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The “complementary” Ansatz, Tr(Mν)=0, where Mν is the prediagonal neutrino
mass matrix, seems a plausible approximation for capturing in a self contained way
some of the content of Grand Unification. We study its consequences in the form
of relations between the neutrino masses and CP violation phases.

1. Introduction

A favorite topic of discussion at the MRST meetings over many years has

been the prediction of quark and lepton masses and mixings. Usually, an

attempt is made to predict everything at once based on a suitable guess

(Ansatz). Here we discuss a “complementary” Ansatz which adds just a

little information to the system. This is 1,2,3 , for the symmetric pre-

diagonal neutrino mass matrix, Mν :

Tr(Mν) = 0 (1)
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If, at first, leptonic CP violation is neglected so that Mν is diagonalized by

a real orthogonal matrix, Eq. (1) yields simply

m1 + m2 + m3 = 0, (2)

where the neutrino masses, mi can be taken here to be either positive or

negative. Now a very recent analysis 4 of solar, atmospheric, reactor and

accelerator neutrino oscillation data (but neglecting LSND) gives the best

fit:

m2
2 − m2

1 = 6.9 × 10−5eV 2,

|m2
3 − m2

2| = 2.6 × 10−3eV 2. (3)

Together, Eqs. (2) and (3) provide three equations for three unknowns.

There are two essentially different types of solutions. Type I is characterized

by |m3| being largest:

m1 = 0.0291 eV, m2 = 0.0302 eV, m3 = −0.0593 eV, (4)

while type II has |m3| smallest:

m1 = 0.0503 eV, m2 = −0.0510 eV, m3 = 0.00068 eV. (5)

Here we will, following ref.5 (see this for further references), discuss the

situation when CP violation effects are included and give an application to

leptogenesis.

2. Plausibility argument for Ansatz

SO(10) grand unified theories have the nice feature that they contain a

complete fermion generation in a single irreducible representation of the

group. There are three Higgs irreducible representations which can directly

contribute to tree level fermion masses via the Yukawa sector: the 10, the

120 and the 126. In principle any number of each is allowed. For every

Higgs field there is a 3 ×3 matrix of unknown coupling constants. The

fermion mass matrices are linear combinations of these matrices. Clearly a

very large number of different models can be envisioned.

We start from the “kinematical” relation:

Tr(M−1/3 − rM−1) ∝ Tr(M0,LIGHT ), (6)

which holds when any number of 10’s and 120’s are present but only a

single 126. Here the subscript on the mass matrix indicates the electric

charge of the fermion. The quantity r ≈ 3 takes account of running masses
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from the GUT scale to about 1 GeV. Under the same conditions one also

has:

M0,HEAV Y ∝ M0,LIGHT . (7)

Note that the physical light neutrino mass matrix, Mν is given by the well

known formula:

Mν ≈ M0,LIGHT − MT
DIRACM−1

0,HEAV Y MDIRAC . (8)

The initial assumption we shall make is that the second, “see-saw” term in

Eq. (8) is small compared to M0,LIGHT .

Now, it has been known for a long time that the quark mixing matrix is

of the form diag(1, 1, 1) + O(ǫ). Thus it was very surprising when analysis

of neutrino oscillation observations showed that the lepton mixing matrix is

not at all close to the unit matrix but rather has large (12) and (23) mixing

elements. In a GUT framework, this suggests that a first approximation to

the prediagonal mass matrices might be to take the charged fermion mass

matrices to be diagonal while the neutrino mass matrix would presumably

differ drastically from the diagonal form. As examples we would set M−1 ≈

diag(me, mµ, mτ ) and M−1/3 ≈ diag(md, ms, mb). Substituting these into

the left hand side of Eq. (6) shows it to be about (mb − 3mτ), which is

about zero. Hence the right hand side should also be about zero as should

Tr(Mν) in the non-seesaw dominance case. Although this is clearly an

approximation, it seems likely to be close to the physical situation in the

same sense as mb ≈ 3mτ . Of course, the approximation gets better as the

mixing matrices needed to bi-diagonalize the charged lepton mass matrix

get closer to the unit matrix. For simplicity, in what follows we shall also

approximate these matrices to equal the unit matrix.

3. Parameterized Ansatz equation

The prediagonal neutrino mass matrix may be brought to diagonal form by

a transformation:

UT MνU = M̂ν = diag(m1, m2, m3), (9)

where U is a unitary matrix. Mν is a symmetric but complex matrix

which has in general 12 real parameters. This equals the sum of the three

parameters from mi and the nine parameters from U . Now the observable

lepton mixing matrix, K is given 1 by K = Ω†U , where we have just agreed

to approximate the charged lepton diagonalizing matrix factor, Ω to be

essentially the unit matrix (or alternatively we could choose to work in
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a basis where the charged leptons are diagonal). Thus we replace U by

the observable matrix K. K is parameterized in a conventional way as

K = Kexpω
−1

0 (τ), where ω0(τ) = diag(eiτ1 , eiτ2 , eiτ3) with τ1 + τ2 + τ3 = 0

and:

Kexp =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23



 (10)

where sij = sinθij and cij = cosθij . As written, the matrix K is parame-

terized by three angles and three independent CP violating phases. To get

the most general K three more phases are required; these can be inserted

for example 1 by multiplying K on the left by ω0(σ). However these phases

can always be canceled by rephasing the (diagonal) charged lepton fields

which sit to the left of K. Thus even if the phases, σi were included in

U there would always be an allowed choice of charged lepton phases which

would cancel their effect when we get restrictions (as we shall) on the phys-

ical K. Taking this into account the Ansatz reads in terms of physical

quantities:

Tr(M̂νK−1
expK

∗
expω0(2τ)) = 0. (11)

In more detail it is:

m1e
2iτ1

[

1 − 2i(c12s13)
2sinδe−iδ

]

+

m2e
2iτ2

[

1 − 2i(s12s13)
2sinδe−iδ

]

+

m3e
2iτ3

[

1 + 2i(s13)
2sinδeiδ

]

= 0. (12)

In this equation we can choose the diagonal masses m1, m2, m3 to be real

positive. The mixing angles are known from the best fit 4,

s2
12 = 0.30, s2

23 = 0.50, s2
13 = 0.003, (13)

wherein the first two have about 25 per cent uncertainty while the third is

just known to be small.

Together Eqs. (3) and (12) are now seen to provide 4 real equations for

the 6 unknowns: m1, m2, m3, δ, τ1, τ2. Thus further assumptions are needed

to make some predictions. We already saw that assuming all the CP phases

to vanish gives three equations for three unknowns. If we assume only the

“conventional” CP phase δ not to vanish there are four equations for four

unknowns, with the results described in 5. This case would become trivial

in the limit where s2
13 is assumed to vanish. There is no reason to expect

it to vanish exactly but, considering our lack of knowledge, that seems to
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be also an interesting assumption to investigate. According to Eq. (12) it

yields the same result as setting δ = 0. Then we have 4 equations for 5

unknowns and can get a one parameter family of solutions.

4. Family of Majorana phases

In this case, Eq. (12) takes the form

m1e
2iτ1 + m2e

2iτ2 + m3e
2iτ3 = 0, (14)

which corresponds, as illustrated in Fig. 1, to a triangle in the complex

plane.

Figure 1. Vector triangle representing Eq. (14).

We proceed to obtain the family of solutions by assuming a value for m3,

getting m1 and m2 from Eq. (3) and finally by solving for the two interior

angles µ1 and µ2 using trigonometry. Interesting CP violation quantities

turn out to be:

sin[2(τ1 − τ2)] = −sin(µ1 + µ2),

sin[2(τ1 − τ3)] = sinµ2,

sin[2(τ2 − τ3)] = −sinµ1, (15)

The criterion for the existence of CP violation effects is the area of the

triangle being different from zero. We may express the area as:

Area =
1

4

(

[(m1 + m2)
2 − m2

3][m
2
3 − (m1 − m2)

2]
)1/2

. (16)
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Now we see that the vanishing of the first factor corresponds to the type

I real solution while the vanishing of the second factor corresponds to the

type II real solution. Furthermore, for a solution to exist, the argument of

the square root should be positive. With the second factor, that establishes

the minimum allowed value of m3 while with the first factor, that establishes

the minimum value of m3 which allows a type I solution.

The table below shows a “panorama” of solutions decreasing from m3 =

0.3 eV, (which is about the highest value compatible with the cosmology

bound 6 that the sum of the neutrino masses be less than about 1 eV) to

the lowest value imposed by the model. In the type I solutions m3 is the

largest mass while in the type II solutions m3 is the smallest mass. For

each value of m3, the values of the model predictions for m1 and m2 as well

as the internal angles µ1 and µ2 are given. The model prediction for the

neutrinoless double beta decay quantity |mee| is next shown. Finally, the

last column shows the estimated lepton asymmetries due to the decays of

the heavy neutrinos. Note that the reversed sign of lepton asymmetry is

also possible.

m1, m2, m3 in eV µ1, µ2 rad. |mee| ǫ1, ǫ2, ǫ3

I .2955, .2956, .300 1.038, 1.039 .185 .342, .433, .017

II .3042, .3043, .300 1.055,1.056 .187 .330, .426, -.0172

I .0856, .0860, .100 0.946, 0.952 .058 .138, .060, .00137

II .1119, .1122, .100 1.106, 1.111 .065 .194, .088,-.0024

I .0305, .0316, .060 0.258, 0.268 .030 .00982, .00422, .00004

II .0783, .0787, .060 1.172, 1.187 .043 .094, .041,-.0011

I .0291, .0302, .000552, .030 1.96 ×10−6,

0.0592715649 0.000574 .84 ×10−6, .71 ×10−7

II .0774, .0782, 1.174, 1.188 .042 .047, .020, -.0011

0.0592715649

II .0643, .0648, .040 1.243, 1.268 .033 .052, .023,-.000681

II .0541, .0548, .020 1.355. 1.442 .024 .018, .0078,-.000335

II .0506, .0512, .005 1.386, 1.658 .021 .0057, .0025,-.0000824

II .0503, .0510, .001 0.814, 2.313 .021 .00073, .00031,

-.0000122

II 0.0503, 0.0510, 0.051361, .021 .0000348, .0000150,

0.0006996 3.089536 -0.601 ×10−6
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Notice that when m3 is decreased to about 0.0593 eV, we get to the

real type I case (no CP violation). Below this value of m3 only the type II

solutions exist. At m3 about 7× 10−4 eV, we get the real type II case and

no solutions exist for m3 below this value. In the m3 regions just above the

two real cases we can evidently tune the CP violation phases continuously

to be as small as desired.

An interesting application of the model is to neutrinoless double beta

decay (for example, the decay 76Ge → 76Se + e− + e−). The current

experimental bound on the amplitude factor 7 is: |mee| < (0.35 → 1.30)

eV, where

|mee| =
∑

|mi(Kexp1i)
2e−2iτi |. (17)

From the table we see that the predicted values of |mee| are typically about

one order of magnitude below the experimental bound. Furthermore, the

predicted values do not vary drastically for m3 less than about 0.1 eV.

5. Estimate for leptogenesis

An intriguing possibility for learning more about leptonic CP violation is

the study of the proposed leptogenesis mechanism for generation of the

present baryon number asymmetry of the universe. According to this

scheme, the lepton number violating decays of the heavy neutrinos at a

high temperature (early universe) establish a lepton asymmetry which gets

converted as the universe cools, through a (B+L) violating but (B-L) con-

serving “sphaleron” interaction to a baryon asymmetry. References and a

rough estimate in the present framework are given in ref. 5. According to

Eq. (7) the heavy neutrino masses are supposed to be proportional to the

light ones here and have the same diagonalizing matrix, U . The effective

term for calculating the heavy neutrino decays at very high temperature is

LY UKAWA = −
∑

L̄ihijΦ
cN̂j + H.c., (18)

where

hij ≈
M2/3iKexpije

−iτj

< φ0 > r′
. (19)

The quantities needed for the calculation are the matrix products (h†h)ij ;

it is thus seen that the effect of a diagonal matrix of phases multiplying

Kexpij on the left would cancel out. The lepton CP asymmetry ǫi, due to

the decay of the ith heavy neutrino, is defined as the ratio of decay widths:

ǫi =
Γ(Ni → L + Φ) − Γ(Ni → L̄ + Φ̄)

Γ(Ni → L + Φ) + Γ(Ni → L̄ + Φ̄)
. (20)
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In this equation L+Φ stands for all lepton- Higgs pairs of the types e−j +φ+

and νj+φ̄0. This is an effect which violates C and CP conservation, in agree-

ment with the requirement of Sakharov. The numerical values of the ǫi,

which depend on the ratios of heavy neutrino masses rather than their ab-

solute values, are displayed in the last column of the table. Notice that Eq.

(18) represents the same term which generates the Dirac mass, MDIRAC

in Eq. (8). Since our motivation for the Ansatz assumes dominance of the

non seesaw term, this feature requires 5 the heavy neutrino mass scale to

be suitably large. This scale plays a role in the estimation of the present

baryon to photon ratio, ηB of the universe which is obtained by convoluting

the ǫi with factors obtained by solving the Boltzmann evolution equations

for the (B-L) asymmetry. It turns out 5 that for typical values of the pa-

rameter, m3 in the table, ηB is considerably larger than its experimental

value 6 of about 6.5 × 10−10. Thus agreement with experiment requires

tuning close to the two real type solutions; the correct order of magnitude

is obtained when either m3 ≈ 0.059 eV (type I) or m3 ≈ 0.005 eV (type

II).

We thank D. Black, A. H. Fariborz, C. Macesanu , M. Trodden and D.

Schechter for their help. The work of S.N is supported by National Science
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