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We further study the previously proposed Ansatz, Tr(Mν)=0, for a prediagonal light Majorana
type neutrino mass matrix. If CP violation is neglected this enables one to use the existing data on
squared mass differences to estimate (up to a discrete ambiguity) the neutrino masses themselves.
If it is assumed that only the conventional CP phase is present, the Ansatz enables us to estimate
this phase in addition to all three masses. If it is assumed that only the two Majorana CP phases
are present, the Ansatz enables us to present a one parameter family of solutions for the masses
and phases. This enables us to obtain a simple “global” view of lepton number violation effects.
Furthermore using an SO(10) motivation for the Ansatz suggests an amusing toy (clone) model in
which the heavy neutrinos have the same mixing pattern and mass ratios as the light ones. In this
case only their overall mass scale is not known (although it is constrained by the initial motivation).
Using this toy model we make a rough estimate of the magnitude of the baryon to photon ratio
induced by the leptogenesis mechanism. Solutions close to the CP conserving cases seem to be
favored.

PACS numbers:

I. INTRODUCTION

Remarkably, the recent KamLAND [1], SNO [2] and K2K [3] experiments have added so much to the results
obtained from earlier solar neutrino, atmospheric neutrino and accelerator experiments [4] that our knowledge about
the neutrino masses and presumed lepton mixing matrix is almost as great as our knowledge of the corresponding
quantities in the quark sector. Still there is an uncertainty about the interpretation due to the results of the LSND
experiment [5]. However, this experiment will be checked soon by the miniBoone collaboration so one can wait for
confirmation before considering whether there is really a problem with the usual picture of three massive neutrinos.
In any event, there is a strong presumption that this knowledge will play an important role in going beyond the
standard model of electroweak interactions.

One detail is, of course, lacking compared to the quark case. Since the neutrino oscillation experiments measure
only the differences of the neutrino squared masses, the neutrino masses themselves are not known. According to the
latest analysis [6] the best fit to these differences is:

m2
2 − m2

1 = 6.9 × 10−5eV 2,

|m2
3 − m2

2| = 2.6 × 10−3eV 2. (1)

Now, there is a simple complementary Ansatz for the 3 x 3 neutrino mass matrix, Mν which, with some assumptions,
enables one to obtain the neutrino masses themselves from Eq. (1); it requires:

Tr(Mν) = 0. (2)
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It should be remarked that Mν is to be regarded as the prediagonal neutrino mass matrix. Furthermore, in the
relation m1 + m2 + m3 = 0 which evidently results if the neutrino mass matrix is taken to be real symmetric, the
individual masses may be either positive or negative. The negative masses can be converted to positive ones by adding
appropriate factors of i in the diagonalizing matrix.

Eq. (2) was motivated in [7] from the grand unified model, SO(10) [8] and in [9] by noting that it would hold if
Mν is the commutator of two other matrices, as may occur in certain models. If CP violation is neglected there are
essentially two possible solutions of the Ansatz: either m1 and m2 have the same sign and are approximately equal
to each other and to −m3/2 or else m1 and m2 have the opposite sign and are approximately equal to each other in
magnitude but much larger than the magnitude of m3.

In the present paper we will take the point of view that the Ansatz, Eq. (2), is motivated from SO(10). However,
the analysis is of course not dependent on the motivation. The SO(10) motivation arises from the observation that
Eq. (2) is, although it seems at first different, essentially the same as the characteristic prediction of grand unification:

mb = rmτ , (3)

relating the mass of the b quark with the mass of the the tau lepton (r ≈ 3 takes account of the running of masses
from the grand unification scale to the low energy hadronic scale of about 1 GeV [10]). Note that in SO(10) the
neutrino mass matrix takes the form:

Mν = ML − MT
DM−1

H MD, (4)

where ML, MH and MD are respectively the mass matrices of the light neutrinos, heavy neutrinos and heavy-light
mixing (or “Dirac matrix”). To start with, Mν is an arbitrary symmetric matrix. If it is real we have CP invariance.
Generally the second, seesaw [11] term is considered to dominate. However, as explained in [7], the present model
is based on the assumption that the first term dominates. That might not be unreasonable since a rough order of
magnitude estimate for the second term would be m2

t /1017 or about 3×10−4 eV. (The quantity 1017 includes a factor
r2 ≈ 10). Thus the second term could be negligible if neutrino masses are appreciably greater than this value.

In [7] the complementary Ansatz was mainly studied for the case of real Mν . Here we will be primarily interested
in the more general complex case which allows for non zero CP violation. Furthermore, the input squared mass
differences were not taken to be very similar to those in Eq.(1) but were based on a least squares fit [12] of many
different experiments including LSND. Here we shall adopt the more conventional values given in Eq.(1). A related
analysis of Eq. (2) was recently made in [13].

For an understanding of the interesting leptogenesis mechanism [14] of baryogenesis it is important to also study
the properties of the heavy neutrinos which appear there. In the present SO(10) motivated framework this task turns
out to be remarkably simple; the heavy neutrino mass matrix is given by

MH = cMν , (5)

where c is a numerical constant. This means that the eigenvalues of MH , to be denoted as M1, M2, M3 are simple
multiples of the light neutrino masses m1, m2, m3. In addition the unitary matrix, U which brings Mν to diagonal
form via

UT MνU = diag(m1, m2, m3) = M̂ν , (6)

also diagonalizes MH . In other words the heavy neutrinos are clones of the light neutrinos in this picture. The result
follows from the choice of Higgs fields in SO(10). Trilinear Yukawa terms which supply fermion masses can contain
Higgs fields in the 10, 120 and 126 dimensional representations. To get the result just mentioned we need to require
that there is only one “126” representation present, although any number of “10”’s and “120”’s are allowed. Of course
we are also assuming the second term in Eq. (4) to be negligible for the purpose of generating the light neutrino
masses.

In section II, we give our conventions for the lepton mixing matrix, including one conventional and two Majorana
type CP violation phases. An approximate equation relating the complementary Ansatz to the parameters of the
mixing matrix and the physical light neutrino masses is written down. The solutions for the neutrino masses in the
CP conserving case, based on the results of neutrino oscillation experiments, are reviewed. In section III, the Ansatz
equation is solved on the assumption that only the conventional CP phase, δ is non zero. It is found that the only
solutions correspond to maximal phase, sin2δ = 1 and neutrino masses close to the ones obtained in the CP conserving
case. In section IV we investigate the more complicated but very interesting case when only the two Majorana CP
violation phases are non zero. In this case there is a family (modulo a discrete ambiguity) of solutions. We choose
the mass of the third light neutrino, m3 as our free parameter and calculate the remaining neutrino masses and the
Majorana phases as functions of m3. The model gives a lower bound for m3 and the cosmology criterion on the sum
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of neutrino masses effectively yields an upper bound. The results for the full range are scanned numerically and a
simple analytic interpretation of the pattern is presented. The neutrinoless double beta decay parameter, |mee| is also
calculated for each value of m3. In section V we make a rough estimate of the baryon to photon ratio based on the
leptogenesis mechanism. In order to do this it is necessary to make some statements on the masses and mixings of the
heavy neutrinos. Our motivation for the original Ansatz suggests a “clone” model in which the heavy neutrinos have
the same mass ratios and mixing matrix as the light ones. The only new parameter besides m3 is the overall mass
scale, which however is constrained by the original motivation to be somewhat on the large side. Then it is relatively
easy to calculate the lepton asymmetry parameters, ǫi for the heavy neutrino decays as functions of mainly m3. We
combine these quantities in a semi-quantitative way with criteria from previous treatments of the Boltzmann evolution
equations for the decaying neutrinos. It is found that that the most plausible scenarios for leptogenesis involve small
CP violating Majorana phases and light neutrino masses close to the ones predicted for the CP conserving cases..
Finally section VI contains a brief discussion and a brief summary.

II. RELATING THE ANSATZ TO EXPERIMENT

Here we will obtain an approximate equation which will be useful for relating the complementary ansatz to exper-
imental information on neutrino squared mass differences and mixing angles in the general case where CP violation
is allowed. The notation is the same as in section III of [7] which contains more details. For convenience, we will use
what seems to be the most common convention for the part of the leptonic mixing matrix, Kexp, which is measured in
the usual neutrino oscillation experiments. This part can be constructed as a product of elementary transformations
in the (12), (23) and (13) subspaces. For example in the (12) subspace one has:

ω12(θ12, φ12) =





cosθ12 eiφ12sinθ12 0
−e−iφ12sinθ12 cosθ12 0

0 0 1



 (7)

with clear generalization to the (23) and (13) transformations.
Then the usual convention corresponds to the choice:

Kexp = ω23(θ23, 0)ω13(θ13,−δ)ω12(θ12, 0), (8)

with three mixing angles and the CP violation phase δ. Multiplying out yields:

Kexp =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23



 (9)

where sij = sinθij and cij = cosθij . Since the neutrinos are of Majorana type in this model, there are expected
also to be physical CP violating effects due to the Majorana phases [15, 16, 17, 18]. These may be introduced via a
unimodular diagonal matrix of phases,

ω0(τ) = diag(eiτ1 , eiτ2 , eiτ3),

τ1 + τ2 + τ3 = 0. (10)

The full lepton mixing matrix is then expressed as,

K = Kexpω
−1
0 (τ), (11)

which has three mixing angles and three independent CP violating phases. We shall use this form in what follows. As
an aside, though, we remark that the full matrix could also be written [7] in an unconventional, but more symmetrical,
way as:

K = ω23(θ23, φ23)ω13(θ13, φ13)ω12(θ12, φ12). (12)

As a final preliminary we need the leptonic W interaction term :

L =
ig√
2
W−

µ ēLγµKν + H.c.,

K = Ω†U, (13)
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where U is defined in Eq.(6) and Ω† is a unitary matrix which is needed to diagonalize the charged lepton mass matrix.
At this point we shall make the common approximation that Ω can be replaced by essentially the unit matrix. This
is certainly not perfect but it seems reasonable for a start. Then U may be replaced by K, for which some elements
are already well known. This enables us to present the ansatz in the form:

Tr(M̂νK−1
expK

∗
expω0(2τ)) = 0, (14)

where Eqs. (6) and (11) were used. With the parameterized mixing matrix of Eq. (9) the ansatz reads:

m1e
2iτ1

[

1 − 2i(c12s13)
2sinδe−iδ

]

+

m2e
2iτ2

[

1 − 2i(s12s13)
2sinδe−iδ

]

+

m3e
2iτ3

[

1 + 2i(s13)
2sinδeiδ

]

= 0. (15)

In this equation we can choose the diagonal masses m1, m2, m3 to be real positive. However it will be a little more
convenient in the CP conserving case to allow some of them to be negative as well as positive. We shall, for definiteness,
mainly use the following best fit values [6] for the mixing angles:

s2
12 = 0.30, s2

23 = 0.50, s2
13 = 0.003. (16)

It should be remarked that the precise value of s13 is not well known, in contrast to the other two.
Equation (15) contains three unknown masses and three unknown CP phases. It can be written as two real equations

and augmented by two equations for two neutrino mass squared differences. Thus there are four equations for six
unknowns. By assuming some special simplifications we can make the analysis tractable.

For orientation let us first review the case when the theory is CP conserving so that all the three independent CP
phases vanish. Then we will have 3 equations for 3 unknowns. The ansatz now reads m1 + m2 + m3 = 0. Define:

A = (m2)
2 − (m1)

2

B = (m3)
2 − (m2)

2 (17)

It can be deduced [19] from the experimental data that A is positive while the sign of B is not yet known. Their
magnitudes are given in Eq. (1). Thus there are two separate cases to be considered. First consider both A and B
positive. Then solving as in [7] gives the type I solution:

m1 = 0.0291 eV, m2 = 0.0302 eV, m3 = −0.0593 eV. (18)

Next consider the type II solution where B is negative; it gives:

m1 = 0.0503 eV, m2 = −0.0510 eV, m3 = 0.00068 eV. (19)

Here m1 and m2 are still almost degenerate but differ in sign. However m3 is now relatively small compared to the
others.

III. CONVENTIONAL CP VIOLATION

A fully predictive simple case would correspond to keeping δ as the only CP violation phase. Then the real part of
the ansatz equation, (15) reads

m1 + m2 + m3 − 2s2
13sin

2δ(c2
12m1 + s2

12m2 + m3) = 0, (20)

while the imaginary part yields

s2
13sin2δ(c2

12m1 + s2
12m2 − m3) = 0. (21)
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Note that the mi’s are being taken real here, although they will be allowed to be either positive or negative. A
negative mi is not a source of CP violation even though it corresponds to a Majorana phase τi of π/2 when the masses
are taken positive [20]. Now Eqs.(17), (20) and (21) constitute 4 equations for the three mi’s and δ.

However it turns out that, except for the special case when s2
13sin2δ = 0, there is no consistent solution of this set

of four equations for four unknowns. To see this, first consider solving simultaneously the three equations (17) and
(21) when the special case does not hold. The numerical solution is seen to require B < 0 and is found to be (with
A > 0):

m1 = −0.0548 eV, m2 = 0.0554 eV, m3 = −0.0217 eV. (22)

We must now check to see if this is consistent with the remaining Eq. (20). That leads to the requirement:

s2
13sin

2δ =
1

4
(1 +

m1 + m2

m3
) ≈ 0.25, (23)

which, given the numerical value of s2
13 in Eq. (16) clearly leads to the contradiction sin2δ ≈ 80. This contradiction

will persist even if the upper bound (about 0.044) rather than the best fit for s2
13 is used. The result is also not

changed if the signs of all the mi’s are reversed.
Thus the only possibility for pure δ type CP violation in the present scheme is the special case where sin2δ = 1.

Then we must solve simultaneously the three equations consisting of Eq. (20) in which this substitution has been
made for sin2δ as well as Eqs. (17). This results in the equation for, say m2,

sign(m1)(m
2
2 − A)1/2(1 − 2s2

13c
2
12) + m2(1 − 2s2

13s
2
12) + (B + m2

2)
1/2(1 − 2s2

13) = 0, (24)

where sign(m3) has been arbitrarily taken positive. Knowing m2, the other two masses may of course be obtained
from Eqs. (17).

Taking, for definiteness, the mixing angle from Eq. (16), one finds essentially two different solutions. These are
quite similar to the Type I and type II solutions given above in the CP conserving case. The type I solution, with
B > 0 is

m1 = −0.0289 eV, m2 = −0.0301 eV, m3 = 0.0592 eV. (25)

The type II solution, with B < 0, reads

m1 = 0.0503 eV, m2 = −0.0510 eV, m3 = 0.00081 eV. (26)

The very close similarity between the CP conserving solutions and the solutions with sin2δ = 1 is understandable
due to the small value of s2

13.

IV. CP VIOLATION DUE TO MAJORANA TYPE PHASES

Since, as we have just seen, there is only one particular allowed value for the conventional CP phase, δ if it is
considered as the only source of CP violation in the present scheme, it is of great interest to investigate the Majorana
phases. Clearly, it seems sensible to study these phases with the simplification of putting δ to zero. From Eqs. (7)
and (8) it is seen that the same effect is accomplished by setting s13 = 0. Then the ansatz equation (15) takes the
form

m1e
2iτ1 + m2e

2iτ2 + m3e
2iτ3 = 0. (27)

For our present case it is convenient to take all three mi’s to be real and positive ( note that a phase angle τi = π/2
corresponds to what was taken as a shorthand to be a negative value of mi). Together, Eq. (27) and Eq. (17)
comprise four real equations for five unknowns (three masses and two independent τi’s). To proceed we shall thus
assume a value for m3 so that we have four equations for four unknowns. In addition there is the two fold ambiguity
due to the unknown sign of B. Finally we shall allow m3 to vary to obtain a global picture of the situation.

Now, once we have assumed a value for m3, we can immediately find m1 and m2 from Eqs. (17). Furthermore,
Eq. (27) can be pictured in the complex plane as a triangle formed from vectors with lengths mi, having angles 2τi

as measured from the positive horizontal axis. Then let µi be the interior angle opposite side mi as illustrated by the
choice of triangle in Fig. 1.
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FIG. 1: Vector triangle representing Eq. (27).

The problem reduces to one from elementary plane geometry. Given the three sides (mi), of a triangle, find the
three interior angles (µi). We may start for example, by using the law of cosines to get

cosµ1 =
−m2

1 + m2
2 + m2

3

2m2m3
, (28)

and continue similarly to get the others. Finally the parameters τi which appear in the actual parameterization of
Eq. (10) are found from Fig. 1 as

τ1 =
1

6
(π − µ1 − 2µ2),

τ2 =
1

6
(π + 2µ1 + µ2),

τ3 =
1

6
(−2π − µ1 + µ2). (29)

In particular, the quantities

sin[2(τ1 − τ2)] = −sin(µ1 + µ2),

sin[2(τ1 − τ3)] = sinµ2,

sin[2(τ2 − τ3)] = −sinµ1, (30)

will turn out to be of interest. Actually, given the three interior angles µi of a triangle we do not get a unique choice
of phase differences (τi − τj). While a rotation in the plane of the triangle will not change these phase differences,
it is straightforward to see that the reflection of the triangle about any line in the plane will reverse the signs of all
the phase differences. Thus there is another solution in which an extra minus sign appears on each right hand side of
(30).

Now let us discuss the solutions of the complementary ansatz equation for various assumed values of m3. In Table
I the three real positive masses as well as the corresponding values of the two independent internal angles µ1, µ2 of
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the triangle are listed. Of course, µ1 + µ2 + µ3 = π. The solution with B > 0 (type I with m3 > m2) will be listed
when it exists as well as the type II solution (B < 0 or m2 > m3).

Let us start with large values of m3 and go down. Just from the ansatz there is no upper bound on the value of
m3. However there is a recent cosmology bound [21] which requires,

|m1| + |m2| + |m3| < 0.7 eV. (31)

Thus values of m3 greater than about 0.3 eV are physically disfavored. Table I shows that at this value both type
I and type II solutions exist and correspond to almost equilateral triangles. This is true also for higher values of
m3. Notice that since the triangles are close to being equilateral, they have large interior angles and hence ( see for
example Eq. (30)) large CP phases. The picture remains very similar down to around m3 = 0.1 eV but as one gets
closer to the value, roughly 0.0593 eV, where the real type I solution of Eq. (18) exists, there is a marked change.
It is seen that the interior angles of the type I solution become small as it prepares to go to the degenerate triangle
corresponding to the real solution. We may get as small CP phases as we like by tuning close to the real solution;
this is illustrated in Table I for a particular value of m3. If one further lowers m3, it is found that the type I solution
no longer exists. On the other hand the type II solution persists and does not change much until m3 approaches the
small value of roughly 0.00068 eV. There are no solutions for m3 smaller than this value. We can also tune m3 as
illustrated in the table to get as small CP phases as we like for the type II case. It should be remarked that the
precise numbers in Table I are based on the assumption that the best fit numbers given in Eq. (1) are exact and hence
are meaningful to the accuracy given only in the sense of comparing the various solutions with each other, not with
experiment. It is straightforward to give an analytic interpretation of the pattern of solutions just observed. First

type m1, m2, m3 in eV µ1, µ2 in radians |mee| in eV ǫ1, ǫ2, ǫ3

I 0.2955, 0.2956, 0.3000 1.038, 1.039 0.185 0.342, 0.433, 0.017
II 0.3042, 0.3043, 0.3000 1.055,1.056 0.187 0.330, 0.426, -0.0172
I 0.0856, 0.0860, 0.1000 0.946, 0.952 0.058 0.138, 0.060, 0.00137
II 0.1119, 0.1122, 0.1000 1.106, 1.111 0.065 0.194, 0.088-0.0024
I 0.0305, 0.0316, 0.0600 0.258, 0.268 0.030 0.00982, 0.00422, 0.00004
II 0.0783, 0.0787, 0.0600 1.172, 1.186 0.043 0.094, 0.041,-0.0011
I 0.0291, 0.0302, 0.0592715649 0.000552, 0.000574 0.030 1.96 ×10−6, 0.84 ×10−6, 0.71 ×10−7

II 0.0774, 0.0782, 0.0592715649 1.174, 1.188 0.042 0.047, 0.020, -0.0011
II 0.0643, 0.0648, 0.0400 1.243, 1.268 0.033 0.052, 0.023,-0.000681
II 0.0541, 0.0548, 0.0200 1.355. 1.417 0.024 0.018, 0.0078,-0.000335
II 0.0506, 0.0512, 0.0050 1.386, 1.658 0.021 0.0057, 0.0025,-0.0000824
II 0.0503, 0.0510, 0.0010 0.814, 2.313 0.021 0.00073, 0.00031,-0.0000122
II 0.0503, 0.0510, 0.0006811 0.051361, 3.089536 0.021 0.0000348, 0.0000150, -0.601 ×10−6

TABLE I: Panorama of solutions as m3 is lowered from about the highest value which is experimentally reasonable to the
lowest value imposed by the model. In the type I solutions m3 is the largest mass while in the type II solutions m3 is the
smallest mass. For each value of m3, the values of the model predictions for m1 and m2 as well as the internal angles µ1

and µ2 are given. The model prediction for the neutrinoless double beta decay quantity |mee| is next shown. Finally, the last
column shows the estimated lepton asymmetries due to the decays of the heavy neutrinos. Note that the reversed sign of lepton
asymmetry is also possible, as discussed in the text.

note that CP violation corresponds to a non degenerate triangle. Note also that the orientation of the triangle in the
complex plane is just obtained by imposing the unimodularity condition for ω(τ) in Eq. (10). Hence the internal
angles, µi are really the intrinsic carriers of CP violation. The determinant of whether one has CP violation is the
non vanishing of the quantity:

A = [m(m − m1)(m − m2)(m − m3)]
1/2,

m =
1

2
(m1 + m2 + m3), (32)

which just expresses the area, A of a triangle in terms of the lengths of its sides. This area may be rewritten in the
convenient form:

A =
1

4

(

[(m1 + m2)
2 − m2

3][m
2
3 − (m1 − m2)

2]
)1/2

. (33)

Now we may see that the vanishing of the first factor corresponds to the type I real solution while the vanishing of
the second factor corresponds to the type II real solution. Furthermore, for a solution to exist, the argument of the
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square root should be positive. With the second factor, that establishes the minimum allowed value of m3 while with
the first factor, that establishes the minimum value of m3 which allows a type I solution.

An important test of the model is the experimental bound on neutrinoless double beta decay. This implies [22]

|mee| < (0.35 → 1.30) eV, (34)

where

|mee| = |m1(Kexp11)
2e−2iτ1 + m2(Kexp12)

2e−2iτ2 + m3(Kexp13)
2e−2iτ3 |. (35)

Using the parameterization of Eq. (9) and approximating s13 = 0 (which is reasonable in the present model since m3

is never much larger than m1 or m2), this can be written simply as:

|mee| = [(c2
12m1)

2 + (s2
12m2)

2 + 2m1m2c
2
12s

2
12cos(µ1 + µ2)]

1/2. (36)

Here Eqs. (29) were also used. Reading s2
12 from (16) then enables us to calculate |mee| for each line of Table I. It is

seen that |mee| decreases smoothly with decreasing m3 for each of the type I and type II solutions. All the values of
m3 listed are consistent with the present bound. It is interesting that an improvement of the experimental bound by
an order of magnitude [23] would provide a good test of the model.

V. ESTIMATE FOR LEPTOGENESIS

When one adopts the SO(10) motivation for the present Ansatz, it turns out that the resulting model predicts in a
simple way the properties of the heavy neutrinos which are intrinsically contained in the SO(10) theory. This feature
may be used in connection with the leptogenesis mechanism [14] of baryogenesis. According to this mechanism, the
CP violating and lepton number violating decays of the heavy neutrinos at a high temperature (corresponding to the
grand unification scale) in the very early universe establish a lepton asymmetry. As the universe cools further, the
(B+L) violating but (B-L) conserving ”sphaleron” interaction [24] converts this into a baryon asymmetry which may
be compared with the observed ratio of baryons to photons in the universe. There are many interesting discussions of
this mechanism in the literature [25, 27, 28, 29, 30]. Here, we will estimate the dependence on neutrino masses and
CP phases of the predicted baryon asymmetry in the present model.

The starting point of this discussion is the Yukawa term of the Lagrangian density which describes the tree level
decay of a heavy Majorana neutrino, Nj (where the subscript denotes a 3-valued generation index) to a Higgs doublet
member,

Φc =

(

φ̄0

−φ−

)

(37)

plus the appropriate member of the left-handed lepton doublet,

Li =

(

νiL

eiL

)

. (38)

Then the Yukawa term reads:

LY ukawa = −
∑

L̄iλijΦ
cNj + H.c., (39)

where λij is the matrix of Yukawa coupling constants. We can simplify this expression, which is supposed to contain
the fermion fields in prediagonal bases, in several ways. First, at the high temperature for which the N decays are
relevant, the phase transition to spontaneously broken SU(2) x U(1) has not yet taken place. Thus we can consider
the light fermions in Li to be massless and there is no need to insert suitable unitary matrices to bring the light field
mass matrices to diagonal form. However the heavy neutrino, N should be related to the physical field N̂ with a
unitary matrix U as N = UN̂ . As mentioned in section I, if the SO(10) model contains only a single ”126” Higgs
type field (although any number of “10”’s and “120”’s are allowed) and also if the first (non see-saw) term in Eq. (4)
is dominant, the prediagonal mass matrices for the light and heavy neutrinos must be proportional to each other and
the diagonalizing matrix U must be the same one which appears in Eq. (13). Approximating, as we did earlier, Ω to
be essentially the unit matrix we can set U ≈ K. If the model of section IV is adopted, for example, we can specify
K, including CP phases, to a fair approximation for each assumed value of m3. Finally we approximate the matrix
of Yukawa couplings by:

λij ≈ δijm
U
i

r′ < φ0 >
, (40)
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where mU
i are the three charge 2/3 quark masses at a low energy scale, r′ ≈ 3 is a suitable factor for running these

masses from the grand unified scale to the low energy scale and < φ0 >≈ 246/
√

2 GeV. Note that LY ukawa is the
term responsible for generating the neutrino Dirac matrix, MD in Eq. (4). In the simplest approximation to the
SO(10) theory the charge 2/3 quark mass matrix and neutrino Dirac mass matrix are proportional to each other and
diagonal (since the quark mixings are after all small).

Putting these things together we arrive at the “effective” term for calculating the heavy neutrino decays (at grand
unified scale temperature):

LY ukawa = −
∑

L̄ihijΦ
cN̂j + H.c., (41)

where

hij ≈ mU
i Kexpije

−iτj

< φ0 > r′
. (42)

The quantities needed for the calculation are the matrix products (h†h)ij . We may further simplify these products

by noting that the top quark mass is much heavier than the others so the products approximately become h†
i3h3j .

Specifically, the diagonal products are:

(h†h)11 ≈ (s12s23/r′)2,

(h†h)22 ≈ (c12s23/r′)2,

(h†h)33 ≈ (c12/r′)2, (43)

where we used the numerical coincidence that mt =< φ >. Furthermore, we set s13 = 0 in agreement with the
model of section IV ( See the parameterization of Eq. (9)). Numerically, with Eq. (16) and (r′)2 ≈ 10 one obtains
(h†h)11 ≈ 1.50 × 10−2, (h†h)22 ≈ 3.50 × 10−2 and (h†h)33 ≈ 7.00 × 10−2. In terms of these diagonal products, the
tree level widths of the heavy neutrinos are given by,

Γi =
(h†h)iiMi

8π
, (44)

where Mi is the mass of the ith heavy neutrino. The off diagonal products play an important role in determining the
lepton asymmetry. They are explicitly given in the model of section IV as:

(h†h)12 ≈ −s12c12s
2
23e

i(τ1−τ2)/(r′)2,

(h†h)13 ≈ s12s23c23c13e
i(τ1−τ3)/(r′)2,

(h†h)23 ≈ −s23c12c23c13e
i(τ2−τ3)/(r′)2,

(h†h)ij = (h†h)∗ji, (45)

where the CP phases τi depend on the choice of m3 as explained in section IV. Numerically, one has (h†h)12 ≈
−2.29 × 10−2exp[i(τ1 − τ2)], (h†h)13 ≈ 2.74 × 10−2exp[i(τ1 − τ3)] and (h†h)23 ≈ −4.18 × 10−2exp[i(τ2 − τ3)]. In
arriving at these estimates from Eq. (16) we arbitrarily took all the signs of the trigonometric functions to be
positive. This will not lead to any ambiguity since, for the application of interest, the off-diagonal products must be
squared.

The lepton asymmetry ǫi, due to the decay of the ith heavy neutrino is defined as the ratio of decay widths:

ǫi =
Γ(Ni → L + Φ) − Γ(Ni → L̄ + Φ̄)

Γ(Ni → L + Φ) + Γ(Ni → L̄ + Φ̄)
. (46)

In this formula L + Φ stands for all pairs of the types e−j + φ+ and νj + φ̄0. This is an effect which violates C and

CP conservation, in agreement with the requirement of Sakharov [25]. To get a non-zero value one must include the
interference between the tree diagram from Eq.(41) and the one loop diagrams (of both “self-energy” and “triangle”
types). If the masses of the heavy neutrinos are well separated the result [14, 31] is:

ǫi =
1

8π

∑

j 6=i

Im[(h†h)ij(h
†h)ij ]

(h†h)ii
f(M2

j /M2
i ),

f(x) =
√

x

[

1

1 − x
+ 1 − (1 + x)ln(1 + 1/x)

]

. (47)
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Note that the contribution to the lepton asymmetry of the lightest heavy neutrino is expected to be the most important
one for the final calculation of baryon asymmetry [27].

Now let us make numerical estimates for the lepton asymmetries when all CP violation is due to Majorana phases
(section IV). From Eq. (5) we relate the heavy neutrino masses to the light neutrino masses simply as:

Mi = cmi, (48)

where c is a real, positive constant. This equation has earlier been used [32] for the study of leptogenesis in the
framework of a left-right symmetric model. It should be noted that renormalization group effects [33] will modify the
exact proportionality of the light and heavy neutrino masses as well as the equality of the corresponding diagonalizing
matrices. This should be taken into account for a more accurate treatment. In the model of section IV the third
neutrino is typically somewhat further away in mass from the other two, which are always relatively close. For
example, in the type II situation, m3 is the lightest of the light neutrino masses so M3 will be the lightest of the heavy
neutrino masses and the contribution to the lepton asymmetry is ǫ3. Using Eqs. (47), (48), (45) and (30) we obtain:

ǫ3 ≈
[

−4.27f([m1/m3]
2)sinµ2 + 9.94f([m2/m3]

2)sinµ1

]

× 10−4. (49)

Notice that c has canceled out in this formula and also cancels out in the determination of the angles µi. Thus the
lepton asymmetry given by this formula does not depend on the overall scale of the heavy neutrino masses.

In the type I case, the heavy neutrino spectrum consists of two nearly degenerate lighter states, (N1, N2) and a
heavier state, N3. For the corresponding asymmetries ǫ1 and ǫ2, the diagrams involving self energy type corrections
are enhanced since an internal heavy neutrino line will be close to its mass shell. The formulas [31] thus, for greater
accuracy, involve the decay widths and we will approximate:

ǫ1 =
Im[(h†h)12(h

†h)12]

(h†h)11(h†h)22

(M2
1 − M2

2 )M1Γ2

(M2
1 − M2

2 )2 + M2
1Γ2

2

,

ǫ2 =
Im[(h†h)12(h

†h)12]

(h†h)11(h†h)22

(M2
1 − M2

2 )M2Γ1

(M2
1 − M2

2 )2 + M2
2Γ2

1

. (50)

Again, we may replace the heavy neutrino masses using Eq. (48) and note that the factor c cancels out. Inserting
numbers, we obtain:

ǫ1 ≈ −1.39 × 10−3sin(µ1 + µ2)m1m2(m
2
1 − m2

2)

(m2
1 − m2

2)
2 + 1.94 × 10−6m2

1m
2
2

ǫ2 ≈ −5.96 × 10−4sin(µ1 + µ2)m1m2(m
2
1 − m2

2)

(m2
1 − m2

2)
2 + 3.56 × 10−7m2

1m
2
2

. (51)

The values of all these asymmetries for the range of possibilities are listed in the last column of table I.
Furthermore it must be noted that, owing to the non-uniqueness of sign for all of Eqs. (30), reversing the signs of

all the lepton asymmetries also yields a solution corresponding to our initial Ansatz.
Although the scale of the heavy neutrinos has been seen to cancel out of the formulas (49) and (51) for the lepton

asymmetries in favor of their ratios (which are the same as those of the light neutrinos in this model), there is
nevertheless a consistency condition implied by the SO(10) motivation for the starting Ansatz. This arises since Eq.
(39) is not only the source of the lepton asymmetry but also provides the seesaw contribution to the light neutrino
masses. For our motivation we assumed that this contribution was dominated by the first term of Eq. (4). To make
a rough estimate of what this means we assume all matrices of the seesaw term to be diagonal. Then the value of
c1/2 defined in Eq. (48) should be greater than mU

i /(mir
′) in order that the first term of Eq. (4) be greater than the

second term. In the case of the type I solution with m3 ≈ 0.06 eV shown in Table I, this implies that the lightest
heavy neutrino should be heavier than about 2.6 ×1013 GeV. For the case of the type II solution with m3 ≈ 7× 10−4

eV, the lightest heavy neutrino should be heavier than about 4.4 ×1015 GeV.
The goal of the baryogenesis problem is to understand the ratio ηB = nB/nγ , the net baryon number density

divided by the photon density. Experimentally, this quantity is found[21], from the study of big-bang nucleosynthesis,
to be

ηB = (6.5 ± 0.4) × 10−10. (52)

To obtain non-zero ηB, it is not sufficient, as pointed out by Sakharov[25], just to have non-zero values of the lepton
asymmetry ǫi, defined in Eq. (46). In addition, the CP violating decays of the heavy neutrinos must occur out of
thermal equilibrium. A detailed treatment requires solution of the Boltzmann evolution equations for the system [34].
Here we shall make a rough estimate which we use to draw what might be a fairly robust conclusion.
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First, we should remark that the baryon asymmetry generated by the sphaleron mechanism would be about -1/3
[26], (for a review see [27]) of an initial lepton asymmetry. The lepton number violating decays of the ith heavy
neutrino are usually roughly taken to be out of equilibrium if the decay rate Γi in Eq. (44) is less than the Hubble
rate,

H ≈ 1.7g
1/2
∗ T 2/MP , (53)

where g∗ ≈ 100 is the number of effective light degrees of freedom at the leptogenesis scale, T is the temperature (
corresponding to the mass of the decaying heavy neutrino) and MP ≈ 1.22 × 1019 GeV. In the present model this
ratio takes the explicit form:

Ki =
Γi

H
≈ (h†h)iiMP

427Mi
, (54)

which is seen to be inversely proportional to Mi. The net baryon asymmetry is estimated as [27],

ηB ≈ − 7

3g∗

∑

ǫiDi, (55)

where the Di are suppression factors to be obtained by numerical solution [34] of the Boltzmann equations. It is
generally accepted that only the contributions of the lightest heavy neutrinos should not get washed out; thus we will
set Di =0 for the heavier neutrinos. If 10 < Ki . 106, the suppression factor is often approximated by the analytic
form [35]

Di ≈
0.3

Ki[ln(Ki)]0.6
. (56)

When Ki < 1, the suppression factor is expected to be of order unity if Mi is not too large. However, as Mi gets
larger there is a sizeable washout effect [36].

Glancing at the last column in table I and comparing with the experimental value of ηB in Eq. (52) as well as Eqs.
(55) and (56) suggests that the values of ηB obtained for typical values of the assumed light neutrino mass parameter
m3 would be considerably larger than the experimental baryon asymmetry. However, we can expect to be able to
obtain agreement with the experimental value since, as discussed in section IV, we may make the Majorana CP phases
as small as we like by continuously tuning the independently chosen variable, m3 so that the triangle of mass vectors
gets arbitrarily close to one of the two degenerate straight line cases which causes A in Eq.(33) to vanish. Thus the
solutions of the model which would be consistent with the observed baryon asymmetry correspond to neutrino masses
more or less close the real cases of either Eq. (18) or Eq. (19).

The qualitative points: i. that in the present model the value of the free parameter, m3 can always be tuned to
be arbitrarily close to its values for the two real solutions (so that the CP violation and hence leptogenesis strength
becomes as small as desired) and ii. that the characteristic lepton asymmetries, ǫi for values of m3 away from these two
real solutions are rather large, comprise the main result of our discussion of the application of the Tr(Mν) = 0 Ansatz
to the baryogenesis problem. These points lead to the expectation that the physical value of m3 is likely to be close
to one of the two values in Eq. (18) or Eq. (19) and that this conclusion might persist even when our simplifications
are not made. A more accurate treatment would include the features: a) effect of non-trivial charged lepton mixing
matrix, b) renormalization group induced deviations from the “clone” treatment of the heavy Majorana neutrinos
and c) full integration of the Boltzmann evolution equations. Even though our main conclusion is a qualitative one, it
seems nevertheless an interesting exercise to find what values of light and heavy neutrino masses corrrespond to the
correct order of magnitude of the observed baryon asymmetry. Note that the seeming great accuracy of the entries in
Table I is not meant for precise comparison with experiment, but for comparison of the results of different m3 choices
with each other.

Specifically, consider the tuned type I solution in table I with m3 ≈ 0.05927 eV. We noted in the discussion after Eq.
(51) that this would correspond to heavy neutrino “clone” masses (M1, M2, M3) greater than about (2.60, 2.70, 5.27)×
1013 GeV, respectively. We assume that the two lighter neutrinos are the important ones and set D3 = 0. The ratios
(K1, K2) defined in Eq. (54) would then be less than about (16.5, 37.1) and would result in suppression factors
(D1, D2) greater than (0.010, 0.0037). Using Eq. (55) and table I for ǫ1 and ǫ2 then gives |ηB | = 5.4 ×10−10, close
to the experimental value in Eq.(52). This can be adjusted by further tuning m3 or to some extent by varying the
overall mass scale of (M1, M2, M3).

For the type II case, first consider the solution in table I with m3 ≈ 0.0007 eV. As discussed before, this would
correspond to heavy neutrino “clone” masses (M1, M2, M3) greater than about (320, 320, 4.4) ×1015 GeV. In this case,
M3 is the lightest of the three heavy neutrinos and is assumed to be the relevant one. We thus set D1 = D2 = 0. The
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ratio K3 given in Eq. (54) is then about 0.45 and indicates that the lightest heavy neutrino is, as desired, decaying
out of equilibium. However, because its mass is considerably higher than that of the type I case just discussed, there
is more wash out [36], D3 ≈ 3.5 × 10−5. Reading ǫ3 from table I then gives ηB ≈ 5 × 10−13, about three orders of
magnitude too small. Thus we must raise the value of m3 a bit. Backing off a little to the case m3 ≈ 0.005 eV in
table I increases the value of ǫ3 and also allows us (in line with the dominance of the first term in Eq.(4)) to choose
the lower bound of M3 to be smaller, around 6 ×1014 GeV. This results in an estimate |ηB | ≈ 16 × 10−10, which is
the correct order of magnitude. One might wonder whether the contributions to ηB from ǫ1 and ǫ2 are completely
washed out in a case like the present. However, even if they were dominant, it would just require us to tune more
closely toward small m3.

Thus, if the model of CP violation with just the Majorana phases is correct, the magnitude of the baryon to photon
ratio can be understood when either the sum of the three light neutrino masses is about 0.118 eV and |mee| =0.030
eV (type I) or the sum of the three light neutrino masses is about 0.107 eV and |mee|= 0.021 eV (type II). In both
cases the CP violating Majorana phases are extremely small. That might suggest a possible model in which a small
CP violating perturbation due to some separate effect modifies an otherwise CP conserving lepton sector.

We can also calculate the baryon to photon ratio in the model of section III, where δ is the only CP violating
phase. There we noted that the only possible choices of δ consistent with our Ansatz satisfy sin2δ = 1. Then we
have the type I solution for light neutrino masses given in Eq. (25) and the type II solution given in Eq. (26). The
corresponding CP violation factors are now (to first order in the small parameter s13) for the type I case:

Im[(h†h)12(h
†h)12] ≈ s13sinδsin(2θ12)

(r′)4
c23s

3
23,

Im[(h†h)13(h
†h)13] ≈ −s13sinδsin(2θ12)

(r′)4
s23c

3
23,

Im[(h†h)23(h
†h)23] ≈ −Im[(h†h)13(h

†h)13], (57)

and for the type II case:

Im[(h†h)12(h
†h)12] ≈ −s13sinδsin(2θ12)

(r′)4
c23s

3
23,

Im[(h†h)13(h
†h)13] ≈ s13sinδsin(2θ12)

(r′)4
s23c

3
23,

Im[(h†h)23(h
†h)23] ≈ Im[(h†h)13(h

†h)13], (58)

As in the cases where only the Majorana phases contribute to the CP violation, the predicted lepton asymmetries,
ǫi will typically lead to a value of the baryon to photon ratio much larger than the experimental one. In the present
case it is not possible to fine tune δ. The only possibility would be to fine tune s13 to an extremely small value. This
seems more artificial since s13 is not required to vanish in the CP conserving situation. In any event, an experimental
measurement of non-zero s13 would, practically speaking, rule out this case as a candidate for leptogenesis.

VI. DISCUSSION AND SUMMARY

In this paper, we investigated an Ansatz which correlates information about the four quantities in the light neu-
trino sector which are not yet known from experiment; namely, the absolute mass of any particular neutrino, the
“conventional” CP violation phase and the two Majorana phases. Of course, with input from analyses of neutrino
oscillation experiments, the masses of the other two neutrinos can be found, up to a discrete ambiguity, if the mass of
one is specified. The results of the present paper can be used for calculating many quantities of experimental interest
like the neutrinoless double beta decay amplitude factor mee (presented in section IV) and various lepton number
violating decays.

The Ansatz is not completely predictive, unless some assumptions are made. We first reviewed the case of assumed
CP conservation (where just the three neutrino masses are obtained).Then we showed that if only the “conventional”
CP violation phase is assumed to be non-zero, its value is fixed by the Ansatz to be maximal. A possibly more
interesting case appears if we assume that only the two Majorana phases are non-zero. This enables us to scan the
limited allowed range of assumed neutrino mass, m3 (say) and find the other two neutrino masses as well as the two
Majorana phases for each value of m3. The result seems to cut through a “cross section” of interesting possibilities
which are described in a simple way. The still more complicated case without setting any of the three CP phases to
zero gives a two parameter family of solutions and will be treated elsewhere. Another (common) assumption we made
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for a first analysis is that the measured lepton mixing matrix is dominated by the neutrino factor. This is consistent
with the finding in recent years that the mixing in the neutrino sector is apparently much larger than the mixing in
the quark sector (which in models is usually relatively small and similar to that of the charged lepton factor).

It seems relevant to discuss briefly the status of the motivations for the complementary Ansatz we are using. One
motivation, based on a loop mechanism for generating neutrino masses was discussed recently by He and Zee [9].
Our motivation [7] was based on the grand unification group SO(10). This group is well known to have the elegant
feature that it accomodates one generation of elementary fermions as well as an extra (now desired) neutrino field
in its fundamental spinor irreducible representation. Naturally, there are many possibilities for doing a detailed
calculation using this group. One may ask whether it should be regarded as being derived from a superstring theory,
whether it should be supersymmetric, whether the symmetry breakdown should be dynamical, whether the symmetry
breakdown should be induced by Higgs fields and if so what kind and how many, etc? We focus, in our motivation,
on the conventional possibility of using Higgs fields since it seems almost kinematical now (although since no Higgs
field has yet been seen one should keep an open mind). Of course, there have been many interesting treatments along
these lines [37]. Our Ansatz is suggested by a relation involving only the neutrino mass matrix which might be true
(or at least approximately correct) in a large number of models. In SO(10), tree level masses from a renormalizable
Lagrangian can be obtained by using any number of Higgs mesons belonging to the 10, 120 and 126 dimensional
representations. However, examining the form of the predicted mass matrices shows that the following fairly general
relation [38] holds:

Tr(MD − rME) ∝ Tr(ML), (59)

for any number of 10’s and 120’s but only a single 126 present. Here MD and ME are respectively the prediagonal
mass matrices of the charge -1/3 quarks and charge -1 leptons while r ≈ 3, as previously mentioned. ML, which arises
from the 126 Higgs field Yukawa couplings, is the non seesaw part of the light neutrino mass matrix which appears
in Eq. (4). Taking traces cancels the contributions (antisymmetric matrices) of any 120 Higgs multiplets to the left
hand side. Then, assuming the transformations which bring MD and ME to diagonal form to be roughly close to the
identity we observe that the left hand side is approximately equal to mb − rmτ , which is about zero. In fact this is
a characteristic prediction of grand unification. In turn the right hand side gives us the starting Ansatz when it is
assumed that the non seesaw term dominates in Eq. (4). Of course, if this domination is to hold the masses of the
heavy neutrinos should not be too low. The present paper is in effect exploring the range of possibilities which exist
when these assumptions are made in SO(10) models. An interesting question is whether this kind of limit or the pure
seesaw limit gives a better description of nature, even if both terms are actually required.

We remark that SO(10) also gives another similar relation,

Tr(MU − r′MD) ∝ Tr(ML), (60)

when only one 126 Higgs field exists. Here MU and MD respectively denote the prediagonal charge 2/3 quark mass
matrix and the prediagonal neutrino “Dirac” matrix connecting the heavy and light neutrino fields.

An intriguing way to learn more about CP violation in the lepton sector is the study of the leptogenesis mechanism
of baryogenesis. We saw that the treatment of this process simplifies when one adopts the present SO(10) motivation.
Then the light neutrino mass matrix Mν and ML are approximately equal and proportional (due to the assumption
of only one 126 field in the theory) to the heavy neutrino mass matrix MH . The only free parameter for the heavy
neutrinos is their overall mass scale and this should not be too small to preserve non seesaw dominance. We showed in
section V that it is easy to estimate the lepton asymmetry parameters ǫi for a “panorama” of values of the independent
variable m3 since they are actually independent of the overall heavy neutrino mass scale. As far as the resulting baryon
to photon ratio, ηB (parameterized in Eq. (55)) is concerned, the typical values of the ǫi give ηB much greater than
the experimental one for suppression factors Di of order unity. We observed that if the suppression factors are not too
small one can therefore always choose a value of m3 close enough to one of the two essentially different CP conserving
solutions so that the Majorana phases are small enough to get experimental agreement for ηB. Using estimates of the
suppression factors taken from other earlier studies, we noted that this conclusion seems reasonable. Of course the
study of the suppression factors by solving the Boltzmann evolution equations is an important topic which involves
many subtleties and would repay further work in the present model. Finally, the posible indication of very small CP
phases might suggest a model in which the CP violation in the lepton sector has a separate identifiable source.
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