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Abstract 

Among mercury species, methylmercury (MeHg) strongly bioaccumulates and biomagnifies in 

aquatic food chains, generally controlling the exposure that threatens human and wildlife health. 

Wetlands are important environments for biogeochemical transformations of Hg, as reducing 

conditions and wetting/drying cycles promote the production of MeHg. In recent years, nearly 

half of freshwater wetlands have been lost. In response, there has been an effort to restore 

freshwater wetlands to improve the ecosystem services they provide. Although wetlands are 

important landscape features that supply MeHg to downstream aquatic ecosystems, there have 

been few studies comparing the processing of Hg in restored wetlands with natural wetlands. I 

measured concentrations of Hg species and ancillary parameters in ground waters and surface 

waters of four natural and 16 restored wetlands in northern New York for six months, 

investigating the factors contributing to the differences in concentrations in Hg species among 

wetlands. I hypothesized that there would be no difference in Hg dynamics between restored and 

natural wetlands based on concentrations of THg, MeHg and ancillary measurements. 

Indeed, I found no obvious differences in concentrations of THg and MeHg in surface waters 

between natural and restored wetlands. Similar seasonal patterns of THg and MeHg 

concentrations were evident in both natural and restored wetlands, with higher concentrations in 

late spring and summer, and lower values in early spring and fall. THg concentrations in pond 

waters were greater than those in ground waters. Ground water stage was generally greater than 

pond stage, except for the low flow summer period, suggesting the flow of ground waters from 

the watershed into the surface waters. This pattern coupled with higher concentrations of THg in 

pond waters than ground waters suggests that Hg in pond waters is partly derived from direct 

atmospheric deposition or by mobilization from near-wetland shallow sediments, in addition to 



 

 

groundwater inflows. Higher concentrations of THg in pond water than ground water could also 

be due to loss of water associated with evapotranspiration. The percent MeHg (%MeHg) at the 

study wetland sites were high in both surface (43.4 ± 25.6%) and ground waters (38.8 ± 27.6%), 

suggesting that these wetlands are relatively efficient in converting ionic Hg to MeHg regardless 

if restored or natural. I observed weak or non-existent relations between concentrations of 

dissolved organic carbon and THg and MeHg. However, large increases in dissolved organic 

carbon concentrations in pond waters compared to groundwater suggest that dissolved organic 

matter is important in the supply of Hg to pond waters. Drying and rewetting cycles during 

summer in both restored and natural wetlands likely promote methylation rates and contribute to 

relatively high fractions of THg as MeHg. Although the %MeHg values were generally high in 

study wetlands, in ground waters with high concentrations of SO4
2- (> 10 mg S/L) and NO3

- (> 

0.5 mg N/L) MeHg concentrations and %MeHg were uniformly low, suggesting some chemical 

limitation on methylation. 
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1. Introduction  

Wetlands are the interfaces between uplands and surface waters, where soils, sediments, water 

and biota closely interact (Zillioux et al., 1993). The United States Environmental Protection 

Agency (EPA) defines wetlands as areas where water covers soil or is present at or near the 

surface of the soil for all or varying periods during the year (https://www.epa.gov/wetlands/what-

wetland). Although wetlands only occupy less than 9% of the land area of the Earth, they provide 

a disproportionate amount of ecosystem services (Zedler and Kercher, 2005). Wetlands are 

important sites of biogeochemical transformations (Lacerda and Fitzgerald, 2001; Galloway and 

Branfireun, 2004; Mitchell et al., 2008). Due to water storage and support of reducing 

environments, wetlands can experience wetting and drying periods under varying hydrologic 

conditions which facilitate alternating redox cycles (Driscoll et al., 1998; Feng et al., 2014; 

Wasik et al., 2015; Strickman and Mitchell, 2017).  

Wetland loss is a significant environmental issue (National Research Council, 2001). It is 

estimated that nearly half of global wetland area has been lost over the last two centuries, with 

the remaining highly degraded (Zedler and Kercher, 2005). Similarly, in the United States, 

nearly 47% of the total wetland area has been lost since the 1780s (Dahl, 2011; National 

Research Council, 2001). Wetland disturbance is largely associated with human activities, such 

agriculture, residential development, silviculture and other land use conversions (Dahl, 2011; 

Zedler and Kercher, 2005) Conservation programs including Public-Private Partnerships (PPP) 

have helped conserve and restore wetlands in the Great Lakes watershed. The restored wetlands 

investigated in this study were restored as a PPP within the St. Lawrence River watershed in 

New York State.  

https://www.epa.gov/wetlands/what-wetland
https://www.epa.gov/wetlands/what-wetland
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Wetlands are important landscape areas for transformations of mercury (Hg). They serve as net 

sinks for total mercury (THg), and are critical environments for methyl mercury (MeHg) 

formation and supply to downstream aquatic ecosystems (Galloway and Branfireun, 2004; 

Driscoll et al., 2007; Selvendiran et al., 2008). Atmospheric deposition is the main source of Hg 

to most remote aquatic ecosystems (Benoit et al., 2003; Driscoll et al., 2007, 1998; Feng et al., 

2014; Fitzgerald et al., 1998). Besides natural sources, Hg is emitted directly to the atmosphere 

from human activities associated with power plants, smelting and other industrial processes, and 

artisanal and small-scale gold mining (ASGM) (UNEP, 2013). Moreover, Hg previously 

deposited to the Earth’s surface can be subsequently reduced and remitted back to the 

atmosphere (Driscoll et al., 2013). Mercury pollution is a global problem, because gaseous 

elemental mercury emitted to the atmosphere has a long atmospheric residence time (0.5 to one 

year), before deposition to the Earth’s surface (Driscoll et al., 2013; Morel and Amyot, 1998). 

In wetlands, the accumulation of organic matter and saturated soils promote reducing conditions 

which allows for the conversion of ionic Hg to MeHg through obligate anaerobic sulfate and iron 

reducing bacteria and archaea (Benoit et al., 2003; Fleming et al., 2006; Mehrotra and Sedlak, 

2005; Podar et al., 2015; Selvendiran et al., 2008). In contrast to THg, only a small amount of 

MeHg is derived from atmospheric deposition; most is transformed from ionic Hg within 

ecosystems. In situ production of MeHg in fresh water wetlands has been shown to be related to 

temperature, pH, microbial activity, sulfate, nitrate and dissolved organic carbon concentrations 

and hydrologic conditions (Zillioux, et al., 1993; Benoit et al., 2003; Selvendiran et al., 2008; 

Todorova et al., 2009). MeHg strongly bioaccumulates and biomagnifies in the aquatic food 

chains, and generally drives human and wild life exposure (Wasik et al., 2015; Lacerda and 

Fitzgerald, 2001; Selvendiran et al., 2008; Zillioux et al., 1993). MeHg is a neurotoxic substance, 
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which is especially problematic for young children and women of child-bearing age (Benoit et 

al., 2003; Driscoll et al., 2007; Galloway and Branfireun, 2004; Lacerda and Fitzgerald, 2001). 

Minamata disease is caused by elevated exposure to MeHg, primarily through consumption of 

fish and to a lesser extent contaminated MeHg rice (Kwon et al., 2018; Li et al., 2010; Zhang, 

Feng et al., 2010; Wasik et al., 2015). 

Freshwater wetlands are sensitive to Hg pollution (Driscoll et al., 2007). Understanding the 

biogeochemical processing and cycling of Hg in wetlands is critical to assessment of the risk of 

Hg in polluted areas (Lacerda and Fitzgerald, 2001). Many studies have demonstrated the 

function of restored wetlands, such as providing water storage, facilitating carbon sequestration 

and improving water quality (Hogan et al., 2004; Verhoeven et al., 2006; Woltemade, 2000). 

However, fewer studies have examined Hg cycling and MeHg production in restored wetlands 

(Gilmour, 2011; Hogan et al., 2004; Park et al., 2012; Zedler and Kercher, 2005). In this thesis, I 

measured the chemical and hydrological characteristics of both surface and ground waters from 

16 restored wetlands and four natural wetlands near St. Lawrence River in New York State. I 

compared concentrations of total (THg) and methyl Hg (MeHg) from surface and ground waters 

in these natural and restored wetlands. 

2. Materials and Methods  

2.1 Site Description 

Twenty wetland sites along St. Lawrence River in New York State (Figure 2.1, Table 2.1) were 

selected for this study. The St. Lawrence River is one of the largest rivers in the world, and an 

important water resource for both the United States and Canada. Among these wetland sites, four 

are natural wetlands and the remaining 16 are restored wetlands, of varying age and 

characteristics. The latitude and longitude ranges of the study wetlands is from 44.1 to 45.0°N 
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and 74.5 to76.0°W, respectively. The climate is humid continental. Meteorological data were 

obtained for five regional sites from Climate Data Online (CDO) of the National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Information website 

(http://www.ncdc.noaa.gov/cdo-web/) for the period 1989-2010. The average temperature in 

winter (from December to February) is -6.4 °C, in summer (from June to August) is 19.4°C, in 

spring (from March to May) is 5.6°C, and in fall (from September to November) is 8.6°C. 

Annual average precipitation from five nearby weather stations is 961 ± 79 mm. The highest 

quantity of precipitation over the annual cycle occurs in fall. 

The historical data suggest that the temperature of the study region is cool, with abundant 

precipitation. 

Table 2.1 Characteristics of the 20 wetland study sites in the St. Lawrence River Valley.  

Site 
Latitude 

(deg N) 

Longitude 

(deg W) 

Pond 

Area(ha) 

Watershed 

Area(ha) 

Wetland 

Type 

Pond 

Depth (m) 

Wetland 

Age (years) 

BAR 44.2603 75.9297 3.09 653.3 Restored 0.69 24 

BRA 44.8661 74.7189 4.18 578.5 Natural 2.09 NA 

BUC 44.2053 75.6519 3.33 65.8 Restored 0.73 11 

CUT 44.5889 75.3397 0.17 16.3 Restored 1.01 7 

FIC 44.4978 75.5789 3.99 13.9 Natural 0.60 NA 

GAR 44.3094 75.9500 3.45 6.5 Restored 0.79 NA 

HMP 44.7208 74.9453 3.46 512.4 Restored 1.21 NA 

JAC 44.5236 75.5022 0.12 18.0 Restored 3.40 NA 

JBN 44.5700 75.6488 0.21 8.7 Restored 0.92 NA 

JEW 44.6817 75.0275 2.73 32.8 Restored 0.87 9 

KOG 44.6050 75.0558 3.14 126.8 Restored 0.88 11 

LSB 44.4294 75.6544 4.05 35.9 Natural 1.27 NA 

MEI 44.9633 74.4644 0.07 5.5 Restored 0.99 NA 

MON 44.8564 74.5306 0.24 82.9 Restored 1.46 NA 

PHI 44.2092 76.0136 0.84 26.1 Restored 1.19 NA 

POO 44.6306 75.4086 0.89 5.4 Restored 0.75 NA 

SIM 44.5437 75.6906 0.44 7.2 Restored 1.22 8 

SMI 44.0725 75.9703 0.91 7.8 Restored 0.99 22 

SPE 44.5379 75.1407 3.58 48.0 Natural 0.94 NA 

ZUF 44.7914 75.2597 1.49 22.6 Restored 1.14 NA 

http://www.ncdc.noaa.gov/cdo-web/
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Figure 2.1 Map showing the location of 20 wetland study sites along St. Lawrence River. Circles 

showed natural wetlands and triangles showed restored wetlands. 

 

Wetland enhancement involved placement of a berm for stage control and increased area. 

Wetlands were also “enhanced” by reversing agricultural drainage “improvements” such as 

drainage ditches. Berms were generally constructed from excavated material. The impoundments 

typically have a control structure for outlet. Most wetlands have first order streams unless they 

are bank overflow sites adjacent to a stream/ river. All wetland ponds are shallow (1.15 ± 0.59 

m) with a small surface area (2.39 ± 1.61 ha) (Table 2.1). From water column temperature 

observations, these wetlands were under well-mixed throughout the year (Hwang, 2018).  
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The dominant land cover of the watersheds adjacent to the wetlands includes agriculture 

(pasture/hay and cultivated crops) (36.6% ± 28.1%), and forest (deciduous, evergreen and 

mixed) (35.3 ± 26.9%) and wetlands (13.3 ± 11.0%) (Figure 2.2). For natural wetlands, the main 

land cover is forest, ranging from 39.8% to 84.7% (mean = 65.1%, n = 4). In contrast, the main 

land cover for restored wetlands is agriculture, although the fraction of agriculture watershed 

land cover is highly variable, ranging from 12.4% to 89.3% (mean = 43.9%, n =16) (Figure 2.2). 

 
Figure 2.2 The fractional distribution of land cover characteristics for watershed of the 20 

wetland study sites (Hwang, 2018).  

 

2.2 Pond waters and ground waters sampling  

Measurements of both surface waters and ground waters were conducted at the 20 wetland sites 

for water stage and water quality conditions. Ground water wells made of 5cm diameter PVC 

pipes were installed in the upland adjacent to the wetlands. Wells were placed upslope of the 

wetlands to represent ground water contributions to the wetlands and were used to understand 

change in ground water stage, flux into or out of the associated wetland and sample for water 
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chemistry. The average depth of the wells from soil surface to the bottom pipe is 1.11 ± 0.35 m; 

the depths for natural and restored wetlands ranged from 1.08 to 2.01, and from 0.38 to 1.40, 

respectively (Hwang, 2018). Levels of surface and ground water were measured hourly using 

gauge pressure sensors (U20 HOBO data loggers, Onset Computer Corporation, Bourne, MA, 

USA), which were placed at the bottom, and approximately deepest location of wetland ponds 

and in the upslope groundwater wells. 

Each wetland was sampled on five dates from May to October in 2015. Teflon bottles were used 

to collect water samples, which were double bagged and contained 0.4% HCl prior to collection. 

The “clean hands/dirty hands” technique was used for sample collection (EPA, 2002, Method 

1631, Version E). The dirty-hands person opened the outside bag, and the clean-hands person 

opened the inside bag, removing the sample bottle from inside the bag. The acid solution in the 

sample bottle was deposited into a waste-carboy. Before collecting pond waters, Teflon bottles 

were rinsed three times with the water to be sampled. When collecting pond samples, bottles 

were submerged completely beneath the water surface, making sure no air was entrained in the 

sample container. Nearly all pond sample sites were located near the wetland outlet.  

Ground water samples were collected by pumping water from piezometers. The collection flask 

and tubing were rinsed with about 10 mL samples of water three times before sample collection. 

On occasion the quantity of ground water was limited at some sites, especially during the dry 

season (from July to September). During these periods, Milli-Q water was used to rinse the flask 

and tubing twice before collection, with the third and final rinse conducted with sample water. 

Similar to surface water collections, the “clean hands/dirty hands” technique was used to sample 

groundwater. During the dry season, from June to August, on some sampling dates there was 

inadequate water in the piezometers to collect samples.  
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Water samples were kept in coolers with ice after collection, then transported to the laboratory at 

Syracuse University for analysis. Half of the water samples were filtered within 48 hours of 

collection, using the 0.45um Millipore Express PLUS PES membrane filter for analysis of 

concentrations of total and methyl Hg. The filtered samples were placed into 250 mL Teflon 

bottles, and 0.4% HCl was added as a preservative. The unfiltered remaining sample was poured 

into polypropylene bottles for analysis of major solutes and nutrients. All samples were stored at 

4oC until analysis. 

2.3 Chemical analyses 

The methods used for chemical analysis of collected water samples are summarized in Table 2.2. 

Quality control was applied through duplicate sampling, instrument detection limits, initial and 

ongoing precision recovery, initial calibration verification (ICV), continuous calibration 

verification (CCV), initial calibration blank (ICB), continuous calibration blank (CCB), method 

blanks (MB), matrix spike (MS), and matrix spike duplicates (MSD). Before analyzing samples, 

standard calibration curves were performed. All blanks were less than the method detection limit, 

0.2 ng/L for THg and 0.002 ng/L for MeHg respectively. Nearly all recoveries of standards and 

spikes were in the range of acceptance criteria (Table 2.3).  

2.3 Data analyses 

All results are presented as a mean ± standard error. Statistical comparisons of Hg variables 

among surface and ground waters, wetland types, seasonal change, well depths and wetland ages 

were made with a mixed - model analysis of variance (ANOVA). All statistically significant 

relationships and differences were determined at α ≤ 0.05. Relationships between Hg 

concentrations and ancillary variables were performed with linear regression. All statistical 
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analyses were conducted using R, package version 2.0.6 (R Core Team, 2017) and Mini Tab 17 

(Minitab, Inc. 2014).  

Table 2.2 Methods used for chemical analysis in this study. 

Parameter Method Reference 

THg 

Tekran 2600 Automated Total Mercury 

Analyzer, Oxidation, purge and trap, 

desorption, and cold-vapor atomic 

fluorescence spectrometry (CVAFS) 

U.S. EPA. Method 

1631, Revision E, 

2002 

MeHg 

Tekran model 2500                                                                     

Distillation, aqueous methylation, purge and 

trap, desorption, and cold-vapor atomic 

fluorescence spectrometry (CVAFS) 

U.S. EPA. Method 

1630, 2001 

Dissolved 

Organic Carbon 

(DOC) 

UV-enhanced persulfate oxidation on a 

Tekmar-Dohrmann Phoenix 8000 (5310C) 

APHA/AWWA/WEF, 

1998 

SO4
2-, NO3

- 
Ion Chromatography with chemical 

suppression of eluent conductivity (4110B) 

APHA/AWWA/WEF, 

1998 

 

Table 2.3 Quality Control of THg and MeHg analysis. 

Quality Control 

(QC) 

Thg-%Recovery Quality Control 

(QC) 

MeHg-%Recovery 

Mean Std n Mean Std n 

Continuing 

Calibration 

Verification (CCV) 

97.6% 6.7% 89 

Continuing 

Calibration 

Verification (CCV) 

97.9% 8.9% 58 

Quality Control 

Sample (QCS) 
94.4% 10.0% 8 Primers 97.4% 12.2% 10 

Matrix 

Spike/Matrix Spike 

Duplicate sample 

(MS/MSD)  

94.0% 9.2% 72 - - - - 

Ongoing Precision 

and Recovery 

(OPR) 

99.4% 12.6% 22 

Ongoing Precision 

and Recovery 

(OPR) 

106.0% 14.2% 15 

3. Results  

3.1 Mercury concentrations in surface and ground waters  

The average concentrations of total mercury (THg) and methyl mercury (MeHg) in surface 

waters (THg = 1.11 ± 0.77 ng/L; MeHg = 0.51 ± 0.50 ng/L) were approximately two and three 
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times higher, respectively, than values in ground waters (THg = 0.38 ± 0.35 ng/L; MeHg= 0.13 ± 

0.19 ng/L; Table 3.1). Although the variability in concentrations of Hg species was large across 

the study sites, the differences between surface and ground waters were statistically significant 

for each sampling event (p < 0.001). The values of %MeHg ((MeHg/THg)*100) in the study 

wetland sites were high in both surface (43.4 ± 25.6%) and ground waters (38.8 ± 27.6%), with 

no differences between these types of waters (p > 0.1).  

3.2 Mercury in natural and restored wetlands 

For surface waters, the mean concentrations of THg and MeHg in restored wetlands were not 

significantly different from values in natural wetlands (p > 0.1) (Table 3.1). In ground waters, 

however, the average concentration of THg in restored wetlands was higher than natural 

wetlands (p = 0.003) (ANOVA), with significant differences occurring in each month during the 

study period. While the mean concentration of MeHg ground waters of restored wetlands was 

around three times higher than in natural wetlands, this difference was not statistically significant 

(p = 0.064). The mean values of %MeHg in natural and restored wetlands were similarly high, 

without significant differences (Table 3.1). As the wetlands exhibited high fractions of THg 

occurring as MeHg (%MeHg), there were relatively strong relationships between concentrations 

of MeHg and THg, except for ground waters in natural wetlands (Figure 3.2). 

Seasonal patterns of THg and MeHg concentrations and %MeHg in natural and restored 

wetlands were similar. In surface waters, THg and MeHg concentrations increased from May to 

June and then decreased during the low flow period in August. Concentrations increased again in 

September and then decreased from September to October. %MeHg values in surface waters 

were higher in May and September, and lower in October. In ground waters, THg concentrations 

increased from May to June and gradually decreased from June to October. %MeHg and MeHg 



11 

 

concentrations in ground waters exhibited no obvious seasonal change (ANOVA) (Figure 3.1).  

Table 3.1 Mean concentrations and standard deviations of THg (ng/L), MeHg (ng/L), %MeHg, 

DOC (mg C/L), SO4
2- (mg S/L) and NO3

- (mg N/L) in natural and restored wetlands in both 

surface (SW) and ground waters (GW). Statistically significant differences in concentrations are 

indicated. 

Water Type  Wetland Type THg(ng/L) MeHg(ng/L) %MeHg 

SW 
Natural 0.98±0.62(A**) 0.44±0.58(A) 36.7±27.5(A) 

Restored 1.14±0.81(A**) 0.53±0.48(A) 45.1±25.0(A) 

GW 
Natural 0.18±0.14(B*) 0.06±0.04(B) 36.8±24.0(A) 

Restored 0.44±0.38(A*) 0.15±0.21(A) 39.5±28.8(A) 

 

Water Type  Wetland Type DOC(mg C/L) SO4
2-(mg S/L) NO3

-(mg N/L) 

SW 
Natural 12.6±3.2(A**) 0.68±1.23(B**) 0.25±0.27(A*) 

Restored 11.8±3.7(A*) 2.22±2.58(A**) 0.25±0.25(A*) 

GW 
Natural 2.7±1.5(A) 3.71±2.17(B**) 0.08±0.08(B**) 

Restored 3.5±3.2(A) 8.44±7.74(A**) 0.37±0.45(A**) 

Note: A** and B**: there was statistically different between natural and restored wetlands; A** 

and A**: there was difference, but the difference was not significant; A* and A*: there was no 

obvious difference. 
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Figure 3.1 Boxplots showing seasonal concentrations of a) THg in surface waters, b) THg in 

ground waters, (c) MeHg in surface waters, d) MeHg in ground waters, e) %MeHg in surface 

waters, and f) %MeHg in ground waters. The median is represented by the middle line of each 

box, hinges represent the 0.25 and 0.75 quartiles, and whiskers represent the minimum and 

maximum values, the outlies represent the extremely high values. Natural wetlands are shown by 

green, and restored wetlands are shown by orange. 
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Figure 3.2 Relationships between concentrations of MeHg and THg in a) surface waters (SW) 

(NW: slope=0.76, r2=0.68, p<0.001; RW: slope=0.42, r2=0.52, p<0.001), and b) ground waters 

(GW) (NW: slope=0.09, r2=0.11, p>0.1; RW: slope=0.45, r2=0.40, p<0.001). Natural wetlands 

(NW) are represented by green dots, and restored wetlands (RW) are represented by orange 

triangles. 

 

3.3 Relations with chemical parameters  

The average concentration of dissolved organic carbon (DOC) in surface waters (11.38 ± 3.61 

mg C/L) was significantly higher than in ground water (3.33 ± 2.89 mg C/L) (p < 0.001), while 

the differences in DOC between natural and restored wetlands were not evident (Table 3.1). 

Unlike many studies in the literature, there were not strong relations between concentrations of 

THg or MeHg and DOC in pond or ground waters. In ground waters, at lower DOC 

concentrations (≤ 8 mg C/L) there was weak a positive relationship with THg (r2 = 0.25, 

p<0.001). This relation deteriorated at higher DOC concentrations (≥ 8 mg C/L) possibly 

suggesting limitations to THg supply at higher DOC (Fig. 3.3 a). There was a weak relation 

between MeHg and %MeHg with DOC in surface waters of restored wetlands (r2 = 0.24, p 
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<0.001; r2 = 0.22, p < 0.001, respectively) (Fig. 3.3 c and d). 
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Figure 3.3 Relationships between concentrations of THg and DOC in a) surface waters (SW) 

(NW: r2 = 0.21, p = 0.040; RW: r2 = 0.07, p = 0.019), b) ground waters (GW) (NW: r2 = 0.06, 

p > 0.1; RW: r2 = 0.11, p = 0.008; RW – DOC < 8 mg C/L: r2 = 0.31, p < 0.001), between MeHg 

and DOC in c) surface waters(RW – DOC > 8 mg C/L: r2 = 0.18, p = 0.002), and d) ground 

waters (RW – DOC < 8 mg C/L: r2 = 0.08, p = 0.042); and between %MeHg and DOC in e) 

surface waters (RW: r2 =  0.22, p < 0.001; RW – DOC > 8 mg C/L: r2 = 0.27, p < 0.001), and f) 

ground waters.  Natural wetlands (NW) are represented by green dots, and restored wetlands 

(RW) are represented by orange triangles. 

 

Previous studies have demonstrated that DOC is a significant carrier in the transport of Hg 

(Mitchell et al., 2008). Ratios of THg:DOC and MeHg:DOC were used to examine sources of 

THg and MeHg relative to DOC inputs in natural and restored wetlands. The mean value of 

THg:DOC ratios in ground waters was significantly higher than in surface waters (p = 0.04). In 

surface waters, THg:DOC ratios values in restored wetlands were higher, but not significantly 

higher than natural wetlands (p > 0.1) (Table 3.2). In ground waters the THg:DOC ratios values 

in restored wetlands were significantly higher than natural wetlands (p = 0.014), suggesting that 

the supply of THg per unit DOC was greater in ground waters draining into restored wetlands 

than natural wetlands (Table 3.2). The mean value of MeHg:DOC ratio in the ground waters of 
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restored wetlands was more than two times higher than in natural wetlands, but the difference 

was not statistically significant (p = 0.106). 

Seasonal patterns of THg:DOC and MeHg:DOC ratios in natural and restored wetlands were 

similar to seasonal patterns for THg and MeHg, with increases from May to June and lower 

values in August (Figure 3.4).  

The mean concentration of SO4
2- in ground waters (7.32 ± 7.12 mg S/L) was more than three 

times higher than surface waters (1.90 ± 2.44 mg S/L) (p < 0.001) and mean concentrations of 

SO4
2- in restored wetlands was greater than in natural wetlands for both surface (p < 0.01) and 

ground waters (p < 0.01) (Table 3.1). Note that the variability in SO4
2- concentrations among 

wetlands was high. MeHg concentrations in ground waters showed a crude relationship with 

SO4
2- concentration, which was more evident for restored wetlands due to their greater range of 

concentrations. Under low SO4
2- concentrations (≤ 10 mg S/L) there was a wide range of MeHg 

concentrations and %MeHg values, and MeHg concentrations in restored wetlands were 

significantly higher than in natural wetlands (p = 0.046). With increases in concentrations of 

SO4
2- (> 10 mg S/L), the concentrations of MeHg and %MeHg decreased, and %MeHg values 

were significantly lower at high SO4
2- concentrations (> 10 mg S/L) (p = 0.010). Note that a 

similar pattern was not evident for surface waters.  

 

Table 3.2 Mean of THg:DOC and MeHg:DOC in natural and restored wetlands in both surface 

(SW) and ground waters (GW). 

Water Type Wetland Type THg:DOC MeHg:DOC 

SW 
Natural 8.97E-08 ±7.69E-08(A*) 4.27E-08 ±7.04E-08(A*) 

Restored 1.07E-07 ±7.46E-08(A*) 4.57E-08 ±3.69E-08(A*) 

GW 
Natural 8.14-08 ±6.11E-08(A**) 2.48E-08 ±1.97E-08(A**) 

Restored 1.47E-07 ±1.09E-07(B**) 5.15E-08 ±6.78E-08(A**) 

Note: A** and B**: there was statistically different between natural and restored wetlands; A** 

and A**: there was difference, but the difference was not significant; A* and A*: there was no 
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obvious difference. 

 

 

 

Figure 3.4 Boxplots showing seasonal patterns of a) THg:DOC in surface waters, b) THg:DOC 

in ground waters, (c) MeHg:DOC in surface waters, d) MeHg:DOC in ground waters. The 

median is represented by the middle line of each box, hinges represent the 0.25 and 0.75 

quartiles, and whiskers represent the minimum and maximum values, the outlies represent the 
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extremely higher values. Natural wetlands are shown by green, and restored wetlands are shown 

by orange. 

 

The average concentrations of nitrate (NO3
-) in surface waters (0.25 ± 0.25 mg N/L) was similar 

to values in ground waters (0.30 ± 0.41 mg N/L). In surface waters, the average concentration of 

NO3
- in natural wetlands was similar to the mean concentration in restored wetlands. In contrast, 

the mean NO3
- concentrations of ground waters in restored wetlands was significantly higher 

than natural wetlands (p < 0.01) (Table 3.1). Similar to the pattern for SO4
2- and MeHg in ground 

waters, at low NO3
- concentrations (≤ 0.5 mg N/L) the concentrations of MeHg and values 

of %MeHg were varied, and these values decreased with increases in NO3
- concentration (> 0.5 

mg N/L). %MeHg values were lower at high NO3
- concentrations (> 0.5 mg N/L) than at low 

NO3
- concentrations (≤ 0.5 mg N/L), but the difference was not significant (p = 0.122).  

 

3.4 Physical Factors 

The mean monthly temperature and precipitation were calculated based on the monthly values of 

five nearby weather stations during the study period, from May to October in 2015. The average 

temperature increased from May, reaching a maximum monthly value in August (19.3 ± 0.4oC), 

and decreased successively in September and October (8.2 ± 0.7oC). Monthly precipitation was 

relatively uniform over the study period. The lowest monthly precipitation occurred in May and 

the greatest precipitation in September and October, showing a gradual increase from May to 

October 2015. Peak snowmelt occurred in March and April. 

In general, ground water stage exceeded pond stage over the study period, suggesting downslope 

flow of water from the upslope well direction to the pond. Ground water stage showed 

considerable variability in response to snowmelt and precipitation events. As a result, ground 
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water stage was generally higher in May and June, and again in September and October. Ground 

water stage generally decreased starting in late June and recovered in early September (Figure 

3.6). Pond stage showed a similar seasonal pattern as ground water stage, but variations were 

more muted. During the period of low ground water stage, ground water stage values 

periodically decreased below pond stage, suggesting limited or no inflow to the ponds under this 

condition. The season patterns of ground water and pond stage were generally similar for 

restored and natural wetlands, ground water stage decreased below pond stage to a lesser degree 

during the summer low stage period and ground water stage recovered more rapidly in the fall. 

Indeed, ground waters in some restored wetland sites became completely dry for several days 

during the summer low stage period. An important characteristic of the wetlands was the marked 

changes in groundwater stage, demonstrating drying and rewetting events over the study period 

in response to precipitation events. In my study, changes in groundwater level closely 

corresponded with amount of precipitation during an event in both natural and restored wetlands 

(natural wetlands, r2 = 0.71, p < 0.001; restored wetlands, r2 = 0.56, p < 0.001). 

Previous research has demonstrated that the age of restored wetlands may influence the 

concentrations of Hg due to changes in the production and accumulation of organic matter 

(Ballantine and Schneider, 2014; Sinclair et al., 2012; Strickman and Mitchell, 2017). Most of 

these restored wetlands were constructed less than 20 years ago (Table 2.1). I did not observe 

any obvious influence of wetland age on pond water chemistry, including THg, MeHg 

or %MeHg. 

Even though previous research demonstrated the importance of land cover and land use on 

controlling of Hg in freshwater ecosystems (Driscoll et al., 2013), there were not obvious 
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patterns of differences in Hg speciation in wetlands dominated by forest cover compared with 

agriculture cover at my study sites. 

 

 

Figure 3.5 Patterns of MeHg and %MeHg with SO4
2- and NO3

- concentrations in ground water 

(GW). a) The relationship between MeHg and SO4
2-; b) the relationship between %MeHg and 
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SO4
2-; c) the relationship between MeHg and NO3

-; d) the relationship between %MeHg and 

NO3
-. Green dots – natural wetlands (NW), orange triangles – restored wetlands (RW). 

 

  

  

Figure 3.6 Daily average water tables (hydraulic heads) of a) 4 natural wetlands, and b) 14 

restored wetlands (sensors in two of the restored wetland did not adequately function); as well as 

average daily precipitation of nearby weather stations. Blue lines showed water table in ground 

waters, and red lines showed water tables in surface waters, green bars showed precipitation 

based on nearby weather station.  
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4. Discussion 

4.1 Factors influencing mercury concentrations in natural and restored wetlands 

Concentrations of THg, and MeHg, and %MeHg values in the St. Lawrence wetlands were 

generally similar to the low end of values reported in other wetland studies (Table 4.1). In 

contrast %MeHg values seem higher than other values reported for wetland studies in the 

literature. 

 

Table 4.1Comparison of concentrations of THg (ng/L), MeHg (ng/L) and %MeHg (%) in this 

study with values reported in other studies. Shown are ranges of values and mean values and 

standard deviation.  

Year Location 
Water 

type 
THg (ng/L) 

MeHg 

(ng/L) 
%MeHg Citation 

2015 
St. Lawrence 

County, US 

SW 1.11 ± 0.77 0.51 ± 0.50 43.4 ± 25.6 
This study 

GW 0.38 ± 0.35 0.13 ± 0.19 38.8 ± 27.6 

2004-2006 

Central 

Adirondack 

Mountain, US 

SW 3.18 ± 2.33 0.17 ± 0.15 1.6 - 10 

Selvendiran et 

al., 2008 GW - - 
29 (Average); 

70 (Maximum) 

2000 

Southern 

Ontario, 

Canada 

SW 0.01 - 7.37; 0.01 - 0.47 - 

Galloway and 

Branfireun, 

2004 

2005 

North-central 

Minnesota, 

US 

GW 6.2 ± 1.8 0.89± 1.3 - 
Mitchell et al., 

2008 

2008 
Everglades, 

FL, US 
SW 0.9 - 8.3 0.035 - 3.8 2 - 52 Liu et al., 2008 

2012-2013 

Northeastern 

Alberta, 

Canada 

SW 27.2 ± 2.19 0.43 ± 0.19; 4.4 ± 1.3 
Oswald and 

Carey, 2016 GW - 0.02 - 4.3 20 (Average) 

 

In pond waters of my study wetlands, there was no obvious difference in the Hg chemistry 

between natural and restored wetlands. THg and MeHg in surface waters were higher than 

ground waters. My hydrologic analysis of ground water and pond stage indicate that through 

most of the study period the adjacent wetlands supplied ground water to the ponds (Figure 3.6). 
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An exception to this pattern occurred during the low flow summer largely in August and early 

September, and this change was more pronounced for restored than natural wetlands. The inflow 

of ground water to surface wetlands, coupled with the increase in THg concentration in wetland 

surface water compared to ground water suggests that the surface waters received Hg inputs from 

multiple pathways. In addition to groundwater, the ponds also likely received THg from direct 

atmospheric deposition and/or mobilization from surface wetland soils. The higher 

concentrations of THg in ground waters of the restored wetlands may be evidence of the greater 

supply of THg at shallower soil depth, as the depth of ground water is less than those for natural 

wetlands (Figure 4.1).  

 

Figure 4.1 Depth of ground water wells from soil surface. Green color shows the boxplot of well 

depth for natural wetlands, while orange depicts values for restored wetlands. The labeled 

numbers are average values, and the average well depths of restored wetlands was significantly 

deeper than natural wetlands.  

 

Note that DOC concentrations were elevated in pond water relative to ground waters (Table 3.1; 

Figure 3.3), suggesting the mobilization of DOC from surface deposits in the wetlands to surface 

waters. This supply of DOC could facilitate the transport of higher THg concentrations in pond 

Restored

Natural

2.001.751.501.251.000.750.50

Depth from soil surface (m)

Natural

Restored

1.03(B)

1.39(A)
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waters. Many previous studies have demonstrated the important function of DOC in the transport 

and bioavailability of Hg, concentrations of DOC typically have a close positive relationship 

with particularly THg and to a lesser extent MeHg in aquatic ecosystems (Dennis et al., 2005; 

Dittman and Driscoll, 2009; Driscoll et al., 1998; Liu et al., 2008; Selvendiran et al., 2008; 

Ullrich et al., 2001). However, in my study, relationship between DOC and THg was weak (Fig. 

3.3 a and b). The THg:DOC ratios were highly variable across the study sites (Figure 3.5; Table 

3. 2). This variable pattern could indicate different rates of DOC and/or THg supply across these 

wetlands with different landscape settings and land use histories or differences in the quality of 

dissolved organic matter with a range of binding affinity for THg. It may be noteworthy that 

there was no difference in the THg:DOC ratio between restored and natural wetlands, suggesting 

that pond restoration does not strongly influence the supply of DOC relative to the supply of 

THg. Previous studies have indicated a dual role of DOC in the transport and bioavailability of 

Hg (Dittman and Driscoll, 2009; Driscoll et al., 1994; Feng et al., 2014). When DOC is low (≤ 8 

mg C/L), it has important role of THg supply and a positive relation is evident with MeHg and 

Hg in biota; when DOC is higher (> 8 mg C/L), the relationships with MeHg and mercury in 

biota is diminished, suggesting that higher concentrations of dissolved organic matter binds with 

ionic Hg reducing the bioavailability (Driscoll et al., 1995; Selvendiran et al., 2008). There was 

no evidence in my study that the bioavailability of ionic Hg was altered by DOC, as I did not 

observe any significant relation of %MeHg with concentrations of DOC.  

Similar to THg, there was no obvious difference in MeHg concentrations between natural and 

restored wetlands in surface or ground waters. The most distinctive feature of Hg dynamics from 

this study is the relatively high %MeHg values, indicating that these wetlands are efficient in the 

conversion of ionic Hg to MeHg (Table 4.1; Figure 3.2). It is not clear why these wetlands are so 
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effective in the production of MeHg. One possible explanation is the marked wetting and drying 

cycles of the wetlands associated with precipitation events and the subsequent drying of the 

wetland soils (Figure 3.6). Drying of wetlands or sediments allows for the mineralization of 

organic matter and release of associated ionic Hg (Chen et al., 2012). Re-wetting of wetland 

sediments following precipitation events allows for the development of reducing conditions and 

promotes methylation of the mineralized ionic Hg. Successive wetting and drying cycles over the 

summer season in wetlands allows for the efficient production of MeHg. The high %MeHg 

values could also be explained by strong binding between Hg and DOC leading to a greater 

partitioning of Hg in the water column and increases in Hg methylation (Liu et al., 2008). 

Values of %MeHg were similar for both natural and restored wetlands, which suggests the 

function of MeHg production in restored wetlands was similar to natural wetlands (Strickman 

and Mitchell, 2017). The close positive relationship between THg and MeHg (Figure 3.3) 

indicates that the main control on MeHg production in the study wetlands is ionic Hg supply 

(Dennis et al., 2005). 

Concentration of SO4
2- and NO3

- in ground waters seemed to have some influence on MeHg 

production. Sulfate has a complex relationship with MeHg production (Benoit et al., 2003; 

Gilmour and Henry, 1991; Gilmour, 2011). Sulfate reducing bacteria are important in the 

production of MeHg (Podar et al., 2015). Under low SO4
2- concentrations methylation may be 

SO4
2- limited; increases in SO4

2- concentrations can stimulate production of MeHg. At high SO4
2- 

concentrations under reducing conditions, the production of sulfide can form aqueous complexes 

or precipitate ionic Hg limiting its availability for methylation. The result is an optimum 

concentration of SO4
2- for the production of MeHg, whose value varies with environmental 

conditions such as DOC and iron concentrations (Gilmour, 2011). The patterns of MeHg 
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and %MeHg in groundwater are suggestive of this relationship with SO4
2-. Concentrations of 

SO4
2- are elevated in some of groundwater in restored wetlands.  The source of this SO4

2- is 

likely due to interaction of saline geologic deposits and groundwater during excavation of the 

wetlands (Franzi et al., 2000), resulting in elevated concentrations of SO4
2- in some of the ground 

waters in the restored wetlands. I observed lower %MeHg values in these high SO4
2- (> 10 mg 

S/L) ground waters. In contrast, the lower SO4
2- ground waters had higher and more variable 

MeHg concentrations and %MeHg values. 

A similar pattern appears to be manifested for NO3
-. In ground waters, NO3

- concentrations were 

statistically higher in restored wetlands than natural wetlands, while the differences were not 

evident in surface waters. The source of this NO3
- is likely runoff from agricultural lands 

adjacent to the restored wetlands. It has been observed that elevated NO3
- can limit MeHg 

production (Matthews et al., 2013; Shih et al., 2011; Todorova et al., 2009) . The mechanism for 

this effect is not clear. Nitrate is a strong oxidant. In its presence sediment iron will oxidize and 

ferric oxide can effectively adsorb Hg limiting methylation and transport in water. Alternatively, 

NO3
- can limit the activity of SO4

2- reducing bacteria and MeHg production from this pathway 

(Matthews et al., 2013; Strickman and Mitchell, 2018; Todorova et al., 2009). Like SO4
2-, I 

observed a curvilinear relationship between concentrations of MeHg and NO3
- in ground waters. 

At low concentrations of NO3
-, MeHg and %MeHg values were variable; and MeHg 

concentrations and %MeHg decreased with increases in NO3
- at concentrations above 0.5 mg 

N/L. 

4.2 Seasonal change of mercury concentrations  

The seasonal pattern of THg in both surface and ground waters may be related to meteorological 

conditions and water table depth. In the absence of local industrial activity, atmospheric 
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depostion is likely the main source of THg to the study area (Driscoll et al., 2007; Yu et al., 

2013). Temperature is likely an important factor driving seasonal variation in THg. 

Concentrations of THg often increase during the low flow summer period due to the release of 

THg from mineralization of organic matter and concentration due to water losses associated with 

increases in evapotranspiration (Selvendiran et al., 2008). As a result, the overall seasonal pattern 

of lower THg and MeHg during the late spring and fall and generally higher concentrations 

during summer are expected. Superimposed on this pattern was lower concentrations in August. 

Two factors may have contributed to the lower THg and MeHg during this period. First, I 

observed a marked decrease in groundwater stage in late summer (Figure 3.5) suggesting a 

decrease in groundwater flow to the ponds and possibly a decrease in THg inputs. Second, the 

longer hydrologic residence time associated with lower inflows to the ponds may have allowed 

for greater photoreduction of THg and loss by evasion. Evasion has been shown to be an 

important loss mechanism for THg in some lakes (Denkenberger et al., 2012; Ullrich et al., 

2001). 

High nutrient inputs to wetlands likely promote plant production (Lacerda and Fitzgerald, 

2001;Mitchell et al., 2008). This carbon input coupled with, modest SO4
2- in the study sites could 

promote microbial activity to produce more MeHg ( Driscoll et al., 1998;Gilmour et al., 1998; 

Ullrich et al., 2001). However, this study and others suggest that elevated NO3
- can limit 

methylation (Matthews et al., 2013; Todorova et al., 2009). A likely contributing factor for the 

high MeHg production efficiency is the wetting and drying cycles occuring in wetland sediments 

thoughout the summer season which continously promotes MeHg formation. (Driscoll et al., 

2007; Feng et al., 2014; Strickman and Mitchell, 2017). Note that the highest %MeHg was 
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observed in September (Figure 3.1), a month which is the transition between the dry summer and 

wet fall season, but is characterized by warmer temperatures that allow for MeHg formation. 

Although these wetlands exhibit high %MeHg values, I see little difference in the ability of the 

restored and natural wetlands in this region to process Hg. Investigators have indicated concern 

for MeHg production in different stages of constructed wetlands. Sinclair et al. (2012) observed 

elevated concentrations of MeHg sediments and invertebrates in newly created wetlands for 

stormwater management compared to natural control wetlands but concentrations decreased with 

wetland age. Strickland and Mitchell (2017) found that recently created wetlands for stormwater 

were low in organic matter and had low rates on MeHg production and low sediment MeHg 

concentrations, while MeHg production and accumulation increased with wetland age. In 

contrast, the variability I observed across the restored wetlands masked any effect of wetland age 

on THg, MeHg or %MeHg. However, the youngest pond of those I studied was seven years old, 

so the fact that I did not have the opportunity to investigate a recently restored pond likely limits 

evaluation of pond age on Hg dynamics. 

5. Conclusions 

In this project, I found no obvious differences in concentrations of Hg species in surface waters 

between natural and restored wetlands. Seasonal patterns of THg and MeHg concentrations were 

similar in both natural and restored wetlands, with higher concentrations under warmer 

conditions in late spring and early fall, and lower values under cooler conditions in early spring 

and late fall. Lower concentrations also occurred during the low flow summer condition, likely 

due to decreases in water inflows and increases losses associated with increased hydraulic 

residence time. Concentrations of THg and MeHg were higher in pond waters than ground water 

inflows. This pattern suggests that in addition to ground water inputs, surface water Hg was 
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supplied by atmospheric deposition and the mobilization of Hg from near-surface sediments. I 

observed relatively high MeHg/THg ratios (%MeHg) in the study wetlands indicating that these 

systems are effective in converting ionic Hg to MeHg, in both restored and natural wetlands. 

Drying and rewetting cycles, which occurred throughout the summer in response to precipitation 

events likely contribute to the high methylation efficiency. While methylation efficiency was 

high in the study wetlands, there was some evidence that methylation may have been limited in 

ground waters of restored wetlands due to high concentrations of SO4
2- (> 10 mg S/L) and/or 

NO3
- (> 0.5 mg N/L). Relationships between DOC and THg and MeHg were weak across sites, 

but high concentrations of dissolved organic matter likely was important in the transport of Hg to 

surface waters. 

Wetlands provide valuable services. The wetlands I studied were restored to improve habitat for 

fisheries and wildlife. Wetlands are critical zones of the landscape for the production of MeHg 

and its transport to downstream aquatic ecosystems. Indeed, these wetlands were very effective 

in converting of ionic Hg to MeHg, although no difference was evident in %MeHg between 

restored and natural wetlands. The results of my study suggest that management of MeHg 

production in restored wetlands should focus on the ultimate source of this Hg, atmospheric 

deposition.  
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