stress that the values of βA and βC obtained above are independent of the mixing
angle θS . It should be noticed that |βA| is almost an order of magnitude smaller than

|βC |. As we can see from Eq. (2.9), the amplitude Dω
a0

is given by βC while Dρ0

a0 is
given by only βA. Then, the large hierarchy between βC and βA implies that there
is a large hierarchy between Γ (a0 → ωγ) and Γ (a0 → ργ). Actually, by using the
values of βA and βC given in Eqs. (3.1) and (3.2), they are estimated as

Γ (a0 → ωγ) = (641 ± 87 , 251 ± 54) keV ,

Γ (a0 → ργ) = 3.0 ± 1.0 keV . (3.3)

This implies that there is a large hierarchy between Γ (a0 → ωγ) and Γ (a0 → ργ)
which is caused by an order of magnitude difference between |βC | and |βA|.
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We next determine the value of βB from the f0 → γγ process. Xf0 in Eq. (2.4)
depends on βB as well as on βA and the mixing angle θS. Here we take the mixing
angle as

θS ≃ −20◦ , (3.4)

which is characteristic of qqq̄q̄ type scalars.8) By using this and the value of βA in
Eq. (3.1), Γexp(f0 → γγ) = 0.39 ± 0.13 keV yields

βB = (0.61 ± 0.10 , −0.62 ± 0.10)GeV−1 . (3.5)

This implies that |βB | is on the order of |βA|, and almost an order of magnitude
smaller than |βC |. Equation (2.9) shows that Dω

f0
includes βC while Dρ

f0
does not.

Thus, we have a large hierarchy between decay widths of f0 → ωγ and f0 → ργ:
The typical predictions are given by

Γ (f0 → ωγ) = (88 ± 17) keV ,

Γ (f0 → ργ) = (3.3 ± 2.0) keV . (3.6)

This implies that there is a large hierarchy between Γ (f0 → ωγ) and Γ (f0 → ργ)
which is caused by the fact that |βC | is an order of magnitude larger than |βA| and
|βB |.

Let us check the dependence of the above results on the choice of the scalar
mixing angle θS. In Ref. 8), the value of θS ≃ −90◦ was obtained as another solution
to reproduce the masses of the lightest scalar nonet, although the predicted value of
f0-π-π coupling is much larger than the value obtained in Ref. 13) by fitting to the
ππ scattering amplitude

As we stressed above, the values of βA and βC are independent of the scalar
mixing angle θS. The value of βB determined from Γ (f0 → γγ) becomes

βB = (1.1 ± 0.1 , 0.12 ± 0.13)GeV−1 . (3.7)

Then the typical predictions for Γ (f0 → ωγ) and Γ (f0 → ργ) are given by

Γ (f0 → ωγ) = (86 ± 16) keV ,

Γ (f0 → ργ) = (3.4 ± 3.2) keV . (3.8)

These predictions are very close to the ones in Eq. (3.6). This can be understood by
the following consideration: From the expression of Dω

f0
in Eq. (2.9), we can see that

it is dominated by the term including βC which is proportional to (cos θS−
√

2 sin θS).
Then, the approximate relation

cos(−20◦) −
√

2 sin(−20◦) ≃ cos(−90◦) −
√

2 sin(−90◦) ≃ 1.4 (3.9)

implies that the value of Dω
f0

for θS = −90◦ is close to that for θS = −20◦, and thus
Γ (f0 → ωγ) for θS = −90◦ to that for θS = −20◦. As for Γ (f0 → ργ) we note that

the following relation is satisfied for Xf0 in Eq. (2.4) and Dρ0

f0
in Eq. (2.9):

3Xf0 − 2
√

2Dρ0

f0
= −4

3

√
2βA(c −

√
2s) . (3.10)
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Since we use the experimental value of Γ (f0 → γγ), i.e., Xf0 as an input, this relation
implies that the predicted value of Γ (f0 → ργ) for θS = −90◦ is roughly equal to
that for θS = −20◦. From the above consideration we conclude that there is a large
hierarchy between Γ (f0 → ωγ) and Γ (f0 → ργ) for θS = −20◦ and θS = −90◦:

Γ (f0 → ωγ) ≫ Γ (f0 → ργ) for θS = −20◦ and θS = −90◦ . (3.11)

§4. Discussion

In this paper we showed the predictions of our model only for Γ (a0 → ωγ),
Γ (a0 → ργ), Γ (f0 → ωγ) and Γ (f0 → ργ). Predictions on several other processes
such as Γ (σ → γγ) and Γ (φ → σγ) can be seen in Ref. 5).

The value of Γ (φ → f0γ) predicted in Ref. 5) is considerably smaller than the
experimental value of Γ (φ → f0γ). We may need to include the effect of K-loop
which would give a large enhancement as shown in Ref. 3). We leave the analysis
with K-loop corrections to future publications.11)
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